
UNIVERSIDADE FEDERAL FLUMINENSE

DARICÉLIO MOREIRA SOARES

ON THE NATURE OF PULL REQUESTS: A

STUDY ABOUT THIS COLLABORATION

PARADIGM OVER OPEN-SOURCE PROJECTS

USING ASSOCIATION RULES

NITERÓI

2017

UNIVERSIDADE FEDERAL FLUMINENSE

DARICÉLIO MOREIRA SOARES

ON THE NATURE OF PULL REQUESTS: A

STUDY ABOUT THIS COLLABORATION

PARADIGM OVER OPEN-SOURCE PROJECTS

USING ASSOCIATION RULES

Thesis presented to the Computing Graduate
Program of the Universidade Federal Flumi-
nense, in partial ful�llment of the require-
ments for the degree of Doctor of Science.
Área: Systems and Information Engineering.

Advisor:

LEONARDO GRESTA PAULINO MURTA

Co-advisor:

ALEXANDRE PLASTINO DE CARVALHO

NITERÓI

2017

DARICÉLIO MOREIRA SOARES

ON THE NATURE OF PULL REQUESTS: A STUDY ABOUT THIS

COLLABORATION PARADIGM OVER OPEN-SOURCE PROJECTS USING

ASSOCIATION RULES

Thesis presented to the Computing Graduate

Program of the Universidade Federal Flumi-

nense, in partial ful�llment of the require-

ments for the degree of Doctor of Science.

Área: Systems and Information Engineering.

Approved in June of 2017.

Prof. D.Sc. Leonardo Gresta Paulino Murta - Advisor, UFF

Prof. D.Sc. Alexandre Plastino de Carvalho - Co-Advisor, UFF

Prof. D.Sc. Daniel Cardoso Moraes de Oliveira, UFF

Prof. D.Sc. Viviane Torres da Silva, UFF

Prof. D.Sc. Alessandro Fabricio Garcia, PUC-Rio

Prof. D.Sc. Paulo de Figueiredo Pires, UFRJ

Niterói

2017

My �esh and my mind may fail, but God is my strength and my portion forever.

(Salms 73:26)

The burden is proportional to the forces, as the reward is proportional to resignation

and courage.

(Allan Kardec)

I dedicate this work to God, to the women of my life, Ligiane and Célia, and to my new

source of inspiration, my son Davi.

Acknowledgement

First and foremost, I would like to thank God, who with His everlasting goodness,

guides us through the paths of life and allows us to overcome obstacles.

I would like to thank my wife Ligiane. She has been my foundation. Thank you for

your dedication and love. I also thank you for your patience and constant motivation.

I would also like to thank my mother Célia. Her struggle, grip, and dedication will

always serve as examples to follow throughout my life. Thank you for your unconditional

love.

I thank my family and friends for having cheered for my success throughout this

journey.

I thank my advisors Leonardo Murta and Alexandre Plastino for all their teachings,

technical support, motivation, and demonstrated examples. It has been an honor to work

with you.

I additionally thank my fellow professors from the Informatics �eld at Universidade

Federal do Acre for their camaraderie, and professor Sérgio Brazil for his continued sup-

port.

I especially thank my friends Manoel Junior and Laura Sarkis for their involvement,

indispensable help, and advice o�ered in moments of distress.

Last but not least, I thank UFAC, UFF, and CAPES for the �nancial support provided

over the course of my doctor's degree.

Resumo

O desenvolvimento de software livre está comumente inserido num contexto distribuído
e colaborativo, o que permite o recebimento de contribuições externas. Um paradigma
emergente empregado para a sistematização dessas contribuições é denominado pull re-
quest. Nesse paradigma, colaboradores externos que desejam contribuir com um projeto
criam um fork a partir do repositório do projeto, fazem suas alterações e enviam um pull
request à equipe principal, que revisará a contribuição e decidirá sobre a incorporação ou
não ao repositório. Pull requests podem conter correção de bugs, refatoração de código
ou adição de novas funcionalidades, por exemplo. Atualmente, poucas informações so-
bre a natureza dos pull requests são conhecidas no cenário de projetos de software livre.
Alguns trabalhos investigaram características de pull requests relacionadas à aceitação,
tempo de vida e atribuição de revisores. No entanto, esses estudos negligenciam a explo-
ração de questões importantes e que estão em aberto. Nesta tese, realizamos um conjunto
de estudos baseados na extração de regras de associação sobre 88 projetos de software
livre, detalhando a natureza dos seus 132.660 pull requests por meio da: (1) identi�cação
de padrões frequentes a partir de milhares de pull requests ; (2) avaliação da extensão e
força desses padrões; e (3) análise qualitativa que explica a ocorrência de alguns deles.
Nossos resultados indicam que as características físicas dos pull requests, o per�l dos co-
laboradores, aspectos sociais do processo e a localização das contribuições são fatores que
in�uenciam, em diferentes intensidades de força, na aceitação/rejeição, no tempo de vida
e na atribuição de revisores. A identi�cação desses padrões pode apoiar desenvolvedores
e gerentes de projeto na compreensão da natureza dos pull requests e guiá-los a práticas
que permitam extrair ao máximo os benefícios desse paradigma de colaboração.

Palavras-chave: Pull Request, Regras de Associação, Aceitação, Tempo de Vida, Atribuição
de Revisores.

Abstract

Open-source software development is nowadays inserted in a distributed and collaborative
context, which enables to receive external contributions. An emerging paradigm employed
for the systematization of these contributions is named pull request. According to this
paradigm, external developers wishing to contribute to a project fork the project repos-
itory, make their changes, and send a pull request to the project's core team, who will
review the contribution and decide whether or not to integrate it into the repository. Pull
requests may contain bug �xes, code refactorings, or new features, for example. Currently,
few information about the nature of pull requests is known in the scenario of open-source
projects. Some work investigated pull requests characteristics related to acceptance, life-
time, and reviewers assignment. However, all of these studies neglected the exploration of
certain aspects that are still open. In this thesis we performed a set of studies based on the
extraction of association rules from 88 open-source projects, detailing the nature of their
132,660 pull requests through: (1) the identi�cation of frequent patterns from thousands
of pull requests; (2) the assessment of the extent and strength of these patterns; and (3)
a qualitative analysis that explains the occurrence of some patterns. Our results indicate
that physical characteristics of the pull requests, collaborators pro�le, social aspects of the
process, and location of contributions are factors that in�uence, in di�erent intensities, on:
the acceptance/rejection, lifetime, and reviewers assignment. The identi�cation of these
patterns can support developers and project managers in understanding the nature of
pull requests and guide them to practices that maximize the bene�ts of this collaboration
paradigm.

Keywords: Pull Request, Association Rules, Acceptance, Lifetime, Reviewers Assign-
ment.

List of Figures

2.1 An overview of CVCS and DVCS architectures � adapted from [1]. 8

2.2 The pull request process. 11

2.3 GitHub pull request discussion screen. 12

3.1 Lifts of the rules of type: language → status_pull = "accepted". 21

3.2 Distribution of pull requests by programming language. 22

3.3 Distribution of projects by programming language. 23

3.4 Lifts of the rules of type: commits_pull → status_pull = "accepted". . . . 23

3.5 Lifts of the rules of type: �les_added → status_pull = "accepted". 24

3.6 Lifts of the rules of type: �les_removed → status_pull = "accepted". . . . 24

3.7 Lifts of the rules of type: �les_changed → status_pull = "accepted". . . . 25

3.8 Lifts of the rules of type: developer_type → status_pull = "accepted". . . 25

3.9 Lifts of the rules of type: �rst_pull → status_pull = "accepted". 26

3.10 Lifts of the rules of type: lifetime → status_pull = "accepted". 28

4.1 Lifts of the rules of type: commits_pull → status_pull = "rejected". 37

4.2 Lifts of the rules of type: �les_changed → status_pull = "rejected". 37

4.3 Lifts of the rules of type: �rst_pull → status_pull = "rejected". 38

4.4 Lifts of the rules of type: comments_pull → status_pull = "rejected". . . 39

5.1 Lifts of the rules of type: lifetime → status_pull. 53

5.2 Lifts of the rules of type: commits_pull → lifetime. 55

5.3 Lifts of the rules of type: �les_changed → lifetime. 55

5.4 Lifts of the rules of type: lines_changed → lifetime. 56

5.5 Lifts of the rules of type: �rst_pull → lifetime. 60

List of Figures viii

5.6 Lifts of the rules of type: previous_contributions → lifetime. 61

5.7 Lifts of the rules of type: developer_type → lifetime. 63

5.8 Lifts of the rules of type: has_followers → lifetime. 64

5.9 Lifts of the rules of type: reviewer_follow_external_contributor → lifetime. 65

5.10 Lifts of the rules of type: comments_pull → lifetime. 66

6.1 Top-3 developers with more commits in Rails project. 78

6.2 Lifts of the rules of type: �rst_pull = "false" → reviewer_pull. 82

6.3 Lifts of the rules of type: developer_type = "external" → reviewer_pull. 83

6.4 Lifts of the rules of type: recent_commiter → reviewer_pull in Docker

project. 87

6.5 Lifts of the rules of type: recent_commiter → reviewer_pull in Rails

project. 88

6.6 Lifts of the rules of type: recent_commiter → reviewer_pull in Kodi

project. 88

List of Tables

2.1 Pull request dataset sample. 13

3.1 Project corpus. 19

3.2 Attributes used in this study. 20

3.3 Relevant association rules and their measures of interest, where consequent

is status_pull = "accepted". 26

3.4 Association rules with lifetime and status_pull attributes in the consequent

and their measures of interest. 29

4.1 Characteristics of projects analized. 35

4.2 Attributes used in this study. 36

4.3 Relevant association rules for rejection (consequent status_pull = "re-

jected") from project Akka. 40

4.4 Relevant association rules for rejection (consequent status_pull = "re-

jected") from project IPython. 40

4.5 Relevant association rules for rejection (consequent status_pull = "re-

jected") and their measures of interest. 41

4.6 Relevant association rules for rejection (consequent status_pull = "re-

jected") in projects Akka, IPython, and in the complete corpus. 42

4.7 Relevant association rules for rejection (consequent status_pull = "re-

jected") in project Akka. 42

4.8 Relevant association rules for rejection (consequent status_pull = "re-

jected") in project IPython. 43

5.1 Characteristics of the project corpus. 51

5.2 Attributes used in this study. 52

List of Tables x

5.3 Association rules involving physical characteristics of pull requests relevant

to lifetime. 57

5.4 Association rules involving pull requests locality in relation to lifetime "very

short". 58

5.5 Lifts of the rules of type: �les_names → lifetime = "very short"(VS) or

"lengthy"(L). 59

5.6 Association rules involving �rst_pull and some physical characteristics of

pull requests. 62

5.7 Association rules involving core_team members, and physical and social

characteristics. 63

5.8 Association rules involving comments_pull and physical characteristics. . . 66

5.9 Association rules involving reviewers and lifetime. 67

6.1 Characteristics of the analyzed projects . 75

6.2 Attributes used in this study. 76

6.3 Association rules of type commits_pull = "1 commit" → reviewer_pull

in Docker, Rails, and Kodi projects. 77

6.4 Association rules of type commits_pull = "many commits" → reviewer_pull

in Docker, Rails, and Kodi projects. 78

6.5 Association rules of type �les_changed = "1 �le" → reviewer_pull in

Docker, Rails, and Kodi projects. 79

6.6 Association rules of type �les_changed = "many �les" → reviewer_pull

in Docker, Rails, and Kodi projects. 80

6.7 Association rules of type �rst_pull = "true" → reviewer_pull in Docker,

Rails, and Kodi projects. 81

6.8 Association rules of type developer_type = "core team" → reviewer_pull

in Docker and Rails. 83

6.9 Association rules of type reviewer_follow_requester = "true" → reviewer_pull

in Docker, Rails, and Kodi projects. 85

6.10 Association rules of type requester_pull → reviewer_pull in Docker, Rails,

and Kodi projects. 85

List of Tables xi

6.11 Association rules of type directory_names → reviewer_pull in Rails project. 89

7.1 Guidelines for core teams. 95

7.2 Guidelines for requesters. 95

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Goals . 3

1.3 Research Design and History . 4

1.4 Organization . 6

2 Background on Pull Requests and Association Rules 7

2.1 Introduction . 7

2.2 Pull requests . 9

2.3 Association Rules . 12

2.4 Final Remarks . 14

3 Acceptance Factors of Pull Requests in Open-Source Projects 16

3.1 Introduction . 16

3.2 Related Work . 17

3.3 Materials and Methods . 18

3.4 Results and Discussion . 21

3.4.1 RQ 3.1 - Do characteristics of pull requests in�uence on their ac-

ceptance? . 21

3.4.2 RQ 3.2 � Does the combination of pull requests characteristics in-

�uence on their acceptance? . 24

3.4.3 RQ 3.3 - Do characteristics of pull requests in�uence on their fast

acceptance? . 27

Contents xiii

3.5 Threats to Validity . 28

3.6 Final Remarks . 29

4 Rejection Factors of Pull Requests Filed by Core Team Developers in Software

Projects with High Acceptance Rates in Open-Source Projects 31

4.1 Introduction . 31

4.2 Related Work . 32

4.3 Materials and Methods . 34

4.4 Results and Discussion . 35

4.4.1 RQ 4.1 - Do physical characteristics of pull requests in�uence on

their rejection? . 36

4.4.2 RQ 4.2 - Do the requester inexperience and the existence of com-

ments in the pull requests in�uence on their rejection? 37

4.4.3 RQ 4.3 - Does the location of pull requests in�uence on their rejection? 38

4.4.4 RQ 4.4 � Does the combination of characteristics in�uence on the

pull request rejection? . 40

4.5 Threats to Validity . 44

4.6 Final Remarks . 44

5 In�uential Factors on the Lifetime of Pull Requests in Open-Source Projects 46

5.1 Introduction . 46

5.2 Related Work . 48

5.3 Materials and Methods . 49

5.4 Results and Discussion . 51

5.4.1 RQ 5.1 - Is there an e�ective relationship between the lifetime of

pull requests and their acceptance? 53

5.4.2 RQ 5.2 - Do physical characteristics of pull requests in�uence on

their lifetime? . 54

5.4.3 RQ 5.3 - Does the location of pull requests in�uence on their lifetime? 58

Contents xiv

5.4.4 RQ 5.4 - Does the pro�le of external contributors in�uence on the

lifetime of pull requests? . 60

5.4.5 RQ 5.5 - Do characteristics related to the review process in�uence

on the lifetime of pull requests? . 64

5.5 Threats to Validity . 68

5.6 Final Remarks . 69

6 In�uential Factors on Assigning Reviewers to Pull Requests in Open-Source Projects 70

6.1 Introduction . 70

6.2 Related Work . 71

6.3 Materials and Methods . 73

6.4 Results and Discussion . 75

6.4.1 RQ 6.1 � Do the pull request characteristics in�uence on the re-

viewer assignment? . 76

6.4.2 RQ 6.2 - Does the requester pro�le in�uence on the reviewer assign-

ment? . 80

6.4.3 RQ 6.3 - Does the social relationship between requester and reviewer

in�uence on the reviewer assignment? 84

6.4.4 RQ 6.4 - Does the location of a pull request in�uence on the reviewer

assignment? . 86

6.5 Threats to Validity . 88

6.6 Final Remarks . 90

7 Conclusion 91

7.1 Main Contributions . 91

7.2 Future Work . 95

References 98

Chapter 1

Introduction

The software development process con�gures a scenario wherein the work e�ort takes

place in a collaborative and distributed manner, with certain regularity [2, 3]. Open-

source projects represent a typical instance of this scenario usually with large development

teams. Often the team members work from di�erent parts of the world, but in consonance

for the creation of a software product [2]. In spite of the di�culties imposed by the

distance, various open-source projects have successfully achieved the production of large

and complex systems [2].

In open-source projects, several people can contribute to the development of software.

For instance, an external developer might discover a �aw in the source code, �x it, and

then request the incorporation of the change into the software. The systematization of

such contribution process is of great importance.

An emerging paradigm employed for the systematization of contributions in open-

source projects is named pull request [1]. According to this paradigm, external contribu-

tors and core team members can make isolated modi�cations in artifacts and then request

the integration of their modi�cations into the project main repository. For instance, a

pull request may contain bug �xes, code refactorings, or new functionalities, which, after

being analyzed by a core team member, will be either accepted (i.e., incorporated) or

rejected (i.e., closed) [4, 5]. In summary, when contributing to a project, the developer

must fork the remote repository as he or she does not have direct write (i.e., push) access

to it. Next, a copy (i.e., clone) must be made from the fork repository to the developer's

computer, wherein he or she will be able to perform modi�cations (i.e., commits) in the

software artifacts and sent (i.e., push) the changes to the forked repository. Next, he or

she requests the changes to be merged into the main repository, by �ling a pull request.

Following its submission, the pull request must undergo a review process carried out by

1.1 Motivation 2

one or more core team members [1].

1.1 Motivation

Comprehending the factors associated with the acceptance and rejection of pull requests

is relevant, following the premise that both the core team and requesters expect contri-

butions to be accepted, if they are viable and useful to the project. Besides, pull requests

can also aid in systematizing the integration of code produced by core team members,

forcing other core team members to review and discuss about the contribution prior to

incorporating it into the repository. Within this scenario of internal contribution, under-

standing the factors that in�uence the acceptance and rejection of pull requests is also

important.

The submission of a pull request marks the commencement of its lifetime. During

review, core team developers may comment and discuss around the pull request, poten-

tially demanding additional modi�cations to the requester. This interaction may impact

the necessary time to evaluate the contribution, and may also, as a result, impact the

�nal status of the pull request (i.e., acceptance or rejection). In this way, understanding

factors that in�uence the lifetime of pull requests is important to understand their nature.

Another important issue in the pull request scenario is the assignment of a reviewer

to analyze it. The decision to review a given pull request may come directly from the core

team members with interest on the pull request, potentially incurring in inappropriate as-

signments. Comprehending the nature of reviewers' allocation for analyzing pull requests

is an important step to better use resources, avoid con�icts of interest among requesters

and reviewers, and leverage the workforce provided by external contributors.

Better understanding the four aforementioned characteristics of pull requests (accep-

tance, rejection, lifetime, and assignment) helps both the requesters and the core team.

Requesters, who �le pull requests in open-source projects, would bene�t from under-

standing the factors that may be of in�uence to the acceptance of pull requests, since this

knowledge may aid them in maximizing the chances of acceptance of their contributions.

For example, by realizing that editing few lines of code in a pull request can contribute

to acceptance, a requester could guide his or her actions in order to partition changes

into scarcer batches. Besides, this would enable the requester to be more e�cient and

productive, not wasting time sending pull requests that present characteristics that might

in�uence their acceptance in a negative manner. It is important to note that, although

1.2 Goals 3

software teams may have speci�c culture and habits for their collaborative processes,

replicating past patterns may not always be appropriate. Nonetheless, the discovery of

such patterns may motivate process improvement.

Lately, several studies have been carried out seeking to improve the understanding of

how pull requests are adopted in open-source projects. The works of Gousios et al. [4],

Tsay et al. [6], Rahman and Roy [7], and Padhye et al. [8], for instance, aimed at charac-

terizing the pull-based development paradigm and raised questions on the acceptance of

contributions. The works of Gousios et al. [4] and Yu et al. [9] investigated factors related

to pull request lifetime. Yu et al. [10], Limeira et al. [11], Jiang et al. [12], Ying et al. [13],

and Rahman et al. [14] explored recommendation strategies for pull request reviewers.

Nonetheless, all of these studies neglected the exploration of certain important matters,

such as: the identi�cation of joint characteristics that in�uence on these scenarios; the

extent and strength of this in�uence; and the explanation of this in�uence.

1.2 Goals

This thesis presents a set of studies on the nature of the pull-based development paradigm.

The studies comprise the identi�cation of factors that have in�uence on pull request

acceptance/rejection, lifetime, and reviewer assignment.

The studies aim at answering the following general research questions. Each of these

general research questions is further decomposed into speci�c research question in the

respective chapter.

� Which factors in�uence the acceptance of pull requests in open-source projects?

(Chapter 3)

� Which factors in�uence the rejection of pull requests sent by core team members in

open-source projects with high acceptance rates? (Chapter 4)

� Which factors in�uence on lifetime of pull requests in open-source projects? (Chap-

ter 5)

� Which factors in�uence the assignment of reviewers for pull requests in open-source

projects? (Chapter 6)

We adopted a data mining technique named association rule extraction to answer

these research questions. Through this technique, we explored 132,660 pull requests data

1.3 Research Design and History 4

from 88 software repositories. The extraction of association rules con�gures an e�cient

technique to identify signi�cant correlations, frequent patterns, associations, or causal

structures between items in a dataset [15]. Besides, it provides useful information that

would probably be ignored if a super�cial exploratory analysis were being used instead.

In summary, an association rule represents a relationship pattern between data items

that occurs with a certain frequency. Moreover, it has measures that are able to indicate

the relevance, validity, and strength of such patterns [16]. We used association rules

to allow the identi�cation of relationships between data of di�erent dimensions, such

as the physical, social, and metadata characteristics of pull requests. This technique

was chosen because it allows identifying relationships between attributes of a dataset,

based on objective metrics that indicate their relevance. Thus, association rules di�er

from the classical statistical analysis, such as regressions, that would hardly �nd out

hidden patterns to could answer our research questions. In addition, association rules

extraction counts on e�cient algorithms, available in several tools that allow a deep

exploratory analysis. Association rules allow obtaining unknown patterns and not only

verify hypotheses related to the application domain. Finally, the rules are formed by

conditions involving attributes and their values in the antecedent and the consequent,

which allows an analysis of the data at �ner grain This di�ers from obtaining correlations

between variables (attributes).

1.3 Research Design and History

Initially, for the development of the studies, we reviewed the literature considering works

that explored the same scenarios of this thesis. To do so, we used as start set the work

of Gousios et al. [4], which has a large number of citations and presents an overview

of the collaboration paradigm. This start set was employed in a backward and forward

snowballing process.

In addition, even though each study explores di�erent scenarios in the context of

pull requests, and speci�c analyses are necessary for the comprehension of the �ndings

in each case, there are some commonalities among them. Speci�cally, all four studies

employed the Knowledge Discovery in Databases (KDD) process, as followesd [17]: (1)

data selection; (2) preprocessing; (3) transformation and data enrichment; (4) association

rules extraction; and (5) results interpretation and evaluation.

1.3 Research Design and History 5

For data selection (step 1), we used the GHTorrent1 tool [18], which extracts infor-

mation from versioned repositories stored on GitHub. For preprocessing (step 2), we

performed data cleaning and attribute selection in order to remove items with missing,

incorrect, or inconsistent data. In this step, in order to transform numerical attributes

into discrete ones, we use a unsupervised discretization based on an instance �lter avail-

able in the Weka tool. Initially, we used the discretization by simple binning, ignoring the

class attribute to be de�ned, but considering frequency distribution. Then, we adjusted

the labels for better interpretation of the extracted patterns. All labels have statistical

representation in the database. For transformation and data enrichment (step 3), we dis-

cretized some numerical attributes in order to promote an improvement to the semantics

of the results. For association rules extraction (step 4), we used the Apriori algorithm [19]

implementation in the Weka2 tool (Waikato Environment for Knowledge Analysis). In

this step, for one each study, we extracted rules with a minimum support to ensure that

the rules were not obtained by chance (this threshold is speci�ed in Chapters 3, 4, 5, and

6). In addition, we have de�ned a minimum con�dence of 5% in all studies. We use these

values to get as many rules as possible about the nature of the pull request paradigm.

Finally, for results interpretation and evaluation (step 5), we performed speci�c analyses

for the comprehension and evaluation of the results obtained in each study. In order to

make this stage viable we used the WekaPar plugin [20]. This plugin allows selecting

rules using regular expressions, being possible to search for speci�c rules through the def-

inition of target attributes. In addition, it enables the ordering of rules using measures

of interest. The datasets and the framework description used in the thesis are available

at GitHub3. Speci�c methodological procedures are presented in Chapters 3, 4, 5, and

6. These speci�c procedures are necessary because some complementary analyses were

adopted in some studies, as detailed in the respective chapter.

Initially, we carried out a study on the characterization and acceptance of pull re-

quests, wherein in�uence factors for this scenario were found. This study resulted in an

article entitled Acceptance Factors of Pull Requests in Open-Source Projects [21], published

at the 30th ACM/SIGAPP � Symposium On Applied Computing (SAC'15), Salamanca,

Spain, 2015.

In [21], we identi�ed that pull requests sent by core team members have greater

chances of acceptance, so we conducted a study to deepen the understanding of the

1http://ghtorrent.org/
2http://www.cs.waikato.ac.nz/ml/weka/
3https://github.com/gems-u�/pullrequest-nature

1.4 Organization 6

factors that lead to the rejection of pull requests with such feature. This study resulted

in a paper entitled Rejection Factors of Pull Requests Filed by Core Team Developers in

Software Projects with High Acceptance Rates, published at the 14th IEEE � International

Conference on Machine Learning and Applications (ICMLA'15), Miami, USA, 2015.

In [21], we preliminarily identi�ed that lifetime can, to some extent, in�uence the

acceptance of pull requests. Taking into consideration this aspect of pull requests, we

carried out a study to identify the root causes of lifetime. This study comprises association

rules extraction and qualitative analysis of the discovered patterns, which indicate factors

that in�uence the pull request lifetime. The results of this study led to a paper entitled

Why do some pull requests take so long to be merged?, submitted to a Journal.

