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Resumo

Dado um grafo G = (V,E) e um limitante γ ∈ (0, 1], uma γ-clique é qualquer subcon-
junto C ∈ V tal que a densidade do grafo induzido em G por C é maior ou igual a γ. O
problema da γ-clique de cardinalidade máxima consiste em determinar um subconjunto
de cardinalidade máxima C∗ dos nós de V tal que a densidade do grafo induzido em G
por C∗ seja maior ou igual ao limitante. Na primeira parte dessa dissertação, propçõe-se
um algoritmo exato para o problema da quase-clique máxima, baseado em uma propri-
edade quase-hereditária. Experimentos computacionais mostram que o novo algoritmo é
competitivo com as melhores formulações exatas da literatura resolvidas pelo CPLEX. O
algoritmo também fornece uma nova cota superior que é consistentemente mais justa do
que as cotas já conhecidas. Na segunda parte da dissertação, propõe-se a hibridização
de um algoritmo genético com chaves aleatórias tendenciosas como algoritmo exato de-
senvolvido na primeira parte da dissertação. Resultados computacionais mostram que o
enfoque híbrido tem melhor desempenho do que o algoritmo genético original.

Palavras-chave: Problema de quasi-clique de cardinalidade máxima; problema de má-
ximo quasi-clique; grafos; algoritmo genético baseado em chaves aleatórias; metaheurísti-
cas; densidade do grafo.



Abstract

Given a graph G = (V,E) and a threshold γ ∈ (0, 1], a γ-clique is any subset C of V
such that the density of the graph induced in G by C is greater than or equal to γ.
The maximum cardinality γ-clique problem amounts to finding a maximum cardinality
subset C∗ of the vertices in V such that the density of the graph induced in G by C∗

is greater than or equal to the threshold γ. In the first part of this dissertation, we
propose an exact algorithm for solving the maximum quasi-clique problem, based on a
quasi-hereditary property. Computational experiments show that the new algorithm is
competitive with the best formulations in the literature solved by CPLEX. The algorithm
also provides a new upper bound that is consistently tighter than previously existing
bounds. In the second part of this dissertation, we propose a hybridization of a biased
random-key genetic algorithm with the exact algorithm developed in the first part of
the dissertation. Computational results show that the hybrid approach outperforms the
original genetic algorithm.

Keywords: Maximum cardinality quasi-clique problem; maximum quasi-clique problem;
maximum γ-clique problem; maximum clique problem; graphs; biased random-key genetic
algorithm; metaheuristics; graph density.
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Resumo Estendido

Seja G = (V,E) um grafo definido por um conjunto de vértices V e um conjunto de

arestas E ⊆ V × V . Diz-se que G é um grafo completo se existe uma aresta em E para

cada par de vértices de V . O grafo G′ = (V ′, E ′) é um subgrafo de G se V ′ ⊆ V e E ′ ⊆ E,

o que é denotado como G′ ⊆ G. O grafo G(V ′) induzido em G por V ′ ⊆ V é aquele com

o conjunto de vértices V ′ e com o subconjunto de todas as arestas de E que tem as duas

extremidades em V ′. Para qualquer V ′ ⊆ V , o subconjunto E(V ′) ⊆ E é formado por

todas as arestas de E com ambas extremidades em V ′ (i.e., E(V ′) é o conjunto de arestas

do grafo induzido em G por V ′).

A densidade do grafo G é dada por dens(G) = |E|/(|V | × (|V | − 1)/2). Nota-se que

a densidade de um gráfo completo é igual a um.

Um subconjunto C ⊆ V é uma clique de G se o subgrafo G(C) inducido em G por C

é completo. Então, dado um grafo G = (V,E), o problema da clique máxima consiste em

encontrar a clique de cardinalidade máxima de G. Este problema está entre os primeiros

problemas que foram provados serem NP-difíceis em [2].

Muitas vezes, em vez de se conhecer a clique máxima, o que se deseja é ter o maior

conjunto de vértices tal que o grafo induzido seja próximo de uma clique. Logo, dado um

grafo G = (V,E) e um limite γ ∈ (0, 1], uma γ-clique é qualquer subconjunto C ⊆ V tal

que a densidade de G(C) é maior ou igual a γ. A γ-clique C é maximal se não existe

outra γ-clique C ′ tal que C esteja estritamente contida em C ′. Então, o problema da

quasi-clique de cardinalidade máxima (MQCP) consiste em encontrar o subconjunto C∗

de vértices de V de maior cardinalidade tal que a densidade do grafo induzido em G por C∗

seja maior ou igual a γ. Este problema também NP-difícil, já que admite o problema da

clique máxima como um caso especial onde γ = 1; ver [4]. Esse problema tem aplicações

em mineração de dados, e.g. em redes sociais ou grafos de chamadas telefônicas [1].

O presente trabalho faz um estudo do MQCP e propõe um algoritmo exato e enu-

merativo como solução do problema, que constitui a principal contribuição da pesquisa.

O algoritmo é baseado em uma propriedade de quasi-hereditariedade, ver [4]. Esta pro-

priedade leva ao teorema que é apresentado e provado na primeira parte da dissertação.
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Experimentos computacionais mostram que o novo algoritmo é competitivo com as me-

lhores formulações em [4, 8] resolvidas pelo CPLEX e com o algoritmo branch and bound

proposto em [3]. O algoritmo também fornece um novo limite superior, melhor do que os

limites existentes anteriormente na literatura.

Como parte da pesquisa é apresentado também uma hibridação entre o algoritmo

genético de chave aleatórias tendenciosas e o algoritmo exato descrito anteriormente.

O algoritmo exato é aplicado como uma busca local no processo de reconstrução do

decodificador. Esta proposta é comparada com o algoritmo BRKGA-IG∗ de [6], que era

a melhor heurística existente na literatura até o momento da redação dessa dissertação.

Os resultados computacionais mostram que o BRKGA híbrido supera BRKGA-IG*.

O trabalho desenvolvido está apresentado em dois artigos colocados como apêndices

ao corpo da presente disertação. O primeiro artigo [7] apresenta a bibliografia sobre mé-

todos exatos, a proposta do algoritmo exato e os experimentos que mostram os resultados

obtidos e as conclusões do artigo. A segunda parte do trabalho é dedicada ao BRKGA

híbrido e é mostrada no segundo artigo [5]. O mesmo contém um resumo dos trabalhos

relacionados, a proposta do algoritmo híbrido, os resultados e conclusões.
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Abstract Given a graph G = (V,E) and a threshold γ ∈ (0, 1], the maximum
quasi-clique problem amounts to finding a maximum cardinality subset C∗ of
the vertices in V such that the density of the graph induced in G by C∗ is
greater than or equal the threshold. This problem is NP-hard, since it admits
the maximum clique problem as a special case. It has a number of applications
in data mining, e.g. in social networks or phone call graphs. In this work, we
present an exact algorithm to solve this problem, based on a quasi-hereditary
property. We also propose a new upper bound that is used for pruning the
search tree. Numerical results show that the new approach is competitive and
outperforms the best integer programming approaches in the literature. The
new upper bound is consistently tighter than previously existing bounds.

Keywords Maximum cardinality quasi-clique problem · maximum quasi-
clique problem · maximum γ-clique problem · maximum clique problem ·
graphs · graph density

1 Introduction

LetG = (V,E) be a graph defined by a vertex set V and an edge set E ⊆ V ×V .
G is a complete graph if there is an edge in E connecting every two different
vertices in V . A graph G′ = (V ′, E′) is a subgraph of G if V ′ ⊆ V and E′ ⊆ E,
which is denoted by G′ ⊆ G. The graph G(V ′) induced in G by V ′ ⊆ V is
that with vertex set V ′ and edge set formed by all edges of E with both ends
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in V ′. For any V ′ ⊆ V , the subset E(V ′) ⊆ E is formed by all edges of G with
both ends in V ′ (i.e., E(V ′) is the edge set of the graph induced in G by V ′).

The density of graph G is given by dens(G) = |E|/(|V | × (|V | − 1)/2).
A subset C ⊆ V is a clique of G if the graph G(C) induced in G by C is

complete. Given a graph G = (V,E), the maximum clique problem consists in
finding a maximum cardinality clique of G. It was proved to be NP-hard by
Karp (1972).

Given a graphG = (V,E) and a threshold γ ∈ (0, 1], a γ-clique is any subset
C ⊆ V such that the density of G(C) is greater than or equal to γ. A γ-clique
C is maximal if there is no other γ-clique C ′ such that C is strictly contained in
C ′. Therefore, the maximum quasi-clique problem (MQCP) amounts to finding
a maximum cardinality subset C∗ of the vertices in V such that the density
of the graph induced in G by C∗ is greater than or equal to the threshold γ.
This problem is also NP-hard, since it admits the maximum clique problem
as a special case in which γ = 1; see (Pattillo et al, 2013). The problem
has many applications in data mining, e.g. in social networks or phone call
graphs (Abello et al, 2002).

In this work, we present an exact algorithm for solving the maximum quasi-
clique problem, based on a quasi-hereditary property. Section 2 reviews exact
formulations and algorithms for the problem. Section 3 presents the exact
algorithm and demonstrates its correctness. We also propose a new upper
bound that is used for pruning the search tree. Computational experiments
are reported in Section 4, in which the proposed approach is compared with
existing exact methods. Concluding remarks are drawn in the last section.
The new algorithm is competitive with the best formulations in (Pattillo et al,
2013; Veremyev et al, 2016) solved by CPLEX and with the branch-and-bound
algorithm in (Pajouh et al, 2014). The new upper bound is consistently tighter
than previously existing bounds.

2 Related work and mathematical formulations

Pattillo et al (2013) introduced some properties and upper bounds of γ-cliques.
Property 1 below will be used in the design of the exact algorithm proposed
in Section 3.

Definition 1 Consider a graph G = (V,E) that satisfies a property P . If
there exists a vertex v ∈ V such that the induced graph G(V \ {v}) also
satisfies property P , then we say that P is a quasi-hereditary property and
that property P displays quasi-heredity or quasi-inheritance.

Property 1 The graph property of having edge density greater than or equal
to γ displays quasi-inheritance, i.e., any γ-clique with s > 1 vertices is a strict
superset of a γ-clique with s− 1 vertices.

We summarize below the two best mixed integer programming formulations
for the maximum γ-clique problem reported in (Pattillo et al, 2013; Veremyev
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et al, 2016). The first formulation is the one that obtains the best results for
small values of γ and for dense graphs among those in (Pattillo et al, 2013).
The second formulation appeared in (Veremyev et al, 2016) and presents the
best results and the tighter relaxation for sparse graphs. It turned out to be
the most consistent model in their experiments.

Model F1 (Pattillo et al, 2013) has a binary variable xi associated to each
vertex of the graph:

xi =

{
1, if vertex vi ∈ V belongs to the solution,

0, otherwise.

