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Resumo

Desenvolver software para tirar proveito de recursos de hardware heterogêneos em cenários
de computação alto desempenho é uma tarefa complexa e possui muitas variáveis asso-
ciadas, criando porém uma vasta possibilidade e oportunidades para resolver problemas
grandes que um único processador não seria capaz. Dependendo do mapeamento de
tarefas para o hardware disponível, são possíveis diferentes tempos de execução. Este tra-
balho propõe e implementa um modelo inovador para otimizar o tempo geral de execução
de tarefas independentes em ambientes heterogêneos, através da utilização do conceito
abstrato de grupo virtual de processadores implementado pela biblioteca StarPU. Foi
projetado e implementado um modelo que usa a combinação de grupos virtuais de pro-
cessadores, políticas de agendamento e estimativas, para otimizar o tempo de execução
geral, utilizando apenas uma pequena fração do tempo necessário para executar as tarefas.
Essa abordagem nos permite alcançar automaticamente a otimização do tempo de exe-
cução geral, levando a minimização do tempo geral de execução das tarefas, permitindo
aos desenvolvedores extrair mais desempenho a partir do mesmo hardware.

Palavras-chave: StarPU, CUDA e Computação Heterogênea.



Abstract

Developing software to take advantage of heterogeneous hardware resources in High-
Performance Computing (HPC) scenarios is a complex task and has many associated
variables, but also creates many possibilities and opportunities for solving larger prob-
lems that a single processor cannot handle. Depending on the mapping of tasks to the
hardware, vastly different execution times are possible. This thesis proposes and imple-
ments a novel model for self-optimizing the overall execution time of independent tasks
in heterogeneous environments by using the abstraction concept of a virtual group of
processor cores provided by StarPU library. We design and implement an innovative
model that uses the combination of virtual groups of processors, scheduling policies and
estimations, optimizing the overall execution time and using just a small fraction of the
time required to execute the tasks. This approach allows us to automatically achieve the
self-optimization of the overall execution time, leading to the minimization of the overall
execution time of tasks, allowing developers to automatically take advantage and extract
more performance from the same available hardware.

Keywords: StarPU, CUDA and Heterogeneous Computing.
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Chapter 1

Introduction

This chapter presents the motivation behind this thesis, problem statement, research gen-

eral objective, applicability, challenges, research questions, key contributions and finally

an overview of the thesis outline.

1.1 Motivation

The number of heterogeneous computing (HC) architectures in use in the world are dras-

tically increasing. Many computing devices, not just personal computers, already include

a multicore Central Processing Unit (CPU) and a high-performance Graphics Processing

Unit (GPU), including laptops, tablets, mobiles, game consoles and even autonomous

cars.

A total of 64 systems on the top 500 supercomputing sites [66] are already using

GPUs technology, an attractive asset for High-Performance Computing (HPC), meaning

that computers in the world no longer necessarily rely solely on the CPU, but they are

mostly heterogeneous machines. Among the top 10 supercomputing sites in the green500

[65], most of them are heterogeneous machines.

GPUs have been evolving at a rapid pace in the last decade [13], providing a cost-

effective and massively available solution for HPC. Every year, powerful CPUs and GPUs

models with distinct specifications are released in the market, with more computing power,

better power efficiency [43], thousands of cores and sophisticated unified architecture.

Despite this rapid evolution, there is still a huge gap between simply using and taking

full advantage of this heterogeneous computing power potentially leading to a number of

profitable search avenues [44]. In fact, it is not a trivial for an application to use all of a
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device’s resources efficiently. As this trend continues, it is relevant to start to design new

parallel software for taking advantage of these heterogeneous architectures [63].

GPUs are highly parallel computing machines specializing in vector arithmetic and

have a large number of Arithmetic Logic Units (ALUs), while CPUs are better at number

crunching and have high-end branch predictors, making a hybrid solution the best of

both worlds for many applications. Execution time depends on each device’s settings,

communication, and current workload.

The choice of a strategy to assign and map tasks to each processor can make a sub-

stantial difference in the overall execution time of the tasks [6], this framework helps the

programmer in doing so.

This scenario opens possibilities for the development of frameworks to manage hetero-

geneous environments and transparently execute tasks, helping the developers to obtain

more performance from the same available hardware, reducing the overall execution time

of tasks.

1.2 Problem statement

Given an arbitrary set of different independent tasks with distinct sizes (Figure 1.1), all

of them implemented and able to be executed either on the available CPUs or GPUs, the

problem consists in solving the problem of minimizing the overall execution time of these

tasks by dispatching them to be executed on a multiple CPU and GPU system, finding

the best virtual configuration of processors that optimizes the overall execution time of

the tasks.
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Figure 1.1: Set of independent tasks of various sizes are dispatched for execution on a
multiple CPU and GPU architecture.

These independent tasks will run on a dedicated and exclusive heterogeneous machine,

meaning that there will be no competition for resources, except for the operating system

processes and the tasks itself.

It is a pre-condition that the tasks must be independent of each other, which means

that they do not necessarily need to execute in a pre-defined order. They must follow the

“atomic” encapsulated architecture on Figure 1.2, where the task, composed of its input

data and corresponding function implementation is sent for execution on the matching

processor. The task atomically executes from its start to the end, and on termination,

output data (results) returns.

Figure 1.2: Task characterization.
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1.3 General Research Objective

The general objective of this research is to design, develop, implement and test proof a

framework that uses an efficient heuristic strategy to map distinct independent tasks to

different processing units minimizing the overall execution time of the tasks. To reach

this objective, tasks are executed in a seamless and intelligent way, so the programmer

does not have to worry about the computer architecture, processing units or scheduling

algorithms. The front-end itself tries to improve the performance based on the available

hardware.

1.4 Challenges

During the design and development of this thesis, a set of main challenges was identified:

• Using third-party library - Relying on others code is not an easy task, due to

the factors of support, bugs, code extension, features, and efficiency. In general,

these libraries are in beta development and are produced by research groups.

• Fully utilize devices - Optimizing code for a task to fully take advantage of CPUs

and GPUs, it is not simple since StarPU does not differentiate between CPU and

GPU Workers.

• Benchmarks - Deciding which benchmarks to use is an important decision, since

it is necessary to test the software with different types of code. However, for bench-

marks to work in task based systems it is necessary to reimplement applications [62].

It is imperative not lose focus on this research since parallelizing codes for StarPU

is not the objective or scope of this thesis, but parallelizing tasks execution.

• Mapping kernels to a task model - To rely on a framework and its abstractions

it is necessary to transform and adapt code and data into the proper abstract data

type of the library, which is not an easy task and sometimes requires a methodology

[21]. For instance, to run a matrix multiplication function using the framework, it

is necessary to adapt it to the abstract data type used by the framework.

1.5 Research questions

The research questions addressed by this thesis are presented as follows:
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1. Is it possible to design a generic framework in order to transparently optimize each

independent task execution on a multiple CPU and GPU machine?

2. Is it feasible to implement this framework that optimizes independent tasks overall

execution time while adapts itself for multiple CPU and GPU machines without

modifying the implementation?

3. Is it possible to estimate with enough precision the execution time of independent

tasks under different scenarios without having to execute them?

4. Is it viable to determine the duration of independents tasks with sufficient precision

in a fraction of the required time to execute them?

1.6 Key contributions

Following are the major contributions of this work:

• Development of a framework for task distribution in multi-CPU and

multi-GPU Systems - Conceptual design and definition of the framework (Chap-

ter 4).

• Front-end that minimizes the overall execution time of tasks seamlessly

- Manual development in a heterogeneous system requires a lot of effort from the

software programmer since it is necessary to take manual care of memory manage-

ment, load balancing and synchronization. Most of the time, it is not enough to

only use a parallelization framework to obtain performance. One needs to optimize

and tune the application to a particular architecture. The proposed front-end helps

the programmer in doing so (Chapter 5).

• Validation of the framework - Validation of the framework using common sci-

entific operations as benchmarks and testing its efficiency (Chapter 6).

1.7 Relevance and applicability

The contributions of this thesis have wide applicability in Computational Science and

areas that demand massive high-performance computing ranging from Physics [33, 60, 71],

Genetics [11], Medicine [2, 36], Biology [70], Chemistry [10], Artificial Intelligence [46],
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Weather Forecasting [22], Oil Industry [37], Financial Market [59], and others scientific

and business fields.

Every problem that is convertible to the form of an independent atomic task and

requires to process a massive number of these tasks can take advantage of the proposed

framework on this research. For instance, processing of a massive number of images for

artificial intelligence, hashing functions as in cryptocurrencies or scientific functions.

Consequently, this work helps to fill the gap on developing better resource manage-

ment software to extract more performance from powerful heterogeneous hardware that

is already improving every year. This work also opens paths, raises questions and possi-

bilities for new research and future work on the subject.

1.8 Thesis outline

This thesis consists of seven chapters, the remaining of this document is organized as fol-

lows: Chapter 2 introduces the background and important concepts. Chapter 3 discusses

the related work. Chapter 4 presents the framework. Chapter 5 details the implemen-

tation and its details. Chapter 6 discusses the experimental results. Finally, Chapter 7,

presents the concluding remarks and future work.



Chapter 2

Background

This chapter presents and discuss relevant and fundamental concepts that are important

to understand the remainder of this work. First, this chapter gives a brief overview of the

GPUs, CUDA architecture [49] and the StarPU Library [8].

2.1 GPUs

GPUs are highly parallel processors originally dedicated to graphics computation and has

become part of mainstream computing systems [57]. Thousands of lightweight processing

cores compose ordinary GPUs, large bandwidth access to on-chip memory and gigabytes

of Random Access Memory (RAM) [55], being specially designed for processing tasks that

make use of their vector arithmetic.

GPUs use the Single Instruction Multiple Data (SIMD) model, where a single in-

struction controls multiple processing elements [48], which is different from the traditional

model used by CPUs. To take advantage of the GPUs highly parallel architecture, it is

necessary to adapt data structures to this type of paradigm.

The main difference between a CPU and a GPU is about how they execute tasks. A

CPU consists of a few number cores optimized for sequential execution and processing

while the GPU has a parallel architecture consisting of thousands of smaller cores designed

for handling multiple kernels simultaneously (Figure 2.1).
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Figure 2.1: Architecture overview comparison between CPU and GPU, having multipro-
cessors (MPs) with many cores each.

By definition, GPU devices have limited control capabilities compared to CPUs, due

to their high density of execution units. These limited instructions and simple logic allow

GPUs to benefit by having more Arithmetical Logical Units (ALUs) on the chip, compared

to CPUs.

2.2 Compute Unified Device Architecture (CUDA)

Compute Unified Device Architecture (CUDA) [49] is a unified parallel computing archi-

tecture developed by NVIDIA. Currently, programming in CUDA is possible through an

API that extends the C programming language on CUDA-enabled devices.

The parallel portions of code that execute on the GPU are known as kernels and called

from CPUs or GPUs sections of code. In CUDA, groups of threads will execute the same

code, which is inherent to the SIMD model, these groups are called warps and executed

on the same Streaming Multiprocessor (SM), through the abstraction of blocks in CUDA.

CUDA allows the software designer to launch a massive number of SIMD threads,

where threads inside the same block are all mapped to the same SM on the device. Each

GPU has its specific architecture with a different number of SMs, memory, and cores.

Execution of the same kernel on different GPUs can lead to different execution times.

There are large sets of possible optimization configurations that can be applied. Each

kernel may require a specific configuration to achieve the best performance, and running

an application to a new hardware often requires a new optimization configuration for each

kernel [26].
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2.3 StarPU

Among the investigated frameworks that support tasks, and due to the desired objectives

and demands of this research the StarPU was chosen due to its features, support for CPUs

and GPUs, rich documentation and several recent publications.

StarPU [8] is a unified runtime system for heterogeneous multicore architectures,

hybrid CPU, and GPU execution. It was developed to give support for heterogeneous

multicore architectures and present a unified view of the computational resources, CPUs

and GPUs, simultaneously.

StarPU tries to efficiently map and dispatch tasks to different processing units, while

transparently handling low-level issues such as data transfers. The core of StarPU is

its run-time support library, which is responsible for scheduling tasks on heterogeneous

machines. StarPU runtime and programming language extensions support a task-based

programming model, which allows developers to implement custom scheduling policies in

a portable fashion.

StarPU provides GPU support and documentation, which is essential in making

StarPU useful as a tool for development. The StarPU team also provides constant and fast

response support. Google Scholar also reveals that interest in this framework is growing

and the increasing number of publications involving StarPU over the last years.

StarPU allows a single application to run on different architectures, but it also allows

performance portability since the application can benefits from StarPU optimizations

independently of the underlying hardware [7]. There are a few important terms that

must be understood before understanding the starPU architecture itself [39]:

• Task: represents the unit of work to be run on the processor defined by the pro-

grammer. It has input and output data that must be transferred to the processors.

• Codelet: records pointers to various implementations of the same abstract function.

• Data handle: keeps track of copies of the same data over various memory nodes.

This data is registered by the application. The Distributed Shared Memory (DSM)

abstraction and implementation is responsible for keeping them coherent.

• Scheduling context: a mapping between a set of tasks and processors. Schedul-

ing contexts can be created and destroyed on-the-fly. If a context is created, the

programmer can statically or dynamically map tasks to a set of processors.
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• Worker: execute the tasks, there is typically one per CPU computation core and

one per GPU.

• Scheduler: schedules tasks to workers when they are ready to be executed, which

means that the tasks do not have data or task dependencies. The workers pull tasks

one by one from the scheduler.

Each task assigned to a GPU worker runs as an independent piece of code without

any control on how the computation is distributed on the device. StarPU does not make

distinctions between GPU workers.

There are two basic principles in StarPU: every task has its implementation and

data transfers are handled transparently. This is why StarPU can dynamically schedule

tasks to any processor. For each implementation, a task will have a different execution

performance on each different processor. The runtime system also keeps track of data

copies linked to each processor, avoiding copies whenever is possible [6].

Figure 2.2: Execution of a task within StarPU. Adapted from Augonnet et al. [6].

