
UNIVERSIDADE FEDERAL FLUMINENSE

TEOBALDO LEITE BULHÕES JÚNIOR

Column Generation over Set Partitioning

Formulations: Theory and Practice

NITERÓI

2017

UNIVERSIDADE FEDERAL FLUMINENSE

TEOBALDO LEITE BULHÕES JÚNIOR

Column Generation over Set Partitioning

Formulations: Theory and Practice

Thesis presented to the Computing Gradu-
ate Program of the Universidade Federal Flu-
minense in partial fulfillment of the require-
ments for the degree of Doctor of Science.
Topic Area: Algorithms and Optimization.

Advisor:

Fábio Protti

Co-Advisor:

Eduardo Uchoa

NITERÓI

2017

TEOBALDO LEITE BULHÕES JÚNIOR

Column Generation over Set Partitioning Formulations: Theory and Practice

Thesis presented to the Computing Gradu-

ate Program of the Universidade Federal Flu-

minense in partial fulfillment of the require-

ments for the degree of Doctor of Science.

Topic Area: Algorithms and Optimization.

Approved by:

Prof. D.Sc. Fábio Protti / IC-UFF (President)

Prof. D.Sc. Eduardo Uchoa / TEP-UFF

Prof. D.Sc. Yuri Frota / IC-UFF

Prof. D.Sc. Luiz Satoru Ochi / IC-UFF

Prof. D.Sc. Artur Pessoa / TEP-UFF

Prof. D.Sc. Rafael Martinelli / DEI-PUC-Rio

Prof. Dr. Ricardo Corrêa / IM-UFRRJ

Niterói, December 19, 2017

To my parents.

Acknowledgments

I would like to express my sincere gratitude to:

• My family, in special to my parents and to my aunt Gracinha, for the support in

my whole life.

• My dear girlfriend, Ana, for her love and friendship, and for understanding the

reason for my absence.

• My advisors, Prof. Fábio Protti and Prof. Eduardo Uchoa, whom I admire both

intellectually and personally. Thank you for the great opportunity of working with

you and for countless valuable discussions. In special, I would like to thank Prof.

Fábio Protti for being so kind in accepting integer programming as my major re-

search field.

• Ruslan Sadykov, for being my unofficial advisor during the research reported in

Chapter 3, as well as in other ongoing works. I also would like to thank Ruslan for

the hospitality during my two stays in Bordeaux. I am in debt to Prof. Eduardo

Uchoa who has provided me the great opportunity of visiting Bordeaux.

• Prof. Artur Pessoa, for being my unofficial advisor during the research reported in

Chapter 2 and for joining me in countless “cafézinhos na School”.

• Prof. Marcos Roboredo, for the friendship and for joining me in countless “cafézinhos

na School”.

• Prof. Anand Subramanian, Prof. Lucídio Cabral and Prof. Gilberto Farias, for

advising me during my years at UFPB. In special, I would like to thank Prof.

Anand Subramanian for being always around to help me and for introducing me to

Prof. Eduardo Uchoa.

• My fellows at “República Ditatorial de Eyder Rios” (known in LOGIS as “Con-

sulado da Paraíba”): Hugo Kramer (Mulo), Gilberto Farias (Chimba, Mamãe), Ed-

uardo Queiroga (Edu), Thiago Gouveia (Gov boy), Eyder Rios (Papai) and Thaylon

Guedes (Gigante guerreiro). Thank you for your friendship!

Acknowledgments iv

• Prof. Luiz Satoru, for the constant collaborations with Prof. Lucídio Cabral that

opened doors to many students from UFPB, including me, Anand, Gilberto, Thiago

and Eduardo.

• Thibaut Vidal and Renatha Capua, for the friendship. I also would like to thank

Thibaut for the fruitful research collaborations.

• The Brazilian agency CAPES, for the scholarship grant.

Abstract

This thesis presents theoretical and practical contributions on the use of column generation
over set partitioning formulations. On the theoretical side, the set packing and set parti-
tioning polytopes associated with a binary n-row matrix having all possible 2n−1 columns
are analyzed. We show the precise relation between those polytopes: with very few ex-
ceptions, every facet-inducing inequality for the former polytope is also facet-inducing for
the latter polytope, and vice-versa. Moreover, we characterize the multipliers that induce
Chvátal-Gomory rank 1 clique facets and give several families of multipliers that yield
other facets for arbitrarily large dimensions. On the practical side, we present a novel
branch-and-price algorithm over a set partitioning formulation for the Minimum Latency
Problem (MLP), a variant of the Traveling Salesman Problem. The proposed algorithm
strongly relies on new features for the ng-path relaxation, the current best-performing
path relaxation employed by many exact algorithms for routing problems. Such new fea-
tures are not built over any strong assumption on the MLP and can be potentially used in
several other problems. Computational experiments over TSPLIB instances are reported,
showing that several instances not solved by the current state-of-the-art method can now
be solved.

Keywords: Set Partitioning, Column Generation, Rank 1 Cuts, Polyhedral Combina-
torics, Routing, ng-paths.

Resumo

Esta tese apresenta resultados teóricos e práticos a respeito do uso de geração de colunas
a partir de formulações de particionamento de conjuntos. Na parte teórica, são estudados
os poliedros de particionamento e empacotamento de conjuntos associados a uma matriz
binária com n linhas e 2n − 1 colunas. Um forte relação entre esses poliedros é provada:
com algumas poucas exceções, as inequações que induzem facetas desses poliedros são
iguais. Além disso, caracterizam-se os multiplicadores que induzem as inequações de clique
que podem ser obtidas por uma única aplicação do procedimento de arredondamento de
Chvátal-Gomory (cortes de posto 1) , bem como apresentam-se famílias de multiplicadores
que induzem facetas para dimensões arbitrárias (não necessariamente cliques). Na parte
prática, é apresentado um algoritmo branch-and-price para o Problema da Latência Mín-
ima (PLM), uma variante do Problema do Caixeiro Viajante. O algoritmo proposto
utiliza uma formulação de particionamento de conjuntos e novas ideias para melhorar o
desempenho da relaxação de caminho conhecida como ng-path. Essas novas ideias não
são baseadas em nenhuma hipótese forte em relação ao PLM, tendo o potencial de serem
aplicadas em outros problemas. Experimentos computacionais mostram que o algoritmo
proposto supera o estado da arte, sendo capaz de resolver várias instâncias nunca antes
resolvidas.

Palavras-chave: Particionamento de Conjuntos, Geração de Colunas, Cortes de posto
1, Combinatória Poliédrica, Roteamento, ng-paths.