It also considers a variable yij = xi · xj associated to each pair of vertices
i, j ∈ V , with i < j, that is linearized as below:

Model F1: max
∑

i∈V

xi (1)

subject to: ∑

(i,j)∈E:i<j

yij ≥ γ ·
∑

i,j∈V :i<j

yij (2)

yij ≤ xi, ∀i, j ∈ V, i < j, (3)

yij ≤ xj , ∀i, j ∈ V, i < j, (4)

yij ≥ xi + xj − 1, i, j = 1, . . . , n, i < j, (5)

xi ∈ {0, 1}, ∀i ∈ V, (6)

yij ≥ 0, ∀i, j ∈ V, i < j (7)

The objective function (1) maximizes the number of vertices in the solution.
If two vertices i, j belong to a solution, then xi = xj = 1 and yij = xi · xj =
1. If edge (i, j) ∈ E, then it contributes to the density of the quasi-clique.
Therefore, constraint (2) ensures that the density of the solution is greater than
or equal to γ. Constraints (3) and (4) ensure that any edge may contribute
to the density of a solution only if both of its ends are chosen to belong to
this solution. Constraints (5) ensure that any existing edge (i, j) ∈ E will
contribute to the solution if both of its ends are chosen. Constraints (6) and
(7) impose the integrality and non-negativity requirements on the problem
variables, respectively.

To introduce the second formulation, let ωu and ωℓ be, respectively, any
upper and lower bounds on the size of a maximum γ-clique in G. The lower
bound can be set to 1 if there is no information available about the sizes of
γ-cliques in G. Its value can be increased using the size of any heuristically
identified quasi-clique, e.g., it can be set to be the size of any clique in G. The
upper bound can be simply set to the trivial value |V |, or we can use e.g. the
result of (Pattillo et al, 2013):

ωu = ⌊1
2
+

1

2

√
1 + 8

|E|
γ

⌋, (8)
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or, if the graph is connected,

ωu = ⌊1
2
+

2 +
√
(γ + 2)2 + 8γ(|E| − |V |)

2γ
⌋. (9)

Model F3 (Veremyev et al, 2016) also makes use of the binary variables xi.
New variables yij , with i < j, are defined as:

yij =

{
1, if edge (i, j) ∈ E, with i < j, belongs to the quasi-clique,

0, otherwise.

In addition, let zk be a binary variable that determines the size of the
current solution, namely, zk = 1 if and only if the γ-clique has k vertices,
0 otherwise. Using this notation, the following formulation was proposed for
finding a maximum γ-clique based on the classical value-disjunction idea (see,
e.g., (Nemhauser and Wolsey, 1988)) that says that only one of a set of values
can be taken by some variable, which is applied to the size of a maximum
γ-clique:

Model F3: max
∑

i∈V

xi (10)

subject to:
∑

(i,j)∈E:i<j

yij ≥ γ ·
ωu∑

k=ωl

k(k − 1)

2
zk, (11)

yij ≤ xi, ∀(i, j) ∈ E, i < j, (12)

yij ≤ xj , ∀(i, j) ∈ E, i < j, (13)

∑

i∈V

xi =

ωu∑

k=ωl

k · zk, (14)

ωu∑

k=ωl

zk = 1, (15)

xi ∈ {0, 1}, ∀i ∈ V, (16)

yij ≥ 0, ∀i, j ∈ V, i < j, (17)

zk ≥ 0, ∀k ∈ {ωl, . . . , ωu}. (18)

Constraints (12) and (13) ensure that yij can be set to 1 only if both vertices
i and j belong to the γ-clique, i.e., xi = xj = 1. Constraint (11) represents the
edge density requirements for the subgraph induced by the k chosen vertices,
while constraints (14) and (15), together, enforce the appropriate value in the
right hand-side of (11). As for model F1, variables yij can be relaxed to be
continuous in constraint (17) due to the structure of constraints (11) to (13)
and to the fact that the objective function maximizes a linear function with
positive costs. Also, the binary restrictions for the zk variables may be replaced
by the non-negativity constraints (18).

Pajouh et al (2014) proposed an exact depth-first search based enumeration
algorithm for the maximum quasi-clique problem (Kreher and Stinson (1998),
chapter 4).
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3 Exact algorithm based on the quasi-hereditary property

From Property 1, if a γ-clique of size k does not exist in graph G, then no larger
γ-clique exists as well. The exact algorithm proposed in this work starts from a
lower-bound ωℓ and iteratively searches for a γ-clique of size k = ωℓ+1, ωℓ+2, . . .
until it fails. The initial lower bound could be set to ℓ = 1 or calculated by
any heuristic. The largest value of k for which a γ-clique of size k is found is
the optimal value. The following theorem holds:

Theorem 1 Let C∗ be a γ-clique of cardinality k of graph G. Then, there
exists a permutation Π of the vertices in C∗ such that if Πi denotes the first i
vertices in permutation Π (i.e., Πi is the prefix of Π of size i), G(Πi) is the
subgraph induced in G by the vertices in Πi and k > 1, then dens(G(Πi)) ≥
dens(G(Πi+1)), for all i = 1, . . . , k − 1.

Proof: This result follows as a consequence of the quasi-inheritance Prop-
erty 1. It can be proved by a constructive algorithm that builds the permu-
tation from scratch. First, select the vertex v′ of C∗ with minimum degree in
G(C∗) to be the last vertex in Π and remove it from C∗. Then, the density of
the new induced graph G(C∗ \{v′}) is greater than that of G(C∗), because the
degree of the removed vertex does not increase the average degree of the graph
(Pattillo et al, 2013). This step can be repeated iteratively and the algorithm
finishes when all vertices have been selected and the resulting sequence meets
the condition of Theorem 1. ⊓⊔

1

2 3

4 5

2 3

4 5

3

4 5
(a) Graph G with five vertices is (b) Current permutation: (c) Final permutation:

also a γ-clique for γ = 0.7. Π =< 2, 1 >. Π =< 3, 4, 5, 2, 1 >.
Start with Π =< 1 >.

Fig. 1 Illustration of Theorem 1 on a graph G with five vertices when a maximum γ-clique
for γ = 0.7 is sought. C∗ = V = {1, 2, 3, 4, 5} is a maximum 0.7-clique, since dens(G(C∗)) =
7/10 ≥ γ.

Figure 1 illustrates Theorem 1 on a graph G with five vertices when a
maximum γ-clique for γ = 0.7 is sought. C∗ = V = {1, 2, 3, 4, 5} is a maximum
0.7-clique, since dens(G(C∗)) = 7/10 ≥ γ. In Figure 1(a), vertex 1 is selected
as that with the smallest degree in G and placed in the last position of the
permutation. The resulting subgraph has density 0.83 and Π =< 1 >. Next,
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vertex 2 is selected in Figure 1(b) and the resulting permutation becomes
Π =< 2, 1 >. The remaining subgraph in Figure 1(c) is a clique and any
order of the vertices will meet the conditions of the theorem. In particular, the
final permutation could be e.g. Π =< 3, 4, 5, 2, 1 >. The subgraphs induced
by Π1 =< 3 >, Π2 =< 3, 4 >, and Π3 =< 3, 4, 5 > have their densities equal
to 1, the subgraph induced by Π4 =< 3, 4, 5, 2 > has its density equal to 0.83,
and that induced by Π5 = Π =< 3, 4, 5, 2, 1 > has density 0.7.

3.1 Enumeration tree: Backtracking

The enumeration procedure amounts to constructing the optimal vertex per-
mutation sequence that leads to the maximum γ-clique. Although there are k!
vertex permutations associated with any γ-clique with k vertices, considering
the demonstration of Theorem 1, the vertex to be selected and removed in
each step is always that with the minimum degree. Therefore, the last ver-
tex in every prefix of the permutation is always that with minimum degree. In
case there are ties and two or more vertices have minimum degree, the optimal
sequence might not be unique. To avoid this situation, we suppose that the
vertices of V are labeled with 1, 2, . . . , |V | and, in case of ties, the enumeration
always selects that with the largest label. Therefore, the generated sequence
will be unique.

Algorithm 1 below is a backtracking strategy that enumerates all γ-cliques
in G without repetition. The first call to the algorithm is performed with
Π = ∅. The vertices that can be inserted at the end of the current permutation
Π form the candidate list CL. In line 1, function getCandidates generates the
candidate list CL. The candidate list returned after the call to getCandidates
for Π0 is CL = V . The recursion is interrupted in line 3 when the candidate
list becomes empty. The loop in lines 5 to 8 creates a new permutation Π ′ in
line 6 for each candidate j ∈ CL and makes a recursive call in line 7.

Algorithm 1 Backtracking
Require: G, Π, γ
1: CL← getCandidates(G,Π, γ)
2: if CL = ∅ then
3: return
4: end if
5: for all j ∈ CL do
6: Π′ ← Π ⊕ {j}
7: Backtracking(G,Π′, γ)
8: end for

Algorithm 2 called in line 1 of Algorithm 1 builds the candidate list CL
formed by the vertices that can be inserted at the end of a prefix in line 7.
Line 1 initializes CL as empty and line 2 initializes i as the size of the current
permutation Π. The loop in lines 3 to 11 considers the addition to the current
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permutation Π of all vertices in V \Π. We denote by degG(Π)(j) the number
of vertices of the current permutation Π that are adjacent to vertex j. Line
4 checks if, for a candidate vertex j, the subgraph induced by Π ∪ {j} is a
γ-clique. Recall that E(Π) denotes the edge set of the graph induced in G by
Π. Line 5 creates a tentative sequence Π ′ by appending vertex j at the end of
sequence Π. Lines 6 determines if there is another vertex w ∈ Π with degree
smaller than j or with the same degree as j but with a larger label. If this is
not the case, then vertex j is definitely added to the candidate list CL in line
7. The candidate list CL is returned in line 11.

Algorithm 2 getCandidates
Require: G, Π, γ
1: CL← ∅
2: i← |Π|
3: for all j ∈ V \Π do
4: if degG(Π)(j) + |E(Π)| ≥ γ(i+ 1)i/2 then

5: Π′ ← Π ⊕ {j}
6: if {w ∈ Π : degG(Π′)(w) < degG(Π′)(j) or (degG(Π′)(w) = degG(Π′)(j) and

w > j)} = ∅ then
7: CL← CL ∪ {j}
8: end if
9: end if
10: end for
11: return CL

3.2 Pruning and a new upper bound

Algorithm 1 produces an enumeration tree. Each of its non-root nodes cor-
responds to a feasible solution to MQCP. If at some time of the search the
incumbent (i.e., the best known solution) has size LB , a necessary condition
for a larger solution to exist is that at least a solution of size k = LB+1 exists.
Assume that the current node of the search tree represents a solution Π of
size i ≤ LB and let R = V \ Π. Then, a solution with k vertices and prefix
Π exists if and only if there exists a subset of k− i vertices in R whose union
with the vertices in Π induces a γ-clique in G. If such a subset of vertices does
not exist in R, then the tree is pruned at the current node.