An overview of StarPU framework flow can be seen in Figure 2.2, giving the reader a

basic idea of how StarPU modules work together. In (1), tasks from the application are

submitted to StarPU. When a task is ready (2), it is dispatched to one of the device drivers

by the scheduler (3). As every function f can have multiple implementations for multiple

workers, the required correspondent implementation is also offloaded (5). The Distributed

Shared Memory (DSM) module (4) is responsible for making all necessary data available

to where the task will be executed. By the time that the given task finishes, an optional

callback for the task is executed (6).

The DSM is responsible for data replication and memory consistency. When the

application registers data to the DSM, StarPU allocates an array to record the memory
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state of that memory in different nodes, which means that data can be replicated on

different nodes keeping read-write consistency. StarPU uses Modified Shared and Invalid

(MSI) states to keep data consistency.

In Figure 2.3, GPU X #2 requests Read and Write (RW) access to the data on CPU

RAM or GPU RAM X #1, represented by the pink circle. This data has shared status,

since it is replicated in at least two places, but still has consistency, avoiding new transfers.

After this data is transferred from the CPU or GPU RAM to the GPU X #2 it is marked

as invalid on the CPU RAM and also on GPU RAM X #1, since GPU X #2 requested

RW access on its memory. This data modification is represented by the empty circle,

invalid, transitioning to a yellow circle that represents the modified data.

Figure 2.3: Data transfer and consistency state managed by the DSM. Adapted from
Augonnet et al. [6].

Basic knowledge of the StarPU Data Model is necessary to understand how to take

advantage of its architecture. After the codelet is created by the software, which record

pointers to various implementations of the same abstract function, now it is possible to

point to two different implementations of the same function, one to a CPU and another

to a GPU as shown in Figure 2.4. The codelet defines characteristics common to a set

of tasks and relates an abstract computation kernel to its implementations so that tasks

can be instantiated, in this case, T1 and T2. The codelet also records pointers to various

implementations of the same abstract function.

A task is an instantiation of a codelet and atomically executes a kernel from its

beginning to the end, receiving some input and producing some output. A task needs to

be associated with a data handle, which designates a piece of data managed by StarPU

and DSM.
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Figure 2.4: StarPU data model scheme.

The basics of the scheduling policies in StarPU are that the scheduler gets to schedule

tasks when they are ready to be executed, which means that they are not waiting for data

or task dependencies. CPU or GPU workers pull tasks one by one from the scheduler.

Scheduling policies usually contain at least one queue of tasks that store them between

the time they become available and the time a worker retrieves them.

It is relevant to mention that the use of StarPU helps to keep the scope of this pro-

posal focused since advantage is taken of already implemented abstractions and features.

Implement each starPU framework function would be time consuming. The decision to

use StarPU also add implementation constraints and some computation overheads on the

software. StarPU was chosen as a tool to evaluate the contributions and any similar

framework could be used instead. However, the proposed solution on this research are

concepts that can apply to any other tool or framework.

2.3.1 Scheduling contexts

Scheduling contexts [28] is an abstraction for sets of workers that allow the programmers

to control the distribution of tasks to resources, virtual groups of CPUs and GPUs [39].

The main motivation to use scheduling contexts according to StarPU authors is to min-

imize interference among multiple parallel kernels, through the creation of a partition of

available workers. In the starPU framework, tasks are submitted to a default scheduling

context, which disposes of all the computation resources, workers, available to StarPU.
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Hugo et al. [29] show the benefits of the isolation capabilities of scheduling contexts,

with no modification to the original code of the kernel. Scheduling contexts in this sit-

uation can be understood as a virtual subset of workers. This abstraction can lead to

significant performance gains compared to situations where a parallel code is mixed over

a pool of processors, instead of using a sub-group. This feature developed by Hugo et al.

have been incorporated to StarPU. A similar approach was designed by Sun et al. [67]

which is called as a work pool, which is a structure that contains a collection of processors.

Although the construction of scheduling contexts is already an abstraction provided by

StarPU that allows the programmer to precisely control the distribution of computational

resources in concurrent parallel kernels, the objective was to exploit this abstraction to

design, develop and program strategies, leading to speedups. In the proposed framework,

statistics related to the previous execution of tasks are collected and a mapping is defined,

which minimizes the overall execution time of the tasks.

According to the StarPU handbook [39], if the developer needs to execute many

parallel kernels simultaneously, by default these kernels will execute within the default

scheduling context, which contains all workers and using a single scheduler policy. Each

scheduling context has only a limited view of hardware resources [29]. If the application

programmer has more information about the kernels he wants to run, it is possible to

split the workers in various scheduling contexts, isolating the execution of each kernel,

and allowing the use of specific scheduling policies for each scheduling context.

Considering a hypothetical machine with six workers, one processor with four CPU

cores and two GPUs, many possible combinations of workers and scheduling contexts can

be assembled, as illustrated on Figure 2.5: (A) one scheduling context with six workers;

(B) two scheduling contexts, one with four CPU cores and the other with two GPUs; (C)

two mixed scheduling contexts, both with two CPU cores and one GPU each; (D) three

scheduling contexts, two of them with two CPU cores each and the other with two GPUs;

(N) each scheduling context has only one worker.
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Figure 2.5: Five different examples of scheduling context configurations (A, B, C, D and
N) on a hypothetical machine with six workers, four CPU cores and two GPUs.

One of the most significant assumptions of this thesis is that scheduling contexts with

different configurations of workers produce different execution times for the same group

of tasks. This experiment occurred and was confirmed during the development of this

thesis.

All virtual groups of workers or scheduling contexts are disjoint sets, in simple words,

they have no worker in common, which is equivalent to say that a worker can not be part

of two scheduling contexts at the same time. This decision was a project design used for

the sake of simplification of the research, making it possible to gain focus on the topics

of more significance for this study. The use of joint scheduling contexts features as a

suggestion for future works on Section 7.2.

In the scenario of creating scheduling contexts composed of mixed workers, as in

the case of letter C in Figure 2.5, although workers are in the same virtual group, they

are still physically apart, meaning that they still need to transfer data between them to

communicate. The exchanging of data between CPU and GPU is much slower than from

cores on the same CPU. They do not need to communicate through the bus because all

the CPU cores are on the same chip. If a scheduling context has one or more GPUs, they

still need to communicate explicitly through the bus.

The supported and allowed operations for contexts are:
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1. Creation of a scheduling context - Creation of scheduling contexts by the pro-

grammer indicating the set of processors corresponding to each context. It is also

possible to set its scheduling policy, instead of the default one which is the eager

policy. The details of the scheduling policies are on Subsection 2.3.2.

2. Modification of a scheduling context - Allows to add additional workers to a

context or remove if no longer needed.

3. Submission of tasks to a scheduling context - The kernel which runs inside a

task is sent to be executed by a context or group of processing units.

4. Deletion of a scheduling context - In this operation, the application that is

running and using StarPU can indicate which scheduling context should keep the

resources of a deleted one. All the tasks of the scheduling context should have

terminated their execution before doing this.

2.3.2 Scheduling policies for scheduling contexts

Among the schedulers available on StarPU framework, four of them are used. The fol-

lowing definitions were obtained from the StarPU handbook [39]:

1. Eager - It has a central task queue, from which all workers draw tasks to work on

concurrently. It does not permit to prefetch data since the scheduling decision is

taken late.

2. Work Stealing (WS) - It has a queue per worker and schedules a task on the

worker who released a finished task. When a worker becomes idle, it steals a task

from the most loaded worker. Chatterjee et al. [16] demonstrated the effectiveness

of WS in distributing tasks across devices using different benchmarks.

3. Locality Work Stealing (LWS) - Uses a queue per worker, and schedules a task

on the worker who released it by default. When a worker becomes idle, it steals a

task from other workers.

4. Random - The random scheduler uses a queue per worker, and distributes tasks

randomly.
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2.4 Heterogeneous Computing Scheduling
Problem (HCSP)

A Heterogeneous Computing (HC) architecture can be made up of different kinds of

processing units, with CPUs, GPUs and other accelerators acting as co-processors for

arithmetic intensive data-parallel workloads [64]. The trend towards heterogeneous com-

puting and highly parallel architectures creates a high demand for software development

infrastructure in the form of parallel programming languages and libraries supporting

heterogeneous computing. The Heterogeneous Computing Scheduling Problem (HCSP),

became especially important due to the popularization of heterogeneous distributed com-

puting systems and libraries [47].

Given an HC system composed of a set of machines and a collection of atomic tasks to

be executed on this system, Tn,m represents the time required to execute the task N in the

processing unit M. The goal of the HCSP is to find an assignment of tasks to processors,

which minimizes the sum of all Tn,m.

The HCSP is an NP-Hard problem since the homogeneous scheduling problem is also

NP-Hard [23] and heterogeneity just adds complexity to the problem even harder, which

means that exact methods are generally not viable for solving large instances.

In this thesis, a set of tasks is executed on an heterogeneous system, with an indepen-

dent task being an atomic unit of workload. The execution time of a task varies for every

different machine, which means that tasks will compete for the processors or machines

that can execute them in the shortest interval.

Scheduling Problems (SP) are mostly concerned with minimizing the time spent to

execute all of the tasks, the common metric to minimize in this model is the makespan

[47].



Chapter 3

Related Work

This chapter discusses the most relevant prior research work related to the areas covered

in this thesis, categorized in topics of interest.

3.1 Task scheduling strategies for heterogeneous archi-
tectures

According to Hugo et al. [29] and Andrade et al. [4], there is no perfect scheduling

strategy suitable for running every parallel kernel library, which makes the scheduling

problem suitable for heuristic-based solutions.

Greg et al. [27] affirm that a greedy local scheduling decision of tasks, leads to

imbalance, causing underutilization of devices and contention of others. His suggestion is

to make global scheduling decisions and assign some applications to a slower device. This

decision can increase system throughput and decrease individual application runtimes.

In the proposed framework, a greedy local scheduling decision is utilized to achieve an

initial unbalanced solution. Although this is not an efficient solution at first, this strategy

is an initial step towards a balanced and efficient final solution, which is improved through

a series of iterations. The significant advantage of using a greedy strategy is that it is

possible to rapidly create an initial solution and refine it, and consequently solve the

problem fastly.

Wen et al. [73] presented an effective OpenCL task scheduling scheme which schedules

multiple kernels from multiple programs on heterogeneous platforms, which determines

at runtime which kernels are likely to utilize best a device. He shows that the speedup is

a good scheduling priority function and developed a novel model that predicts a kernel’s
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speedup based on its static code structure, obtaining significant performance improvement

over other approaches.

Zhou et al. [74] consider that for task mapping in heterogeneous embedded systems

for fast completion time, three factors need to be taken into account to make mapping

decisions: (i) Treating kernels as the mapping entity yields better performance than

mapping each entire application to a processor; (ii) If a kernel have much shorter execution

times on a GPU compared to CPU, this kernel should be prioritized somehow, having

higher possibilities to be assigned to its favorite processor and (iii) check if data partition

worth and consider the transferring overhead.

The proposed framework follows the recommendation of Wen et al. [73] by determin-

ing through previous executions which tasks are likely to utilize best a device through

the use of a historical database. The framework also follows Zhou et al. [74] conclusions,

which says that tasks should be prioritized and assigned to its favorite processor.

3.1.1 Scheduling algorithms for heterogeneous architectures

Among the relevant works that englobe scheduling algorithms, heterogeneous architec-

tures and tasks, Gautier et al. [24] introduces a general scheduling algorithm for multi-

CPU and multi-GPU systems that enforces a locality-aware work stealing (LWS), which

is one of our four scheduling algorithms or policies defined on Subsection 2.3.2 and con-

sidered on this work, which are set inside each scheduling context configurations defined

on Subsection 5.1.3.

Greg et al. [27] described and demonstrated a dynamic scheduling algorithm for

heterogeneous architectures that utilize a historical database of executions, which is in

part a similar idea of this work. Greg et al. showed that using a historical information

database of executions; the scheduler can determine the best way to assign applications to

heterogeneous processors, using all devices available and increasing the throughput. This

work utilizes the historical information database for creating the best Scheduling Context

that optimizes time, while Greg et al. use for optimizing the scheduling.

Kaleem et al. [34] presented a set of scheduling algorithms that use load balancing

to minimize application execution time on heterogeneous architectures. Our work uses a

similar approach defined in our framework, while Kaleem et al. make a low-cost online

profiling, and this work an offline approach.

It is simply not the focus of this work to design new scheduling algorithms but to use
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the already defined ones as a tool to develop a task distribution system that transparently

optimizes the overall execution time of independent tasks, while at the same time, forming

virtual groups of processors or scheduling contexts.

3.1.2 Impact of data transfers

Data transfers can take much time due to the PCI Express 3.0 bus between the CPU and

the GPU being a bottleneck regarding global memory bandwidth [61], which acts as a

barrier for efficient execution of GPU kernels and tasks. In several applications, the cost

of data transfer operations is comparable to the computation time [68].

Nowadays, acceleration cards support asynchronous data transfer, this way transfers

can be overlapped with computations, leading to better performance and speedups. This

makes prefetching of data a significant advantage, as soon as a task is scheduled to be run

by some processor, the data transfer order can be queued, so when the task is going to

start, probably its data is already available, thanks to data being transferred in parallel,

optimizing the whole execution [6].

Data transfers have a critical impact on efficient execution [68], which is why a sched-

uler favoring locality can increase the benefits obtained by reusing data with caching

techniques [6]. It is important to enforce locality between related tasks, leading to gains

of up to 35% [29]. Hugo et al. believe that an increase in processing units sometimes does

not compensate for the costs of data transfers to isolated cores. This behavior is seen

especially for small matrices for which the computations do not counterbalance the data

transfers [29], which is a case that the proposed framework stays aware of to reach better

performances.

In the proposed framework, advantages are taken from the abstraction of scheduling

contexts developed by Hugo et al. [29] which allows the creation of virtual groups of

processors which can favor locality and consequently leads to gains of time. The transfer

time estimations are used to check if it would be worth executing a certain scheduling

context configuration on a set of processors after transferring the required data.