List of Figures

1.1 A CVRP solution . 14

2.1 Graph G3. 21

2.2 Proof of Part (f) of Theorem 2.2: a graph representing (I)-(VII). 30

2.3 Proof of Part (g) of Theorem 2.2: a graph representing (I)-(VII). 32

3.1 Sample MLP instance . 35

3.2 Introducing MPLD . 42

3.3 An example of MPLD . 44

3.4 Optimal solution of kroA150 . 57

3.5 Optimal solution of pr136 . 59

3.6 Optimal solution of rat195 . 60

3.7 Optimal solution of kroB150 . 61

3.8 Modes of augmentation: impact on pricing and elapsed times. 64

List of Tables

3.1 Results of BP over TSPLIB instances . 58

3.2 Results of BP over large TSPLIB instances 59

3.3 Results of BP over hard instances with a different parameterization 60

3.4 Performance of the labeling algorithm with/without MPLD 62

Glossary

COP Combinatorial Optimization Problem

VRP Vehicle Routing Problem

CVRP Capacitated Vehicle Routing Problem

VRPTW Vehicle Routing Problem with Time Windows

MLP Minimum Latency Problem

TSP Traveling Salesman Problem

TSPLIB Traveling Salesman Problem Library

TDTSP Time Dependent Traveling Salesman Problem

ERCSPP
Elementary Resource Constrained Shortest Path Prob-

lem

RCSPP Resource Constrained Shortest Path Problem

MPLD Multiple Partial Label Dominance

DSSR Decremental State-Space Relaxation

BP Branch-and-Price

BKS Best Known Solution

Contents

1 Introduction 12

2 On the Complete Set Packing and Set Partitioning Polytopes 16

2.1 Introduction . 16

2.2 Chvátal-Gomory Rank 1 Cuts . 19

2.3 Properties . 21

2.4 Rank 1 Facets . 25

2.4.1 Cliques . 25

2.4.2 Generalization of Known Facets . 26

2.5 Conclusions . 32

3 A Branch-and-Price Algorithm for the Minimum Latency Problem 34

3.1 Introduction . 34

3.2 Route Relaxations and Labeling Algorithms 38

3.3 New Features for the ng-Path Relaxation 42

3.3.1 Multiple Partial Label Dominance 42

3.3.2 Arc-Based ng-Path Relaxation . 44

3.3.3 Fully Dynamic ng-Path Relaxation 45

3.4 Branch-and-Price Algorithm . 49

3.4.1 Labeling Algorithm . 53

3.4.2 Multiple Partial Label Dominance 54

3.5 Computational Experiments . 56

Contents xi

3.5.1 Main Results . 56

3.5.2 Longer runs with moderate mode 59

3.5.3 Multiple Partial Label Dominance 61

3.5.4 Modes of ng-memories augmentation 62

3.6 Conclusions . 63

4 Conclusions 66

References 68

Appendix A -- MLP Solutions 77

Chapter 1

Introduction

The general definition of many combinatorial optimization problems (COPs) can be stated

as follows. We are given a finite set N , a cost function c : N → R and a collection F of

subsets of N . Each set F ∈ F is composed of some elements j ∈ N that, together, satisfy

a number of constraints and represents a feasible solution for the problem. The goal is to

find a set F ∈ F whose total cost
∑

j∈F c(j) is maximum (or minimum). For example,

the classical COP of finding a minimum-cost spanning tree of a graph G = (V,E) is

modeled with N = E and F = {F ⊆ E : F induces a spanning tree of G}. Remark that

in meaningful COPs brute force is not an option because |F| is often exponential on |N |.

Another classical COP is the set partitioning problem, in which set N is composed

of m binary n-dimensional columns and set F contains the subsets F ⊆ N such that

each row i, 1 ≤ 1 ≤ n, is covered by exactly one column in F . Let A ∈ {0, 1}n×m be

a matrix whose columns are precisely those of N (in an arbitrary order). Therefore, set

partitioning is equivalent to the following integer linear program:

min

m
∑

j=1

cjxj (1.1)

s.t. Ax = 1, (1.2)

x ∈ {0, 1}m, (1.3)

where 1 represents the n-dimensional all-ones vector and cj ∈ R is the cost of the jth

column of A. A closely related COP is the set packing problem, where each row is covered

1 Introduction 13

at most once:

min

m
∑

j=1

cjxj (1.4)

s.t. Ax ≤ 1, (1.5)

x ∈ {0, 1}m. (1.6)

It is well-known in the literature that problem (1.4)-(1.6) can be reduced to (1.1)-

(1.3) by adding slack variables.

The set partitioning and set packing structures (Ax = 1 and Ax ≤ 1) are among

the most frequent ones in integer programming, and for many COPs they are almost

enough for a complete formulation. For example, for solving vehicle routing or schedul-

ing problems, columns may represent routes or schedules, respectively; for graph coloring

problems, columns may represent stable sets; for bin packing problems, columns may rep-

resent the possible assignments of items to bins; and so on. In fact, the state-of-the-art

exact methods for many COPs are based on set partitioning integer programming formu-

lations — see, for instance, (Pecin et al., 2017a; Pecin et al., 2017c; Pessoa et al., 2010;

Roberti and Mingozzi, 2014; Archetti et al., 2011; Desaulniers, 2010). As the number of

variables in those formulations is very large, the linear programs in those algorithms are

typically solved by column generation, a technique that implicitly considers the variables

of the problem (see (Chen et al., 2009) for further details on integer programming and

column generation).

This thesis is mainly motivated by vehicle routing problems (VRPs), a class of

problems that model many practical scenarios in freight distribution and collection, trans-

portation, garbage collection, newspaper delivery, etc. (Toth et al., 2014). In a VRP, one

looks for a minimum-cost set of vehicle routes that serve a set C of geographically dis-

persed customers. A vehicle route (route, for short) starts in a depot, visits a sequence

of customers, and then returns to a depot. For example, in the classical Capacitated

VRP (CVRP), each customer i ∈ C has a demand di ∈ Z
∗
+ and a homogeneous fleet of

K vehicles with capacity Q is based at a single depot. In addition, a cost cij ∈ Z+ is

incurred whenever a vehicle traverses an arc (i, j) (from the depot to a customer, from a

customer to the depot or from a customer to another customer). The goal is to find up

to K routes such that:

• Each customer i ∈ C is visited exactly once.

1 Introduction 14

• The total demand of the customers visited in a route does not exceed the vehicle

capacity Q.

• The total cost, defined as the sum of the costs of the traversed arcs, is minimized.

Therefore, the only operational constraint modeled in CVRP is the vehicle capacity

(see Figure 1.1). In another classical variant, the VRP with Time Windows (VRPTW), a

vehicle is allowed to visit a customer i ∈ C only within a specific time window. Many other

VRP variants abound in the literature, modeling different scenarios found in practice. See

(Toth et al., 2014) for further details on VRP variants, applications and solution methods.

Figure 1.1: A CVRP solution with two routes. Vertex 0 represents the depot, while the
other vertices represent the customers. The vehicle capacity is Q = 20 and the demands
are d1 = 8, d2 = 5, d3 = 5, d4 = 6, d5 = 5, d6 = 5 and d7 = 3. The cost of a route is given
by the sum of the costs of the traversed arcs. Thus, the total cost of the routes are 11
and 18, and the solution cost is 29.

This thesis presents theoretical and practical contributions on the use of column

generation over set partitioning formulations:

• Chapter 2 studies the complete set packing and set partitioning polytopes, which are

both associated with a binary n-row matrix having all possible columns. Chvátal-

Gomory rank 1 cuts for the latter polytope play a central role in recent column

generation based algorithms for some COPs, in special VRPs. We show the precise

relation between those polytopes, characterize the multipliers that induce rank 1

clique facets and give several families of multipliers that yield other facets for arbi-

trarily large dimensions. The results derived in that chapter are general and can be

potentially used in several exact algorithms over set partitioning formulations.

• Chapter 3 presents a novel branch-and-price algorithm over a set partitioning for-

mulation for the Minimum Latency Problem, a variant of the Traveling Salesman

1 Introduction 15

Problem. The proposed algorithm strongly relies on new features for the ng-path re-

laxation, the route relaxation currently employed by many column generation based

algorithms for VRPs. The new features are not built over any strong assumption

about the Minimum Latency Problem and can be potentially used in several other

COPs, specially in other VRPs.

• Chapter 4 presents the concluding remarks of this work.

Chapter 2

On the Complete Set Packing and Set

Partitioning Polytopes

2.1 Introduction

Let A be a binary matrix with n rows and m columns. The set packing polytope associated

with A, denoted as SPP≤(A), is defined as the convex hull of the incidence vectors of

integer solutions to the system Ax ≤ 1, where 1 represents the n-dimensional all-ones

vector and x ∈ {0, 1}m. Such solutions are equivalent to stable sets of the intersection

graph G derived from A, i.e., a graph whose vertices represent columns of A and whose

edges indicate non-orthogonality between those columns. Therefore, we also denote this

polytope as SPP≤(G). A closely related polytope is the set partitioning polytope, defined

analogously with respect to the system Ax = 1.

Since the seventies, many authors have studied SPP≤(G), proposing facet-inducing

inequalities associated with specific graphs: cliques (Padberg, 1973), odd holes (Padberg,

1973), odd anti-holes (Nemhauser and Trotter, 1974), webs (Trotter, 1975), anti-webs

(Trotter, 1975), K1,3-free graphs (Giles and Trotter, 1981), wheels (Cheng and Cunning-

ham, 1997), antiweb-wheels (Cheng and Vries, 2002) and grilles (Cánovas et al., 2000).