If, for any vertex v ∈ R, degG(Π )(v) exceeds the degree of the last vertex
of Π in G(Π) by more than k units, then v can not be the last vertex in any
possible other permutation with prefix Π and size smaller than or equal to k.
Therefore, if w is the vertex with minimum degree in G(Π), R can be reduced
to:

R = {v ∈ V \Π : degG(Π)(v) ≤ degG(Π)(w) + k}. (19)

We recall that E(V ′) denotes the set of edges of E with both ends in
V ′ ⊆ V . Furthermore, let E(V ′, Π) be the set of edges with one extremity
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in V ′ and the other in Π. If V ′ ⊆ R has k − i vertices, then G(Π ∪ V ′) is a
γ-clique if

|E(Π) ∪ E(V ′) ∪ E(V ′, Π)| ≥ γ ·
(
k

2

)
. (20)

|E(Π)| is a known value in equation (20). Let F be the set formed by the
k− i vertices in R with the largest degrees in G(Π) and D be the set of k− i
vertices in R with the largest degrees in G. Then, for any V ′ ⊆ R:

|E(V ′, Π)| ≤
∑

v∈F

degG(Π)(v), and (21)

|E(V ′, Π)|+ 2 · |E(V ′)| ≤
∑

v∈D

degG(v). (22)

Assuming that E(V ′, Π) is maximized, we obtain

|E(V ′)| ≤ min{
∑

v∈D degG(v)−
∑

v∈F degG(Π)(v)

2
,

(|V ′|
2

)
}. (23)

Replacing |E(V ′, Π)| and |E(V ′)| in equation (20) by their upper bounds in
inequalities (21) and (23), respectively, we obtain:

|E(Π)|+
∑

v∈F

degG(Π)(v) + min{
∑

v∈D degG(v)−
∑

v∈F degG(Π)(v)

2
,

(|V ′|
2

)
} ≥ γ

(
k

2

)
.

(24)
Therefore, if inequality (24) is not satisfied then it does not exist V ′ ⊆ R

such that G(V ′ ∪Π) is a γ-clique. If the same holds for any k′ ∈ [i+ 1, k− i],
then there is no γ-clique of size k with Π as a prefix.

Inequality (24) can be used in the computation of a new upper bound UB
to MQCP. First note that if Π0 = ∅, then |E(Π0)| = 0, degG(Π0)(v) = 0 for all
v ∈ R, and |V ′| = k. Then UB is the largest value of k = 1, . . . , |V (G)| such
that ∑

v∈D degG(v)

2
≥ γ ·

(
k

2

)
. (25)

3.3 Algorithm QClique

The pseudo-code of the QClique algorithm for the maximum quasi-clique
problem is presented in Algorithm 3. The initial parameters are the graph
G = (V (G), E(G)), the solution Π which is initially an empty set, the thresh-
old γ, a lower bound LB and the incumbent (best solution) Π∗. Line 1 ini-
tializes i as the size of the current permutation Π. If line 2 determines by
applying inequalitiy (24) that a feasible solution with size greater than that
of the current lower bound LB can not be obtained by extending the current
solution Π, then this node is pruned and the search backtracks in line 3. In line
5, function getCandidates generates the candidate list CL. If the candidate list
is empty in line 6, then the search also backtracks in line 7. If the candidate
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list is not empty, line 9 checks if the extension of the current solution by any
of its members improves the current lower bound. If this is the case, the lower
bound LB is updated in line 10, a node v ∈ CL is randomly selected in line 11,
and the incumbent Π∗ is updated by appending node v at the end of sequence
Π. The loop in lines 14 to 17 creates a new permutation Π ′ for each candidate
j ∈ CL and makes a recursive call to QClique in line 16.

Algorithm 3 QClique
Require: G,Π, γ,LB , Π∗

1: i← |Π|
2: if |E(Π)| + ∑

v∈F degG(Π)(v) + min{
∑

v∈D degG(v)−∑
v∈F degG(Π)(v)

2
,
(|V ′|

2

)
} < γ ·

(k
2

)

for every k = i+ 1, . . . ,LB + 1 then
3: return
4: end if
5: CL← getCandidates(G,Π, γ)
6: if CL = ∅ then
7: return
8: end if
9: if |Π|+ 1 > LB then
10: LB ← |Π|+ 1
11: Randomly select v ∈ CL
12: Π∗ ← Π ⊕ {v}
13: end if
14: for all j ∈ CL do
15: Π′ ← Π ⊕ {j}
16: QClique(G,Π′, γ,LB , Π∗)
17: end for

Example 1 Consider the graph G = (V,E) in Figure 1 (a) and let γ = 0.8.
The enumeration tree produced by Algorithm 1 is represented in Figure 2.
The root node represents the empty set. Each path from the root to a node of
the tree represents a feasible solution, i.e. a γ-clique and a vertex permutation
that satisfies the conditions of Theorem 1. Paths from the root to red nodes
represent the maximum γ-clique. A depth-first search strategy was used and
the nodes are visited according to the order they are placed in the candidate list
(which is the same of their labels, in this case). Figure 3 shows the enumeration
tree produced by algorithm QClique that explores pruning. Immediately after
algorithm QClique discovers a solution of size 4, the value of LB is set to 5
in line 10. Next, all nodes of the search tree that are not able to lead to a
solution of size 5 are pruned.

4 Computational experiments

All algorithms have been implemented using version 19.00.23504 of the Mi-
crosoft C/C++ Optimizing compiler. The computational experiments have
been performed on an Intel Core i5-5200 processor with 2.20 GHz and 8 GB
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Fig. 2 Enumeration tree produced by Algorithm 1.
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Fig. 3 Enumeration tree by Algorithm 3 (QClique).
.

of RAM running under Windows 10. The test problems involved 50 randomly
generated graphs, 25 instances derived from graph coloring problems, 16 in-
stances derived from maximum clique problems of the Second DIMACS Im-
plementation Challenge (Johnson, 1996) and four miscelaneous graphs from
(Rossi and Ahmed, 2015).

The exact QClique algorithm is compared with the two best formulations
in (Pattillo et al, 2013; Veremyev et al, 2016) solved by CPLEX and with the
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branch-and-bound algorithm in (Pajouh et al, 2014). The MIP formulations
were solved with version 12.6.2 of the CPLEX library for Visual Studio 2010.
The solver was used with the default settings for preprocessing, branching
strategies, node algorithms, heuristics and cutting planes. The upper bound
proposed in Section 3.2 was used in the algorithm of Pajouh et al (2014) and
in model F3.

4.1 Experiments on randomly generated graphs with 100 vertices

We have randomly generated ten instances with 100 vertices each with den-
sities ρ = 0.05, 0.10, 0.25, 0.50, and 0.75. Each instance was solved by the
branch and bound algorithm (B&B), by the two MIP models (F1 and F3) and
by the proposed QClique algorithm. The time limit for each algorithm and
instance was one hour.

The numerical results are presented in Table 1. Whenever any of the ex-
act methods failed to prove optimality within the time limit for at least one
instance in the group of same density, we indicate it by ”> 3600”. For each
group of same density instances, the table shows the average running time in
seconds over the ten instances, the number of instances solved to proved op-
timality within the time limit, and the average size of the best solution found
within the time limit. The best average times and the best average solution
sizes are highlighted in bold face.

The numerical results for randomly generated graphs show that algorithm
QClique is much faster than the others and obtain same quality solutions
for the instances with small densities. For the problems with larger densities,
algorithm QClique outperformed the other approaches and found larger γ-
cliques in smaller computation times, except for the case γ = 0.85 and ρ =
0.75.

4.2 Experiments on literature instances

We consider in this section numerical experiments on 25 instances derived from
graph coloring problems available at http://mat.gsia.cmu.edu/COLOR04/,
16 instances derived from maximum clique problems of the Second DIMACS
Implementation Challenge (Johnson, 1996; DIMACS, 2016) and four miscela-
neous graphs from (Rossi and Ahmed, 2015). Except for the last nine coloring
instances, all other instances were also used in the computational experiments
reported in (Pattillo et al, 2013; Pajouh et al, 2014).

The number of vertices, edges, and the density of each instance appear
in Table 2, together with the upper bound UB proposed in Section 3.2 and
the upper bound ωu given by equation (9) (Pattillo et al, 2013) for the con-
nected graphs and by equation (8) (Pattillo et al, 2013) for instance miles250,
which is not a connected graph. The best upper bounds for each instance are
highlighted in bold face. The new pruning upper bound UB is shown to be
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γ ρ B&B F1 F3 QClique B&B F1 F3 QClique
avg.time opt. avg.time opt. avg.time opt. avg.time opt. avg.size avg.size avg.size avg.size

0.85 0.05 1552.036 10 40.508 10 0.120 10 0.003 10 4.8 4.8 4.8 4.8
0.10 > 3600 0 247.763 10 3.425 10 0.027 10 7.7 7.7 7.7 7.7
0.25 > 3600 0 > 3600 0 > 3600 0 1.599 10 11.0 10.7 9.6 11.2
0.50 > 3600 0 > 3600 0 > 3600 0 422.690 10 14.8 13.3 10.5 16.1
0.75 > 3600 0 > 3600 0 > 3600 0 > 3600 0 45.1 41.8 28.7 29.3

0.95 0.05 542.767 10 34.755 10 0.127 10 0.002 10 3.8 3.8 3.8 3.8
0.10 2663.052 6 105.422 10 1.459 10 0.007 10 5.6 5.6 5.6 5.6
0.25 > 3600 0 405.256 10 > 3600 0 0.071 10 7.8 7.8 7.0 7.8
0.50 > 3600 0 > 3600 0 > 3600 0 1.411 10 10.1 10.2 7.1 10.6
0.75 > 3600 0 > 3600 0 > 3600 0 > 3600 0 20.9 20.3 10.7 21.9

1.00 0.05 542.062 10 0.052 10 0.131 10 0.002 10 3.8 3.8 3.8 3.8
0.10 2699.658 6 0.053 10 1.383 10 0.007 10 5.4 5.4 5.4 5.4
0.25 > 3600 0 0.366 10 > 3600 0 0.064 10 7.1 7.1 6.5 7.1
0.50 > 3600 0 17.159 10 > 3600 0 1.000 10 8.8 9.2 6.2 9.2
0.75 > 3600 0 78.966 10 > 3600 0 1249.99 10 14.8 16.5 7.9 16.5
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significantly tighter for all but one instance, for which the two bounds match
(karate, for γ = 0.85).

Table 2 Results for literature graphs: new pruning upper bound UB is significantly tighter.

