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Resumo

As GPUs estabeleceram uma nova linha de base em relação à eficiência de energia e
capacidade de computação, oferecendo maiores largura de banda e mais unidades de com-
putação em cada nova geração. As GPUs modernas suportam a execução simultânea de
kernels para maximizar a utilização dos recursos, permitindo que kernels possam explo-
rar melhor os recursos ociosos. Entretanto, a decisão da execução simultânea de kernels
diferentes é realizada pelo hardware e muitas vezes as GPUs não permitem a execução de
blocos remanescentes de outros kernels, mesmo com a disponiblidade de recursos. Neste
trabalho, realizamos um estudo aprofundado sobre a execução simultânea de kernels na
GPU. Apresentamos as condições necessárias para executar kernels simultaneamente, lis-
tamos os fatores que influenciam a concorrência e propomos um modelo que descreve a
redução de desempenho. Finalmente, validamos o modelo utilizando kernels de aplicações
reais com diferentes intensidades de computação e uso de memória.

Palavras-chave: Kernels concorrentes, Multiprogramação, computação em GPU.



Abstract

GPUs have established a new baseline for power efficiency and computing power, deliver-
ing larger bandwidth and more computing units in each new generation. Modern GPUs
support the concurrent execution of kernels to maximize resource utilization, allowing
kernels to better exploit idle resources. However, the decision on the simultaneous execu-
tion of different kernels is made by the hardware, and sometimes GPUs do not allow the
execution of remaining blocks of other kernels, even with the availability of resources. In
this work, we present an in-depth study on the simultaneous execution of kernels in the
GPU. We present the necessary conditions for executing kernels simultaneously, we list
the factors that influence competition and propose a model that describes performance
degradation. Finally, we validate the model using kernels of real-world applications with
different use intensities of computation and memory.

Keywords: Concurrent Kernels, Multiprogramming, GPU computing.
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Chapter 1

Introduction

This chapter presents the context of the dissertation, problem statement, research general

objective, specific objetives, applicability, key contributions and closes with the disserta-

tion outline.

1.1 Context

Graphic Processing Units (GPUs) 1 play a major role in diverse knowledge areas such as

physics [14], medical imaging [10], artificial intelligence [50], bioinformatics [15], among

others. Compared to traditional multi-core processing units, GPUs provide a high capac-

ity of computation, performing the same calculation several orders of magnitude faster,

which allows solving problems considered unfeasible some years ago [29].

In addition to their computing power, GPUs also feature a high-energy efficiency [18],

allowing to embed them in many kind of devices: laptops, robots, game consoles, VR

headsets and cars. Hence GPUs is no longer only a tool for scientific research but became

a commodity component [30].

Due to the increasing computational capacity, often one single application cannot take

full advantage of the available resources in GPUs. To address this issue, current GPU

architectures allow the execution of multiple applications concurrently.

Despite all the public information available for GPUs, there are no accurate details

about how the scheduling of concurrent applications is made [2, 24]. According to Wong
1Traditionally GPUs are devices dedicated to graphics rendering. The term General Purpose Graphics

Processing Unit (GPGPU) includes the use of GPUs for general-purpose computation. Consequently,
both terms may found in the literature as synonyms. Hereafter, we will refer to GPGPUs as simply
GPUs.
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et al. [54], a kind of reverse engineering to find out some hardware behaviors can be

possible. Therefore several authors agree that the internal scheduling of thread blocks

follows a round-robin way, though few workloads share the GPU efficiently [25,42].

With the objective of overcoming the limitations of the current scheduling policy,

alternative multitasking techniques have been studied. However, most of them are hard-

ware extensions validated on GPU simulators [4]. Also, researchers propose to optimize

the execution of concurrent kernels, but few works take into account the possible negative

interactions [20]. We present a performance estimation model that measures the expected

run-time slowdown of a kernel taking into account the current distribution of resources

for concurrent applications on real hardware.

1.2 Problem Statement and Relevance

Although GPU multitasking is extensively researched, the current support of concurrent

execution is primitive and unfair, because resources are assigned between concurrent ker-

nels in an unbalanced way. Suppose a situation where several kernels are scheduled for

execution at the same time. There might be cases when the first scheduled kernel drains

most of the resources even without completely using them, with the following kernels

remaining idle. This behavior prevents the execution of the subsequent kernels, resulting

in an ineffective resource utilization.

Several GPU optimization techniques use estimations for taking accurate scheduling

decisions. For instance, a successful technique is the use of estimated information to

perform auto-tuning of parameters. In the same way, to know the behavior of the inter-

application impact before the execution of such programs could be useful [7, 29,30].

Sharing resources in the cloud age with reliable, easy to use and cheap taxes, brought

additional challenges to single-user GPUs devices. The increasing porting of typical CPUs

applications to many-core systems demonstrated that it is mandatory that GPUs shortly

implement an efficient multitasking support to be adapted to this growing trend [41,46].

The sharing of GPUs is part of a new technological trend where multiple users can

simultaneously submit workloads on-demand. Clouds and supercomputers with GPUs as

accelerators are some examples that require concurrent execution support [9]. Frameworks

such as StarPU [19] and rCUDA [44] have the capacity to manage this kind of workloads.

In the light of the recent efforts to handle efficiently concurrent tasks, our work could be

implemented in these frameworks in order to improve the scheduling of applications.
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1.3 Research Objectives and Contributions

The objective of this work is to develop a slowdown estimation model for concurrent

kernels in GPUs based on resource usage. The key idea is to estimate the deceleration of

the execution time that applications may suffer before they execute. This performance

degradation can be due to the resource sharing with previous applications that could have

been executing. This projection is based on the configuration parameters related to the

required resources at compile-time.

This general objective can be broken down into four more specific objectives that

would together achieve the overall goal of this dissertation as follows:

• Investigate the limitations for concurrent execution on GPUs - The cur-

rent implementation of concurrent kernel execution on GPUs has limitations. For

instance, the scheduling decisions are performed by the hardware in runtime; such

decisions depend on the order of the kernel submission that can affect the efficient

resource usage. Also, the available GPU resources are not shared equally, some

kernels could be executed on a small subset of resources, drastically affecting their

overall execution time.

• Identify scenarios where concurrency of applications is allowed - It is un-

clear how the GPU scheduler distributes the available resources. A deeper under-

standing of how GPUs face simultaneous execution may lead to overcoming the

limitations. Also, if we take into account those conditions, the concurrent execution

of future workloads will be guaranteed.