For some graphs, such as perfect graphs, series-parallel graphs and graphs that do not have

a 4-wheel as a minor, complete characterizations of SPP≤(G) are known (Chvátal, 1975;

Mahjoub, 1988; Barahona and Mahjoub, 1994a; Barahona and Mahjoub, 1994b). Facet-

inducing inequalities with binary coefficients were studied in (Chvátal, 1975; Balas and

Zemel, 1977b). Facet-generating procedures for SPP≤(G) were described in (Nemhauser

and Trotter, 1974; Chvátal, 1975; Wolsey, 1976; Padberg, 1977; Balas and Zemel, 1977a;

Barahona and Mahjoub, 1994a; Cánovas et al., 2000; Rossi and Smriglio, 2001; Reben-

2.1 Introduction 17

nack et al., 2011; S. Xavier and Campêlo, 2011; Corrêa et al., 2017). In contrast, the

set partitioning polytope is seldom studied in the literature (see for instance (Balas and

Padberg, 1976; Balas, 1977; Sherali and Lee, 1996)) due to its more complex structure —

even computing its dimension is an NP-Hard problem.

In this chapter, we study the complete set packing and set partitioning polytopes,

respectively CSPP≤(n) and CSPP=(n), which are both associated with a binary n-row

matrix A having all possible (2n − 1) non-zero columns. While CSPP=(n) has already

been defined in (Pecin et al., 2017b), as far as we know, CSPP≤(n) is studied for the first

time in this work. The definitions for both polytopes are formalized as follows.

CSPP=(n) = Conv

{

2n−1
∑

j=1

bjλj = 1, λ ∈ {0, 1}2
n−1

}

CSPP≤(n) = Conv

{

2n−1
∑

j=1

bjλj ≤ 1, λ ∈ {0, 1}2
n−1

}

where bj is the column associated with the binary representation of j. For example, if

n = 3, then b1 = (1, 0, 0)T , b2 = (0, 1, 0)T , b3 = (1, 1, 0)T , etc. A column ei = b2
i−1

,

1 ≤ i ≤ n, is the singleton column associated to row i. Let b̄j = 1 − bj = b2
n−1−j be

the complement of bj . Also, we define B =
⋃2n−1

j=1 bj , the set of all columns, and we

denote a solution to the complete set partitioning (set packing) problem by a subset s of

columns whose incidence vector belongs to CSPP=(n) (CSPP≤(n)). Moreover, we use

êj to denote the incidence vector of solution {bj}.

On the practical side, our study of those polytopes is motivated by the many

applications that can be modeled as set packing/partitioning problems with a very large

number of columns, where explicit representation of the coefficient matrix is unpractical

and the linear relaxations have to be solved by column generation. In that context, any

cutting plane should have a well-defined coefficient for every possible column, since it is

not possible to predict which columns will be generated. In other words, cuts should

be valid for CSPP=(n)/CSPP≤(n). On the theoretical side, the “complete” structure

facilitates the study of those polytopes, allowing strong properties to be derived. In this

regard, it is worth mentioning the works of Araóz, (1974) and Dash et al., (2010) on

the master knapsack polyhedron K(r) (or generalizations of it), another polyhedron with

“complete” structure:

K(r) = Conv

{

x ∈ Z
r
+ :

r
∑

i=1

ixi = r

}

where r is a positive integer.

2.1 Introduction 18

A typical application modeled as a set partitioning problem is the VRP, where

one looks for a minimum-cost set of routes that serve a set of customers C. Those routes

should respect operational constraints, that vary according to the considered variant. Let

Ω, cr and ari denote, respectively, the set of feasible routes, the cost of route r, and the

number of times route r visits customer i. The set partitioning formulation of the VRP

follows:

min
∑

r∈Ω

crλr (2.1)

s.t.
∑

r∈Ω

ariλr = 1, ∀i ∈ C, (2.2)

λr ∈ {0, 1}, ∀r ∈ Ω. (2.3)

State-of-the-art exact algorithms for many VRPs, including its most classical variants,

the CVRP the VRPTW, are based on a combination of column and cut generation over

the above formulation. However, the addition of general cuts for CSPP=(n) has the

serious drawback of complicating a lot the pricing problem (i.e., the column generation

subproblem), making the algorithm unpractical. Jepsen et al., (2008) realized that some

cuts with Chvátal-Gomory rank 1 could be better treated in the pricing. Recently, Pecin

et al., (2017a) introduced the so-called limited-memory technique, for further minimizing

the impact in the pricing of rank 1 cuts. This lead to big improvements in the performance

of exact algorithms for CVRP (Pecin et al., 2017a) and VRPTW (Pecin et al., 2017c),

more than doubling the size of the instances that can be solved. This motivated Pecin

et al., (2017b) to determine computationally 9 sets of rational multipliers that are capable

of generating all cuts of rank 1 that induce facets of CSPP=(n), for n ≤ 5. The authors

argued that the new multipliers contributed decisively for solving a previously open CVRP

instance with 420 customers, the largest classical instance ever solved. However, that

computational “brute force” approach breaks for n > 5.

This chapter is a theoretical analysis of CSPP=(n), aimed at finding infinite fam-

ilies of multipliers that produce facets for arbitrarily large values of n. First, we prove a

very strong relationship between CSPP=(n) and CSPP≤(n) (Section 2.3). More specif-

ically, we show that, with very few exceptions, every facet-inducing inequality for the

former polytope is also facet-inducing for the latter polytope, and vice-versa. This es-

sentially means that the study of CSPP=(n) can be reduced to the study of the simpler

CSPP≤(n) polytope. Second, we characterize a set of multipliers that can induce all

2.2 Chvátal-Gomory Rank 1 Cuts 19

rank 1 clique inequalities for those polytopes (Section 2.4.1). Finally, we propose 7 fami-

lies of multipliers that generalize the 9 sets of multipliers found by Pecin et al., (2017b)

and prove that they are facet-defining (Section 2.4.2). However, before proceeding to the

results, we briefly discuss rank 1 cuts in the next section.

2.2 Chvátal-Gomory Rank 1 Cuts

Given an integer polyhedron PI = Conv{x ∈ Z
q | Hx ≤ h} with H ∈ Z

p×q and h ∈ Z
p,

a Chvátal-Gomory rank 1 cut, introduced in (Chvátal, 1973) and (Gomory, 1963), is a

valid cut for PI of the form ⌊uTH⌋x ≤ ⌊uTh⌋, where u ∈ R
p
+ and ⌊⌋ denotes a component-

wise round-down operator when its argument is a vector. Although any u ∈ Rp
+ is valid,

it is well-known in the literature that rational multipliers lying in [0, 1)p are sufficient to

generate any non-dominated rank 1 cut (Caprara and Fischetti, 1996). The rank 1 closure

of the relaxed polyhedron PR = {x ∈ R
q | Hx ≤ h} is the polyhedron PR1 = {x ∈ PR |

⌊uTH⌋x ≤ ⌊uTh⌋, ∀u ∈ [0, 1)p}. Clearly, PI ⊆ PR1 ⊆ PR.

Some complexity results concerning rank 1 cuts have been proved in the last

decades. Eisenbrand, (1999) proved that, in general, it is NP-Hard to separate them.

Earlier, Caprara and Fischetti, (1996) had already shown that if one restricts the mul-

tipliers to values in {0, 1
2
}, the general separation problem of the so-called {0, 1

2
}-cuts is

still NP-Hard, but there are some polynomially solvable cases. Later, Letchford et al.,

(2011) showed that {0, 1
2
}-cuts separation remains NP-Hard in case matrix H is binary.

Also, the authors pointed out that their proof can be directly extended to the set packing

case (H binary, h all-ones vector). Finally, Dunkel and Schulz, (2013) proved that the

separation of rank 1 cuts with binary coefficients is NP-Hard.

