
Universidade Federal Fluminense

ANDRÉ FELIPE DE ALMEIDA MONTEIRO

Quantum Virtual Machine: a dynamic approach for
managing power and performance in virtualized

clusters

Niterói

2017

Universidade Federal Fluminense

ANDRÉ FELIPE DE ALMEIDA MONTEIRO

Quantum Virtual Machine: a dynamic approach for
managing power and performance in virtualized

clusters

Tese de Doutorado apresentada ao Pro-
grama de Pós-Graduação em Computação
da Universidade Federal Fluminense como
requisito parcial de qualificação para a ob-
tenção do Grau de Doutor em Computação.
Área de concentração:
Redes e Sistemas Distribuídos e Paralelos

Orientador:
Orlando Loques

Niterói

2017

André Felipe de Almeida Monteiro

Quantum Virtual Machine: a dynamic approach for managing power and performance

in virtualized clusters

Tese de Doutorado apresentada ao Pro-

grama de Pós-Graduação em Computa-

ção da Universidade Federal Fluminense

como requisito parcial para a obtenção

do Grau de Doutor em Computação.

Área de concentração:

Redes e Sistemas Distribuídos e Paralelos

Aprovada em Abril de 2017.

ii

BANCA EXAMINADORA

Prof. Orlando Loques - Orientador, UFF

Prof. Vinod Rebello, UFF

Prof. Esteban Clua, UFF

Prof. Alexandre Sztajnberg, UERJ

Prof. Claudio Amorim, UFRJ

Prof. Célio Albuquerque, UFF

Niterói

2017

For the lovely Maui and Najara.

Acknowledgement

I would like to thank my supervisor Orlando Loques, and Julius Leite who was my

supervisor for the first two years of the Doctorate, but retired in 2013. I will always

be grateful for all their dedication and enthusiasm that they always shown during the

Doctorate. They are the professional example that I would like to follow. A special thank

to professor Alexandre Sztajnberg, who was my supervisor during my master’s degree and

show me the first steps in this long journey.

To my family and friends, specially my wife Najara and my daughter Luisa Maui, I

would like to thank for all the support they gave me, mainly when they understood I need

to be "offline"for some time.

Resumo

O elevado consumo de energia em ambientes de processamento de larga escala, como pla-
taformas de computação em nuvem e data centers, mostra-se uma questão central nos
dias atuais onde a sustentabilidade ambiental desses ambientes é uma premissa prioritá-
ria. Prover um gerenciamento energético eficiente é fundamental para reduzir os custos
de operação e o impacto ambiental desses ambientes. Entretanto, esta é uma tarefa com-
plexa, pois o gerenciamento energético deve lidar com diversos fatores como qualidade de
serviço das aplicações suportadas, escalabilidade, heterogeneidade dos recursos de proces-
samento, perfil energético e capacidade de processamento desses recursos, dentre outros.
Este trabalho apresenta a Máquina Virtual Quântica, um modelo para gerenciamento de
servidores virtuais de aplicação (Virtual Machines - VMs) em clusters de processamento.
Além de prover economia de energia e garantir a qualidade de serviço das aplicações su-
portadas, nosso modelo tem escalabilidade linear e define um padrão de servidor virtual de
processamento denominado de VM Quântica. Um conjunto de Máquinas Virtuais Quân-
ticas constitui um Servidor Lógico Web (SLW), que opera de forma flexível ajustando seu
consumo de energia e seu desempenho de acordo com a carga de requisições das aplicações.
Conceitos de clone ágil e co-alocação de VMs e DVFS (Dynamic Voltage and Frequency
Scaling) são utilizados em nosso modelo, viabilizando ações ágeis de reconfiguração do
cluster e um controle fino de QoS das aplicações. Além disso, propomos uma modela-
gem em tempo de execução dos recursos de processamento, definindo dinamicamente o
consumo de energia e a capacidade de processamento dos mesmos, dispensando assim
a necessidade de uma análise prévia do ambiente de processamento. Os experimentos
avaliam o nosso modelo por meio das métricas de consumo de energia e taxa de violação
de QoS em comparação às políticas nativas do Linux para gerenciamento energético de
servidores, e a modelos do estado da arte da área de gerenciamento energético de clus-
ters. Os resultados demonstram que nosso modelo é capaz de economizar até 51.8% da
energia consumida em um cluster que opera em sua capacidade máxima, com um impacto
irrelevante no desempenho das aplicações.

Palavras-chave: Eficiência energética de servidores, gerenciamento de recursos, escala-
bilidade, virtualização, clusters de servidores.

Abstract

Power consumption in large-scale processing environments, such as cloud computing plat-
forms and data centers, is a major issue nowadays, where the environmental sustainability
of these environments is a priority premise. Efficient power management is critical to re-
duce the operating costs and the environmental impact of these environments. However,
this is a complex task since the power management must consider several factors such as
the QoS of the supported applications, scalability, heterogeneity of the processing resour-
ces, power and performance profiling of these resources, among others. This work presents
a model for managing Virtual Machines (VMs) on server clusters. In addition to provi-
ding energy savings, our model has linear scalability and is independent of the processing
platform. We define a default processing virtual server, named as Quantum Virtual Ma-
chine (QVM). A set of QVMs implement a Logical Web Server (LWS), which operates
in a flexible manner, changing its performance and power consumption depending on the
workload of the applications. Concepts of agile VM clone, co-allocation of VMs in the
same core, and Dynamic Voltage and Frequency Scaling (DVFS) are used in the model,
enabling rapid configuration actions and a fine-grained QoS control. In addition, we pro-
pose a runtime modeling of the processing resources, dynamically defining their power
consumption and processing capacity, avoiding the need for a previous profiling of the
processing environment. Experiments evaluate the effectiveness of the proposed model
by means of power consumption reduction and QoS violations as compared to the Linux
CPU governors and state-of-the-art energy-aware approaches based on optimization. The
results show our model conserves up to 51.8% of the energy required by a cluster designed
for peak workload scenario, with a negligible impact on the applications performance.

Keywords: Power-aware computing, resource management, scalability, virtualization,
server clusters.

Lista de Figuras

1.1 QVM model and resource managers . 17

3.1 VM agile clone process . 29

3.2 Single VM performance - Live migration vs. Agile clone with background

transfer . 30

3.3 Set of VMs performance - Live migration vs. Agile clone with background

transfer . 31

3.4 Co-allocation performance evaluation . 32

3.5 Performance on DVFS . 34

3.6 Power consumption on DVFS . 35

4.1 Logical Web Server with elastic processing capacity 39

4.2 The model architecture . 40

4.3 Reconfiguration algorithm . 50

5.1 Application workloads . 58

5.2 Application performance . 59

5.3 Web server cluster power consumption . 61

5.4 Number of big/small cores . 62

5.5 Power measurements . 64

5.6 Performance measurements . 65

Lista de Tabelas

4.1 Resource modeling of the two implemented resource manager 46

5.1 Configuration of the machines in our testbed 57

5.2 Average time spent to define the cluster configuration 60

5.3 Energy savings results . 60

5.4 QoS-violation results . 62

5.5 Energy savings results . 66

5.6 Performance in Heterogeneous Cores (HC) and Big/Small Cores (B/S C) . 67

5.7 Comparison with state-of-the-art approaches 67

Lista de Abreviaturas e Siglas

API : Application Programming Interface;

CPU : Central Processing Unit;

DVFS : Dynamic Voltage and Frequency Scaling;

EDP : Energy Delay Product;

HTTP : Hypertext Transfer Protocol;

IaaS : Infrastructure as a Service;

LLCMS : Last Level Cache Miss per Second;

MIPS : Million Instructions per Second;

NFS : Network File System;

PMC : Performance Monitoring Counters;

QoS : Quality of Service;

QVM : Quantum Virtual Machine;

RPC : Remote Procedure Call;

SLA : Service Level Agreement;

LWS : Logical Web Server;

VAS : Virtual Application Server;

VCPU : Virtual Central Processing Unit;

VM : Virtual Machine;

XML : eXtensible Markup Language.

Sumário

1 Introduction 12

1.1 Research issues analyzed . 14

1.2 Thesis contributions . 17

1.3 Thesis organization . 18

2 Related Work 20

2.1 Energy-efficient processing environments 20

2.2 Approaches based on virtualization . 21

2.3 VM power and performance modeling . 24

2.4 Scalability . 26

3 Basic Concepts and Initial Experiments 27

3.1 VM agile clone . 27

3.2 Co-allocation of VMs . 31

3.3 Big/Small cores and DVFS . 33

4 The Proposed Model 37

4.1 Model’s definitions and architecture . 38

4.2 The Offline approach . 40

4.3 The Online approach . 43

4.4 Resource management policies . 46

4.5 The QVM allocation problem . 48

Sumário xi

5 Performance Evaluation 52

5.1 State-of-the-art approaches implemented 53

5.1.1 Optimization approaches . 53

5.1.2 PMC-based approach . 54

5.2 The testbed . 56

5.3 Web applications scenario . 57

5.4 Other CloudSuite workloads . 63

6 Conclusions 69

6.1 Questions and answers about key issues of the proposed model 70

Referências 73

Chapter 1

Introduction

Cloud computing plataforms and data centers are designed to provide large volumes of

applications and services, which need to share the physical resources of the processing

environment (servers, network equipment, energy, etc.). This concept of resource sharing

is largely exploited by cloud computing providers, for instance Amazon EC2 [1] and Google

Apps [23]. In general, these processing environments have a heterogeneous processing

platform, due to the replacements of servers and hardware devices (e.g., maintenance,

upgrades). As shown in [4], application servers usually operate between 10% and 50% of

their maximum load. Another issue is the narrow dynamic power range of servers: even

completely idle servers still consume about 70% of their peak power [18].

There are other crucial problems that arise from high power consumption by compu-

ting resources. Power is required to feed the cooling system operation. For each watt of

power consumed by computing resources, an additional 0.5-1 W is required for the cooling

system [62]. In addition, high power consumption by the infrastructure leads to substan-

tial carbon dioxide (CO2) emissions [24]. According to Gartner, the IT industry produces

2% of global CO2 emission, which places it on par with the aviation industry [60]. More

to the point, based on the trends from American Society of Heating, Refrigerating and

Air-Conditioning Engineers (ASHRAE), it has been estimated that by 2017 infrastructure

and energy costs would contribute about 75%, whereas IT would contribute just 25% to

the overall cost of operating a data center [5].

A virtualized application server cluster is implemented in processing environments by

virtualization tools. This approach enables Virtual Machines (VMs) of various applica-

tions to run on the same physical server, sharing the processing resources such as CPU,

memory, disk, etc. In scenarios of low utilization, due to low-load requests to the cluster,

a VM consolidation process can be performed on a reduced number of physical servers.

1 Introduction 13

This consolidation is made with VM migration procedures between physical servers in

the cluster. This method enables a more rational use of environmental resources such as

electricity, for instance, as it prevents servers from needlessly remaining powered on.

This reduced power consumption via consolidation occurs because most of the physical

servers are oversized in order to withstand heavy request scenarios that are close to the

threshold designed for the machines. Despite the beneficial effects of the VM consolidation

process on energy savings, there is a restriction with regard to ensuring the Quality of

Service (QoS) of the running applications in the cluster. Thus, it is necessary to find

a balance in the consolidation process in order to make energy savings possible without

compromising the application’s QoS.

Another relevant technique capable of providing energy savings on physical servers

is the DVFS (Dynamic Voltage and Frequency Scaling), as shown in [63] and [72]. This

technique consists in adjusting the frequency and voltage of the processor at runtime,

thereby adapting the processing capacity to the current workload demand. In other words,

in low workloads, the processor’s operating frequency can be decreased, thus reducing its

processing capacity and its power consumption. As shown in our initial tests presented in

Chapter 3, there is a linear relationship between the operation frequency of a processor

and its performance. Moreover, the relationship between the operating frequency and the

processor’s power consumption is quadratic. Therefore, the trade-off between power and

performance through DVFS must be addressed by a resource manager aimed at energy

savings.

A paradigm related to the DVFS is to address the trade-off between power and per-

formance through virtualized platforms composed of big/small cores. These platforms

enable a mix of high performance and energy-efficient processors, in order to explore the

energy savings and the performance constraints in processing environments. In this sce-

nario, the set of small cores offer low but energy-efficient processing capacity while the

big cores focus on high processing capacity at the expense of energy-efficiency. In other

words, the small cores are designed for energy savings, while the big cores are indicated

for high performance workloads. In general, the big/small cores platforms also implement

the DVFS through resource managers in order to provide a fine-grained power and per-

formance management according the workload. However, the range of available operating

frequencies is more restricted in order to keep the particular features of each set (small

and big) of cores.

As analyzed in [19], for certain types of applications (i.e., web applications) to use

1.1 Research issues analyzed 14

small cores is more interesting for the trade-off between power and performance. More

to the point, this trade-off also depends on how well a load distribution strategy can map

workloads onto the most appropriate core type. As shown in [59] some applications have

a mix of processing phases (having heavy and light demands) and a dynamic scheduling

between big/small cores combined with DVFS is required to manage the clusters in an

energy-efficient manner. Thus, the state-of-the-art models aimed at power and perfor-

mance management must present a high level of adaptiveness, in order to handle different

types of applications and workloads. Moreover, these models also must address the hete-

rogeneity of the processing environment, since homogeneous processing environments are

uncommon in cloud computing platforms nowadays, as discussed earlier.

1.1 Research issues analyzed

Besides the management of the processing environment in a energy-efficient manner, the

configuration of the active VMs in the cluster is a key factor for the applications perfor-

mance. Thus, when a virtualized servers cluster is deployed, there are relevant issues that

must be addressed by a resource manager. In particular, this thesis focus on the following

research issues:

1. The dependency between resource manager and processing platform.

Motivation: The main resource managers are dependent on the processing plat-

form, since they must collect control data which are associated with a specific hard-

ware family, such as IPS (Instructions Per Second), IPC (Instructions per Cycle), or

cache miss rate, for instance. Moreover, in virtualized platforms, the management

solutions implement new procedures to extend available functions in the virtualiza-

tion tools, making solutions dependent on the virtualizer.

Proposed goal: Our model should allow good results for power and performance

management regardless of the processing platform.

2. The need for power and performance profiling of the cluster’s processing

resources.

Motivation: Due to the heterogeneity of the processing platforms, which are com-

posed of different families of processors and servers, is not trivial to define at runtime

the power and performance profile of a processing resource. To this end, the most

common approach is to perform previous profiling experiments in order to obtain

the required information about the processing environment. However, it is imprac-

1.1 Research issues analyzed 15

tical to stop the operation of data centers or cloud computing platforms to perform

experiments. In addition to the need for suspending all the application services and

tasks, which will have a major impact on the client’s interface and violate Service

Level Agreements (SLAs), several complex restoring procedures will be required af-

ter the experiments to resume the applications.

Proposed goal: Provide an accurate estimate of the cluster’s processing resources

through runtime modeling that avoids the need for previous power and performance

profiling.

3. The scalability of the virtualized server cluster.

Motivation: To define at runtime in which physical server the VM should be allo-

cated and set the proper VM configuration can be a lengthy process when a large

number of instances have to be analyzed. In general, the problem of allocating a VM

in a cluster of physical servers and determining the VM configuration is modeled

as a bin packing problem (NP-Hard), and solving it requires using an optimization

process that has exponential complexity due to the combinatorial nature of the pro-

blem.

Proposed goal: Achieve the scalability through an algorithm with linear comple-

xity, which defines the reconfiguration actions on the virtualized cluster.

4. The agility of the cluster reconfiguration actions.

Motivation: The reconfiguration actions defined by a resource manager must be

performed in an agile manner, in order to guarantee the fine-grained QoS control

required by the applications. To provide rapid reconfigurations actions, which is

a key factor to obtain a scalable approach, the resource manager should simplify

to the maximum the decision making process and the reconfiguration procedures.

Thus, shorter control periods could be enabled and the cluster would be quickly

adapted to handle peak workload scenarios.

Proposed goal: Implement reconfiguration actions to quickly perform the resource

management policies, enabling the cluster reconfiguration with a low latency in order

to provide a fine-grained QoS control.

5. The effectiveness of the DVFS and the big/small cores paradigm on the

trade-off between power and performance.

Motivation: In general, the resource managers based on DVFS must also imple-

ment several extra procedures, such as advanced load balancing, control procedures

using performance counters, etc., to provide a lower power consumption and a better

1.1 Research issues analyzed 16

performance. The use of multicore processors is the trend nowadays in modern pro-

cessing platforms. Thus, the resource managers based on DVFS require the setting

of the proper operating frequency for each core, which can be a complex analysis in

large-scale processing environments. In contrast, the use of a big/small cores plat-

form provides a relevant simplification of resource management, since each core is

configured using its nominal value of operating frequency. Therefore, is possible to

define sub-set of cores with similar operating frequencies and characteristics (energy

savings or high performance), avoiding the complexity of the local DVFS policy for

each core in scale-out platforms.