• Identify GPU applications that can benefit from concurrent execution -

Each application demands different resources with mixed intensities, but most of

them are unable to entirely occupying all the GPU resources. The possibility of

characterizing applications which are concurrent-friendly would allow programmers

to avoid some combinations which result in considerable performance loss.

• Propose a model to estimate the deceleration of a GPU application in

concurrent execution - The analytical model is based on the kernels configura-

tions and the maximum resource limits of a target GPU.

• Compare the accuracy of the proposed model by using synthetic and real-

world applications - To validate the model, we measure the difference between

the estimated and the real performance degradation.
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Following are the major contributions of this work:

1. Determination of the conditions under which is possible to get concur-

rency of several kernels - There are some cases where a kernel is prevented from

executing their blocks even when there are sufficient resources to support it.

2. Determination of the point from which two kernels are concurrently exe-

cuted - Multiple factors, including the current scheduling policy or resource utiliza-

tion of each kernel, could cause a high, low or no overlap in concurrent execution.

3. Specification of the slowdown in individual situations - We can estimate the

performance decrease by making an analytic examination focused on the available

resources.

4. Validation of the proposed model in a broadly known benchmark suite -

These results confirm that the proposed model can be used in different scenarios.

1.4 Dissertation Outline

This work is structured as follows: Chapter 2 describes the background of GPU com-

puting and the details of the current GPU scheduling. Chapter 3 introduce the related

works for slowdown estimation in concurrent kernels. Chapter 4 shows the analysis of

the concurrency achieved in modern hardware. Chapter 5 introduces our proposed model

to estimate the slowdown. Chapter 6 presents the experimental results and discussion.

Chapter 7 presents the conclusions and some suggested future works.



Chapter 2

Background

In this chapter, we provide an overview of the GPU programming model and basic schedul-

ing concepts, which are useful to understand our proposed model.

2.1 GPU Programming Model

GPUs implement an execution model known as Single Instruction Multiple Threads

(SIMT). The model introduces parallel work organization through concurrent threads

and the memory hierarchy of the GPU with different access costs. Opposite to CPUs,

GPUs can manage thousands of threads simultaneously. To process some calculations on

GPU, the user must define a task, which is defined through functions called kernels. Data

is transferred before and after kernels execution to get/set the results. The most popular

frameworks for programming GPUs are CUDA and OpenCL, both are based on the C

programming language [21].

2.1.1 CUDA

CUDA is a framework that allows the development of applications for NVIDIA GPUs [34].

According to the CUDA programming model, a kernel is a function compiled that runs

on a CUDA-capable device. A typical parallel CUDA application can execute thousands

of threads simultaneously. The set of threads that execute the kernel compose a grid

of thread blocks. CUDA programmers must define a configuration before executing the

kernel; it determines the number of threads per block and the number of blocks per grid.

The launch configuration must be set according to the maximum resources available

in the target GPU. Any configuration out of the limits might make impossible to run a
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kernel.

When the host invokes a CUDA kernel, the grid is allocated on the GPU resources.

GPUs are composed of Streaming Multiprocessors (SMs), each SM has a set of Streaming

Processors (SPs) or CUDA cores. Also, each SM has available a set of registers and an

amount of shared memory. Figure 2.1 shows the diagram of a standard GPU architecture.

Figure 2.1: A typical GPU is composed of SMs, where each SM contains a set of SPs.
Also, each SM has a programmable cache called shared memory and a pool of registers.

At the hardware level, the threads in a block are grouped into warps (i.e. groups of

32 threads). Blocks are mapped to SMs in runtime. Each block is scheduled and executed

from the beginning to end in one SM.

In CUDA it is possible to represent the dependency of tasks by means of streams.

A CUDA stream is like a queue, where memory transfers and kernel invocations are

enqueued and executed in the same order. Furthermore, the execution of these groups

of tasks could be overlapped. This corresponds to another level of concurrency allowed

by the use of different streams. The tasks enqueued in more than one stream may be

performed in parallel depending on the resources and capabilities of the target device.

2.2 GPU Multitasking

Traditional GPU programming is based on the utilization of the entire GPU by a single

kernel that solves a problem which exposed a considerable amount of data parallelism.

Therefore, GPU kernels should be able to launch thousands of threads that will work
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on different data independently, using as much as possible of the resources. However,

several works point out that most of the kernels have unbalanced workloads [1, 41], i.e.,

kernels often present irregular memory access patterns, and complex control flow behaviors

resulting in lower occupancy.

To address this problem, modern GPUs also support task parallelism by allowing

the execution of multiple kernels simultaneously. Although the scheduling of kernels is

stated in the hardware, and their details are closed and entirely specified by their vendor,

various authors proposed some extensions based on one or a combination of the techniques

described below:

Cooperative Multitasking - Similar to a sequential execution in the sense that

a new kernel is executed on GPU only when the previous kernel voluntarily leaves it.

The problem so far is that a kernel not necessarily uses all the resources. Furthermore,

small kernels could be severally affected because of long waiting times. Figure 2.2 shows

the timeline following the cooperative multitasking technique of two kernels, where k2 is

invoked after k1. The first kernel, even with a low rate of GPU utilization, does not allow

the second kernel to be executed simultaneously.

Figure 2.2: Cooperative multitasking. The kernel k2 even when is ready to be executed
must wait to the kernel k1 to finish before start its execution.

Spatial Multitasking - It is characterized by the potential sharing of the available

GPU resources. Figure 2.3 shows an example of two kernels running at the same time in

the GPU. Note that under this approach the under-utilization problem is just partially

solved. To demonstrate this point, suppose that a kernel k2 has greater resource require-

ments that do not fit within the remaining resources left by k1. Therefore, the resulting

behavior will be the same that the cooperative multitasking.
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Figure 2.3: Spatial multitasking. Two kernels are executed concurrently whenever there
are available resources.

Preemptive Multitasking - The GPU can interleave the execution of concurrent

kernels. Moreover, any kernel cannot avoid the execution of subsequent kernels, but after

a time slot, it has to give up the GPU resources. Figure 2.4 illustrates the continuous

context swapping that allows the execution of kernels simultaneously.

Figure 2.4: Preemptive multitasking. Both kernels k1 and k2 are executed on the GPU
switching the use of resources until the end of their executions.