Lastly, we investigated the reviewer assignment scenario. In pull-based development,

a reviewer is responsible for evaluating contributions. Consequently, it is important to

understand the nature of the collaboration paradigm from this perspective. This study

aimed at identifying pull request features that exert in�uence on the assignment of re-

viewers to pull requests. This study resulted in a paper entitled What Factors In�uence

the Reviewer Assignment to Pull Requests?, submitted to a journal.

1.4 Organization

This thesis is organized in other six chapters, besides this introduction. Chapter 2 presents

some background concepts, such as pull-based development and association rules. Chap-

ter 3 presents the study on the pull request acceptance. Chapter 4 presents the study on

the rejection of pull requests submitted by core team members. Chapter 5 presents the

study on factors that in�uence the pull request lifetime. Chapter 6 presents the study re-

garding factors that in�uence the reviewer assignment to pull requests. Finally, Chapter 7

presents the conclusions of this thesis, as well as suggestions for future work.

Chapter 2

Background on Pull Requests and Associ-

ation Rules

2.1 Introduction

Software Con�guration Management (SCM) is a branch of Software Engineering con-

cerned with managing the evolution of software products in a controlled manner, aiming

at improving the e�ciency of the development process and contributing to quality and

time constraints [22]. SCM has tools and techniques that aid developers in keeping control

of changes performed throughout the software development [23].

One of the most important SCM tools are Version Control Systems (VCS), which

keep control of changes and combine procedures to manage versions of software artifacts

(source code, documentation, models, etc.) created during the software development

process [22, 24]. VCS provide software repositories that store information on software

development/evolution and allow the creation of a new version from preexisting ones [24].

The use of repositories enables collaborative and parallel software development, even if de-

velopers are geographically dispersed, allowing retrieving artifacts, making modi�cations,

and sharing them with other developers within the project.

A VCS can be classi�ed as centralized (CVCS) or distributed (DVCS). CVCS employ

a client-server topology characterized by multiple workspaces (the areas where developers

store �les and can change them) accessing a single central repository. On the other

hand, DVCS employ a peer-to-peer topology characterized by the existence of several

repositories in its architecture. An overview of the CVCS and DVCS operations can be

seen in Figure2.1.

CVCS support three main operations: check-out, check-in/commit, and update. The

2.1 Introduction 8

Figure 2.1: An overview of CVCS and DVCS architectures � adapted from [1].

checkout operation obtains artifacts from the main repository to the workspace. The

check-in/commit operation represents the action of sending changes from the workspace

to the main repository. Commits contain a set of changed �les (more precisely, the

modi�ed lines of each �le), a timestamp, the author identi�cation, a descriptive message,

and references to previous commits. The update operation copies parallel changes from

the remote repository to the workspace [25].

Recently, DVCS emerged enhancing support for collaborative software development.

DVCS allow multiple repositories in the same project, exploiting new forms of collab-

oration. An example of this type of system is Git1. In DVCS, the work mechanisms

are similar to the ones of CVCS. The main di�erence is the existence of the clone, push

and pull operations. The clone operation makes a complete copy of a remote repository

into the workspace, replicating all its history. After performing local commits, the push

operation sends all local commits to the remote repository. On the other hand, the pull

operation copies commits from the remote repository to the local repository [1].

The data stored in software repositories represent a signi�cant source of information

and may be of aid for the understanding of factors associated with development and

evolution of software systems. Recent developments in the �eld of software repository

mining illustrate the potential to provide assistance to the decision-making process in the

context of software engineering [26]. Data mining techniques have been employed for the

extraction of knowledge from software repositories [27, 28] aiming at identifying useful

1https://git-scm.com/

2.2 Pull requests 9

information to aid project managers and developers in the ful�llment of their roles.

In open-source projects, several developers are interested in following the software

project's evolution, while others are also interested in contributing with modi�cations.

Managing such contributions in large projects, for instance, is not a trivial task. Theo-

retically, the larger the popularity of the software is, the greater the interest in it by the

community. An emerging collaboration paradigm raised in the context of DVCS is pull

request, wherein a developer forks (i.e., creates a server-side copy) of the software reposi-

tory, modi�es some artifacts of his or her interest, and later requests the incorporation of

his or her modi�cations into the original repository. Although supporting pull requests is

not a native feature of DVCS, multiple hosting services, such as GitHub, Bitbucket, and

GitLab, support this collaboration paradigm.

Section 2.2 discusses the pull-based paradigm. Section 2.3 presents the data mining

technique of rules extraction and the interest measures used to evaluate the relevance,

validity, and strength of the mined rules from software repositories. Lastly, we conclude

this chapter by presenting some �nal considerations in Section 2.4.

2.2 Pull requests

In open-source projects, the systematization of the contribution process is utterly impor-

tant, since the developers interested in the projects (organized in communities) can send

their contributions to the main repositories of such projects. For instance, an external

developer might discover a �aw in the source code, correct it, and then request the merge

of his or her changes into the main repository, thus propagating the correction.

An important characteristic of distributed and collaborative software development is

the form on how external team members collaborate with the core team members [29].

Open-source software development is nowadays inserted into a collaborative and dis-

tributed context, which enables development teams to receive external contributions [2].

The reasons that motivate external developers to collaborate with a certain project in-

clude reputation-gaining, self-development (improvement of programming skills), altru-

ism, reciprocity, and even fun [30]. They can contribute by coding, documenting, testing,

or performing any other task inherent to the development of open-source projects.

An emerging paradigm employed for the systematization of contributions in open-

source projects is named pull request [1]. According to this paradigm, external contribu-

tors can make isolated modi�cations in artifacts and then request the integration of their

2.2 Pull requests 10

modi�cations back to the project main repository. A pull request containing either bug

�xes or new features, after a review carried out by a member of the core team, may be

accepted and incorporated into the project main repository or rejected.

A pull request contains a set of changes to software artifacts, which may be incor-

porated into the main repository (receiving an �accepted� status) or rejected (receiving

a �rejected� status) [1]. This model of contribution is based on a work�ow composed

of seven steps [1]: (1) Forking the main repository; (2) Cloning the forked repository;

3) Changing the artifacts via commits; (4) Pushing the changes to the forked repository;

(5) Requesting the incorporation of the changes into the main repository by �ling a pull

request; (6) Analyzing and discussing about the changes; and (7) Accepting or rejecting

the pull request.

Figure 2.2 illustrates the pull-based development model. In the initial step of this

process, the developer who wants to contribute to the project (called requester from

now on) must fork the original repository. Forking a repository consists in cloning it

in the server. In other words, the project history is copied into a new repository in

the server, owned by the developer. The fork is necessary because external developers

do not have push privileges in the main repository. In the second step, the requester

clones the forked repository to his or her computer. This way, the requester (external or

internal collaborator) now attains read and write permissions within the recently created

repository copy. In the third step, the modi�cations made in software artifacts are sent

to the recently created repository through commits. In the fourth step, changes are sent

back to the forked repository. This occurs by means of a push of local commits to the fork

repository on the server. Next, in the �fth step, the requester opens a pull request, asking

the integration of his or her modi�cations into the main repository. Thus, the developers

who are responsible for the evaluation of the pull request (called reviewers from now on)

are noti�ed about the pull request and begin analyzing it. At this point, in the sixth step,

developers might start a discussion forum to deliberate about the contribution and the

viability of integrating it. Lastly, either the pull request is accepted or closed.

A pull request features several attributes of varied dimensions, such as social and

physical aspects of a contribution. When analyzing a pull request, the reviewer has access

to a considerable amount of information, such as: title and description, requester identi-

�cation, number of commits, number of modi�ed �les, number of lines of code modi�ed,

and the content of changes. Hence, besides objectively sending a series of changes, a

pull request represents an abundant source of information on the context of collaborative

2.2 Pull requests 11

Figure 2.2: The pull request process.

software development. Much of this data can only be observed through software repos-

itory hosting tools, such as GitHub and Bitbucket, because they o�er communication

and social relationship functionalities among developers. For example, one can identify

the popularity of a project and of a developer (number of watchers and followers), the

participants involved in the discussion of a pull request, and the content of the comments

of a given contribution, etc. Figure 2.3 displays a screenshot exemplifying a discussion

regarding a pull request.

Even though many pull request characteristics are known at the time of its opening,

some can only be observed after its submission. Characteristics such as the pull request

lifetime, the �nal status of the contribution (accepted vs. rejected), and the developer

responsible for reviewing it are only known after submission. Comprehending the factors

that contribute to these characteristics is important to the understanding of the paradigm,

unveiling useful knowledge for developers and project managers.

All data used in the studies presented in the next chapters were extracted by the

GHTorrent tool, which analyze Git repositories hosted in GitHub. Thus, we were able to

collect a large amount of data present in the repositories and, from there, derive di�erent

attributes about pull requests.

2.3 Association Rules 12

Figure 2.3: GitHub pull request discussion screen.

2.3 Association Rules

The knowledge discovery in software repositories is motivated by the vast volume of stored

data, which represents a scenario full of opportunities for the utilization of data mining

techniques. Data mining is the main step of the Knowledge Discovery in Databases (KDD)

process, which consists in discovering new and useful information and knowledge in terms

of rules, models, and patterns, from large datasets. The use of data mining allows the

analysis of trends and patterns extracted from history data, so as to predict future actions

and aid in the decision-making process [16, 31].

The extraction of association rules is an important task in data mining, whose goal is

to �nd relationships among data elements in a dataset [16]. An association rule represents

a relational pattern between data items in the application domain that happens with a

speci�c frequency. The extraction of association rules is a technique that allows the

identi�cation of patterns that will later be evaluated. The data mining technique adopted

in this work uses the concept of multidimensional association rules [16]. Given a database

D, a multidimensional association rule X → Y is an implication of the form: X1 ∧
X2 ∧ · · · ∧ Xn → Y1 ∧ Y2 ∧ · · · ∧ Ym, where n ≥ 1,m ≥ 1, and Xi(1 ≤ i ≤ n) as well

2.3 Association Rules 13

as Yj(1 ≤ j ≤ m) are conditions de�ned in terms of distinct attributes of D [16, 31].

The rule X → Y indicates, with certain degree of assurance, that the occurrence of the

antecedentX implies the occurrence of the consequent Y . The relevance and validity of an

association rule is evaluated by two main measures of interest: support and con�dence [31].

The support measure is de�ned by the percentage of instances that satisfy the con-

ditions of the antecedent and the conditions of the consequent, computed as follows:

Sup(X→Y) = T(X∪Y)/T , where T(X∪Y) represents the number of records that satisfy the

conditions in X and the conditions in Y , and T is the number of records in D.

To better illustrate the calculation of the support measure, let D be a dataset, as

shown in Table 2.1, which includes entries about data from pull requests. The rule

lines_changed = "some lines" ∧ �les_changed = "many �les" → status_pull =

"accepted" has support equal to 50% in D. Considering that T(X∪Y) = 4 (since 4 records

satisfy the 3 conditions) and that D has a total of 8 entries (T = 8), we can conclude that

Sup = 4/8 = 50%.

Table 2.1: Pull request dataset sample.
Project lines_changed �les_changed status_pull
1 "ProjectTemplate" "some lines" "many �les" "accepted"
2 "ProjectTemplate" "some lines" "many �les" "accepted"
3 "ProjectTemplate" "some lines" "many �les" "accepted"
4 "ProjectTemplate" "some lines" "many �les" "accepted"
5 "ProjectTemplate" "many lines" "many �les" "rejected"
6 "ProjectTemplate" "many lines" "some �les" "rejected"
7 "ProjectTemplate" "some lines" "many �les" "rejected"
8 "ProjectTemplate" "some lines" "many �les" "rejected"

On the other hand, con�dence represents the probability of occurrence of the conse-

quent, given the occurrence of the antecedent. It is obtained in the following manner:

Conf(X→Y) = T(X∪Y)/T(X), where T(X) represents the number of records that satisfy the

conditions of the antecedent X. Remember that TX∪Y represents the number of records

that the satisfy the conditions in the antecedent and also the conditions in the consequent

of the rule.

To understand the calculation of the con�dence measure, consider the same rule exam-

ple extracted from Table 2.1. The rule lines_changed = "some lines" ∧ �les_changed

= "many �les" → status_pull="accepted" has a con�dence value of 66.6% (4/6)

in D, since TX→Y = 4 (as previously stated) and the conditions which correspond only

to the antecedent of the rule lines_changed = "some lines" ∪ �les_changed =

2.4 Final Remarks 14

"many �les" are satis�ed in 6 entries (TX = 6). Support and con�dence are used as a

�lter in the process of mining association rules, that is, only the rules characterized by

having a minimum support and con�dence (de�ned as an input parameter) are extracted.

Another measure of interest considered in this work is Lift, which indicates how more

frequently Y occurs given that X occurs. Lift is obtained by the quotient of the con�dence

of the rule and the support of its consequent, i.e., Lift(X→Y) = Conf(X→Y)/Sup(Y).

Precisely, the support of the consequent Sup(Y) is the ratio between the number of records

that satisfy the conditions in the consequent and the number of records in D. When

Lift = 1 there is a conditional independence between X and Y , that is, the antecedent

does not interfere in the occurrence of the consequent. On the other hand, Lift > 1

indicates a positive dependence between the antecedent and the consequent, meaning

that the occurrence of X increases the chances of the occurrence of Y . Conversely, when

Lift < 1 there is a negative dependence between the antecedent and the consequent,

which indicates that the occurrence of X decreases the chances of the occurrence of Y .

Taking into account the rule used to exemplify the support and con�dence measures,

Sup(Y) (support of the consequent of the rule) in D is equal to 50% (number of entries

that satisfy the condition status_pull = "merged"). The Lift obtained for this rule is 1.33,

since LiftX→Y = 66.6/50 = 1.33, where 66,6% is the con�dence of the rule. In this case,

the result indicates that: when few lines of code are modi�ed through a large number of

altered �les in a pull request, the chances of having it accepted increases by 33%.

In this work, we use the Apriori [19] algorithm for the extraction of association rules,

which is available in the Weka2 (Waikato Environment for Knowledge Analysis) [32] data

mining tool.

2.4 Final Remarks

In this chapter, we presented the main concepts that provide support to the comprehension

of this thesis. We discussed the context of pull-based software development and presented

each step of this process, from the submission through the determination of the �nal

status of a contribution. As mentioned before, the main previous studies concerning this

paradigm are discussed in proper sections in Chapters 3, 4, 5 and 6, as each of them o�ers

a distinct perspective of investigation on pull requests.

We further presented the concepts of association rules and interest measures employed

2http://www.cs.waikato.ac.nz/ml/weka/

2.4 Final Remarks 15

for the evaluation of the relevance, validity, and strength of the mined rules. The under-

standing of such concepts is crucial to the full comprehension of the methods applied in

each of the studies hereby presented.

The following four chapters detail studies about factors that in�uence: the accep-

tance/rejection of pull requests (Chapters 3 and 4), their lifetime (Chapter 5), and the

assignment of reviewers (Chapters 6). As each of these studies have speci�c motivations,

experimental designs, and relater work, we opted to discuss these aspects in separate

chapters.

Chapter 3

Acceptance Factors of Pull Requests in

Open-Source Projects

3.1 Introduction

In pull-based software development, we can assume that all involved people have interest

in having contributions accepted, if deemed viable for the project. The core team is

interested in receiving contributions to alleviate the workload and speed up the release of

new features and bug �xes. Similarly, a requester wishes to have his or her contribution

accepted for various reasons, such as [33]: altruism, learning experience, or self-use.

What increases the chances of having pull request accepted? Modifying one or several

�les? Altering few or several lines of code? These questions might be hard to answer

if one does not understand the nature of pull requests. Understanding these factors can

help developers guide their actions to increase chances of acceptance, as well as help team

managers to understand the community around the project.

Recent research on this topic aims at investigating the process of pull request, observ-

ing characteristics that positively or negatively in�uence the request acceptance. Works

such as Gousios et al. [4], Rahman and Roy [7], and Tsay et al. [6] proposed an exploratory

study on the software development model based on pull requests. These works seek to

understand the reasons for pull request acceptance and, in some cases, try to foresee

the acceptance of a pull request. Their results show rather interesting characteristics:

(i) pull requests in projects coded in certain programming languages have a higher rate

of acceptance [7]; (ii) a considerable amount of accepted pull requests are analyzed in a

short timespan [4]; and (iii) socio-technical factors may also in�uence on the acceptance

of a pull request [6]. However, these works did not explore speci�cally the characteristics

3.2 Related Work 17

inherent to the pull requests in respect to the projects, to the developer, or even to the

contribution itself.

In this study we extract association rules in order to identify new and useful patterns

from pull requests data. As a result, we seek to answer the following general research

question: Which factors in�uence the acceptance of pull requests in open-source projects?

To do so, we derived the following speci�c research questions:

RQ 3.1 - Do characteristics of pull requests in�uence on their acceptance?

RQ 3.2 � Does the combination of pull requests characteristics in�uence

on their acceptance?

RQ 3.3 - Do characteristics of pull requests in�uence on their fast accep-

tance?

This study is organized as follows. Section 3.2 discusses the main related works to

this exploratory investigation. Section 3.3 presents the research methodology and the data

used to perform the experiments. Section 3.4 presents the obtained results. Section 3.5

reports possible threats to the validity of the results. Finally, Section 3.6 concludes the

chapter presenting some �nal remarks and highlighting the main contributions.

3.2 Related Work

Recent studies [4, 7, 6] have been carried out aiming at comprehending the in�uence of

factors over the acceptance of pull requests. In the following, we present each of these

studies and highlight the necessity of additional research on the acceptance/rejection of

pull requests.

Gousios et al. [4] analyze some factors that contribute to the acceptance of pull request.

The results show that decision to accepted a pull request is a�ected by whether it touches

an actively developed part of the system, how large the project's source code base is, and

how many �les the pull request changes.

Tsay et al. [6] analyze the socio-technical signals associated with accepting pull re-

quests. The results suggest that contributions that include test code are more likely to

be accepted. The existence of a social connection between the requester, the project, and

the developer responsible for the analysis of the contribution, also in�uences acceptance

decisions positively. A statistical analysis points out that some factors contribute to the

decrease of the probability of acceptance, such as the number of modi�ed �les (many �les)

3.3 Materials and Methods 18

and the number of comments (various comments). Although they use attributes inherent

to the requester, project, and the pull request itself, they do not explore how these factors

altogether a�ect the acceptance of a pull request.

Rahman and Roy [7] performed a comparative study between contributions that were

accepted and the ones that were rejected, analyzing a varied collection of data, such as

comments, collaboration history, project statistics, and about the developer that �led the

pull request. The results of this study show that the programming language in which

the pull request was written is relevant to the acceptance. The authors suggest that, in

contributions made in Scala, C, C#, and R, a higher acceptance rate can be observed.

However, they do not show the degree of in�uence of the languages in the increase or

decrease of the chance of acceptance.

Although important, the approaches presented are limited to analyzing isolated fac-

tors, without combining them. In addition, these studies do not suggest, however, the

extent of the force that these factors exert in increasing the acceptance rate of pull re-

quests.

3.3 Materials and Methods

In order to answer the research questions raised in Section 3.1, we adopted the association

rules extraction, as indicated in Chapter 1. In the following, we detail how we proceeded

to answer each research question.

RQ 3.1 - Do characteristics of pull requests in�uence on their acceptance?

In order to answer this question, we mined association rules that contain attributes such

as the number of commits, the number of added �les, the number of removed �les, and

the number of modi�ed �les in the pull requests. Moreover, we analyzed the correla-

tion between the dominant programming language in the project and the pull request

acceptance.

RQ 3.2 � Does the combination of pull requests characteristics in�uence

on their acceptance? For this analysis we conducted the extraction of association rules

that combine the in�uential characteristics of the previous question. In this way, we

identi�ed the joint strength of these characteristics on the pull requests acceptance.

RQ 3.3 - Do characteristics of pull requests in�uence on their fast accep-

tance? We initially correlated only acceptance and lifetime to verify if the time between

3.3 Materials and Methods 19

the submission and assessment of the pull request in�uences on acceptance. Next, we

analyzed how the pull requests characteristics relate with fast acceptance.

The data used in our experiments were made available thanks to the data mining

challenge of the 11th Working Conference on Mining Software Repositories � MSR1, which

was part of the 36th International Conference on Software Engineering (ICSE). The dataset

was obtained using GHTorrent [18]. The dataset contains 61,592 pull requests from 72

di�erent projects. The projects corpus used in this study is presented in Table 3.1. We

collected pull requests sent from November 2010 to December 2013. GHTorrent is able

to retrieve data from various dimensions of pull requests stored in GitHub. A large set

of attributes are available for gathering (http://ghtorrent.org/�les/schema.pdf). In our

studies, we conducted experiments with most of these attributes (metadata). However,

only a small set of them revealed rules with appropriate semantics in this scenario. The

attributes considered in the analysis are shown in Table 3.2.

Table 3.1: Project corpus.
Project #PRs Project #PRs Project #PRs

ActionBarSherlock 238 gitlabhq 1,649 rails 7,820
akka 1,674 hiphop-php 136 redcarpet 120

android 141 html5-boilerplate 526 reddit 415
AutoMapper 78 http-paser 99 redis 453

bitcoin 1,951 impress.js 146 requests 774
boto 1,079 jekyll 653 RestSharp 228

cakephp 1,702 jquery 1,389 revendb 139
chosen 433 knitr 82 sbt 273

CodeIgniter 1,358 Kodi 3,124 scala 3,001
compass 368 libgit2 1,387 scalatra 133

CraftBukkit 1,224 libuv 424 ServiceStack 476
d3 695 MiniPro�ler 136 shiny 84

devise 525 mongo 514 Sick_Beard 742
devtools 94 mono 772 SignalR 551
diaspora 1,531 mosh 134 Slim 262
django 1,706 Nancy 794 SparkleShare 157

django-cms 916 netty 600 storm 262
django-debug-toolbar 146 node 2,308 symfony 5,827

elasticsearch 651 octopress 638 ThinmkUp 665
facebook-android-sdk 78 openFrameworks 1,003 three.js 774

�nagle 116 paperclip 383 tornado 404
�ask 393 phantomjs 406 TrinityCore 1,594

Fonte-Awesome 140 phpunit 313 zf2 4,058
foudation 794 plupload 127 zipkin 238

1http://2014.msrconf.org/challenge.php#challenge_data

3.3 Materials and Methods 20

Table 3.2: Attributes used in this study.
Attribute Description

commits_pull
the number of commits in the pull request, with values: "1 commit" ;
"some commits" : 2 to 4 commits; and "many commits" : more than 4
commits.

developer_type whether the contributor is internal or external

�les_added
the number of added edited �les, with values: "1 �le" ;
"some �les" : 2 to 4 �les; and "many �les" : more than 4 �les.

�les_changed
the number of added, removed, or edited �les, with values: "1 �le" ;
"some �les" : 2 to 4 �les; and "many �les" : more than 4 �les.

�les_edited
the number of edited �les, with values: "1 �le" ;
"some �les" : 2 to 4 �les; and "many �les" : more than 4 �les.

�les_removed
the number of removed �les, with values: "1 �le" ;
"some �les" : 2 to 4 �les; and "many �les" : more than 4 �les.

�rst_pull whether the pull request is the �rst �led by the requester
language dominant programming language in the project

life_time

amount of time between the submission and closure of the pull request,
where "very short" = 1 day; "short" = 1 to 3 days; "medium" = 3 to
7 days; "lengthy" = 7 to 10 days; and "very lengthy" = more than 10
days.

status_pull
the �nal status of the pull request: accepted (merged) or rejected
(closed).

In order to transform numerical attributes into discrete ones, we use a unsupervised

discretization based on an instance �lter available in the Weka tool. Initially, we used the

discretization by simple binning, ignoring the class attribute to be de�ned, but considering

frequency distribution. Then, we adjusted the labels for better interpretation of the

extracted patterns. All labels have statistical representation in the database.

As stated in Chapter 1, after data selection, we applied data preprocessing, transform-

ing and enriching attributes. Some numeric attributes were discretized so that we could

perform the rule extraction. Then, we extracted the rules using the Apriori algorithm

available in the Weka tool. In this step, we extracted rules with a minimum support of 1%

(approximately 600 rules) to ensure that the rules were not obtained by chance, revealing

a pattern from the dataset. In addition, we have de�ned a minimum con�dence of 5%.

We use these values to get as many rules as possible about the nature of the pull request

paradigm. After extracting the rules, we performed the analysis and interpretation of the

results. We have conducted this sequence of steps to answer each research questions.

3.4 Results and Discussion 21

3.4 Results and Discussion

The results presented in this study indicate the power that some attributes have over

the pull requests acceptance. In this Section, the main extracted rules are presented and

analyzed for each research question.

3.4.1 RQ 3.1 - Do characteristics of pull requests in�uence on
their acceptance?

The analysis of the association rules shows that some individual attributes may in�uence

on the occurrence of acceptance, as well as the combination of distinct attributes.

The experiments evidence that some programming languages hold strong in�uence

over the acceptance. Rahman and Roy [7] points out that there is a higher number

of acceptance occurrences in some programming languages, but without quantifying the

in�uence that the programming language holds over the acceptance. Through the Lift

metric of a rule of type language → status_pull="accepted", which indicates how more fre-

quently the acceptance becomes (consequent of the rule) given that a certain programming

language occurred (antecedent of the rule), it is possible to quantify how programming

languages in�uence the acceptance of a pull request. Figure 3.1 shows the Lift of each

rule language → status_pull="accepted", for each of the programming languages present

in the dataset, indicating the increase (Lift > 1) or decrease (Lift < 1) of the probability

of the acceptance.