Instance vertices edges density γ = 1 γ = 0.95 γ = 0.85
ωu UB ωu UB ωu UB

1-FullIns 3 30 100 0.23 13 10 13 10 14 11
1-FullIns 4 52 201 0.15 33 21 34 22 36 24
2-FullIns 3 80 346 0.11 18 13 19 13 20 14
3-FullIns 3 114 541 0.08 24 15 25 16 26 18
4-FullIns 3 154 792 0.07 30 18 31 19 33 21
5-FullIns 3 93 593 0.14 37 21 38 22 40 24
games120 120 638 0.09 33 13 34 14 36 15
mug88 1 88 146 0.04 12 5 12 5 13 5
mug88 25 88 146 0.04 12 5 12 5 13 5
myciel3 11 20 0.36 6 5 6 5 6 5
myciel4 23 71 0.28 11 9 11 9 12 10
myciel5 47 236 0.22 21 16 21 16 22 17
myciel6 95 755 0.17 37 27 38 28 41 31
queen5 5 25 160 0.53 18 14 18 15 19 16
queen6 6 36 290 0.46 24 18 24 19 26 20
queen7 7 49 776 0.66 30 21 31 22 33 25
queen8 8 64 728 0.36 37 25 38 26 41 29
queen8 12 96 1368 0.30 51 32 53 33 56 37
queen9 9 81 1056 0.32 45 29 46 30 49 34
queen10 10 100 1470 0.29 53 33 55 34 58 38
miles250 128 387 0.047 28 14 29 14 30 16
miles500 128 1170 0.143 47 32 48 34 51 37
miles750 128 2113 0.25 64 49 66 51 70 56
miles1000 128 3216 0.39 80 67 82 70 86 76
miles1500 128 5198 0.63 102 94 104 98 110 107
c-fat200-1 200 1534 0.08 53 18 54 18 57 21
c-fat200-2 200 3235 0.16 79 34 81 36 86 40
c-fat200-5 200 8473 0.43 130 86 133 91 141 101
hamming6-4 64 704 0.35 37 23 38 24 40 26
hamming8-4 256 20864 0.64 204 164 209 172 221 192
johnson8-2-4 28 210 0.56 20 16 21 16 22 18
johnson8-4-4 70 1855 0.77 61 54 62 56 66 63
brock200-2 200 9876 0.50 140 104 144 110 152 122
brock200-1 200 14834 0.75 172 151 177 159 187 177
brock200-3 200 12048 0.61 155 125 159 131 168 146
brock200-4 200 13089 0.66 162 135 166 141 175 157
brock400-2 400 59786 0.75 346 303 355 318 375 354
brock400-4 400 59765 0.75 346 303 355 318 375 354
keller4 171 9435 0.65 137 115 141 120 149 133
p-hat300-1 300 10933 0.24 147 100 151 104 159 115
p-hat300-2 300 21928 0.49 209 177 214 185 227 201
adjnoun 112 425 0.07 26 19 27 20 28 21
dolphins 62 159 0.08 15 10 15 11 16 12
karate 34 78 0.14 11 10 11 10 11 11
polbooks 105 441 0.08 27 19 28 20 29 21

Table 3 shows the experimental results for each instance for the threshold
γ = 0.85. For each approach, the table displays the best solution found within
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the time limit of one hour and the running time in seconds. As before, we
indicate by “> 3600” whenever any of the exact methods failed to prove opti-
mality within the time limit for some instance. We indicate by “< ǫ” whenever
a running time is too close to zero. Concerning the coloring instances, QClique
was faster than the other approaches for all but the four last instances, for
which it did not reach the optimal solution within the time limit. QClique
was also faster for the four last miscelaneous graphs. However, QClique did
not perform well for the three last coloring instances (miles750, miles1000,
miles1500) and for some clique instances (hamming-8-4, all brock instances
but brock200-2, keller4, p-hat300-2).

Table 4 displays the same results for each instance for the threshold γ =
0.95. We notice that as the threshold γ increases, the sizes of the maxi-
mum γ-cliques and the running times decrease. The performance of algorithm
QClique improves and it clearly outperforms the others. QClique found the
best solutions or obtained the smallest running times for all but seven in-
stances (miles750, miles1000, miles1500, brock200-1, brock400-2, brock400-4,
p-hat300-2)

Finally, Table 5 gives the numerical results for each instance for the thresh-
old γ = 1.00. The relative performance of algorithm QClique is even better
than in the two previous cases. QClique has the smallest running times for all
but four instances (c-fat200-5, johnson8-4-4, hamming8-4, miles500, miles750,
miles1000, miles1500) and for only two instances another algorithm found a
better solution than QClique (miles1000, p-hat300-2).

In general, we observe that the performance of algorithm QClique improves
with the increase of the threshold γ, due to the effectiveness of the pruning
procedure. When the graph density increases, the upper bounds provided by
inequality (24) become less tight and the number of nodes that are pruned in
the search tree decrease.

5 Concluding remarks

Given a graph G = (V (G), E(G)) and a threshold γ ∈ (0, 1], the maximum
quasi-clique problem consists in finding a maximum cardinality subset C∗ of
the vertices in V (G) such that the density of the graph induced in G by C∗ is
greater than or equal to the threshold γ.

We proposed an exact algorithm to solve this problem, based on a quasi-
hereditary property. We also proposed a new upper bound that is used for
pruning the search tree. Numerical results showed that the new approach is
competitive with the best integer programming formulations in (Pattillo et al,
2013; Veremyev et al, 2016) solved by CPLEX and with the branch-and-bound
algorithm proposed by Pajouh et al (2014), in terms of both solution quality
and running time. In addition, the new upper bound is consistently tighter
than previously existing bounds and leads to significant reductions in the enu-
meration tree.
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Table 3 Results for literature graphs with γ = 0.85.

solution size time (seconds)
Instance B&B F1 F3 QC B&B F1 F3 QC
1-FullIns 3 3 3 3 3 14.438 1.516 0.094 < ǫ
1-FullIns 4 3 3 3 3 1348.382 87.453 166.781 0.004
2-FullIns 3 5 5 5 5 > 3600 8.625 0.516 0.002
3-FullIns 3 7 7 7 7 > 3600 30.469 1.500 0.003
4-FullIns 3 8 8 8 8 > 3600 121.969 2.172 0.008
5-FullIns 3 9 10 10 10 > 3600 456.219 29.813 0.027
games120 10 10 10 10 > 3600 233.156 3.344 0.036
mug88 1 3 3 3 3 1076.580 30.625 0.125 0.001
mug88 25 3 3 3 3 1076.840 25.500 0.203 0.001
myciel3 2 2 2 2 0.022 0.047 0.016 < ǫ
myciel4 2 2 2 2 0.923 0.672 0.063 < ǫ
myciel5 2 2 2 2 8.605 8.266 0.578 < ǫ
myciel6 2 2 2 2 64.520 429.578 328.984 0.001
queen5 5 6 6 6 6 272.487 1.453 2.359 0.005
queen6 6 7 7 7 7 > 3600 6.656 25.500 0.015
queen7 7 7 8 8 8 > 3600 20.906 > 3600 0.038
queen8 8 7 9 9 9 > 3600 69.500 > 3600 0.104
queen8 12 7 13 13 13 > 3600 3123.094 > 3600 1.398
queen9 9 7 10 10 10 > 3600 253.156 > 3600 0.300
queen10 10 7 11 11 11 > 3600 1105.188 > 3600 0.767
miles250 11 11 11 11 > 3600 149.234 0.125 0.038
miles500 30 30 30 30 0.085 555.422 0.688 > 3600
miles750 46 46 46 25 0.074 244.578 3.359 > 3600
miles1000 64 64 64 37 0.064 117.531 27.219 > 3600
miles1500 104 104 104 89 0.055 5.000 0.953 > 3600
c-fat200-1 14 14 14 14 > 3600 1637.370 9.047 6.487
c-fat200-2 29 29 29 29 > 3600 3476.420 235.453 > 3600
c-fat200-5 70 70 70 70 > 3600 > 3600 > 3600 > 3600
hamming6-4 4 4 4 4 > 3600 28.190 145.093 0.007
hamming8-4 35 11 8 23 > 3600 > 3600 > 3600 > 3600
johnson8-2-4 4 4 4 4 1.396 3.656 0.547 0.002
johnson8-4-4 21 22 21 27 > 3600 > 3600 > 3600 > 3600
brock200-2 15 13 7 17 > 3600 > 3600 > 3600 > 3600
brock200-1 63 36 21 27 > 3600 > 3600 > 3600 > 3600
brock200-3 25 17 11 24 > 3600 > 3600 > 3600 > 3600
brock200-4 34 14 9 24 > 3600 > 3600 > 3600 > 3600
brock400-2 94 0 1 16 > 3600 > 3600 > 3600 > 3600
brock400-4 93 0 1 16 > 3600 > 3600 > 3600 > 3600
keller4 23 26 10 24 > 3600 > 3600 > 3600 > 3600
p-hat300-1 11 7 7 12 > 3600 > 3600 > 3600 220.098
p-hat300-2 85 63 2 24 > 3600 > 3600 > 3600 > 3600
adjnoun 7 7 7 7 > 3600 109.609 0.922 0.007
dolphins 6 6 6 6 > 3600 12.328 0.125 0.002
karate 6 6 6 6 2857.420 1.703 0.016 < ǫ
polbooks 9 9 9 9 > 3600 85.547 0.344 0.019
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Table 4 Results for literature graphs with γ = 0.95.

solution size time (seconds)
Instance B&B F1 F3 QC B&B F1 F3 QC
1-FullIns 3 3 3 3 3 14.238 1.047 0.141 < ǫ
1-FullIns 4 3 3 3 3 1323.496 53.969 145.484 0.002
2-FullIns 3 4 4 4 4 1365.687 5.969 0.328 0.001
3-FullIns 3 5 5 5 5 > 3600 29.578 3.922 0.001
4-FullIns 3 7 7 7 7 > 3600 79.844 1.824 0.005
5-FullIns 3 8 8 8 8 > 3600 246.375 6.172 0.008
games120 7 9 9 9 > 3600 102.922 14.641 0.018
mug88 1 3 3 3 3 1067.006 26.484 0.047 0.001
mug88 25 3 3 3 3 1066.575 29.953 0.047 0.001
myciel3 2 2 2 2 0.023 < ǫ 0.016 < ǫ
myciel4 2 2 2 2 0.901 0.594 0.109 < ǫ
myciel5 2 2 2 2 8.665 5.063 0.719 < ǫ
myciel6 2 2 2 2 63.951 55.938 776.344 0.002
queen5 5 5 5 5 5 95.780 1.219 1.047 0.002
queen6 6 6 6 6 6 > 3600 4.016 12.656 0.006
queen7 7 6 7 7 7 > 3600 8.828 353.781 0.015
queen8 8 6 8 8 8 > 3600 22.844 > 3600 0.029
queen8 12 7 12 12 12 > 3600 171.687 > 3600 0.225
queen9 9 7 9 9 9 > 3600 58.359 > 3600 0.077
queen10 10 7 10 10 10 > 3600 113.422 > 3600 0.247
miles250 8 8 8 8 > 3600 83.563 0.297 0.008
miles500 25 25 25 25 > 3600 175.859 2.531 381.172
miles750 39 39 39 30 > 3600 230.375 5.063 > 3600
miles1000 52 52 52 34 > 3600 55.937 2652.531 > 3600
miles1500 90 90 90 88 0.061 4.859 129.922 > 3600
c-fat200-1 12 12 12 12 > 3600 799.187 14.950 0.658
c-fat200-2 25 25 25 25 > 3600 1132.500 386.421 1334.637
c-fat200-5 61 61 61 61 > 3600 2145.391 > 3600 > 3600
hamming6-4 4 4 4 4 > 3600 19.781 0.516 0.007
hamming8-4 17 7 5 17 > 3600 > 3600 > 3600 > 3600
johnson8-2-4 4 4 4 4 0.0160 2.156 0.625 0.002
johnson8-4-4 12 15 8 15 > 3600 132.320 > 3600 191.986
brock200-2 10 10 5 13 > 3600 > 3600 > 3600 105.461
brock200-1 26 23 4 25 > 3600 > 3600 > 3600 > 3600
brock200-3 15 16 7 17 > 3600 > 3600 > 3600 > 3600
brock200-4 18 17 9 20 > 3600 > 3600 > 3600 > 3600
brock400-2 34 8 1 31 > 3600 > 3600 > 3600 > 3600
brock400-4 32 0 1 31 > 3600 > 3600 > 3600 > 3600
keller4 10 13 7 15 > 3600 > 3600 > 3600 > 3600
p-hat300-1 8 8 7 9 > 3600 > 3600 > 3600 3.456
p-hat300-2 39 30 8 25 > 3600 > 3600 > 3600 > 3600
adjnoun 5 5 5 5 > 3600 69.516 2.125 0.003
dolphins 5 5 5 5 > 3600 11.656 0.110 0.001
karate 5 5 5 5 711.772 1.969 0.031 < ǫ
polbooks 7 7 7 7 > 3600 58.234 0.438 0.007
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Table 5 Results for literature graphs with γ = 1.00.