Among all of the architectures released by NVIDIA, Pascal GPUs are the only ones

that implement preemption at various levels, however due to the lack of public informa-

tion a better understanding will require many efforts which are out of the scope of this

dissertation.

2.3 Occupancy calculation

Occupancy is a metric that represents the amount of parallel work per multiprocessor.

Higher occupancy results in higher performance most of the time. Although it depends

on several factors, this metric may represent the overall utilization of the resources. Oc-

cupancy is defined as the number of active warps on a multiprocessor over the maximum
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number of active warps supported by the multiprocessor in the target device, see Equation

2.1.

occupancy =
ActiveWarps

LimitActiveWarps
(2.1)

For instance, suppose a GPU that supports 16 active warps per SM, 2 active blocks

with 256 threads per block (8 warps per block with 32 threads per warp) results in 16

active warps, and 100% theoretical occupancy. The number of active warps is calculated

in Equation 2.2.

ActiveWarps = WarpsPerBlock × ActiveBlocks (2.2)

WarpsPerBlock =

⌈
threadsPerBlock

limThPerWarp

⌉
(2.3)

As stated in Equation 2.4, the number of active blocks is defined as the minimum value

between the allocatable number of blocks regarding each of the three main resources in

GPU, namely, number of threads, number of registers and amount of shared memory.

ActiveBlocks = min(blocksLimByNT, blocksLimByNR, blocksLimBySH) (2.4)

Equations 2.5, 2.6 and 2.7 define the number of blocks that may be active considering

the total capacity of each type of resource separately.

blocksLimByNT = min

(
limBlocksPerSM,

⌊
limWarpsPerSM

warpsPerBlock

⌋)
(2.5)

blocksLimByNR =

⌊
limWarpsDueRegs

warpsPerBlock

⌋
×
⌊
limRegsPerSM

limRegsPerBl

⌋
(2.6)

blocksLimBySH =

⌊
limShMemPerSM

shPerBlock

⌋
(2.7)

2.4 Kernel Concurrency

The need of concurrency in GPUs emerges from the under-utilization of resources when

a single kernel cannot leverage all the available resources. Although CPUs and GPUs

have significant differences, it is natural that many techniques applied to CPUs will also
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be implemented in GPUs. Next, we describe some related technologies that support

concurrency in GPUs.

2.4.1 Hyper-Q

GPUs based on NVIDIA Fermi [36] architecture were the first to support concurrent kernel

execution in a limited way [32]. To illustrate this limitation, multiple instances of two

kernels named as kernel_A and kernel_B are invoked in different streams. Both kernels

have a grid with only one block, each block containing one thread, so it can be assumed

that any combination of up to 16 kernels (a limit on Fermi’s) should run concurrently.

Figure 2.5 shows the resulting timeline that evidences the problem denominated false-

serialization, where all streams queues share a unique hardware queue which causes false

dependencies between kernels of the same stream. Thus, independent executions of kernels

wait for the finalization of previous executions of the same kernel unnecessarily, even

though both calls are in different streams. These timelines were extracted using the

NVIDIA Visual Profiler [40].

Figure 2.5: Timeline execution in a device without Hyper-Q. The timeline reveals that
the concurrent execution is prevented because of the false dependencies between kernels
that belong to the same stream.

Starting on the Kepler architecture, a modern hardware solution implements the

Hyper-Q technology [25], which is a feature that enables multiple CPU cores to simulta-

neously utilize up to 32 hardware queues on a single Kepler GPU as seen in Figure 2.6
1.

2.4.2 Multi-Process Service

CUDA requires a different context for each application. Also, the GPU does not allow

the concurrent execution of them. In this scenario, Multi-Process Service (MPS) [38] is
1Environment variable CUDA_DEVICE_MAX_CONNECTIONS must be set to 32 (default is 8)
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Figure 2.6: Timeline execution in a device with Hyper-Q. Each stream is assigned to a
different hardware queue allowing real concurrency.

a software mechanism that allows the concurrent kernel execution by joining different

context from various processes leveraging the Hyper-Q technology. MPS shares one only

set of scheduling resources between several processes allowing higher overall utilization of

the GPU.

Figure 2.7 depicts the timeline execution for all CUDA applications from the Rodinia

benchmark managed with MPS. Each horizontal row represents the timeline execution of

one application. Blue and green activities represent kernel executions, and the yellow bars

represent CPU-GPU memory transfers. Bars overlapped in vertical direction represents

the activities that occur at the same time in the GPU. Hence, vertical columns with more

than one blue or green activity represent concurrent kernel execution. It can be observed

that there is a limited competition for the GPU resources because the kernel invocations

are performed in scattered moments. In our work, we implemented a framework with

similar behavior that is able to isolate the execution of kernels from other host routines

like memory transfers.

Figure 2.7: Execution timeline of the Rodinia benchmark-suite using the NVIDIA MPS.
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2.4.3 Left-over scheduling policy

The current NVIDIA scheduling policy is not publicly available. Some previous work

performed microbenchmark experiments to disclose it [17]. The speculation is that the

hardware uses a leftover policy that assigns as many resources as possible for one kernel

and then assigns the remaining resources to another kernel if there are sufficient leftover

resources.

Figure 2.8 shows a timeline execution that evidences this leftover policy. Besides

that two kernels potentially could share GPU resources from the beginning, the first

kernels take the GPU control completely and execute their blocks preventing sharing the

remaining resources.

Figure 2.8: Timeline evidencing the leftover policy. There is just a few time slice where
both kernels are overlapping.



Chapter 3

Related Work

In this chapter, we present previous work that composes the state-of-art in the literature

about how performance estimation of concurrent kernels has evolved. We also present

and discuss several works related to our proposed method.

3.1 Concurrent Kernel Execution

Prior to the hardware support of the concurrent execution of kernels, several works address

this limitation through developing software techniques that merge multiple kernels into

one at the source code level [13,45].

Since the emergence of programmable GPUs, NVIDIA Fermi [36] architecture was the

first generation that supports the execution of concurrent kernels. However, due to the

existence of one single hardware work queue, some stream dependencies arise and limit

the real concurrency [52].

In 2012, NVIDIA released Kepler [37] that is the next generation of GPUs that features

Hyper-Q technology. Opposite to its predecessor, Kepler aims to decrease the number of

idle resources enabling up to 32 hardware managed queues. Even with Kepler, various

authors reported significant rates of resource underutilization [1]. As a consequence, there

were proposed techniques such as reordering, preemption, and spatial partitioning.