Figure 3.1: Lifts of the rules of type: language → status_pull = "accepted".

Figure 3.1 evidences that pull requests written in programming languages like Java,

CSS, JavaScript, and C++, have the acceptance chances reduced, whereas C#, C, Type-

3.4 Results and Discussion 22

Script (few projects), Scala, and Go (few projects) increase the chances of acceptance.

The association rules make it feasible to perceive not just the increase/decrease of the

chances of acceptance, but also quantifying this variation. By analyzing the Lift of the rule

language = "Java → status_pull="accepted", it is possible to verify that contributions

made in Java have 78% less chance of acceptance (Lift=0.22). Similarly, a pull request

coded in JavaScript has 45% less probability of acceptance (Lift=0.55). Conversely, a

contribution written in C# has a chance 26% higher of being incorporated (Lift=1.26).

We recognize that the requester does not send a contribution according to the language of

his preference, but according to the predominant language of the project. Some patterns

regarding languages may have been in�uenced by the number of instances of the database.

Our dataset does not present a homogeneous distribution in relation to the language, as

shown in Figures 3.2 and 3.3. However, although the patterns are valid for the dataset and

indicate an important characterization of the pull request paradigm, additional analysis

is required with more projects with higher numbers of pull requests in languages like Go,

R, and CSS. These association rules may be useful to help to understand the nature of

pull requests giving insight into programming languages in which contributions are more

prone to acceptance.

Figure 3.2: Distribution of pull requests by programming language.

languageXProject.eps Another characteristic that a�ects the acceptance is related to

the size of the pull request, represented by the attribute that indicates the number of

commits. Figure 3.4 shows the values of the Lift metric for rules of type commits_pull

→ status_pull = "accepted" and enables the observation that the higher the number of

commits, the smaller the chances of acceptance. This may suggest that the amount of

commits heighten the complexity of the analysis.

We also analyzed the values of Lift for rules involving the number of �les processed

3.4 Results and Discussion 23

Figure 3.3: Distribution of projects by programming language.

Figure 3.4: Lifts of the rules of type: commits_pull → status_pull = "accepted".

in a pull request in three di�erent dimensions: amount of �les added, amount of �les

removed, and amount of �les changed (sum of the �les added, removed, and edited in a

pull request, respectively). The results suggest that when a pull request does not add �les

(Figure 3.5), this attribute does not hold any in�uence (Lift=1.01) over the acceptance,

and when there are added �les, the chances of acceptance are reduced in 8% (Lift=0.92).

When there is removal of �les (Figure 3.6) in a pull request, we could observe practically

no in�uence, since the values of Lift tend to be next to 1. The total number of �les

changed (Figure 3.7) in a pull request presents, individually, similar behavior as the �les

removed.

Other rules illustrate the e�ect of two other attributes over the acceptance: developer

type (core team or external collaborator) and whether the collaboration submitted is

the �rst that the requester made (�rst_pull assuming values true or false). The results

demonstrate that pull requests of external collaborators (Figure 3.8) have 13% less chance

3.4 Results and Discussion 24

Figure 3.5: Lifts of the rules of type: �les_added → status_pull = "accepted".

Figure 3.6: Lifts of the rules of type: �les_removed → status_pull = "accepted".

of being accepted (Lift=0.87), while contributions made by members of the core team

increase in 35% the probability of acceptance (Lift=1.35).

On the other hand, when the pull request is the �rst made by a developer (Fig-

ure 3.9), the chance of acceptance is decreased in 32% (Lift=0.68). Furthermore, the

results show that, when the collaborator has already submitted a pull request before, his

or her contribution has 9% more chance of being acceptance (Lift=1.09).

3.4.2 RQ 3.2 � Does the combination of pull requests character-
istics in�uence on their acceptance?

The results presented so far are relative to rules composed of only one attribute in the

antecedent. We could observe that some attributes characterize a more complex pull

request and reduce the changes of acceptance: multiple commits, �les added, external

developer, and �rst pull request. This motivates a new research question: Does the

3.4 Results and Discussion 25

Figure 3.7: Lifts of the rules of type: �les_changed → status_pull = "accepted".

Figure 3.8: Lifts of the rules of type: developer_type → status_pull = "accepted".

RQ 3.1 - Do characteristics of pull requests in�uence on their acceptance?
Answer: Some pull requests characteristics increase the chances of acceptance:

language (up to 51%), number of commits (up to 7%), developer type (up to 35%),
and requester experience (up to 9%).

Relevance: Our results corroborate with the �ndings of Gousios et al. [4] and
Tsay et al. [6] regarding the number of �les. We also con�rm the results of

Rahman and Roy [7] regarding the correlation between language and acceptance.
However, these studies do not suggest the extent of these patterns.

Implications: Based on our results, requesters can adopt practices that reduce the
complexity of their contributions (few commits and few �les) aiming at increasing the

chances of acceptance.

combination of pull requests characteristics in�uence on their acceptance? Table 3.3 shows

some rules (with higher Lifts values) with more than one attribute in the antecedent. The

consequent of all the presented rules is the condition status_pull = "accepted" as its value.

The rules are sorted according to the order in which the attributes in the antecedent were

discussed in Section 3.4.1.

3.4 Results and Discussion 26

Figure 3.9: Lifts of the rules of type: �rst_pull → status_pull = "accepted".

Table 3.3: Relevant association rules and their measures of interest, where consequent is
status_pull = "accepted".

Antecedent
Sup Conf

Lift
(%) (%)

1
language = "Scala" ∧

4.3 77.0 1.43
commits_pull = "1 commit"

2
language = "C#" ∧

2.0 71.0 1.31commits_pull = "1 commit"

3

commits_pull = "1 commit" ∧

10.5 76.1 1.40
�les_added = "no �le" ∧
developer_type = "core_team" ∧
�rst_pull = "false"

4
project = "Akka" ∧

1.5 92.1 1.70
commits_pull = "1 commit"

5
language = "Python" ∧

1.0 85.0 1.57
developer_type = "core_team" ∧
�rst_pull = "false"

The con�dence of Rule 1 indicates that requests written in Scala that have only one

commit are accepted in 77% of the times. The Lift of this rule indicates that these two

conditions together increase the chances of acceptance in 43%. It is important to observe

that considering only the programming language (Scala � see Figure 3.1), the increase

in the chances of acceptance was 35%. So the combination of the number of commits and

the programming language revealed an important pattern. Rule 2 demonstrates another

situation where the number of commits increases the chances of acceptance of a pull

request of a certain programming language. The rule shows that pull requests written

in C# and that have only one commit have their probability of acceptance increased in

3.4 Results and Discussion 27

31%, whereas the Lift associated with the language C# in relation to the acceptance is

only 1.26.

Rule 3 displays a conjunction of factors with positive in�uence over the acceptance of

a pull request. It shows that pull requests with a sole commit not adding new �les, made

by a core team member who had already made a pull request before, have the chance of

acceptance increased by 40%.

The rules are also able to evidence that pull requests of certain projects reveal speci�c

patterns. In Rule 4, it is possible to verify that pull requests �led in project Akka,

composed by only 1 commit, are accepted in 92% of the cases. In addition, this antecedent

increases by 70% the chances of acceptance. It is worth mentioning that this project has,

on its own, Lift=1.63. Rule 5 reveals another combination of attributes that increases the

probability of acceptance. In this scenario, it is notable that requests made in Python,

by members of the core team with some experience with pull requests, have 57% more

chance of being accepted.

RQ 3.2 - Does the combination of pull requests characteristics in�uence on
their acceptance?

Answer: The combination of characteristics, which are individually in�uential,
can increase the chances of acceptance (by up to 70%).

Relevance: This was an open question until now, as none of the related work
answered it. As far as we know, our study was the �rst to explore this question.

Implications: Our results showcase situations that
increase the chances of acceptance, which should be aimed by requesters.

In addition, project managers can enforce these situations.

3.4.3 RQ 3.3 - Do characteristics of pull requests in�uence on
their fast acceptance?

Useful patterns are mined when considering the attribute that indicates how long a pull

request takes to be analyzed. Figure 3.10 illustrates the values of Lift for the rules that

contain the attribute lifetime in their antecedent and status_pull = "accepted" in their

consequent, and displays how more frequently acceptance occurs in relation to the time

taken to have the pull request analyzed. It is possible to observe that the increase in the

time to analyze a pull request reduces the positive in�uence on of acceptance of such pull

request.

In a complementary analysis, shown in Table 3.4, rules with the attribute lifetime

in the consequent were mined aiming at identifying attributes that in�uence on the fast

3.5 Threats to Validity 28

Figure 3.10: Lifts of the rules of type: lifetime → status_pull = "accepted".

acceptance. Rule 1 indicates that requests with one commit have chances increased in

17% of being accepted rather quickly, that is, in the span of 24 hours. Similarly, requests

with only one commit written in Scala have their chances of fast acceptance (from 1 to 3

days) increased in 216%.

Other results also suggest that some combined factors in�uence on the very fast accep-

tance of a pull request. Rule 3, for instance, shows that pull requests with 1 commit, per-

formed by a core team member that have previously submitted pull request are accepted

in 24 hours in 49.5% of the times. In addition, this rule indicates that the occurrence of

the antecedent increases in 56% the chance of a very fast acceptance.

RQ 3.3 - Do characteristics of pull requests in�uence on their fast acceptance?
Answer: Results indicate correlation between lifetime and acceptance, where pull
requests analyzed within 1 day increase the chances of acceptance in up to 16%. In

addition, we have identi�ed some patterns that increase the chances of fast acceptance.
Relevance: Gousios et al. [4] says that the number of commits in�uence the lifetime
of pull requests. However, their work does not suggest the extent of such in�uence.
Tsay et al. [6] and Rahman and Roy [7] do not explore factors involving lifetime

and acceptance.
Implications: Our results establish a correlation between two important aspects in
the scenario of pull requests, o�ering insights to investigate factors that in�uence

the lifetime and consequently the acceptance.

3.5 Threats to Validity

Even though we have been careful as to minimize threats to validity of this study, some

uncontrolled factors might have in�uenced the observed results. The experimental study

involved the analysis of several projects of varying sizes obtained from an existing dataset

3.6 Final Remarks 29

Table 3.4: Association rules with lifetime and status_pull attributes in the consequent
and their measures of interest.

Antecedent Consequent
Sup Conf

Lift
(%) (%)

1 commits_pull = "1 commit"
lifetime = "very short" ∧

24.1 37.0 1.17
status_pull = "accepted"

2
language = "Scala" ∧ lifetime = "short" ∧

1.0 17.0 2.16
commits_pull = "1 commit" status_pull = "accepted"

3
commits_pull = "1 commit" ∧ lifetime = "very short" ∧

8.3 49.5 1.56
developer_type = "core_team"
∧ �rst_pull = "false"

status_pull = "accepted"

(MSR Challenge). This might have impacted the generalization made from the results,

to some extent, considering that patterns present in projects with a large amount of pull

requests � up to thousands � might have superposed patterns that had eventually been

present in projects with much less pull requests. We acknowledge the importance of

reevaluating the approach with projects with more homogeneous features.

As previously discussed, the projects' dataset was obtained from the MSR challenge.

Consequently, we cannot ensure that this dataset precisely re�ects the actual projects'

data. However, as MSR is a reputable conference, we considered this a minor threat. Nev-

ertheless, we acknowledge the necessity of carrying out our own sampling and processing

of attributes originating from software repositories, taking into account the utilization of

attributes of di�erent dimensions of data present in the pull requests. In fact, we miti-

gated this threat during the analyses presented in Chapters 4, 5, and 6 by building our

own dataset.

3.6 Final Remarks

The results presented in this study corroborate that association rules mining enables the

discovery of useful knowledge to developers and project managers and allow the perception

of characteristics that increase the chances of acceptance of a pull request. These rules

revealed a behavior that, in some cases, can be followed by a developer that seeks to

ensure that the acceptance of his or her pull request occurs. Moreover, this data mining

technique makes it possible to discover patterns that provide to the project managers a

further comprehension of the features of pull requests submitted to the repository.

3.6 Final Remarks 30

We could observe that the following factors have in�uence in the acceptance of pull

requests: programming language, number of commits, external developer, and �rst pull

request. We could also observe that these factors, when combined, may amplify the

results. Moreover, we note that these factors also in�uence on how fast pull requests

are accepted. Finally, we could observe that the speed of acceptance is correlated to the

acceptance of the pull request.

Chapter 4

Rejection Factors of Pull Requests Filed

by Core Team Developers in Software

Projects with High Acceptance Rates in

Open-Source Projects

4.1 Introduction

In general, developers that are not members of the project but want to contribute somehow

�le pull requests. However, this mechanism can also aid in systematizing the integration

of code produced by core team members, forcing other core team members to review

and discuss about the contribution prior to incorporating it into the repository. Pull

requests used as a systematization approach for internal contributions have acceptance

rates 35% higher [21] � as discussed in Chapter 3. This can be explained by the fact that

members of the core team know the project's nature, its issues and maintenance needs,

as well as its further evolution expectations. In this context, though less frequently, some

contributions are indeed rejected. Within this scenario of internal contribution, important

research questions arise:

RQ 4.1 - Do physical characteristics of pull requests in�uence on their

rejection?

RQ 4.2 � Do the requester inexperience and the existence of comments in

the pull requests in�uence on their rejection?

RQ 4.3 - Does the location of artifacts changed by pull requests in�uence

on their rejection?

4.2 Related Work 32

RQ 4.4 � Does the combination of characteristics in�uence on the pull

request rejection?

The answers to these questions are relevant to the members of the core team. These

answers may lead to the improvement of both the way developers contribute and the

process of analysis and discussion about the changes made to the software artifacts, with

potential positive impact on quality and productivity of the core team.

The goal of this study is to identify, through the extraction of association rules,

characteristics that in�uence on the rejection of pull requests �led by core team members

in software projects with high acceptance rates. Complementarily to the extraction of

rules, we also did a qualitative analysis in pull requests of some projects, aiming at

�nding a justi�cation for the discovered patterns.

The results of our research indicate that some key factors increase the chances of

having internal contributions rejected: (i) physical characteristics and the complexity of

contributions, as well as the location of the artifacts that have been modi�ed; (ii) previous

experience with pull requests; and (iii) contribution policy of the project.

This study is organized as follows. Section 4.2 presents the main works related to

this research. In Section 4.3, we present the method used for carrying out the research

and the dataset used in the experiments. Next, in Section 4.4, we report the obtained

results and discuss their implications. Section 4.5 presents the threats to validity of the

results. Finally, Section 4.6 concludes this work by highlighting its main contributions

and presenting some future work.

4.2 Related Work

Recently, some researches have studied GitHub to identify factors that in�uence on the

acceptance/rejection of pull requests [4, 6, 7].

Gousios et al. [4] investigated the popularity of the pull-based development paradigm,

its life cycle, the factors that contribute to the integration of a pull request, and the time

necessary to do it. The work reveals that there is no clearly outstanding reason for the

rejection of pull requests. However, they group reasons that have a timing dimension

(obsolete � 4%, con�ict � 5%, superseded � 18%), where 27% of pull requests are rejected

due to concurrent modi�cations of the code in project branches. Another 16% (super�uous

� 6%, duplicate � 2%, deferred � 8%) is rejected as a result of the contributor not having

4.2 Related Work 33

identi�ed the purpose of the project correctly.

Tsay et al. [6] suggest that the contributions that include test code are more likely to be

incorporated. Moreover, they indicate that factors such as the number of modi�ed �les and

the amount of comments throughout the discussion reduce the chances of incorporation

of such a contribution.

Rahman and Roy [7] did a comparative study between pull requests that were accepted

and the ones that were rejected. The results show that the programming language in which

the pull request was written has signi�cant in�uence on acceptance. The authors suggest

that pull requests written in Scala, C, C#, and R have a higher acceptance rate, while

the ones written in other languages are more prone to rejection. The age and maturity

(i.e., number of forks) of the project a�ect the rejection of pull requests. They also

indicate that with the increase in the number of forked projects, the average number of

pull requests per month increases. Moreover, with the increase in the number of forked

projects, the rejection rate of pull requests increases especially for projects with more

than 2,000 forks. The number of developers involved in a project and their experience

can a�ect the rejection rates of pull requests for a project. This study stated that the

average number of pull requests per month for a project increases almost regularly with

the increase of the number of developers. However, the rate of unsuccessful pull requests

increased exponentially for a project with more than 4,000 developers involved.

In a previous work [21], we have identi�ed that physical characteristics have in�uence

on the acceptance/rejection of pull requests. The results indicate that the higher the

number of �les that had been modi�ed and the higher the number of commits, the lower

the chances of having the pull request accepted. For example, pull requests with many

commits have 24% less chances of acceptance. Moreover, pull requests written in Java

have 78% less chance of acceptance. Similarly, a pull request coded in JavaScript has 45%

less probability of acceptance.

Silva et al. [34] investigated technical reasons for rejection of pull requests. They

identi�ed seven technical debt categories, namely: design, documentation, test, build,

project convention, performance, and security debt. The results indicate that the most

common category of technical debt in pull requests rejected is design with 39.34%, followed

by test with 23.70% and project convention with 15.64%. The results also reveals that the

type of technical debt in�uences on the size of the pull request discussions, e.g., security

and project convention debts instigate more discussion than the other types.

None of the works described in this Section speci�cally analyzed the forces that lead

4.3 Materials and Methods 34

to the rejection of pull requests �led by core team members, especially in projects with

elevated acceptance rates.

4.3 Materials and Methods

The experimental process of our study can be divided into three main phases. In the �rst

phase we extracted general association rules � as described in the Chapter 1 � from 20,140

pull requests from 7 projects that use this paradigm to systematize internal contributions

and present high acceptance rate. We extracted rules with a minimum support of 0.2%

(approximately 40 rules) to ensure that the rules were not obtained by chance, revealing

a pattern from the dataset. In addition, we have de�ned a minimum con�dence of 5%.

We use these values to get as many rules as possible about the nature of the pull request

paradigm. We collected pull requests �led from November 2010 to July 2015. In this

phase, we consider pull requests from all the collected repositories and answered RQ 4.1

and RQ 4.2. In the second phase, we evaluated two projects individually in order to

answer RQ 4.3. Next, in order to answer RQ 4.4, we evaluated the joint in�uence of the

number of commits, number of �les, and requester inexperience on rejection in complete

corpus and we also used the projects Akka and IPython to qualitatively investigate some

patterns. The paragraphs in the following describe the analyses that we made to answer

each of the research questions.

RQ 4.1 - Do physical characteristics of pull requests in�uence on their

rejection? In order to answer this question, we mined association rules that contain

attributes about physical characteristics, such as the number of commits and the number

of modi�ed �les in the pull requests.

RQ 4.2 - Do the requester inexperience and the existence of comments

in the pull requests in�uence on their rejection? We extracted rules in order to

detect relationships between requester inexperience with pull requests rejection. We also

analyzed the in�uence of the comments in pull requests on their rejection.

RQ 4.3 - Does the location of artifacts changed by pull requests in�uence on

their rejection? We extracted rules from two individual projects: Akka and IPython.

This analysis was performed on speci�c projects because location attributes (�les and

directories) are speci�c to each of them. In the location analysis, since the amount of

changed �les and directories is large, we employed a technique for attribute selection

(Pearson Correlation) over them, choosing the 10 more selective �les and directories in

4.4 Results and Discussion 35

relation to the pull request �nal status.

RQ 4.4 � Does the combination of characteristics in�uence on the pull

request rejection? For this analysis we conducted the extraction of association rules in

which the in�uential characteristics of the previous questions were combined. In this way,

we identi�ed the joint strength of these characteristics on the pull requests rejection.

From these 20,140 pull requests, 93.42% were accepted and only 6.58% were rejected.

All pull requests �led by external contributors (559 pulls requests) were discarded, as this

is not the focus of our study. Table 4.1 shows some characteristics of the analyzed projects:

number of pull requests, acceptance rate, and rejection rate. As mentioned before, we

conducted experiments with most of the attributes extracted via GHTorrent. However,

only a small set of them revealed rules with appropriate semantics in this scenario. The

attributes considered in the analysis are shown in Table 4.2.

Table 4.1: Characteristics of projects analized.
Project Language #Pull Requests Accepted(%) Rejected(%)
Akka Scala 954 86.2 13.8
Bitcoin C++ 1,563 83.4 16.6
Brackets Java Script 3,685 93.0 7.0

Commcare-hq Python 6,961 98.9 1.1
IPython Python 3,163 84.7 10.3
Katello Ruby 1,046 94.3 5.7
Kuma HTML 2,768 92.3 7.7

In order to transform numerical attributes into discrete ones, we use the discretization

by simple binning, ignoring the class attribute to be de�ned, but considering frequency

distribution. All labels have statistical representation in the database.

4.4 Results and Discussion

From the extracted rules, we could identify patterns that increase the chances of a pull

request �led by core team members being rejected. These patterns tend to have an even

more powerful indication of rejection if they are related to the physical characteristics,

project's collaboration policy, and with the location of the changed artifacts. In this

section, we present and discuss the major results obtained from this study.

4.4 Results and Discussion 36

Table 4.2: Attributes used in this study.
Attribute Description

comments_pull whether the pull request contain or not comments.

commits_pull
the number of commits in the pull request, with values: "1 commit" ;
"some commits" : 2 to 4 commits; and "many commits" : more than 4
commits.

directory_names
represents a set of 10 attributes, where each is the name of a
directory. The value "true" indicates that a �le from that directory
was changed, the value "false" indicates otherwise.

documentation indicates if pull request has associated documentation.

�le_names
represents a set of 10 attributes, where each is the name of a �le.
The value "true" indicates that a �le was changed,
the value "false" indicates otherwise.

�les_changed
the number of added, removed, or edited �les, with values: "1 �le" ;
"some �les" : 2 to 4 �les; and "many �les" : more than 4 �les.

�rst_pull whether the pull request is the �rst �led by the requester.

status_pull
the �nal status of the pull request: "accepted" (merged) or "rejected"
(closed).

test indicates if pull request has associated test.

4.4.1 RQ 4.1 - Do physical characteristics of pull requests in�u-
ence on their rejection?

The analysis of association rules suggests that some individual pull request characteristics

in�uence on the rejection of internal contributions.

A factor that in�uences on the rejection of pull requests �led by core team members

is the number of commits present in the pull request. Figure 4.1 shows the Lift values for

association rules of type commits_pull→ status_pull = "rejected". Pull request with only

one commit the chances of rejection decrease in 14% (Lift=0.86). In pull requests with

several commits (commits_pull = "many commits"), the chances of rejection increase

in 51% (Lift=1.51). Thus, we can conclude that the greater the number of commits

performed in a pull request, the higher is the chance of rejection.

Similarly to the number of commits, the increase in the number of changed �les (added,

edited, or deleted) in the pull request also increases the chances of rejection. Figure 4.2

displays the Lifts of rules of type �les_changed → status_pull = "rejected". Pull request

that changed only one �le the chances of rejection decrease in 14%(Lift=0.96) When many

�les are modi�ed in a pull request, it is 44% more likely to be rejected (Lift=1.44).

4.4 Results and Discussion 37

Figure 4.1: Lifts of the rules of type: commits_pull → status_pull = "rejected".

Figure 4.2: Lifts of the rules of type: �les_changed → status_pull = "rejected".

4.4.2 RQ 4.2 - Do the requester inexperience and the existence of
comments in the pull requests in�uence on their rejection?

Submitting the �rst pull request is another factor that has in�uence on the rejection of the

contribution. Figure 4.3 shows the Lifts of the rules in which first_pull is the antecedent

and status_pull = "rejected" is the consequent. The analysis of the Lifts reveals that,

when the �rst contribution of a developer occurs via pull request (�rst_pull = "true"),

the chances of rejection are 3.38 times higher. Notwithstanding, when this is not the

case (�rst_pull = "false"), the pull request has 21% less chances of being rejected. This

way, we can conclude that using the pull request paradigm for the �rst time increases the

chances of rejection.

The existence of discussion or not during the review of the pull request is another

factor that impacts the rejection rate. When there is a discussion about the pull request

(comments_pull = "has comments"), the chances of rejection are 13% higher. When this

4.4 Results and Discussion 38

RQ4.1 - Do physical characteristics of pull requests in�uence on their rejection?
Answer - There exists a correlation between rejection of pull requests and their
physical characteristics. A large number of commits in a pull request raises
the chances of rejection by 51%, while a large number of �les raises the

chances by 44%.
Relevance: Our results indicate that the in�uence of the number of commits and
number of �les on pull requests rejection, already found by Soares et al. [21] and

Tsay et al. [6] in a more generic population, also holds for internal contributions. In
addition, byLift our results quantify the extent of such in�uence. Gousios et al [4]

did not explore this question.
Implications: Our results indicate that complex contributions tend to rejection.

This knowledge reveals to the core team members a pattern to be avoided,
and consequently, improve internal contribution activities.

Figure 4.3: Lifts of the rules of type: �rst_pull → status_pull = "rejected".

does not occur, the chances of rejection are reduced in 6%. Figure 4.4 shows this pattern

and illustrates the Lift values for rules of type comments_pull → status_pull = "rejected".

4.4.3 RQ 4.3 - Does the location of pull requests in�uence on
their rejection?

As described in Section 4.3, we extracted association rules from two software repositories,

separately in order to investigate if the location of the pull request also a�ects its rejection.

As discussed before, this analysis needed to be performed in a project basis because

location attributes (�les and directories) are speci�c to each project. Next, we present

the results obtained with the investigation carried out in the repositories of projects Akka

and IPython.