Proposed goal: Verify the energy-efficiency of a heterogeneous DVFS-based plat-

form in comparison with a big/small cores processing environment.

Our work addresses the five issues mentioned above. We propose a model for sim-

plifying the VM allocation process, using a canonical basis for all active VMs, called

Quantum Virtual Machine (QVM). The QVM model aims to perform the power and per-

formance management of server clusters in an energy-efficient manner. Associated with

the model, two resource managers with different approaches for power and performance

modeling of the cluster’s processing resources are proposed and evaluated.

The first manager, called Offline, requires a preliminary cluster resource profile,

which measures the power consumption and the processing capacity of each core in the

cluster. The second manager (Online) performs the power and performance modeling of

the cores during runtime, avoiding previous tests and analysis. Moreover, both approaches

perform their policies based on a simple monitoring process, which needs periodically

measure only the utilization rates from VMs and cores, avoiding metrics specifically related

to the processor’s configuration.

The resource managers are depicted in Fig. 1.1. As can be seen, both managers

are based on the QVM paradigm. However, they differ in how the cluster’s processing

resources are modeled. Therefore, Offline and Online are responsible for the application

of the premises described in our model, in order to provide a cluster management with

high level of energy-efficiency.

1.2 Thesis contributions 17

Online Offline

QVM model

Power and
performance
profile data

Previous
profiling stage

Cluster

Monitor and Control

Figura 1.1: QVM model and resource managers

1.2 Thesis contributions

The contributions of this thesis can be divided into four categories: virtualization techni-

ques, resource management in virtualized server clusters, runtime modeling of processing

resources, besides the scalability and independence of the processing platform. The main

contributions of this thesis are highlighted as follows:

• We address clusters with a high degree of virtualization, using state-of-the-art vir-

tualization techniques, such as VM co-allocation in the same core and the VM agile

clone;

• We propose and implement a background transfer in the agile clone process in order

to decrease its latency;

• We present the QVM paradigm, which enables a novel VM cluster model and sim-

plifies the VM allocation process in order to ensure scalability of our model;

1.3 Thesis organization 18

• We achieve high energy savings while guarantee a negligible impact on the applica-

tion’s performance;

• We propose runtime profiling of the cluster’s processing resources;

• The proposed resource managers are independent of the processing platform and

require only a few simple measurements (utilization rates from the VMs and cores)

to perform their policies.

1.3 Thesis organization

The core chapters of this thesis are derived from journal and conference papers, which

were published by our group during the doctoral candidature. The relationship between

these papers and the thesis, as well the text organization are described as follows:

Chapter 2 analyzes the main related works which address power and performance

management in virtualized server clusters. The related works were divided according to

their most common features. Moreover, we also highlight the main contributions of our

proposed model in comparison with the analyzed works.

Chapter 3 presents the main concepts and technologies used in our model, and we

describe the initial experiments performed to ratify these concepts. We also present and

discuss the main virtualization techniques implemented in our approach. In addition,

we analyze the trade-off between power and performance of a core when the DVFS is

used. These preliminary tests were conducted on the first stage of our research, where

the assumptions used in our model were validated empirically. The results were detailed

and analyzed in [55], and the conclusions lead to the main ideas used in the development

of our proposed model.

Chapter 4 describes the proposed model, and we also present a detailed analysis of

our approaches for resource management. The first version of our model was presented in

[51], which defined a single VAS (Virtual Application Server) standard, called Quantum

VAS because of its reduced processing capacity and use of a VAS co-allocation process in

the same core processor. Then, in [53] we used the same concepts from previous work,

but we focused on the evaluation of more aggressive reconfiguration actions in the cluster,

in order to maximize the energy savings and evaluate their impact on applications QoS.

The QVM concept was presented in [52]. A set of QVMs implement a Logical Web

Server (LWS), which operates in a flexible manner, changing its performance and power

1.3 Thesis organization 19

consumption depending on the workload of the applications. Concepts of agile VAS

clone, co-allocation of VAS in the same core, and Dynamic Voltage and Frequency Scaling

(DVFS) are used in the model, enabling rapid configuration actions and a fine-grained

QoS control. Finally, in [54] we present the runtime modeling of the cluster’s processing

resources, which avoids the need for previous power and performance profiling. Thus, the

model proposed in this thesis provides a detailed discussion on how the concepts used in

each previous work were combined. Besides that, we analyze the main issues related to

each concept with focus on the trade-off between power and performance.

Chapter 5 presents a performance evaluation of the proposed model. The two re-

source managers implemented in our model were compared with Linux CPU governors,

state-of-the-art power-aware approaches based on optimization, and resource modeling

based on Performance Monitoring Counters (PMC). The effectiveness of each approach

can be observed in the behavior of the applications supported by the VMs, and in the

power consumption of the cluster. To this end, all the approaches were set to avoid the

degradation of the applications performance, and to manage the cluster’s resources in an

energy-efficient manner.

In order to observe the efficiency of the evaluated approaches in different processing

platforms, we used two different test scenarios. The first scenario consists of a Big/Small

Cores platform and does not use the DVFS to dynamically change the operating frequency

of the cores. The second test scenario consists of a set of heterogeneous cores with

different processing capacities and power consumption, in which the DVFS is used by

all the evaluated approaches. These platforms were used in [55] to manage a virtualized

server cluster composed of three physical servers that together have a total of 176 cores,

enabling the scalability analysis with a suitable setting.

Chapter 6 discusses our conclusions and indicates some future work. Besides ve-

rifying along the thesis, the five research issues pointed out earlier, Chapter 6 (Con-

clusions) summarizes how each issue was addressed by our model, and highlights their

respective proposed solutions.

Chapter 2

Related Work

The issue of energy-efficiency in scale-out data centers and cloud computing platforms is

a major trend nowadays and many different works can be found in the literature. In this

chapter we analyze the state-of-the-art approaches which address the power management

in processing environments. In order to provide a better discussion of these works, we

divide them according to their most common features.

2.1 Energy-efficient processing environments

As pointed earlier in Chapter 1, cloud computing environments usually are composed

by heterogeneous processing resources due to the replacement of servers and hardware

devices. Even when the processing platform was initially deployed with homogeneous

servers, the maintenance and upgrade activities over time bring heterogeneity into the

environment. To provide energy savings in heterogeneous platform, the works described

in [30] and [31] indicate the use of low processing capacity and low power consumption

processors, called small cores or wimpy cores in server clusters. These processors are

not designed for high performance processing but for energy savings, enabling low power

consumption due their simpler hardware configuration and lower operating frequencies.

As described in [19], for certain types of workloads such as web applications, for example,

the small cores is the best choice to address the trade-off between power consumption

and performance. Otherwise, for applications that require a heavy processing load, an

environment composed of multicore processors with high processing capacity (big cores

or brawny cores) may be the most suitable.

Several works present power awareness approaches based on DVFS, as described in

[47], [33], [37] and [44]. The use of multicore processors nowadays enables the setting

2.2 Approaches based on virtualization 21

of the proper operating frequency for each core, which provides local and global power

management of the processing resources. However, it is important to notice that a local

DVFS policy has upper and lower operating limits. The lower limit is associated with the

minimum occupancy in the lowest operating frequency of the core. This occurs when it

is not possible to reduce the processing capacity and the power consumpution of the core

through a lower operating frequency. The upper limit of DVFS is the maximum occupancy

using the highest frequency of the core, which ratifies the saturation point of the core’s

processing capacity. These lower and upper limits indicate to the global management the

need for activating a new core, or the possibility to deactivate an operating core.

As DVFS reduces the number of instructions that a processor can handle in a gi-

ven amount of time, it increases the run-time of program segments that are signifi-

cantly CPU intensive. Thus, this scenario creates a challenge of providing the optimal

power/performance management, which has been extensively investigated in recent ye-

ars. The major impacts on the applications performance through the use of DVFS are

analyzed in [31], [13] and [65]. These works argue that the DVFS bounds are not always

able to assure the performance required for the supported applications, in addition to not

always reaching satisfactory levels of energy savings.

Although the implementation of the DVFS may seem to be straightforward, real-

world systems raise many complexities that have to be taken into account. Since the

complex architectures of modern CPUs (advanced pipelines, multilevel cache, etc.), the

prediction of the required operating frequency that will meet the application performance

requirements is not simple. From this perspective, a key advantage of our model is to

provide significant energy savings with negligible impact on the applications performance

as shown in our performance evaluation. To verify this feature in our model and to analyze

the effectiveness of the DVFS, we performed experiments using two different platforms,

one composed by heterogeneous cores using DVFS, and other composed by big/small cores

without DVFS. The results described in Chapter 5 - Performance Evaluation ratify the

lack of DVFS regarding the applications performance and energy savings in comparison

with the big/small cores platform.

2.2 Approaches based on virtualization

Among the benefits of virtualization are improved fault and performance isolation between

applications sharing the same physical server, and the ability to relatively easily move VMs

2.2 Approaches based on virtualization 22

from one physical host to another using the VM migration procedure. Besides that, the

virtualization process enables a high level of abstraction, providing a wide support for

hardware and software heterogeneity. The ability to migrate VMs at runtime enables

a dynamic VM consolidation policy aimed for energy savings on processing platforms.

However, workload consolidation is a non-trivial problem since aggressive consolidation

may lead to performance degradation of applications. Therefore, the VM consolidation

process is typically constrained by QoS requirements.

Several power-aware approaches use virtualization techniques, as shown in [45] and

[73], because of the potential for energy savings through the consolidation of VMs. Although

these works provide energy-efficient server clusters through virtualization, they do not

enable resource management with rapid reconfiguration actions and a fine-grained QoS

control. To perform the VM consolidation, the cited works use the live migration pro-

cedure to migrate VMs between the physical servers, which has high latency. In our

model we use a VM agile clone procedure, which performs a faster migration of VMs

without harming the performance of the applications, as shown in the analysis presented

in Chapter 3.

The works described in [50] and [7], which implement a server cluster through virtu-

alization, also use the live migration process of the virtualizer to consolidate VMs in a

physical server. In these works, the proposed resource managers consolidate the VMs in a

reduced number of servers, allowing to turn-off the other ones for energy savings. As the

control granularity determined for those management schemes is high (3-5 minutes), the

latency of the live migration does not seem relevant. However, to perform a fine-grained

control process, the live migration becomes an relevant problem and the use of more agile

procedures for VM migration between the servers cluster is required.

Another approach frequently observed in state-of-the-art models designed for energy-

efficient virtualized server clusters regards determining the best configuration of the active

VMs by means of an optimization process, based on the bin packing problem, as described

in [6], [74] and [39]. Thus, the optimization problem is modeled to minimize the power

consumption of the cluster, restricted to the capacities of the physical resources (number

of active cores, CPU operating frequency, amount of available memory, etc.) and to the

applications QoS.

The work described in [20] studied the problem of allocating an available power bud-

get to servers in a heterogeneous server cluster to minimize the average response time of

web applications. The authors investigate how the operating frequency scaling techniques

2.2 Approaches based on virtualization 23

affect power consumption. They conducted experiments applying DVFS for web applica-

tion workloads. The results showed a quadratic power-to-frequency relationship for DVFS

techniques. Given the relationship between power and performance, the cited work ve-

rifies the problem of finding the optimal power allocation as a problem of determining

the optimal frequencies of the DVFS for each server, while minimizing the mean response

time. In order to investigate the effect of different factors on the mean response time a

queueing model was implemented, which allows prediction of the mean response time as

a function of the power-to-frequency relationship, arrival rate, peak power budget, and so

on. The model allows determining the optimal power allocation for every configuration of

the above factors, but the proposed solution is highly related to the processing platform

used in the experiments.

The model proposed in [58] uses optimization based on mixed interger linear program-

ming to determine the cluster configuration that minimizes power consumption, restricted

to non violation of the application’s QoS. The DVFS, server on/off and VM live migra-

tion are used to perform the reconfiguration actions. It is important to notice that in the

optimization approaches, scalability can be a bottleneck due to exponential complexity

of the bin packing problem (NP-Hard). This bottleneck can be addressed by the use of

black-box heuristics available in optimization solvers, in order to reduce the computati-

onal effort to define the best cluster configuration. However, significant gaps may exist

between the quality of the solutions obtained by the heuristics and the optimal solution,

implying smaller energy savings.

The schedulers of the virtualization tools was also analyzed in the literature. As the

scheduling process is responsible for determing which VM should run, it has a relevant role

in the application’s performance. A heterogeneous multicore environment is used in [74]

and [21] to evaluate the VM allocation problem aimed to minimize the power consumption.

The cited works propose VM schedulers to consider the heterogeneity of the processing

environment, as opposed to the default scheduler used by the most popular virtualization

tools, which does not take this aspect into consideration. However, the models do not

explore concepts that could improve their performance, such as the co-allocation and agile

cloning of VMs supported by our model.

2.3 VM power and performance modeling 24

2.3 VM power and performance modeling

Several state-of-the-art approaches for modeling power and performance of VMs present

utilization-based models. The work presented in [18] evaluates the relationship between

the VCPU (Virtual CPU) utilization and total power consumption by a server. The idea

behind the proposed model is that power consumed by a server grows linearly with the

growth of the VCPU utilization of the VMs, from the power consumed in the idle state

up to the power consumed when all the VMs are fully utilized.

The modeling proposed in [49] and [8] are based on a simple assumption that the power

consumption of a physical processing resource is linear to its CPU utilization rate. The

authors consider that when a physical server hosts VMs, its overall power consumption

can be calculated as the sum of the power consumption of the VMs. These models consider

that there is a static power consumption equally shared by all VMs, and a dynamic power

consumption which is proportional to the VM performance. In other words, the more a

VM uses the CPU for processing its workload, the greater its power consumption is. As

the utilization-based models address the individual performance and power consumption

of each VM, they have to obtain some previous information about the processors where

the VMs are allocated. The works described in [45] and [32] point out that the need for

previous profiling tests occurs due to the specific hardware configuration of each processor,

which is related to its design and manufacturing process.

The work presented in [46] analyzes the trade-off between power consumption and

performance in the VM consolidation process. The paper refers to an upper bound in

the VM consolidation, in order to maintain the performance of the applications under

the Service Level Agreement (SLA) specifications. The main goal is to avoid a forced

competition for physical resources (memory and CPU time) between all the active VMs,

which would lead to a contention scenario for applications and a possible QoS degradation.

A previous power and performance profiling of the processing platform is required in order

to provide the cluster modeling. However, as discussed earlier, the need for previous

experiments is a bottleneck in large-scale data centers and cloud computing platforms.

We also used threshold values in our model to prevent idle power and contention of

requests, which leads to QoS degradation. However, we propose a runtime approach

to model the cluster’s physical resources, which eliminates the need for offline resource

profiling.

The use of Performance Monitoring Counters (PMCs) as proxies for power and per-

2.3 VM power and performance modeling 25

formance measurements is widely observed in the literature. The PMCs provide a num-

ber of measurable performance metrics, which enables the measurement of the system

state of any given application.The main advantage of PMCs approaches in comparison

with utilization-based models is their capability to avoid the previous power and per-

formance profiling. Therefore, as the resource manager proposed in this thesis, called

QVM Online and described in Chapter 4, the PMC-based approach is able to perform

the resource modeling at runtime. The modeling of the cluster’s processing resources is

based on performance counters, which have been widely supported in modern multicore

processors. These counters will accumulate all system-level events that were triggered by

different components. By accessing these monitoring counters, such as IPS (instructions

Per Second) or cache miss rate, for instance, a power and performance modeling can be

implemented, as described in [11] and [61].

In the work described in [15] the authors show that although regression models based

on VCPU utilization are able to provide reasonable prediction accuracy for CPU bound

workloads, they tend to be considerably inaccurate for prediction of power consumption

caused by I/O bound applications. A power modeling methodology based on Gaussian is

proposed by the cited work, which uses several models that predicts power consumption by

a physical machine running multiple virtual machine instances. To perform predictions,

in addition to the VCPU utilization, the model relies on runtime workload characteristics,

such as the number of Instructions per Cycle (IPC) and the number of cache misses.

In [10] the virtualization technology is used with PMC-based power modeling tech-

niques to derive power consumption estimates of the CPU and memory at per-VM level.

The cited work also analyzes the effects of DVFS on such scenario, and proposes a sim-

ple methodology to perform per-VM power accounting on current multicore processors

which leverages the PMC-based power models. On the other hand, this feature requi-

res a comprehensive knowledge of the particular architecture and the design of complex

measurements procedures. Thus, this analysis introduces a relevant complexity for the

modeling and implementation stages.

The need for ad-hoc tecnhiques in order to accurately measure the performance coun-

ters in virtualized environments is addressed in [56] and [76]. Because of the interaction

of virtual machines with multiple underlying software and hardware layers, the analysis

of the application’s performance running in virtualized environments has been quite com-

plex. This occurs because the monitoring activities through daemons in different domains

need to collect several hardware events individually at the same time, and some of these

2.4 Scalability 26

events are not available in the virtualization level since they are related to the physical

resources. As our model requires only the utilization rates from the VMs and cores to

perform its policies, it becomes independent from the processing platform and also from

ad-hoc procedures for monitoring the running VMs.