Some works conclude that it is possible to obtain a permutation that has a better

performance than the original order. Accordingly, kernel reordering arises from the overall

impact caused by the scheduling order or the limitations imposed by the hardware.

To face the hardware restrictions, Wende et al. [53] explore the performance gains

by improving the overall throughput of small-sized GPU kernels within multi-threaded
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CUDA applications. The authors introduce a kernel reordering mechanism to avoid false-

serialization of kernels caused by the single task queue on Fermi’s GPUs. The model is

validated with synthetic kernels and a real-world program where it was able to consider-

ably increase the level of concurrency.

Li et al. [23] propose a reordering scheme for GPU architectures with Hyper-Q sup-

port. Their scheduling algorithm places priority on executing kernels with complementary

resource requirements and a low predicted power consumption.

Breder et al. [6] introduce a reordering approach that can simulate the kernel distri-

bution to the hardware queues aiming to maximize the resource utilization. With that

goal, the kernel assignments to the resources are seen as a series of knapsack problems

solved with a dynamic programming algorithm. The authors report significant increases

of both, system throughput and the average turnaround time with low overhead.

Similarly to reordering, preemption was proposed as another approach to support

multiprogramming efficiently. The key idea is to interleave the execution of kernel work-

loads instead of allocating the needed resources to a kernel until the end of their execu-

tion [43,48,55].

Alternatively, spatial partitioning divides all multiprocessors between the concurrent

applications. Diverse works point out that this method shows improvements over the

cooperative execution [2, 24, 46, 49]. Adriaens et al. [1] present an in-depth study of this

scheduling technique evaluating four partitions schemes to divide the GPUmultiprocessors

among applications.

By contrast, we study the current behavior of GPUs regarding concurrent kernel

execution where the left-over policy behaves as a spatial scheduling technique unlike most

of the previous techniques which propose extensions to the hardware and validate its

findings in simulators.

3.2 Performance Estimation Models

A performance estimation model is capable of giving accurate estimations of the execution

time or power consumption of a kernel. They are useful in several scenarios, for example,

auto-tuning, bottlenecks identification, workload balancing [28]. Hence, different methods

were implemented such as analytical models and statistical approaches and those based

on simulation [26].
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The method proposed by Hong et al. [16] abstracts the CUDA execution model as a

set of equations fed mainly with static kernel information. They claim that the overall

execution time is closely related to the memory warp parallelism and then their model

estimates the cost of memory operations by analyzing the kernel source code.

Another approach is based on the use of machine learning techniques. In this case,

the methods find patterns by analyzing some features like performance counters and

the hardware characteristics. The model proposed by Wu et al. [56] projects how an

application may scale in different GPU configurations running a previously trained model.

Otherwise, a simulator implement in software the execution model of a target de-

vice. They allow execute programs compiled for GPUs in a controlled way, however as a

drawback, they usually have long execution times.

The three estimation models mentioned in this section consider just one kernel at

a time in the GPU. Our work presents a slowdown estimation model considering the

execution of more than one kernel concurrently.

3.3 Inter-application Interference in CPUs

On the side of CPUs, diverse works aims to estimate the slowdown of inter-application

interference. Subramanian et al. [47] proposed an interference model based on the ob-

servation that the concurrent access of applications to memory resources is correlated to

their overall slowdown corresponded to the sequential execution.

Alves & Drummond [3] present a quantitative study model addressing the multi-

application interference in a cloud multi-core environment. They take into account a

number of concurrent accesses to the shared resources and the similarity between those

applications accesses. Their model is the result of a multiple regression analysis of multiple

executions of synthetic applications. In contrast, our estimation model is based on the

current behavior of concurrent applications in GPUs.

3.4 Inter-application Interference in GPUs

Jog et al. [20] observe that applications may have their performance limited because of the

contention in the memory subsystem. They implement two memory scheduling policies

to improve instruction throughput and the weighted speedup considering the bandwidth
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use, and L2-cache misses. However, opposite to our work, they do not propose a slowdown

estimation model.

The focus of our work is on the execution of kernels, we assume that the data needed

by any kernel is already in GPU memory. Some works explore concurrency between data

transfers and kernel computation in-depth [5, 12,22,27,51].

Closer to our work, Hu et al. [17] proposed a slowdown estimation model focused on

memory contention of concurrent kernels; their experiments show an error of 8% overall

possible two pair combinations of 15 GPU applications. They compare their model with

two slowdown estimation models for CPUs applications. Different to our work, their pro-

posed model is an extension of the hardware and was validated in a controlled simulation

environment considering a spatial division of the GPU.

Table 3.1 presents a summary of the related works closer to our research. Most of

the previous work implement their solutions as hardware extensions in a simulator. In

contrast, we propose and validate a model for slowdown estimation with both synthetic

and real-world kernels. Additionally, we present a deep study of the necessary conditions

for real simultaneous execution in current GPUs considering the actual leftover scheduling

policy.

Table 3.1: Summary of the main related works.
Work Objective Scheduling Policy Solution

Adriaens et al. [1] Multitasking and Spatial-Even Hardware extension
Kernel characterization

Aguilera et al. [2] Multitasking Spatial-Fair Hardware extension
Lian et al. [24] Multitasking Spatial Software
Jog et al. [20] Multitasking and Spatial-Even Hardware extension

Memory analysis
Hu et al. [17] Slowdown estimation Spatial-Even Hardware extension
Our work Slowdown estimation Leftover Software



Chapter 4

Analyzing Concurrency in GPUs

This chapter describes the behavior of hardware when several kernels are scheduled for

execution. The different cases of execution overlapping between kernels are described.

4.1 Defining the Factors that Influence Concurrency

The use of streams in CUDA applications should not be considered as sufficient condition

to run kernels concurrently; such decision is affected by the thread block scheduler based

on the resource usage of each kernel.

Given two kernels k1 and k2 submitted to concurrent execution in this respective

order in a particular GPU, their execution may fall into one of these three cases: (A)

the two kernels are executed concurrently from the beginning, (B) the second kernel start

its execution when the first kernel begins to release resources or (C) the two kernels are

executed sequentially.

Figure 4.1: Kernels are executed concurrently from beginning (Case A).

Figure 4.1 illustrates the case when two kernels in different streams are invoked, and

the device has enough resources for both kernels. In fact, there is an overhead between
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both executions, and for this case, the overhead represented by the difference between t1

and t0 is negligible as the time of the execution of kernels is considerably larger.