In this analysis, we considered the location (�les and directories) of the changes. The

results show that these factors in�uence on the rejection of internal contributions. In

4.4 Results and Discussion 39

Figure 4.4: Lifts of the rules of type: comments_pull → status_pull = "rejected".

RQ4.2 - Do the requester inexperience and the existence of comments in the
pull requests in�uence on their rejection?

Answer - The inexperience of the core team member who submits pull requests
increases more than twice the chances of rejection. In addition, pull requests with
comments during their review also increase up to 13% their chances of rejection.
Relevance: Our results con�rm that the in�uence of comments and the requester
inexperience on pull request rejection, respectively discussed by Tsay et al. [6]

and Rahman and Roy [7] in a more generic population, also holds for
internal contributions. In addition, we quantify the extent of in�uence
through Lift measure. Gousios et al. [4] did not explore this question.

Implications: Although core team members have push privileges to the repository,
they use the pull request paradigm as a quality assurance strategy, forcing another
team member to review their changes. The inexperience of the team members may

indicate that they have not yet adequately understood the operation of the pull requests
model. Project managers could promote training or produce materials

with examples indicating how a pull request should be �led.

addition, the location proves to in�uence the rejection of pull requests in repositories that

adopt a structure of organization based on directories. From this perspective, addition-

ally, we qualitatively observed some of the patterns found, in order to which presents

justi�cation for their existence from the analysis of the collaboration policies employed

by the projects.

By extracting rules containing location attributes from Akka project, we noticed that,

depending on where the modi�cations occurred, the chance of rejection can be higher.

Table 4.3 shows rules that unravel knowledge on rejection factors in the contributions to

project Akka. Rule 1, for instance, suggests that when modi�ed artifacts are located in the

directory ".../scala/akka/remote", the pull request has 173% (Lift = 2.73) more chances

of being rejected. Rule 2 in Table 4.3 indicates that when the �le ".../camel/camel.scala"

is present in the contribution, the probability of rejection increases in 261% (Lift = 3.61).

4.4 Results and Discussion 40

Table 4.3: Relevant association rules for rejection (consequent status_pull = "rejected")
from project Akka.

Antecedent Sup Conf Lift
1 directory_names = ".../scala/akka/remote" 1.0 38.0% 2.73
2 �le_names = ".../camel/camel.scala" 1.0 50.1% 3.61

The rules inferred from the IPython repository also reveal that location is a factor of

in�uence on the rejection of contributions. For example, Rules 1 through 3 on Table 4.4

show the values of the interest measures for speci�c antecedents. Rule 1 indicates that

pull requests that modify artifacts contained in the main directory have an increase of

54% in the chances of being rejected.

Table 4.4: Relevant association rules for rejection (consequent status_pull = "rejected")
from project IPython.

Antecedent Sup Conf Lift
1 directory_names = "IPython/core" 3.0 16.0 1.54
2 directory_names = "IPython/extensions" 1.0 20.0 1.99
3 �le_names = "IPython/core/magic.py" 1.0 26.0 2.55

From the individual analysis of the projects that make use of pull requests for the

systematization of internal collaboration, it was possible to perceive that, in some cases,

the location of the contributions have strong in�uence on the chances of rejection.

RQ4.3 - Does the location of artifacts changed by pull requests in�uence on their
rejection?

Answer - The location of artifacts modi�ed in pull requests in�uence in
their rejection. In some projects, the location may increase the chances of

rejection in up to 261%.
Relevance: Previous works did not investigate this questions. As far as we

are aware, our study was the �rst to bring forth results that indicate
the in�uence the pull request location on the rejection when it is �led by core team

members in software projects with high acceptance rates.
Implications: Our results indicate that some codebase regions are sensitive to
changes and tend to rejection of pull requests. This knowledge is important

for project managers and developers to be aware of the need to share information
about critical areas of the software.

4.4.4 RQ 4.4 � Does the combination of characteristics in�uence
on the pull request rejection?

The results presented so far are relative to rules with only one attribute in the antecedent.

These attributes, on their own have an in�uence on the pull requests rejection. This

4.4 Results and Discussion 41

motivated an analysis in order to verify if there is a joint in�uence of these factors on the

rejection.

We were able to identify compound rules, relating together pull request physical char-

acteristics and requester inexperience (see Table 4.5). Despite being less frequent in the

dataset � which can be justi�ed by the high acceptance rate of the projects that have been

investigated � the rules suggest that the conjunction of in�uencing factors on the rejection

of pull requests increases even more the chances of rejection, as one would expect.

Table 4.5: Relevant association rules for rejection (consequent status_pull = "rejected")
and their measures of interest.

Antecedent
Sup
(%)

Conf
(%)

Lift

1
�rst_pull = "true" ∧
�les_changed = "many �les"

0.44 37.0 5.66

2
�rst_pull = "true" ∧
commits_pull = "many commits"

0.40 39.1 5.92

3
�rst_pull = "true" ∧
commits_pull = "many commits" ∧
�les_changed = "many �les"

0.24 45.1 6.84

Rule 1, for instance, indicates that when a developer submits a pull request for the

�rst time and modi�es many �les, his or her contribution will be rejected in 37% of

the time. Furthermore, this rule's Lift value shows that the occurrence of the antecedent

increases in more than 5 times (Lift=5.66) the chances of having the pull request rejected.

Rule 2 evidences that when a core team member submits a pull request for the �rst time

with many commits, the chances of rejection increases in almost 6 times (Lift=5.92) the

usual rejection rate of these projects. Rule 3 features another in�uencing scenario in

the rejection of pull requests. One can observe that the requester's lack of experience,

associated with the volume of commits and modi�ed �les, increases by almost 7 times

(Lift=6.84) the chances of rejection. This complements the knowledge about the relation

between the sizes of modi�cations, thus revealing a pattern that must be avoided in

projects that employ the pull request approach to systematize internal contributions.

Table 4.6 shows the Lift values for the previously discussed rules the Sections 4.4.1 and

4.4.2 considering the projetcs Akka and IPython, and the complete corpus. In general,

all the patterns continue to impact the rejection of pull requests in the projects analyzed

here. Notwithstanding, what varies in this analysis is the intensity of the in�uence. The

rules are sorted according to the order of presentation in the previous Sections 4.4.1 and

4.4.2. Results allow the conclusion that the factors identi�ed as in�uential in the previous

4.4 Results and Discussion 42

analysis are also valid when the pull requests of each project are considered separately.

Table 4.6: Relevant association rules for rejection (consequent status_pull = "rejected")
in projects Akka, IPython, and in the complete corpus.

Antecedent
Lifts

Akka IPython All
1 commits_pull = "many commits" 2.06 1.27 1.51
2 �les_changed = "many �les" 1.23 1.32 1.44
3 �rst_pull = "true" 1.72 2.49 3.78

4
�rst_pull = "true" ∧
commits_pull = "many commits"

3.92 3.57 5.92

5
�rst_pull = "true" ∧
�les_changed = "many �les"

2.74 4.51 5.66

6
�rst_pull = "true" ∧
commits_pull = "many commits" ∧
�les_changed = "many �les"

4.70 5.14 3.81

We also extracted rules to verify whether rejection of pull requests can be in�uenced by

the association between physical factors, requester inexperience, and location. In project

Akka, it is also noticeable that the conjunction of factors has impact on the rejection

of pull requests. When observing Rules 1 and 2 in Table 4.7, we note that the location

and the size of the contribution favor, in some cases, the rejection. For example, Rule 2

evidences that when �rst_pull = "true" and commits_pull = "many commits " and

�le_names = ".../camel/camel.scala" occur in a pull request, the chances of rejection

are raised by 623% (Lift = 7.23). This information reveals undesirable features in pull

requests �led by core team members.

Table 4.7: Relevant association rules for rejection (consequent status_pull = "rejected")
in project Akka.

Antecedent Sup Conf Lift

1
�rst_pull = "true" ∧
directory_names = ".../scala/akka/remote"

1.1 75.2 5.42

2
�rst_pull = "true" ∧
commits_pull = "many commits" ∧
�le_names = ".../camel/camel.scala"

1.0 100.0 7.23

3
�rst_pull = "true" ∧
�les_changed = "many �les" ∧
documentation = "false"

2.1 40.0 2.86

Through tapping into location attributes, we were able to know what type of �le is

modi�ed. Project Akka uses, by default, an RST (ReStructuredText) �le markup syntax

for the documentation of contributions. Consequently, pull requests that alter (insert or

edit) �les with a given extension have speci�c documentation about them. Furthermore,

4.4 Results and Discussion 43

the chances of rejection of pull requests on project Akka when they do not have proper

documentation are 10% higher (Lift = 1.10). Rule 3 of Table 4.7 points out that if the

�rst contribution of a given developer modi�es various �les and does not possess docu-

mentation, the chances of rejections increase in 186% (Lift = 2.86). A qualitative analysis

of the repository can explain this pattern. The collaboration policy of this repository is

clear about the preference for documented pull requests: "All documentation is preferred

to be in Typesafe's standard documentation format ReStructuredText, and compiled using

Typesafe's customized Sphinx based documentation generation system"1.

The conjunction of factors that have in�uence on the rejection of pull requests also

proves to be important in the IPython project. Rule 1 of Table 4.8, for example, implies

that pull requests that altered artifacts in the IPython/core directory and did not have

any comments during the review step of the contribution are subject to rejection. In this

case, the chances of the pull request being rejected increase in 66% (Lift = 1.66). Although

the existence of comments usually increases the chances of rejection, it is not valid for

the IPython project. The occurrence of this pattern can be explained by a qualitative

analysis on the repository. The recommendations made about the collaboration process

suggest that a large number of comments during the discussion is desirable: "Review and

discussion can begin well before the work is complete, and the more discussion the better"2.

Table 4.8: Relevant association rules for rejection (consequent status_pull = "rejected")
in project IPython.

Antecedent Sup Conf Lift

1
directory_names = " IPython/core" ∧
comments_pull = "no comments"

2.1 17.3 1.66

2
�rst_pull = "true" ∧
�les_changed = "many �les" ∧
test = "false"

1.0 63.2 6.08

When analyzing the location of artifacts that have been modi�ed in the IPython

repository, the directory test appears quite frequently, indicating that �les present in it

represent test cases. The submission of pull requests that contain test cases is stimulated

by the collaboration policy of the repository, which suggests that: "pull requests should

be tested"3. This acknowledgment justi�es the existence of the pattern evidenced by Rule

2 in Table 4.8. In this case, this pattern is strengthened by the conjunction of in�uencing

factors towards the rejection. Thus, in the IPython repository, when a core team member

1https://github.com/akka/akka/blob/master/CONTRIBUTING.md
2https://github.com/IPython/IPython/wiki/Dev:-GitHub-work�ow
3https://github.com/ipython/ipython/blob/master/CONTRIBUTING.md

4.5 Threats to Validity 44

�les a pull request for the �rst time, modi�es many �les, and does not add test cases, the

possibility of rejection increases in 500% (Lift = 6.08).

RQ 4.4 - Do the combination of characteristics in�uence on the pull request rejection?
Answer: The combination of characteristics that are individually in�uential can

increases the chances of rejection (in up to 584%). This in�uence can be even greater
when it involves the pull request location (in up to 623%). Moreover, we found that

the contribution policy of the some projects justi�es some in�uential patterns
of rejection.

Relevance: This was an open question until now, as none of the related work
provided answers to it. As far as we know, our study was the �rst to explore

this question in the scenario where pull requests are �led by core team members.
Implications: The results suggest that core team members should double
care when submitting pull requests that touch �les in speci�c directories.

Moreover, they should avoid �ling their �rst pull request with a large number
of �les and commits.

4.5 Threats to Validity

Although we have taken care to reduce the threats to validity in our study as much as we

could, a few uncontrolled factors may have in�uenced the observed results.

Regarding the correctness of �ndings, our small corpus (seven projects) led to some

association rules having small support. Therefore, some of them may have been found

accidentally. On the other hand, we have identi�ed a set of patterns whose frequent

occurrence is di�cult to accredit to chance. Yet, we recognize the need to con�rm all of

our �ndings with a broader study involving a multitude of projects.

We also acknowledge that the ability to generalize our �ndings is restricted to projects

containing the common characteristics of our selected projects: all of them are open

source, have high acceptance rate, and the majority of pull requests were �led by core

team developers. Thus, we cannot generalize our results to industrial projects or open

source projects with di�erent characteristics. Our analysis, though, has revealed patterns

that may be present in other projects. Additional studies are needed to assess this.

4.6 Final Remarks

In this chapter we presented a study about the factors that increase the chances of having

pull requests �led by core team members rejected, considering projects with high accep-

tance rates. The analyses unravel patterns that should be avoided by core team members

4.6 Final Remarks 45

to reduce the chances of rejection of their contributions. Particularly, the results allow

the following conclusions: (i) the requester's experience, location, and the number of com-

mits strongly in�uence the rejection of internal contributions; (ii) the combination of the

aforementioned characteristics increases the chances of rejection; and (iii) speci�c project

recommendations, such as mandatory discussion and inclusion of tests in pull requests,

may lead to the rejection of the contribution when ignored.

Chapter 5

In�uential Factors on the Lifetime of Pull

Requests in Open-Source Projects

5.1 Introduction

Understanding the factors that in�uence on lifetime of pull requests is important to both

the contributors and the reviewers. As previously discussed, the acceptance of a pull

request is the main goal of a contributor and is also a usually desired e�ect for the review-

ers. The former invests time and e�ort, and expects to see the contributions incorporated

into the product as soon as possible, while the latter bene�ts from the contributions, as

they improve the software being developed and alleviate the pending tasks. However, the

lifetime of a pull request, comprising the time interval between its opening and its closing,

via acceptance or rejection, has a high variance [4, 9]. Extended delays for pull requests

that are probably going to be accepted are undesired, as they may a�ect the contributor

engagement in the collaboration process [35] and postpone the introduction of important

bug �xes and features to the product.

Existing works [4, 9] attempted to identify aspects that could be related to the lifetime

of pull requests. These works considered only few attributes of pull requests in their

analysis of lifetime, such as: static characteristics about pull requests and few features

about the external contributors, the number of modi�ed �les, the number of comments,

and the external contributors acceptance rate. They left aside other important attributes,

such as: locations of altered �les, the developer responsible for the review process, and

the social relationships among external contributors and reviewers.

The goal of our study is to identify patterns that indicate in�uential factors on the

lifetime of pull requests regarding the socio-technical aspects of the pull request, the

5.1 Introduction 47

external contributors, and the contribution process. More speci�cally, we aim at answering

the following research questions:

RQ 5.1 - Is there an e�ective relationship between the lifetime of pull

requests and their acceptance?

RQ 5.2 - Do physical characteristics of pull requests in�uence on their

lifetime?

RQ 5.3 - Does the location of pull requests in�uence on their lifetime?

RQ 5.4 - Does the pro�le of external contributors in�uence on the lifetime

of pull requests?

RQ 5.5 - Do characteristics related to the review process in�uence on the

lifetime of pull requests?

We �rst collected data from 30 projects and, with the aid of association rules, we

identi�ed some features that, in an isolated or combined way, help to explain the lifetime

of pull requests. Moreover, we also analyzed qualitative aspects to amplify the compre-

hension of some patterns. For instance, we could observe that: (i) contributions with

shorter lifetimes tend to be accepted into the main repository, while the slower ones tend

to be rejected; (ii) physical characteristics such as number of commits, changed �les, and

lines of code have in�uence, in an isolated or combined way, on the pull request lifetime;

(iii) the changed �les and the directories where they are stored can be robust predictors

for pull request lifetime; (iv) the pro�le of external contributors and his or her social

relationships have in�uence on lifetime; (v) the amount of comments in a pull request,

as well as the developer responsible for the review process, are important predictors for

lifetime duration.

The remainder of this Chapter is organized as follows. Section 5.2 displays the main

works related to the study of pull request lifetime. In Section 5.3, we present the research

process and the dataset used in the experiments. In Section 5.4, we show the obtained

results and discuss their implications, answering each of the aforementioned research ques-

tions. In Section 5.5, we present the threats to validity of this study. Finally, Section 5.6

concludes this study highlighting our main contributions.

5.2 Related Work 48

5.2 Related Work

Recently, some studies [4, 9, 21] proposed to investigate the lifetime of pull requests. In

the following paragraphs, we discuss these studies.

Gousios et al. [4] investigated the popularity of the pull request paradigm, as well as

its lifecycle, the characteristics that in�uence the integration of a contribution, and the

time needed to do so. This quantitative study identi�ed that the time distribution for

merges (accepting the pull request) is highly unequal. It also indicated that 66.83% of all

accepted pull requests have lifetimes of up to 3 days long and accepted pull requests have

signi�cantly shorter lifetimes in comparison with the rejected ones. This study reveals

that pull requests submitted by core team members present shorter lifetimes in comparison

with the ones from external contributors. They also conclude that time is strongly related

to the external contributors history of acceptance. This means that the more a developer

has pull requests accepted, the shorter the lifetimes of future pull requests. In spite of

being a pioneer work on the lifetime of pull requests, their study does not consider the

combination between various dimensions of the data present in this scenario (regarding

pull request, requesters, reviewers and discussion). Furthermore, they did not measure

the degree of in�uence that the characteristics identi�ed as relevant have over lifetime.

Yu et al. [9] investigated what they call "determinants of pull request evaluation

latency" through a qualitative study. This study evidences that the amount of comments is

the main predictor for lifetime. This study also concludes that physical and social features

may have in�uence on lifetime. Additionally, it suggests that simpler contributions possess

less latency in the review process. This work, however, does not measure the degree of

in�uence of such characteristics and does not evaluate the joint contribution of these

characteristics on the pull request lifetime. Moreover, they do not consider important

physical characteristics such as location (i.e., which directories and �les were changed).

When investigating acceptance factors of pull requests, we [21] preliminarily identi�ed

that lifetime can, to some extent, in�uence the acceptance of pull requests. We discovered

that pull requests evaluated within 24 hours has 16% more chances of acceptance, while

pull requests with lifetime between 7 and 10 days have 10% less chances of acceptance.

Similarly, pull requests lasting more than 10 days have 39% less chances of acceptance.

It is possible to observe that the increase in the time needed to analyze a pull request

reduces the chances of acceptance. This motivates us to investigate the root causes of the

pull requests lifetime.

5.3 Materials and Methods 49

Although there are already important assessments of lifetime in the literature, the

existing results do not take into consideration other several characteristics intimately re-

lated to pull requests, such as the location, the reviewer, and the combination of di�erent

dimensions of the existing data such as commits and �les, and commits and comments.

Besides, there is little quantitative evidence e�ectively measuring the extent of the in�u-

ence that these characteristics have on lifetime.

5.3 Materials and Methods

In order to answer the research questions raised in Section 5.1, we also adopted the

association rules extraction, as indicated in Chapter 1. Moreover, considering the mul-

tidimensionality of pull request data, we performed additional analyses to support the

obtained answers. We brie�y discuss in the following paragraphs which analyses we did

to answer each of the research questions.

RQ 5.1 - Is there an e�ective relationship between the lifetime of pull

requests and their acceptance? In order to answer this question, we extracted associ-

ation rules involving these two attributes, where lifetime is the antecedent and status_pull

is the consequent. The results of this analysis are presented in Section 5.4.1.

RQ 5.2 - Do physical characteristics of pull requests in�uence on their

lifetime? For investigating physical characteristics of pull requests, we needed to conduct

an extraction of rules that contained attributes counting the number of �les, number of

commits, and number of lines of code of each pull request. Furthermore, we analyzed how

the conjunction of these characteristics in�uences in the pull request lifetime. Section 5.4.2

presents the results of this analysis.

RQ 5.3 - Does the location of pull requests in�uence on their lifetime?

For investigating characteristics about location of pull requests, we needed to conduct

a within project analysis, given that �les and directories possess a unique semantics for

each project. Furthermore, we also carried out a qualitative analysis for understanding

some of the observed patterns. Since the number of altered �les and directories is large,

we selected attributes using the InfoGain measure [31], which evaluates the importance

of an attribute by verify the information gain associated with it. The ten most selective

�les and directories in relation to lifetime were chosen and used during association rule

mining. Section 5.4.3 presents the results of this analysis.

RQ 5.4 - Does the pro�le of external contributors in�uence on the lifetime

5.3 Materials and Methods 50

of pull requests? We extracted rules in order to detect relationships between the num-

ber of previous contributions of the requesterexternal contributors experience with pull

requests and lifetime. Complementarily, we explored rules involving physical attributes

and requesters' lack of experience, aiming at establishing transitivity with lifetime. We

performed an extra analysis to isolate the relationship between physical characteristics

of contributions and external contributors pro�les. The obtained results are discussed in

Section 5.4.4.

RQ 5.5 - Do characteristics related to the review process in�uence on the

lifetime of pull requests? Regarding the characteristics related to the review process of

pull requests, besides mining rules involving lifetime, we extracted complementary rules

to understand the relationship between physical characteristics and the comments made

during the review process. We also conducted a qualitative analysis to subsidize the

comprehension of social patterns related to reviewers of pull requests. In Section 5.4.5 we

present the �ndings of this analysis.

We extracted 97,463 pull requests (excluding self-analyzed contributions) from 30

non-forked projects. From this total, 76.84% were accepted and 23.16% were rejected.

Table 5.1 shows some characteristics of the analyzed projects: number of pull requests,

acceptance rate, number of di�erent requesters, number of pull requests submitted by

core team members, and number of pull requests submitted by external members. The

projects were randomly selected from 1,438 projects, based on a query that retrieved

projects with large amounts (at least 500) of pull requests1. We collected pull requests

sent from November 2010 to September 2015. We extracted rules with a minimum support

of 1% (approximately 975 rules) to ensure that the rules were not obtained by chance,

revealing a pattern from the dataset. In addition, we have de�ned a minimum con�dence

of 5%. We use these values to get as many rules as possible about the nature of the pull

request paradigm.

As mentioned before, our studies we conducted experiments with most of the at-

tributes extracted via GHTorrent. However, only a small set of them revealed rules with

appropriate semantics in this scenario. The attributes considered in the analysis are

presented in the Table 5.2.

1http://ghtorrent.org/dblite/

5.4 Results and Discussion 51

Table 5.1: Characteristics of the project corpus.

Project
Pull
Requests

Acceptance
Rate
(%)

Di�erent
Requesters

PRs
submitted

by core team

PRs
submitted
by external
members

Akka 1,020 84.0 255 85 936
Baystation12 5,196 96.0 208 219 4,977

Bitcoin 2,934 78.2 457 82 2,852
Boto 1,226 79.9 603 108 1,118

Brackets 3,823 91.6 377 173 3,650
Commcare-hq 6,986 98.8 50 20 6,966
Diaspora 1,746 76.6 321 78 1,668
Django 3,731 15.9 1,502 766 2,965
Docker 6,979 84.1 1,437 248 6,731

In�nispan 3,114 9.7 103 191 2,923
IPython 3,234 88.2 486 177 3,057
Jekyll 1,238 71.8 613 119 1,119

Joomla-cms 960 11.2 254 153 807
Katello 1,066 93.8 62 237 829
Kuma 2,873 91.8 115 42 2,831

Metasploit 4,535 84.9 485 534 4,001
Nancy 893 86.3 257 75 818
Netty 907 17.9 284 171 736
Node 510 0.2 209 214 296
Pandas 2,233 62.8 534 236 1,997
Phobos 2,744 94.7 243 90 2,654
Puppet 3,255 75.7 474 300 2,955
Rails 11,728 75.0 2,934 569 11,159

Rosdistro 5,745 97.4 345 49 5,696
Scala 1,033 88.9 80 23 1,010

Scikit-learn 1,018 72.9 379 146 872
Titanium 6,044 94.0 196 110 5,934
TrinityCore 2,173 61.1 466 95 2,078

Kodi 3,816 84.0 560 70 3,746
Zf2 4,705 48.5 908 300 4,405

5.4 Results and Discussion

In this Section, we report and discuss the obtained results and present the answers to the

research questions. In Section 5.4.1, we discuss how time and acceptance are related in

the context of the pull-based development paradigm. Section 5.4.2 discusses the in�uence

of physical characteristics on lifetime. Section 5.4.3 presents results about the in�uence of

the location of pull requests on their lifetime. Then, Section 5.4.4 presents results related

to the in�uence of external developers characteristics on the lifetime of pull requests.

5.4 Results and Discussion 52

Table 5.2: Attributes used in this study.
Attribute Description

comments_pull
the number of comments made during the review, where
"some comments" = 2 to 10 comments; "many comments" =
more than 10 comments.

commits_pull
the number of commits in the pull request, with values:
"1 commit" ; "some commits" : 2 to 4 commits; and "many
commits": more than 4 commits.

developer_type whether the contributor is internal or external.

directory_names
represents a set of 10 attributes, where each is the name of a
directory. The value "true" indicates that a �le from that
directory was changed, the value "false" indicates otherwise.

�le_names
represents a set of 10 attributes, where each is the name of a �le.
The value "true" indicates that a �le was changed,
the value "false" indicates otherwise.

�les_changed
the number of added, removed, or edited �les, with values:
"1 �le" ; "some �les" : 2 to 4 �les; and "many �les" : more than
4 �les.

�rst_pull whether the pull request is the �rst �led by the contributor.

has_followers
whether the external contributor has followers on GitHub,
takes "true" or "false".

lifetime
amount of time between the submission and closure of a pull
request, where "very short" = 1 day; "short" = 1 to 3 days;
"medium" = 3 to 10 days; and "lengthy" = more than 10 days.

lines_changed
the number of lines of code manipulated, with values: "1 line" ;
"some lines" : 2 to 20 lines; and "many lines" : more than 20
lines.

previous_
contributions

the contributor's prior experience, considering the number of
previous requests pull, with values: "no contribution" ;
"some contributions" : 1 to 6; and "many contributions" :
more than 6.

reviewer_follow_
external_contributor

whether the reviewer follows the external contributor on GitHub.

reviewer_pull
the name of the developer responsible for reviewing the
pull request.

status_pull
whether the pull request was "accepted" (merged) or
"rejected" (closed).