solution size time (seconds)
Instance B&B F1 F3 QC B&B F1 F3 QC
1-FullIns 3 3 3 3 3 0.864 0.016 0.078 < ǫ
1-FullIns 4 3 3 3 3 243.552 0.125 275.813 0.004
2-FullIns 3 4 4 4 4 397.431 0.063 0.314 0.001
3-FullIns 3 5 5 5 5 > 3600 0.063 1.000 0.002
4-FullIns 3 6 6 6 6 > 3600 0.266 2.344 0.004
5-FullIns 3 7 7 7 7 > 3600 0.797 31.281 0.009
games120 7 9 9 9 > 3600 1.656 3.172 0.005
mug88 1 3 3 3 3 734.887 0.703 0.047 0.001
mug88 25 3 3 3 3 736.032 0.844 0.047 0.001
myciel3 2 2 2 2 0.007 < ǫ < ǫ < ǫ
myciel4 2 2 2 2 0.307 < ǫ 0.0469 < ǫ
myciel5 2 2 2 2 6.083 0.063 1.172 0.001
myciel6 2 2 2 2 42.778 0.734 311.422 0.001
queen5 5 5 5 5 5 69.067 0.031 0.625 0.002
queen6 6 6 6 6 6 2886.369 0.047 7.750 0.005
queen7 7 7 7 7 7 > 3600 0.031 105.578 0.010
queen8 8 7 8 8 8 > 3600 0.156 > 3600 0.018
queen8 12 7 12 12 12 > 3600 0.453 > 3600 0.038
queen9 9 7 9 9 9 > 3600 0.438 > 3600 0.032
queen10 10 7 1 10 10 > 3600 0.891 > 3600 0.055
miles250 8 8 8 8 > 3600 2.453 0.281 0.006
miles500 20 20 20 20 > 3600 2.625 53.891 15.061
miles750 31 31 31 31 > 3600 2.641 3298.766 > 3600
miles1000 42 42 40 30 > 3600 2.516 > 3600 > 3600
miles1500 73 73 11 73 > 3600 1.766 > 3600 > 3600
c-fat200-1 12 12 12 12 > 3600 12.141 10.891 0.046
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Abstract

Given a graph G = (V,E) and a threshold γ ∈ (0, 1], the maximum cardinality quasi-clique problem consists in
finding a maximum cardinality subset C∗ of the vertices in V such that the density of the graph induced inG by C∗

is greater than or equal to the threshold γ. This problem is NP-hard, since it admits the maximum clique problem
as a special case. It has a number of applications in data mining, e.g. in social networks or phone call graphs. In this
work, we propose a hybrid biased random-key genetic algorithm (BRKGA) for solving the maximum cardinality
quasi-clique problem. The hybrid approach makes use of the QClique algorithm of Ribeiro and Riveaux (2017) to
exactly solve the local search procedure in the reconstruction phase of the decoder. The newly proposed approach
is compared with algorithm BRKGA-IG∗ of Pinto et al. (2017), the best heuristic in the literature at the time of
writing. Computational results show that the hybrid BRKGA outperforms BRKGA-IG∗.

Keywords: maximum cardinality quasi-clique problem; maximum clique problem; maximum clique problem; biased random-
key genetic algorithm; metaheuristics; graph density

1. Introduction

Let G = (V,E) be a graph defined by a vertex set V and an edge set E ⊆ V × V . G is a complete
graph if there is an edge in E connecting every two different vertices in V . A graph G′ = (V ′, E′) is a
subgraph of G if V ′ ⊆ V and E′ ⊆ E, which is denoted by G′ ⊆ G. The graph G(V ′) induced in G by
V ′ ⊆ V is that with vertex set V ′ and edge set formed by all edges of E with both ends in V ′. For any
V ′ ⊆ V , the subset E(V ′) ⊆ E is formed by all edges of E with both ends in V ′ (i.e., E(V ′) is the edge
set of the graph induced in G by V ′).

∗Author to whom all correspondence should be addressed (e-mail: jangel.riveaux@ic.uff.br).
�Work of Celso C. Ribeiro was partially supported by CNPq research grant 303958/2015-4 and by FAPERJ research grant
E-26/201.198/2014.
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The density of graph G is given by dens(G) = |E|/(|V | × (|V | − 1)/2). For any v ∈ V , the degree
degG(v) denotes the number of vertices in G that are adjacent to v.

A subset C ⊆ V is a clique of G if the graph G(C) induced in G by C is complete. Given a graph
G = (V,E), the maximum clique problem consists in finding a maximum cardinality clique of G. It was
proved to be NP-hard by Karp (1972).

Given a graph G = (V,E) and a threshold γ ∈ (0, 1], a γ-clique is any subset C ⊆ V such that the
density of the subgraph G(C) is greater than or equal to γ. A γ-clique C is maximal if there is no other
γ-clique C ′ that strictly contains C. The maximum quasi-clique problem (MQCP) amounts to finding
a maximum cardinality subset C∗ of the vertices in V such that the density of the graph induced in
G by C∗ is greater than or equal to the threshold γ. This problem is also NP-hard, since it admits the
maximum clique problem as a special case in which γ = 1, see (Pattillo et al., 2013). The problem has
many applications and related clustering approaches include classifying molecular sequences in genome
projects by using a linkage graph of their pairwise similarities (Brunato et al., 2008) and the analysis of
massive telecommunication data sets obtained from social networks or phone call graphs (Abello et al.,
2002), as well as various data mining and graph mining applications.

A few heuristics for MQCP exist in the literature, based on well known approaches such as greedy
randomized algorithms and their iterated extensions (Oliveira, 2013; Oliveira et al., 2013), stochastic
local search (Brunato et al., 2008), and GRASP (Abello et al., 2002). Pinto et al. (2017) proposed a
biased random-key genetic algorithm for finding approximate solutions to the maximum cardinality
quasi-clique problem, using two different decoders. They showed that the decoder based on an opti-
mized iterated greedy constructive heuristic led to the best numerical results. They also showed that the
use of a restart strategy significantly contributed to improve the robustness and the efficiency of the al-
gorithm. The resulting BRKGA-IG∗ heuristic with restart(100) strategy achieved the best performance
and outperformed the restarted optimized iterated greedy (RIG∗) construction/destruction heuristic that
originally reported the best results in the literature for dense graphs. BRKGA-IG∗ with restart(100) ap-
proach was also compared with the exact algorithms AlgF3 and AlgF4 of Veremyev et al. (2016) used
as a heuristics with time limits on their running times. BRKGA-IG∗ with restart(100) applied to sparse
graphs also outperformed these mixed integer programming approaches, finding target solution values
in much smaller running times.

Ribeiro and Riveaux (2017) proposed an exact enumeration algorithm to solve the maximum quasi-
clique problem, based on a quasi-hereditary property. They also proposed a new upper bound that is used
for pruning the search tree. Numerical results showed that their approach is competitive with the best
integer programming formulations in (Pattillo et al., 2013; Veremyev et al., 2016) solved by CPLEX and
with the branch-and-bound algorithm proposed by Pajouh et al. (2014), in terms of both solution quality
and running time.

In this work, we show that the exact enumeration algorithm QClique proposed by Ribeiro and Riveaux
(2017) can be hybridized with the biased random-key genetic algorithm BRKGA-IG∗ developed by
(Pinto et al., 2017) as a local search algorithm to improve the quality of the solutions created by the
decoder. This paper is organized as follows. Section 2 presents the problem formulation. Section 3
introduces biased random-key genetic algorithms and describes their customization to the maximum
quasi-clique problem. Section 4 describes in detail the decoder DECODER-IG∗ previously used used in
the implementation of the biased random-key genetic algorithm for the maximum quasi-clique problem.
The new decoder DECODER-ExactQClique based on an exact local search procedure is presented in
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Section 5. Numerical results are reported in Section 6. Concluding remarks are drawn in the last section.

2. Problem formulation and related work

The maximum quasi-clique problem can be formulated by associating a binary variable xi to each vertex
of the graph (Pattillo et al., 2013) :

xi =

{
1, if vertex vi ∈ V belongs to the solution,
0, otherwise.

This formulation also considers a variable yij = xi · xj associated to each pair of vertices i, j ∈ V ,
with i < j, that is linearized as follows:

max
∑

i∈V
xi (1)

subject to:
∑

(i,j)∈E:i<j

yij ≥ γ ·
∑

i,j∈V :i<j

yij (2)

yij ≤ xi, ∀i, j ∈ V, i < j, (3)

yij ≤ xj , ∀i, j ∈ V, i < j, (4)

yij ≥ xi + xj − 1, i, j = 1, . . . , n, i < j, (5)

xi ∈ {0, 1}, ∀i ∈ V, (6)

yij ≥ 0, ∀i, j ∈ V, i < j. (7)

The objective function (1) maximizes the number of vertices in the solution. If two vertices i, j belong
to a solution, then xi = xj = 1 and yij = xi · xj = 1. If edge (i, j) ∈ E, then it contributes to the
density of the quasi-clique. Constraint (2) ensures that the density of the solution is greater than or equal
to γ. Constraints (3) and (4) ensure that any edge may contribute to the density of a solution only if both
of its ends are chosen to belong to this solution. Constraints (5) ensure that any existing edge (i, j) ∈ E
will contribute to the solution if both of its ends are chosen. Constraints (6) and (7) impose the binary
and non-negativity requirements on the problem variables, respectively.

Veremyev et al. (2016) reported and compared four mixed integer programming formulations for the
maximum quasi-clique problem in sparse graphs. Two algorithms based on the best formulations led to
better results than the mixed integer programming formulation proposed in (Pattillo et al., 2013), with all
mixed integer programs solved using FICO Xpress-Optimizer (FICO, 2017) with the time limit of 3600
seconds. Ribeiro and Riveaux (2017) developed an exact algorithm based on a quasi-hereditary property
and proposed a new upper bound that is used for pruning the search tree. Numerical results showed that
their approach is competitive with the best integer programming approaches in the literature and that
their new upper bound is consistently tighter than previously existing bounds.
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3. Biased random-key genetic algorithms for maximum quasi-clique

Genetic algorithms with random keys, or random-key genetic algorithms (RKGA), were first introduced
by Bean (1994) for combinatorial optimization problems whose solutions may be represented by per-
mutation vectors. Solutions are represented as vectors of randomly generated real numbers called keys.
A deterministic algorithm, called a decoder, takes as input a solution vector and associates with it a fea-
sible solution of the combinatorial optimization problem, for which an objective value or fitness can be
computed. Two parents are selected at random from the entire population to implement the crossover
operation in the implementation of an RKGA. Parents are allowed to be selected for mating more than
once in the same generation.