3.2 Performance

The architectural and algorithmic differences between devices and applications can cause

profound effects on the achieved performance, which is why scheduling and selection can
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help by deciding which implementation and device to use by considering previous historical

execution information along with information about current load balance, transfer costs

and data locality [20].

Navarro et al. [45] finds that three factors are critical to achieve ideal performance and

maximize utilization on multiple CPU and GPU in heterogeneous architecture: computa-

tional speed of each computing resource should be accurately measured, the assignment

of chunks to the computational resources, which means that load imbalance must be

minimized and finally, the chunk size for GPUs might be fixed to minimize data transfers.

Agullo et al. [3] proposed a three-step methodology to run algorithms as fast as

possible on complex architectures composed of multicore CPUs and GPUs. The first

step consists in writing the algorithm in a sequence of multiple tasks of fine granularity.

The second phase consists of providing high-performance kernels with CPU and GPU

implementations of the tasks. The final step consists in integrating these tasks on a

runtime system which is responsible for scheduling the different tasks onto the processing

units taking into account dependencies, data availability and coherency.

The framework in this thesis considers all these relevant factors described by the

authors. The history of execution similar to the one proposed by Dastgeer et al. [20] is

used, which helps to better understand the behavior of each task on a certain processor.

The load imbalance which Navarro et al. [45] points as a critical issue for performance is

minimized, this issue is solved by using estimations to guess the finish time of each group

of tasks, giving just the correct load of tasks for each group, making them finish their

jobs simultaneously. This work also follows the recommendations of Agullo et al. [3] by

using a framework that integrates these tasks on a runtime system which is the case of

StarPU, transparently handles data availability and coherency of data.

Along with a few related works of this research, Cojean et al. [19] fill the performance

gap between accelerators and individual cores by using multiple tasks granularities. His

work extends starPU and uses the concept of scheduling contexts, which requires in-depth

modifications to the data layout used by existing implementations. Cojean et al. reduce

the performance gap between processing units by forming scheduling contexts of CPUs,

exploiting tasks’ inner parallelism. The performance of these clusters of CPUs can better

compete with one of the powerful accelerators such as GPUs.

Martinez et al. [42] developed an experiment on modeling seismic wave propagations

using StarPU and demonstrated significant performance efficiency and acceleration of 32%

over the heterogeneous version. The significant impact on performance is considered to
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be caused by the granularity and scheduling strategies. This experiment points that the

proposed framework is towards the right direction, it is used not only different scheduling

strategies, but also scheduling contexts, which sets virtual groups of processors.

Breder et al. [12] developed a strategy to optimize and reorder the submission of

kernels to the GPU, the results showed that changing the submission order lead to sig-

nificative gains on the average time of turnaround and throughput of the system, in

comparison to the default submission of kernels implemented on the modern GPUs.

3.3 Tasks lengths estimations

Greg et al. [27] propose an accurate estimation when an application is up to finish its

execution on a given device. He proposes the use of a runtime information database, which

keeps an average runtime for each application and information about the input data size.

This information allows better scheduling decisions that are both globally and locally

efficient, with higher computational throughput and device utilization for all processing

units.

According to Augonnet et al. [5] it is not necessary to have perfectly accurate models

to make correct decisions when mapping tasks to processors. The most important part is

to capture the relative speedups and also the affinities between tasks and processors.

Luk et al. [41] use an analog approach of offline profiling to get information about

the execution of tasks on different computing devices, but with different calculations.

Teodoro et al. [69] proposed a solution that when a new application is implemented, it is

benchmarked for a representative workload and the execution times are stored.

In the proposed framework, the recommendation and conclusion of Augonnet et al.

[5] are essentially followed. Although the historical database of executions does not give

precise information about the length of each task since the the average as main metric is

utilized, just having a vague idea of the average time for that particular task it is already

a good hint about the behavior and duration of that task on a specific processor.

3.4 Load balancing of tasks

To minimize a software overall execution time on heterogeneous hardware, most of the

time it is fundamental to consider the load balancing of the distributed task workload [15].
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The ideal size of computational task and data that is sent to an accelerator during each

task assignment should also be considered. If the block size is too small, data transfer

to the device will take most of the time, and the device initialization overhead will be

excessive. On the other hand, large blocks will lead to more performance in GPUs;

however huge blocks can result in work imbalance. The right block size can minimize

underutilization and load imbalance, resulting in shorter execution time [9].

Load balancing and GPU resource utilization cannot be satisfactorily addressed by

the current GPU programming paradigm, CUDA scheduler cannot handle the unbalanced

workload efficiently [18]. It is fundamental to distribute the workloads equitably, based

on the processing capacity of each processor, to reach balance and improve performance.

The use of multiple GPUs can considerably increase the computing power available

for an application, which can cause workload imbalance by decreasing occupancy and lead

to the underutilization of device resources. This means that devices may be idle between

kernel executions, leading to reduced performance.

According to Odajima et al. [56] the task size should be considered for heterogeneous

computing. A certain size or larger task size is required to achieve enough performance

on the processing units. Otherwise, the efficiency to utilize GPU becomes low, since the

GPU needs to be feed with more tasks and bigger ones. If there is a relatively small

number of tasks, it is not possible to keep the load balance between CPUs and GPUs,

because it was not assigned enough tasks.

In the proposed framework, it is considered the load balancing of tasks by estimating

the duration time of each set of tasks associated with each group of processing units. Sets

of workers with GPUs will tend to receive bigger tasks since they run more efficiently on

that particular group, considering the capacity of each processor according to Chen et al.

[18] and Odajima et al. [56] recommendations.

3.5 Spatial and temporal locality

It is of particular importance to consider spatial and temporal locality when considering

the scheduling of tasks, which can save much time with memory access, since tasks that

access one memory location tend to reaccess the same memory location, as well as nearby

memory locations [44].

Hugo et al. [28] showed that the scheduling contexts defined by starPU and explained
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on this work on subsection 2.3.1, helps better exploit data reuse and improves locality.

On his experiments was observed that the use of scheduling contexts increased the hit

rate by almost 10% in comparison to the regular case, and reduced the amount of data

transferred by more than 50%, increasing the execution performance.

Our framework exploit the effect on spatial and temporal locality, by designing differ-

ent scheduling contexts configurations on subsection 5.1.3, and automatically finding the

one that optimizes the overall execution time of the independent tasks.

3.6 Conclusion

This Chapter discussed the most relevant prior research work related to the areas covered

in this thesis. In order to build a framework for distribution of independent tasks in

multi-CPU and multi-GPU systems, it is required to consider some critical factors: the

impact of data transfers when executing a task in a processor; the scheduling strategy;

the performance of each task on a given core processor; efficient and fast estimations; the

load balancing of the tasks and finally, the spatial and temporal locality.



Chapter 4

Framework

This chapter presents the framework and give some generic details without diving down

into specific of the implementation. The application and software implementation details

are explained on Chapter 5. The framework was designed to be capable of adjusting itself

during operational time. The objective is to find the best configuration that minimizes

the overall execution time for a particular set of distinct independent tasks, helping to

obtain speedups transparently.

4.1 Framework Overview

We summarize in phases the Framework overview on Figure 4.1. Each box on the workflow

represents a a high level abstraction of the framework, presenting using this form, even

having to make a few abstractions, eases readability and comprehension before presenting

the details of the framework in depth. The numbers in parenthesis along this section text

represent the position on Figure 4.1 that is being detailed.

The general simplified idea of the framework is to use previous historical information

of past executions to infer the best mapping of tasks and the virtual group of processors

that minimize the overall execution time of the tasks. The implementation starts with

the initialization of the application (1) where is set the environment parameters of the

framework. On the next phase, (2) historical data about how each task perform on each

core of the machine is obtained, in the case of this information is not available, it can be

generated at this point.
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Figure 4.1: Framework overview.

At this phase, the framework statically receives all tasks that will execute (3). These

tasks have various implementations of the same abstract function as seen on Figure 2.4.

It makes it possible for a task to know how to execute seamlessly, independently of the

worker architecture the task is assigned, whether it is a CPU or a GPU. After this, the

tasks are finally instantiated but still pending to execute. It is now time to build the

scheduling contexts configurations candidates (4) that are going for evaluation through

estimation of the overall execution time of the tasks in our framework.

After the definition of the possible contexts configurations on 4, the task distribution

engine main core (5) will go through the possibilities and analyze the time estimations

for every configuration associated with that particular group of task.

Inside the task distribution engine main core (5), firstly, a greedy solution to map each

task to the fastest virtual set of processors is created. Secondly, the solution is iteratively

improved by trying to exhaustively move tasks from one virtual group of processors to

another, until no improvements to the overall execution estimated time estimation can be

made. This condition is finite and converges since the number of possible moves is limited.

The framework builds various configurations of virtual sets of processors based on the

machine hardware setup and scans through all. The virtual set of processor configurations

is rapidly evaluated through the use of estimation of the execution time, finding the one

that possibly minimizes the overall execution time of the tasks.

After the context with the best estimation is defined, it is now time to assemble

this best context configuration (6) and submit the tasks (7) for execution, it scans the

vector of tasks, and for each task, reads its designated context and dispatches the task

for execution.

Since different contexts can have different execution times, the slowest context is our
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limiting factor. It is necessary to synchronize (8) the execution, waiting for all to finish.

After this, it is time to unregister the data (9) and transfer it. This operation allows the

result to be collected and keep memory coherence. After the accomplishment of the tasks

execution and data transfers, we must save the historical data of executions (10) and write

these logs on disk, which is crucial to the post-analysis because it allows comprehending

the events that happened during the execution and obtain new calibration data for new

executions. After the necessary information is on disk, it is now time to free the memory

(11) on CPU and GPU. On the termination function (12) we shut down the framework.

4.2 Framework details

On Procedure 1 is presented in depth the details of the framework. It is assumed that

each task has a CPU and GPU implementation and can run in a transparent fashion once

submitted to the corresponding context. The framework is divided into two parts: (i) the

main function which wraps all the environment data required to run the framework; and

(ii) the task distribution engine main core, which effectively does the optimization job,

finding the best distribution of tasks among groups of core processors.
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Procedure 1 Framework - Overview - Part I
1: Procedure TASK DISTRIBUTION FRAMEWORK

2: Input: (1) tasks[N ], (2) calibrationTasks[M ] (3) machineConfigurations, (4)

schedulerPolicies[S], (5) calibratingMode

3: Output: (1) Empty.

4:

5: tasks[N ] ← set of tasks to execute

6: calibrationTasks[M ] ← calibration set of tasks

7: submit tasks[N ] to the main queue of tasks

8: analyzeTasks(Tasks[N ])

9: machineConfigurations ← info from the current available hardware

10: contextsConfigurations[P ] ← possible context configurations

11: schedulerPolicies[S] ← possible schedulers

12: historicalOfExecutions ← historical of executions

13:

14: if (historicalOfExecutions is empty and calibrationMode is on) then

15: calibrationSummary ← empty

16: tasks[N ] ← calibrationTasks[M ]

17: else

18: calibrationSummary ← analysed historical data from the historicalOfExecutions

19: end if

20:

21: bestTaskSchedulingMap ← taskDistributionEngineMainCore()

22: submit tasks for execution based on the bestTaskSchedulingMap

23: wait for all contexts to finish tasks executions

24: transfer results

25: reevaluate strategy

26: update the historical of executions

27: save the historical of executions

28: terminate
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Procedure 1 Framework - Overview - Part II
29: Procedure taskDistributionEngineMainCore

30: Input: (1) tasks[N ], (2) contextsConfigurations[P ], (3) schedulerPolicies[S], , (4)

calibrationSummary, (5) calibratingMode.

31: Output: (1) bestTaskSchedulingMap.

32:

33: if (calibrationSummary is empty and calibratingMode is on) then

34: bestTaskSchedulingMap ← defaultContextConfiguration

35: return bestTaskSchedulingMap

36: end if

37:

38: bestT ime ← positive infinity value

39: ntt ← number of different task types

40: avgLengthOfWorkers[workers][ntt] ← info from the calibrationSummary

41: avgLengthOfContexts[contexts][ntt] ← info from the calibrationSummary

42: favWorkersByTaskType[ntt][workers] ← info from the calibrationSummary

43:

44: for each context configuration on contextsConfigurations[P ] do

45:

46: taskDistribution ← create greed initial solution

47: estimationInputAndExecution ← estimateTransferInputAndExecutionLength() . function

details on Procedure 2

48:

49: while (estimationImproved is true) do

50: simulate move tasks from context with longest duration to other contexts

51: calculates if estimationImproved

52: move the task and update time if the movement estimationImproved is true

53: end while

54:

55: estimationOutput ← estimateContextConfigTransferOutputLength() . function details on

Procedure 3
56:

57: currentTotalEstimation ← estimationInputAndExecution + estimationOutput

58:

59: if (currentTotalEstimation < bestT ime) then

60: update the bestT ime, bestContextConfigurationIndex and bestTaskDistribution

61: end if

62:

63: end for

64:

65: bestTaskSchedulingMap ← best context configuration

66:

67: return bestTaskSchedulingMap
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The input of the framework on line 2 is detailed as follows:

1. tasks[N ] - Vector of N tasks that will be submitted to the scheduler to execute

on the processing units. Each task type has a CPU and GPU implementation of its

function type to run in a transparent fashion on the processor it is assigned. Each

task has also information about its parameters and data handles as described in

Section 2.3.

2. calibrationTasks[M ] - Vector of M tasks that will be used to generate historical

data of executions for the framework. It contains distinct tasks for each existent

type of tasks on vector tasks[N ]. It is used for calibration since it discovers the

general performance of each worker for each different type of tasks.

3. machineConfigurations - Stores information about the hardware where the

tasks will execute: number of CPU cores, number of GPUs and memory available

on each processor.

4. schedulerPolicies[S] - Vector of possible scheduling policies, according to the

ones described in Subsection 2.3.2.

5. calibratingMode - A boolean variable which defines if the framework is going

to have a historical of executions or not. Having a historical of executions helps the

framework to know the performance of each worker which calibrates itself.

The output of the framework on line 3 is empty since nothing is returned. The

desired result of its execution, which is the optimization of the overall execution time of

the tasks, occurs inside the main function procedure defined on line 1, consequently, there

is no need to return.