5.4 Results and Discussion 53

Finally, in Section 5.4.5, we discuss the in�uence of the review process characteristics on

the lifetime.

5.4.1 RQ 5.1 - Is there an e�ective relationship between the life-
time of pull requests and their acceptance?

Our study extracted association rules to identify the in�uence of time on the acceptance of

pull requests. Figure 5.1 shows the Lift values for rules in which lifetime is the antecedent

and status_pull is the consequent, so we can observe whether the time needed to evaluate

pull requests is related to their acceptance. The results allow for the conclusion that

pull requests with shorter lifetimes increase, though shyly, the chances of acceptance.

For instance, when pull requests are analyzed within 1 day (very short) or within 1 to 3

days (short), the chances of acceptance increase in 11% (Lift=1.11) and 4% (Lift=1.04),

respectively. On the other hand when lifetime is very short, the chances of rejection drop

signi�cantly, that is, in 35% (Lift=0.65).

Figure 5.1: Lifts of the rules of type: lifetime → status_pull.

The results also indicate that contributions with lengthy lifetimes signi�cantly increase

the chances of rejection, and decrease the chances of acceptance. In our project corpus,

when lifetime = "lengthy" occurs, the chances of rejection increase by 114% (Lift=2.14).

In the same scenario, the chances of acceptance are reduced in 34% (Lift=0.66).

The results presented in this section indicate that there is a correlation between pull

request lifetime and its acceptance/rejection. However, time is not a characteristic that

can be easily controlled, that is, neither the contributor nor the reviewer can determine

how long it will take for the pull request review process to complete. We believe that

lifetime is a characteristic that can be determined by other characteristics related to the

5.4 Results and Discussion 54

RQ 5.1 - Is there an e�ective relationship between the lifetime of pull
requests and their acceptance?

Answer - The results show that there is a correlation between pull request
lifetime and acceptance/rejection, evidencing that contributions that

have been quickly analyzed tend to be incorporated (chances increase in
up to 11%), and the ones with lengthy lifetimes tend to be rejected (chances

increase in up to 114%).
Relevance: Our results con�rm the relationship of lifetime and

the acceptance of pull requests as previously discussed by Gousios et al. [4] and
Soares et al. [21]. In addition, our results quantify the strength of such

relationship by means of measures such as Con�dence and Lift .
Yu et al. [9] did not answer this question.

Implications: Our results provide initial evidences that lifetime leads to acceptance/
rejection, o�ering insights into the importance of a fast review process.

context of the pull request paradigm, motivating the existence of a common cause of both

lifetime and acceptance. With that being said, Sections 5.4.2, 5.4.3, 5.4.4, and 5.4.5

present characteristics that can be determinants of lifetime.

5.4.2 RQ 5.2 - Do physical characteristics of pull requests in�u-
ence on their lifetime?

Pull requests possess some physical characteristics, such as the number of modi�ed �les,

number of commits, and number of changed lines of code. These characteristics are known

in the moment of the submission of a pull request, but can undergo further modi�cations

during its lifetime. For instance, the discussion about a contribution may demand new

commits. In this subsection, we discuss the in�uence of these characteristics on the lifetime

of pull requests.

Our results indicate that the number of commits associated with a pull request

in�uences the lifetime of contributions. Figure 5.2 displays the Lifts values of rules

where commits_pull is the antecedent and lifetime is the consequent. For the con-

tributions with many commits, the chances for pull requests with lengthy lifetime in-

crease signi�cantly. This pattern becomes utterly evident when we analyze the rule com-

mits_pull = "many commits" → lifetime = "lengthy". In this case, when there are many

commits in a contribution, the chances of a lengthy lifetime increase in 92% (Lift=1.92).

These results show that there is a correlation between commits and lifetime. Con-

sidering that the number of commits can increase throughout a pull request's lifetime,

it is important to verify whether the increase in the amount of commits is an implica-

tion of the time taken for review. In order to verify that, we carried out a con�dence

5.4 Results and Discussion 55

Figure 5.2: Lifts of the rules of type: commits_pull → lifetime.

analysis of rules that involve these two attributes. The con�dence of the rule com-

mits_pull = "many commits" → lifetime = "lengthy" is 32%, while the con�dence of

its inverse, lifetime = "lengthy" → commits_pull= "many commits", is 17%. Therefore,

the amount of commits seems not to be an implication of the time taken for review process.

These analyses provide some initial evidence that the complexity required for the review

process of pull requests is a characteristic that impacts the lifetime of contributions.

Similarly to commits, the number of modi�ed �les in a pull request represents another

factor that impacts the lifetime. Figure 5.3 displays the Lift values for rules of type

files_changed → lifetime. It is observable that smaller contributions in terms of

number of �les increase the chances of very short lifetimes. For instance, pull requests

which alter only 1 �le have 21% more chances of being revised within up to one day

(Lift=1.21). On the other hand, contributions that modify various �les have 54% more

chances of having a longer lifetime (Lift=1.54).

Figure 5.3: Lifts of the rules of type: �les_changed → lifetime.

5.4 Results and Discussion 56

The results also suggest that there is a relationship between the number of modi�ed

lines of code in a pull request and lifetime, especially when several lines of code have been

altered. According to Figure 5.4, pull requests that modify several lines of code have 43%

more chances of having lengthy lifetime (Lift=1.43). Notwithstanding, there are no means

to establish that many lines e�ectively implies an increase in lifetime, since the con�dence

of the rule lines_changed = "many lines " → lifetime = "lengthy" is 24%, while the

con�dence of its inverse, lifetime = "lengthy" → lines_changed = "many lines", is 67%.

This analysis suggests that there is a correlation between number of modi�ed lines of

code and lifetime: 67% of the pull requests that have lengthy lifetimes also have several

modi�ed lines, but only 24% of the contributions with several modi�ed lines have lengthy

lifetime.

Figure 5.4: Lifts of the rules of type: lines_changed → lifetime.

Our results also allow the indication that the conjunction of physical characteristics

may increase the chances of pull requests having very short and lengthy lifetimes. Table 5.3

presents rules that combine di�erent physical characteristics in the antecedent, as well as

their measures of interest. Rule 1, for example, shows that the chances of a very short

lifetime increase in 35% (Lift=1.35) when the pull request is composed of one commit,

changing between 2 and 20 lines of code in one �le. This reinforces that simpler pull

requests contribute for a lifetime of up to one day. It is noteworthy that, when occurring

alone, none of these three characteristics leads to elevated Lift value. On the other hand,

the analysis of Rule 2 suggests that the occurrence of just two characteristics together

can ensure a very short lifetime. In this case, when a contribution has merely one commit

changing just one �le, the chances of it being accepted or rejected within up to 24 hours

increase in 29% (Lift=1.29). Rules 1 and 2 suggest desirable characteristics in order

for a pull request to be analyzed readily. In this analysis, we did not extract the rules

5.4 Results and Discussion 57

with lines_changed = "1 line" in the antecedent, because they have support below the

minimum and do not represent a signi�cant pattern in the dataset.

Table 5.3: Association rules involving physical characteristics of pull requests relevant to
lifetime.

Antecedent Consequent
Sup
(%)

Conf
(%)

Lift

1
commits_pull = "1 commit" ∧
�les_changed = "1 �le" ∧
lines_changed = "some lines"

lifetime =
"very short"

23.0 70.0 1.35

2
commits_pull = "1 commit" ∧
�les_changed = "1 �le"

lifetime =
"very short"

28.0 67.0 1.29

3
commits_pull = "many commits" ∧
�les_changed = "some �les" ∧
lines_changed = "many lines"

lifetime =
"lengthy"

1.0 37.0 2.25

4
commits_pull = "many commits" ∧
�les_changed = " many �les" ∧
lines_changed = "many lines"

lifetime =
"lengthy"

2.0 30.0 1.79

Rule 3 from Table 5.3 shows under which conditions the conjunction of physical char-

acteristics implies a lengthy lifetime. When pull requests have many commits changing

many lines of code of some �les, they have 125% more chances of having lengthy lifetime

(Lift=2.25). Despite "many_�les" leading to higher than "some lines" Lift value when

occurring individually (Lift=1.54) � see Figure 5.3, when this characteristic is associated

with "many_commits" and "many_lines", the chances of slowness increase by just 79%

(Lift=1.79), as indicated by Rule 4 from Table 5.3. Rules 3 and 4 indicate physical

characteristics that should be avoided for a faster processing of a pull request.

RQ 5.2 - Do physical characteristics of pull requests in�uence on their lifetime?
Answer - Physical characteristics such as number of commits, number of �les,
and number of lines of code in�uence on the lifetime of pull requests, both in

an isolated and in a conjoint fashion.
Relevance: Our results con�rm the in�uence of the number of commits,
as previously discussed by Yu et al. [9]. In addition, our results quantify

the strength of such in�uence by means of measures such as support, con�dence,
and Lift. Moreover, we also identi�ed the in�uence of other attributes, such as number

of �les and number of lines of code, on the lifetime of pull requests. Finally, we
could also observe the joint in�uence of such attributes in the lifetime.
Gousios et al. [4] and Soares et al. [21] did not explored this question.

Implications: Based on our results, requesters can adopt practices that reduce the
complexity of their contributions so that they have a short lifetime and,

consequently, increase the chances of acceptance. On the other hand, project
managers can encourage these practices in their contribution policies.

5.4 Results and Discussion 58

5.4.3 RQ 5.3 - Does the location of pull requests in�uence on
their lifetime?

As mentioned earlier, pull requests change �les in software repositories that, in general,

are organized in a hierarchical directory structure. Consequently, the directory and �le

indicate the change location. This way, through the extraction of data from pull requests,

it is possible to identify which �les and directories are changed by a contribution, knowing

exactly the pull request location.

Aiming at understanding the in�uence of pull request location on lifetime, we ex-

tracted association rules from the TrinityCore repository2 using the attributes �le_names

and directory_names. Even though pull request location is not purely determined by the

external contributor, but by the need of the contribution itself, the extracted rules reveal

that, depending on which artifacts are manipulated and where they are stored, the contri-

butions may lead to di�erent lifetimes, as shown in Table 5.4. It is important to observe

that, as location is project dependent (same �les and directories usually do not occur in

di�erent projects), this analysis was made to a speci�c project: TrinityCore.

Table 5.4: Association rules involving pull requests locality in relation to lifetime "very
short".

Antecedent
Sup
(%)

Conf
(%)

Lift

1 �le_names = ".../smartscripts/smartai.cpp" 2.0 75.0 1.35
2 �le_names = ".../smartscripts/smartscriptmgr.cpp" 2.0 83.0 1.50

3
�le_names = ".../smartscripts/smartai.cpp" ∧

�le_names = ".../smartscripts/smartscriptmgr.cpp"
1.0 96.0 1.72

4 directory_names = "...updates/world" 14.0 49.0 0.89
5 directory_names = "...tools/mesh_extractor" 1.0 96.0 1.73

6
directory_names = "...updates/world" ∧

directory_names = "...tools/mesh_extractor"
1.0 100.0 1.80

Rules 1 and 2 indicate that pull requests which manipulate the �le ".../smartscripts/

smartai.cpp" or ".../smartscripts/smartscriptmgr.cpp" have 35% (Lift=1.35) and 50%

(Lift=1.50) more chance of having very short lifetimes, respectively. Rule 3 evidences

that, when these �les are modi�ed together in the same pull request, the chances of

having very short lifetimes increase in 72% (Lift=1.72). Besides being stored in the same

directory, a qualitative analysis of the software repository revealed logic coupling between

these artifacts. These rules may indicate that, for instance, some contributions may be

prioritized by the core team, depending on the �les changed by the pull request.

2https://github.com/TrinityCore/

5.4 Results and Discussion 59

The results also suggest that the directories to which the �les belong have in�uence

on lifetime. Rules 4, 5, and 6 demonstrate this implication. Rule 4, for instance, indicates

that contributions that manipulate �les from the directory "...updates/world" have 11%

less chance of having very short lifetime (Lift=0.89). Rule 5 shows that when a contri-

bution modi�es �les in the directory "...tools/mesh_extractor", the chances of very short

lifetime increase in 73% (Lift=1.73). Rule 6 points out that, though "...updates/world"

decreases the chances of very short lifetime, when pull requests manipulate �les from this

directory together with �les from directory "...tools/mesh_extractor", the contributions

are always accepted or rejected within up to 24 hours (Con�dence=100%). Furthermore,

this rule implies that the antecedent increases in 80% the chances of occurrence of the

consequent (Lift=1.80).

Although we have analyzed the in�uence of location in only one project, we were

careful to statistically verify if the observed in�uence actually exists in other projects.

We randomly selected 20% of the projects of our data set, and for each selected project,

we identi�ed, via attribute selection (using the InfoGain measure), the top 10 �les related

to the class (lifetime), and extracted rules of the type �le→ lifetime. In all projects, most

of the selected �les indicated negative or positive in�uence for one of the labels ("very

short" and "lengthy"), individually. Table 5.5 displays Lift values for rules extracted

from the Bitcoin, Django, IPython, Pandas, Rails, and ZF2 projects. For example, in

Bitcoin project, there are �les that increase the chances of lifetime very short in up to

143% (Lift=1.43), while other �les decrease the chances in up to 24% (Lift=0.76).

Table 5.5: Lifts of the rules of type: �les_names → lifetime = "very short"(VS) or
"lengthy"(L).

Index

Projects
Bitcoin Django IPython Pandas Rails ZF2
VS L VS L VS L VS L VS L VS L

1 2.43 0.28 0.66 1.66 0.69 1.51 0.71 1.29 0.73 1.51 0.82 1.44
2 1.68 0.24 0.34 2.01 0.43 2.87 0.45 2.99 0.56 1.54 1.68 0.90
3 0.74 1.43 0.38 1.74 0.38 2.36 0.49 1.50 0.64 2.23 0.71 1.59
4 0.68 1.49 0.46 1.50 0.38 1.77 0.36 1.46 0.60 2.12 0.97 1.04
5 0.68 1.64 0.58 1.75 0.53 1.99 0.37 1.75 0.76 1.78 0.60 2.92
6 0.76 1.77 0.46 1.84 0.39 2.04 0.56 1.04 0.70 1.80 0.44 1.75
7 0.65 1.70 0.35 2.04 0.39 2.07 0.49 1.58 0.66 1.56 0.68 1.65
8 0.39 1.98 0.30 2.23 0.38 1.80 0.56 1.65 0.71 2.00 0.52 0.82
9 0.64 1.85 0.23 1.99 0.36 1.77 0.52 1.74 0.54 2.55 0.41 1.64
10 0.76 1.60 0.92 1.38 0.56 1.84 0.63 1.44 0.72 1.77 0.76 0.50

5.4 Results and Discussion 60

RQ 5.3 - Does the location of pull requests in�uence on their lifetime?
Answer - The �les changed by the contributions and their directories may increase

the chances of very short lifetime.
Relevance: This was an open question until now, as none of the related work

provided answers to it. As far as we know, our study was the �rst to provide evidences
of the in�uence of location on the lifetime.

Implications: This knowledge provides insights to requesters about areas
that tend to have pull requests with lengthy lifetime and, consequently, reduce chances

of acceptance. Therefore, they may decide to avoid codebase regions sensitive
to changes in order reduce chances of slowness.

5.4.4 RQ 5.4 - Does the pro�le of external contributors in�uence
on the lifetime of pull requests?

The analysis of the extracted association rules suggests that the external contributors lack

of experience with the collaboration paradigm in�uences on the lifetime of the contribu-

tions. Figure 5.5 shows Lift values for the rules in which �rst_pull is the antecedent and

lifetime is the consequent. The �rst pull request of a developer usually leads to a lengthy

lifetime. When a developer's �rst contribution occurs (�rst_pull = "true"), the chances

of it having lengthy lifetime increase in 85% (Lift=1.85), while also reducing the chances

of very short or short lifetime in 24% (Lift=0.76) and 13% (Lift=0.87), respectively. On

the other hand, when this is not the case (�rst_pull = "false"), the pull request has

23% (Lift=0.77) less chances of being lengthy. However, this fact (�rst_pull = "false"),

individually, does not imply a signi�cant increment in the chances of faster lifetimes.

With that being said, we can draw the conclusion that the utilization of the collaboration

paradigm for the �rst time raises the probability of lengthy lifetimes.

Figure 5.5: Lifts of the rules of type: �rst_pull → lifetime.

Moreover, the results show that should a developer previously made a large amount

5.4 Results and Discussion 61

of contributions, the chances of slowness decreases. Figure 5.6 displays Lift values of rules

in which previous_contributions is the antecedent and lifetime is the consequent. Even

though the submission of many pull requests does not imply a signi�cant increment in

the chances of shorter lifetimes, when this occurs, there is a signi�cant decrease in the

probability of slowness, namely 30% (Lift=0.70).

Figure 5.6: Lifts of the rules of type: previous_contributions → lifetime.

Our results allow the conclusion that the developer's history of contributions via pull

requests represents a characteristic of strong in�uence on lifetime. Therefore, it is possible

to remind developers that their frequency in the submission of pull requests may result

in a decrease of the lifetime of their contributions.

Additionally, we decided to investigate the quality of the �rst pull request in terms

of physical characteristics that usually lead to lengthy lifetime. To do so, we extracted

rules with �rst_pull = "true" as the antecedent and some physical characteristic as the

consequent. The rules illustrated in Table 5.6 show that �rst_pull = "true" does not

signi�cantly increase the chances of occurrence of physical characteristics that imply com-

plexity in the review, instead, the con�dence values indicate that 15% of the pull requests

manipulated several �les and only 9% possessed many commits associated with them.

Thus, we conclude that developers �rst contributions tend to slowness due to nonphysical

characteristics, meaning that the causes may be technical or social.

Another characteristic that appears to have impact on lifetime is the type of developer

(i.e., core_team or external) who submits pull requests. According to [5], in general, pull

requests are performed by external members. However, core team developers also use

them as a tool for stimulating discussions prior to their integration in the repository.

Figure 5.7 displays Lift values of rules of type developer_type → lifetime. The results

5.4 Results and Discussion 62

Table 5.6: Association rules involving �rst_pull and some physical characteristics of pull
requests.

Antecedent Consequent
Sup
(%)

Conf
(%)

Lift

1

�rst_pull = "true"

commits_pull = "1 commit" 14.0 69.0 1.00
2 commits_pull = "some commits" 4.0 22.0 1.00
3 commits_pull = "many commits" 2.0 9.0 1.04
4 �les_changed = "1 �le" 11.0 52.0 1.06
5 �les_changed = "some �les" 7.0 33.0 1.02
6 �les_changed = "many �les" 3.0 15.0 0.81
7 lines_changed = "1 line" 1.0 4.0 1.15
8 lines_changed = "some lines" 11.0 53.0 1.07
9 lines_changed = "many lines" 9.0 43.0 0.91

evidence that pull requests submitted by external members have virtually no in�uence on

lifetime � Lift values nearing conditional independence. However, pull requests submitted

by core team members present strong in�uence on the slowness of lifetime � preliminary

analysis revealed that 70.93% of pull requests submitted by core_team have lifetime ex-

ceeding 3 days and 36.13% more than 10 days. When a pull request is submitted by core

team members, the chances of having lifetime= "medium" increase in 26% (Lift=1.26),

and the chances of having lifetime = "lengthy" increase in 118% (Lift=2.18). Comple-

mentarily, in order to ensure the existence of this pattern, we veri�ed that the con�dence

of the rule developer_type = "core_team" → lifetime = "lengthy" is of 38%, while the

con�dence of the inverse rule is merely 13%. This allows us to conclude that a lengthy

lifetime may be in�uenced by developer_type = "core_team", as one could expect, instead

of time in�uencing the type of developer.

Except for the cases where the project policy requires, core team members are not

obligated to send their contributions via pull requests, as they have write privileges to

perform direct changes into the repository. That said, there is, additionally, a need to

identify patterns present in the contributions submitted by core team members that can

aid in the understanding of the causes of lengthy lifetimes. To that end, we extracted asso-

ciation rules in which the attribute developer_type = "core_team" is the antecedent and

the consequent is composed of physical and social characteristics. Rules 1, 2, and 3 from

Table 5.7 show that when developer_type = "core_team", the chances of having many

commits, several �les, and many lines increase in 125% (Lift=2.25), 27% (Lift=1.27), and

36% (Lift=1.36), respectively. Thus, we are able to conclude that the submissions made

by core team members are more complex (from a physical standpoint) hence demanding

more time for analysis.

5.4 Results and Discussion 63

Figure 5.7: Lifts of the rules of type: developer_type → lifetime.

Table 5.7: Association rules involving core_team members, and physical and social char-
acteristics.

Antecedent Consequent
Sup
(%)

Conf
(%)

Lift

1
developer_type =

core_team
commits_pull = "many commits" 1.0 19.0 2.25

2 �les_changed = "many �les" 1.0 24.0 1.27
3 lines_changes = "many lines" 4.0 64.0 1.36
4 comments_pull = "no comments" 3.0 53.0 0.70
5 comments_pull = "many comments" 1.0 18.0 2.29

When we analyze characteristics associated with the discussions during the assessment

of pull requests, it is possible to observe that contributions submitted by members of the

core team tend to have more comments. Rule 4 in Table 5.7 indicates that when internal

members submit pull requests, the chances of a review without comments are reduced in

30% (Lift=0.70), while Rule 5 evidences that the likelihood of having many comments is

129% (Lift=2.29) higher when developer_type = "core_team". This way, it is possible to

infer that internal contributions are more liable to discussion.

Hosting tools like GitHub provides social network resources, allowing developers to

have �followers� and a social relationship among themselves. We also investigated whether

social characteristics regarding the external contributor may in�uence on lifetime.

Initially, we analyzed whether the fact that external contributor have or not followers

would be the root cause for the time spent evaluating a pull request. Figure 5.8 shows

Lift values of rules of type has_followers → lifetime. Thus, we can observe that the

social characteristic of having followers (has_followers = "true") does not in�uences on

lifetime � Lift values close to 1 indicate conditional independence. However, when the

5.4 Results and Discussion 64

Figure 5.8: Lifts of the rules of type: has_followers → lifetime.

external contributor does not have followers (has_followers = "false") the chances of

lengthy lifetime increase in 25% (Lift=1.25).

We can a�rm that when a developer follows someone on GitHub, there is at least

some relationship that indicates interest on the activities of the other developer. For

example, if Peter follows John, Peter knows or has interest in knowing John's work;

however, the contrary is not always true. Based on this, we analyzed another characteristic

inherent to the external contributor. We extracted association rules with the attribute

reviewer_follow_external_contributor in the antecedent � indicating whether the core

team member responsible for the review follows the author of the pull request � and

lifetime in the consequent. Figure 5.9 shows the Lift values for these rules and allows

the conclusion that reviewer_follow_external_contributor = "false" does not in�uence

the lifetime, however when reviewer_follow_external_contributor = "true" the chances

of slowness are reduced in 34% (Lift=0.66). Therefore, there are less chances of lengthy

lifetimes when the reviewer follows the external contributor, indicating that the interest

of the former for the work of the latter reduces the chances of slowness.

5.4.5 RQ 5.5 - Do characteristics related to the review process
in�uence on the lifetime of pull requests?

GitHub provides a discussion forum for each pull request, enabling developers to inter-

act through comments. The number of comments may increase during the review of

pull requests, and, to some extent, in�uence on the lifetime. Our results indicate that

contributions without comments are analyzed very quickly, despite the existence of some

exceptions. Complementary, pull requests with several comments tend to be lengthy, even

5.4 Results and Discussion 65

Figure 5.9: Lifts of the rules of type: reviewer_follow_external_contributor → lifetime.

RQ 5.4 - Does the pro�le of external contributors in�uence on the lifetime
of pull requests?

Answer - Characteristics associated with the external contributor, such
as the number of previous contributions, his or her pro�le as a developer,

and his or her social relations have impact on lifetime.
Relevance: Our results con�rm that pull requests �led by people with many

previous contributions have shorter lifetime, as previously discussed by Gousios et al. [4]
and Yu et al. [9]. Conversely, our study provides evidences that pull requests �led by
core team members tend to have lengthy lifetimes. This �nding, contrast with the

results discussed by Gousios et al. [4] and Yu et al. [9]. Soares et al. [21]
did not explored this question.

Implications: The results are potentially useful for project managers to adopt
strategies that improve the pull requests review process, for example, by properly

assigning core team members to review internal contributions and reducing
the lifetime.

though there are also some exceptions.

Figure 5.10 displays the Lift values of rules of type comments_pull → lifetime and

allows a more detailed analysis of the in�uence of comments on lifetime. The existence of

no comments during the review of pull requests increase in 17% the chances of having life-

time = "very short" (Lift=1.17) and reduces the chances of lifetime being longer than 24

hours (Lifts values ranging from 0.72 to 0.93). The existence of only one or few comments

seems to lower the chances of having lifetime = "very short" (Lift values equal to 0.69

and 0.56, respectively). The occurrence of many comments leads to an opposite behav-

ior of comments_pull = "no comments", but much more intense. When comments_pull

= "many comments" occurs, the chances of lifetime being very fast decreased in 78%

(Lift=0.22), while the chances of slowness are raised in 162% (Lift=2.62).