Recently, rank 1 cuts have been extensively used in exact algorithms over the VRP

formulation (2.1)-(2.3). This formulation is often obtained by applying a Dantzig-Wolfe

decomposition to a flow formulation defined over arc variables. In this case, the pricing

subproblem corresponds to finding a path in a network where arc costs are reduced costs.

According to the classification proposed in (Poggi de Aragão and Uchoa, 2003), cuts

over the arc variables are robust, since they can be translated into reduced costs, not

changing the pricing structure. On the other hand, cuts defined over the path variables

λ, such as rank 1 cuts, qualify as non-robust : each additional cut of this type requires

new dimensions in the dynamic programming labeling algorithm that is typically used to

solve the pricing subproblem.

2.2 Chvátal-Gomory Rank 1 Cuts 20

Even though they are classified as non-robust, rank 1 cuts are attractive in

practice because a single additional dimension is required for each cut added. Let

P = (v0, v1, . . . , vp) be a non-dominated partial path stored by the labeling algorithm

and consider the rank 1 cut induced by multipliers αi

β
, i ∈ C. Remark that the coefficient

of P in this cut is given by ⌊
∑p

i=1

αvi

β
⌋ (vertex v0 is ignored because it represents the

depot). The new dimension keeps track of the state of P in the cut, which is zero for an

empty path. When a new visit to a customer vi is performed, αvi is added to the state of

P . If the new state reaches a value greater than or equal to β, the coefficient of P in the

cut is increased by one unit and the state of P is decreased by β units. In other words,

the state of P equals the remainder of the integer division
∑p

i=1
αvi

β
. Another attractive

feature of rank 1 cuts is that they are characterized solely by the multipliers, so in an

implementation there is no need for explicitly storing the coefficients of the columns.

The limited-memory rank 1 cuts proposed by Pecin et al., (2017a) is a rank 1 cut

with an associated memory S ⊆ C. The idea is to set the state to zero if the new visit

is outside the memory S (see Algorithm 1). The smaller the memory, the smaller the

impact of the cut on the labeling algorithm, but also the smaller the coefficient of P in

the cut. Hence, those cuts are a weakening of the original rank 1 cuts (those later cuts are

obtained with a full memory S = C). However, after some rounds of cut separation, the

memories get adjusted and eventually the same bounds are obtained (Pecin et al., 2017a).

The impact on the labeling algorithm can be further reduced by defining the memories

in terms of arcs instead of nodes, at the expense of a good convergence to strong bounds

(Pecin et al., 2017c).

Algorithm 1 Computing the coefficient of a partial path in a limited-memory rank 1 cut

1: procedure(P = (v0, v1, . . . , vp), α, β, S)
2: state ← 0, coeff ← 0
3: for i← 1 to p do
4: if vi /∈ S then
5: state ← 0
6: else
7: state ← state + αvi

8: if state ≥ β then
9: state ← state − β, coeff ← coeff + 1

10: return coeff

2.3 Properties 21

2.3 Properties

In this section we show some properties of the polytopes at stake. The main property

is presented in Theorem 2.1, which states that, with very few exceptions, every facet-

inducing inequality for CSPP=(n) is also facet-inducing for CSPP≤(n), and vice-versa.

However, we first show some building blocks of this theorem.

Definition 2.3.1. The intersection graph associated with CSPP=(n) and CSPP≤(n),

denoted as Gn, is a graph where each vertex represents a column bj and an edge exists iff

the columns represented by its endpoints are non-orthogonal (see Figure 2.1).

(1,0,0)

(0,1,0)

(0,0,1)

(1,1,0)

(1,0,1)

(0,1,1)

(1,1,1)

Figure 2.1: Graph G3.

For a set of columns S ⊆ B, we define φ(S) ⊆ B as the set of all singleton columns

that are orthogonal to all columns in S, and ϕ(bj) ⊆ B as the set of the singleton columns

that are non-orthogonal to bj . Let also K= be the set of the n maximal cliques of Gn that

contain singleton columns and let K≤ be the set of all other maximal cliques of Gn.

Lemmas 1 to 3 state some basic properties of CSPP=(n) and CSPP≤(n).

Lemma 1. The dimension of CSPP=(n) is 2n − n− 1.

Proof. The incidence vectors of the following 2n − n solutions are clearly linearly inde-

pendent:

• sj = {bj} ∪ φ({bj}), 1 ≤ j ≤ 2n − 1 and bj is not a singleton column,

• s =
⋃n

k=1{e
k}.

Lemma 2. Let aTλ ≤ a0 be facet-inducing for CSPP=(n). For every column bj holds

that aj ≥
∑

bi∈ϕ(bj) ai.

2.3 Properties 22

Proof. Since aTλ ≤ a0 induces a facet, there should be a set of columns S such that

{bj} ∪ S is a feasible solution and aj +
∑

bi∈S ai = a0, otherwise aj could be increased

without cutting off any feasible solution, which is a contradiction to the facetness of

aTλ ≤ a0. Hence, if aj <
∑

bi∈ϕ(bj) ai, the feasible solution ϕ(bj) ∪ S would be cut off by

aTλ ≤ a0.

Lemma 3. Any inequality aTλ ≤ a0 that is facet-inducing for CSPP=(n) can be rewritten

as αTλ ≤ α0 such that:

• αj = 0 for every singleton column bj ,

• αj ≥ 0 for every column bj ,

• α0 ≥ 0.

Moreover, in this form, such a facet is a valid inequality for CSPP≤(n).

Proof. This proof is algorithmic. Start with αj = aj for j = 1, . . . , 2n − 1. For each

singleton column bj , do the following. If αj > 0, subtract αj times the equality containing

bj from αTλ ≤ α0. If αj < 0, add |αj| times the equality containing bj to αTλ ≤ α0. Now

that αj = 0 for every singleton column bj , it follows from Lemma 2 that αi ≥ 0 for every

column bi. Moreover, α0 ≥ 0, otherwise any feasible solution would be cut off.

Now, it remains to prove that αTλ ≤ α0 is satisfied by any vertex of CSPP≤(n).

For that, let λ be a vertex of CSPP≤(n), and λ′ be the vertex of CSPP=(n) obtained from

λ by increasing the coordinates of singleton columns until
∑

j∈K λ′
j = 1 for all K ∈ K=.

Since αj = 0 for every singleton column bj , we have that αTλ = αTλ′ ≤ α0.

Next, we introduce some facet-inducing inequalities for CSPP=(n) that are neces-

sary to establish the main property.

Lemma 4. The non-negativity inequality λj ≥ 0 defines a facet of CSPP=(n) iff bj is

not a singleton column.

Proof. If bj is not a singleton column, then the incidence vectors of the following 2n−n−1

solutions satisfy λj ≥ 0 at equality and are clearly linearly independent:

• si = {b
i} ∪ φ({bi}), 1 ≤ i ≤ 2n − 1, bi 6= bj and bi is not a singleton column,

• s =
⋃n

k=1{e
k}.

2.3 Properties 23

It remains to prove that λj ≥ 0 does not define a facet when bj is a singleton column.

Let K ∈ K= be the maximal clique of Gn that contains bj , and K ′ be the clique obtained

by replacing bj by b̄j = b2
n−1−j in K. The sum of −

∑

v∈K λv = −1,
∑

v∈K ′ λv ≤ 1 and

−λ(2n−1−j) ≤ 0 equals λj ≥ 0.

Lemma 5. Let K ∈ K≤ be a maximal clique of Gn. Then, the clique inequality

∑

v∈K

λv ≤ 1 (2.4)

is valid and defines a facet of CSPP=(n).

Proof. For every non-singleton column bj , consider the following solution:

sj =







{bj} ∪ φ({bj}) if bj ∈ K

{bj} ∪ {bi} ∪ φ({bj , bi}) if bj /∈ K

where bi is any column in K such that bi and bj are orthogonal. There exists at least one

such column otherwise one could augment K by adding bj to it. The incidence vectors of

these 2n−n−1 solutions satisfy (2.4) at equality and are clearly linearly independent.