2.4 Scalability

A common technique to address scalability is to design the cluster in a hierarchical topo-

logy, segmenting the whole cluster in small parts where a local resource manager performs

a local optimization process. Although this option is effective to reduce the time spent to

define a good solution, the energy savings could be decreased in large-scale clusters scena-

rios, since a good local configuration of a cluster segment does not guarantee that a good

global configuration is achieved. Our group’s previous work [67] proposes a hierarchical

structure among the cluster components to reduce the complexity of the reconfiguration

actions. The goal is to avoid an optimization process using a resource configuration al-

gorithm with linear complexity to provide energy savings. The servers were divided into

segments, where an intermediate controller element was inserted for resource management

and load distribution within each segment.

In [48] a power management is proposed to group similar threads (with common

execution phases) on the appropriate core, regarding the core power consumption and

performance. The cited work points that grouping similar applications on set of cores

enables a better management of the processing resources in scale-out clusters, since a

particular analysis of each application behavior is unpractical in large processing environ-

ments with thousand of running applications simultaneously. Therefore, each thread set is

assigned to most appropriate cores according to the threads phase and type of workload.

However, the both mentioned works do not use virtualization, and the balance between

local and global configuration is not considered. In our model, we address scalability

without the need for cluster segmentation or black-box heuristics. The scalability is

achieved through a new VM cluster modeling, which provides a substantial simplification

of the VM allocation problem in the processing environment and enables the use of an

algorithm with linear complexity in our cluster reconfiguration procedures.

Chapter 3

Basic Concepts and Initial Experiments

In this chapter we present and discuss the basic concepts used in our model and the initial

experiments performed to ratify these concepts. First, we present the main virtualization

techniques implemented in our approach. Then, we analyze the trade-off between power

and performance of a core when its operating frequency is adjusted through the DVFS.

3.1 VM agile clone

Virtual machine consolidation is an effective way to minimize the power consumption

of processing environments. However, identifying the right time to trigger migration is

crucial specially when the host server is overloaded. The work described in [22] presents

an energy-efficient reactive migration controller that identifies situations in which the

hosts are overloaded or underloaded. The overload and underload detection is defined

when the processor and memory utilization goes beyond or under a given threshold rate,

respectively. The same approach is used in [7] and the effects of these two thresholds

on the overall processing platform power consumption and QoS violations are analyzed.

As shown in the cited works, rates of 30% and 80% are efficient underload and overload

thresholds considering the total power consumption and application QoS.

In order to ensure a certain level of QoS, is also important that the virtualizer should

guarantee the serving of the applications requests during the migration process. The

virtualization tools provide a native VM live migration mechanism. This feature enables

a VM to migrate between two physical servers in a cluster without interrupting the services

provided by the VM, by first transferring its memory image and then the current state of

its VCPU between the physical servers. The traditional live migration process is called

pre-copy, related to the transfer of memory pages. When transferring the memory image

3.1 VM agile clone 28

some pages may be updated, since the VM is still running in the source server so that

the service provided by the VM is not interrupted. Then, at the end of the transfer the

copy of the pages that were changed in the source server during migration is also required.

Such altered pages are called “dirty pages”. The entire transfer process is complete when

the copy of "dirty pages"from the source server is concluded, ensuring that there was

no disruption of the applications that are running on the migrated VM, followed by the

deactivation of the VM in the source server. Lastly, a copy is made of the contents of the

VCPU and VM registers in the source to the destination server, enabling the activation

of the VM in the destination server with the same context.

In a server cluster, where a set of VMs needs to respond to requests sent by clients,

the VM performance is impacted during the live migration process due to the transfer of

“dirty pages”. As the VM will be operational in the destination server only after copying

these remaining pages, and the VM in the source server undergoes a cut state precisely to

define the ”dirty pages” to be transferred, there is a contention period of the requests met

by the VM. These request restraints are directly reflected in the applications response

time, as pointed out in [45].

The VM agile clone process, described in [28] and [29], differs from traditional live

migration in terms of how memory pages are copied between source and destination

servers, as shown in Fig. 3.1. Here, the first actions in agile clone regard copying the

content of VCPU and VM registers, and transferring this content between the source

and destination server. Next, a VM clone is immediately activated in the destination

server, even without transferring any memory pages. When the VM clone searches for

a memory page not transferred, its operation is momentarily stopped and the transfer

of the requested page between source and destination server is made on demand, thus

resuming the processing of the VM clone. This migration process is termed as post-

copy, because the memory pages are dynamically transferred to the destination server

when necessary. This on-demand transfer is performed until all VM memory pages are

effectively transferred, thus enabling to deactivate the VM in the source server.

The post-copy process used in our model is similar to the approach described in [40].

In addition to the technique used in the cited work, we implemented a procedure in the

virtualization layer to improve the performance of the VM agile clone in order to reduce

its latency. We designed a background transfer of memory pages not yet sent, so that

the transfer page operation is not completely on-demand. This background transfer is

performed to prevent an overload on the data network when many agile clone processes

3.1 VM agile clone 29

Source host

VM

VCPU

Memory

Destination host

VM clone

VCPU

Memory

1. Transfer VCPU & registers
and then resume VM clone

2. Page fault

4. Transfer the requested
page and resume VM clone

3. Pause VM clone

Background page transfer

Figura 3.1: VM agile clone process

are running in a short period of time.

A set of initial tests were carried out using the Web Serving workload of the Cloud-

Suite 2.0 [14] benchmark, which implements a large scale web system. This benchmark

consists of three main elements: a web server, a database backend and a client to emulate

real world accesses to the web server, each running on a separate machine. These tests

were performed to verify how the migration procedures impact on the VMs performance,

providing an experimental evaluation between the live migration and the agile clone with

our proposed background transfer. To this end, we used the same server (Intel I7 2.5

GHz, 8 GB of RAM and 512GB of HD) in the live migration and agile clone experiments,

and the VMs were configured with 512 MB of RAM and 2 GB of HD. The same bench-

mark was used to evaluate the overhead of the co-allocation process on the application

performance. The co-allocation evaluation is presented in Section 3.2.

Fig. 3.2 shows the average response time when a constant amount (120 req/s) of

web requests is handled by a single VM. When there are no procedures of live migration

or agile clone, the average response time within one second is about 0.22 ms. Then,

at the instant t = 6s a VM migration to another physical server is started. The VM

was activated on the destination server at t = 6.2s through the agile clone, and the last

memory page was transferred at t = 8.7s. However, when the live migration is performed,

the VM was activated on the new server only at t = 10.7s. Moreover, as depicted in the

graphic the impact on the application response time during the migration process is much

higher in the live migration in comparison with the agile clone.

3.1 VM agile clone 30

 0

 0.5

 1

 1.5

 2

 2.5

 2 4 6 8 10 12 14

Te
m

po
 d

e
re

sp
os

ta
 (s

)

Tempo (s)

Live Migration
Clone Agil

Live migration
Agile clone

Time (s)Time (s)Time (s)

Figura 3.2: Single VM performance - Live migration vs. Agile clone with background
transfer

The next experiment evaluates how the number of simultaneous VMs migration pro-

cedures impact on the VMs performance. As scale-out processing environments have a

great number of physical servers and active VMs, several migration procedures could be

performed at the same time by the resource manager when a peak workload scenario

occurs, for instance. As for the first experiment, the metric used herein is the average

response time of the web requests served by the VMs. To better visualize the results,

the response time was measured only during the migration procedures. For all the test

scenarios, there are twenty active VMs serving the web requests. Fig. 3.3 presents the

measured values of response time when a different number of VMs are migrated through

the live migration and agile clone.

As the previous test, the average response time is about 0.22 ms when no migration

procedures were performed. Thus, as can be seen in Fig. 3.3, when only two VMs are

migrated through the agile clone the impact on the response time is negligible. However,

even for this low number of migrated VMs, the live migration presents a relevant impact on

the application response time. For all the test cases, the impact on the VMs performance

by the live migration is higher than agile clone. This occurs due to the significant delay in

the requests when the live migration of a single VM is performed, as ratified earlier in Fig.

3.2. Therefore, when a great number of VMs are migrated through the live migration,

the average response time of the set of active VMs is affected. On the other hand, as

the agile clone causes a much lower delay in the requests, the average performance of the

active VMs does not present a relevant variation.

3.2 Co-allocation of VMs 31

 0

 0.2

 0.4

 0.6

 0.8

 1

2 VAS 4 VAS 8 VAS 16 VAS

Te
m

po
 d

e
re

sp
os

ta
 (s

)

Qdte. de VAS migradas

Clone Agil
Live Migration

Agile clone
Live migration

2 VMs 4 VMs 8 VMs 16 VMs

Number of migrated VMs

Figura 3.3: Set of VMs performance - Live migration vs. Agile clone with background
transfer

3.2 Co-allocation of VMs

The co-allocation of VMs on the same core uses the same concept of the VM consolidation:

exploit to the maximum the resources sharing, deactivating the processing resources that

are not processing data. Therefore, to minimize the number of active cores, achieving

relevant energy savings, the co-location of VMs on the same core appears to be an effective

strategy. The co-allocation process aims to reduce the waste of power, since a set of VMs

are running on the same core, minimizing the time spent in the idle state and consequently

the core idle power. However, as the VMs allocated on the same core share the same

physical resources, such as private cache memory, the impact on the performance of co-

allocated VMs needs to be checked. To this end, the works described in [19] and [34]

indicate that for large scale systems the amount of cache memory available to the core

does not have a relevant role, since the volume of memory processed is much greater than

the capacity of the cache memory.

The goal of the co-allocation experiments performed with the CloudSuite benchmark

was to define a saturation point of a core. In other words, how many VMs a core can

co-allocate without performance degradation of its hosted VMs. Fig. 3.4-a shows the

saturation point of the co-allocation occurs when the CPU utilization rate is about 80%.

At this point, the requests’ throughput does not increase when more VMs are activated.

Furthermore, Fig. 3.4-b shows that the physical CPU utilization rate has a direct linear

relationship to the number of co-allocated VMs. Then, Fig. 3.4-c shows that the average

VCPU (Virtual CPU) utilization of the set of active VMs and the physical CPU utilization

3.2 Co-allocation of VMs 32

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 2 4 6 8 10

Th
ro

ug
hp

ut
 (r

eq
/s

)

Number of co-allocated VAS

Intel Core I7
AMD Opteron 6164

AMD Bulldozer
Intel Core I5

(a) Throughput

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

CP
U

ut
iliz

at
io

n
ra

te
 (%

)

Number of co-allocated VAS

Intel Core I7
AMD Opteron 6164

AMD Bulldozer
Intel Core I5

(b) CPU utilization rate

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

C
PU

 u
til

iz
at

io
n

ra
te

 (%
)

Number of co-allocated VAS

VAS VCPU
Total

Virtualizer

(c) Useful CPU utilization

Figura 3.4: Co-allocation performance evaluation

rates are very similar up to the value of 80% ratifying the occurrence of the saturation

point when a great number of VMs are co-allocated. From this point we can see that CPU

utilization rate assigned to the virtualizer grows significantly, decreasing the processing

window of requests by the set of VMs.

Finally, the scheduling strategy for co-allocated VMs should also be noted, in order to

prevent a VM from having its performance degraded due to the competition for processing

time. By using virtualization, the VM scheduling is assumed by the virtualizer based on

its own policies, which can use round-robin schemes, time bounds to access the CPU, etc.

In our work, the Xen virtualizer [3] is used for the model implementation and performance

evaluation (Chapter 5). The Xen natively implements a policy based on credits to ensure

equal access to the CPU by the VMs. Thus, every time a VM assumes the CPU, the VM

spends part of its credits and has a lower priority for its next access. The goal is to allow

other VMs with more credits to process their data. As the scheduling policy analysis is

not part of the scope in this thesis, the original Xen scheduling was used in the model

implementation.

3.3 Big/Small cores and DVFS 33

3.3 Big/Small cores and DVFS

To verify the impact of the DVFS on the application performance and on the power

consumption of a core, we also performed tests using the CloudSuite benchmark. Addi-

tionally, we analyzed the trade-off between power and performance when big/small cores

are used to support applications, as discussed in Chapter 2. As shown in [41], [43] and

[35], a reduced operating frequency leads to a lower power consumption. However, this

reduced operating frequency also leads to an increase of the request’s turnaround time.

Therefore, the energy consumption (power x time) of a request under different operating

frequencies must be taken into account by the resource manager.

Although relevant works also analyze the trade-off between power consumption and

performance of a processor, as shown in [58], [17], and [38], we performed our own tests

in order to ratify the results verified in the literature, and to provide new insights in

our work. To this end, we used four different processors to implement a big/small cores

testbed. Therefore, we chose the AMD Opteron 2.4 GHz and the Intel I7 2.5 GHz as big

cores, and the AMD Athlon 1.2 GHz and the Intel I3 1.2GHz as small cores.

Fig. 3.5-a shows the linear relationship between the number of completed requests and

the utilization rate. We measured the performance of the cores in terms of the number

of requests per second (req/s) they can handle at a given target utilization rate, for a

constant operating frequency. Thus, for the selected operating frequency the number of

requests is set to keep each core with its maximum (100%) utilization rate. In this case,

we set the operating frequency of all cores to the greatest operating frequency value of the

small core set (1.2 GHz), in order to provide a fair comparison between them. As seen in

Fig. 3.5-b, the performance of a core is also proportional to its operating frequency, and

there is a linear relationship between these two variables.

We also analyzed the relationship between the power consumed by a given core and

its utilization rate for a constant operating frequency (1.2 GHz). As shown in Fig. 3.6-a,

the relationship between these two variables is linear when the operating frequency is kept

constant. Finally, Fig. 3.6-b shows that the power consumed by a core is proportional

(in a quadratic form) to its operating frequency at a constant utilization rate. In all

power measurements, we used the WattsUP Pro [75] power meter to collect the power

consumption of the whole server. The WattsUp Pro displays the wattage (power) being

consumed by all the machines which are connected to it. However, we are interested

in the power consumption of cores rather than servers. Thus, first we measured the

3.3 Big/Small cores and DVFS 34

 0

 50

 100

 150

 200

 10 20 30 40 50 60 70 80 90 100

Pe
rfo

rm
an

ce
 (r

eq
/s

)

CPU utilization rate (%)

Intel I7 1.2/2.5 GHz
AMD Opteron 1.2/2.4 GHz

AMD Athlon 1.2 GHz
Intel I3 1.2 Ghz

(a) Performance vs. CPU utilization @1.2GHz

 0

 100

 200

 300

 400

 500

 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

Pe
rfo

rm
an

ce
 (r

eq
/s

)

Operation frequency (GHz)

Intel I7 2.5 GHz
AMD Opteron 2.4 GHz

AMD Athlon 1.2 GHz
Intel I3 1.2 GHz

(b) Performance vs. Frequency @100% utilization

Figura 3.5: Performance on DVFS

power consumption of the entire server setting all the cores to the idle state. Then,

the workload was assigned to a selected core and the power consumption was measured

again. The difference between these two values can be considered as the individual power

consumption of the selected core.

According to these initial tests, cores with the same operating frequency have different

behaviors in relation to their power consumption and performance. This occurs due to

the hardware configuration of each processor, which is related to its design and internal

organization. Generally, processors designed to obtain high performance (big cores) have

more complex internal components, such as advanced pipelines, bigger ALU memory,

more auxiliary registers, etc. This means there is an extra power consumption arising

3.3 Big/Small cores and DVFS 35

 40

 50

 60

 70

 80

 90

 100

 110

 120

 10 20 30 40 50 60 70 80 90 100

Po
we

r c
on

su
m

pt
io

n
(W

at
t)

CPU utilization rate (%)

Intel I7 1.2/2.5 GHz
AMD Opteron 1.2/2.4 GHz

AMD Athlon 1.2 GHz
Intel I3 1.2 GHz

(a) Power vs. CPU utilization

 80

 90

 100

 110

 120

 130

 140

 150

 160

 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

Po
we

r c
on

su
m

pt
io

n
(W

at
t)

Operation frequency (GHz)

Intel I7 2.5 GHz
AMD Opteron 2.4 GHz

AMD Athlon 1.2 GHz
Intel I3 1.2 GHz

(b) Power vs. Frequency

Figura 3.6: Power consumption on DVFS

from these components, which reflects higher power consumption of the whole core, as

verified in [25] and [12].

Unlike the big cores, the small cores are not designed for high performance processing

but for energy savings, enabling low power consumption due its simpler hardware con-

figuration. This point is evidenced in Fig. 3.6-a, where the big cores have significantly

greater power consumption than the small cores, even with equal operating frequency (1.2

GHz). However, it should be noticed that the small cores used in our experiments are

not modern processors designed for energy savings, but traditional processors with low

processing capacity due to the limitations imposed by our available testbed. Thus, the

power consumed by the simulated small cores (Fig. 3.6-a and 3.6-b) should be even lower

3.3 Big/Small cores and DVFS 36

if real small cores could be used in our experiments.