The partial concurrent execution of two kernels is illustrated by Figure 4.2. Kernel k2
starts its execution before the end of kernel k1 execution. Also, this event is characterized

by a larger t1 − t0 value concerning the launch overhead.

Figure 4.2: Kernels are executed concurrently but not from beginning (Case B).

The third case, as illustrated by Figure 4.3, represents the timeline execution of two

kernels when no concurrency was possible.

Figure 4.3: Kernels are executed sequentially (Case C).

4.1.1 Unveiling the Concurrent Behavior

We conduct a test to unveil the point from which two kernels can run simultaneously. The

experiment begins running two synthetic kernels with few blocks to ensure concurrent

execution and then gradually increase that blocks number until getting less concurrency.

The program listing 4.1 represents the invocation of two kernels followed by a call

function to synchronize the GPU in order to wait for the finalization of both kernels

before the next iteration. The parameters J and K varies between 1 and 256, and the

parameter blocksize varies between [256,512,1024].

After running the complete suite of tests, we can infer that whenever Blocksk1 is
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lesser than (ActiveBlocksk1 × nSM) both kernels will be executed from the beginning.

Otherwise, the second kernel starts when all the blocks from the first kernel were sched-

uled. Figure 4.4 illustrates the execution of the previous listing when Blocksk1 becomes

greater than (ActiveBlocksk1 × nSM).

Listing 4.1: Host code that executes two kernels with different grid sizes.

void t e s t S i z e ( int K, int J , int b l o c k s i z e )

{

for ( int I =0; I<K; I++)

{

synthKernel1<<<I , b lockS ize , 0 , stream [0]>>>();

synthKernel2<<<J , b lockS ize , stream [1]>>>();

cudaDeviceSynchronize ( ) ;

}

}

Figure 4.4: Timeline execution when J=1, blockSize=1024, K=64 in GPU Titan X with
nSM=24.

4.1.2 Concurrent Scheduling

Algorithm 1 presents the conditions we identified experimentally in section 4.1.1 under

which two kernels are executed simultaneously in the GPU. Given the information from

compilation and execution of two kernels and the hardware limit configurations of the

device, the algorithm identifies whether the hardware will actually execute simultaneously

two kernels and at what point that happens. Suppose that the number of SMs in the GPU

is nSM and that the overhead of launching a kernel is Launch_overhead. Also suppose

that Blocksk1 is the total number of blocks of k1, ExecT imek1 is the execution time of

k1.

Initially, the algorithm tests if k1 execution time is greater than the overhead of

launching a kernel on the target device G. If k1 executes for less than the launching

overhead time, the time the GPU takes to launch k2, k1 has finished, and no concurrency

is achieved.
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Algorithm 1 Concurrent scheduling
1: function AreExecutedConcurrently(k1, k2, G)
2: if ExecT imek1 > Launch_overhead then
3: cond1← Blocksk1 < (ActiveBlocksk1 × nSM)
4: cond2← GetAllocatableBlocksPerSM(k1, k2, G) > 0
5: if (cond1 = true) and (cond2 = true) then
6: return Case A . Kernels are executed concurrently from beginning
7: else if (Blocksk1 mod (ActiveBlocksk1 × nSM)) > 0 then
8: return Case B . Kernels are executed concurrently but not from beginning
9: end if
10: end if
11: return Case C . Kernels are executed sequentially
12: end function

The launch overhead could be relevant when the algorithm faces some small kernels

with execution time in the order of microseconds. Their value depends on the overall

system, as well as the kernel.

For k1 and k2 to run concurrently from the beginning (Case A), two conditions must

be satisfied. First, k1 blocks must not occupy all the SMs entirely, so the number of

blocks of k1 must be smaller than the number of blocks of k1 that can be active in all

SMs (ActiveBlocksk1 ×nSM , which means that k1 is leaving space for another kernel

execution. The second condition tests if at least one block of k2 can be allocated in the

SMs. The function GetAllocatableBlocksPerSM returns the number of blocks from k2

that can be allocated in a SM after the blocks from k1 have been already allocated.

The function GetAllocatableBlocksPerSM is shown in Algorithm 2. It examines if

there is space for k2 blocks, according to the amount of leftover resources from k1 in terms

of registers, number of threads and shared memory. First, the algorithm computes the

unused resources, freeRegs, freeThreads, freeShMem, by subtracting k1 allocation

from the hardware limits for all these resources. After that, the algorithm computes k2

allocation on these resources dividing the amount of free resource by the k2 request on

each resource. The number of blocks allocated for k2 is the minimum of all the possible

allocations.

There is also a possibility of concurrent execution, when the number of blocks of k1 ex-

ceeds the amount of blocks that can be active in all SMs ((Blocksk1 mod (ActiveBlocksk1×
nSM)) > 0). In this case, k1 must be allocated in waves. A wave represents an interval

of time where the maximum number of active thread blocks per multiprocessor from k1

is executed. For example, suppose that k1 has 128 blocks, and the GPU allows 8 active

blocks to execute on one SM. For a GPU with 2 SMs, k1 will execute in 8 waves. In

regular kernels, we could assume that each wave will have the same value approximately.
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Algorithm 2 Calculating allocatable blocks based on free resources
1: function GetAllocatableBlocksPerSM(k1, k2, G)
2: freeRegs← limitRegsPerSM − (regsPerBlockk1 × activeBlocksk1)
3: freeThreads← limitThreadsPerSM − (threadsPerBlockk1 × activeBlocksk1)
4: freeShMem← limitShMemPerSM − (shMemPerBlockk1 × activeBlocksk1)

5: allocBlByRegs← freeRegs/regsPerBlockk2
6: allocBlByThreads← freeThreads/threadsPerBlockk2

7: if shMemPerBlockk2 = 0 then
8: allocBlByShMem← limitBlocksPerSM
9: else
10: allocBlByShMem← freeShMem/shMemPerBlockk2
11: end if

12: return min(allocBlByRegs, allocBlByShMem, allocBlByThreads)
13: end function

The number of waves is calculated as shown in Equation 4.1.

Waves =

⌈
Blocks

ActiveBlocks× nSM

⌉
(4.1)

We distinguish the last wave as the wave at which there maybe resources left for

concurrent execution. In the last wave, if (Blocksk1 mod (ActiveBlocksk1 × nSM)) > 0,

it means that k2 can run concurrently with the remaining blocks of k1 (Case B).