At line 5, all produced tasks that will be executed are stored on tasks[N ]. On line

6, calibrating tasks are stored on calibrationTasks[M ] vector.

On line 7, enqueues all produced tasks stored in tasks[N ] to the main queue of tasks.

This vector of tasks is also submitted for analysis by the analyzeTasks() method on line

8, which updates the abstract data type who stores information and creates a summary

about how many tasks of each type and its configurations.

The machineConfigurations stores information about the hardware which is pro-

vided by the current available hardware on line 9. It collects information about the
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available hardware on the machine: number of CPU cores and GPUs available. The pro-

grammer does not need to know how many nodes or devices are on the machine. The

acquisition of this data is transparent and a whole concern of the framework. Its capabil-

ities as number of cores, number of SMs and available RAM is available through the use

of NVIDIA Management Library (NVML) [53].

On line 10, manually build possible scheduling contexts configurations based on the

machineConfigurations variable are stored on the vector of contextsConfigurations[P ].

This module is key to the success of the framework. It is built based on the idea of

scheduling contexts defined on Subsection 2.3.1 and available on StarPU [39]. Scheduling

contexts are abstract sets of workers that allow the programmer to control the assignment

of concurrent parallel tasks to computational resources. The main idea behind this concept

is to minimize interference between the executions of multiple parallel kernels/tasks by

partitioning the underlying pool of workers using scheduling contexts.

On line 11, all possible scheduling policies, according to the ones described in Sub-

section 2.3.2 are stored on the schedulerPolicies[S] vector. These policies are applied

individually to each scheduling context. In the framework, the same scheduling policy

is applied for all scheduling contexts inside a context configuration, which by definition

contains one or more scheduling contexts.

The historicalOfExecutions variable on line 12, stores information returned from

the function loadHistoricalOfExecutions() that tries to load information from the file

pointer. If there is no historical available to be loaded, it will point to null.

On line 14, is checked if the historical of executions points to a null value and if the

calibrating mode is activated. If this happens, the calibratingSummary points to empty

on line 15, which is responsible for providing summarized calibrating performance infor-

mation about how each task type behaves for each processor or worker. This information

is obtained through analysis of the historicalOfExecutions.

Since no historical data is available and calibration mode is activated, calibrationTasks[M ]

receives the role of normal tasks[N ] on line 16, this way it is possible to make the first run

and generate historical data for knowing the performance of each worker. Notice that both

sets of tasks are different, but this attribution is just made to the calibrationTasks[M ]

to follow the standard flow of tasks[N ]. When no historical information is available, the

priority becomes to generate calibration data. Optimizing the execution and minimizing

the overall execution time of the independent tasks is just the main objective and priority

when there is an historical of executions available.
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In the case there is available historical of executions as on line 18, this data is ana-

lyzed and attributed to the results of the historical analysis to the calibrationSummary

variable. This analysis is based on offline calibration since data obtained from relevant

previous historical execution is loaded, information gathered in the current machine using

real runs. The outcome of this strategy essentially relies on how accurately the calibra-

tion reflects about what happens during actual executions, for every new platform the

calibration must be repeated [34].

The task distribution engine main core on line 21, will decide who is going to run

each task and which scheduling context each of them will be assigned. It also estimates

an execution time for each pre-defined possible settings of different scheduling contexts

configurations, so the framework can decide which one will minimize the overall execution

time of the tasks. It is the most relevant and complex part of the framework, since it puts

all information together, makes the analysis and the task mapping final decision.

The procedure Task Distribution Engine Main Core on line 29 receives as input the

same parameters of the framework main function plus the calibrationSummary variable

which provides processed historical information about the historical data. The output of

the method is the bestTaskSchedulingMap variable which contains information about

the best scheduling context configuration that optimizes the overall execution time of the

independent tasks, task distribution among scheduling contexts and scheduling policy.

In the case where there is no processed information about historical data on the

calibration summary variable and the application is in calibration mode on line 33, the

best task scheduling map is updated with a default scheduling context configuration on

line 34, detailed on the following paragraphs.

Since no historical data is available and the framework is not trained, the primary

objective becomes to execute the calibrationTasks[M ] vector to generate calibration data.

At this time, there is no point to search for the best scheduling context configuration, so

scheduling contexts with only one worker each are created and equally distribute all the

tasks on the calibrationTasks[M ] vector to these scheduling contexts. The creation of one

worker scheduling contexts helps reduce interference and collect data more precisely. The

scheduler set for popping tasks from each scheduling context is set to equally distribute

tasks, which increases the chances for each worker to collect performance information

about how different kinds of tasks behave when executed on different workers, and obtain

helpful performance data about the execution itself. After this, a default configuration is

set and the framework flow returns to line 21.
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On line 38 the bestT ime variable stores the estimation of the overall execution best

time, it receives the maximum possible positive value so any generated estimation will be

better than this value. The ntt variable on line 39 stores the number of different task

types on the current execution.

The avgLengthOfWorkers[workers][ntt]matrix on line 40 stores information about

the average time each worker needs to receive input data and execute a certain task type.

This information is obtained using the retrieveAVGLengthOfWorkers() which parses the

calibrationSummary variable.

The avgLengthOfContexts[contexts][ntt]matrix on line 41 stores information about

an estimation of the average time each scheduling context, which is a group of workers,

needs to receive input data and execute a certain task type on average. This infor-

mation is obtained using the retrieveAVGLengthOfContexts() function which parses the

calibrationSummary variable. For understanding the details of how the transference

output data time is estimated, refer to Subsection 4.2.1.3.

The favWorkersByTaskType[ntt][workers] matrix on line 42 stores information

about the favorite worker or processor for each task type.

On the for statement of line 44 it is initiated the search for the best scheduling

context configuration that will optimize the overall execution time of the independent

tasks, it scans every scheduling context configuration on the contextsConfigurations[P ]

vector from 1 to P, where P is the number of possible scheduling context configurations,

and each configuration has virtual groups of workers or contexts.

Before starting each search iteration, it is necessary to create an initial solution for the

problem. Each task stored in the tasks[N ] vector must be distributed among scheduling

contexts. An initial greedy solution is generated on line 46. The method simply chooses

a scheduling context that execute each task in the shortest time. The previously defined

avgLengthOfContexts matrix is used to find the necessary information and generate the

initial solution, making it possible to work towards the improvement of this solution.

Now, it is necessary to estimate how much time all tasks in the initial solution will need

to transfer their input and execute. On line 47, this result is achieved by executing the es-

timateTransferInputAndExecutionLength() procedure which uses the TaskDistribution

variable and the avgLengthOfContexts matrix to discover this estimation which is stored

on the estimationInputAndExecution variable. For understanding the details on how to

estimate the input data transference and execution time, refer to Subsection 4.2.1.2 on
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Procedure 2.

Naturally, the creation of a greedy solution has a high chance of generating an un-

balanced solution. If a scheduling context with only the fastest workers for every type

of tasks was created, the other scheduling contexts would not receive any tasks. An idle

scheduling contexts is not a desired behavior, since all workers on other scheduling con-

texts would stay in waiting status while they should be solving tasks to help minimize

the overall execution time and reduce the overload of the best scheduling context.

This unbalancement is solved on the statements on lines 49-53, by systematically

trying to move tasks from the scheduling context with the longest estimation to the

scheduling context with the shortest estimation, until no improvements are possible to be

made. These moves will cause the scheduling contexts to reach ideal hypothetical balance,

having approximately the same theoretical estimation on each scheduling context after

a few iterations. These moves are evaluated in constant time since it is possible know

the effect on time by adding or removing tasks to any of the scheduling contexts. It is

simply not necessary to call the estimation method which would need to scan the whole

TaskDistribution vector.

At this point, it is not possible to reduce the theoretical duration of the scheduling con-

texts by simply moving tasks from one scheduling context to another, since they already

have the minimum duration. Now, an estimation time for transferring the input data and

execution of these tasks is available. Following, it is necessary to estimate the output

transferring time using the function estimateContextConfigTransferOutputLength() on

line 55. It is necessary to estimate this transfer time since transferring data through the

bus takes some considerable time. The transfer time is estimated through linear approxi-

mation using information from the offline calibration phase. For understanding the details

of how it is estimated the transference output data time, refer to Subsection 4.2.1.3 on

Procedure 3.

On line 57, the total estimation of the overall execution time of the tasks is calculated

by adding the input and execution estimation to the output estimation, and attributing

this value to the total estimation. Finishing the for loop, it is evaluated from lines 59-61,

if the current estimation is better than the global best estimation time and save the best

settings.

The for loop iterates for every possible scheduling context configuration, and the

process repeats until the scheduling context configuration with smallest estimation of the

overall execution time is found. The results are updated on the bestTaskSchedulingMap
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variable which stores the best task distribution among scheduling contexts, best scheduling

context configuration and the used scheduling policy. After the value on the best task

scheduling map is updated, the method taskDistributionEngineMainCore() returns this

object on line 67, and the execution flow returns to the main function on line 21.

After the execution of the taskDistributionEngineMainCore() the bestTaskSchedulingMap

variable on line 21 stores the configuration that optimizes the overall execution time of

the tasks on the tasks[N ]. Finally, these tasks are submitted for execution on line 22

together with its parameters, the function knows exactly to what previously established

scheduling context to submit each task on the tasks[N ] vector. The function scans the

vector and dispatch each task for the mapping stored on the bestTaskSchedulingMap

variable.

Following, it is time for synchronizing all scheduling contexts and wait for them to

finish on line 23.

After all tasks have finished executing, now it is time to transfer the output results

data back to the CPU and keep memory coherence. In the case of GPUs, an explicit

transfer must be done. All automatically allocated buffers needs to be freed, and a valid

copy of the data is copied back to keep coherence of the memory on the CPU, which was

possible invalid. These results are transferred on line 24. This approach is similar to

Pandit et al. [58], where these transfers are done only when data is modified on the GPU.

For tasks that have executed completely on the CPU, this data transfer is generally not

required.

In case the duration of scheduling contexts are unbalanced and not behaving accord-

ingly or deteriorating, and scheduling contexts are ending with a big enough difference in

time, it is also possible to call the reevaluate the strategy on line 25, which can option-

ally reset the calibration data available, by deleting its historical data, forcing to generate

new historical data for the proposed framework if necessary with an adequate set of tasks.

This situation could happen if the calibration data differ substantially in comparison to

the actual tasks data set used in subsequent runs.

On lines 26-27, it is possible to update or not the data type who stores the historical

of executions and optionally write this data on disk.

Finally, the execution is terminated on line 28, where the memory of CPU and GPU

will be freed and correctly shutdown the libraries to end the framework execution.

In this Chapter, the framework is explained in a more generic way and explained
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apart from implementation specifics. Some clarifications on the framework are presented

on Subsection 4.2.1. On Chapter 5, application and software implementation details are

presented in depth.

4.2.1 Estimation of input/output transference and execution time

In this subsection, it is complemented the framework explained on Chapter 4 by showing

how executions length and input/output transference time are estimated. Due to the

nature of the tasks model, the process is split into two parts according to Figure 4.2.

In the first part, the input data transference and execution time is estimated, and in

the second, the duration of the output data transference time is estimated in Subsection

4.2.1.3.

Figure 4.2: Measured times and estimations, split into two phases.

Before formalizing in a sequence of steps how to estimate the input data transference

and execution time, it will be explained the intuitive idea about how it works, using an

example. These estimations will be presented for a worker on Subsection 4.2.1.1 and for

a scheduling context on Subsection 4.2.1.2. It is necessary two separate methods, since

when a task is submitted to a scheduling context, there is no guarantee about who is

going to execute that particular task.

4.2.1.1 Input data transference and execution estimation for a task submitted
to a worker

After the calibration phase performs, the information in Table 4.1 is available for the

framework in the historical database.
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Table 4.1: Segment of the historical of executions, extracted from the historical database.

# Worker Task Type Length (µs)

1 3 1 242

2 2 3 387

3 1 2 95

4 1 1 19

5 2 2 1795

6 3 2 1791

7 3 3 385

8 2 1 242

9 1 3 35

The information obtained from the calibration phase is valuable for the success of the

framework. From lines five and six in Table 4.1 is possible to notice that workers two and

three perform slowly for tasks of type two, with lengths of 1795 and 1791 microseconds

(µs) respectively. This performance is considerably slow if compared to the performance

of worker one, with a duration of 95 µs.

No private information of what the tasks are executing or using as parameters are

utilized to write the log, and the framework only knows the type of the task that runs on

each worker. The framework is “blind” on purpose, performing only black box measure-

ments which reduce dependency on tasks information. Naturally, this approach decreases

the amount, accuracy, and quality of information that is possible to extract from the

tasks but makes the framework generic, feasible and appropriate for implementation since

interdependency associated to the tasks is reduced.

When performing estimation analysis, there is a critical trade-off between estimate

with enough precision and time spent during analysis. Most of the times, the evaluation

time needs to be significantly faster than the time it will probably save optimizing the

overall execution time of the tasks.

The history of executions saved in the historical database is read when the framework

is initialized on line 12 of the Framework 1, and the averages of the history of execution

are summarized and loaded on memory on line 18. Each cell in Table 4.2 represents an

example of hypothetical average times in microseconds for the input data transference

and execution of different task types.



4.2 Framework details 37

Table 4.2: Average of executions measured times and data transference of different tasks
types per workers.

Average Tasks Execution Time in µs

Workers Type 1 Type 2 Type 3

#1 10 200 30

#2 15 100 15

#3 30 50 10

#4 30 150 60

#5 20 50 60

#6 10 25 60

This performance information is crucial for the framework since it provides a good

hint about how every worker performs and behaves on average for each type of task on

the current machine.

4.2.1.2 Input data transference and execution estimation for a task in a
scheduling context

The average of executions time obtained in Table 4.2 is necessary for the calculation of

the input data transference and execution estimation for a task in a scheduling context.

It is an artificial metric that represents the average time each task type needs to transfer

input data and execute in a scheduling context.

When a task is dispatched to a scheduling context to execute, there is no guarantee of

which worker will receive and execute this task, then it is required to calculate a metric

that somehow emulates the approximate time. First will be presented the intuitive idea

through an example and after the definition the framework.