The following lemma presents an useful link between CSPP=(n) and CSPP≤(n).

Lemma 6. Let x and y be two points in R
2n−1
+ such that xi ≥ yi, 1 ≤ i ≤ 2n − 1. If

x ∈ CSPP=(n), then y ∈ CSPP≤(n).

Proof. Let u1, . . . , up be the vertices of CSPP=(n). As x ∈ CSPP=(n), there

exist α1, . . . , αp ∈ R+ such that x =
∑p

i=1 αiu
i and

∑p
i=1 αi = 1. Also, let

v1, . . . , vp, vp+1, . . . , vq be the vertices of CSPP≤(n), where vi = ui for 1 ≤ i ≤ p. Al-

gorithm 2 computes β1, . . . , βq ∈ R+ such that y =
∑q

i=1 βiv
i and

∑q
i=1 βi = 1. This

algorithm starts with the vector z, defined as β1v
1 + . . . + βqv

q, equal to x (lines 1-3).

Then, it iteratively decreases the value of each component zj > yj without changing the

other components of z (lines 5-11) as follows. First, it chooses arbitrarily a vertex vr

of CSPP≤(n) with βr > 0 that includes the column bj (line 6). Let vs be the vertex

of CSPP≤(n) that results from removing the column bj from vr (line 8). The value

of zj is decreased by moving a portion ∆ of the coefficient βr of vr to the coefficient

βs of vs (lines 9-11). The algorithm terminates in a finite number of steps because the

value of ∆ is calculated (line 7) in such a way that, in the next iteration of the while

loop, either zj becomes equal to yj or the number of non-zero values decreases in the set

{βr | vr includes the column bj}. Also, if all values in the latter set are equal to zero, then

zj = yj = 0.

2.3 Properties 24

Algorithm 2 Computing (β1, . . . , βq) from (α1, . . . , αp)

1: βi ← αi, ∀i ∈ {1, . . . , p}
2: βi ← 0, ∀i ∈ {p+ 1, . . . , q}
3: z ← x

4: for j ∈ {1, . . . , 2n − 1} do

5: while zj > yj do

6: Choose vr such that vrj = 1 and βr > 0
7: ∆← min{zj − yj , βr}
8: Let vs be the vertex vr − êj

9: βr ← βr −∆
10: βs ← βs +∆
11: z ← β1v

1 + . . .+ βqv
q

12: return (β1, . . . , βq)

Now we are ready to prove the main property presented in this section.

Theorem 2.1. Let

∑

v∈K

λv = 1, ∀K ∈ K=, (2.5)

∑

v∈K

λv ≤ 1, ∀K ∈ K≤, (2.6)

Hλ ≤ h, (2.7)

λj ≥ 0, ∀j ∈ {1, . . . , 2n − 1} \ {20, . . . , 2n−1}, (2.8)

be a minimal description of CSPP=(n) where inequalities (2.7) are of the form described

in Lemma 3. Then,

∑

v∈K

λv ≤ 1, ∀K ∈ K= ∪ K≤, (2.9)

Hλ ≤ h, (2.10)

λj ≥ 0, ∀j ∈ {1, . . . , 2n − 1}, (2.11)

is a minimal description of CSPP≤(n).

Proof. First, we prove that (2.9)-(2.11) suffices to describe CSPP≤(n). Let λ′ ∈ R
2n−1

be a point that satisfies (2.9)-(2.11). Also, let λ′′ ∈ R
2n−1 be a point obtained from λ′ by

increasing the coordinates corresponding to singleton columns so as to guarantee that λ′′

satisfies (2.5). Clearly, λ′′ satisfies (2.8). For every inequality aTλ ≤ a0 from (2.6)-(2.7),

we know that aj = 0 for every singleton column bj . Thus, λ′′ also satisfies (2.6)-(2.7) and

we can conclude that λ′′ ∈ CSPP=(n). Since λ′, λ′′ ≥ 0, λ′′ ≥ λ′ and λ′′ ∈ CSPP=(n), by

Lemma 6 we have that λ′ ∈ CSPP≤(n). Therefore, (2.9)-(2.11) are sufficient to describe

CSPP≤(n).

2.4 Rank 1 Facets 25

Now, let us show that this description is minimal. First, note that (2.9) and

(2.11) are necessary to the description because cliques and non-negativity inequalities

define facets of CSPP≤(n). Now suppose that an inequality aTλ ≤ a0 from (2.10), which

induces a facet of CSPP=(n) by definition, is redundant for CSPP≤(n). By the facetness

of aTλ ≤ a0, there exists a point λ′ ∈ R
2n−1 that is cut off from CSPP=(n) only by this

inequality. Since aTλ ≤ a0 is valid for CSPP≤(n), we have that λ′ 6∈ CSPP≤(n). By

the proof of Lemma 4, if λ′ /∈ R
2n−1
+ it would be cut off by (2.5), (2.6) or (2.8). As a

result, λ′ ∈ R
2n−1
+ , and thus, is not cut off by (2.11). Moreover, it is not cut off by (2.9),

since such inequalities represent a relaxation of (2.5)-(2.6). Therefore, λ′ must be cut off

from CSPP≤(n) only by aTλ ≤ a0, which is a contradiction to the redundancy of this

inequality.

Corollary 1. Every facet-inducing inequality for CSPP≤(n) is also facet-inducing for

CSPP=(n), unless it is a clique inequality derived from K= or a non-negativity inequality

for a singleton column.

2.4 Rank 1 Facets

We now focus on the rank 1 facets of CSPP≤(n) and CSPP=(n), which are very useful

in practice because they can be handled (to some extent) efficiently in column generation

algorithms.

2.4.1 Cliques

The following two lemmas characterize the multipliers that induce rank 1 clique inequal-

ities.

Lemma 7. Any set of multipliers u = (α1

β
, α2

β
, . . . , αn

β
), with α1, α2, . . . , αn and β integers,

such that
∑n

i=1 αi = 2β − 1 induces a clique inequality.

Proof. Since
∑n

l=1 ul < 2, any two columns bi and bj such that
∑n

l=1 ulb
i
l ≥ 1 and

∑n
l=1 ulb

j
l ≥ 1 should be non-orthogonal. Therefore, the set of columns with a non-

zero coefficient in the corresponding rank 1 cut induces a clique in the intersection graph.

It remains to show that this clique is maximal. Let bk be a column with a zero coefficient.

Thus,
∑n

l=1 αlb
k
l < β, which implies

∑n
l=1 αl(1 − bkl) ≥ β. In other words, the comple-

ment of bk has a non-zero coefficient in the rank 1 cut. Thus, bk cannot be added to the

clique.

2.4 Rank 1 Facets 26

Lemma 8. Every rank 1 clique inequality aTλ ≤ 1 can be generated by multipliers u =

(α1

β
, α2

β
, . . . , αn

β
), with α1, α2, . . . , αn and β integers, such that

∑n
i=1 αi = 2β − 1.

Proof. It is well known that the rational multipliers suffice to generate all rank 1 cuts.

Let u′ = (
α′

1

β
,
α′

2

β
, . . . , α′

n

β
) be a set of multipliers inducing a clique inequality aTλ ≤ 1 such

that
∑n

i=1 α
′
i < 2β − 1, and let K be the maximal clique of Gn associated with aTλ ≤ 1.

Now consider a set of multipliers u′′ = (
α′′

1

β
,
α′′

2

β
, . . . , α′′

n

β
) such that α′′

i ≥ α′
i, 1 ≤ i ≤ n, and

∑n
i=1 α

′′
i = 2β−1, and let dTλ ≤ 1 be the inequality induced by u′′. We argue that a = d.

Clearly, if aj = 1, then dj = 1 since α′′
i ≥ α′

i, 1 ≤ i ≤ n. Also, if aj = 0, then dj = 0,

otherwise K is a not a maximal clique of Gn.

2.4.2 Generalization of Known Facets

Pecin et al., (2017b) obtained computationally the following set of multipliers that, to-

gether with their permutations, induces all rank 1 facets of CSPP=(n), with n ≤ 5.