As the operating frequency has a quadratic impact on the power consumption of a core,

wich as ratified by our power experiment presented in Fig. 3.6-b, we can conclude that it

should be more efficient to achieve better performance through a high CPU utilization rate

than through a high operating frequency. Therefore, to achieve relevant energy savings,

we might keep all cores with high utilization rates and set their operating frequency as

low as possible. Although using a lower frequency leads to a longer processing time,

the opposite strategy for energy savings (known as race-to-idle) does not work with all

workloads, as shown in [2] and [27]. These cited works indicate that for energy savings in

web applications, it is more efficient to have more cores at lower frequency than few cores

at higher frequency.

So, based on the above described relationships, we present the details of the proposed

model and its resource managers in the next chapter.

Chapter 4

The Proposed Model

Our model addresses the issue of modeling the dynamic power and performance proces-

sing resources in virtualized servers clusters. The goal is to model the cluster’s resources

appropriately in order to allow their efficient utilization and reduce their power consump-

tion by reducing the idle power, while observing the QoS performance constraints. First,

we present the QVM element, and we describe how it is related to the simplification of

resource management achieved through our approach.

The proposed resource managers are responsible for applying the premises described

in our model, in order to manage the cluster in an energy-efficient manner. Therefore, they

should be based on the three Definitions presented in the follow section, using the QVM

paradigm and the normalization of the VM’s performance. Addotionally, as environment

can be composed of heterogeneous servers and processors, the resource managers have to

obtain information about power consumption and processing capacity of each processing

resource. This information is crucial to enable energy savings and the fulfillment of the

application’s QoS restrictions.

The two implemented resource managers differ in how the cluster’s processing re-

sources are modeled. The Offline approach performs a previous power and performance

profiling of the processing platform, evaluating the power consumption and the processing

capacity of each processing resource available in the cluster. Despite the reservations dis-

cussed earlier about the complexity for freezing the cluster operation, the a priori profiling

is widely used by resource managers found in literature. The main reason is the detailed

information about the cluster’s resources that can be obtained through the profiling stage.

To avoid the need for profiling, we present the Online approach, which is performed at

runtime in order to continuously evaluate the cluster’s resources using control periods. The

4.1 Model’s definitions and architecture 38

dynamic modeling enables our runtime approach to achieve a high level of adaptiveness,

making it independent from the processing platform and also from the workload. The

goal of the Online approach is to obtain as good results as the Offline, with the key

factor of avoiding the need for profiling. In other words, Online should be as efficient as

other state-of-the-art approaches, in addition to provide an alternative for the previous

profiling experiments bottleneck.

4.1 Model’s definitions and architecture

Problem definition: To allocate the appropriate number of VMs in the server clus-

ter and define the configuration of the physical resources to reduce the cluster power

consumption without compromising the QoS of the application.

In our model, the main feature is the simplification of the VM allocation process in

the cluster, which ensures the agility and scalability needed for scale-out management

systems. Besides that, our approach requires only a few simple measurements (utilization

rates from the VMs and cores). Therefore, our model does not require specific infor-

mation about the processor architecture, since the needed measurements are available in

most virtualization tools. The proposed model relies on the following three definitions:

Definition 1: Each VM allocated in the cluster is configured as a single default vir-

tual server called Quantum Virtual Machine, or simply QVM;

Definition 2: All QVMs have equal processing capacity, regardless of the core con-

figuration where each one is allocated to run;

Definition 3: Each application is serviced by a Logical Web Server (LWS), which

consists of one or more QVMs distributed along the cluster. This amount of QVMs will

be set dynamically according to the workload demands to the LWS, and will be limited

by the processing capacity of the resources used.

To obtain a homogeneous processing capacity of all active QVMs (Definition 2),

we must consider the heterogeneous characteristics of the cluster processing resources.

The differences between power consumption and performance in heterogeneous processing

4.1 Model’s definitions and architecture 39

environments are highlighted in Chapter 3. However, even in homogeneous environments,

i.e. cores and servers with the same configurations, the difference in a VM processing

capacity is due to several factors, such as the initial VM configuration, number of co-

allocated VMs, load balancing between the VMs, etc. Therefore, the normalization of

the VMs performance should be viewed in a broader perspective, not only related to

homogeneous or heterogeneous processing environments.

As Definition 3 indicates that a LWS consists of a variable number of QVMs, and

Definition 2 indicates that the set of active QVMs has homogeneous performance, we

can conclude that the only factor that will determine the processing capacity of a LWS

is the number of QVMs assigned to it. Therefore, the LWSs have an elastic processing

capacity according to the workload demand. This elastic behavior enables energy savings

by reducing the cluster idle power. As seen in Fig. 4.1, LWSs with reduced processing

capacity have a small set of active QVMs, and LWSs with high processing capacity have

a great amount of active QVMs.

ProcessProcessQVM1 QVM2 QVMN...
Small LWS

Big LWS

Elastic
LWS

Figura 4.1: Logical Web Server with elastic processing capacity

Our model performs the cluster management via three modules: Balancer, Quan-

tum VM Manager and Controller, as shown in Fig. 4.2. The Balancer distributes

requests among active QVMs, using a round-robin policy since all active QVMs have the

same processing capacity. All procedures associated with managing running QVMs are

implemented in the Quantum VM Manager.

As other virtualizers, Xen has a native management kit, called Xen Manager Tool.

We adapted this tool to work with the QVM agile clone process by extending the Xen

API. Finally, the Controller module is responsible for monitoring the utilization rate of

4.2 The Offline approach 40

Client Applications

App k ...App 2 App 1

Front end

ControllerBalancerQuantum VM
Manager

LWS 1

QVM11

QVM12

...

LWS 2 LWS k

...

QVM1N

QVM21

QVM22

...

QVM2N

QVMk1

QVM22

...

QVM2N

k

k

k1

k2

kN

k1

k2

kN

Figura 4.2: The model architecture

the active QVMs and cores. The Controller is also responsible for executing the resource

managers described in Sections 4.2 and 4.3, which means that it is up to the Controller

to dynamically define and carry out the reconfiguration actions in the cluster. Since the

model’s rules and its architecture are described, the resource managers are presented in

the next sections.

4.2 The Offline approach

We highlight that this approach was called Offline because of its resources profiling

requirements, which are done before the operational stage. However, the resource ma-

nagement actions in the Offline are performed at runtime, in accordance with its own

policies. According to the relationships analyzed in Chapter 3, the normalization of the

VMs performance ensured by Definition 2 is performed in the Offline approach by

checking the following three related variables. It should be noted that the indexes i and j

are associated with QVMs and cores, respectively, since the core is the processing element

on the cluster and its operating frequency can be set at runtime. Thus, for instance,

QVMij means the QVM i allocated on the core j in the cluster.

1) UVij - QVM VCPU utilization rate: This variable points to a direct linear re-

lationship with the processing capacity of the QVM. Although ratified in our Performance

4.2 The Offline approach 41

vs. CPU Utilization experiments (Fig. 3.5-a of Chapter 3), this is an intuitive rela-

tionship because the greater the number of requests processed, the higher the utilization

rate of the QVM.

2) fj

fjmax
- Normalized core operating frequency: As the value of fjmax on each

core j is constant, this variable is impacted only by the current operating frequency fj of

the core. Due to the direct linear relationship between this variable and the QVM pro-

cessing capacity, if a higher operating frequency is set through the DVFS, the processing

capacity of the QVM will be improved, for instance.

3) Nj - Number of co-allocated QVM in a core: This variable has an inverse

linear relationship with the processing capacity of the co-allocated QVM, as shown in

the Co-allocation performance evaluation tests presented in Fig. 3.4 of Chapter 3.

This occurs because the greater the amount of co-allocated QVM, the greater the need

for sharing the core’s resources, which leads to a performance degradation of the running

applications.

If we perform a separate analysis for each of the three variables, the result would be

an increase or decrease of the processing capacity of a sub-set of QVMs and Definition

2 would be violated. Therefore, these three variables must be managed to ensure the

normalization of the QVMs processing capacity. Furthermore, Definition 3 ensures the

elastic capacity of a LWS is performed only by the increment or decrement of its set of

active QVMs, simplifying the QVM allocation process. The processing capacity of the

QVM i allocated on the core j is called cij, and is modeled by Eq. 4.1. In addition to

the three mentioned variables, we also define Rj, which is described in details in the end

of this section, as a constant associated with the core j’s maximum capacity for serving

requests.

cij =
UVij.Rj.

fj
fjmax

Nj

(4.1)

The model for power consumption is based on the core operating states: busy and idle,

considering f is the current operating frequency, where for each core f ∈ {fmin..fmax}.
As analyzed in the initial tests, we use the linear relationship between power and core uti-

lization rate (U), and the quadratic relationship between power and operating frequency

4.2 The Offline approach 42

of the core. Thus, the power consumption is modeled according to Eq. 4.2.

P (U) = P (idle, f) + (P (busy, f)− P (idle, f)).U (4.2)

The values of P (idle, f) and P (busy, f) for all values of f available in the DVFS are

obtained by the following equations:

P (busy, f) = P (busy, fmin) + Φbusy.(f − fmin)2

P (idle, f) = P (idle, fmin) + Φidle.(f − fmin)2

where:

Φbusy = P (busy, fmax)− P (busy,fmin)
(fmax−fmin)2

Φidle = P (idle, fmax)− P (idle,fmin)
(fmax−fmin)2

.

In other words, the power of a core depends only on its operating frequency f , its

utilization rate U , and the constants P (busy, fmin), P (idle, fmin), P (busy, fmax) and

P (idle, fmax).

The power consumed by a physical server is represented by the sum of the power

of its cores. However, there is a part that represents the power consumption of other

hardware devices besides the cores, such as power supply, memory, motherboard, disk,

etc. This part, which is indicated by the variable Hw, varies according to the workload

characteristics, taking into account how each type of workload uses the hardware devices.

Thus, the power consumed by a physical server with N cores is Pserver =
∑N

k=1 Pk(U) +

Hw.

The main goal of our power modeling is to predict the power consumption of a core

based on only four measured power states described earlier in Eq. 4.2: P (busy, fmin),

P (idle, fmin), P (busy, fmax) and P (idle, fmax), which should be obtained in the profiling

stage. Although not eliminating entirely profiling, this method avoids the need for measu-

ring the core power consumption in all its operating frequencies available through DVFS.

For all experiments in the profiling stage, we allocated one exclusive QVM on the core

where the processing capacity and power consumption are measured. Consequently, the

power measurements of each core were performed the same way as in the initial tests

(Chapter 3) using the WattsUP Pro power meter.

4.3 The Online approach 43

To observe the accuracy of our analytical power model, which is responsible for pro-

viding the estimated power consumption of each processing resource, we compared the

power consumption values measured in the profiling stage with the value of P (U) given

by Eq. 4.2. The normalized root mean square error for the predicted power was always

less than 1.9%. Although the normalized root mean square error is quite small, it should

also be mentioned that the maximum absolute error was always less than 9.4%, which

validates our analytical power model with reasonable good accuracy. Thus, based on the

four power measurements performed in the profiling stage, Offline is able to manage

each core in the cluster according its power characteristics, and has potential to achieve

significant energy savings.

However, the trade-off between power and performance is the crucial issue to be

analyzed, in order to provide an energy-efficient processing environment. Therefore, since

the power profile of each core is properly defined, we also need to obtain the performance

profile of each core. In other words, we need to define the processing capacity of each

core available in the cluster. To this end, the constant Rj (Eq. 4.1) is used as the core

j’s maximum processing capacity in terms of serving requests. To set the value of Rj, we

analyzed the saturation point of the QVM performance, observing the rate of requests at

which a significant increase in response time occurs. As the QVM is isolated in the core,

we can assume that Rj is requivalent to the core j maximum processing capacity.

As mentioned earlier, the key factor of the resource modeling performed by Offline

are the power analytical model and the processing capacity evaluation, which have to

be obtained in a prior experiments stage. In the follow section, we present the Online

resource manager, which eliminates this a priori profiling in order to define its resource

modeling.

4.3 The Online approach

Efforts to develop an accurate power and performance modeling of VMs range from

utilization-based methods [70] [64], to approaches based on internal procedures related

to the processor architecture to model the power consumption of the VMs [36] and [59].

These approaches, as well as Offline, require a previous profiling of the resources to ob-

tain specific informations about the processing platform. As discussed earlier in Chapter

2, can be impractical to stop the operation of a processing environment in order to perform

experiments. More to the point, to set the running applications to a hold status is com-

4.3 The Online approach 44

plex, due to the requirement to implement restoring procedures and to handle incomplete

requests. Therefore, a runtime approach is needed, which must be dynamically adapted

for different types of workloads to model VMs performance and power consumption.

Online performs the evaluation of the processing capacity of a core considering its

capacity to host co-allocated QVMs. In other words, the more a core can host QVMs

with a low variation of the core’s utilization rate, the higher its processing capacity is.

Furthermore, as all QVMs have equal processing capacity through the normalization

process ensured by the Definition 2 of our model, we can consider that each QVM

represents a constant workload. Thus, the number of co-allocated QVMs is a basic metric

in our model to analyze the processing capacity of heterogeneous cores, since we define a

standard element (QVM) to support the running applications on the cluster.

Online is based on control periods in order to set a dynamic weight Wj related to

the processing capacity of each core. Accordingly, the variables related to the cluster’s

resources modeling are presented as follows:

• Uj: Measured value of utilization rate of the core j.

• fj
fjmax

: Normalized operating frequency of the core j.

• Ujnorm : Normalized utilization rate of the core j based on its measured value of

utilization rate Uj and its normalized operating frequency.

• Nj: Number of co-allocated QVMs in the core j.

First, Eq. 4.3 adjusts Uj according to fj/fmax to obtain the value of Ujnorm . This

normalization value is required in order to use in our performance modeling an absolute

utilization rate, which should be independent of the current operating frequency fj of the

core.

Ujnorm = Uj.
fj
fjmax

(4.3)

4.3 The Online approach 45

Then, a weight Wj is calculated for each active core in the cluster in every control

period. This weight is related to the number of co-allocated QVMs on the core j (Nj)

and their impact on the normalized utilization rate of the core, as can be seen in Eq. 4.4.

The more a core can co-allocate QVMs with a small variation of its normalized utilization

rate, the higher its weight is. Thus, as mentioned earlier,Wj has a direct relationship with

the processing capacity of each core in the cluster. Finally, as the Wj value is defined,

we can model the processing capacity of the QVM i co-allocated on the core j. We used

the utilization rate of the QVM’s VCPU (UVij) combined with the weight Wj calculated

to the core j. Accordingly, the Eq. 4.5 illustrates the Online performance modeling of a

QVM.

Wj =
Nj

Ujnorm

(4.4)

cij = UVij.Wj (4.5)

The weight Wj was also used in our power modeling, which combines the value of Wj

with the big/small cores paradigm. The goal is to properly estimate the energy-efficiency

of a core based on its value of Wj. Since the Online performance modeling relates Wj

with the processing capacity of the core j, we assumed that cores with low values of

Wj are associated with small cores, which have high energy-efficiency and low processing

capacity. Otherwise, cores with high performance (highWj) were defined as big cores, and

they present a higher power consumption and performance in comparison with the small

cores, due to their more complex internal components (larger cache, advanced pipelines,

more auxiliary registers, etc.)

The key insight behind this assumption is that robust and high performance processors

remain idle most of the time. Thus, there is an obvious waste when the high processing

capacity is not utilized to its fullest. Therefore, to keep the active cores with high utiliza-

tion rates, we arranged the cores available in the cluster according their weights Wj (Eq.

4.4), prioritizing the use of small cores to handle the workload demand in the cluster.

As our power and performance modeling of the cluster’s resources is based on the

weight Wj of each core, a resource manager could properly assign the workload to a set of

cores in a dynamic manner, using approaches aiming energy savings or high performance,

for instance. Thus, a resource manager designed for energy savings should prioritize the

small cores (low values ofWj) to assign the current workload, since they are more energy-

4.4 Resource management policies 46

efficient than big cores. Otherwise, the resource manager should activate the cores with

high values ofWj (big cores) in order to obtain high performance. Even so, a mix of small

cores and big cores could be used to observe the trade-off between power consumption

and performance. These points are detailed and analyzed in the next sections.

Since the resource modeling of each resource manager have been described, as well

as their relationship with the three model’s Definitions, we can summarize the Offline

and Online modeling approaches as follows:

Performance modeling Power modeling

Offline
Constant Rj previously measured for each
core in the cluster and associated to its

processing capacity

Analytical power modeling based on four
previous power measurements for each core

in the cluster

Online
Each core j performance is evaluated as the
capacity to host co-allocated QVMs, defined

by the weight Wj

Cores arranged by their energy-efficiency,
considering their weight Wj

Tabela 4.1: Resource modeling of the two implemented resource manager

In the next sections, we present how each approach implements its resource manage-

ment policies, based on the modeling of the processing resources. Thus, we describe how

each core and server is managed in order to implement the cluster reconfiguration actions.