From the data obtained from Table 4.2 a scheduling context which contains workers

from 1 to 3, will be created. Figure 4.3 represents how many tasks of type two worker

two and three would solve if compared simultaneously to the slowest one in the group, in

this case, worker one.
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Figure 4.3: Execution of same type tasks over time on a scheduling context with different
workers with different performances.

In 200 microseconds, worker one would have solved one task, while worker two would

have solved two tasks and worker three would have solved four tasks, with a total of seven

tasks. On this scenario, the average length per task is 200 µs / 7 or approximately 29 µs,

which is a reasonable value since, with the help of other workers, the average should be

at least smaller than the fastest one which is Worker 3 with 50 µs on average. Repeating

this process for all combinations of scheduling contexts and types of tasks, Table 4.3 is

achieved.

Table 4.3: Average of executions measured times of different tasks types per scheduling
context.

AVG Scheduling Context Execution Time in µs

Context Type A Type B Type C

#1 5 29 5

#2 5 15 20

Simply calculate the average time of all workers that compose the scheduling context

to obtain the average length of a scheduling context for a particular task type is not an

option since each worker solves different numbers of tasks on the same amount of time,

which can lead to workers to remain idle for a certain length of time [1].

On Procedure 2, it is exhibited the procedure to calculate the average lengths of

scheduling contexts, which corresponds to line 41 on Procedure 1, the framework main

procedure.
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Procedure 2 AVG Lengths of Scheduling Contexts Calculation Steps
1: Procedure avgLengthOfContextsPerTaskType

2: Input: (1) avgLength[numberOfWorkers][numberOfTaskTypes]

3: Output: (1) avgLengthPerContext[numberOfContexts][numberOfTaskTypes].

4:

5: for c → 0 to numberOfContexts do . for each context

6: for t → 0 to numberOfTaskTypes do . for each task type

7: sumOfUnits ← 0 . accumulate how many tasks are solved in that time

8: smallest ← find the smallest average for task type t on context c

9: longest ← find the longest average for task type t on context c

10: for w → 0 to workers do . for each possible worker

11: if (workerBelongsToContext(w, c) = true) then . checks if worker w belongs to context c

12: sumOfUnits ← sumOfUnits + (avgLength[w][t] / smallest)

13: end if

14: end for

15: avgLengthPerContextPerTaskType[c][t] = longest / sumOfUnits

16: end for

17: end for

18:

19: return avgLengthOfContextsPerTaskType[ ][ ]

4.2.1.3 Output data transference estimation

The first necessary information to estimate the output data length is the number of tasks

that will execute on each GPU, since explicit transference calls are just made from the

device to host in this case. CPUs do not need to communicate through the bus because

all the CPU cores are on the chip.

Since it is possible theoretically estimate the length of a scheduling context, and is also

known how many tasks and which types of tasks will execute on that group of processing

units. Using the average time each worker on this group needs to run a task, it is viable to

approximately estimate how many tasks each GPU will run on that group of processing

units.

In the case the scheduling context has only GPUs, there is no need to calculate how

many tasks will execute on the device, since all mapped tasks will for sure execute on

GPUs. In the case the scheduling context has no GPUs, there is also no need to calculate

since no data is transferred through the bus. In the mixed scenarios, the calculations are

required.

During the calibration phase, the initial overhead of this function is measured, which
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is when no tasks are sent to the GPUs. Since is known the initial time the function

needs to execute, how many tasks and which types of tasks will execute on each GPU,

and the average transfer time for each type of task, it is viable to estimate the output

data transfer time with good enough precision. Procedure 3 corresponds to the function

estimateContextConfigTransferOutputLength() on line 55 on Framework 1.

Procedure 3 Output Data Transference Estimation
1: Procedure outputDataTransferenceEstimation

2: Input: (1) estNumberOfTasksPerWorker[w][t], (2) avgWorkerOutputDataT imePerTaskType[w][t]

3: Output: (1) longestOutputDataEstimation

4:

5: for w → 0 to workers do

6: if (isWorkerGPU(w) = true) then

7: outputDataEst[w] = initialOverhead . measured on calibration phase

8: else

9: outputDataEst[w] = 0 . just need the vector for GPU Workers

10: end if

11: end for

12:

13: for c → 0 to numberOfContexts do

14: for t → 0 to numberOfTaskTypes do

15: for w → 0 to workers do

16: if ((isWorkerGPU(w) = true) and (workerBelongsToContext(w, c) = true)) then

17: outputDataEst[w] ← outputDataEst[w] + ( estNumberOfTasksPerWorker[w][t] *

avgWorkerOutputDataT imePerTaskType[w][t])
18: end if

19: end for

20: end for

21: end for

22:

23: longestOutputDataEstimation ← max(outputDataEst[w])

24:

25: return longestOutputDataEstimation

4.3 On the scalability of the framework

This framework was initially designed to work on a multi-CPU and multi-GPU machine

and can be easily escalated for a more significant number of heterogeneous machines. The

basic idea of the framework remains the same, but a few modifications should be required.

The main difference is that the vector of independent tasks must be split among these
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machines according to its computing power, and after all machines finish its execution,

the results must be transferred and centralized. For the case where machines have many

multi-CPUs and multi-GPUs, the same framework applies, but the number of Scheduling

Contexts or virtual group of processors configurations, must be limited and manually

defined as on the case on Table 5.1.

4.4 Conclusion

This Chapter presented the conceptual design, definition and the details in depth of a

novel framework for task distribution of independent tasks in multi-CPU and multi-GPU

systems. It uses the combination of virtual groups of processors, scheduling policies and

estimations to automatically achieve the optimization of the overall execution time of

independent tasks, using just a small fraction of the time required to execute the tasks.

It allows developers to automatically take advantage and extract more performance from

the same available hardware.



Chapter 5

Implementation

This chapter describes and details the implementation based on the framework presented

on Chapter 4. First, it is presented the supporting tools necessary to implement the

framework, after it is explained in-depth how it was measured the time intervals. Finally,

it is presented the additional frameworks, libraries and technologies used in this phase.

5.1 Supporting tools

On this Section are presented all the auxiliary supporting tools used for the implementa-

tion of the framework and generating the experimental results.

5.1.1 Synthetic task generator

This is an auxiliary module that is not present on the framework, it synthetically creates

tasks of different sizes and with a diversity of inputs for each type of task loaded on the

framework. This module allows changing the tasks configurations easily: number, types

and sizes. It is also possible to effortlessly instantiate a massive number of distinct tasks

on the assemble tasks module. This module is detailed on Subsection 5.1.2.

Figure 5.1 presents the conceptual idea of synthetically generating tasks of different

types and sizes to generate a historical of execution for the framework model. Tasks are

popped from the main task queue and equally distributed among scheduling contexts to

generate historical and performance data that will represent the relative performance of

each core.
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Figure 5.1: Phase where the historical of executions of the framework is generated.

5.1.2 Benchmarks

To evaluate the effectiveness of the framework, it was taken the strategic decision to

benchmark the application building a StarPU-based synthetic task generator. It has

four different kernels or task types, with hand-written C++ and CUDA versions for

each task type to use as a benchmark baseline. The chosen benchmarks, detailed on

this Section,contain frequently used operations in scientific applications, becoming an

important choice to validate the framework.

The use of Rodinia [17], a well-known CPU and GPU benchmark suite for heteroge-

neous computing, was considered, but adapting their benchmarks to the StarPU model

of tasks, understanding the nature of its kernels, checking the integrity and correctness

of the real life algorithms implemented on Rodinia were not feasible. Other well known

benchmarks also present the same limitation for the proposed validation.

Checking the integrity of the results of synthetic operations kernels is more practical

and straightforward approach than choosing and adapting other benchmarks. Simple

benchmarks have the advantage of allowing the outputs to be easily verified and permitting

the research to focus on its subject, with a low level tuning and adjustments of desired
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parameters.

Although it is an important active research topic, generating and porting efficient

kernels for the CPU and GPU is beyond the scope of this thesis, since in most case it is

required a specific domain knowledge. Contrary to many research works that focus on the

accelerator performance, this work focus on efficient strategies and coordination of the

execution in heterogeneous computing environments. The main interest of this work is in

the correctness of the executed benchmark code and accuracy of the estimation than to

the performance of the tasks inside a worker. The framework treat every task as a black

box, so virtually any benchmarks that follow the StarPU task design based on atomic

operations should work fine as a benchmark.

The scope of this thesis is on producing strategies to minimize overall execution time of

the tasks, going through the challenges of porting benchmarks to StarPU format would be

time-consuming and cause the research to lose focus. The development of a synthetic task

generator allowed a higher level of control over many scenarios, creating the possibility to

easily manipulate test scenarios, check results integrity and possible errors.

In the experiment, the StarPU benchmarks are implemented, with functions in C++

that executes on the CPU and in CUDA which executes on the GPU. Each implementa-

tion produces the same result, but each one executes in a different architecture. These

implementations are associated to the starPU codelet described on Section 2.3. The size

of the tasks is dynamic and has multiple sizes and different inputs for each task. The four

implemented benchmarks are described below:

1. Sum of vectors - Sequential and parallel addition of two float arrays of same sizes

to a third one who stores the result, as illustrated in Figure 5.2. According to Lee et

al. [32] these benchmarks are extremely memory-bound data-parallel kernels, with

chance to execute on CPUs or GPUs depending on the size.

Figure 5.2: Sum of vectors benchmark example.

2. Subtraction of vectors - Sequential and parallel implementation of a subtraction
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of two float arrays of same sizes to a third one who stores the result as in Figure

5.3.

Figure 5.3: Subtraction of vectors benchmark example.

3. Matrix multiplication - Sequential and parallel implementation of a multiplica-

tion of two square matrices of float to a third one who stores the result, as illustrated

in Figure 5.4.

Figure 5.4: Multiplication of two squared matrices benchmark example.

4. Multiplication of an array by a scalar - Sequential and parallel multiplication of

each position of a float array by a constant scalar, writing the results in a resultant

array as illustrated in Figure 5.5.

Figure 5.5: Multiplication of a vector by a scalar benchmark example.

5.1.3 Scheduling contexts generator

This module generates scheduling contexts configurations candidates that are going for

evaluation through estimation of overall execution time in the framework. Table 5.1 lists

all considered configurations of scheduling contexts for the platform specification detailed

on Section 6.1.
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Table 5.1: List of all considered configurations of scheduling contexts in the implementa-
tion.

1 2 3 4 5 6

CFG CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU

1 4 0 - - - - - - - - - -

2 0 2 - - - - - - - - - -

3 4 2 - - - - - - - - - -

4 0 2 4 0 - - - - - - - -

5 2 1 2 1 - - - - - - - -

6 2 2 2 0 - - - - - - - -

7 0 1 0 1 4 0 - - - - - -

8 1 1 1 1 2 0 - - - - - -

9 0 2 2 0 2 0 - - - - - -

10 2 2 1 0 1 0 - - - - - -

11 1 1 1 1 1 0 1 0 - - - -

12 1 2 1 0 1 0 1 0 - - - -

13 0 2 1 0 1 0 1 0 1 0 - -

14 1 1 0 1 1 0 1 0 1 0 - -

15 0 1 0 1 1 0 1 0 1 0 1 0

Every line on Table 5.1 represents a possible configuration for the workers on the

platform. The main idea behind the configurations is to create different possible context

configurations, where each context inside a configuration has at least one processor or

worker, and the maximum of all processors and workers available on the machine. Groups

with mixed workers types, having CPUs and GPUs simultaneously are also created.

The testing machine comprehends of two GPUs and four CPU cores available. For

instance, on configuration seven of Table 5.1, there are three virtual groups of processors,

two groups with one GPU each and another group with four CPU cores. Every scheduling

context is a disjoint group, and each available worker must be part of one and only one

scheduling context.

15 different configurations possibilities are created to experiment and test its efficiency.

These configurations are in ascending order, the smallest configuration number has the

smallest count of scheduling contexts, and the highest one, the biggest count.

In configuration three, there is only one scheduling context composed of all available

workers, while on configuration 15 there are six scheduling contexts, where each one

consists of only one worker. The others configurations are variations in the number of

scheduling contexts and mixed scenarios of different workers combinations per scheduling
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context.

5.1.4 Execution validation

A developed auxiliary CPU function can also optionally be activated to validate the

execution and check the correctness and integrity of the processed execution, checking for

wrong results and data inconsistencies.

Another additional software was developed to parse the logs generated by each execu-

tion. This program uses log data for post-analysis and generating execution reports and

sheets.

5.2 Measuring times

In this section, it is detailed how it was measured the execution and input/output trans-

ference time. The measured times are used as a baseline to compare the accuracy of the

estimations.

Due to the nature of the tasks model and implementation concerns, the process is split

into two parts according to Figure 4.2. First, times and estimations of input data trans-

ference and execution are measured, and secondly, times of the output data transference

are measured.

5.2.1 Input data transference and execution time

In this Subsection, the process of measuring times and estimating the input data trans-

ference and execution time is detailed. It is also justified the implementation issues that

prevent obtaining both data separately.

Before understanding how it was obtained the measured times of tasks, it is essential

to comprehend how StarPU works; the NVIDIA Visual Profiler [54] timeline was used to

look inside the pipeline.

StarPU only provides profiling data for each task when it starts and finish. Trans-

ference time for data parameters on each particular task it not logged individually. This

implementation issue was bypassed by measuring the end time of execution for two neigh-

bor tasks that execute on the same worker.

In the execution timeline in Figure 5.6, StarPU would only give information about
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the duration of each task. On task one, the duration would be represented by interval

[T1,T2], and for task two should be interval [T3,T4]. The issue is that there is still no clue

about the elapsed time from interval [T0,T1] or [T2,T3], which is the time that represents

the necessary time to transfer data parameters to the tasks before the execution begins.

Figure 5.6: Tasks execution timeline, based on observations using the NVIDIA Visual
Profiler [54].

A task needs three steps to execute: transfer data for receiving its execution parame-

ters, execute and transfer back its results. It is not possible to measure the input/output

transfer time due to framework design, the Application Programming Interface (API)

simply does not provide this data. One solution is to measure the interval between the

end of two tasks. Intervals [T0,T2] and [T2,T4] give us the sum of input transfer time

plus execution time of the correspondent task.