• n = 3 :
(

1
2
, 1
2
, 1
2

)

• n = 4 :
(

2
3
, 1
3
, 1
3
, 1
3

)

,
(

0, 1
2
, 1
2
, 1
2

)

• n = 5 :
(

0, 0, 1
2
, 1
2
, 1
2

)

,
(

0, 2
3
, 1
3
, 1
3
, 1
3

)

,
(

2
4
, 2
4
, 1
4
, 1
4
,

1
4

)

,
(

3
4
, 1
4
, 1
4
, 1
4
, 1
4

)

,
(

3
5
, 2
5
, 2
5
, 1
5
, 1
5

)

,
(

2
3
, 2
3
, 1
3
, 1
3
, 1
3

)

,
(

3
4
, 3
4
, 2
4
, 2
4
, 1
4

)

,
(

1
2
, 1
2
, 1
2
, 1
2
, 1
2

)

,
(

1
3
, 1
3
, 1
3
, 1
3
, 1
3

)

In this section we generalize those multipliers to arbitrarily large n. The results

will be shown for CSPP≤(n), and then extended to CSPP=(n) through Theorem 2.1.

The inequalities described in Part (a) of Theorem 2.2 were already considered in (Pecin

et al., 2017c), where the authors showed that they dominate the elementary cuts proposed

by Balas, (1977).

Theorem 2.2. The following multipliers induce rank 1 facets of CSPP≤(n).

(a)
(

n−2
n−1

, 1
n−1

, 1
n−1

, . . . , 1
n−1

)

, n ≥ 4

(b)
(

n−3
n−1

, 2
n−1

, 1
n−1

, 1
n−1

, . . . , 1
n−1

)

, n ≥ 5

(c)
(

n−2
n
, 2
n
, 2
n
, 1
n
, . . . , 1

n

)

, n ≥ 5

(d)
(

1
2
, 1
2
, . . . , 1

2

)

, if n is odd

(e)
(

1
3
, 1
3
, . . . , 1

3

)

, if n = 3k + 2, k ∈ N, k ≥ 1

(f)
(

n−3
n−2

, n−3
n−2

, 2
n−2

, 1
n−2

, . . . , 1
n−2

)

, n ≥ 5

2.4 Rank 1 Facets 27

(g)
(

n−2
n−1

, n−2
n−1

, 2
n−1

, 2
n−1

, 1
n−1

, . . .
)

, n ≥ 5

In the proofs of Parts (d) and (e), we define Bt ⊆ B as the set of columns with

exactly t entries equal to 1. In the proofs of Parts (f) and (g), we define Rt as the set of

columns with coefficient t in the corresponding rank 1 cut.

Proof. By Lemma 7, we know that (a), (b) and (c) induce clique inequalities, which are

well-known facets of CSPP≤(n). In the proofs of (d)-(g), we denote by aTλ ≤ a0 the

inequality induced by the corresponding vector of multipliers u and we define Fa = {λ′ ∈

CSPP≤(n) | aTλ′ = a0}. In addition, we define αTλ ≤ α0 as a facet-inducing inequality

for CSPP≤(n) such that Fa ⊆ Fα, where Fα = {λ′ ∈ CSPP≤(n) | αTλ′ = α0}. The

proofs show that α = γa for some γ ∈ R.

Part (d): Let bi, bj ∈ B2 be distinct non-orthogonal columns. Define the solutions

s1 = {b
i}∪S and s2 = {b

j}∪S, where S ⊆ B2 is a set composed of n−3
2

orthogonal columns.

The incidence vectors λ1 and λ2 associated with s1 and s2 lie in Fa, and thus αTλ1 = αTλ2,

which implies αi = αj. Suppose now that bi and bj are orthogonal. Define S ⊆ B2 as a

set composed of n−5
2

columns such that all columns in S ∪ {bi, bj} are orthogonal to each

other. Remark that there is a single row p not covered by any column in S ∪ {bi, bj}.

Define bi
′

as a column in B2 such that bi
′

p = 1 and bi · bi
′

= 1, and bj
′

as a column in B2

such that bj
′

p = 1 and bj · bj
′

= 1. Therefore, s1 = {bi, bj
′

} ∪ S and s2 = {bj , bi
′

} ∪ S are

feasible solutions. Also, the incidence vectors λ1 and λ2 associated with s1 and s2 lie in

Fa, and thus αTλ1 = αTλ2, which implies αi + αj′ = αj + αi′ . Since bj
′

· bi
′

= 1, we have

that αj′ = αi′ , and we finally conclude that αi = αj . Therefore, there exists γ ∈ R such

that αj = γ, for all bj ∈ B2.

Now let bj be a column in Bt with t 6= 2. Define the solution s1 = {bj} ∪ S,

where S is a set composed of ⌊n−t
2
⌋ orthogonal columns in B2. Also, let s2 be the solution

obtained from s1 by replacing bj by a set of ⌊ t
2
⌋ orthogonal columns in B2, all of them

orthogonal to bj . The incidence vectors λ1 and λ2 associated with s1 and s2 lie in Fa, and

thus αTλ1 = αTλ2. This implies that αj = γ⌊ t
2
⌋. Hence, we have shown that α = γa.

Part (e): First, we show that αi = αj = γ for any two columns bi, bj ∈ B3. We

consider three cases.

(I) bi ·bj = 2. In this case, there are n−4 rows not covered by bi or bj . Since n = 3k+2

for some integer k ≥ 1, ⌊n−4
3
⌋ = ⌊n

3
⌋ − 1. Therefore, it is possible to define a set

2.4 Rank 1 Facets 28

S ⊆ B3 of ⌊n
3
⌋ − 1 columns such that solutions s1 = S ∪ {bi} and s2 = S ∪ {bj} are

feasible. Also, the incidence vectors λ1 and λ2 associated with s1 and s2 lie in Fa,

and thus αTλ1 = αTλ2, which implies αi = αj .

(II) bi ·bj = 1. In this case, there are n−5 rows not covered by bi or bj . Since n = 3k+2

for some integer k ≥ 1, ⌊n−5
3
⌋ = ⌊n

3
⌋ − 1. Therefore, it is possible to define a set

S ⊆ B3 of ⌊n
3
⌋ − 1 columns such that solutions s1 = S ∪ {bi} and s2 = S ∪ {bj} are

feasible. Also, the incidence vectors λ1 and λ2 associated with s1 and s2 lie in Fa,

and thus αTλ1 = αTλ2, which implies αi = αj .

(III) bi · bj = 0 (only if n ≥ 8). In this case, there are n− 6 rows not covered by bi or bj .

Since n = 3k + 2 for some integer k ≥ 2, ⌊n−6
3
⌋ = ⌊n

3
⌋ − 2. Therefore, it is possible

to define a set S ⊆ B3 of ⌊n
3
⌋ − 2 orthogonal columns that are also orthogonal to

bi and bj . Remark that there are two rows p and q not covered by any column in

S ∪ {bi, bj}. Define bi
′

as a column in B3 such that bi
′

p = bi
′

q = 1 and bi · bi
′

= 1, and

bj
′

as a column in B3 such that bj
′

p = bj
′

q = 1 and bj · bj
′

= 1. Thus, s1 = S ∪{bi, bj
′

}

and s2 = S ∪ {bj , bi
′

} are feasible solutions whose incidence vectors, λ1 and λ2, lie

in Fa. Hence, αTλ1 = αTλ2, implying that αi + αj′ = αj + αi′. However, according

to Case (I), αj′ = αi′ because bj
′

· bi
′

= 2. Therefore, we finally have that αi = αj.

Now let bj be a column in Bt with t 6= 3. Define the solution s1 = {bj} ∪ S,

where S is a set composed of ⌊n−t
3
⌋ orthogonal columns in B3. Also, let s2 be the solution

obtained from s1 by replacing bj by a set of ⌊ t
3
⌋ orthogonal columns in B3, all of them

orthogonal to bj . The incidence vectors λ1 and λ2 associated with s1 and s2 lie in Fa, and

thus αTλ1 = αTλ2. This implies that αj = γ⌊ t
3
⌋. Hence, we have shown that α = γa.