Comments on pull requests occur due to various reasons. There are comments, for

5.4 Results and Discussion 66

Figure 5.10: Lifts of the rules of type: comments_pull → lifetime.

example, where the reviewer thanks the external contributor for his or her contribution,

poses a question, suggests a modi�cation, etc. Even though the in�uence of comments on

lifetime is evident, it is noteworthy that, similarly to lifetime, the number of comments

can be determined by other characteristics. This research does not aim at speci�cally

identifying these characteristics, but we present rules that showcase the relationship be-

tween comments and some physical characteristics � such as number of commits and

changed �les, in Table 5.8. Rules 1 and 2, for instance, reveal that pull requests without

comments tend to be simpler, considering number of commits and changed �les, although

the evidence is weak (Lifts of 1.10 and 1.14, respectively). On the other hand, contribu-

tions that have several comments tend to be more complex, as evidenced by Rules 3 and

4. The Lift values of 3.60 and 2.53 point out a signi�cant increase in the chances of pull

requests with many comments having many commits and changed �les, respectively.

Table 5.8: Association rules involving comments_pull and physical characteristics.

Antecedent Consequent
Sup
(%)

Conf
(%)

Lift

1
comments_pull =
"no comments"

commits_pull = "1 commit" 58.0 76.0 1.10

2 �les_changed = "1 �le" 42.0 56.0 1.14

3
comments_pull =
"many comments"

commits_pull = "many commits" 3.0 31.0 3.60

4 �les_changed = "many �les" 4.0 47.0 2.53

Pull requests must be closed � accepted or rejected � by core team members, who

may be asked to do so or who pick the pull request spontaneously. This is inherently

connected with the review/discussion process of the project. We extracted pull requests

from the TrinityCore repository in order to identify whether the developer responsible for

5.4 Results and Discussion 67

the review may impact the lifetime of pull requests.

The results point out that, depending on which developer analyzes the pull request,

there may be impact on lifetime. Table 5.9 displays rules in which reviewer_pull is the

antecedent and lifetime the consequent. Rules 1 and 2 evidence cases where the chances

of very short lifetime increase when the pull requests are analyzed by certain reviewers.

Although the Lift values already indicate this, the con�dence of the rules reinforce this

pattern. Rule 1 shows that, when Discover is the one responsible for review, lifetime is up

to one day long in 80% of the cases; besides, the chances of a very short lifetime increase in

44% (Lift=1.44). Rule 2 unveils a similar scenario. Nonetheless, there are reviewers that

tend to slowness, thus featuring longer lifetimes. Rules 3, 4, and 5 illustrate this pattern.

For instance, when Jackpoz, MitchesD, and Joschwald are responsible for analyzing the

pull request, the chances of slowness increase in 151% (Lift=2.51), 81% (Lift=1.81), and

67% (Lift=1.67), respectively.

Table 5.9: Association rules involving reviewers and lifetime.

Antecedent Consequent
Sup
(%)

Conf
(%)

Lift

1 reviewer_pull = "Discover"
lifetime = "very short"

2.0 80.0 1.44
2 reviewer_pull = "Shauren" 8.0 72.0 1.30
3 reviewer_pull = "Jackpoz"

lifetime = "lengthy"
2.0 45.0 2.51

4 reviewer_pull = "MitchesD" 1.0 32.0 1.81
5 reviewer_pull = "Joschwald" 1.0 30.0 1.67

These results indicating that reviewers have impact on lifetime motivate a qualitative

analysis. We conceived an analysis based on characteristics knowingly in�uential regard-

ing the lifetime. When analyzing pull requests evaluated by the developer Jackpoz, for

example, we found no evidence that physical characteristics were the cause of the slow-

ness of the review. Out of 37 pull requests analyzed by this developer with lifetime =

"lengthy", only 29.7% of them had more than one comment, 24.3% had more than one

commit, and only 18.9% manipulated several �les. This shows intrinsic characteristics of

Jackpoz.

We selected another developer for a qualitative analysis. We analyzed all ofMitchesD 's

contributions which had lengthy lifetimes. Out of 17 pull requests closed by MitchesD, 4

had more than 10 comments and 11 had between 2 and 10 comments. Although comments

imply slowness, it is not always true that MitchesD was the root cause of the slowness.

Our analysis revealed that, in several contributions evaluated by him, there was barely

any discussion motivated by him. In many cases, MitchesD closed contributions without

5.5 Threats to Validity 68

interacting with other developers.

The results indicate, therefore, that some developers may have in�uence on the life-

time of pull requests due to intrinsic characteristics of the review process (Jackpoz 's case).

However, there are cases where what seems to be a male�c pattern is, in fact, a core team

member's well-intentioned action (MitchesD 's case) that closed long-standing contribu-

tions still open and without de�nition.

RQ 5.5 - Do characteristics related to the review process in�uence on the lifetime
of pull requests?

Answer - Social characteristics regarding pull request review have in�uence
on lifetime. Characteristics such as number of comments may in�uence
the chances of slowness or fastness of the review process. The developer
who is responsible for the review may also have in�uence on lifetime.

Relevance: Our results con�rm the in�uence of the number of comments on the
lifetime, as previously discussed by Yu et al. [9]. In addition, our results quantify the
strength of such in�uence by means of measures such as support, con�dence, and Lift.

Moreover, we also found evidences that the reviewer in�uences on the lifetime.
Gousios et al. [4] and Soares et al. [21] did not explored this question.

Implications: Our �ndings show to project managers the need to appropriately
assign pull requests reviewers to reduce lifetime, increasing core team e�ciency, since

time saved frees core team members to other activities.

5.5 Threats to Validity

Even though we have worked carefully to minimize threats to validity of this study, some

uncontrolled factors might have in�uenced the observed results. Regarding the correctness

of our results, our corpus, composed of 30 projects, led to some association rules with low

support, approximately 1%, which represents 975 instances. Nonetheless, we discarded

the possibility that these patterns might have arisen accidentally, as we identi�ed a set

of patterns whose frequent occurrence proves di�cult to be assumed by chance. Even

so, we acknowledge the necessity to corroborate all of our results with a wider approach,

involving a multitude of projects.

We also advert that the capability of generalizing our observations is restricted to

projects that possess the same features as the ones we have selected: all of them are open-

source, the majority of contributions is accepted quickly, and the projects have certain

maturity with the utilization of pull requests. Therefore, we cannot generalize our results

for industrial or open-source projects with di�ering features, and not even guarantee that

the patterns revealed by our study are valid for new projects, from a collaboration model

5.6 Final Remarks 69

standpoint. Our analysis, nevertheless, revealed that similar patterns may be present in

other projects. Further future studies have to be conducted in order to assess this.

5.6 Final Remarks

In this chapter, we presented a study on the characteristics that impact the lifetime of pull

requests in open-source projects with a large number of contributions. We also considered

that pull request lifetime is ruled by characteristics inherent to the pull requests and their

review process. The knowledge obtained from our results unveils patterns that can be

followed or avoided, both by core team members and external contributor, in order to

promote positive scenarios or weaken the negative ones that have impact on the pull

request lifetime. Project managers, for instance, are often interested in the e�ciency

of the team and the celerity of the analysis of external contributions, since this reduces

the amount of time spent for adding new features or �xing bugs in the product. For

similar reasons, knowing what causes the fast acceptance or rejection of a pull request is

de�nitely of interest to whom collaborates with a project. Thus, in this sense, we perceive

pull request lifetime as a matter of crucial importance.

Due to the extraction of association rules, our study was able to quantify the degree

of in�uence of the investigated characteristics regarding the duration of pull request life-

time. In order to complement this quantitative analysis, we also conducted a qualitative

analysis over some of the detected patterns. In particular, the results allowed the fol-

lowing conclusions: (i) there is an e�ective relationship between pull request lifetime and

their acceptance, in which contributions with shorter lifetimes tend to have the chances

of being incorporated into the main repository increased, while the slower ones tend to

have the chances of being rejected increased; (ii) physical characteristics such as number

of commits, altered �les, and changed lines of code in�uence, in an isolated or combined

way, the pull request lifetime; (iii) the artifacts modi�ed by pull requests and the di-

rectories where they are stored can be robust predictors of the duration of pull request

lifetime; (iv) characteristics regarding the external contributor, such as the number of

previous contributions of the requester, his or her pro�le as a developer, and his or her

social relationships have in�uence on lifetime; and (v) the amount of comments in a pull

request, as well as the developer responsible for the review, are important predictors of

lifetime duration.

Chapter 6

In�uential Factors on Assigning Review-

ers to Pull Requests in Open-Source

Projects

6.1 Introduction

The process of assigning a reviewer to analyze a pull request is not always well de�ned.

For example, the decision to review a given pull request may come directly from the core

team members with interest in the pull request, potentially incurring in inappropriate

assignments. Recently, a series of studies arose [10, 11, 12, 13, 14, 36], aiming at recom-

mending reviewers to analyze pull requests. In general, these studies employ predictive

techniques for suggesting reviewers based on the project history. Nonetheless, these rec-

ommendations mostly replicate previous (not always desired) patterns and work as black

boxes � i.e., they do not uncover the reasoning behind the recommendation. Besides, the

quality of the recommendation is tightly related to the chosen predictive attributes.

Understanding the factors that in�uence on assigning reviewers to pull requests is

crucial to better design recommendation tools and provide adequate support for project

managers. These factors may reveal possible con�icts of interest among requesters and

reviewers, unbalanced workloads among reviewers, and regions of the codebase with few

experts, representing a risk in face of turnover. Replicating such problems in future

recommendation is clearly not desired. Comprehending the nature of reviewers assignment

for analyzing pull requests is a �rst step for identifying these problems and quantifying

how frequently they occur.

In this work, we mined association rules from 22,523 pull requests to identify factors

6.2 Related Work 71

that have an in�uence on the assignment of pull request reviewers. More speci�cally, we

answer the following research questions:

RQ1 � Do the pull request characteristics in�uence on the reviewer assign-

ment?

RQ2 - Does the requester pro�le in�uence on the reviewer assignment?

RQ3 - Does the social relationship between requester and reviewer in�u-

ence on the reviewer assignment?

RQ4 - Does the location of a pull request in�uence on the reviewer assign-

ment?

We could unveil the following patterns, among others: (i) some reviewers always

analyze simple pull requests, with few commits and few �les; (ii) some reviewers frequently

(up to 58% of the times) analyze pull requests �led by inexperienced requesters; (iii) some

reviewers have more chances (up to 25 times) to analyze pull requests �led by requesters of

their acquaintance; and (iv) some reviewers have more chances (up to 20 times) to analyze

pull requests containing �les that they have recently changed. Besides the quantitative

analysis using association rules mining, we also run a qualitative analysis, aiming at better

understanding some of the uncovered patterns.

The remainder of this chapter is organized as follows. Section 6.2 presents the main

works related to this study. Next, Section 6.3 presents the research process adopted by

our study and the dataset used in the experiments. Section 6.4 shows the obtained results,

answering each of the research questions and discussing the implications of our answers.

Section 6.5 presents the threats to validity of our results. Finally, Section 6.6 concludes

this work by summarizing our main contributions and pointing out some future work.

6.2 Related Work

As far as we are aware, previous work does not investigated the factors that in�uence on

assigning reviewers to pull requests. Thus, our study is the �rst to bring forth results in

this direction. Nevertheless, some research propose approaches for the recommendation

of reviewers. These approaches are discussed in the following paragraphs.

Yu et al. [10] recommended reviewers to pull requests by means of techniques such

as information Retrieval (IR) and Vector Space Model (VSM), measuring, based on the

titles and descriptions of previous pull requests, the semantic similarity with the new pull

6.2 Related Work 72

request. Then, using classi�cation, they foresee the adequateness of a given developer

for reviewing a pull request according to the number of comments that he or she may

have previously made in the review process. Besides, the approach proposes a network of

comments for each project, analyzing the relationship of comments made by developers.

Therefore, they can predict the common interest of each reviewer with the requester. The

approach was evaluated over 10 popular projects from GitHub that had received more

than 1,000 pull requests. The results achieved a precision of 74% for the recommendation

of reviewers (top-1 recommendations) and a recall of 71% for top-10 recommendations.

As a complement of the previous study, Yu et al. [36] adopted Support Vector Machines

(SVM) as the classi�cation method and considered the �les' location to recommend pull

request reviewers. The experiments were carried out over 84 open-source projects and

used a dataset containing 105,123 pull requests. The results presented precision of 67.3%

and recall of 25.2% for top-1 recommendations, and precision of 33.8% and recall of 79.0%

for top-10 recommendations.

Limeira et al. [11] employed classi�cation algorithms for recommending reviewers to

pull requests. The evaluation considered 48,510 pull requests, characterized by 14 at-

tributes. These pull requests were obtained from 21 open-source projects, which were

heterogeneous in terms of amount of pull requests. Which one of the experiments found

accuracy ranging from 22.45% to 68.27% for recommending top-1 developers. The Ran-

dom Forest classi�er achieved the best result in 76% of the projects. In another experi-

ment, when suggesting top-3 developers to analyze a pull request, the chance of identifying

the developer that actually analyzed the pull request ranged from 47.33% to 95.47%.

Jiang et al. [12] proposed the CoreDevRec approach, which adopts an SVM classi�er

to recommend the �ve most adequate developers to review a pull request (top-5 recom-

mendation). The approach adopted predictive attributes such as: social relationship,

modi�ed �les' locations, and core team members' recent activities. The experiments were

carried out over 5 projects, with a total of 18,651 pull requests. In the employed evalua-

tion strategy, pull requests were organized in partitions, each one containing pull requests

created in the same month. Thus, at every run, the classi�er was trained with instances

of a month and tested with instances of the following month, respecting the chronological

order of creation of the contributions, that is, only previous information was used to con-

duct the recommendation. The approach's accuracy was calculated as the average of the

accuracy obtained from each test run. The results revealed that CoreDevRec obtained

accuracy ranging from 49.3% to 72.3% for top-1 recommendations, from 63.8% to 88.4%

for top-2 recommendations, from 72.9% to 93.5% for top-3 recommendations, from 77.2%

6.3 Materials and Methods 73

to 95% for top-4 recommendations, and from 80.2% to 95.8% for top-5 recommendations.

Ying et al. [13] also investigated the recommendation of reviewers to pull requests.

In the same fashion as in Yu et al. [36], the authors considered the similarity of title,

description words, and comments made by collaborators when discussing about each pull

request. They, however, employed the Random Walk algorithm [37] to compile a list of

recommended reviewers. The approach was evaluated over 9 open-source projects with

a total of 16,683 pull requests. The obtained results indicate that the proposed method

outperforms the other methods in some cases. For example, the precision in project akka

reaches 72% in average with 52% of recall, which improves the measure from 31% to 44%

compared with another methods. The precision ranges from 26% to 72%, while the recall

varies from 20% to 52%, considering the top-5 recommendations.

Rahman et al. [14] proposed an improvement to the technique �le location introduced

by Yu et al. [36] to leverage developers recommendation of reviewers to pull requests.

The authors compared libraries of open pull requests to the ones of previously closed

pull requests in order to obtain a similarity score between them, which then are assigned

to each reviewer who has made comments on previous pull requests at least once. In

their approach, the experience of a reviewer is determined by the sum of all similarity

scores from pull requests on which he or she has made a comment. The evaluation of

this approach was carried out over 10 commercial projects and 6 open-source projects,

totaling 17,115 pull requests. The results indicated that the approach recommended code

reviewers with accuracy of 85% to 92%, precision of 83% to 86%, and recall of 79% to

81%.

The recommendations provided by the aforementioned approaches mostly replicate

historical patterns of software projects. They work as black boxes, not allowing a deeper

analytical comprehension of the factors that motivate each speci�c recommendation. Un-

covering the reasoning behind the recommendation is important to reveal possible con�icts

of interest among requesters and reviewers, unbalanced workloads among reviewers, and

regions of the codebase with few experts, representing a risk in face of turnover.

6.3 Materials and Methods

In order to answer the research questions laid out in Section 6.1, we adopted the extraction

of association rules as indicate in Chapter 1. For some of the research questions, we

performed additional analyses to assist in the comprehension of the obtained results. The

6.3 Materials and Methods 74

paragraphs in the following describe the analyses that were made to answer each of the

research questions.

RQ1 � Do the pull request characteristics in�uence on the reviewer as-

signment? In order to answer this question, we mined association rules that contain

attributes such as the number of commits and the number of modi�ed �les in the pull

requests. Apart from performing an evaluation of some association rules, we carried out

a qualitative analysis to better comprehend the results. Section 6.4.1 presents the results

of these analyses.

RQ2 - Does the requester pro�le in�uence on the reviewer assignment? We

detected relationships between the lack of experience of the requester and the assignment

of the reviewer. Complementarily, we explored rules considering the requester's a�liation

with the project, that is, whether he or she is an external collaborator or a core team

member. The results are discussed in Section 6.4.2.

RQ3 - Does the social relationship between requester and reviewer in�u-

ence on the reviewer assignment? In order to answer this research question, we took

into consideration rules with attributes that allow the detection of the social relationship,

via GitHub, between requester and reviewer. First, we observed whether the reviewer

follows the requester. We also did a deeper analysis by mining rules involving speci�c

developers from each project. The results are discussed in Section 6.4.3.

RQ4 - Does the location of a pull request in�uence on the reviewer assign-

ment? We mined rules with respect to the directories where the changed artifacts were

stored. However, once the number of subdirectories is large, we preprocessed the data by

using an attribute selection strategy based on the Information Gain measure [31], which

evaluates the relevance of an attribute by measuring its information gain related to the

target attribute. Subsequently, we selected the 10 most selective directories concerning

the reviewer. Complementarily, we also investigated whether the reviewer is more likely

to analyze pull requests that contain artifacts recently modi�ed by him or her. Section

6.4.4 presents the results of these analyses.

We randomly selected three popular projects from 30 projects in GitHub, namely:

Docker1, Rails2, and Kodi3. We assumed that the number of pull requests is a strong

indication that the project adopts pull requests as a process for systematization of in-

1https://www.docker.com/
2http://rubyonrails.org/
3https://kodi.tv/

6.4 Results and Discussion 75

ternal/external contributions. We extracted 22,523 pull requests (excluding self-analyzed

pull requests) out of these projects. Table 6.1 shows some characteristics of these projects:

Number of pull requests, acceptance rate, number of distinct reviewers, number of dis-

tinct requesters, number of pull requests �led by core team members, and number of pull

requests �led by external developers. Once the reviewer attribute has distinct values in

each project, i.e., each project has di�erent reviewers, we extracted the rules individually

for each project. In this study, we used attributes of di�erent dimensions (physical, so-

cial, location) as an attempt to understand the di�erent factors that might in�uence on

the reviewer assignment. In this study we mining rules with minimum support of 0.1%,

given the large number of instances of the dataset and the reduced number of reviewers.

In addition, we have de�ned a minimum con�dence of 5%. We use these values to get

as many rules as possible about the nature of the pull request paradigm. In this way,

we were able to extract a large number of rules and ensure that they did not happen at

random. As mentioned before, our studies we conducted experiments with most of the

attributes extracted via GHTorrent. However, only a small set of them revealed rules

with appropriate semantics in this scenario. The attributes discussed in the analysis are

presented in Table 6.2. In order to transform numerical attributes into discrete ones,

we use the discretization by simple binning, ignoring the class attribute to be de�ned,

but considering frequency distribution. All labels have statistical representation in the

database.

Table 6.1: Characteristics of the analyzed projects

Caracteristics
Projects

Docker Rails Kodi
Pull Requests 6,979 11,728 3,816

Acceptance Rate (%) 84.1 75.0 84.0
Di�erent Reviewers 45 44 61
Di�erent Requesters 1,437 2,934 560

PRs submitted by core team members 248 569 70
PRs submitted by external members 6,731 11,159 3,748

6.4 Results and Discussion

In this Section, we discuss the results of our analyses and present answers to the research

questions de�ned in Section 6.3. Section 6.4.1 presents a discussion on pull request charac-

teristics that in�uence on the reviewers assignment. Section 6.4.2 brings the discussion on

factors related to the requester pro�le in�uencing the reviewers assignment. Section 6.4.3

6.4 Results and Discussion 76

Table 6.2: Attributes used in this study.
Attribute Description

commits_pull
the number of commits in the pull request, with values:
"1 commit"; "some commits": 2 to 4 commits; and "many commits":
more than 4 commits.

developer_type whether the requester is internal or external.

directory_names
represents a set of 10 attributes, where each is the name of a
directory. The value "true" indicates that a �le from that
directory was changed, the value "false" indicates otherwise.

�les_changed
the number of added, removed, or edited �les, with values: "1 �le";
"some �les": 2 to 4 �les; and "many �les": more than 4 �les.

�rst_pull whether the pull request is the �rst performed by the requester.

recent_committer
the name of the developer responsible for the larger number of
commits in the �les changed by the pull request in the last
seven days.

requester_pull the name of the developer that �led the pull request.
reviewer_follows_

requester
whether the reviewer follows the requester on GitHub.

reviewer_pull the name of the developer responsible for reviewing the pull request.

status_pull
the �nal status of the pull request: "accepted" (merged) or
"rejected" (closed).

presents the in�uence of social factors on the assignment of reviewers for pull requests.

Then, Section 6.4.4 brings the results on how the reviewers assignment can be in�uenced

by the location of the changes in a pull request.

6.4.1 RQ 6.1 � Do the pull request characteristics in�uence on
the reviewer assignment?

Some characteristics of the pull requests, such as the number of changed �les and the

number of commits, are known by the time of its submission. Although these character-

istics can change during the review process, they may indicate, someway, how complex

the review process will be since the pull request submission.

Our results show that the number of commits associated with pull requests may in-

�uence the reviewer assignment. Table 6.3 displays association rules (in decreasing order

of Lift values) of the type commits_pull = "1 commit" → reviewer_pull extracted from

projects Docker, Rails, and Kodi. Rule 1 indicates that the reviewer's chance of being

"runcom" increases in 22% when a pull request has only "1 commit". The rules evidence

that, in all of the investigated projects, certain reviewers have higher chances of analyzing

pull requests with only one commit, that is, theoretically less complex. Conversely, this

6.4 Results and Discussion 77

does not necessarily mean that, among all the reviewers, only they analyze simpler con-

tributions, but the chances are higher for those cases. When we analyze the con�dence

values of the reverse of each of the rules (Y → X), we note that they are signi�cantly

larger than the ones of type X → Y. Thus, we conclude that some reviewers opt to review

pull requests with a single commit. For instance, Rule 7 implies that 100% of the pull

requests reviewed by dmathieu possess a sole commit. Similar knowledge can be inferred

from the analysis of the remainder of the rules.

Table 6.3: Association rules of type commits_pull = "1 commit" → reviewer_pull in
Docker, Rails, and Kodi projects.

Project Consequent
Sup
(%)

Conf
X → Y
(%)

Conf
Y → X
(%)

Lift

1 Docker "runcom" 1.0 0.8 97.2 1.22
2 Docker "ostezer' 1.0 0.9 96.3 1.21
3 Kodi "ace20022" 0.4 0.5 82.4 1.21
4 Kodi "Jalle19" 0.5 0.7 86.4 1.19
5 Docker "thaJeztah" 2.0 2.8 93.5 1.18
6 Kodi "mkortstieg" 3.0 5.1 84.8 1.17
7 Rails "dmathieu" 0.1 0.1 100.0 1.15
8 Rails "seuros" 1.0 1.3 98.5 1.14
9 Rails "schneems" 0.5 0.6 98.4 1.14

When we analyze rules in which commits_pull = "many commits" is the antecedent,

we also verify that there is a correlation with the reviewers. Rules in Table 6.4 illustrate

this pattern. In projects Rails, Docker, and Kodi, when a pull request has more than 4

commits, the chances of being reviewed by certain reviewers increase, with a variation

in the strength of the in�uence in each case. For example, the Lift=2.91 indicates that

reviewer's chance of being "shykes" increases in 191% when a pull request has many

commits. Unlike the previous conclusion, the analysis of the con�dence values does not

allow a generalization of the in�uence of X on Y or vice-versa. The di�erences between

the con�dence values are not as signi�cant, with the exception of Rules 6, 7, 8, and 9, in

which a large amount of commits seems to in�uence the reviewer attribute.

Despite the existence of a good practice in the Rails project suggesting the "squashing

of commits"4, pull requests with several commits are also submitted � approximately

1.85% of the total. With that said, in order to identify potential in�uence factors on

the reviewers assignment for more complex contributions, we carried out a qualitative

analysis.

4http://edgeguides.rubyonrails.org/contributing_to_ruby_on_rails.html#iterate-as-necessary

6.4 Results and Discussion 78

Table 6.4: Association rules of type commits_pull = "many commits" → reviewer_pull
in Docker, Rails, and Kodi projects.

Project Consequent
Sup
(%)

Conf
X → Y
(%)

Conf
Y → X
(%)

Lift

1 Docker "shykes" 0.6 14.4 12.2 2.91
2 Docker "creack" 0.6 13.7 9.2 2.20
3 Docker "unclejack" 0.2 5.8 7.4 1.78
4 Kodi "davilla" 0.4 5.1 10.2 1.43
5 Rails "tenderlove" 0.1 7.4 2.5 1.36
6 Kodi "jmarshallnz" 2.0 27.1 9.5 1.32
7 Rails "rafaelfranca" 0.6 34.3 2.2 1.17
8 Kodi "Martijnkaijser" 2.0 28.6 8.3 1.16
9 Rail "josevalim" 0.2 13.0 2.1 1.12

We assumed the hypothesis that developers with greater activity5 in the repository

could review more complex contributions, given their experience and knowledge in the

project. Rules 5, 7, and 9 in Table 6.4 showed that reviewers "tenderlove", "rafaelfranca",

and "josevalim" are the ones with the highest chances of analyzing pull requests with

several commits in project Rails. Our qualitative analysis evidenced that these reviewers

are the three developers with the most commits in project Rails during the aforementioned

period, as shown in Figure 6.1. This analysis provides initial evidences to our hypothesis.