This approach has some drawbacks: one of them is not having the separated times

of input data and execution, but it is possibly the best practical solution possible to find

since the application is being built on top of third party libraries, designed for other

purposes and objectives. On the other side, it is also an interesting approach since it will

leave us with almost no gaps in the timeline to measure, which is hard to estimate.

The only data still not present is the time required to transfer back the results, as an

output data. The details of the output data transference time are explained on Subsection

5.2.2.

5.2.2 Output data transference time

The transference of output data occurs when all tasks finish executing. The synchro-

nization unregister function on StarPU is called and the data is copied back, during the

interval [T4,T5], shown at Figure 5.7. The DSM on StarPU is then called, which updates
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memory and keeps it in coherence.

Figure 5.7: Transference of output data viewed on the timeline, based on observations
using the NVIDIA Visual Profiler [54].

In Figure 5.7 is possible to observe four data transferences over the interval [T4,T5],

which the length of each transference is exaggerated on the timeline for illustration pur-

poses, but what happens are instant peaks of transference of only a few microseconds.

The PCI-Express 3.0 [31] bus can transfer gigabytes per second, and in these experi-

ments, the predominance on the timeline is of empty spaces among the data transferred

between system calls since the application is essentially transferring only results. This

fact reduces the relevance of how much data is transferred and increases the relevance of

the interval among transference calls.

The interval [T4,T5] is measured by simply logging the time before and after calling

this function. The total number of tasks the GPU executes corresponds to the number

of transference calls in this range. Finally, this way it is possible to register the average

transference time for each task type.

5.3 Additional frameworks, libraries and technologies

Some additional relevant technologies used during the implementation phase of the frame-

work.

5.3.1 NVIDIA visual profiler

The NVIDIA Visual Profiler [54] is a cross-platform performance profiling tool that allows

developers to have feedback and optimizing CUDA C/C++ applications and is available

as part of the CUDA Toolkit [50].
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Among the most useful functions of this tool, is the unified CPU and GPU timeline

which allows viewing CUDA activity that is happening simultaneously on both CPU and

GPU in a unified timeline, making it possible to identify opportunities for performance

improvement and understand what is going on inside the GPU. It is also possible to verify

CUDA API calls, memory transfers, kernel and CUDA launches.

The NVIDIA visual profiler introduced some delay in the framework code, but these

functions are just used during development time to understand the mechanisms of what

was occurring during the execution time. In production code, the instrumentation code

is deactivated, removing the additional delays.

5.3.2 NVIDIA management library (NVML)

The NVIDIA management library is a C-based API for monitoring and managing various

hardware of the NVIDIA GPU devices [53]. It provides direct access to the hardware via

queries and commands.

5.3.3 Measuring times during execution

The high precision Chrono C++ Standard Library of C++11 is used to measure time.

This library is a collection of classes to work with times and consists of three components:

duration, clock and time point.

Every method is defined in the std::chrono namespace and requires the inclusion of

the <chrono> header file. The standard library also provides different useful time units

to measure time such as nanoseconds, milliseconds, minutes and even hours. Part of the

<chrono> library includes support for various clocks such as system clock and a high-

resolution clock, being appropriate for providing the timebase in a real-time C++ project

[35].

5.4 Conclusion

In this Chapter, it was built a front-end that minimizes the overall execution time of

independent tasks seamlessly, based on the framework proposed on Chapter 4. This

front-end validates the framework using common scientific operations as benchmarks and

testing its efficiency. Manual development of a heterogeneous system requires a lot of

effort from the software programmer since it is necessary to take manual care of memory
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management, load balancing and synchronization. Most of the time, it is not enough to

only use a parallelization framework to obtain performance. One needs to optimize and

tune the application to a particular architecture. This front-end, based on the proposed

framework, helps the programmer in doing so.



Chapter 6

Experimental Results

This chapter details the description of the platform, software and training settings. It is

also presented the experiments and results based on the framework.

6.1 Platform and environmental settings

The experiments were conducted on a dedicated and exclusive machine running Ubuntu

14.04.3 LTS [14] and powered by an Intel i7-4790 @ 3.60 GHz with four cores [30], 24 GB

of RAM, with a Seagate Hard Disk of 1 TB Barracuda 3,5", 7200 RPM, 64 MB cache,

SATA III and 2 NVIDIA GPUs TITAN X [51]. Each GPU has 3072 cores, 12 GB of RAM,

maximum memory bandwidth of 336.5 (GB/sec), and peak single precision floating point

performance of 6.6 TFlops and a maximum power consumption of 250W.

6.2 Software settings

The C++ codes were compiled with g++ version 4.8.4 [25] and CUDA source codes

with NVCC [52], CUDA version 7.5 [50] and StarPU Runtime 1.1.2 [40]. The tests were

performed automatically by a bash script performing ten executions for each configuration.

For each execution, it is created a log file with the results and an automated parser in

C++ compiles the results.
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6.3 Historical of executions

The framework has a historical of executions which is created by previously executing the

implemented application tasks of each benchmark type with different sizes until the RAM

limit of the machine is reached, totalizing 100K tasks. All the workers and the random

scheduler are utilized, with one worker per scheduling context. Once the historical of

executions is available before starting the experiments, the subsequent executions are not

added to the log data of the historical of executions database; otherwise, the historical

should get significantly huge.

6.4 Experiments

The experiments are split and summarized into three parts:

1. Input data transfer and execution comparison experiment - The measured

time the implemented framework takes to transfer input data and execute the tasks

on the experimental platform in comparison with the estimations. The details and

results of the experiment are exhibited on Subsection 6.4.1.

2. Output data transfer comparison experiment - The measured time the im-

plemented framework takes to transfer output data compared to the estimations.

The details and results of the experiment are exhibited on Subsection 6.4.2.

3. Overall execution comparison experiment - The measured time the imple-

mented framework takes to complete the overall execution compared to the estima-

tions. This experiment brings together the two experiments on Subsections 6.4.1

and 6.4.2. The details and results of the experiment are exhibited on Subsection

6.4.3.

For each experiment, it is presented all the results combinations of schedulers, schedul-

ing context configurations and number of tasks. The scheduling context configurations

range from 1 to 15 and are available on Table 5.1. The possible schedulers set for each

scheduling context are eager, WS, LWS and random. The number of tasks experimented

in each execution is 25K, 50K and 100K, equally split among the four task types bench-

marks and in different sizes. Each test is performed ten times and the average result is

computed.
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6.4.1 Input data transfer and execution comparison experiment

In this experiment, it is taken into account the accuracy of the implementation to estimate

the measured time the framework model takes to transfer input data and execute the tasks

on the experimental platform.

In this Subsection of the experiment the scheduler is variated for all scheduling

contexts inside every configuration of scheduling contexts from 1 to 15. It is also

analyzed the input data transfer and execution for 25K, 50K and 100K tasks in finding

out which is the best configuration that optimizes the input data transfer and execution

time.

6.4.1.1 Eager scheduler vs Scheduling context configurations vs Number of
tasks

For 100K tasks, the input data transfer and execution results and estimations are shown

in Figure 6.1. The scheduling context configuration one from Table 5.1, had the worst

performance. The measured time was 85009 ms. This configuration has been omitted

from the plot in order to not compromise the scale. Scheduling context configuration six

was the most efficient, in the measured time and estimation, where both show the smallest

values of time for this set of configurations. The average GAP for all configurations is

12%.
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eager eager eager eager eager eager eager eager eager eager eager eager eager eager

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Real 8037 3029 2834 3190 2417 2943 2504 2800 2498 2999 2603 2855 3294 3572

Estim. 5725 2875 2519 2908 2200 2549 2215 2519 2261 2703 2336 2518 3066 3232

GAP 40% 5% 12% 10% 10% 15% 13% 11% 11% 11% 11% 13% 7% 11%
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Figure 6.1: A comparison between measured times and its estimation for 100K tasks in
every combination of the eager scheduler and scheduling context configurations from 2 to
15 (Table 5.1).

The results of this experiment for the most efficient scheduling context configuration

are consistent. Independently of how many tasks are executed, it is possible to determine

the most effective scheduling context configuration for receiving input data transfer and

execute the tasks efficiently. Even though there is an average GAP from 10% to 12%, the

estimation follows the trends of the execution. The results for 25K and 50K tasks for

this configuration is available on the plots on Figures A.1 and A.2, on Appendix A.

6.4.1.2 LWS scheduler vs Scheduling context configurations vs Number of
tasks

For 100K tasks, the input data transfer and execution results and estimations are shown

in Figure 6.2. The scheduling context configuration one from Table 5.1, had the worst

performance. The measured time was 85009 ms. This configuration has been omitted

from the plot in order to not compromise the scale. Scheduling context configuration six

was the most efficient, in the measured time and estimation, where both show the smallest

values of time for this set of configurations. The average GAP for all configurations is

20%.
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lws lws lws lws lws lws lws lws lws lws lws lws lws lws

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Real 8199 3516 2852 3653 2703 2926 2979 2842 2760 3452 2795 2884 3753 3571

Estim. 5725 2875 2519 2908 2200 2549 2215 2519 2261 2703 2336 2518 3066 3232

GAP 43% 22% 13% 26% 23% 15% 35% 13% 22% 28% 20% 15% 22% 10%
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Figure 6.2: A comparison between measured times and its estimation for 100K tasks in
every combination of the LWS scheduler and scheduling context configurations from 2 to
15 (Table 5.1).

The results of this experiment for the most efficient scheduling context configuration

are consistent. Independently of how many tasks are executed, it is possible to determine

the most effective scheduling context configuration for receiving input data transfer and

execute the tasks efficiently. Even though the average GAP range from 17% to 20%, the

estimation follows the trends of the execution. The results for 25K and 50K tasks for

this configuration is available on the plots on Figures A.3 and A.4, on Appendix A.

6.4.1.3 WS scheduler vs Scheduling context configurations vs Number of
tasks

For 100K tasks, the input data transfer and execution results and estimations are shown

in Figure 6.3. The scheduling context configuration one from Table 5.1, had the worst

performance. The measured time was 85038 ms. This configuration has been omitted

from the plot in order to not compromise the scale. Scheduling context configuration six

was the most efficient, in the measured time and estimation, where both show the smallest

values of time for this set of configurations. The average GAP for all configurations is

19%.
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ws ws ws ws ws ws ws ws ws ws ws ws ws ws

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Real 8174 3412 2844 3533 2657 2898 2958 2814 2716 3427 2769 2864 3729 3540

Estim. 5725 2875 2519 2908 2200 2549 2215 2519 2261 2703 2336 2518 3066 3232

GAP 43% 19% 13% 21% 21% 14% 34% 12% 20% 27% 19% 14% 22% 10%
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Figure 6.3: A comparison between measured times and its estimation for 100K tasks in
every combination of the WS scheduler and scheduling context configurations from 2 to
15 (Table 5.1).

The results of this experiment for the most efficient scheduling context configuration

are consistent. Independently of how many tasks are executed, it is possible to determine

the most effective scheduling context configuration for receiving input data transfer and

execute the tasks efficiently. Even though there is an average GAP ranging from 17% to

19%, the estimation follows the trends of the execution. The results for 25K and 50K

tasks for this configuration is available on the plots on Figures A.5 and A.6, on Appendix

A.

6.4.1.4 Random scheduler vs Scheduling context configurations vs Number
of tasks

The results of this experiment for the most efficient scheduling context configuration were

not consistent for the random scheduler, having GAPs of 303% for 25K tasks, 272% for

50K tasks and 263% for 100K tasks.

6.4.1.5 Conclusion of the input data transfer and execution estimation ex-
periment

The eager scheduler had the best accuracy of estimating the input data transfer and

execution estimation, ranging from GAPs of 10% to 12%. The results of this experiment
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for the most efficient scheduling context configuration were not consistent for the random

scheduler.

The data of this experiment is used together with the data collected on the experi-

ment on Subsection 6.4.2 as partial results for the development of the overall execution

experiment on Subsection 6.4.3.

6.4.2 Output data transfer comparison experiment

In this experiment, it is taken into account the accuracy of the implementation to estimate

the measured time the framework takes to transfer output data from the executed tasks

on the experimental platform.

In this Subsection of the experiment the scheduler is variated for all scheduling

contexts inside every configuration of scheduling contexts from 1 to 15. It is also

analyzed the input data transfer and execution for 25K, 50K and 100K tasks in finding

out which is the best configuration that optimizes the output data transfer time.

6.4.2.1 Eager scheduler vs Scheduling context configurations vs Number of
tasks

For 100K tasks, the transferring measured times and estimations are shown in Figure

6.4. The scheduling context configuration one, which comprehends of four CPU cores

on the same scheduling context had the smallest time, the measured average time was

2912 ms and the estimated average time was 2835 ms, with an average GAP of 3%. The

scheduling context configuration two, which comprehends of two GPUs had the longest

time, in the measured time and estimation. This happens because in this configuration all

tasks are executed on the GPUs, and requires explicit data transfer calls from the GPU to

the CPU. The average transferring results GAP for all scheduling context configurations

is 7%. The results for 25K and 50K tasks for this configuration is available on the plots

on Figures A.7 and A.8, on Appendix A.
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eager eager eager eager eager eager eager eager eager eager eager eager eager eager eager

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Real 2912 6006 4696 5012 4823 4442 4999 4534 4995 4331 4701 4660 5111 5077 5527

Estimation 2835 6103 4356 4454 4370 4469 4455 4468 4454 4535 5032 4460 4452 4870 4793

GAP 3% 2% 8% 13% 10% 1% 12% 1% 12% 5% 7% 4% 15% 4% 15%
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Figure 6.4: Comparison between measured times and its estimation for transferring the
execution results of 100K tasks in every combination of the eager scheduler and scheduling
context configurations from 1 to 15 (Table 5.1).