When k1 execution time is smaller than the overhead of launching a kernel, or k1

blocks occupy all the SMs, or the last wave of k1 does not leave space for k2 execution,

the kernels are executed sequentially (Case C).

ActiveBlocksk1 can be calculated by means of Equation 2.4 and represent the number

of blocks from k1 that can be active in one SM, considering these restrictions.

Figure 4.5 represents the occupation of blocks from two kernels when the axis X

represents the SMs available in a GPU and the axis Y represents the time. Each kernel

execution is composed of several waves.

4.2 Resource Allocation

The current GPU scheduler will first allocate the available resources for k1 and, if there are

leftover resources, will allocate resources for k2, the number of blocks which can execute

concurrently with k1 on an SM is limited by:
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Figure 4.5: The execution of a kernel is composed of waves.

I. The number of thread blocks available on each SM,

II. The maximum active thread blocks imposed by the hardware,

III. The number of thread blocks that the shared memory can accommodate given the

consumption of each thread block,

IV. The number of thread blocks that the registers can accommodate given the con-

sumption of each thread block.

The first two resources and only the shared memory which is statically declared is

obtained at compile time. The remaining of the shared memory, called as dynamic shared

memory is known just after their allocation, at runtime.

For each of the resources mentioned above, we set the maximum limits according to

the microarchitecture on which it is based. The list of hardware features associated with

each device is best known as their Compute Capability [31].



Chapter 5

Proposed Model

This chapter presents the analysis of the concurrent execution and the model we proposed

to quantify such effects.

5.1 Model Overview

We observed that it is possible to execute another kernel over the limited resources left

by a previous already scheduled kernel.

Given two kernels scheduled for concurrent execution named as k1 and k2, we real-

ize that exists some time intervals at which the second kernel k2 can also be executed

with limited resources because there is room to schedule blocks from k2 in the same mul-

tiprocessors that k1 or because blocks from k1 were scheduled in just a subset of the

multiprocessors. Therefore, the slowdown will be proportional to the available resources.

Also, following the leftover policy, we assume that k1 is not affected by the scheduling

of blocks from k2, so the interference in this work is related to the use of resources than the

contention in deeper levels of warp execution inside multiprocessors like memory accesses.

5.2 Slowdown Estimation

We define the estimated slowdown of kernel 2 on Equation 5.1:

slowdown =
WavesWithLimRes

Waves
(5.1)

The value of WavesWithLimRes represent the number of waves in k2 execution,
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considering that there are limited resources available. The idea is to account for the

allocatable blocks from k2 according to the resources leftover by k1. This is computed

according to Equation (5.2).

WavesWithLimRes =

⌈
Blocksk2

(nFree× ActiveBlocksk2) + (nOccupied× AllocBlk2)

⌉
(5.2)

The computation of the number of waves with limited resources has to consider two

cases of the allocation of k1 blocks on the SMs. In the first case, k1 blocks fulfill a

number of SMs, and leave nFree SMs completely free. In the second case, k1 blocks use

all the SMs but do not fulfill them, leaving space in for k2 blocks. The number of k2
blocks that can be allocated per SM in this case is AllocBlk2, that is computed by the

function GetAllocatableBlocksPerSM presented in Algorithm 2. So, the computation of

WavesLimRes is performed by dividing the number of blocks of k2 by nFree multiplied

by the number of blocks from k2 that can be active in one SM, ActiveBlocksk2, or divided

by the number of SMs occupied by k1, nOccupied, multiplied by the number of k2 blocks

that can be allocated per SM, AllocBlk2. In Table 5.1 we list all needed parameters and

their respective source.

Table 5.1: Summary of input parameters used in the proposed model.
Model Parameter Definition Source

Blocks Total number of blocks in the grid Kernel configuration
ActiveBlocks Number of concurrently running blocks on one SM Theoretical calculation

Equation 2.4
regsPerBlock Number of registers requested by the kernel Kernel configuration

threadsPerBlock Number of threads requested by the kernel Kernel configuration
shMemPerBlock Amount of shared memory requested by the kernel Kernel configuration

nSM Number of multiprocessors of the target device Device specifications
limitRegsPerSM Maximum number of register per SM Device specifications

limitThreadsPerSM Maximum number of threads per SM Device specifications
limitShMemPerSM Maximum amount of shared memory per SM Device specifications
limitBlocksPerSM Maximum number of resident blocks per SM Device specifications
maxWarpsPerSM Maximum number of warps per multiprocessor Device specifications

To illustrate an application of our model, consider a GPU G with the specifications

of Table 5.2 and two kernels k1 and k2, scheduled for execution on the device G with the

configurations of Table 5.3.

Thus, we want to estimate the slowdown for k2 since kernel k1 is scheduled first. The

number of active blocks will be calculated according to the Equation 2.4. In our example
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Table 5.2: The specifications of the target GPU.
Parameter Value

nSM 16
limitRegsPerSM 32768

limitThreadsPerSM 1024
limitShMemPerSM 4096
limitBlocksPerSM 8
maxWarpsPerSM 32
threadsPerWarp 32

Table 5.3: Configuration of kernels used in the illustrative example.
Configuration k1 k2

Blocks 16 256
regsPerBlock 512 256

threadsPerBlock 512 256
shMemPerBlock 1024 1024

ActiveBlocks for k1 and k2 is 2 and 4, respectively.

The number of waves is established by the Equation 4.1, then k1 has 1 wave and k2

has 4 waves.

Since we have that Blocksk1 is 16 and ActiveBlocksk1 is 2, the number of free and

occupied SMs is 8 for both variables.

Subsequently, the number of the allocatable blocks of k2 in the SMs occupied by blocks

from k1 is 0, as result of applying the Algorithm 2.

Finally, WavesWithLimRes is equal to 8 and given that Wavesk2 = 4; therefore, the

estimated slowdown will be 2, that means that the kernel k2 will run two times slower

than its execution time alone.



Chapter 6

Experimental Results

This chapter presents the hardware and software configurations we used in this study as

well as the description of the experiments and the discussion of the results.

6.1 Experimental Setup

Hardware Environment. The experiments were conducted on a dedicated and exclu-

sive machine running Ubuntu 14.04.5 LTS with 8 GB of RAM and powered by an Intel

i7-950 @ 3.06 GHz with four cores. The target GPU was an NVIDIA GPU Tesla K40C.