4.4 Resource management policies

As the scope of our work is limited to the power management of processing resources

in the cluster, our model does not consider other power consumption factors such as

network equipments, cooling system, etc. Thus, the power consumption of the cluster

can be modeled as the power consumption of its physical servers. For a cluster with S

servers, the problem of minimizing the cluster power consumption can be modeled as:

min
∑S

j=1 Pserverj . To achieve this goal, we deactivate the cores and servers that are not

hosting QVMs, using the hibernation techniques of the processor combined with low power

procedures, as described in [42] and [65], and the server on/off operation, respectively.

To prevent the idle power, we set the threshold of 30% as a lower bound for the core

utilization rate. So, if a core achieves a utilization rate less than 30% it will be deactivated.

However, the deactivation is performed only if the remaining set of active cores can support

the reallocation of the QVMs that were co-allocated on the deactivated core. A trigger to

activate a new core is also required, since the current number of active QVMs co-allocated

in the same core can degrade their own performance, as analyzed in Chapter 3. To this

end, we determined the threshold of 80% which is related to the saturation point of the

4.4 Resource management policies 47

core observed in the initial tests. Therefore, when the utilization rate of a core is higher

than 80%, the resource manager actives a new core in the cluster. Other threshold bounds

were analyzed in our preliminary experiments, but the chosen rates of 30% and 80% were

more suitable for the trade off between power and performance.

In the Offline approach, we define the sequence for core activation/deactivation

using the values of power consumption which were measured in the previous profiling

stage. Accordingly, the most energy-efficient core will be the one with the highest ratio

value between the number of attended requests and power consumed. Therefore, all the

cores in the cluster are ordered by their energy-efficiency in a static list, since the energy-

efficiency metric has a constant value for each core. The goal is to first activate the more

energy-efficient cores.

It should be noticed that the sequential activation of cores using their energy-efficiency

can lead to an unexpected higher power consumption scenario. This occurs because there

may be an inactive core, or a set of inactive cores, where the set or a sub-set of QVMs could

be consolidated to achieve lower power consumption, even though the energy-efficient

sequential activation has been performed. This is analyzed by calculating the power

consumption in the current configuration using Eq. 4.2, and by verifying if any inactive

core can consolidate the QVMs workload or a part of it, using Eq. 4.1, with lower power

consumption. Then, if the consolidation is feasible, we clone the appropriate amount of

QVMs in the destination core and deactivate the source cores.

As mentioned earlier, in the Online approach we prioritize the activation of the small

cores rather than the big cores. To this end, we analyzed the variable Wj to arrange the

activation/deactivation sequence of cores. As the weight Wj assigned for each core by

the Online is related to its processing capacity, a low Wj represents a small core, while a

great Wj represents a big core. It is important to notice that unlike the static list used by

the Offline, the sequence for activation/deactivation of cores in the Online approach is

dynamic, since the Wj values assigned to each active core are adjusted at every control

period. Finally, as the sequence for activation/deactivation of processing resources in both

approaches is analyzed, the next section presents the QVM allocation algorithm used for

the reconfiguration actions in the cluster.

4.5 The QVM allocation problem 48

4.5 The QVM allocation problem

The QVM allocation problem can be formulated as: When and where should the

proper amount of QVMs that perform a LWS should be allocated, in order to

maximize the energy savings without violating the QoS agreements?

As discussed in Chapter 2, this is a classic optimization problem, which attempts to

find a cluster configuration able to minimize power consumption restricted to performance

requirements. However, as analyzed in details in the next chapter (Performance Evalua-

tion), the resource managers based on optimization need a massive computation effort to

find a good solution. This computational effort is usually lengthy, which does not enable

a fine-grained QoS control for the running applications in the cluster. Thus, a simpler but

also effective solution for the allocation problem is required. This simplification is achieve

through the QVM paradigm, and the reconfiguration actions performed by our resource

managers are described as follows.

In order to predict rapid increases of request loads and to determine a new cluster

configuration that prevents QoS violations, we have to verify the greatest latency among

the reconfiguration actions defined in our resource managers. The worst case will deter-

mine how often (in seconds) a reconfiguration action must be done so that the cluster can

be properly sized for the expected load. In our case, for both approaches, the greatest

latency is the server on/off operation, followed by the activation of a new core and the

cloning of a set of QVMs.

The on/off server operation is based on ACPI wake on LAN, and has latency lower

than 1 second. Thus, we specified in the reconfiguration policy a 1-second control period.

This value is not too small to execute many configuration actions in a short period of

time, causing instability in the applications QoS, and is not large enough to require a

more complex and accurate forecasting mechanism.

The work described in [66] shows that the amount of requests sent to a server can

be mapped by linear models. The linear regression used in the cited work achieves good

accuracy levels even when the prediction is performed for extended periods in the future.

Therefore, the kth control period in our prediction process uses a linear regression based

on λ previous control periods to predict the amount of requests sent to the cluster in the

period k+1. We used a linear regression with λ= 10 which analyzes the number of requests

received by the cluster at the front-end layer. This λ value was defined by preliminary

evaluation tests, and was sufficient to properly predict the peak loads occurring during

4.5 The QVM allocation problem 49

the performance evaluation of our model (Chapter 5).

To achieve the consolidation of QVMs, we used the ordered lists of cores assembled

by the Offline and Online approaches, which were implemented in a vector V [1..N], as

mentioned in the previous section. We assume that there are M active cores in the set

of N available cores in the cluster. Then, a sequential resources activation is performed

by the QVM allocation algorithm, which uses the average utilization rate of the LWSs

(set of active QVMs assigned to each LWS), called UVavg to determine the need for

cloning/destruction of QVMs.

Using the average utilization rate can mitigate any distortions of the processing load

on each QVM, due to the dynamic nature of the requests and the normalization of the

QVMs performance. Therefore, maximum and minimum utilization thresholds of the set

of QVMs, called UVmax and UVmin, were designated with values of 70% and 80%, respec-

tively, in order to keep high utilization rates. As analyzed through the initial experiments

present in Chapter 3, the use of high utilization rates is more energy-efficient than setting

high operating frequencies through DVFS to increase the application performance.

The algorithm starts verifying if QVMs should be cloned or destroyed dynamically to

maintain the restriction of the LWSs utilization rate (UVmin ≤ UVavg ≤ UVmax). Then,

a sub-set of QVMs will be cloned if UVavg > UVmax to improve the LWSs processing

capacity for avoiding violation of QoS. Similarly, if UVavg < UVmin, a subset of QVMs

must be destroyed to provide energy savings.

To set the amount of QVMs that must be cloned or destroyed, we define C(k) as

the processing capacity of the set of QVMs at kth period. We denominate ∆C = C(k +

1) − C(k) as the processing capacity of the set of QVMs to be cloned or destroyed at

the (k + 1)th period. Therefore, ∆C < 0 indicates how many QVMs must be destroyed,

∆C > 0 how many must be cloned, and ∆C = 0 represents that the set of active QVMs

should not be changed to (k + 1)th control period. Then, we verify if the set of active

cores can fully support the current (C(k)) and the predicted (∆C) workload for the next

control period, based on the utilization rate of the set of active cores.

If none new core has to be activated, the clone QVMs (related to ∆C) are allocated

on the set of active cores ordered in V [1..M]. If a new core is needed, we allocate the

clone QVMs related to ∆C on the next available core in V [1..N]. Finally, if a LWS is

oversized, we deallocate the set of QVMs related to ∆C from the core V [M], and this core

is deactivated if it no longer hosts QVMs. Lastly, the workload consolidation procedure

is performed for the Offline approach, and a 1-second control loop pause is performed

4.5 The QVM allocation problem 50

to finish the current control period.

The basic steps of the QVM allocation algorithm are described as following:

Step 1: Verify if UVavg > UVmax or UVavg < UVmin.

Step 2: Calculate ∆C.

Step 3: Check if the set of active cores can support ∆C, and redefine the set of active

cores if the condition is false.

Step 4: Clone or destroy a sub-set of QVMs based on the value of ∆C.

In order to provide more details about the QVM allocation algorithm, its pseudo-code

is presented in Fig. 4.3.

To analyze this point, we calculate the power consumption
in the current configuration using the Eq. 2, and check
if any inactive core can consolidate the full workload or
a portion thereof, using the Eq. 1, with a lower power
consumption. Then, if the consolidation is feasible, we
clone the appropriate amount of QVM in the destination
core and deactivate the source cores. To verify if a workload
consolidation is efficient in the energy savings perspective, we
propose the greedy algorithm described below. We consider
that there’s M active cores, and all N available cores in
the cluster are sorted by its power-efficient in the vector V [N].

Consolidation procedure (V [n]):

1: Calculate C(V [M + 1]) and P (V [M + 1]), which
are the processing capacity and the power consumption of
the next core to be activated;

2: While C =
∑N

i=1 cij , ∀j ∈ {1..M}) ≤ C(V [M + 1]) and
P (V [M + 1]) ≤ ∑M

j=1 Pj : consolidation ← true;

3: If consolidation = true: active core V [M + 1];
clone QVMij set to the core V [M + 1]; deactivate cores
∈ V [1..j].

The step 1 calculates the maximum processing capacity and
power consumption of the next core to be activated in the
sorted list of cores. Then, step 2 calculates how much from the
current workload assigned to the QVM set could be migrated
to the new core, and if its maximum power consumption is less
or equal than power consumption of the current set of active
cores that support the workload analyzed. It can be noticed
when the step 2 is finished, the value of j is the number of
the last core where both conditions are satisfied. Thus, if the
consolidation is feasible, the step 3 is executed and all QVM
allocated on the cores 1 to j will be migrated to the core M+1
and the source cores will be deactivated. We choose a greedy
algorithm which will transfer to the new core the greatest load
as possible, to enable the deactivation of the largest number of
cores as possible, minimizing the cluster power consumption.

The reconfiguration policy for managing the processing
capacity of the LWS uses the average utilization rate of
its set of active QVM (UVavg), to determine the need for
cloning/destruction of QVM. Using the average utilization rate
is justified by the complexity of homogenizing the processing
capacity of the active QVM. Thus, using the average utilization
rate can soften any distortions of the processing load on each
QVM, due to the dynamic nature of the requests. Therefore,
maximum and minimum utilization thresholds of the set of
QVM, called UVmax and UVmin, were designated. .

The pseudo-code of our reconfiguration policy is described
below. Basicly, we must verify how many QVM should
be cloned or destroyed dynamically to maintain valid the
UVmin ≤ UVavg ≤ UVmax restriction. Thus, a sub-set of
QVM is cloned if UVavg > UVmax (line 5) to improve
the LWS processing capacity for avoiding violation of QoS.

Similarly, if UVavg < UVmin, a subset of QVM must be
destroyed (line 13) for providing energy savings. To set the
amout of QVM that must be cloned or destroyed, we define
C(k) as the processing capacity of the QVM set in kth period.
Then, if we denominate as ∆C the processing capacity of the
set of QVM to be cloned or deactivated in the (k+1)th period,
we have: ∆C = C(k + 1) − C(k).

1: Reconfiguration Algorithm (V [N])
2: loop
3: Get UVavg from the set of VAS
4: Calculate ∆C
5: if UVavg > UVmax then
6: if

∑M
j=1 Rj ≥ (∆C + C(k)) then

7: Allocate ∆C on V [1..M]
8: else
9: Activate core V [M + 1]

10: Allocate ∆C on V [M + 1]
11: M ← M + 1
12: end if
13: else if UVavg < UVmin then
14: Deallocate ∆C from V [M]
15: if V [M] = ∅ then
16: Deactivate core V [M]
17: M ← M − 1
18: end if
19: end if
20: Consolidation procedure (V [N])
21: sleep (1second) {control loop pause}
22: end loop

When the cloning of QVM is needed (line 5), we verify if
the set of active cores can fully support the current (C(k))
and the predicted (∆C) workload for the next control period
(line 6). If it is true, none new core must be activated and
the clone QVM (related to ∆C) are allocated on the set of
active cores. If it is false, we allocate the clone QVM related
to ∆C on the next available core in V [N] (lines 9-11). If the
LWS is oversized (line 13), we deallocate the set of QVM
related to ∆C from the core V [M]. If this core does not host
QVM anymore (line 15), it is deactivated in line 16. Finally,
the consolidation procedure is performed in line 20, and the
control loop pause ends the current control period.

V. PERFORMANCE EVALUATION

The testbed to implement the proposed model consists of:
one server to run the HTTP request generator module; one
server to host the front end layer; three servers to implement
the cluster of web servers, each one with 64 cores AMD
Opteron 2.5 GHz, 64 cores AMD Opteron 2.1 GHz and 48
cores AMD Opteron 1.7 GHz, respectively. All servers use
CentOS Linux 6 as the operating system. As the scalability
of the proposed solution is a key factor in the performance
evaluation, the physical servers used have many cores (a total
of 176) to host a significant number of QVM. We used the
Cloudsuite benchmark [20] in our performance evaluation. To
simulate the execution of three concurrent web applications in

199

QVMs

Figura 4.3: Reconfiguration algorithm

Basicly, we must verify how many QVM should be cloned or destroyed dynamically to

maintain valid the UVmin ≤ UVavg ≤ UVmax restriction. Thus, a sub-set of QVM is cloned

4.5 The QVM allocation problem 51

if UVavg > UVmax (line 5) to improve the LWS processing capacity for avoiding violation

of QoS. Similarly, if UVavg < UVmin, a subset of QVM must be destroyed (line 13) for

providing energy savings. To set the amout of QVM that must be cloned or destroyed,

we define C(k) as the processing capacity of the QVM set in kth period. Then, if we

denominate as ∆C the processing capacity of the set of QVM to be cloned or deactivated

in the (k + 1)th period, we have: ∆C = C(k + 1)− C(k).

As our proposed model, the resource management policies and the reconfiguration

actions are presented, we describe in the next chapter a performance evaluation through

real tests in our testbed.

Chapter 5

Performance Evaluation

Our model was compared with Performance, PowerSave and OnDemand CPU governors

from Linux, with state-of-the-art models based on optimization, which manage the VM

allocation using the bin packing problem, and a PMC approach. In the Linux governors

all servers and cores remain active, Performance always sets the cores to their maximum

operating frequencies. Otherwise, Powersave sets the cores to their minimum operating

frequencies and OnDemand adjusts the operating frequencies of the cores according to the

workload, but does not make use of server on/off.

When the Performance governor is used, the cluster operates on its maximum pro-

cessing capacity, since all the cores are set with their highest operating frequencies avai-

lable on DVFS. Moreover, is expected that Performance achieves the best results for

applications performance, but the worst for energy savings in comparison with the other

approaches. On the other hand, PowerSave is designed for minimizing the cluster power

consumption, setting the cores to operate on their lowest operating frequecies. However,

the impact on the applications performance should be much higher than other approaches.

The dynamic management of the trade-off between power and performance is the goal

of OnDemand. To this end, OnDemand sets at runtime the operating frequency of a core

based on its utilization rate. More to the point, OnDemand provides a fair comparison with

our model, since it implements a dynamic management of power and performance based

on the current workload.

Although the Linux governors used in our experiments enable relevant energy savings

for the processing environment, we can found several works in the literature with signi-

ficantly better results. Therefore, in order to evaluate the real efficiency of our model, it

should be compared with state-of-the art approaches, which are presented as follows.

5.1 State-of-the-art approaches implemented 53

5.1 State-of-the-art approaches implemented

As analyzed in Chapter 2, a very common approach observed in power and performance

management in virtualized server clusters regards determining the most suitable configu-

ration of the active VMs by means of an optimization process. These works define the

VM allocation process as a bin packing problem. The objective is to minimize the cluster

power consumption, without violating the application’s QoS agreements. Thus, in the

next section we describe the optimization approaches implemented in our performance

evaluation.

5.1.1 Optimization approaches

Optimization approaches should define the optimal number of active cores and servers,

and set the operating frequencies based on the tuple (frequency, utilization) of each core.

Optimization uses the same power consumption modeling as Offline, to define and

set the proper operating frequency of a core. Thus, Optimization estimates the cluster

power consumption for several combinations of cluster configuration, based on the power

measurements performed in the profiling stage. Then, it sets the cluster configuration

that is able to: (i) handle the workload demand without compromising the QoS; (ii) with

the lowest power consumption.

The objective function is modeled to minimize the cluster power consumption. The

constraint equations must observe the maximum processing capacity of a server s, which

is the sum of the processing capacity of its N cores (1), and the limitations imposed by

the QoS of the applications (2), which is related to the utilization rate of the set of M

active cores. Since each VM is assigned to an active core, there is no co-allocation of

VMs in the same core and the VM processing capacity is the same as the core. The-

refore, the utilization rate of a core (Uj) is equal to the utilization rate of its hosted

VM. To implement its resource management Optimization uses server on/off, DVFS,

core activation/deactivation and live migration to perform the reallocation of VMs in the

cluster.

minimize

M∑

k=1

N∑

j=1

Pj(U) = Pj(idle, fj) + (Pj(busy, fj)− Pj(idle, fj)).Uj

∀fj ∈ {fmin..fmax} (5.1)

5.1 State-of-the-art approaches implemented 54

Subject to:

Cs ≤
∑N

j=1Rj (1)

Uj ≤ 0.8,∀j ∈ {1..M} (2)

It should be noted that Optimization also needs a previous profiling of the cluster’s

resources. As can be seen in Eq. 5.1 and in restriction (1), the values of Rj, Pj(idle, f)

and (Pj(busy, f) are required to perform the Optimization process. Thus, the mentioned

approach uses the same values as Offline does to model and manage the cluster.