Part (f): Consider the partitioning of R1 into non-empty sets C1, C2, . . . , C8 ,

where:

• C1 = {bj :
2
∑

k=1

bjk = 2,
n
∑

k=3

bjk = 0}

• C2 = {bj :
2
∑

k=1

bjk = 2, bj3 = 0,
n
∑

k=4

bjk = 1}

• C3 = {bj :
2
∑

k=1

bjk = 1, bj3 = 1,
n
∑

k=4

bjk = 0}

• C4 = {bj :
2
∑

k=1

bjk = 1, bj3 = 1, 1 ≤
n
∑

k=4

bjk < n− 3}

• C5 = {bj :
2
∑

k=1

bjk = 1, bj3 = 0,
n
∑

k=4

bjk = 1}

2.4 Rank 1 Facets 29

• C6 = {bj :
2
∑

k=1

bjk = 1, bj3 = 0,
n
∑

k=4

bjk > 1}

• C7 = {bj :
2
∑

k=1

bjk = 0, bj3 = 1,
n
∑

k=4

bjk = n− 3}

• C8 = {bj :
2
∑

k=1

bjk = 0, bj3 = 1,
n
∑

k=4

bjk = n− 4}

For some pairs of sets (Cp, Cq), we will show that αj = γ for any column bj ∈

Cp ∪ Cq. Then, by transitivity, we will conclude that αj = γ for any column bj ∈ R1.

(I) Let bi ∈ C7 and bj ∈ C8. Therefore, the incidence vectors λ1 and λ2 associated with

solutions s1 = {bi, b̄i} and s2 = {bj, b̄i} lie in Fa, and thus αTλ1 = αTλ2, which

implies αi = αj .

(II) Let bi ∈ C3 and bj ∈ C8. Define bk ∈ R1 such that bkp = 1 − bip, for p ∈ {1, 2}, and

bkp = 1−bjp, for p ∈ {3, . . . , n}. Therefore, the incidence vectors λ1 and λ2 associated

with solutions s1 = {bi, bk} and s2 = {bj , bk} lie in Fa, and thus αTλ1 = αTλ2, which

implies αi = αj .

(III) Let bi ∈ C1 and bj ∈ C2. Therefore, the incidence vectors λ1 and λ2 associated with

solutions s1 = {bi, b̄j} and s2 = {bj , b̄j} lie in Fa, and thus αTλ1 = αTλ2, which

implies αi = αj .

(IV) Let bi ∈ C1 and bj ∈ C5. Define bj
′

∈ R1 such that bj
′

1 = bj
′

2 = 0 and bj
′

p = 1 − bjp,

for p ∈ {3, . . . , n}. Therefore, the incidence vectors λ1 and λ2 associated with

solutions s1 = {bi, b̄i} and s2 = {bj , bj
′

} lie in Fa, and thus αTλ1 = αTλ2, which

implies αi +α(2n−1−i) = αj +αj′. Since b̄i ∈ C7 and bj
′

∈ C8, α(2n−1−i) = αj′, hence

αi = αj.

(V) Let bi ∈ C5 and bj ∈ C6. Define bi
′

∈ R1 such that bi
′

p = 1 − bip, for p ∈ {1, 2, 3},

and
∑n

p=4 b
i′

p = 0. Also, define bj
′

∈ R1 such that bj
′

p = 1− bjp, for p ∈ {1, 2, 3}, and
∑n

p=4 b
j′

p = 0. Therefore, the incidence vectors λ1 and λ2 associated with solutions

s1 = {bi, bi
′

} and s2 = {bj, bj
′

} lie in Fa, and thus αTλ1 = αTλ2, which implies

αi + αi′ = αj + αj′. Since bi
′

, bj
′

∈ C3, αi′ = αj′, hence αi = αj.

(VI) Let bi ∈ C3 and bj ∈ C4. Therefore, the incidence vectors λ1 and λ2 associated

with solutions s1 = {bi, b̄i} and s2 = {bj , b̄j} lie in Fa, and thus αTλ1 = αTλ2,

which implies αi + α(2n−1−i) = αj + α(2n−1−j). Since b̄i ∈ C6 and b̄j ∈ C5 ∪ C6,

α(2n−1−i) = α(2n−1−j), hence αi = αj.

2.4 Rank 1 Facets 30

(VII) Let bi ∈ C8 and bj ∈ C5. Define bi
′

∈ R1 such that
∑2

p=1 b
i′

p = 1 and bi
′

p = 1− bip, for

p ∈ {3, . . . , n}. Also, define bj
′

∈ R1 such that bj
′

p = 1− bjp, for p ∈ {1, . . . , n} \ {3},

and bj
′

3 = 0. Therefore, the incidence vectors λ1 and λ2 associated with solutions

s1 = {bi, bi
′

} and s2 = {bj, bj
′

} lie in Fa, and thus αTλ1 = αTλ2, which implies

αi + αi′ = αj + αj′. Since bi
′

∈ C5 and bj
′

∈ C5 ∪ C6, αi′ = αj′, hence αi = αj .

The relationships between columns in R1 proved in (I)-(VII) are shown in the graph

depicted in Figure 2.2. In this graph, each node represents a set Cp, p ∈ {1, . . . , 8}, and

an edge indicates that columns in the corresponding sets have the same coefficient in the

vector α. Since this graph is connected and sets Cp, p ∈ {1, . . . , 8}, are non-empty, there

exists γ ∈ R such that αj = γ, for all bj ∈ R1.

C1

C3 C4

C2 C6C5

C7 C8

(I) (II)

(III) (IV) (V)

(VI)

(VII)

Figure 2.2: Proof of Part (f) of Theorem 2.2: a graph representing (I)-(VII).

Now let bj be a column in R2. Since the incidence vector of the solution {bj} lies

in Fa, we have that αj = α0. However, solution {bi, b̄i} also lies in Fa, where bi is any

column in R1. Therefore, αj = α0 = 2γ.

Finally, let bj be a column in R0. Notice that the incidence vectors of the solutions

s1 = {bj , b̄j} and s2 = {b̄j}, λ1 and λ2, lie in Fa. Therefore, αTλ1 = αTλ2, which implies

αj = 0. Putting all together, we have shown that α = γa.

Part (g): Consider the partitioning of R1 into non-empty sets C1, C2, . . . , C8 ,

where:

• C1 = {bj :
2
∑

k=1

bjk = 2,
n
∑

k=3

bjk = 0}

• C2 = {bj :
2
∑

k=1

bjk = 2,
4
∑

k=3

bjk = 0,
n
∑

k=5

bjk = 1}

• C3 = {bj :
2
∑

k=1

bjk = 1,
4
∑

k=3

bjk = 0,
n
∑

k=5

bjk > 0}

• C4 = {bj :
2
∑

k=1

bjk = 1,
4
∑

k=3

bjk = 1,
n
∑

k=5

bjk = 0}

• C5 = {bj :
2
∑

k=1

bjk = 1,
4
∑

k=3

bjk = 1,
n
∑

k=5

bjk > 0}

2.4 Rank 1 Facets 31

• C6 = {bj :
2
∑

k=1

bjk = 1,
4
∑

k=3

bjk = 2,
n
∑

k=5

bjk < n− 4}

• C7 = {bj :
2
∑

k=1

bjk = 0,
4
∑

k=3

bjk = 2,
n
∑

k=5

bjk = n− 5}

• C8 = {bj :
2
∑

k=1

bjk = 0,
4
∑

k=3

bjk = 2,
n
∑

k=5

bjk = n− 4}

For some pairs of sets (Cp, Cq), we will show that αj = γ for any column bj ∈ Cp ∪ Cq.

Then, by transitivity, we will conclude that αj = γ for any column bj ∈ R1.