Table 6.1 shows the specifications of the GPU used to perform all experiments.

Software settings. The estimation framework was implemented in C++, together with

the host codes of the benchmarks, were compiled with g++ version 4.8.4 [11]. The CUDA

source codes were compiled with NVCC [33] and CUDA version 7.5 [35].

6.2 Framework for Concurrent Execution

As shown in Section 2.4.2, even when it is possible to run several CUDA applications

at once through the MPS framework, few of them share the GPU resources effectively.

Most of the time others sections of code dominate the kernel execution, such as data

initialization, correctness routines, and GPU-CPU memory transfers.

In order to isolate the execution of kernels, a framework for concurrent execution of

kernels was implemented. Given a set of kernels scheduled for execution, the kernels are

placed in a waiting queue until all of their associated initialization routines are performed.

After that, the framework calls each kernel specifying different CUDA streams to allow
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Table 6.1: Target GPU configuration.

K40
Number of cores 2,880
RAM 12GB
Memory Bandwidth 288 GB/s
Capability 3.5
Number of SMs 15
Shared Memory per SM 48KB
Number of Registers per SM 64K
Max number of threads per SM 2048
Max thread blocks per SM 16
Max registers per thread 255
Maximum thread block size 1024
Architecture Kepler

concurrency, followed by an explicit synchronization barrier so that after it complementary

routines are executed.

6.3 Validation Experiments

In this section, we present the experiments that validate our model. Also, we show the

results and discuss them.

6.3.1 Synthetic Applications

In an attempt to evaluate the behavior of our model in scenarios with little or none memory

contention, we apply the model to synthetic kernels with variate resource requirements.

Moreover, we generate 100 synthetic kernels consisting of few dummy arithmetic op-

erations working on register values and a loop to consume clock cycles. Each kernel has

its corresponding number of blocks, number of threads and shared memory randomly

chosen and contained within the limits of the hardware capacity. The configurations of

all synthetic kernels are presented in Table 6.2. In this experiment, the first 50 kernels

were created to allow concurrency from the beginning (Case A) in such a way that their

number of blocks satisfies Blocksk1 < (ActiveBlocksk1 × nSM) (Algorithm 1) where the

odd-numbered kernels were derived from the first set and the even-numbered were derived

from the second set.
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Table 6.2: Synthetic applications characteristics

Kernel # Blocks # Threads Sh Memory (B)

S1 110 256 1024

S2 450 256 0

S3 100 256 4096

S4 60 256 0

S5 42 512 256

S6 120 128 0

S7 90 256 896

S8 467 512 256

S9 35 256 2048

S10 130 512 1024

S11 35 256 0

S12 230 256 0

S13 29 512 768

S14 237 512 384

S15 47 512 1536

S16 305 256 512

S17 109 256 1664

S18 292 256 512

S19 65 256 1792

S20 409 128 512

S21 26 256 6400

S22 207 256 9984

S23 165 128 4096

S24 235 128 0

S25 150 256 1024

S26 393 512 8704

S27 26 512 3072



6.3 Validation Experiments 29

Table 6.2 Continued from previous page

Kernel # Blocks # Threads Sh Memory (B)

S28 245 512 0

S29 21 768 11776

S30 485 128 2560

S31 40 256 1024

S32 400 768 4096

S33 20 1024 8704

S34 72 512 1792

S35 71 256 256

S36 216 128 4096

S37 24 512 7168

S38 478 128 4096

S39 45 256 9728

S40 191 1024 5120

S41 75 256 4096

S42 156 256 9728

S43 37 256 10752

S44 232 128 6912

S45 55 512 3840

S46 441 128 768

S47 51 256 0

S48 305 256 3328

S49 69 128 8448

S50 165 256 6400

S51 18 128 4864

S52 398 256 512

S53 36 512 1024

S54 362 1024 2048
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Table 6.2 Continued from previous page

Kernel # Blocks # Threads Sh Memory (B)

S55 70 128 8704

S56 510 1024 4864

S57 19 256 7168

S58 222 512 256

S59 66 128 5120

S60 412 256 11008

S61 72 128 4608

S62 194 1024 6144

S63 94 256 256

S64 65 512 1024

S65 101 128 4352

S66 248 512 512

S67 38 256 4608

S68 219 512 8960

S69 61 256 1024

S70 383 128 768

S71 41 512 1792

S72 201 512 256

S73 45 256 11008

S74 368 128 3328

S75 63 128 1280

S76 155 1024 10752

S77 84 256 4864

S78 488 256 2560

S79 102 256 2048

S80 278 128 512

S81 28 128 256
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Table 6.2 Continued from previous page

Kernel # Blocks # Threads Sh Memory (B)

S82 128 128 4864

S83 83 512 8704

S84 387 256 0

S85 24 512 6656

S86 189 512 2048

S87 27 512 1024

S88 175 512 5120

S89 15 1024 2048

S90 340 1024 7936

S91 88 256 0

S92 161 512 2048

S93 64 256 256

S94 101 512 4864

S95 32 512 4096

S96 127 1024 0

S97 28 1024 7168

S98 186 128 1792

S99 33 512 256

S100 109 256 5888

6.3.1.1 Results

The estimated slowdown is compared to the actual slowdown. The real slowdown is given

by the ratio between the execution time when the kernel is executed concurrently and the

execution time when the kernel is executed alone. The profiling information was obtained

using the NVIDIA command-line profiler [39]. Each experiment was repeated 30 times,

and the average slowdown was computed.