We used the Gurobi Optimizer 5.6 [26] to solve the optimization problem, and analy-

zed two Optimization schemes. Default-Opt uses the default parameters configuration

of the Gurobi, setting the amount of time spent in heuristics to 5%. Thus, Default-Opt

will spend 5% of its runtime on heuristics. The second scheme, called Heuristic-Opt, is

more aggressive in the use of heuristics to find the best solution for the optimization pro-

blem. The goal is to reduce the time spent to define the best cluster configuration, since

the heuristics can achieve a good solution for the optimization problem and decrease the

required computational effort, as discussed in Section 2. To this end, in Heuristic-Opt

we set the time spent in heuristics to 20%, which is good rate to keep the balance between

the heuristics and the solving processing, as described in [9] and [57].

In next section, we present a Performance Monitoring Counters (PMC) approach to

estimate power consumption and performance of a core via analytic models, which avoid

the need for previous profiling, as discussed as follows.

5.1.2 PMC-based approach

Performance counters on chip are generally accurate, and they provide significant insight

into the processor performance at the clock-cycle granularity. Besides that, PMC are

already incorporated into and exposed to user space on most modern processors architec-

tures. The PMC capability for accurately estimating at runtime power consumption and

performance enables the resource manager to make better real-time decisions. This is the

main reason for its wide implementation in resource modeling solutions described in the

literature.

PMC approach performs the resource modeling using a set of performance counters that

are related with the performance and power consumption of the core. As the state-of-

the-art approaches based on monitoring counters, PMC performs the power consumption

5.1 State-of-the-art approaches implemented 55

modeling of the core j as: Prelative = (
∑i=comps

i=1 ARi.Pi) +Pstatic, where Pi is the weight of

component i that we need to solve, and ARi is its activity ratio. The ARi.Pi represents

the dynamic power consumption of the component i, and Pstatic represents the overall

static power consumption of all components.

A set of performance counters is available in the modern processors platforms. We

selected the counters that represent relevant information about performance and power

consumption modeling. As described in [68], the dynamic power consumption of modern

processors depends on the circuit switching activity in their cores and the NorthBridge

(NB). This cited work points out that main contributors to the power consumption of

multi-core processors are the processing units (FPU, ALU, etc.) and the off-chip cache.

Moreover, the power modeling attribute part of the NB’s power to each core, since they

share it. Thus, based on the state-of-the-art PMC approaches, the four performance

counters listed below are able to capture enough information to indicate the relative

power consumption of a core: (i) L2 Cache Miss; (ii) Retired UOPS, (iii) Retired

MMX and FP instructions, and (iv) Dispatch stalls.

The L2 cache miss rate indicates how often the NB (NorthBridge) is used, since

the last level cache (L3) is an off-core device and is accessed always when a L2 cache

miss occurs. Then, the Dispatch stalls can be also used to approximate the NB activity

caused by a core. We attribute part of the NB power to each core, since they share it. To

do this, we can only choose NB-related PMC that can be collected on a per-core basis,

rather than any events counted in the shared NB. As L2 Cache Miss represents L3 cache

access operations from the core measuring the events, the NB usage is direct related.

The Dispatch stalls is usually caused by load/store queues or OoO (Out of Order)

storage (e.g., reservation stations) being full. Load/store queue stalls are usually due

to the long latency of the last-level cache or off-chip memory accesses, which happen in

the NB. Therefore, as L2 Cache Miss, we also found that Dispatch stalls can help

approximate the NB activity caused by a core.

TheRetired UOP andRetired MMXmeans that, in CPU pipeline, the instruction

is finally executed, and its rate is related to the CPU utilization. In other words, these

two components show the utilization of the microcircuits in the core chip. Finally, it is

necessary to assign the weight Pi to each one of the four selected components. As the PMC

are related to a particular processor architecture, we choose the weights associated to the

AMD architecture described in [68], since our testbed have servers with this processor

type and the weights were obtained through real tests performed by the cited work. All

5.2 The testbed 56

the four counters have direct relationship with power, except for the retired FP/MMX

instructions PMC. This is expected, since such instructions have higher latencies and this

class of instructions reduces the throughput of the system, resulting in lower power use.

Since the power modeling through performance counters is defined, it is necessary to

estimate the processor performance. As shown in [77], the CPI (Cycles Per Instructions)

correlates well with the application behavior. CPI is a function of the hardware plat-

form, and it is a reasonably stable measure over time. Moreover, CPI presents a direct

relationship with the changes in compute-intensive application behavior, and it is more

accurate than similar PMC, such as IPS (instructions Per Second) and cache misses, for

instance.

The resource management policies used by PMC are similar to Online (described in

Chapter 4). Thus, we define the same utilization bounds of 30% and 80% to indicate the

need for deactivating a core for energy savings, and to activate a new core due to overload,

respectively. In order to provide a fair comparison between PMC, Optimization and

QVM approaches, the PMC-based resource manager also uses server on/off, DVFS, core

activation/deactivation and live migration to perform the reallocation of VMs in the

cluster. Moreover, PMC also prioritizes the activation of the small cores rather than the

big cores, using its own resource modeling to define the small and big cores sets.

As the Optimization and PMC models have been described, our testbed and imple-

mentation details are presented as follows.

5.2 The testbed

The infrastructure of our testbed is composed of: (i) one server to run the HTTP request

generator module; (ii) one server to host the front-end layer, and (iii) three servers to

implement the virtualized application servers cluster. Table 5.1 describes the configura-

tion of these servers. As the scalability of our work is a key factor in the performance

evaluation, the application servers have a significant number of cores to host large sets

of QVMs. Thus, as explained below, the three servers in the application cluster have

together a total of 176 cores, enabling the scalability analysis with a suitable setting. All

servers use CentOS Linux 6 as the operating system, and have the Xen 3.1 version instal-

led to support the QVMs. The remote manipulation of the QVMs from the Quantum

VM Manager module was implemented with XML/RPC, since Xen API also uses these

calls in its internal procedures. The Balancer is based on the mod-proxy-balance module

5.3 Web applications scenario 57

of Apache.

Server Role Processor No. of cores Memory
Oahu Load generator Intel Core i7 2 8 GB
Kauai Front-end AMD Bulldozer 8 8 GB
Magnus 1 Application server 4 x AMD Opteron 1,7 GHz 48 32 GB
Magnus 2 Application 4 x AMD Opteron 1,8 GHz 64 32 GB
Magnus 3 Application 4 x AMD Opteron 2,1 GHz 64 32 GB

Tabela 5.1: Configuration of the machines in our testbed

To ratify that our model is independent from the processing platform, we used two

different test scenarios. The first scenario consists of a Big/Small Cores platform and

does not use the DVFS to dynamically change the operating frequency of the cores. As

our testbed does not have real small cores, we simulate them by setting different operating

frequencies in sub-set of cores: 29 cores with 0.6 GHz, 29 cores with 0.8 GHz and 30 cores

with 1.0 GHz. We then have 88 cores (half of the testbed) in the set of small cores, and the

other half in the set of big cores. For the set of big cores, we used the nominal operating

frequencies shown in Table 5.1. The second test scenario consists of a set of heterogeneous

cores with different processing capacities and power consumption, in which the DVFS is

used by all the evaluated approaches, except for Performance and PowerSave, which

always sets the highest and lowest operating frequencies of the cores, respectively.

To provide a better analysis of the results, first we present the experiments using

only web applications, since they are the major focus of scale-out data centers and cloud

computing platforms. Then, in order to analyze the efficiency of the approaches in different

scenarios, all types of application workloads available on the CloudSuite 2.0 are evaluated.

5.3 Web applications scenario

Web applications is the main service in the cloud. Traditional web services with dynamic

and static content are moved into cloud computing platforms to provide fault-tolerance

and scalability. Although many variants of the traditional web applications are used in

these environments, the underlying architecture remains unchanged. Clients requests are

handled by stateless web servers which either directly serve static files from disk or perform

the processing of dynamic content. To perform the tests in the web applications scenario

we used the Web Serving workload from the CloudSuite benchmark. The clients send

requests to login to a social network, and also perform different types of requests, such as

profile update, new posts, search by content, among others. All these requests must be

handled by the web servers layer, where the resource managers presented in the earlier

5.3 Web applications scenario 58

sections perform their policies for the cluster management.

In order to perform the clients’ action, accessing the web applications, we developed

a HTTP request generator module that will trigger requests to the web servers. To

simulate the execution of three simultaneous web applications in the cluster, we used

different access traces to Google applications available in [23], as shown in Fig 5.1. We

then have three LWSs implemented in the cluster for our performance evaluation, each

one supporting a web application. Intervals of 100 minutes were selected in the files

analyzed. The original traces were adjusted to the processing capacity of our testbed,

which is measured in requests per second, normalizing the original values to the interval

ranging from 0 to 180 simultaneous requests per application.

 0

 50

 100

 150

 200

 0 20 40 60 80 100

W
or

kl
oa

d
(re

q/
s)

Time (minutes)

App1

 0

 50

 100

 150

 200

 0 20 40 60 80 100

W
or

kl
oa

d
(re

q/
s)

Time (minutes)

App2

 0

 50

 100

 150

 200

 0 20 40 60 80 100

W
or

kl
oa

d
(re

q/
s)

Time (minutes)

App3

Figura 5.1: Application workloads

As a metric to evaluate the results of each approach we used: (i) power consumed by

the virtualized web servers cluster and (ii) QoS violation rate of the applications (QoS-

violation). In addition to these two metrics, specifically for the Optimization approaches

and for our model, the time spent to set the reconfiguration actions is also compared in

order to evaluate their scalability. The CloudSuite Web Serving benchmark has a default

value of QoS for web requests, which is equivalent to 350 ms in the tests performed. Thus,

the QoS-violation corresponds to the sum of all requests that exceeded the response time

5.3 Web applications scenario 59

 100

 200

 300

 400

 500

 600

 0 20 40 60 80 100

Re
sp

on
se

 ti
m

e
(m

s)

Time (minutes)

QVM Offline
QVM Online

Treshold

(a) Big/Small Cores

 100

 200

 300

 400

 500

 600

 0 20 40 60 80 100

Re
sp

on
se

 ti
m

e
(m

s)

Time (minutes)

QVM Online
Heuristic-Opt

Treshold

(b) Big/Small Cores

 100

 200

 300

 400

 500

 600

 0 20 40 60 80 100

Re
sp

on
se

 ti
m

e
(m

s)

Time (minutes)

QVM Offline
QVM Online

Treshold

(c) Heterogeneous Cores

 100

 200

 300

 400

 500

 600

 0 20 40 60 80 100

Re
sp

on
se

 ti
m

e
(m

s)

Time (minutes)

QVM Online
Heuristic-Opt

Treshold

(d) Heterogeneous Cores

Figura 5.2: Application performance

threshold, divided by the number of requests served during the tests.

Fig. 5.2 depicts the applications’ response time, in both platform Big/Small Cores

and Heterogeneous Cores. To better present the data on each performance graph, a

comparison between two approaches in both platforms is provided. The first comparison

is between the Offline and Online resource managers proposed in our model, as shown

in Fig. 5.2-a and 5.2-c. As observed, Online has a higher rate of QoS-violation than

Offline. The reason for this behavior is that Online has no information about the

cluster’s resources, as does Offline when its previous profiling is performed. As Online

performs at runtime its resource modeling, even for the cores which the performance

modeling was already executed, it needs to recalculate the weights assigned for each core

in every control period.

Therefore, the QoS-violation observed in Online at the beginning of the tests occurs

due the lack of information about the resources available in the processing platform,

mainly on the Heterogeneous Cores where the runtime modeling is more complex due

to the DVFS operations. However, about twenty minutes after starting the test, the

5.3 Web applications scenario 60

QoS-violation rate of Online achieved a similar behavior as Offline, which means that

the runtime resource modeling is very accurate about the real processing capacity of the

cluster.

The second comparison is presented in Fig. 5.2-b and 5.2-d, and is between Online and

Heuristic-Opt, since the results of Heuristic-Opt are better than Default-Opt for the

QoS-violation. For the Big/Small Cores platform the QoS-violation of Heuristic-Opt

is 7.3%, while the rate of Online is 1.0%. When we analyze the Heterogeneous Cores

platform, the QoS-violation rate of Heuristic-Opt is 9.9%, and Online achieves a rate

of 1.4%. Therefore, the QoS-violation of Heuristic-Opt is much higher than Online.

This occurs due to the long time (9.3 seconds on average) spent to define the best cluster

configuration by Heuristic-Opt, which makes the fine-grained QoS control impracticable.

To analyze in details how agile our resource managers are in comparison with the

approaches based on Optimization, Table 5.2 summarizes the average time spent to

define the cluster configuration in both platforms. As observed, the average time spent

by Optimization approaches is much longer than others resource managers. These results

ratify that Optimization approaches are not able to set a fine-grained QoS control, which

leads to the high QoS-violation rate observed along the tests performed. It should be

noticed that even the more aggressive heuristics used in Heuristic-Opt are not able

to significantly reduce the time spent to set the cluster configuration. Therefore, this

behavior is more related to the combinatorial nature of the optimization problem than to

the use of procedures to simplify the solving processing.

No. of VMs Default-Opt Heuristic-Opt PMC QVM Offline QVM Online
10 33 ms 33 ms 0.017 ms 0.016 ms 0.016 ms
20 331 ms 280 ms 0.017 ms 0.016 ms 0.016 ms
40 3328 ms 1933 ms 0.018 ms 0.016 ms 0.017 ms
100 155239 ms 62228 ms 0.018 ms 0.017 ms 0.017 ms

Tabela 5.2: Average time spent to define the cluster configuration

Resource manager Heterogeneous Cores Big/Small Cores
Performance 0% –
PowerSave 16.9% –
OnDemand 22.5% –

Default-Opt 46.7% 48.1%
Heuristic-Opt 48.9% 49.8%

PMC 41.5% 42.6%
QVM Offline 52.4% 54.3%
QVM Online 51.1% 52.2%

Tabela 5.3: Energy savings results

5.3 Web applications scenario 61

 250

 300

 350

 400

 450

 0 20 40 60 80 100

Po
we

r c
on

su
m

pt
io

n
(W

at
t)

Time (minutes)

QVM Offline
QVM Online

Heuristic-Opt

(a) Big/Small Cores

 250

 300

 350

 400

 450

 0 20 40 60 80 100

Po
we

r c
on

su
m

pt
io

n
(W

at
t)

Time (minutes)

QVM Offline
QVM Online

Heuristic-Opt

(b) Heterogeneous Cores

Figura 5.3: Web server cluster power consumption

Fig. 5.3 shows the web servers cluster power consumption when Offline, Online and

Heuristic-Opt are used. For a better visualization, we provide the average measurement

values in each 1-minute interval, and the values of the Linux governors and Default-Opt

were omitted. However, the results of all approaches for energy savings and QoS-violation

are summarized in Table 5.3 and Table 5.4, respectively. The tests were executed five

times in order to calculate the mean and standard deviation of the values measured. The

values shown in both tables have a confidence interval of 90%, calculated using a Student’s

t distribution with 4 degrees of freedom.

Since Performance is related with the maximum processing capacity of the cluster,

it was used as baseline in comparison with the results achieved with other approaches.

5.3 Web applications scenario 62

Resource manager Heterogeneous Cores Big/Small Cores
Performance 0% –
PowerSave 19.3% –
OnDemand 1.9% –

Default-Opt 12.8% 10.5%
Heuristic-Opt 9.9% 7.3%

PMC 6.5% 6.1%
QVM Offline 1.2% 0.7%
QVM Online 1.4% 1.0%

Tabela 5.4: QoS-violation results

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 20 40 60 80 100

N
um

be
r o

f a
ct

iv
e

co
re

s

Time (minutes)

Small cores
Big cores

Figura 5.4: Number of big/small cores

As can be seen in Table 5.3, our resource managers achieved more energy savings than

Optimization approaches. Moreover, the trade-off between power and performance ma-

naged by each approach should be observed. While Optimization approaches exhibit

high rates of QoS-violation, Offline and Online resource managers are able to keep the

QoS-violation in a very low level regardless the processing platform analyzed.

The Linux CPU governors were evaluated only in Heterogeneous Cores platform,

since they are DVFS-based approaches and the Big/Small Cores environment does not

enable DVFS operations. Besides that, it is interesting to notice the results of PowerSave

and OnDemand for energy savings. As PowerSave sets the lowest operating frequency for all

cores in the cluster, the turnaround time of the requests are much higher than observed on

OnDemand, for instance, which adjusts the operating frequency of each core according the

current workload. This issue was discussed in Chapter 3, where we empirically analyzed

the trade-off between power and performance using DVFS in our initial experiments.