A biased random-key genetic algorithm (BRKGA) differs from an RKGA in the way parents are
selected for crossover, see (Goncalves and Resende, 2011) for a review. In a BRKGA, each element is
generated combining one element selected at random from the elite solutions in the current population,
while the other is a non-elite solution. The selection is said to be biased because one parent is always an
elite solution and has a higher probability of passing its genes to the new generation.

In the following, we summarize two variants of a biased random-key genetic algorithm for MQCP,
each of them using a different decoder. Both of them evolve a population of chromosomes that consists
of vectors of real numbers. Each chromosome is represented by a vector of |V | components, in which
each key is a real number in the range [0, 1) associated with one of the vertices of the graph G. Each
chromosome is decoded by an algorithm that receives the vector of keys and builds a feasible solution
for MQCP, i.e., the decoder returns a γ-clique as its output. The two decoders DECODER-HCB and
DECODER-IG∗ are described in the next section and have been originally presented in (Pinto et al.,
2017).

The parametric uniform crossover scheme proposed by Spears and de Jong (1991) is used to combine
two parent solutions and to produce an offspring. In this scheme, the offspring inherits each of its keys
from the best fit of the two parents with a higher probability. The biased random-key genetic algorithm
developed in this work does not make use of the standard mutation operator, where parts of the chro-
mosomes are changed with small probability. Instead, the concept of mutants is used: mutant solutions
are introduced in the population in each generation, randomly generated in the same way as in the initial
population. Mutants play the same role of the mutation operator in traditional genetic algorithms, diver-
sifying the search and helping the procedure to escape from locally optimal solutions (Brandão et al.,
2015, 2017; Noronha et al., 2011).

The |V | keys in the chromosome are randomly generated in the initial population. At each generation,
the population is partitioned into two sets: TOP and REST . The size of the population is |TOP | +
|REST |. Subset TOP contains the best solutions in the population. Subset REST is formed by two
disjoint subsets: MID and BOT , with subset BOT being formed by the worst elements in the current
population. As illustrated in Figure 1, the chromosomes in TOP are simply copied to the population of
the next generation. The elements in BOT are replaced by newly created mutants that are placed in the
new set BOT . The remaining elements of the new population are obtained by crossover, with one parent
randomly chosen from TOP and the other from REST . This distinguishes a biased random-key genetic
algorithm from the random-key genetic algorithm of Bean (1994), where both parents are selected at
random from the entire population. Since a parent solution can be chosen for crossover more than once
in any given generation, elite solutions have a higher probability of passing their random keys to the next

c© 2017 International Transactions in Operational Research c© 2017 International Federation of Operational Research Societies



B.Q. Pinto, C.C. Ribeiro, J.A. Riveaux, and I. Rosseti / Intl. Trans. in Op. Res.25 (2018) 1–20 5

TOP TOP

REST

BOT

XCrossover

Copy best solutions

Select one parent
from TOP

Select other
parent from REST

Randomly generated
solutions

most fit

least fit

MID

Fig. 1: Population evolution between consecutive generations of a BRKGA.

generation. In this way, |MID | = |REST | − |BOT | offspring solutions are created.
The implementations of the biased random-key genetic algorithms for the maximum quasi-clique

problem make use of the C++ library brkgaAPI developed by Toso and Resende (2015), which is a
framework for the development of biased random-key genetic algorithms. It can also be used in parallel
architectures running OpenMP.

The instantiation of the framework shown in Figure 2 to some specific optimization problem requires
exclusively the development of a class implementing the decoder for this problem. This is the only
problem-dependent part of the tool.

begin
generate P vectors

of random keys

stopping rule
satisfied?

decode each vector
of random keys

sort solutions by
their fitness

classify solutions as

elite or non-elite

copy elite solutions
to next population

generate mutants in
next population

combine selected parents
and add offspring
to next population

update best

result

restart rule
satisfied?

yes

no

end
yes

no

Fig. 2: BRKGA framework.
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According to Goncalves et al. (2013), the BRKGA framework requires the following parameters: (a)
the population size (p = |TOP | + |REST |); (b) the fraction pe of the population corresponding to
the elite set TOP ; (c) the fraction pm of the population corresponding to the mutant set BOT ; (d) the
probability rhoe that the offspring inherits each of its keys from the best fit of the two parents; and (e)
the number k of generations without improvement in the best solution until a restart is performed.

In the remainder of this work, we consider and compare two variants of a biased random-key genetic
algorithm for solving MQCP, each of them based on a different decoder. Decoder DECODER-IG∗ was
originally proposed by Pinto et al. (2017) and will be summarized in the next section. The new decoder
DECODER-ExactQClique proposed in this work is based on the exact enumeration algorithm proposed
by Ribeiro and Riveaux (2017) and will be presented in Section 5.

4. Decoder DECODER-IG∗

We first review decoder DECODER-HCB, as presented in (Pinto et al., 2017). Each solution is associated
with a set of |V | random keys. The decoder receives as parameters the random keys rj ∈ [0, 1), j =
1, . . . , |V |. Each random key is a real number in the range [0, 1) and corresponds to a vertex of the graph.
Each chromosome represented by a set of random keys is decoded by an algorithm that receives the keys
and builds a feasible solution to MQCP. In other words, the decoder returns a γ-clique associated with
the set of random keys. Its pseudo-code is described in Algorithm 1. The roles of parameters minsize
and α are the same explained in (Pinto et al., 2017).

It may be used in two situations. First, to build a solution from scratch. Second, to complete (i.e.,
to reconstruct) a partially destroyed solution. In the second case, the decoder receives as an additional
parameter a partial solution formed by a non-empty list of vertices.

Decoder DECODER-IG∗ is an extension of the previous decoder that receives as parameters two sets
of random keys r1

j , r
2
j ∈ [0, 1), j = 1, . . . , |V |, i.e., there are two random keys r1

j and r2
j associated with

each vertex j ∈ V . The first set r1 of random keys is used in the construction of the initial solution and
in the reconstruction phase, while the second set r2 is used in the destruction phase. The roles of the
other parameters minsize, α, δ, and β are explained in (Pinto et al., 2017).

The pseudo-code of Algorithm 2 starts by creating an initial solution S′ in line 1, using the decoder
DECODER-HCB and the random keys r1

j , j ∈ V . The loop in lines 2 to 10 repeats the partial destruction
(vertex eliminations) followed by the reconstruction (vertex insertions) of the current solution, until no
further improvements can be obtained. The current solution S′ is copied to S in line 2. The current solu-
tion S′ is copied to S in line 3. The loop in lines 4 to 8 removes one by one the δ · |S′| vertices that should
be eliminated from the current solution. A restricted candidate RCL of size max{minsize, β · |CL|} is
created in line 5, containing the vertices with the smallest degrees in G(S′). The vertex with the smallest
random key r2

j , j ∈ RCL, is selected from the restricted candidate list in line 6 and eliminated from
the current solution in line 7. The reconstruction phase is performed in line 9, where the current, partial
solution S′ is rebuilt by decoder DECODER-HCB, once again using the first set r1 of random keys. The
loop is interrupted in line 10 when the new solution S′ obtained by destruction-reconstruction does not
improve the incumbent S or the graph G(S′) is not connected; otherwise a new iteration resumes. The
best solution S is returned in line 11.

c© 2017 International Transactions in Operational Research c© 2017 International Federation of Operational Research Societies



B.Q. Pinto, C.C. Ribeiro, J.A. Riveaux, and I. Rosseti / Intl. Trans. in Op. Res.25 (2018) 1–20 7

Algorithm 1 DECODER-HCB(G, γ, α,minsize, S, r)

1: CL← V \ S
2: if S = ∅ then
3: RCL← {v ∈ CL : |{v′ ∈ CL : degG(v′) ≥ degG(v)}| ≤ max{li , α · |CL|}}
4: x← argmin{rj : j ∈ RCL}
5: S ← {x}
6: end if
7: while CL 6= ∅ do
8: CL← ∅
9: for all v ∈ V \ S do

10: if |E(S)|+degG(S)(v)

|S|·(|S|+1)/2 ≥ γ then
11: CL← CL ∪ {v}
12: end if
13: end for
14: if CL 6= ∅ then
15: for all v ∈ CL do
16: dif v ← degG(CL)(v) + |CL| · (degG(S)(v)− γ · (|S|+ 1))
17: end for
18: RCL← {v ∈ CL : |{v′ ∈ CL : dif (v′) ≥ dif (v)}| ≤ max{minsize, α · |CL|}}
19: x← argmin{rj : j ∈ RCL}
20: S ← S ∪ {x}
21: end if
22: end while
23: return S

Algorithm 2 DECODER-IG∗(G, γ, α, δ, β,minsize, S, r1, r2)

1: S′ ← DECODER-HCB(G, γ, α,minsize, ∅, r1)
2: repeat
3: S ← S′

4: for k = 1 to δ · |S′| do
5: RCL← {v ∈ S′ : |{v′ ∈ S′ : degG(S′)(v

′) ≤ degG(S′)(v)}| ≤ max{minsize, β · |S ′|}}
6: x← argmin{r2

j : j ∈ RCL}
7: S′ ← S′ \ {x}
8: end for
9: S′ ← DECODER-HCB(G, γ, α,minsize, S′, r1)

10: until |S′| ≤ |S| or graph G(S′) is not connected
11: return S

5. New decoder based on exact local search: DECODER-ExactQClique

The main idea of the new decoder consists in replacing the reconstruction phase of decoder DECODER-
IG∗ by an exact algorithm that optimally completes the partial solution S′ obtained at the exit of the loop
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in lines 4 to 8 of Algorithm 2, obtaining a maximal γ-clique S′′ that contains S′.
In order to reduce the number of times the exact search algorithm is applied, an additional, (2|V |+1)-

th random key r3 ∈ [0, 1) will be associated to each solution. Given a parameter ρ ∈ [0, 1], local search
will be applied to a solution whenever r3 ≥ ρ, otherwise the decoder DECODER-HCB will be used to
reconstruct the solution. We note that, if ρ = 0 then the exact search algorithm will always be executed;
if ρ = 1, then it will never be executed.

A slightly modified version of the QClique algorithm of Ribeiro and Riveaux (2017) will be used to
complete the partial solution S′ obtaining a maximal γ-clique.