6.4.2.2 LWS scheduler vs Scheduling context configurations vs Number of
tasks

For 100K tasks, the transferring measured times and estimations are shown in Figure

6.5. The scheduling context configuration one, which comprehends of four CPU cores

on the same scheduling context had the smallest time, the measured average time was

2791 ms and the estimated average time was 2835 ms, with an average GAP of 2%. The

scheduling context configuration two, which comprehends of two GPUs had the longest

time, in the measured time and estimation. This happens because in this configuration all

tasks are executed on the GPUs, and requires explicit data transfer calls from the GPU to

the CPU. The average transferring results GAP for all scheduling context configurations

is 8%. The results for 25K and 50K tasks for this configuration is available on the plots

on Figures A.9 and A.10, on Appendix A.



6.4 Experiments 60

lws lws lws lws lws lws lws lws lws lws lws lws lws lws lws

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Real 2791 6040 5029 4808 5176 4649 4844 4689 4891 4601 4995 4875 5054 5250 5405

Estimation 2835 6103 4356 4454 4370 4469 4455 4468 4454 4535 5032 4460 4452 4870 4793

GAP 2% 1% 15% 8% 18% 4% 9% 5% 10% 1% 1% 9% 14% 8% 13%
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Figure 6.5: Comparison between measured times and its estimation for transferring the
execution results of 100K tasks in every combination of the LWS scheduler and scheduling
context configurations from 1 to 15 (Table 5.1).

6.4.2.3 WS scheduler vs Scheduling context configurations vs Number of
tasks

For 100K tasks, the transferring measured times and estimations are shown in Figure

6.6. The scheduling context configuration one, which comprehends of four CPU cores

on the same scheduling context had the smallest time. The measured average time was

2753 ms and the estimated average time was 2835 ms, with an average GAP of 3%. The

scheduling context configuration two, which comprehends of two GPUs had the longest

time, in the measured time and estimation. This happens because in this configuration all

tasks are executed on the GPUs, and requires explicit data transfer calls from the GPU to

the CPU. The average transferring results GAP for all scheduling context configurations

is 7%. The results for 25K and 50K tasks for this configuration is available on the plots

on Figures A.11 and A.12, on Appendix A.
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ws ws ws ws ws ws ws ws ws ws ws ws ws ws ws

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Real 2753 6095 4868 4796 4986 4515 4742 4549 4940 4486 4962 4737 4945 5237 5462

Estimation 2835 6103 4356 4454 4370 4469 4455 4468 4454 4535 5032 4460 4452 4870 4793

GAP 3% 0% 12% 8% 14% 1% 6% 2% 11% 1% 1% 6% 11% 8% 14%
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Figure 6.6: Comparison between measured times and its estimation for transferring the
execution results of 100K tasks in every combination of the WS scheduler and scheduling
context configurations from 1 to 15 (Table 5.1).

6.4.2.4 Random scheduler vs Scheduling context configurations vs Number
of tasks

Since the results on Subsection 6.4.1.4 which estimates the input data transfer and execu-

tion time for the random scheduler were not consistent, it was not estimated the transfer

time for the random scheduler on this experiment.

6.4.2.5 Conclusion of the output data transfer experiment

The results of this experiment were consistent, the scheduling context configuration one

which is composed of only one group with all CPUs has systematically the smallest transfer

time since no information is sent through the bus. The scheduling context configuration

two has always the longest time since all tasks are executed on the GPU and need to

explicitly call for transferring data from the GPU to the CPU. The implementation is

capable of estimate the transfer time of the tasks with GAPs ranging from 4% to 8% on

average.

It is necessary to associate the results generated in this experiment with the input

data and execution time obtained on Subsection 6.4.1. To make the decision of choosing

the best configuration that minimizes the overall execution time, it is necessary to know

if the transfer time from the GPU to the CPU worth the execution advantage the GPU

gives for executing particular types of tasks.
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6.4.3 Overall execution comparison experiment

In this final experiment, it is taken into account the accuracy of the implementation to

estimate the measured time the framework takes to overall execute the set of tasks on

the experimental platform. After all times are estimated, the application chooses the

configuration with the lowest time, looking for optimizing the overall execution time.

This experiment merges two experiments, the first on Subsection 6.4.1 which estimates

the input data transfer and execution time of the tasks and the second one on Subsection

6.4.2 that estimates the necessary time to transfer back the output data results. It is also

measured the execution time the implementation needs to execute the algorithm.

In this Subsection of the final experiment the scheduler is variated for all scheduling

contexts inside every configuration of scheduling contexts from 1 to 15. It is also

analyzed the input data transfer and execution for 25K, 50K and 100K tasks in finding

out which is the best configuration that optimizes the overall execution time.

6.4.3.1 Eager scheduler vs Scheduling context configurations vs Number of
tasks

For 100K tasks, the overall execution time results and estimations are shown in Figure

6.7. The scheduling context configuration one from Table 5.1, had the worst performance.

The measured time was 87921 ms. This configuration has been omitted from the plot

in order to not compromise the scale. Scheduling context configuration ten was the

most efficient, in the measured time and estimation, where both show the smallest values

of time for this set of configurations. The average GAP for all configurations is 7%

and the decision time to execute the algorithm and choose the best configuration takes

14.7 ms on average. Scheduling contexts configurations from 3 to 15 are the ones who

use all the available CPUs and GPUs on the machine. The decision of using one of

these configurations can impact the execution time in a variation from 6829 ms to 9099

ms. Taking the worst decision can increase the overall execution time up to 2270 ms if

compared to the best configuration that the application needs just 14.7 ms on average to

identify it. The results for 25K and 50K tasks for this configuration is available on the

plots on Figures A.13 and A.14, on Appendix A.
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eager eager eager eager eager eager eager eager eager eager eager eager eager eager

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Real 14043 7725 7846 8013 6858 7942 7038 7795 6829 7700 7263 7966 8371 9099

Est. 11828 7231 6974 7279 6669 7004 6682 6973 6796 7735 6796 6970 7936 8025

GAP 16% 6% 11% 9% 3% 12% 5% 11% 0% 0% 6% 13% 5% 12%
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Figure 6.7: Comparison between measured times and its estimation for overall execu-
tion of 100K tasks in every combination of the eager scheduler and scheduling context
configurations from 2 to 15 (Table 5.1).

6.4.3.2 LWS scheduler vs Scheduling context configurations vs Number of
tasks

For 100K tasks, the overall execution time results and estimations are shown in Figure

6.8. The scheduling context configuration one from Table 5.1, had the worst performance.

The measured time was 87848 ms. This configuration has been omitted from the plot

in order to not compromise the scale. Scheduling context configuration six was the most

efficient, in the measured time and estimation, where both show the smallest values of

time for this set of configurations. The average GAP for all configurations is 11% and

the decision time to execute the algorithm and choose the best configuration takes 14.7

ms on average. Scheduling contexts configurations from 3 to 15 are the ones who use all

the available CPUs and GPUs on the machine. The decision of using one of these config-

urations can impact the execution time in a variation from 7351 ms to 9002 ms. Taking

the worst decision can increase the overall execution time up to 1651 ms if compared to

the best configuration that the application needs just 14.7 ms on average to identify it.

The results for 25K and 50K tasks for this configuration is available on the plots on

Figures A.15 and A.16, on Appendix A.



6.4 Experiments 64

lws lws lws lws lws lws lws lws lws lws lws lws lws lws

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Real 14239 8545 7660 8829 7351 7770 7668 7733 7361 8447 7671 7938 9002 8975

Est. 11828 7231 6974 7279 6669 7004 6682 6973 6796 7735 6796 6970 7936 8025

GAP 17% 15% 9% 18% 9% 10% 13% 10% 8% 8% 11% 12% 12% 11%
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Figure 6.8: Comparison between measured times and its estimation for overall execu-
tion of 100K tasks in every combination of the LWS scheduler and scheduling context
configurations from 2 to 15 (Table 5.1).

6.4.3.3 WS scheduler vs Scheduling context configurations vs Number of
tasks

For 100K tasks, the overall execution time results and estimations are shown in Figure

6.9. The scheduling context configuration one from Table 5.1, had the worst performance.

The measured time was 87791 ms. This configuration has been omitted from the plot

in order to not compromise the scale. Scheduling context configuration six was the most

efficient, in the measured time and estimation, where both show the smallest values of

time for this set of configurations. The average GAP for all configurations is 10% and

the decision time to execute the algorithm and choose the best configuration takes 14.5

ms on average. Scheduling contexts configurations from 3 to 15 are the ones who use all

the available CPUs and GPUs on the machine. The decision of using one of these config-

urations can impact the execution time in a variation from 7172 ms to 9002 ms. Taking

the worst decision can increase the overall execution time up to 1830 ms if compared to

the best configuration that the application needs just 14.5 ms on average to identify it.

The results for 25K and 50K tasks for this configuration is available on the plots on

Figures A.17 and A.18, on Appendix A.
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ws ws ws ws ws ws ws ws ws ws ws ws ws ws

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Real 14269 8280 7640 8519 7172 7640 7507 7754 7202 8390 7505 7809 8966 9002

Est. 11828 7231 6974 7279 6669 7004 6682 6973 6796 7735 6796 6970 7936 8025

GAP 17% 13% 9% 15% 7% 8% 11% 10% 6% 8% 9% 11% 11% 11%
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Figure 6.9: Comparison between measured times and its estimation for overall execution
of 100K tasks in every combination of the WS scheduler and scheduling context configu-
rations from 2 to 15 (Table 5.1).

6.4.3.4 Random scheduler vs Scheduling context configurations vs Number
of tasks

Since the results on Subsection 6.4.1.4 which estimates the input data transfer and execu-

tion time for the random scheduler were not consistent, it was not estimated the overall

execution time for the random scheduler on this experiment. The scheduler randomly dis-

tributes tasks among workers inside each context, which creates an unpredictable pattern,

making it harder to predict times above acceptable levels, leading to low accuracy.

6.4.3.5 Conclusion of the overall execution comparison experiment

The results are consistent, and independently of how many tasks are executed, it is possible

to determine the most effective scheduling context configuration at least two order of

magnitude faster in comparison with the order of time necessary to run the set of tasks.

Even though the average GAP ranged from 3% to 7%, the estimation follows the trends

and matches the plot pattern of the execution, as can be verified from Figures 6.7 to 6.9.

6.5 Limitations

Despite the good computational performance regarding optimizing overall execution time

of tasks, this work aims to introduce new ideas and open horizons for heterogeneous
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computing. It was not the goal of this research to overcome the algorithms considered

as state-of-the-art, but rather to present the implementation of a novel framework as a

proof of concept. Although this work designs and implements a framework to optimize

the overall execution time of tasks showing that is efficient and brings improved execution

times, much still can be done to enhance results and achieve even better times.

6.6 Conclusion

Different context configurations produce distinct overall execution times for a specific

set of tasks. Using the tested benchmarks, the algorithm can predict the input/output

data transfer and execution with an average GAP from 3% to 7%, the estimation has

enough accuracy to follow the trends and matches the plot pattern of the execution.

The implementation and execution of the algorithm can significantly reduce the overall

execution time even in comparison with the most efficient configurations from 3 to 15

which use all workers and always surpass the configuration two which uses only GPUs.

The time required to analyze the set of configurations is always at least two orders of

magnitude faster than the necessary time to execute all the tasks, indicating that the

time needed to run the algorithm is worth the benefits of potential saving times.



Chapter 7

Concluding Remarks and Future Works

This chapter concludes this thesis work. It briefly reiterates the achievements, and the

results are wrapped up on section 7.1. It also checks how the outcome matched the general

research objective and remarks achieved contribution. Finally, Section 7.2 present some

directions for extension of this research.

7.1 Concluding Remarks

In this thesis, it was studied the problem of efficiently schedule independent tasks and min-

imize their overall execution time of the tasks on heterogeneous machines. This problem

is solved by dispatching tasks to be executed on a multiple CPU and GPU system through

the estimation and selection of the most efficient CPU and GPU virtual configuration of

processors.

The solution of this problem is achieved through the design, development, implemen-

tation, and testing proof of the novel framework model, which points to being efficient for

independent tasks. Regarding scalability, the framework expands seamlessly to as many

CPUs or GPUs available on a single machine; the developer can abstract and does not

need to worry about the current machine architecture.

The time required for the implementation to evaluate and estimate each execution

configuration is at least two orders of magnitude less than the time required to execute a

massive number of tasks, which points that the concept is feasible and remains efficient

even with the presence of GAPs on the estimation.

The use of virtual groups of CPU cores and GPUs, together with fast estimations,

can lead to the minimization of the overall execution time of tasks, allowing developers to
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automatically take advantage and extract more performance. The contributions of this

work have wide applicability in Computational Science and areas that demand massive

high-performance computing and processing of generic independent tasks. This work is

still an initial study and have interesting results, but still a lot of research is required.

Finally, this work also helps to fill the gap on better resource management software to

extract better computing performance while still relying on the same available powerful

heterogeneous hardware.

This research also opens new horizons and possibilities for further experiments built

on top of this thesis as described in Section 7.2.

7.2 Future Works

Due to the wide range of subjects and aspects of this thesis, the proposed and implemented

framework opens numerous research opportunities for future works that can be improved

and extended, which are classified as short and long term goals in Subsections 7.2.1 and

7.2.2.

7.2.1 Short term goals

In the short term, many directions appealing paths are possible for future works. A list

of the most important ones and its description are the following:

1. Test different schedulers for each scheduling context inside scheduling

context configurations - Assign multiple scheduling algorithms for different schedul-

ing contexts inside a configuration. This work tests just one type of scheduler for

all scheduling contexts inside a configuration.

2. Test additional benchmarks - Validate the framework with additional bench-

marks.

3. Tests with joint scheduling contexts - In this work, there is no intersection

among scheduling contexts. It would be relevant to investigate the effect of schedul-

ing contexts that share particular workers at the same time and observe how they

behave in comparison to disjoint scheduling contexts.

4. Self-tuning of the GPU tasks for the specific GPUs on the machine -

Tune the performance of a kernel implemented inside a task for a particular GPU
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architecture that this task is going to be assigned. This is feasible and can be done

getting accurate information about the current status of each GPU architecture

specifications, leading to time optimization.

5. Increase the overlap of data transfers and computations - All the commu-

nication happens after the end of all tasks execution to keep memory coherence.