Therefore, as observed in these experiments, despite the lower instant power consumption

5.4 Other CloudSuite workloads 63

achieved by PowerSave, the average power consumed along the time is significantly higher,

since the cores must remain longer activated for processing the workload.

Finally, as can be seen in Tables 5.3 and 5.4, the results for energy savings and QoS-

violation are slightly better in Big/Small Cores than in Heterogeneous Cores. This

indicates that the flexible management provided through DVFS operations is not more

efficient than cores with constant operating frequencies arranged in different sets according

their characteristics. Thus, grouping the cores into different sets, one composed by cores

with low power consumption and other of high performance elements, as the big/small

cores paradigm does, enables an efficient resource management aimed to energy savings.

In order to verify if Online in fact prioritizes the use of small cores in its resources

management policy, we analyzed the number of small cores and big cores that are activa-

ted throughout the performance evaluation using the Big/Small Cores platform. This

analysis is shown in Fig. 5.4, which depicts the average number of big and small cores

used during the test period. As can be seen, the number of active small cores is much

higher than the number of big cores.

Even during the peak workload scenarios, at about 40 and 80 minutes, the number of

small cores is higher than big cores. Although some big cores are still used in low workload

scenarios, due to some margin of error of Online modeling, we ratify the assumption

presented in Chapter 3, which shows that small cores are more energy-efficient than

big cores for web applications. In other words, even without any previous information

about the cluster’s resources, Online achieves similar results as Offline through the

prioritization of the small cores in the allocation of QVMs on the cluster.

5.4 Other CloudSuite workloads

The five other CloudSuite 2.0 workloads consist of applications that have been selected

based on their popularity in large-scale data centers. These benchmarks are based on

real-world processing scenarios and represent popular online services, as listed below:

• I/O bound workloads: This group includes Data Serving, Media Streaming

andWeb Search. These workloads represent massive data maniuplation with tight

latency constraints, such as today’s most popular video-sharing website features, for

instance.

• CPU bound workloads: The main characteristic of Map Reduce and Sat

5.4 Other CloudSuite workloads 64

Solver workloads are the large-scale computation-intensive tasks. Thus, these wor-

kloads are focused on CPU usage, with irrelevant I/O procedures.

To analyze the energy-efficiency of the evaluated approaches in these scenarios, we

show how the idle power impacts on the cluster power consumption along the test period.

To this end, Fig. 5.5-a and 5.5-b show the average utilization rate of the active cores in

the cluster. Then, Fig. 5.5-c and 5.5-d present the number of active cores during the

test, and Fig. 5.5-e and 5.5-f show the average cluster power consumption. As in web

application scenario, in all power measurements we used the WattsUP Pro [75] to collect

the power consumption of the whole server cluster. To provide a better visualization, the

graphics show the results for the 4 best-performing approaches (Online, Offline, PMC

and Heu-Opt).

(a) Heterogeneous Cores (b) Big/Small Cores

(c) Heterogeneous Cores (d) Big/Small Cores

(e) Heterogeneous Cores (f) Big/Small Cores

Figura 5.5: Power measurements

5.4 Other CloudSuite workloads 65

As can be seen in Fig. 5.5-a and 5.5-b, for I/O bound workloads (Data Serving,

Media Streaming and Web Search) Offline and Online enable a higher occupation

of the cores available in the cluster than other approaches. Therefore, a fewer number of

active cores is required by both resource managers to handle the workload (Fig. 5.5-c and

5.5-d), leading to a lower power consumption (Fig. 5.5-e and 5.5-f). Moreover, the results

of Offline and Online are even better on the Big/Small Cores platform when the

I/O bound workloads are performed. Thus, as observed in the Web Serving scenario

described in the early section, these results ratify the energy-efficiency of Big/Small

Cores platform.

On the other hand, when Map Reduce and SAT Solver workloads are performed,

which have a CPU bound behavior, Heuristic-Opt and PMC provide better results for

energy savings than approaches based on QVM. This occurs due to the power and per-

formance modeling used by both approaches. As PMC models the processing capacity

through processor counters, and Optimization approaches are mainly based on the core

processing capacity, these methods seem to be more accurate in CPU bound workloads.

(a) Heterogeneous Cores (b) Big/Small Cores

(c) Heterogeneous Cores (d) Big/Small Cores

Figura 5.6: Performance measurements

Fig. 5.6 shows how the applications performance is impacted by each resource manage-

ment. We analyzed the normalized throughput (Fig. 5.6-a and 5.6-b) and the normalized

latency of the requests attended by the application servers cluster (Fig. 5.6-c and 5.6-d)

for each workload. Both metrics use the average values observed along the test period.

The throughput is defined by the number of requests handled per second, and the latency

5.4 Other CloudSuite workloads 66

indicates the time needed to complete the request. We chose these two metrics rather

than the QoS-violation used in Web Serving workload in order to provide a more em-

bracing performance evaluation, since the QoS-violation is a metric strictly related to web

applications.

We used Performance and PowerSave Linux governors as baseline for the throughput

and latency metrics, respectively. Thus, the maximum throughput is obtained when

Performance is used, which is associated with the value 1 in the normalized throughput.

As PowerSave always sets the operating frequency of a core to its minimum value, in order

to maximize the energy savings, it obtains the maximum latency for serving requests in

comparison with other approaches. We associate the latency of PowerSave with the value

1 in the normalized latency.

As observed, the results of Offline and Online are similar for the applications perfor-

mance. As for the power measurements, the better results of both approaches for the ap-

plications performance occur when I/O bound workloads are performed. Another common

feature with the power experiments is the result of PMC and Heuristic-Optimization

for the applications performance during the CPU bound workloads. As can be seen

in Fig. 5.6, when Map Reduce and SAT Solver workloads are performed, PMC and

Heuristic-Optimization show similar results. Moreover, these results are significantly

better than QVM approaches.

Resource manager Heterogeneous Cores Big/Small Cores
Performance 0% –
PowerSave 15.7% –
OnDemand 21.7% –

Default-Opt 45.8% 46.9%
Heuristic-Opt 47.7% 48.2%

PMC 40.1% 41.3%
QVM Offline 52.7% 53.9%
QVM Online 51.62% 52.1%

Tabela 5.5: Energy savings results

The results of all approaches are summarized in Table 5.5 and Table 5.6, where the

average values obtained using all the workloads (Web Serving excluded) for energy

savings and applications performance are presented, respectively. As occurred in the

Web Serving workload, here we can see that the Big/Small Cores platform provides

more energy savings than Heterogeneous Cores. Additionally, despite the metric of

applications performance has changed compared to the Web Serving scenario (from

QoS-violation to Normalized Throughput and Normalized Latency, the Big/Small Cores

5.4 Other CloudSuite workloads 67

Resource manager
Normalized
Throughput

(HC)

Normalized
Throughput
(B/S C)

Normalized
Latency
(HC)

Normalized
Latency
(B/S C)

Performance 1.0 – 0.0 –
PowerSave 0.0 – 1.0 –
OnDemand 0.60 – 0.83 –

Default-Opt 0.71 0.72 0.73 0.72
Heuristic-Opt 0.73 0.75 0.73 0.71

PMC 0.72 0.74 0.74 0.72
QVM Offline 0.74 0.75 0.74 0.72
QVM Online 0.73 0.74 0.74 0.73

Tabela 5.6: Performance in Heterogeneous Cores (HC) and Big/Small Cores (B/S C)

also surpasses Heterogeneous Cores from a performance perspective.

QVM Online
Petrucci et
al. [58]

Bertran et
al. [10]

Souza et
al. [67]

Kusic et
al. [39]

Approach VM norma-
lization Optimization PMC Heuristics Optimization

VM migration Agile clone Live
migration

Live
migration

No virtuali-
zation

Live
migration

Need for previous
profiling No Yes No No Yes

Fine-grained QoS
control Yes No Yes Yes No

Scalability Linear Exponential Linear Linear Exponential
Energy savings 52.3% 52.1% 49.8% 30.3% 26.0%
QoS-violation 1.2% 9.72% 6.7% 2.5% 1.6%

Tabela 5.7: Comparison with state-of-the-art approaches

Finally, to observe how our model is situated on the energy-efficient clusters mana-

gement area, we provide a holistic analysis considering the key features addressed by the

most relevant related works. To this end, Table 5.7 presents a comparison between the

Online and some state-of-the-art approaches designed for power and performance mana-

gement in application servers clusters, which were discussed in our Related Work chapter.

The results of the mentioned works were obtained directly from the original papers, since

it was not viable to implement those approaches precisely in our testbed.

The energy savings in Petrucci et al. [58] and Bertran et al. [10] are similar

to that obtained with Online. However, our approach is able to simultaneously achieve

other relevant goals, such as avoiding previous profiling of the cluster’s resources, linear

scalability and performing a fine-grained applications QoS control. Moreover, Online

provides the lowest QoS violations in comparison with the analyzed works. Therefore, in

addition to achieving good results for energy savings, our proposed model offers a more

5.4 Other CloudSuite workloads 68

comprehensive solution for the management of virtualized application server clusters.

Chapter 6

Conclusions

The model proposed in this thesis showed good results for power management, achieving

energy savings up to 51.6% over a cluster designed for a peak workload scenario. Our

model and the Optimization schemes had a similar behavior with respect to power con-

sumption. However, our resource managers perform the energy savings with negligible

impact on application performance, achieving a fine-grained QoS control by relying on a

few simple measurements (utilization rates from the VMs and cores).

Additionally, as the experiments were performed in two different platforms, the as-

sumption that our model is independent of the processing environment was ratified.

Furthermore, our Online approach achieves good results performing a dynamic mode-

ling of the cluster’s resources, avoiding the need for previous profiling and prioritizing the

use of the small cores instead of the big cores.

Another important factor regarding the model was its scalability, especially when

the time spent to define the reconfiguration actions is compared with the Optimization

approaches. As mentioned earlier, the bin packing problem used as the basis of the optimi-

zation process evaluated has an exponential scale, in contrast to our model which performs

the management of the cluster’s resources based on an algorithm with linear complexity.

Thus, in large data centers scenarios and cloud computing platforms with thousands of

machines and several applications, for example, the proposed model is feasible to perform

a global management of power and performance.

As future work we intend to analyze the fault-tolerant issues, in order to implement

in our model some restoring procedures. Thus, a checkpoint control can be used to define

different stages of processing data, which is crucial for long processing tasks such as specific

jobs, and scientific computing, for instance. However, checkpoint procedures impact on

6.1 Questions and answers about key issues of the proposed model 70

application performance, due to the need to persist data for future recovery procedures,

as analyzed in [69], [71] and [16]. Thus, the period to perform the checkpoint must be

detailed and analyzed to avoid QoS degradation. This is a relevant requirement in scale-

out data centers and cloud computing environments, which must be capable to properly

manage the processing environment when energy blackouts or servers crash occur, for

instance.

Another relevant issue for future work is to provide a specialized configuration of the

QVMs according the workload. Once the PMC and Optimization presented better results

for CPU bound workloads, some improvements could be done in the QVM paradigm for

CPU intensive applications. Since CPU intensive applications perform long processing

windows, the QVMs could be consolidate into larger VMs. However even these larger

VMs should be based on the normalization of the VMs performance implemented by our

model. This approach could avoid the great number of active VMs, reducing the need

for scheduling the VMs on the cores available in the server cluster. Thus, the processing

windows could be longer, avoinding the context switch among the VMs, which is a crucial

issue in CPU bound workloads.

As described in the Introduction, we summarize as follows how each key research issue

was addressed by our model. In addition, we also discuss the goals achieved by this thesis.

6.1 Questions and answers about key issues of the pro-
posed model

1: Why the proposed model is independent from the processing platform?

Although our reconfiguration algorithm considers the processor core as the processing

resource, it does not mean a dependency on a multicore architecture. The core is related to

our model as a logical element, and it can be mapped to any physical processing resource,

such as single-core processores, for instance. To this end, it is enough to indicate in the

implementation phase where each logical core is physical located (server A, processor

B, i.e.), in order to enable its activation/deactivation and other managing procedures.

Moreover, our model does not require measurements specifically related to the processor’s

configuration, such as IPC, cache misses, among others. As our proposed approach is

based only on measurements related to VMs and cores occupation, it could be easily

implemented in most processing platforms.

2: Does DVFS have a relevant role for energy savings in our model? The

6.1 Questions and answers about key issues of the proposed model 71

answer is no. The tests performed in the Big/Small Cores platform show the efficiency of

our model regardless of wether the DVFS technique was applied or not. Additionally, the

results for energy savings and applications performance were better using the Big/Small

cores platform, then when the DVFS was enabled in the Heterogeneous Cores scenario.

However, our model does not become unfeasible with DVFS-based processing platforms.

As can be seen in Chapter 5 (Performance Evaluation), the proposed model is suitable

for both platforms and does not require specific adjustments to operate on each of them.

3: Why the model is scalable?

Our model is based on algorithm with linear complexity for performing the cluster recon-

figuration actions. Therefore, even for a great number of active VMs to be evaluated and

managed, the fine-grained QoS control was performed through a 1-second control loop.

This issue was explicitly shown by the time spent to define the cluster configuration for

each resource management approach (Table 5.2 - Chapter 5). As our model presents an

average time of 0.016 ms for any analyzed number of active VMs, it is able to operate

the virtualized cluster in an agile manner. This is ratified by the rate of QoS-violation

achieved by our model, which is significantly lower than other approaches. More to the

point, the testbed used in our performance evaluation experiments is composed of 176

cores, which enabled a proper scalability analysis.

4: Why the model is agile to perform reconfiguration actions?

The first point is the use of VM agile clone for creation or migration of VMs in the cluster.

As described in our initial tests in Chapter 3, the VM agile clone is able to provide a

significant reduction on the latency of the VM allocation process, in comparison with the

VM live migration procedure. Other relevant issue is the simple monitoring procedures,

which need only to collect the utilization rates of cores and VMs. Thus, we do not need to

use complex operations, and most of time also intrusive, to collect information about the

processing environment, such as performance monitoring counters (PMC), for instance.

With a simple and lightweight monitoring, there is more room to implement a shorter

control period, which facilitates the energy savings and the fulfilment of SLA agreements.

5: How the QVM paradigm enables the simplification of the cluster ma-

nagement?

The three Definitions which our model is based on, specially the Definition 2, pro-

vides the VM performance normalization. Thus, the proposed model works considering

homogeneous processing capacity for all active QVMs, and the only decision to take in

the resource management is if we should increase, decrease, or keep stable the number of

6.1 Questions and answers about key issues of the proposed model 72

active QVMs for each LWS. In other words, all the available reconfiguration actions, such

as DVFS, core activation/deactivation, agile clone, etc. are used as basis for providing the

QVM performance normalization abstraction. Therefore, this simplification with regard

to performance modeling permeates other elements present in the model. For example,

the Balancer uses a round-robin policy to distribute the requests among the cluster, since

all the processing elements (QVMs) have the same processing capacity, avoiding complex

policies for load balancing.

Referências

[1] Amazon. Amazon ec2. http://aws.amazon.com/ec2, December 2013.

[2] Amur, H.; Nathuji, R.; Ghosh, M.; Schwan, K.; Lee, H.-H. S. Idle-
power: Application-aware management of processor idle states. In Procee-
dings of the Workshop on Managed Many-Core Systems, MMCS (2008. DOI:
http://dx.doi.org/10.1109/ICCAD.2011.6105394), vol. 8, Citeseer.

[3] Barham, P.; Dragovic, B.; Fraser, K.; Hand, S.; Harris, T.; Ho, A.;
Neugebauer, R.; Pratt, I.; Warfield, A. Xen and the art of virtuali-
zation. ACM SIGOPS Operating Systems Review 37, 5 (2003), 164–177. DOI:
http://dx.doi.org/10.1145/1165389.945462.

[4] Barroso, L. A.; Hölzle, U. The case for energy-proportional
computing. IEEE Computer 40, 12 (2007), 33–37. DOI:
http://doi.ieeecomputersociety.org/10.1109/MC.2007.443.

[5] Belady, C. In the data center, power and cooling costs more than the it equip-
ment it supports. http://www.electronics-cooling.com/articles/2007/feb/a3/, Febru-
ary 2007.

[6] Beloglazov, A.; Abawajy, J.; Buyya, R. Energy-aware resource al-
location heuristics for efficient management of data centers for cloud com-
puting. Future generation computer systems 28, 5 (2012), 755–768. DOI:
http://dx.doi.org/10.1016/j.future.2011.04.017.

[7] Beloglazov, A.; Buyya, R. Energy efficient resource management in virtuali-
zed cloud data centers. In Proceedings of the 2010 10th IEEE/ACM International
Conference on Cluster, Cloud and Grid Computing (2010), IEEE Computer Society,
pp. 826–831.