We deem this result very signi�cant, since project Rails has 3,184 developers who had

already committed to the repository.

Figure 6.1: Top-3 developers with more commits in Rails project.

5We measured activity by the number of commits �led by developers throughout their time of partici-
pation in the project until the date in which the data was collected � 09/03/2015 for Docker, 09/26/2015
for Kodi, and 09/02/2015 for Rails

6.4 Results and Discussion 79

We also performed the same qualitative analysis on projects Docker and Kodi, in

order to explain why some reviewers have higher chances of analyzing pull requests with

many commits. On Docker, the most likely pull request reviewers are "shykes", "creack",

and "unclejack". These three occupy, respectively, positions 1, 3, and 12 in the rank of

developers with the highest amount of commits, within a total of 1,572 committers. This

result is also deemed rather relevant, if we take into account that these three reviewers

are among the 1% developers who have performed the most commits to the repository.

In project Kodi, the reviewers "davilla" and "Martijnkaijser" occupy positions 3 and

12, respectively, in the rank of committers, from a total of 503 developers; that is, they

are among the 3% most active developers in terms of number of commits. We could not

determine the position of reviewer "jmarshallnz" ; there may have been a username change,

arguably. All in all, the qualitative analysis carried out on projects Docker and Kodi also

con�rmed that experience and knowledge in the project may be factors of in�uence on

the assignment of developers to review more complex pull requests.

In a similar fashion to the number of commits, the amount of �les changed by a pull

request is a characteristic that may indicate how complex its review process will be, thus

becoming an in�uence factor on the reviewer assignment. We extracted rules of type

�les_changed = "1 �le" → reviewer_pull from project Rails, Docker, and Kodi, which

are showcased in Table 6.5 (rules are ordered by Lift values in decreasing order).

Table 6.5: Association rules of type �les_changed = "1 �le" → reviewer_pull in Docker,
Rails, and Kodi projects.

Project Consequent
Sup
(%)

Conf
X → Y
(%)

Conf
Y → X
(%)

Lift

1 Rails "claudiob" 0.3 0.5 91.4 1.88
2 Rails "zzak" 0.2 3.8 88.5 1.82
3 Rails "seuros" 0.1 2.0 87.7 1.81
4 Kodi "alanwww1" 1.0 2.4 81.8 1.64
5 Docker "mzdaniel" 0.4 0.8 82.4 1.62
6 Docker "ostezer" 0.6 1.2 77.8 1.53
7 Docker "jamtur01" 4.0 8.4 74.5 1.46
8 Kodi "Jalle19" 0.4 0.8 72.7 1.46
9 Kodi "mkortstiege" 2.0 5.5 63.2 1.27

Results suggest that some developers have higher chances to analyze pull requests

with a single modi�ed �le. On project Rails, for instance, the chances of contributions

displaying such characteristic being analyzed by reviewers "caludiob", "zzak", and "seu-

ros" are raised in 88% (Lift=1.88), 82% (Lift=1.82), and 81% (Lift=1.81), respectively.

6.4 Results and Discussion 80

A similar pattern can be inferred in projects Docker and Kodi. Rules in which the occur-

rence of the antecedent �les_changed = "1 �le" increases the chances of assigning certain

reviewers (Rules 4 through 9) were extracted from both projects.

Assuming that having just one changed �le may imply low complexity in the review

of the pull requests, we also performed a rule con�dence analysis for this scenario. We

can observe in Table 6.5 that, in every case, the rule con�dence in the direction Y → X

is signi�cantly larger than in X → Y, evidencing that some reviewers opt to review less

complex contributions in terms of number of changed �les.

We also extracted rules of the type �les_changed = "many �les" → reviewer_pull,

shown in Table 6.6. We aim at verifying whether pull requests having more than four

modi�ed �les are assigned to speci�c developers. In this analysis, we also uncovered rules

with elevated Lift values, implying that some reviewers have greater chances of analyzing

pull requests with several �les changed � Rules 1 through 9 evidence that.

Table 6.6: Association rules of type �les_changed = "many �les" → reviewer_pull in
Docker, Rails, and Kodi projects.

Project Consequent
Sup
(%)

Conf
X → Y
(%)

Conf
Y → X
(%)

Lift

1 Rails "dhh" 0.2 2.2 27.1 2.43
2 Kodi "xhaggi" 0.4 1.9 42.9 2.06
3 Docker "icecrime" 1.0 6.9 34.8 1.79
4 Rails "jeremy" 0.4 4.4 18.3 1.64
5 Rails "sgrif" 0.3 3.4 18.1 1.62
6 Docker "tiborvass" 1.0 7.1 28.0 1.44
7 Kodi "davilla" 1.0 4.8 27.7 1.34
8 Kodi "wsoltys" 0.3 1.5 26.7 1.28
9 Docker "shykes" 1.0 6.2 24.5 1.25

6.4.2 RQ 6.2 - Does the requester pro�le in�uence on the reviewer
assignment?

We mined rules involving characteristics from the requester pro�le herein. Then, we

analyzed the in�uence of those characteristics on the reviewer assignment. The �rst

factor that we tackled was the requesters' lack of experience with pull-based develop-

ment. We consider to be inexperienced a developer who has not contributed via pull

requests previously in a given project, that is, we extracted rules in which the attribute

�rst_pull = true is the antecedent and reviewer_pull is the consequent. Table 6.7 dis-

6.4 Results and Discussion 81

RQ 6.1 - Do the pull request characteristics in�uence on the reviewer assignment?
Answer: Some reviewers have preference for pull requests with few commits and few

changed �les, while others tend to analyze more complex contributions.
Relevance: Lima Júnior et al. [11] and Jiang et al. [12] employed some pull request
characteristics as attributes to recommend reviewers. However, as any black-box

approach, they did not indicate the extent of the in�uence of these attributes on the
assignment of reviewers. Moreover, they did not qualitatively investigate such

in�uence. Yu et al. [36, 10], Jiang et al [13], and Rahman et al. [14] did not consider
pull request characteristics as predictive attributes.

Implications: Our results indicate that an unbalancing workload among reviewers
is likely occurring in some projects, as some reviewers always handle simple

pull requests while others frequently handle more complex ones. These results may
also indicate unbalanced skill distribution among developers, as just few reviewers
handle most of the di�cult pull requests. Strictly following recommendations

provided by machine learning tools would possibly reinforce such undesired scenarios.

plays the results of this analysis. The rules allow the conclusion that some reviewers

tend to evaluate pull requests submitted by inexperienced developers. Rules 1 and 2, for

instance, show that when �rst_pull = true for a requester in Docker project, reviewers

"kencochrane" and "mzdaniel" have the chances of reviewing such contributions increased

in 155% (Lift = 2.55) and 145% (Lift = 2.45), respectively. Even though the table is

sorted by Lift in decreasing order, it is noticeable that this pattern is also present in the

other projects.

Table 6.7: Association rules of type �rst_pull = "true" → reviewer_pull in Docker,
Rails, and Kodi projects.

Project Consequent
Sup
(%)

Conf
X → Y

Conf
Y → X

Lift

1 Docker "kencochrane" 0.3 1.1 58.1 2.55
2 Docker "mzdaniel" 0.3 1.2 56.0 2.45
3 Rails "laurocaetano" 0.1 0.4 55.6 1.86
4 Docker "jamtur01" 2.4 10.6 42.2 1.85
5 Rails "arunagw" 0.5 1.7 53.2 1.79
6 Kodi "alanwww1" 0.4 2.5 25.5 1.71
7 Kodi "Memphiz" 0.8 5.3 23.3 1.56
8 Rails "steveklabnik" 0.8 2.6 45.6 1.53
9 Kodi "Montellese" 0.9 5.8 22.9 1.52

We additionally carried out a con�dence analysis to evaluate the direction of the

correlation between �rst_pull = "true" and reviewer_pull. In some of the cases shown

on Table 6.7, the con�dence values of rules of the type Y→ X are signi�cantly superior to

those of the type X→ Y. Therefore, we can conclude that some reviewers have a preference

for the review of contributions made by inexperienced requesters, as observable in Rules

6.4 Results and Discussion 82

1, 2, 3, and 5.

We also extracted rules of the type �rst_pull = "false" → reviewer_pull with the

intent of verifying whether certain reviewers have preference for analyzing pull requests

from requesters who have previously contributed. Figure 6.2 shows the Lift values for

the rules extracted from our project corpus, in which the identi�ers (#1, #2, and #3)

represent the rules having the highest values of Lift for each project. It is noticeable

that despite the existence of rules with Lift greater than 1, the chances of reviewer_pull

occurring does not signi�cantly increase when �rst_pull = "false" occurs. As a result,

we can draw the conclusion that requesters who exhibit previous experience with the

paradigm do not in�uence much on the reviewers assignment.

Figure 6.2: Lifts of the rules of type: �rst_pull = "false" → reviewer_pull.

Another feature related to the requester's pro�le that we investigate herein is whether

he or she is an external developer or a core team member. In general, pull requests

are submitted by developers who are not part of the core team (i.e., external), but who

still desire to contribute somehow. Nonetheless, this mechanism may also aid in the

systematization and integration of code implemented by core team members, so that

other members are able to peer review their contributions prior to the integration in the

repository. In the light of that, we conducted the extraction of association rules of the

form developer_type → reviewer_pull from projects Docker, Rails, and Kodi. We �rst

extracted rules wherein developer_type = core team is the antecedent. Table 6.8 shows

the main extracted rules, sorted by Lift. The results indicate that, in some projects, there

are reviewers who have higher chances of evaluating pull requests submitted by members

of the core team. In Docker, for instance, the chances of reviewer "metalivedec" being

assigned to pull requests �led by core team members is increased in 71% (Lift=1.71),

whereas in Rails the most likely reviewer of pull requests submitted by core team members

6.4 Results and Discussion 83

is "tenderlove", with chances increased in 64% (Lift=1.64). In this analysis, we could not

extract rules from project Kodi, considering the minimum support of 0.3%.

Table 6.8: Association rules of type developer_type = "core team" → reviewer_pull in
Docker and Rails.

Project Consequent
Sup
(%)

Conf
X → Y
(%)

Conf
Y → X
(%)

Lift

1 Docker "metalivedec" 0.3 7.3 6.1 1.71
2 Docker "SvenDowideit" 0.3 8.1 6.0 1.69
3 Rails "tenderlove" 0.4 9.0 8.0 1.64
4 Rails "chancancore" 0.1 2.1 7.9 1.63
5 Rails "jonleigthon" 0.1 2.6 6.4 1.33
6 Docker "shykes" 0.2 6.0 4.3 1.22

Despite knowing that external members submit the majority of pull requests, we

mined rules with the intent of verifying whether there exist developers with higher chances

of reviewing contributions made by this type of requesters. Figure 6.3 displays Lift values

for rules of the form developer_type = "external" → reviewer_pull in projects Docker,

Rails, and Kodi. The identi�ers (#1, #2, and #3) indicate the rules with the highest

value of Lift within the projects. Unlike the �ndings when the requester is a core team

member, if he or she is external to the project, the chances of having speci�c reviewers

assigned to his or her pull request do not increase signi�cantly.

Figure 6.3: Lifts of the rules of type: developer_type = "external" → reviewer_pull.

6.4 Results and Discussion 84

RQ 6.2 - Does the requester pro�le in�uence on the reviewer assignment?
Answer: Some reviewers frequently (up to 58% of the times) analyze pull
requests �led by inexperienced requesters. Other reviewers have more

chances (up to 71% of the times) to analyze pull requests �led by core team members.
Relevance: As far as we know, our study is the �rst to bring forth results that

indicate the in�uence of requester pro�le characteristics on the reviewer assignment.
Previous work did not considered the requester inexperience and developer

type as possible reasons to in�uence assignment of reviewers.
Implications: Our results indicate that some reviewers are in charge of assessing
the contributions of newcomers. This task is fundamental in open-source projects,
as reception issues [38] are key barriers for onboarding newcomers in a project.
Moreover, other reviewers focus on analyzing internal pull requests, �led by core

team members. These reviewers are not gatekeepers, as all core team members already
have push privileges to the repository. They act as quality assurance

for the project. In both cases, managers should be aware of who is performing each
task, as inappropriate assignments may frighten newcomers or jeopardize the harmony

of the core team.

6.4.3 RQ 6.3 - Does the social relationship between requester and
reviewer in�uence on the reviewer assignment?

Repository hosting tools such as GitHub provides social networking resources, allowing

developers to have followers and social relationships among them. Our study also in-

vestigated the impact of some social factors on the reviewer assignment to analyze pull

requests.

We investigated the relationship between the reviewer and the requester as a �rst

social factor. We extracted rules of the form reviewer_follow_requester = "true" →
reviewer_pull, that is, rules that indicate the increase of the chances of a given reviewer

assignment when he or she follows the requester on GitHub. Table 6.9 shows the rules

and their interest measures on projects Docker, Rails, and Kodi. The results suggest that

such pattern not only exists, but is also very prominent. This table illustrates only the

three most signi�cant rules for each project � with the exception of Docker, which has

only two rules whose Lift values surpassed the 1.0 threshold. For example, Rule 1 shows

that in project Kodi, when "fritsch" follows the requester, the chances of having him as

reviewer increases 26 times (Lift=26.00). Rules 2 through 8 imply the same pattern, but

with smaller values of Lift.

Based on the hypothesis that social relationships may in�uence on the reviewer as-

signment, we seek to determine whether pull requests submitted by a given requester has

higher chances of being analyzed by speci�c reviewers. For that, we explore the social

6.4 Results and Discussion 85

Table 6.9: Association rules of type reviewer_follow_requester = "true" → reviewer_pull
in Docker, Rails, and Kodi projects.

Project Consequent
Sup
(%)

Conf
X → Y
(%)

Lift

1 Kodi "fritsch" 0.8 41.6 26.00
2 Docker "unclejack" 1.8 35.1 10.73
3 Rails "guilleiguaran" 0.8 31.7 10.48
4 Kodi "opdenkamp" 0.47 23.4 6.19
5 Rails "arthurnn" 0.1 5.4 4.84
6 Rails "robin850" 0.1 3.8 4.10
7 Docker "vieux" 1.7 32.6 4.05
8 Kodi "LK4D4" 0.8 7.9 2.36

relationship factor more closely, with a �ner granularity in the pull request context. To

that e�ect, we mined rules of the form requester_pull → reviewer_pull from projects

Docker, Rails, and Kodi.

Table 6.10 shows the mined rules and their interest measurements wherein the name of

requester_pull is the antecedent and reviewer_pull is the consequent. Results suggest that

the requester imposes a strong in�uence on the reviewer assignment. For instance, Rule 1

indicates that, on project Kodi, when "CutSickAss" sends a pull request, the chances of

it being reviewed by "alanwww1" increase by more than 60 times (Lift=60.13). Besides,

even though "alanwww1" reviews pull requests by several requesters, he is responsible for

reviewing 86.7% of the pull requests �led by "CutSickAss".

Table 6.10: Association rules of type requester_pull → reviewer_pull in Docker, Rails,
and Kodi projects.

Project Antecedent Consequent
Sup
(%)

Conf
X→Y
(%)

Lift

1 Kodi "CutSickAss" "alanwww1" 0.3 86.7 60.13
2 Rails "tomkadwill" "zzak" 0.1 61.9 29.75
3 Rails "roankjangir47" "kaspth" 0.1 30.0 25.45
4 Kodi "fetzerch" "opdenkamp" 0.4 75.0 19.87
5 Kodi "phil65" "ronie" 0.3 38.9 19.52
6 Rails "robertomiranda" "guilleiguaran" 0.2 55.1 18.20
7 Docker "moxiegirl" "thaJeztah" 0.2 39.5 16.50
8 Docker "SvenDowideit" "fredlf" 1.0 22.9 12.36
9 Docker "mzdaniel" "shykes" 0.2 50.0 10.11

Similar patterns to the one revealed by Rule 1 are present in all three projects, as

observed in the remaining rules. When we analyze the three most signi�cant rules from

6.4 Results and Discussion 86

each project, the lowest Lift values found were 10.11 (Rule 9), 18.20 (Rule 6), and 19.52

(Rule 5) on projects Docker, Rails, and Kodi, respectively. This result becomes even more

relevant if we take into consideration the large number of rules extracted from projects

with signi�cant positive Lift values. For instance, from project Docker, we mined 78

rules of the form requester_pull → reviewer_pull with Lift greater than or equal to 1.10.

Similarly, the number of rules with Lift values greater than or equal to 1.10 was 101 in

project Rails and 54 in Kodi.

RQ 6.3 - Does the social relationship between requester and reviewer in�uence on the
reviewer assignment?

Answer: The chances of having some reviewers analyzing pull requests increases
(in up to 26 times) when the contributions are �led by requesters of their acquaintance.
Other reviewers have their chances to analyze pull requests increased (in up to 60 times)

when pull requests are �led by speci�c requesters.
Relevance: Jiang et al. [12] was the only author to adopt the correlation of personal

relationship and reviewer assignment for recommending reviewer. However,
our results allow a quanti�cation of the extent of such pattern by means of metrics such

as support, con�dence, and Lift. The studies in [10, 11, 13, 14, 36] did not consider
these factors as possible reasons to in�uence assignment of reviewers.

Implications: Although in some cases requesters and reviewers may have similar
technical background, in other cases the social factor may indicate a con�ict of interest.
Managers could use this insight to alternate the paring of requesters and reviewers
from time to time to mitigate con�icts of interest and disseminate knowledge.

6.4.4 RQ 6.4 - Does the location of a pull request in�uence on
the reviewer assignment?

As previously mentioned, pull requests are employed in the context of collaborative soft-

ware development using version control systems. Even though several developers may

be able to change di�erent �les in a project, a number of them work more on some �les

than others, generally. As a result, an ownership pro�le takes shape over such �les. Fur-

thermore, directories behave in a similar way, as software repositories allow the storage of

�les organized according to a hierarchical directory structure. Consequently, the directory

wherein a �le is stored determines its location. In this sense, we mined rules taking into

account the in�uence of location in terms of directories.

We �rst extracted rules of the form recent_committer → reviewer_pull, wherein

the antecedent's and the consequent's labels are the same. With this analysis we aim

at verifying whether having a developer committed recently on the �les of directories

manipulated in a pull request increases the chances of he or she becoming the reviewer of

6.4 Results and Discussion 87

such contribution. Figure 6.4 showcases the Lift values of the ten most signi�cant rules of

this form in project Docker. Results con�rm the existence of this pattern, that is, when

a developer was the most active, in terms of commits, on the changed �les present in

directories in a pull request during the previous week, he or she has greater chances to

become the reviewer. In project Docker, for example, the chances of having "moxiegirl"

as reviewer of pull requests increases in 8 times (Lift=9.03) when some �les modi�ed in

the are within directories contributions have been modi�ed by her recently. This pattern

is observable, with varying degrees of intensity, to other developers of project Docker.

Figure 6.4: Lifts of the rules of type: recent_commiter → reviewer_pull in Docker
project.

Aiming at con�rming the existence of this pattern in the other projects, we repeated

the experiment and attested its existence. Figures 6.5 and 6.6 show Lift values for rules

extracted from projects Rails and Kodi, respectively. Rules with even stronger Lift were

encountered in both projects. For instance, in Rails, the rule recent_committer = "jon-

leighton" → reviewer_pull = "jonleighton" has a Lift value of 14.4. As to Kodi, the

strongest rule is that which involves developer huceke, with a Lift value of 21.33.

We also investigated whether the location of the pull request also a�ects the reviewer

assignment. As previously mentioned, we consider the location of the pull request as the

paths of directories within the repository wherein modi�ed �les are stored. Therefore,

we perform the rules extraction in project Rails. By extracting rules with the attribute

location we found that this factor exerts in�uence on reviewer_pull. Table 6.11 shows rules

of the form directory_names → reviewer_pull and unravels the knowledge extracted

based on the correlation of these factors.

Though pull request location is not voluntarily determined by the requester, but by

the need of a contribution in itself, the results allow for the conclusion that, depending

6.5 Threats to Validity 88

Figure 6.5: Lifts of the rules of type: recent_commiter → reviewer_pull in Rails project.

Figure 6.6: Lifts of the rules of type: recent_commiter → reviewer_pull in Kodi project.

on the location of the change, the contributions may be led to analysis by speci�c re-

viewers, as seen in Table 6.11. For instance, pull requests which manipulate �les located

in the directory "...guides/source" are more likely to be analyzed by reviewers "zzak"

and "senny", according to the observations made from Rules 1 and 2, respectively. Pull

requests at this location are 346% (Lift=4.46) more likely to be analyzed by "zzak". This

location increases the chances of senny in 83% (lift=1.83). Rules 3, 4, 5, and 6 evidence

other cases in which locality in�uences the reviewer on project Rails.

6.5 Threats to Validity

Although we have taken care to reduce the threats to validity of our study, a few un-

controlled factors may have in�uenced the observed results. Regarding internal validity,

6.5 Threats to Validity 89

Table 6.11: Association rules of type directory_names → reviewer_pull in Rails project.

Antecedent Consequent
Sup
(%)

Conf
X→Y
(%)

Lift

1
directory_names = "...

guides/source"
"zzak" 1.1 9.3 4.46

2
directory_names = "...

guides/source"
"senny" 1.7 13.9 1.83

3
directory_names = "...

activerecord/
test/cases"

"tenderlove" 1.2 9.8 1.79

4
directory_names = "...

activerecord"
"senny" 1.1 12.7 1.68

5
directory_names = "...

activerecord"
"rafaelfranca" 3.5 41.5 1.42

6
directory_names = "...
activerecord/test/cases"

"rafaelfranca" 4.3 35.3 1.21

RQ 6.4 - Does the location of a pull request in�uence on the reviewer assignment?
Answer: The chances of having some reviewers analyzing pull requests increases

(in up to 21 times) when the pull requests change �les in directories that the reviewers
have recently changed. Other reviewers have their chances to analyze pull requests

increased (almost to 4 times) when pull requests change �les from speci�c directories.
Relevance: Yu et al. [36], Ying et al. [13], Rahman et al. [14] and Jiang et al. [12]

take into account the locality of artifacts and state that it is a prominent predictor for
reviewer. Notwithstanding, our results quantify the relevance of previous knowledge

(in terms of recent commits or location) in the assignment of reviewers to pull requests.
Implications: Our results point out regions of the codebase with few experts.

This represents a major risk in face of turnover, as few other developers would be
able to assimilate the workload of a leaving developer.

our corpus, comprised of three projects, led to some association rules with low support

values, but with a relevant number of rules. However, we discarded the possibility that

these patterns might have arisen accidentally, since we identi�ed a set of patterns whose

frequent occurrence demonstrates the unlikeliness of appearing by chance. Even so, we

acknowledge the need of corroboration of all obtained results with a study involving a

much larger number of projects.

Finally, regarding external validity, our capability to generalize observations made

throughout this study is restricted to projects with similar characteristics: all projects

are open-source and have a certain degree of maturity regarding the use of pull requests.

Therefore, we cannot generalize our results to industrial projects or even open-source

ones with diverging characteristics. Future studies must be carried out over projects in

6.6 Final Remarks 90

di�erent characteristics in order to deal with this threat.

6.6 Final Remarks

Herein we presented a study on the factors that in�uence the developer assignment to

review pull requests in open-source projects. The knowledge attained by our results

reveals patterns that may provide insights both to recommendation tool developers and

project managers. These results may explain in�uence factors in unbalanced workloads

among di�erent reviewers. Moreover, the results may indicate regions of the codebase

with few experts, representing a risk in face of turnover.

In particular, the results allow the following conclusions: (i) factors such as number of

commits and �les in the pull request may in�uence the reviewer assignment; for instance,

some reviewers have preference for pull requests with few commits and �les, in some cases

with con�dence ranging from 82% to 100%; (ii) factors regarding the requester's pro�le

may in�uence on reviewer assignment; for instance, some reviewers frequently (up to 58%

of the times) analyze pull requests �led by inexperienced requesters. Other reviewers even

have their chances increased in 71% to evaluating pull requests �led by other core team

members; (iii) the social relationship between requester and reviewer exerts in�uence on

pull request review process, that is, when the reviewer knows the requester, his or her

chances of evaluating such contributions may increase 26 times, in some cases. In addition,

it indicates that depending on who submits the pull request, the chances of having some

reviewer analyzing it increases (up to 60 times); and (iv) factors such as ownership and

locality of pull request are important predictors for the reviewer, that is, we found cases

where pull requests that changed �les in directories that have been recently modi�ed

by a given reviewer increased his chances of evaluating this pull requests in 21 times. In

addition, we also noticed that the location of �les changed by the pull request can increase

(in almost 4 times) the chances of it being analyzed by speci�c reviewers.

Chapter 7

Conclusion

This thesis presented a series of studies about the nature of the pull-based development

paradigm. After collecting data from software repositories, we extracted patterns to aid in

the characterization of the collaboration via pull requests. This characterization focused

on four di�erent perspectives: acceptance, rejection, lifetime, and reviewers assignment.

Previous studies have been proposed in this direction, however they used black-box ap-

proaches and have neglected to explore some important and useful aspects, namely: the

identi�cation of characteristics with di�erent dimensions (physical, social and metadata)

which are in�uent in an isolated or conjoint fashion; the extent and strength of the in�u-

ence of such characteristics; and a qualitative analysis to explain the occurrence of certain

patterns.