Instead of waiting for every task to finish, the idea is to parallelize communication

and transfer the results while the CPU or GPU is still executing the tasks. This

idea was not implemented due to framework computational limitations. According

to Lima et al. [38], overlapping capability is at least as important as computing a

good scheduling decision to reduce the completion time of a parallel program. The

work of Verner et al. [72] uses multiple data streams and can inspire this future

work.

7.2.2 Long term goals

In the long term, many directions appealing paths are possible for future works. A list of

the most important ones and its description are the following:

1. Expand for multiple machines - Extend the implemented framework for a cluster

of heterogeneous machines.

2. Power optimization - Develop a front-end that will optimize power spent by tasks.

Optimize energy consumption at the price of simultaneously spending some more

time for executing the set of tasks.

3. Increase limit of tasks execution through the use of “waves” - The im-

plementation operates to the limit of the CPU and GPU RAM since all tasks are

dispatched at once, executes and returns the results. The idea is to instead of having

a huge number of tasks that is limited by the RAM; the objective is to increase the

number of tasks splitting the total amount into waves, allowing the execution of a

massive number of tasks.

4. Dependent tasks - Task dependency was a complicating factor for the novel study,

since reduces parallelism and increases the interdependency of tasks. This suggestion

refers to expand the same idea but for dependent tasks.

5. Use internal information of tasks - Many efforts were made for avoiding using

internal private information of each task type for reducing interdependency of the
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framework. Allowing the framework to access internal data of the tasks should

make the optimization problem much more complicated, although it should collect

valuable information that can be used for special optimizations.
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APPENDIX A -- Extra Results

eager eager eager eager eager eager eager eager eager eager eager eager eager eager

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Real 1861 800 718 889 636 746 672 785 676 859 669 709 952 974

Estim. 1525 775 660 801 589 666 588 659 616 716 608 660 788 823

GAP 22% 3% 9% 11% 8% 12% 14% 19% 10% 20% 10% 7% 21% 18%
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Figure A.1: A comparison between measured times and its estimation for 25K tasks in
every combination of the eager scheduler and scheduling context configurations from 2 to
15 (Table 5.1).
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eager eager eager eager eager eager eager eager eager eager eager eager eager eager

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Real 3744 1550 1428 1632 1224 1475 1259 1423 1284 1509 1328 1413 1656 1770

Estim. 2938 1488 1296 1513 1136 1298 1138 1295 1188 1395 1204 1294 1553 1630

GAP 27% 4% 10% 8% 8% 14% 11% 10% 8% 8% 10% 9% 7% 9%
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Figure A.2: A comparison between measured times and its estimation for 50K tasks in
every combination of the eager scheduler and scheduling context configurations from 2 to
15 (Table 5.1).

lws lws lws lws lws lws lws lws lws lws lws lws lws lws

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Real 1868 941 747 998 711 757 779 785 726 878 726 732 932 969

Estim. 1525 775 660 801 589 666 588 659 616 716 608 660 788 823

GAP 22% 21% 13% 25% 21% 14% 32% 19% 18% 23% 19% 11% 18% 18%
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Figure A.3: A comparison between measured times and its estimation for 25K tasks in
every combination of the LWS scheduler and scheduling context configurations from 2 to
15 (Table 5.1).
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lws lws lws lws lws lws lws lws lws lws lws lws lws lws

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Real 3764 1784 1460 1867 1354 1481 1486 1433 1405 1739 1404 1444 1857 1770

Estim. 2938 1488 1296 1513 1136 1298 1138 1295 1188 1395 1204 1294 1553 1630

GAP 28% 20% 13% 23% 19% 14% 31% 11% 18% 25% 17% 12% 20% 9%
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Figure A.4: A comparison between measured times and its estimation for 50K tasks in
every combination of the LWS scheduler and scheduling context configurations from 2 to
15 (Table 5.1).

ws ws ws ws ws ws ws ws ws ws ws ws ws ws

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Real 1869 888 740 963 710 741 780 779 724 897 725 725 930 992

Estim. 1525 775 660 801 589 666 588 659 616 716 608 660 788 823

GAP 23% 15% 12% 20% 21% 11% 32% 18% 18% 25% 19% 10% 18% 21%
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Figure A.5: A comparison between measured times and its estimation for 25K tasks in
every combination of the WS scheduler and scheduling context configurations from 2 to
15 (Table 5.1).
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ws ws ws ws ws ws ws ws ws ws ws ws ws ws

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Real 3723 1734 1456 1805 1355 1465 1497 1439 1403 1748 1404 1444 1848 1768

Estim. 2938 1488 1296 1513 1136 1298 1138 1295 1188 1395 1204 1294 1553 1630

GAP 27% 17% 12% 19% 19% 13% 32% 11% 18% 25% 17% 12% 19% 8%
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Figure A.6: A comparison between measured times and its estimation for 50K tasks in
every combination of the WS scheduler and scheduling context configurations from 2 to
15 (Table 5.1).

eager eager eager eager eager eager eager eager eager eager eager eager eager eager eager

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Real 792 1838 1287 1318 1262 1225 1298 1163 1318 1194 1230 1241 1318 1287 1361

Estimation 784 1826 1275 1298 1289 1314 1300 1314 1297 1344 1456 1299 1299 1413 1386

GAP 1% 1% 1% 1% 2% 7% 0% 12% 2% 11% 16% 4% 1% 9% 2%
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Figure A.7: Comparison between measured times and its estimation for transferring the
execution results of 25K tasks in every combination of the eager scheduler and scheduling
context configurations from 1 to 15 (Table 5.1).



Appendix A -- Extra Results 81

eager eager eager eager eager eager eager eager eager eager eager eager eager eager eager

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Real 1431 3520 2320 2460 2379 2182 2465 2214 2479 2181 2292 2298 2476 2476 2709

Estimation 1411 3510 2393 2450 2406 2456 2452 2461 2449 2524 2788 2453 2447 2695 2650

GAP 1% 0% 3% 0% 1% 11% 1% 10% 1% 14% 18% 6% 1% 8% 2%
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Figure A.8: Comparison between measured times and its estimation for transferring the
execution results of 50K tasks in every combination of the eager scheduler and scheduling
context configurations from 1 to 15 (Table 5.1).

lws lws lws lws lws lws lws lws lws lws lws lws lws lws lws

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Real 769 1820 1346 1233 1311 1208 1286 1178 1302 1247 1275 1283 1308 1307 1382

Estimation 784 1826 1275 1298 1289 1314 1300 1314 1297 1344 1456 1299 1299 1413 1386

GAP 2% 0% 6% 5% 2% 8% 1% 10% 0% 7% 12% 1% 1% 7% 0%
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Figure A.9: Comparison between measured times and its estimation for transferring the
execution results of 25K tasks in every combination of the LWS scheduler and scheduling
context configurations from 1 to 15 (Table 5.1).
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lws lws lws lws lws lws lws lws lws lws lws lws lws lws lws

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Real 1394 3521 2510 2384 2582 2303 2422 2311 2434 2312 2490 2426 2476 2591 2684

Estimation 1411 3510 2393 2450 2406 2456 2452 2461 2449 2524 2788 2453 2447 2695 2650

GAP 1% 0% 5% 3% 7% 6% 1% 6% 1% 8% 11% 1% 1% 4% 1%
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Figure A.10: Comparison between measured times and its estimation for transferring the
execution results of 50K tasks in every combination of the LWS scheduler and scheduling
context configurations from 1 to 15 (Table 5.1).

ws ws ws ws ws ws ws ws ws ws ws ws ws ws ws

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Real 765 1815 1333 1240 1286 1225 1261 1196 1265 1257 1278 1256 1288 1302 1357

Estimation 784 1826 1275 1298 1289 1314 1300 1314 1297 1344 1456 1299 1299 1413 1386

GAP 2% 1% 5% 4% 0% 7% 3% 9% 3% 6% 12% 3% 1% 8% 2%
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Figure A.11: Comparison between measured times and its estimation for transferring the
execution results of 25K tasks in every combination of the WS scheduler and scheduling
context configurations from 1 to 15 (Table 5.1).
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ws ws ws ws ws ws ws ws ws ws ws ws ws ws ws

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Real 1379 3492 2394 2340 2424 2237 2401 2226 2406 2255 2409 2371 2457 2560 2706

Estimation 1411 3510 2393 2450 2406 2456 2452 2461 2449 2524 2788 2453 2447 2695 2650

GAP 2% 1% 0% 4% 1% 9% 2% 10% 2% 11% 14% 3% 0% 5% 2%
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Figure A.12: Comparison between measured times and its estimation for transferring the
execution results of 50K tasks in every combination of the WS scheduler and scheduling
context configurations from 1 to 15 (Table 5.1).

eager eager eager eager eager eager eager eager eager eager eager eager eager eager

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Real 3698 2087 2036 2151 1861 2044 1835 2103 1869 2089 1910 2027 2239 2336

Est. 3351 2050 1958 2090 1903 1966 1903 1956 1960 2172 1907 1959 2201 2208

GAP 9% 2% 4% 3% 2% 4% 4% 7% 5% 4% 0% 3% 2% 5%
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Figure A.13: Comparison between measured times and its estimation for overall execu-
tion of 25K tasks in every combination of the eager scheduler and scheduling context
configurations from 2 to 15 (Table 5.1).
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eager eager eager eager eager eager eager eager eager eager eager eager eager eager

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Real 7264 3870 3888 4011 3406 3940 3473 3903 3465 3801 3626 3889 4132 4479

Est. 6448 3880 3745 3918 3592 3750 3599 3745 3711 4184 3657 3741 4247 4279

GAP 11% 0% 4% 2% 5% 5% 4% 4% 7% 10% 1% 4% 3% 4%
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Figure A.14: Comparison between measured times and its estimation for overall execu-
tion of 50K tasks in every combination of the eager scheduler and scheduling context
configurations from 2 to 15 (Table 5.1).

lws lws lws lws lws lws lws lws lws lws lws lws lws lws

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Real 3688 2287 1980 2309 1919 2042 1957 2087 1972 2153 2009 2040 2239 2350

Est. 3351 2050 1958 2090 1903 1966 1903 1956 1960 2172 1907 1959 2201 2208

GAP 9% 10% 1% 9% 1% 4% 3% 6% 1% 1% 5% 4% 2% 6%
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Figure A.15: Comparison between measured times and its estimation for overall execu-
tion of 25K tasks in every combination of the LWS scheduler and scheduling context
configurations from 2 to 15 (Table 5.1).
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lws lws lws lws lws lws lws lws lws lws lws lws lws lws

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Real 7285 4294 3843 4449 3657 3903 3798 3867 3717 4229 3830 3920 4448 4454

Est. 6448 3880 3745 3918 3592 3750 3599 3745 3711 4184 3657 3741 4247 4279

GAP 11% 10% 3% 12% 2% 4% 5% 3% 0% 1% 5% 5% 5% 4%

3000
3500
4000
4500
5000
5500
6000
6500
7000
7500

Ti
m

e 
in

 M
ill

is
e

co
n

d
s

Figure A.16: Comparison between measured times and its estimation for overall execu-
tion of 50K tasks in every combination of the LWS scheduler and scheduling context
configurations from 2 to 15 (Table 5.1).

ws ws ws ws ws ws ws ws ws ws ws ws ws ws

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Real 3684 2221 1981 2249 1936 2001 1975 2044 1982 2175 1981 2012 2232 2348

Est. 3351 2050 1958 2090 1903 1966 1903 1956 1960 2172 1907 1959 2201 2208

GAP 9% 8% 1% 7% 2% 2% 4% 4% 1% 0% 4% 3% 1% 6%
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Figure A.17: Comparison between measured times and its estimation for overall exe-
cution of 25K tasks in every combination of the WS scheduler and scheduling context
configurations from 2 to 15 (Table 5.1).
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ws ws ws ws ws ws ws ws ws ws ws ws ws ws

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Real 7215 4128 3796 4229 3592 3866 3723 3845 3657 4157 3775 3901 4408 4474

Est. 6448 3880 3745 3918 3592 3750 3599 3745 3711 4184 3657 3741 4247 4279

GAP 11% 6% 1% 7% 0% 3% 3% 3% 1% 1% 3% 4% 4% 4%
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Figure A.18: Comparison between measured times and its estimation for overall exe-
cution of 50K tasks in every combination of the WS scheduler and scheduling context
configurations from 2 to 15 (Table 5.1).
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APPENDIX B -- Glossary

• Codelet: records pointers to various implementations of the same abstract function.

• Context: see the definition of scheduling context on the glossary.

• CPU: Central Processing Unit. The microprocessor in a computer.

• CUDA: Compute Unified Device Architecture. The name of a parallel computing

architecture for graphics cards by NVIDIA.

• Data handle: a StarPU component that keeps track of copies of the same data over

various memory nodes. This data is registered by the application. The Distributed

Shared Memory (DSM) is responsible for keeping them coherent.

• Device: a GPU connected to a host, a graphic card.

• GPU: Graphics Processing Unit. a microprocessor made specifically for accelerating

graphics computations.

• Host: the main computer with possible devices connected to it. In this proposal it

means a personal computer.

• Kernel: a piece of code that is executed on a device.

• NVIDIA Corporation: the company who developed CUDA architecture.

• Scheduler: schedules tasks to workers when they are ready to be executed, which

means that the tasks do not have data or task dependencies. The workers pull tasks

one by one from the scheduler.

• Scheduler policy: the rules that apply for pull tasks from the queue line. In our

case, the scheduling policies are applied to contexts.
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• Scheduling context: a StarPU extension that maps between a set of tasks and

processors. Scheduling contexts can be created and destroyed on-the-fly. If a context

is created, the programmer can dynamically map tasks to a set of processors.

• Streaming Multiprocessor (SM): a compute unit in the CUDA architecture,

each CUDA device is made up of several streaming multiprocessors.

• Task: represents the unit of work to be run on the processing unit defined by the

programmer. It has inputs and outputs data that must be transferred to the CPU

or the CPU and GPU.

• Warp: a group of threads executed in parallel by one SM.

• Worker: execute the tasks, there is typically one per CPU computation core and

one per GPU.