Algorithm 3 describes the pseudo-code of decoder DECODER-ExactQClique. It requires the same
parameters as DECODER-IG∗, except for for two new parameters: the probability ρ that the exact search
algorithm is applied to each partial solution and the random key r3. The algorithm starts by creating an
initial solution S′ in line 1, using the decoder DECODER-HCB and the random keys r1

j , j ∈ V . The loop
in lines 2 to 14 repeats the partial destruction (vertex eliminations) followed by the reconstruction (vertex
insertions) of the current solution, until no further improvements can be obtained. The current solution
S′ is copied to S in line 3. The loop in lines 4 to 8 removes one by one the δ · |S′| vertices that should
be eliminated from the current solution. A restricted candidate RCL of size max{minsize, β · |CL|} is
created in line 5, containing the vertices with the smallest degrees in G(S′). The vertex with the smallest
random key r2

j , j ∈ RCL, is selected in line 6 and eliminated from the current solution in line 7. The
reconstruction phase starts in line 9. If the random key r3 is greater than or equal to parameter ρ and
G(S′) is a γ-clique, then the partial solution S′ is completed in line 10 by an exact search algorithm to
become a maximal γ-clique S′′ that contains S′. Solution S′′ is copied to S′ in line 11. Solution S′ is
rebuilt by decoder DECODER-HCB in line 13, once again using the first set r1 of random keys. The
loop is interrupted in line 14 when the new solution S′ obtained by destruction-reconstruction does not
improve the incumbent S or the graph G(S′) is not connected; otherwise a new iteration resumes. The
best solution S is returned in line 15.

Algorithm 3 DECODER-ExactQClique(G, γ, α, δ, β,minsize, r1, r2, r3, ρ)

1: S′ ← DECODER-HCB(G, γ, α,minsize, ∅, r1)
2: repeat
3: S ← S′

4: for k = 1 to δ · |S′| do
5: RCL← {v ∈ S′ : |{v′ ∈ S′ : degG(S′)(v

′) ≤ degG(S′)(v)}| ≤ max{minsize, β · |S ′|}}
6: x← argmin{r2

j : j ∈ RCL}
7: S′ ← S′ \ {x}
8: end for
9: if r3 ≥ ρ and dens(G(S′)) ≥ γ then

10: Find a maximum cardinality quasi-clique S′′ containing all vertices in S′.
11: S′ ← S′′

12: end if
13: S′ ← DECODER-HCB(G, γ, α,minsize, S′, r1)
14: until |S′| ≤ |S| or graph G(S′) is not connected
15: return S
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We now proceed to describe how the exact algorithm QClique (Ribeiro and Riveaux, 2017) can be
adapted to be used in line 10 of Algorithm 3 to optimally complete the partial solution S′, generating a
maximal γ-clique S′′.

Algorithm 4 QClique(G,Π, γ,LB ,Π∗) (Ribeiro and Riveaux, 2017)

1: i← |Π|
2: if |E(Π)| + ∑

v∈F degG(Π)(v) + min{
∑

v∈D degG(v)−∑v∈F degG(Π)(v)

2 ,
(|V ′|

2

)
} < γ ·

(
k
2

)
for every

k = i+ 1, . . . ,LB + 1 then
3: return
4: end if
5: CL← getCandidates(G,Π, γ)
6: if CL = ∅ then
7: return
8: end if
9: if |Π|+ 1 > LB then

10: LB ← |Π|+ 1
11: Randomly select v ∈ CL
12: Π∗ ← Π⊕ {v}
13: end if
14: for all j ∈ CL do
15: Π′ ← Π⊕ {j}
16: QClique(G,Π′, γ,LB ,Π∗)
17: end for

The partial solution S′ in line 10 of Algorithm 3 is passed to the pseudocode of Algorithm 4 as the set
of vertices that will be used as the initial prefix Π, i.e. Π = S′. The best known solution Π∗ is the current
solution S, and the initial lower bound LB = |S|.

We recall that two restrictions were used to guarantee the uniqueness of a permutation in the enu-
meration tree generated by the original QClique algorithm, allowing to speedup the search by pruning.
However, these restrictions might exclude some high quality solutions when the search starts from a set
of fixed vertices.

In order to avoid the exclusion of such solutions, the uniqueness conditions are replaced by the re-
quirement that dens(G(Π)) ≥ dens(G(Π′)) in the getCandidates method that defines the vertices that
may be used to extend the current solution Π, ensuring that the conditions of Theorem 1 in (Ribeiro
and Riveaux, 2017) are met to form a new solution Π′. In addition, as an strategy to improve the search
process, the candidate vertices are taken in the non increasing order of their number of neighbors in the
current solution. In case of ties, a vertex with maximum degree goes first.

Algorithm 5 displays the pseudocode of the getCandidates function that builds the candidate list CL
formed by the vertices that can be added at the end of a prefix solution. Line 1 initializes CL as empty
and line 2 initializes i as the size of the current permutation Π. The loop in lines 3 to 8 considers the
addition to the current permutation Π of all vertices in V \ Π. We denote by degG(Π)(j) the number of
vertices of the current permutation Π that are adjacent to vertex j. Line 4 checks if, for a candidate vertex
j, the subgraph induced by Π′ = Π ∪ {j} is a γ-clique and the density of the induced subgraph G(Π′)
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is not greater than that of G(Π). If this is the case, then vertex j is definitely added to the candidate list
CL in line 6. The vertices in the candidate list CL are sorted in the non increasing order of their number
of neighbors in the current solution in line 9 and returned in line 10.

Algorithm 5 getCandidates(G,Π, γ)

1: CL← ∅
2: i← |Π|
3: for all j ∈ V \Π do
4: Π′ ← Π⊕ {j}
5: if degG(Π)(j) + |E(Π)| ≥ γ(i+ 1)i/2 and dens(G(Π)) ≥ dens(G(Π′)) then
6: CL← CL ∪ {j}
7: end if
8: end for
9: sort vertices in the candidate list CL by the non-decreasing order of their number of neighbors

10: return CL

6. Computational results

All algorithms were implemented using version 19.00.23504 of the Microsoft C/C++ Optimizing com-
piler. The computational experiments have been performed on an Intel Core i5-5200 processor with 2.20
GHz and 8 GB of RAM running under Windows 10.

We have used 96 instances derived from maximum clique problems of the Second DIMACS Imple-
mentation Challenge (Johnson, 1996).

The newly proposed algorithm BRKGA-ExactQClique was compared with the original BRKGA-IG∗

heuristic of Pinto et al. (2017), which was the best heuristic for the maximum quasi-clique problem at the
time of writing. The best parameters for algorithm BRKGA-IG∗ were determined by Pinto et al. (2017)
using the automatic tuning tool IRACE (López-Ibánez et al., 2011; Pérez Cáceres et al., 2014). The
same settings were used for algorithm BRKGA-ExactQClique. Parameters settings for both algorithm
are shown in Table 1. A parameter maxnodes is used as a maximum limit to the number of nodes of the
search tree generated by the exact algorithm QClique. In case the search tree generated by the QClique
algorithm reaches the maximum limit maxnodes of nodes, then it returns the best solution found until
this point. The additional application of the DECODER-HCB reconstruction in line 13 of Algorithm 3
is used to further improve the current solution.

The number of vertices deleted in the destruction phase of DECODER-IG∗ of Algorithm 2 depends
on the value of a parameter δ ∈ [0, 1]. In order to to enforce that the fraction of nodes eliminated in the
destruction phase is smaller for dense graphs, we empirically set δ = 1 − dens(G) if dens(G) < 0.8;
δ = 2(1 − dens(G)) otherwise . We note that no vertices will be removed if dens(G) = 1, i.e G is a
clique (or a complete graph). However, in this case, the condition in line 10 of Algorithm 1 is true for
every S ⊂ V and every v ∈ V \ S. Therefore, in this case DECODER-HCB always finds the optimal
solution S = V , which is the optimum for every complete graph G.

Tables 2 to 4 display average results over ten runs of each algorithm for each instance. A target value
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Table 1: Parameters settings.

Algorithm p pe pm rhoe α δ β maxnodes ρ

BRKGA-IG∗ 89 0.16 0.11 0.77 0.01 0.34 0.10 - -
BRKGA-ExactQClique 89 0.16 0.11 0.77 0.01 - 0.10 131 0.12

is given to each instance. Each run stops when a solution at least as good as the target is found or a
time limit of ten minutes is reached. For each instance, the table presents the threshold γ, the target
for the size of the γ-clique, the average clique size found by algorithm BRKGA-IG∗ and the number
of runs it matched or improved the target over the ten runs, the average clique size found by algorithm
BRKGA-ExactQClique and the number of runs it matched or improved the target over the ten runs, and
the average running time of each algorithm in seconds over the ten runs. Cells highlighted in boldface
indicate the algorithms that attained the best values for each instance.

We observe in these tables that BRKGA-ExactQClique found strictly larger average γ-cliques than
BRKGA-IG∗ for 28 instances, while BRKGA-IG∗ did better than BRKGA-ExactQClique in only ten
instances. Regarding the number of runs for which each algorithm matched or improved the target,
BRKGA-ExactQClique did better than BRKGA-IG∗ in 12 instances, while BRKGA-IG∗ performed
better than BRKGA-ExactQClique in only two instances. Although BRKGA-ExactQClique clearly out-
performed BRKGA-IG∗ in terms of solution quality, the latter was faster in 55 out of the 96 test instances.

In the next experiment, we evaluate and compare the run time distributions (or time-to-target plots – or
ttt-plots, for short) of algorithms BRKGA-IG∗ and BRKGA-ExactQClique. Time-to-target plots display
on the ordinate axis the probability that an algorithm will find a solution at least as good as a given target
value within a given running time, shown on the abscissa axis. Run time distributions have also been
advocated by Hoos and Stützle (1998) as a way to characterize the running times of stochastic local
search algorithms for combinatorial optimization. In this experiment, the two algorithms were made to
stop whenever a solution with cost greater than or equal to a given target value was found. The targets
are the same used in the previous experiment and reported in Tables 2 to 4. The heuristics were run
200 times each, with different initial seeds for the pseudo-random number generator. Next, the empirical
probability distributions of the time taken by each heuristic to find a target solution value are plotted.
To plot the empirical distribution for each heuristic, we followed the methodology proposed by Aiex et
al. Aiex et al. (2002, 2007). We associate a probability pi = (i− 1

2)/200 with the i-th smallest running
time ti and plot the points (ti, pi), for i = 1, . . . , 200. The more to the left is a plot, the better is the
algorithm corresponding to it.

Figures 3 to 6 illustrate the time-to-target plots for instances DSJC500.5, frb45-21-1, frb30-15-2, and
frb30-15-5. These plots show that BRKGA-ExactQClique performed better for the two first instances,
while BRKGA-IG∗ performed better for the two last ones. These conclusions are consistent with the
results observed for each algorithm over the 200 runs that generated the time to target plots, as depicted
in Table 5. This table shows that even though algorithm BRKGA-ExactQClique matches or improves
BRKGA-IG∗ in terms of the average solution quality, the latter is faster than the former in terms of their
average running times.

Figures 7 and 8 illustrate the evolution of the solution population along 100 generations of BRKGA-
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Table 2: Numerical results over ten runs of each algorithm for each instance - Part A.