[8] Berl, A.; De Meer, H. An energy consumption model for virtualized office envi-
ronments. Future Generation Computer Systems 27, 8 (2011), 1047–1055.

[9] Berthold, T. Measuring the impact of primal heuristics. Operations Research
Letters 41, 6 (2013), 611–614. DOI: http://dx.doi.org/10.1016/j.orl.2013.08.007.

[10] Bertran, R.; Becerra, Y.; Carrera, D.; Beltran, V.; Gonzàlez, M.;
Martorell, X.; Navarro, N.; Torres, J.; Ayguadé, E. Energy accounting
for shared virtualized environments under dvfs using pmc-based power models. Future
Generation Computer Systems 28, 2 (2012), 457–468.

[11] Bircher, W. L.; John, L. K. Complete system power estimation using processor
performance events. Computers, IEEE Transactions on 61, 4 (2012), 563–577.

Referências 74

[12] Borkar, S. Thousand core chips: a technology perspective. In Proceedings of
the 44th annual Design Automation Conference (2007), ACM, pp. 746–749. DOI:
http://dx.doi.org/10.1145/1278480.1278667.

[13] Chakraborty, K.; Roy, S. Topologically homogeneous power-performance hete-
rogeneous multicore systems. In Design, Automation & Test in Europe Conference
& Exhibition (DATE), 2011 (2011), IEEE, pp. 1–6.

[14] CloudSuite. Cloud suite benchmark. http://parsa.epfl.ch/cloudsuite/cloudsuite.html,
August 2013.

[15] Dhiman, G.; Mihic, K.; Rosing, T. A system for online power prediction in virtua-
lized environments using gaussian mixture models. In Design Automation Conference
(DAC), 2010 47th ACM/IEEE (2010), IEEE, pp. 807–812.

[16] Duolikun, D.; Aikebaier, A.; Enokido, T.; Takizawa, M. Power consumption
models for migrating processes in a server cluster. In Network-Based Information
Systems (NBiS), 2014 17th International Conference on (2014), IEEE, pp. 15–22.

[17] Esmaeilzadeh, H.; Blem, E.; Amant, R. S.; Sankaralingam, K.; Burger,
D. Power challenges may end the multicore era. Communications of the ACM 56, 2
(2013), 93–102. DOI: http://dx.doi.org/10.1145/2408776.2408797.

[18] Fan, X.; Weber, W.-D.; Barroso, L. A. Power provisioning for a warehouse-
sized computer. In ACM SIGARCH Computer Architecture News (2007), vol. 35,
ACM, pp. 13–23.

[19] Ferdman, M.; Adileh, A.; Kocberber, O.; Volos, S.; Alisafaee, M.; Jevd-
jic, D.; Kaynak, C.; Popescu, A. D.; Ailamaki, A.; Falsafi, B. Clearing the
clouds: a study of emerging scale-out workloads on modern hardware. ACM SI-
GARCH Computer Architecture News 40, 1 (2012), 37–48.

[20] Gandhi, A.; Harchol-Balter, M.; Das, R.; Lefurgy, C. Optimal power
allocation in server farms. In ACM SIGMETRICS Performance Evaluation Review
(2009), vol. 37, ACM, pp. 157–168.

[21] Ghribi, C.; Hadji, M.; Zeghlache, D. Energy efficient vm scheduling for cloud
data centers: Exact allocation and migration algorithms. In Cluster, Cloud and Grid
Computing (CCGrid), 2013 13th IEEE/ACM International Symposium on (2013),
IEEE, pp. 671–678.

[22] Gmach, D.; Rolia, J.; Cherkasova, L.; Kemper, A. Resource pool mana-
gement: Reactive versus proactive or let’s be friends. Computer Networks 53, 17
(2009), 2905–2922.

[23] Google. Google apps. www.google.com/apps, September 2013.

[24] green grid consortium, T. Green grid. www.greengrid.org, october 2014.

[25] Gupta, V.; Schwan, K. Brawny vs. wimpy: Evaluation and analysis of modern
workloads on heterogeneous processors. In Parallel and Distributed Processing Sym-
posium Workshops & PhD Forum (IPDPSW), 2013 IEEE 27th International (2013),
IEEE, pp. 74–83. DOI: http://dx.doi.org/10.1109/IPDPSW.2013.130.

Referências 75

[26] Gurobi. Gurobi optimizer 5.6. http://www.gurobi.com, Junho 2014.

[27] Hager, G.; Treibig, J.; Habich, J.; Wellein, G. Exploring performance
and power properties of modern multi-core chips via simple machine models. Con-
currency and Computation: Practice and Experience 28, 2 (2014), 189–210. DOI:
http://dx.doi.org/10.1002/cpe.3180.

[28] Hines, M. R.; Gopalan, K. Post-copy based live virtual machine migration
using adaptive pre-paging and dynamic self-ballooning. In Proceedings of the 2009
ACM SIGPLAN/SIGOPS international conference on Virtual execution environ-
ments (2009), ACM, pp. 51–60.

[29] Hirofuchi, T.; Nakada, H.; Itoh, S.; Sekiguchi, S. Enabling instantaneous
relocation of virtual machines with a lightweight vmm extension. In Cluster, Cloud
and Grid Computing (CCGrid), 2010 10th IEEE/ACM International Conference on
(2010), IEEE, pp. 73–83.

[30] Hölzle, U. Brawny cores still beat wimpy cores, most of the time. IEEE Micro 30,
4 (2010).

[31] Kahng, A. B.; Kang, S.; Kumar, R.; Sartori, J. Enhancing the efficiency of
energy-constrained dvfs designs. Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on 21, 10 (2013), 1769–1782.

[32] Kansal, A.; Zhao, F.; Liu, J.; Kothari, N.; Bhattacharya, A. A. Virtual
machine power metering and provisioning. In Proceedings of the 1st ACM symposium
on Cloud computing (2010), ACM, pp. 39–50.

[33] Keramidas, G.; Spiliopoulos, V.; Kaxiras, S. Interval-based models for run-
time dvfs orchestration in superscalar processors. In Proceedings of the 7th ACM
international conference on Computing frontiers (2010), ACM, pp. 287–296.

[34] Kim, J.; Ruggiero, M.; Atienza, D.; Lederberger, M. Correlation-aware
virtual machine allocation for energy-efficient datacenters. In Proceedings of the
Conference on Design, Automation and Test in Europe (2013), EDA Consortium,
pp. 1345–1350.

[35] Kim, K. H.; Beloglazov, A.; Buyya, R. Power-aware provisioning of virtual
machines for real-time cloud services. Concurrency and Computation: Practice and
Experience 23, 13 (2011), 1491–1505.

[36] Kim, N.; Cho, J.; Seo, E. Energy-credit scheduler: an energy-aware virtual ma-
chine scheduler for cloud systems. Future Generation Computer Systems 32 (2014),
128–137.

[37] Kim, W.; Gupta, M. S.; Wei, G.-Y.; Brooks, D. System level analysis of fast,
per-core dvfs using on-chip switching regulators. In High Performance Computer
Architecture, 2008. HPCA 2008. IEEE 14th International Symposium on (2008),
IEEE, pp. 123–134.

Referências 76

[38] Krioukov, A.; Mohan, P.; Alspaugh, S.; Keys, L.; Culler, D.; Katz,
R. Napsac: Design and implementation of a power-proportional web cluster.
ACM SIGCOMM Computer Communication Review 41, 1 (2011), 102–108. DOI:
http://dx.doi.org/10.1145/1851290.1851294.

[39] Kusic, D.; Kephart, J. O.; Hanson, J. E.; Kandasamy, N.; Jiang, G. Power
and performance management of virtualized computing environments via lookahead
control. Cluster Computing 12, 1 (2009), 1–15.

[40] Lagar-Cavilla, H. A.; Whitney, J. A.; Scannell, A. M.; Patchin, P.;
Rumble, S. M.; De Lara, E.; Brudno, M.; Satyanarayanan, M. Snowflock:
rapid virtual machine cloning for cloud computing. In Proceedings of the 4th ACM
European conference on Computer systems (2009), ACM, pp. 1–12.

[41] Lampka, K., et al. Keep it slow and in time: Online dvfs with hard real-time
workloads. In 2016 Design, Automation & Test in Europe Conference & Exhibition
(DATE) (2016), IEEE, pp. 385–390.

[42] Le Sueur, E.; Heiser, G. Slow down or sleep, that is the question. In USENIX
Annual Technical Conference (2011).

[43] Lee, Y. C.; Zomaya, A. Y. Energy efficient utilization of resources in cloud
computing systems. The Journal of Supercomputing 60, 2 (2012), 268–280.

[44] Leverich, J.; Monchiero, M.; Talwar, V.; Ranganathan, P.; Kozyra-
kis, C. Power management of datacenter workloads using per-core power gating.
Computer Architecture Letters 8, 2 (2009), 48–51.

[45] Liu, H.; Jin, H.; Xu, C.-Z.; Liao, X. Performance and energy modeling for live
migration of virtual machines. Cluster computing 16, 2 (2013), 249–264.

[46] Lovász, G.; Niedermeier, F.; de Meer, H. Performance tradeoffs of energy-
aware virtual machine consolidation. Cluster Computing 16, 3 (2013), 481–496.

[47] Ma, D.; Bondade, R. Enabling power-efficient dvfs operations on silicon. Circuits
and Systems Magazine, IEEE 10, 1 (2010), 14–30.

[48] Ma, K.; Li, X.; Chen, M.; Wang, X. Scalable power control for many-core
architectures running multi-threaded applications. In ACM SIGARCH Computer
Architecture News (2011), vol. 39, ACM, pp. 449–460.

[49] Maciel, P.; Callou, G.; Tavares, E.; Sousa, E.; Silva, B., et al. Estimating
reliability importance and total cost of acquisition for data center power infrastructu-
res. In Systems, Man, and Cybernetics (SMC), 2011 IEEE International Conference
on (2011), IEEE, pp. 421–426.

[50] Monteiro, A. F.; Azevedo, M. V.; Sztajnberg, A. Virtualized web server
cluster self-configuration to optimize resource and power use. Journal of Systems
and Software 86, 11 (2013), 2779–2796.

[51] Monteiro, A. F.; Loques, O. Qmapper: Scalability and energy saving for virtuali-
zed web server clusters. In Cluster Computing (CLUSTER), 2014 IEEE International
Conference on (2014), IEEE, pp. 270–278.

Referências 77

[52] Monteiro, A. F.; Loques, O. Quantum virtual machine: A scalable model to
optimize energy savings and resource management. In Computer Architecture and
High Performance Computing (SBAC-PAD), 2015 27th International Symposium on
(2015), IEEE, pp. 194–201.

[53] Monteiro, A. F.; Loques, O. Scalable model for dynamic configuration and
power management in virtualized heterogeneous web clusters. In Applied Computing
(SAC), 2015 ACM Internation Symposium on (2015), ACM, pp. 146–149.

[54] Monteiro, A. F.; Loques, O. Qmodel: A dynamic approach for power and
performance modeling in virtualized servers clusters. In Applied Computing (SAC),
2017 ACM Internation Symposium on (2017), ACM, pp. 122–127.

[55] Monteiro, A. F.; Loques, O. Quantum virtual machine: a novel approach for
managing power and performance in virtualized web servers clusters. Journal of
Parallel and Distributed Computing under review (2017).

[56] Nikolaev, R.; Back, G. Perfctr-xen: a framework for performance counter virtu-
alization. In ACM SIGPLAN Notices (2011), vol. 46, ACM, pp. 15–26.

[57] Panigrahy, R.; Talwar, K.; Uyeda, L.; Wieder, U. Heuristics for vector bin
packing. http://www.research.microsoft.com (2011).

[58] Petrucci, V.; Carrera, E. V.; Loques, O.; Leite, J. C.; Mosse, D. Op-
timized management of power and performance for virtualized heterogeneous server
clusters. In Cluster, Cloud and Grid Computing (CCGrid), 2011 11th IEEE/ACM
International Symposium on (2011), IEEE, pp. 23–32.

[59] Petrucci, V.; Loques, O.; Mossé, D. Lucky scheduling for energy-efficient
heterogeneous multi-core systems. In Proceedings of the 2012 USENIX conference
on Power-Aware Computing and Systems (2012), USENIX Association, pp. 7–7.

[60] Pettey, C. Gartner estimates ict industry accounts for 2 percent of global co2
emissions. Dostupno na: https://www. gartner. com/newsroom/id/503867 14 (2007),
2013.

[61] Pricopi, M.; Muthukaruppan, T. S.; Venkataramani, V.; Mitra, T.;
Vishin, S. Power-performance modeling on asymmetric multi-cores. In Compi-
lers, Architecture and Synthesis for Embedded Systems (CASES), 2013 International
Conference on (2013), IEEE, pp. 1–10.

[62] Ranganathan, P.; Leech, P.; Irwin, D.; Chase, J. Ensemble-level power
management for dense blade servers. In ACM SIGARCH Computer Architecture
News (2006), vol. 34, IEEE Computer Society, pp. 66–77.

[63] Rizvandi, N. B.; Taheri, J.; Zomaya, A. Y. Some observations on optimal fre-
quency selection in dvfs-based energy consumption minimization. Journal of Parallel
and Distributed Computing 71, 8 (2011), 1154–1164.

[64] Rodero, I.; Jaramillo, J.; Quiroz, A.; Parashar, M.; Guim, F. Towards
energy-aware autonomic provisioning for virtualized environments. In Proceedings of
the 19th ACM International Symposium on High Performance Distributed Computing
(2010), ACM, pp. 320–323.

Referências 78

[65] Rountree, B.; Ahn, D. H.; de Supinski, B. R.; Lowenthal, D. K.; Schulz,
M. Beyond dvfs: A first look at performance under a hardware-enforced power
bound. In Parallel and Distributed Processing Symposium Workshops & PhD Forum
(IPDPSW), 2012 IEEE 26th International (2012), IEEE, pp. 947–953.

[66] Santana, C.; Leite, J. C.; Mossé, D. Load forecasting applied to soft real-time
web clusters. In Proceedings of the 2010 ACM Symposium on Applied Computing
(2010), ACM, pp. 346–350.

[67] Sousa, L.; Leite, J.; Loques, O. Green data centers: Using hierarchies for
scalable energy efficiency in large web clusters. Information Processing Letters 113,
14 (2013), 507–515. DOI: http://dx.doi.org/10.1016/j.ipl.2013.04.010.

[68] Su, B.; Gu, J.; Shen, L.; Huang, W.; Greathouse, J. L.; Wang, Z. Ppep:
Online performance, power, and energy prediction framework and dvfs space explo-
ration. In Proceedings of the 47th Annual IEEE/ACM International Symposium on
Microarchitecture (2014), IEEE Computer Society, pp. 445–457.

[69] Sztajnberg, A.; Granja, R. S.; Cesário, J.; Monteiro, A. F. A. An in-
tegration experience of a software architecture and a monitoring infrastructure to
deploy applications with non-functional requirements in computing grids. Software:
Practice and Experience 41, 1 (2011), 103–127.

[70] Takahashi, S.; Takefusa, A.; Shigeno, M.; Nakada, H.; Kudoh, T.;
Yoshise, A. Virtual machine packing algorithms for lower power consumption. In
Cloud Computing Technology and Science (CloudCom), 2012 IEEE 4th International
Conference on (2012), IEEE, pp. 161–168.

[71] Verma, A.; Pedrosa, L.; Korupolu, M.; Oppenheimer, D.; Tune, E.; Wil-
kes, J. Large-scale cluster management at google with borg. In Proceedings of the
Tenth European Conference on Computer Systems (2015), ACM, p. 18.

[72] Von Laszewski, G.; Wang, L.; Younge, A. J.; He, X. Power-aware scheduling
of virtual machines in dvfs-enabled clusters. In 2009 IEEE International Conference
on Cluster Computing and Workshops (2009), IEEE, pp. 1–10.

[73] Wang, Y.; Wang, X.; Chen, M.; Zhu, X. Power-efficient response time gua-
rantees for virtualized enterprise servers. In Real-Time Systems Symposium, 2008
(2008), IEEE, pp. 303–312.

[74] Wang, Y.; Wang, X.; Chen, Y. Energy-efficient virtual machine scheduling in
performance-asymmetric multi-core architectures. In Proceedings of the 8th Interna-
tional Conference on Network and Service Management (2012), International Fede-
ration for Information Processing, pp. 288–294.

[75] WattsUp. Watts up meter pro. http://www.wattsupmeters.com, July 2013.

[76] Xie, X.; Jiang, H.; Jin, H.; Cao, W.; Yuan, P.; Yang, L. T. Metis: a profiling
toolkit based on the virtualization of hardware performance counters. Human-centric
Computing and Information Sciences 2, 1 (2012), 8.

Referências 79

[77] Zhang, X.; Tune, E.; Hagmann, R.; Jnagal, R.; Gokhale, V.; Wilkes, J.
Cpi 2: Cpu performance isolation for shared compute clusters. In Proceedings of the
8th ACM European Conference on Computer Systems (2013), ACM, pp. 379–391.