We test the accuracy of our model by evaluating pairs of kernels from the applications
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listed. Table 6.3 introduce the results for the synthetic kernels. The percentage error is

computed as in equation 6.1.

error =
estimated− actual

actual
× 100% (6.1)

Table 6.3: Estimated vs Actual slowdown (synthetic kernels)

Kernel Pair k1 − k2 Estimated Actual Perc. Error

S1-S2 11.25 11.31 0.55%

S3-S4 3.00 3.02 0.61%

S5-S6 2.00 2.00 0.12%

S7-S8 4.00 3.94 1.59%

S9-S10 1.30 1.33 2.49%

S11-S12 1.50 1.49 0.39%

S13-S14 2.00 1.97 1.36%

S15-S16 4.00 4.06 1.38%

S17-S18 9.00 7.01 28.41%

S19-S20 2.00 2.00 0.01%

S21-S22 1.25 1.25 0.00%

S23-S24 4.00 3.91 2.26%

S25-S26 1.29 1.38 6.53%

S27-S28 1.60 1.60 0.01%

S29-S30 1.67 1.67 0.01%

S31-S32 1.36 1.46 6.92%

S33-S34 2.00 2.00 0.20%

S35-S36 1.50 1.50 0.03%

S37-S38 1.33 1.33 0.03%

S39-S40 2.00 1.89 6.04%

S41-S42 2.00 2.00 0.02%

S43-S44 2.00 2.00 0.00%
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Table 6.3 Continued from previous page

Kernel Pair k1 − k2 Estimated Actual Perc. Error

S45-S46 11.50 10.28 11.89%

S47-S48 1.67 1.67 0.07%

S49-S50 4.00 4.06 1.47%

S51-S52 1.00 1.02 1.55%

S53-S54 2.00 2.31 13.52%

S55-S56 2.00 1.99 0.42%

S57-S58 1.25 1.26 0.71%

S59-S60 2.00 2.01 0.74%

S61-S62 1.86 1.89 1.61%

S63-S64 3.00 3.07 2.17%

S65-S66 1.60 1.80 11.13%

S67-S68 1.50 1.51 0.70%

S69-S70 2.00 2.00 0.18%

S71-S72 2.75 2.76 0.33%

S73-S74 3.44 3.44 0.10%

S75-S76 1.33 1.83 27.28%

S77-S78 2.80 2.81 0.26%

S79-S80 4.00 4.06 1.52%

S81-S82 1.00 1.00 0.10%

S83-S84 1.50 1.52 1.48%

S85-S86 1.33 1.50 11.14%

S87-S88 2.00 1.96 2.22%

S89-S90 1.92 1.96 2.25%

S91-S92 3.00 3.67 18.19%

S93-S94 2.00 2.01 0.72%

S95-S96 2.00 2.03 1.54%

S97-S98 12.00 12.05 0.45%
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Table 6.3 Continued from previous page

Kernel Pair k1 − k2 Estimated Actual Perc. Error

S99-S100 3.00 2.94 2.03%

6.3.2 Real-World Applications

To test our proposed model we use different GPU applications adapted from the Ro-

dinia benchmark suite [8]: k-Nearest Neighbors (kNN), Path Finder (PF), Hotspot 3D

(HS3), Breadth-First Search (BFS), Hotspot 2D (HS2), Speckle Reducing Anisotropic

Diffusion version 2 (SRAD), LU Decomposition (LUD), and Particle Filter (PFL). Table

6.4 summarizes the kernels used.

Table 6.4: Rodinia applications characteristics

App Kernel #Registers # Blocks # Threads Sh Memory (B)
kNN euclid 8 3840 256 0
PF dynproc_kernel 13 463 256 2048
HS3 hotspotOpt1 36 1024 256 0
BFS Kernel 19 1954 512 0
HS2 calculate_temp 38 1849 256 3072
SRAD srad_cuda_2 21 16384 256 5120
LUD lud_diagonal 32 1 16 1024
PFL KernelFindIndex 13 47 128 0

6.3.2.1 Results

We test the accuracy of our model by evaluating pairs of kernels from the benchmark

list. Among all of the possible pair combinations, we present the pairs in which k1

is the kernel PFL because allows real concurrency from the beginning (Case A), since

BlocksPFL < (ActiveBlocksPFL × nSM). For each pair k1, k2, kernel k1 is issued for

execution first, and k2 is issued next.

Table 6.5 list the results of the pairs of PFL with all the other applications. The

comparison of the actual and the estimated slowdown led to an average error of 10.6
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Table 6.5: Estimated vs Actual slowdown with PFL first.

Kernel Pair k1− k2 Estimated Actual Perc. Error

PFL-kNN 1.250 1.185 5.46%

PFL-PF 1.250 1.252 0.17%

PFL-HS3 1.290 2.409 46.46%

PFL-BFS 1.240 1.357 8.60%

PFL-HS2 1.240 1.260 1.55%

PFL-SRAD 1.250 1.117 11.94%

PFL-LUD 1.000 1.004 0.36%

It can be observed that the highest error was produced by the combination PFL-HS3.

For that experiment, our model estimated a smaller slowdown than the real achieved

value.

Because of the highest percentage of usage of the memory bandwidth of HS3 ap-

plication, around 60%, the higher error suggests that the interference due to memory

contention is a significant factor. For the other applications, we can observe that the

main source of performance reduction in concurrent execution is the amount of resources

leftover by PFL kernel.



Chapter 7

Conclusions and Future Works

This chapter concludes this dissertation. It briefly reiterates the achievements, and the

results are wrapped up on section 7.1. It also checks how the outcome matched the general

research objective set out in Section 1.3, and its contribution to academic community.

Finally, Section 7.2 present some directions for extension of this research.

7.1 Concluding Remarks

This research developed an study on the concurrent kernel execution in the GPU. In order

to boost the actual resource utilization of GPU, current architectures allow the execution

of multiple kernels simultaneously. Nonetheless, GPUs delivers a leftover policy which

assigns resources as can be conceded for one kernel and then distributes the remaining

resources to another kernel.

Taking into consideration this policy, a resource-hungry kernel will anticipate the

execution of other small kernels. Due to this, we have listed the main conditions for parallel

execution and also presented an algorithm which details the time when concurrency takes

part.

This work concludes that a model to estimate the slowdown of performance is feasible.

We corroborated our slowdown model in synthetic and real-life applications. Thus, the

model presented was qualified to estimate the slowdown in diverse resource requirements

situations.

For the synthetic applications, which do not have memory interference, the model

estimated the slowdown with an average error of 3.49%. For real-life applications, the error

was higher, reaching up to 10.6% on average. The application with the most important
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memory bandwidth demand was the one that had the biggest error.

Our results confirm that the GPU resources are distributed between the kernels,

but the hardware does not consider a fair scheduling policy. Therefore, it is essential

to establish the kernel characteristics to co-schedule applications with complementary

resource requirements.

7.2 Future Works

The proposed and implemented model opens numerous research opportunities for future

works which can be improved and extended. Our future work includes assessing the

impact of memory interference in the model. Further, we plan to investigate memory

contention in real-life applications to adapt it to our model. Besides, we aim to study the

impact of applying the model presented in different GPU architectures.
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