Instances γ target IG∗ #opt. QClique #opt. IG∗ QClique
size (seconds) (seconds)

C125.9 0.999 34 34.00 10 34.00 10 0.052 0.207
C250.9 0.999 44 44.00 10 44.00 10 0.213 0.987
C500.9 0.999 57 57.00 10 57.00 10 7.717 41.596
C1000.9 0.999 67 67.00 10 66.80 8 149.145 181.719
C2000.9 0.999 74 73.60 6 74.10 7 456.268 369.326
C4000.5 0.8 46 43.20 0 47.50 10 648.695 220.310
DSJC500.5 0.8 34 34.00 10 34.00 10 22.445 16.735
DSJC1000.5 0.8 38 38.10 10 38.10 10 67.373 63.808
MANN a9 0.999 16 16.00 10 16.00 10 0.013 0.023
MANN a27 0.999 133 133.00 10 133.00 10 1.869 14.940
MANN a45 0.999 428 427.20 6 427.60 8 360.498 324.388
brock200 1 0.8 114 114.00 10 114.00 10 0.511 1.211
brock200 2 0.8 24 24.00 10 24.00 10 1.027 1.003
brock200 3 0.8 41 41.00 10 41.00 10 0.452 0.964
brock400 1 0.8 189 189.00 10 189.00 10 5.488 12.592
brock400 2 0.8 186 186.00 10 186.00 10 6.822 12.548
brock400 3 0.8 187 187.00 10 187.00 10 40.283 31.571
brock800 1 0.8 94 93.70 8 94.40 10 163.726 38.846
brock800 2 0.8 93 93.00 10 93.10 10 99.053 41.638
brock800 3 0.8 92 92.00 10 92.00 10 118.929 63.718
c-fat200-1 0.5 30 30.00 10 30.00 10 0.032 0.310
c-fat200-2 0.5 58 58.00 10 58.00 10 0.052 0.544
c-fat200-5 0.5 148 148.00 10 148.00 10 0.126 0.898
c-fat500-1 0.5 35 35.00 10 35.00 10 0.069 0.548
c-fat500-2 0.5 66 66.00 10 66.00 10 0.135 1.246
c-fat500-5 0.5 164 164.00 10 164.00 10 0.311 2.625
c-fat500-10 0.5 324 324.00 10 324.00 10 0.725 3.960
frb59-26-5 0.95 216 216.60 7 216.80 10 422.615 224.426
frb59-26-4 0.95 222 222.60 9 223.40 10 273.719 149.048
frb59-26-2 0.95 229 229.00 8 229.40 10 372.323 127.098
frb59-26-1 0.95 232 232.10 8 233.00 10 466.144 152.021

IG∗ and BRKGA-ExactQClique for one execution of instances frb59-26-2 and frb50-23-5, respectively.
In addition, Figures 9 and 10 display how the best solutions found by the two algorithms evolve along the
first 1000 seconds of processing time, for the same instances frb59-26-2 and frb50-23-5, respectively.
They show that BRKGA-ExactQClique systematically finds better solutions faster than BRKGA-IG∗.
The best solution value obtained by BRKGA-ExactQClique is better than or equal to that found by
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Table 3: Numerical results over ten runs of each algorithm for each instance - Part B.

Instances γ target IG∗ #opt. QClique #opt. IG∗ QClique
size (seconds) (seconds)

frb56-25-5 0.95 192 192.30 10 193.50 10 230.380 76.185
frb56-25-4 0.95 190 189.00 4 190.40 9 502.663 285.087
frb56-25-2 0.95 204 204.50 10 204.80 10 290.945 119.251
frb56-25-1 0.95 220 221.00 10 220.20 10 295.512 150.905
frb53-24-5 0.95 162 162.50 10 162.80 10 225.562 105.855
frb53-24-4 0.95 174 175.00 9 174.50 10 233.042 167.407
frb53-24-2 0.95 168 168.00 8 168.20 10 398.870 356.155
frb53-24-1 0.95 192 192.90 8 193.10 10 287.673 143.790
frb50-23-5 0.95 156 156.30 9 156.00 10 358.773 183.970
frb50-23-4 0.95 150 150.80 10 150.30 10 125.065 45.791
frb50-23-2 0.95 153 152.90 8 153.30 10 355.328 101.622
frb50-23-1 0.95 153 153.80 10 154.20 10 160.822 98.673
frb45-21-5 0.95 118 118.60 10 118.40 10 111.796 53.902
frb45-21-4 0.95 125 125.40 10 125.20 10 47.415 36.153
frb45-21-2 0.95 120 120.30 10 120.10 10 98.871 61.110
frb45-21-1 0.95 119 119.00 10 119.80 10 59.476 18.847
frb40-19-5 0.95 98 98.10 10 98.40 10 56.161 48.600
frb40-19-4 0.95 94 94.10 10 94.30 10 34.232 20.139
frb40-19-2 0.95 101 101.10 10 101.20 10 72.465 56.743
frb40-19-1 0.95 109 109.20 10 109.10 10 31.920 22.767
frb35-17-5 0.95 78 78.00 10 78.30 10 19.124 22.494
frb35-17-4 0.95 79 79.20 10 79.20 10 19.196 43.029
frb35-17-2 0.95 73 73.30 10 73.20 10 7.134 9.398
frb35-17-1 0.95 77 77.20 10 77.00 10 18.130 18.475
frb30-15-5 0.95 59 59.00 10 59.00 10 6.447 5.907
frb30-15-4 0.95 60 60.00 10 60.00 10 44.322 135.412
frb30-15-2 0.95 58 58.00 10 58.00 10 5.778 9.608
frb30-15-1 0.95 59 59.00 10 59.00 10 7.652 5.563
gen200 p0.9 44 0.999 40 40.00 10 40.00 10 0.114 0.617
gen400 p0.9 55 0.999 53 53.00 10 53.00 10 8.169 103.434
gen400 p0.9 65 0.999 58 58.50 10 57.50 6 45.234 379.328

BRKGA-IG∗ anytime along the runs displayed in these figures.
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Table 4: Numerical results over ten runs of each algorithm for each instance - Part C.

Instances γ target IG∗ #opt. QClique #opt. IG∗ QClique
size (seconds) (seconds)

hamming6-2 0.95 37 37.00 10 37.00 10 0.033 0.073
hamming6-4 0.5 32 32.00 10 32.00 10 0.028 0.163
hamming8-2 0.999 129 129.00 10 129.00 10 0.233 0.214
hamming8-4 0.8 71 71.00 10 71.00 10 0.341 0.798
hamming10-2 0.999 525 525.00 10 525.00 10 12.910 7.591
hamming10-4 0.95 82 82.00 10 82.50 10 48.831 11.117
johnson8-4-4 0.8 43 43.00 10 43.00 10 0.056 0.310
johnson16-2-4 0.8 34 34.00 10 34.00 10 0.061 0.195
johnson32-2-4 0.95 21 21.00 10 21.00 10 0.704 0.909
keller4 0.8 54 54.00 10 54.00 10 0.178 0.578
keller5 0.8 486 486.00 10 486.00 10 4.467 15.628
keller6 0.95 271 271.10 8 272.00 9 416.216 388.637
p hat300-1 0.5 64 64.00 10 64.00 10 2.604 36.551
p hat300-2 0.8 114 114.00 10 114.00 10 0.927 2.000
p hat500-1 0.5 96 96.00 10 96.00 10 1.916 6.745
p hat500-2 0.8 211 211.00 10 211.00 10 1.865 4.451
p hat700-1 0.5 119 119.00 10 119.00 10 13.095 55.259
p hat700-2 0.8 288 288.00 10 288.00 10 3.695 8.318
p hat1000-1 0.5 144 144.00 10 144.10 10 14.248 32.708
p hat1000-2 0.8 385 385.00 10 385.00 10 9.384 20.052
p hat1000-3 0.95 210 210.00 10 210.00 10 10.737 15.623
p hat1500-2 0.8 642 642.00 10 642.00 10 31.317 53.467
san1000 0.8 562 562.00 10 562.00 10 10.101 16.393
san200 0.7 1 0.95 57 57.00 10 57.00 10 0.195 0.444
san200 0.7 2 0.95 34 34.00 10 34.00 10 0.206 0.520
san200 0.9 1 0.999 55 55.70 10 55.50 10 6.079 24.426
san200 0.9 2 0.999 60 60.00 10 60.00 10 0.410 1.323
san200 0.9 3 0.999 42 42.20 10 42.20 10 12.199 49.317
san400 0.5 1 0.6 285 285.00 10 285.00 10 1.236 3.239
san400 0.7 1 0.95 201 201.00 10 201.00 10 1.137 1.885
san400 0.7 2 0.95 62 62.00 10 62.00 10 0.566 0.903
san400 0.7 3 0.95 40 40.00 10 40.00 10 25.685 52.996
sanr400 0.7 0.95 32 32.00 10 32.00 10 2.130 2.486
sanr400 0.5 0.8 32 32.00 10 32.00 10 1.527 1.989

7. Concluding remarks

We proposed an improvement in the biased random-key genetic algorithm BRKGA-IG∗ of Pinto et al.
(2017) for approximately solving the maximum quasi-clique problem, hybridizing a local search al-
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Fig. 3: Time to target plot for instance DSJC500.5.
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Fig. 4: Time to target plot for instance frb45-21-1.
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Fig. 5: Time to target plot for instance frb30-15-2.
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Fig. 6: Time to target plot for instance frb30-15-5.
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Table 5: Numerical results over 200 runs of each algorithm for each instance.

Instances γ target IG∗ #opt. QClique #opt. IG∗ QClique
size (seconds) (seconds)

DSJC500.5 34 0.8 34.000 200 34.000 200 22.048 14.376
frb45-21-1 119 0.95 119.325 200 119.525 200 37.418 19.143
frb30-15-2 58 0.95 58.000 200 58.000 200 7.477 11.301
frb30-15-5 59 0.95 59.010 200 59.055 200 6.350 9.046

Fig. 7: Population evolution for instance frb59-26-2 along 100 generations of BRKGA-IG∗ and BRKGA-
ExactQClique.
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gorithm that is based on an exact algorithm. The exact local search is a modification of the QClique
algorithm of Ribeiro and Riveaux (2017). The numerical results showed that the new, hybrid approach
outperforms BRKGA-IG∗, finding better solutions for most test problems.

Future work will focus on improvements of the exact local search method and better parameter set-
tings. In particular, we are interested in investigating better values for the destruction parameter δ and for
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Fig. 8: Population evolution for instance frb50-23-5 along 100 generations of BRKGA-IG∗ and BRKGA-
ExactQClique.
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the maximum number of nodes maxnodes in the search tree. The exact algorithm may also be further
improved by cuts that prune duplicate solutions.
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Fig. 9: Evolution of the best value found by BRKGA-IG∗ and BRKGA-ExactQClique along the 1000
first seconds of running time for instance frb59-26-2.
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Fig. 10: Evolution of the best value found by BRKGA-IG∗ and BRKGA-ExactQClique along the 1000
first seconds of running time for instance frb50-23-5.
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López-Ibánez, M., Dubois-Lacoste, J., Stützle, T., Birattari, M., 2011. The IRACE package: Iterated race for automatic algo-
rithm configuration. Technical Report TR/IRIDIA/2011-004, IRIDIA, Université Libre de Bruxelles, Belgium.
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