7.1 Main Contributions

Our studies are based on an extensive analysis of pull requests, and the obtained results

allow a clear understanding of their nature. As a component of this work, we identi�ed

the most relevant related work and executed several experiments to discover and analyze

intrinsic matters regarding pull requests. In this sense, the main contributions of this

thesis are:

1) The identi�cation of factors that in�uence on the acceptance of pull

requests in open-source projects � We explored 61,592 pull requests from 72 projects

and identi�ed factors that increase the chances of acceptance. Being aware of such factors

is important to requesters and reviewers. The reviewers might identify trends in the

collaborating community and establish contribution policies to prioritize the evaluation

of pull requests with higher chances of acceptance. As for requesters, they may be able to

7.1 Main Contributions 92

direct their actions in order to maximize the chances of acceptance of their contributions.

Moreover, it allows the requesters to be more productive and e�cient, since they attain

higher chances of having their work accepted. Our main �ndings are:

a) Pull requests coded in certain programming languages, tend to have increased

chances of acceptance such as Ruby (in up to 11%), C# (in up to 26%), Scala (in up to

35%), and Go (in up to 51%);

b) Physical features, such as the amount of commits present in the pull request, may

in�uence on the acceptance. Pull requests with just one commit have the chances of

acceptance increased in 7%;

c) The requester's lack of experience reduces the chances of acceptance in up to

32%, whereas pull requests submitted by core team members have 35% more chances of

acceptance.

2) The identi�cation of factors that in�uence on the rejection of pull re-

quests submitted by core team members in open-source projects with high

acceptance rates -� We extracted association rules from 20,140 pull requests of 7 soft-

ware projects featuring high acceptance rates, taking into account only contributions that

had been submitted by core team members. The features that in�uence the rejection

reveal patterns to be avoided by core team members and, as a result, improve the quality

of internal contribution activities. Our main �ndings are:

a) There is a correlation between the rejection of pull requests and their physical

features. A large number of commits in a pull request raises the chances of rejection in

51%, while a large number of �les raises in 44%;

b) The lack of experience of a core team member who submits a pull request increase

the chances of rejection in 238%. Besides, pull requests having comments during their

evaluation process increase the chances of rejection in 13%;

c) The location of the modi�ed artifacts in�uences on the rejection of pull requests.

In some cases, this may represent in up to 261% more chances of rejection. Moreover, the

project contribution policies also a�ect the chances of rejection;

d) We also observed a joint in�uence of such factors on the chances of rejection.

Patterns which increase in up to 623% the chances of rejection were evidenced when a

pull request is the �rst submitted by a developer, has a large number of commits, and

modi�es a sensitive part of the code.

7.1 Main Contributions 93

3) The identi�cation of factors that in�uence on the lifetime of pull re-

quests in open-source projects -� We collected 97,463 pull requests from 30 software

projects and discovered patterns that indicate what in�uences on the pull request lifetime

in terms of socio-technical aspects, external contributors, and the contribution process.

Comprehending what in�uences the pull request lifetime is important because extended

delays in the analysis of pull requests with signi�cant chances of being accepted are not

desired, since such delays might a�ect the involvement of the requester in the collabora-

tion process. Moreover, these delays are negative for the introduction of bug �xes and

features to the software product. Furthermore, our �ndings disclose to project managers

the need for an adequate assignment of pull request to reviewers in order to decrease

their lifetime. This may increase the team e�ciency, once the time saved can be used to

complete other tasks. Our main �ndings are:

a) There is a correlation between pull request lifetime and its acceptance/rejection,

evidencing that contributions that have been quickly analyzed tend to be integrated (the

chances in up to 11% increase), and those whose lifetime is long tend to be rejected (the

chances in up to 114% increase). Moreover, the results provide preliminary evidence on

the direction of this relation, indicating that lifetime implies acceptance rather instead of

the opposite;

b) Physical features of pull requests in�uence on their lifetime. For instance, when

pull requests have a large number of commits, the chances for lengthy lifetimes increase

in 92%. The chances for lengthy lifetimes also increase in the order of 54% when multiple

�les are modi�ed by a sole pull request;

c) The �les modi�ed by a pull request and their locations in�uence on its lifetime.

This �nding discloses software components that are sensitive and tend to lead to pull

requests with lengthy lifetimes and reduced chances of acceptance;

d) Features associated with the contributor impact the pull request lifetime. The lack

of experience with the pull-based paradigm increases the chances of lengthy lifetime in up

to 85%. When the requester is a core team member, his or her pull requests have 118%

more chance to delay. The social relationships also have impact on lifetime. For instance,

pull requests from contributors who have no followers on GitHub have 25% more chances

of delay;

e) Social features relative to pull request review also exert in�uence on lifetime. A

large number of comments during pull request evaluation may increase the chances of

delay in up to 162%.

7.1 Main Contributions 94

4) The identi�cation of factors that in�uence on the assignment of review-

ers for pull requests in open-source projects � We extracted 22,523 pull requests

and identi�ed some patterns that reveal characteristics that in�uence the reviewer as-

signment. We discovered that the size of the contribution, requester's lack of experience,

social relationship, and recent activity on an artifact in�uence the reviewer assignment.

Understanding these factors is crucial to better devise recommendation tools and provide

adequate support to project managers. Such factors may reveal possible con�icts of inter-

est between requesters and reviewers, imbalanced workloads among reviewers, and code

sections having only few specialists working on them, which represents a risk consider-

ing the workload. The replication of such problems in future recommendations is clearly

undesired. Comprehending the nature of reviewer assignment to pull requests is the �rst

step to identify problems such as those and to determine how often they occur. Our main

�ndings are:

a) Some reviewers have preferences for pull request with less commits (with up to 22%

more chance of acceptance) and few �les (with up to 88% more chances), whereas others

tend to analyze more complex contributions;

b) Some reviewers, in up to 58% of times, analyze pull requests submitted by inex-

perienced requesters. Others, analyze pull requests sent by core team members in up to

71% of times;

c) Some reviewers have more chances (up to 26 times more) of analyzing pull requests

submitted by contributors with similar or the same expertise. Others have more chances

(up to 59 times more) of evaluating pull requests sent by speci�c requesters;

d) Some reviewers have more chances (up to 21 times more) of analyzing pull requests

that contain �les that have been recently modi�ed. Others have more chances (almost 4

times more) of analyzing pull requests that changed speci�c �les and directories.

5) The exploration of association rules extraction as a technique capable

of revealing knowledge on pull requests, o�ering measures to evaluate the

validity of the discovered patterns - The use of this technique as the core of this

work's methodology brought forth the ability to discover implicit information in the data

being analyzed, which could have been ignored should a manual exploratory analysis

were conducted. This way, association rules represented an e�ective technique to explore

pull request data. Besides, the Support, Con�dence, and Lift measures evidence that the

patterns found are trustworthy, allowing for an evaluation on the extent of the strength

of the uncovered patterns.

7.2 Future Work 95

Although we have highlighted the implications of our results on the chapters, we sum-

marize here some guidelines for core teams (See Table 7.1) and requesters (See Table 7.2).

Table 7.1: Guidelines for core teams.
Scenarios

Acceptance Lifetime
Assigning
Reviewers

Create best practices of
collaboration, considering
that newcomers sometimes
have di�culty understanding
how to �le pull requests.

Prioritize review of
pull requeststhat touch
critical areas.

Avoid load unbalance by
distributing pull request
of di�erent sizes to
di�erent reviewers.

Critical regions (locality)
of the project should be
identi�ed. It is important
to create recommendations
for contributions �led in
these areas.

De�ne policies for analysis
of pull requests �led by
newcomers, aiming at
improving their involve-
ment with the project.

Create reviewer
recommendation tools.

De�ne criteria for reviewing
pull requests and avoiding
delays in the process.

Avoid code owners,
thereby increasing
the overall understan-
ding of the core team.

Table 7.2: Guidelines for requesters.
Scenarios

Acceptance Lifetime

Submit simple pull requests, i.e., with only
1 commit.

Submit pull requests with few commits
and few �les in order to be analyzed
in less time and have more the chances
of acceptance.

Submit pull requests clear and precise,
avoiding much discussion during the
evaluation.

Pay attention to pull requests �led in
critical locality once can also in�uence
delays.

Pay attention to pull requests in critical
regions of the project. They should receive
special attention to increase the chances
of acceptance.

Do not give up if your �rst pull request
is delayed. This lifetime tends to
decrease as the number of contributions
increases.

7.2 Future Work

Considering the �ndings of this thesis, in this Section we suggest the development of some

future work.

We propose the ful�llment of studies that consider data derived from source code, i.e.,

the content of modi�ed �les. In this perspective, it would be possible to identify how the

7.2 Future Work 96

modi�ed classes, code refactorings, and/or insertion/removal of complex functions a�ect

the acceptance, lifetime, and assignment of developers. This research has the potential to

increase the understanding of the nature of pull requests. In addition, one could observe

�les that are frequently modi�ed together and to verify the in�uence of this phenomenon

on scenarios investigated in this thesis.

Another proposal is the replication of the experiments using software metrics. In

this scenario, one could extract software metrics from pull requests, which quantify some

aspects of the software product, for example, cohesion, coupling, and complexity. Then,

one could verify the in�uence of such metrics in the acceptance/rejection, lifetime, and

reviewer assignment scenarios. Additionally, one could relate these patterns to those

already identi�ed by our studies.

Other aspects to be considered as future work are the pull requests submission chronol-

ogy and the requesters' geographic data. GitHub is able to provide data that indicates

the day and time a pull request was submitted and where the requester is located. In this

context, a question arises: is there an e�ective correlation between time of submission,

requester location, and acceptance, lifetime, and reviewer assignment? This could reveal

rules that indicate, for example, the propensity to accept/reject pull requests submitted

on the weekends, just before holydays, or from speci�c cities during summer.

We also propose for future work the evaluation of the variation intensity of the discov-

ered patterns. Through temporal analysis of the measures of interest Support, Con�dence,

and Lift, one could verify trends in these patterns and classify association rules according

their variation intensity. For example, association rules could be classi�ed as stable or

unstable. Moreover, some tendency to increase/decrease intensity could provide insights

for software teams to adopt practices that strengthen positive patterns and weaken neg-

ative ones. This would also allow the evaluation of cause and e�ect of the actions taken

by the core team.

As seen in Chapters 3, 4, 5, and 6, the �rst pull request of a contributor in�uences

on its acceptance/rejection, lifetime, and reviewer assignment. The "�rst_pull" attribute

indicates that a contributor is a newcomer. In this way, a suggestion for future work

is to investigate more deeply what are the characteristics present in the pull requests

�led by newcomers. One could extract rules with �rst_pull = "true" in the antecedent,

thus being possible to identify physical factors, social factors, metadata, and the content

of these pull requests, increasing understanding of the contributions of developers with

newcomer pro�le.

7.2 Future Work 97

Another suggestion is the development of tools that are able to extract patterns in

real time as the software project evolves, that is, decision support systems for the pull

request scenario. In this sense, project managers would have a real-time insight on what

patterns exert in�uence � and how strong this in�uence is � on acceptance, lifetime, and

reviewer assignment, thus being able to work for the strengthening of positive patterns

and avoidance of the negative ones.

We suggest performing analyses using other evaluation methods, such as hypothesis

testing, with the objective of seeking additional evidence in the investigated scenarios.

Another suggestion is an additional analysis that identi�es the minimum number of

attributes for a compound rule. In addition, we recommend an analysis in rules with lifts

less than zero to identify undesirable patterns that should be avoided.

Although we have performed some qualitative analyses, we did not replicate this kind

of analysis in all scenarios. We recommend for future work the development of studies

that allow a deeper understanding of the discovered patterns, especially to justify complex

issues revealed by hybrid rules.

Finally, we recommend studies that evaluate the usefulness of the discovered patterns.

We suggest the evaluation of projects in which the core team based their actions on the

�ndings discussed in this thesis. In this way, it is possible to verify how replicable is the

knowledge extraction about pull requests and the general comprehensiveness of results.

References

[1] CHACON, S.; STRAUB, B. Pro Git. 3rd. ed. San Francisco, CA, USA:
Apress, 2009. 107�142 p. ISBN 978-1-4302-1833-3, 978-1-4302-1834-0. Disponível em:
<http://dx.doi.org/10.1007/978-1-4302-1834-0_5>.

[2] GUTWIN, C.; PENNER, R.; SCHNEIDER, K. Group awareness in distributed soft-
ware development. In: Proceedings of the ACM Conference on Computer Supported
Cooperative Work. New York, USA: ACM, 2004. (CSCW'04), p. 72�81. ISBN 1-58113-
810-5. Disponível em: <http://doi.acm.org/10.1145/1031607.1031621>.

[3] JIMÉNEZ, M.; PIATTINI, M.; VIZCAÍNO, A. Challenges and improvements in dis-
tributed software development: A systematic review. Advances in Software Engineering,
Hindawi Publishing Corp., New York, United States, v. 2009, p. 3:1�3:16, jan. 2009.
ISSN 1687-8655. Disponível em: <http://dx.doi.org/10.1155/2009/710971>.

[4] GOUSIOS, G.; PINZGER, M.; DEURSEN, A. An exploratory study of the pull-based
software development model. In: Proceedings of the 36th International Conference on
Software Engineering. New York, USA: ACM, 2014. (ICSE'14), p. 345�355. ISBN 978-
1-4503-2756-5. Disponível em: <http://doi.acm.org/10.1145/2568225.2568260>.

[5] SOARES, D. M.; LIMA JUNIOR, M.L.; MURTA, L.; PLASTINO, A. Rejection fac-
tors of pull requests �led by core team developers in software projects with high ac-
ceptance rates. In: Proceedings of the IEEE 14th International Conference on Machine
Learning and Applications (ICMLA'15). Miami, USA: IEEE, 2015. p. 960�965.

[6] TSAY, J.; DABBISH, L.; HERBSLEB, J. In�uence of social and technical factors for
evaluating contribution in GitHub. In: Proceedings of the 36th International Conference
on Software Engineering. New York, USA: ACM, 2014. (ICSE'14), p. 356�366. ISBN
978-1-4503-2756-5. Disponível em: <http://doi.acm.org/10.1145/2568225.2568315>.

[7] RAHMAN, M. M.; ROY, C. K. An insight into the pull requests of GitHub. In:
Proceedings of the 11th Working Conference on Mining Software Repositories. New
York, USA: ACM, 2014. (MSR'14), p. 364�367. ISBN 978-1-4503-2863-0. Disponível
em: <http://doi.acm.org/10.1145/2597073.2597121>.

[8] PADHYE, R.; MANI, S.; SINHA, V. S. A study of external commu-
nity contribution to open-source projects on GitHub. In: Proceedings of the
11th Working Conference on Mining Software Repositories. New York, USA:
ACM, 2014. (MSR'14), p. 332�335. ISBN 978-1-4503-2863-0. Disponível em:
<http://doi.acm.org/10.1145/2597073.2597113>.

[9] YU, Y.; WANG, H.; FILKOV, V.; DEVANBU, P.; VASILESCU, B. Wait for
it: Determinants of pull request evaluation latency on github. In: Proceedings of

References 99

the IEEE/ACM 12th Working Conference on Mining Software Repositories. Flo-
rence, Italy: ACM, 2015. (MSR'15), p. 367�371. ISSN 2160-1852. Disponível em:
<http://ieeexplore.ieee.org/document/7180096/>.

[10] YU, Y.; WANG, H.; YIN, G.; LING, C. X. Reviewer recommender of pull-requests in
github. In: Proceedings of the IEEE International Conference on Software Maintenance
and Evolution. Victoria, Canada: IEEE, 2014. (ICSME'14), p. 609�612. ISSN 1063-
6773. Disponível em: <http://ieeexplore.ieee.org/abstract/document/6976151/>.

[11] JúNIOR, M. L. de L.; SOARES, D. M.; PLASTINO, A.; MURTA, L.
Developers assignment for analyzing pull requests. In: Proceedings of the
30th Annual ACM Symposium on Applied Computing. New York, NY, USA:
ACM, 2015. (SAC '15), p. 1567�1572. ISBN 978-1-4503-3196-8. Disponível em:
<http://doi.acm.org/10.1145/2695664.2695884>.

[12] JIANG, J.; HE, J.-H.; CHEN, X.-Y. Coredevrec: Automatic core mem-
ber recommendation for contribution evaluation. Journal of Computer Science
and Technology, Springer, v. 30, n. 5, p. 998�1016, 2015. Disponível em:
<https://link.springer.com/article/10.1007/s11390-015-1577-3>.

[13] YING, H.; CHEN, L.; LIANG, T.; WU, J. Earec: leveraging expertise and authority
for pull-request reviewer recommendation in github. In: ACM. Proceedings of the 3rd
International Workshop on CrowdSourcing in Software Engineering. Austin, USA, 2016.
(ACM'16), p. 29�35. Disponível em: <http://dl.acm.org/citation.cfm?id=2897660>.

[14] RAHMAN, M. M.; ROY, C. K.; COLLINS, J. A. Correct: Code reviewer recom-
mendation in github based on cross-project and technology experience. In: Proceedings
of the 38th International Conference on Software Engineering Companion. New York,
NY, USA: ACM, 2016. (ICSE '16), p. 222�231. ISBN 978-1-4503-4205-6. Disponível
em: <http://doi.acm.org/10.1145/2889160.2889244>.

[15] KOTSIANTIS, S.; KANELLOPOULOS, D. Association rules min-
ing: A recent overview. GESTS International Transactions on Computer
Science and Engineering, v. 32, n. 1, p. 71�82, 2006. Disponível em:
<http://www.csis.pace.edu/ ctappert/dps/d861-13/session2-p1.pdf>.

[16] HAN, J.; KAMBER, M.; PEI, J. Data Mining: Concepts and Techniques. 3rd. ed.
Rio de Janeiro, Brasil: Elsevier, 2011.

[17] FAYYAD, U.; PIATETSKY-SHAPIRO, G.; SMYTH, P.; UTHURUSAMY,
R. Advances in Knowledge Discovery and Data Mining. The MIT Press,
1996. Disponível em: <http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-
20&path=ASIN/0262560976>.

[18] GOUSIOS, G.; SPINELLIS, D. Ghtorrent: Github's data from a �rehose. In: Pro-
ceedings of the 9th IEEE Working Conference on Mining Software Repositories. Pis-
cataway, NJ, USA: IEEE Press, 2012. (MSR '12), p. 12�21. ISBN 978-1-4673-1761-0.
Disponível em: <http://dl.acm.org/citation.cfm?id=2664446.2664449>.

References 100

[19] AGRAWAL, R.; SRIKANT, R. Fast algorithms for mining association
rules in large databases. In: Proceedings of the 20th International Confer-
ence on Very Large Data Bases. San Francisco, CA, USA: Morgan Kauf-
mann Publishers Inc., 1994. p. 487�499. ISBN 1-55860-153-8. Disponível em:
<http://dl.acm.org/citation.cfm?id=645920.672836>.

[20] NUNES DA SILVA, DANIEL A. WekaPAR: uma extensão da ferramenta WEKA
para auxiliar o pós-processamento de regras de associação. Rio Branco, Brazil: UFAC.

[21] SOARES, D. M.; JúNIOR, M. L. de L.; MURTA, L.; PLASTINO, A. Ac-
ceptance factors of pull requests in open-source projects. In: Proceedings of the
30th Annual ACM Symposium on Applied Computing. New York, NY, USA:
ACM, 2015. (SAC '15), p. 1541�1546. ISBN 978-1-4503-3196-8. Disponível em:
<http://doi.acm.org/10.1145/2695664.2695856>.

[22] ESTUBLIER, J. Software con�guration management: A roadmap. In: Pro-
ceedings of the Conference on The Future of Software Engineering. New
York, USA: ACM, 2000. p. 279�289. ISBN 1-58113-253-0. Disponível em:
<http://doi.acm.org/10.1145/336512.336576>.

[23] CONRADI, R.; WESTFECHTEL, B. Version models for software con�guration man-
agement. ACM Computing Surveys, v. 30, n. 2, p. 232�282, jun. 1998. ISSN 0360-0300.
Disponível em: <http://doi.acm.org/10.1145/280277.280280>.

[24] PRESSMAN, R.; MAXIM, B. Engenharia de Software. 8rd. ed. Porto Alegre, Brazil:
McGraw Hill Brasil, 2016.

[25] BROSCH, P.; KAPPEL, G.; LANGER, P.; SEIDL, M.; WIELAND, K.; WIM-
MER, M. An introduction to model versioning. In: BERNARDO, M.; CORTEL-
LESSA, V.; PIERANTONIO, A. (Ed.). Formal Methods for Model-Driven En-
gineering. Springer Berlin Heidelberg, 2012, (Lecture Notes in Computer Sci-
ence, 7320). p. 336�398. ISBN 978-3-642-30981-6, 978-3-642-30982-3. Disponível em:
<http://dx.doi.org/10.1007/978-3-642-30982-3_10>.

[26] HASSAN, A. E.; XIE, T. Mining software engineering data. In: Proceedings of
the 32th ACM/IEEE International Conference on Software Engineering - Volume 2.
New York, USA: ACM, 2010. p. 503�504. ISBN 978-1-60558-719-6. Disponível em:
<http://doi.acm.org/10.1145/1810295.1810451>.

[27] CAVALCANTI, Y. C.; NETO, P. A. da M. S.; MACHADO, I. d. C.; VALE, T. F.;
ALMEIDA, E. S. de; MEIRA, S. R. d. L. Challenges and opportunities for software
change request repositories: a systematic mapping study. Journal of Software: Evolu-
tion and Process, v. 26, n. 7, p. 620�653, jul. 2014. ISSN 2047-7481. Disponível em:
<http://onlinelibrary.wiley.com/doi/10.1002/smr.1639/abstract>.

[28] ZIMMERMANN, T.; WEISGERBER, P.; DIEHL, S.; ZELLER, A. Mining ver-
sion histories to guide software changes. In: Proceedings of the 26th Interna-
tional Conference on Software Engineering. Washington, DC, USA: IEEE Com-
puter Society, 2004. (ICSE'04), p. 563�572. ISBN 0-7695-2163-0. Disponível em:
<http://dl.acm.org/citation.cfm?id=998675.999460>.

References 101

[29] ZANDSTRA, M. Version control with git. In: PHP Objects, Patterns, and Practice.
Apress, 2013. p. 365�382. ISBN 978-1-4302-6031-8, 978-1-4302-6032-5. Disponível em:
<http://dx.doi.org/10.1007/978-1-4302-6032-5_17>.

[30] OREG, S.; NOV, O. Exploring motivations for contributing to open source
initiatives: The roles of contribution context and personal values. Comput-
ers in Human Behavior, v. 24, n. 5, p. 2055�2073, 2008. ISSN 0747-
5632. Including the Special Issue: Internet Empowerment. Disponível em:
<http://www.sciencedirect.com/science/article/pii/S0747563207001537>.

[31] WITTEN, I. H.; FRANK, E.; HALL, M. A. Data Mining: Practical Machine
Learning Tools and Techniques. 4rd. ed. Rio de Janeiro, Brazil: Elsevier, 2016. ISBN
9780128043578.

[32] HALL, M.; FRANK, E.; HOLMES, G.; PFAHRINGER, B.; REUTEMANN, P.;
WITTEN, I. H. The WEKA data mining software: An update. SIGKDD Explo-
rations Newsletter, v. 11, n. 1, p. 10�18, nov. 2009. ISSN 1931-0145. Disponível em:
<http://doi.acm.org/10.1145/1656274.1656278>.

[33] KROGH, G. V.; HAEFLIGER, S.; SPAETH, S.; WALLIN, M. W. Carrots and
rainbows: Motivation and social practice in open source software development. MIS
Quarterly, v. 36, n. 2, p. 649�676, 2012.

[34] SILVA, M. C. O.; VALENTE, M. T.; TERRA, R. Does technical debt lead
to the rejection of pull requests? CoRR, abs/1604.01450, 2016. Disponível em:
<http://arxiv.org/abs/1604.01450>.

[35] KIKAS, R.; DUMAS, M.; PFAHL, D. Using dynamic and contextual fea-
tures to predict issue lifetime in github projects. In: Proceedings of the 13th
International Conference on Mining Software Repositories. New York, USA:
ACM, 2016. (MSR '16), p. 291�302. ISBN 978-1-4503-4186-8. Disponível em:
<http://doi.acm.org/10.1145/2901739.2901751>.

[36] YU, Y.; WANG, H.; YIN, G.; WANG, T. Reviewer recommendation for pull-requests
in github: What can we learn from code review and bug assignment? Information
and Software Technology, v. 74, p. 204 � 218, 2016. ISSN 0950-5849. Disponível em:
<http://www.sciencedirect.com/science/article/pii/S0950584916000069>.

[37] TONG, H.; FALOUTSOS, C. Center-piece subgraphs: Problem de�nition
and fast solutions. In: Proceedings of the 12th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. New York, NY, USA:
ACM, 2006. (KDD '06), p. 404�413. ISBN 1-59593-339-5. Disponível em:
<http://doi.acm.org/10.1145/1150402.1150448>.

[38] STEINMACHER, I.; CONTE, T.; GEROSA, M. A.; REDMILES, D. Social barriers
faced by newcomers placing their �rst contribution in open source software projects.
In: Proceedings of the 18th ACM Conference on Computer Supported Cooperative Work
and Social Computing. New York, USA: ACM, 2015. (CSCW'15), p. 1379�1392. ISBN
978-1-4503-2922-4. Disponível em: <http://doi.acm.org/10.1145/2675133.2675215>.