(I) Let bi ∈ C1 and bj ∈ C2. Therefore, the incidence vectors λ1 and λ2 associated with

solutions s1 = {bi, b̄j} and s2 = {bj , b̄j} lie in Fa, and thus αTλ1 = αTλ2, which

implies αi = αj .

(II) Let bi ∈ C7 and bj ∈ C8. Therefore, the incidence vectors λ1 and λ2 associated with

solutions s1 = {bi, b̄j} and s2 = {bj , b̄j} lie in Fa, and thus αTλ1 = αTλ2, which

implies αi = αj .

(III) Let bi ∈ C4 and bj ∈ C7. Define bk ∈ R1 such that bkp = 1 − bip, for p ∈ {1, 2}, and

bkp = 1−bjp, for p ∈ {3, . . . , n}. Therefore, the incidence vectors λ1 and λ2 associated

with solutions s1 = {bi, bk} and s2 = {b
j , bk} lie in Fa, and thus αTλ1 = αTλ2, which

implies αi = αj .

(IV) Let bi ∈ C3 and bj ∈ C4. Define bi
′

∈ R1 such that bi
′

p = 1 − bip, for p ∈ {1, 2},
∑4

p=3 b
i′

p = 1 and
∑n

p=5 b
i′

p = 0. Also, define bj
′

∈ R1 such that bj
′

p = 1 − bjp,

for p ∈ {1, 2, 3, 4}, and
∑n

p=5 b
j′

p = 0. Therefore, the incidence vectors λ1 and

λ2 associated with solutions s1 = {bi, bi
′

} and s2 = {bj , bj
′

} lie in Fa, and thus

αTλ1 = αTλ2, which implies αi +αi′ = αj′ +αj. Since bi
′

, bj
′

∈ C4, αi′ = αj′, hence

αi = αj.

(V) Let bi ∈ C3 and bj ∈ C5. Define bi
′

∈ R1 such that bi
′

p = 1 − bip, for p ∈ {1, 2},
∑4

p=3 b
i′

p = 1 and
∑n

p=5 b
i′

p = 0. Also, define bj
′

∈ R1 such that bj
′

p = 1 − bjp,

for p ∈ {1, 2, 3, 4}, and
∑n

p=5 b
j′

p = 0. Therefore, the incidence vectors λ1 and

λ2 associated with solutions s1 = {bi, bi
′

} and s2 = {bj , bj
′

} lie in Fa, and thus

αTλ1 = αTλ2, which implies αi +αi′ = αj′ +αj. Since bi
′

, bj
′

∈ C4, αi′ = αj′, hence

αi = αj.

(VI) Let bi ∈ C2 and bj ∈ C5. Define bj
′

∈ R1 such that bj
′

p = 1− bjp, for p ∈ {1, 2, 3, 4},

and
∑n

p=5 b
j′

p = 0. Therefore, the incidence vectors λ1 and λ2 associated with

2.5 Conclusions 32

solutions s1 = {bi, b̄i} and s2 = {bj , bj
′

} lie in Fa, and thus αTλ1 = αTλ2, which

implies αi +α(2n−1−i) = αj′ +αj. Since b̄i ∈ C7 and bj
′

∈ C4, α(2n−1−i) = αj′, hence

αi = αj.

(VII) Let bi ∈ C5 and bj ∈ C6. Define bi
′

∈ R1 such that bi
′

p = 1 − bip, for p ∈ {1, 2, 3, 4},
∑n

p=5 b
i′

p = 0. Therefore, the incidence vectors λ1 and λ2 associated with solutions

s1 = {bi, bi
′

} and s2 = {bj , b̄j} lie in Fa, and thus αTλ1 = αTλ2, which implies

αi + αi′ = α(2n−1−j) + αj . Since bi
′

∈ C4 and b̄j ∈ C3, αi′ = α(2n−1−j), hence

αi = αj.

The relationships between columns in R1 proved in (I)-(VII) are shown in the graph

depicted in Figure 2.3. In this graph, each node represents a set Cp, p ∈ {1, . . . , 8}, and

an edge indicates that columns in the corresponding sets have the same coefficient in the

vector α. Since this graph is connected and sets Cp, p ∈ {1, . . . , 8}, are non-empty, there

exists γ ∈ R such that αj = γ, for all bj ∈ R1.

C1 C3C2

C6

C4C5

C7C8

(I)

(II)

(III)

(IV)(VI) (V)

(VII)

Figure 2.3: Proof of Part (g) of Theorem 2.2: a graph representing (I)-(VII).

Now let bj be a column in R2. Since the incidence vector of the solution {bj} lies

in Fa, we have that αj = α0. However, solution {bi, b̄i} also lies in Fa, where bi is any

column in R1. Therefore, αj = α0 = 2γ.

Finally, let bj be a column in R0. Notice that the incidence vectors of the solutions

s1 = {bj , b̄j} and s2 = {b̄j}, λ1 and λ2, lie in Fa. Therefore, αTλ1 = αTλ2, which implies

αj = 0. Putting all together, we have shown that α = γa.

2.5 Conclusions

The close relation between the set packing and the set partitioning problems is very well-

known and is ultimately derived from the fact that any set packing can be transformed

into a set partitioning by just adding slack variables. However, the precise relation be-

tween the set packing and set partitioning polytopes for general matrices A is difficult to

be determined, since even computing the dimension of SPP=(A) is NP-Hard. Theorem

2.5 Conclusions 33

2.1 shows that if A has all the 2n−1 non-zero columns, there is a perfect one to one corre-

spondence between the non-trivial facets of those polytopes. So, the study of CSPP=(n)

can be reduced to the study of the “simpler” polytope CSPP≤(n). This result is useful

for proving that a given inequality induces a facet of CSPP=(n), since it is often easier

to prove such a result for CSPP≤(n). For example, before we realized this one to one

correspondence, we failed to find a simple proof that, for n odd, the rank 1 cut induced

by multipliers
(

1
2
, 1
2
, . . . , 1

2

)

is facet-inducing for CSPP=(n). An interesting question left

open by this work is whether Theorem 2.1 (or a modification of it) holds for a more general

case — a promising case is when the matrix A contains all singleton columns. Another

research avenue is to investigate the practical behavior of the new rank 1 facets found in

this work.

Chapter 3

A Branch-and-Price Algorithm for the

Minimum Latency Problem

This chapter deals with the Minimum Latency Problem (MLP), a variant of the well-

known Traveling Salesman Problem in which the objective is to minimize the sum of

waiting times of customers. This problem arises in many applications where customer

satisfaction is more important than the total time spent by the server. This chapter

presents a novel branch-and-price algorithm for MLP that strongly relies on new features

for the ng-path relaxation, namely: (1) a new labeling algorithm with an enhanced domi-

nance rule named multiple partial label dominance; (2) a generalized definition of ng-sets

in terms of arcs, instead of nodes; and (3) a strategy for decreasing ng-set sizes when those

sets are being dynamically chosen. Also, other elements of efficient exact algorithms for

vehicle routing problems are incorporated into our method, such as reduced cost fixing,

dual stabilization, route enumeration and strong branching. Computational experiments

over TSPLIB instances are reported, showing that several instances not solved by the

current state-of-the-art method can now be solved.

3.1 Introduction

In MLP, we are given a complete directed graph G = (V,A) and a time tij for each

arc (i, j) ∈ A. Set V is composed of n + 1 nodes: node 0, representing a depot, and

nodes 1, . . . , n, representing n customers. The task is to find a Hamiltonian circuit (i0 =

0, i1, . . . , in, in+1 = 0), a.k.a. tour, in G that minimizes
∑n+1

p=1 l(ip), where the latency

l(ip) is defined as the accumulated travel time from the depot to ip. The MLP is related

to the Time Dependent Traveling Salesman Problem (TDTSP), a generalization of the

3.1 Introduction 35

Traveling Salesman Problem (TSP) in which the cost for traversing an arc depends on

its position in the tour. More precisely, MLP can be viewed as the particular case of the

TDTSP where the cost of an arc (i, j) in position p, 0 ≤ p ≤ n, is given by (n− p+ 1)tij.

A sample MLP instance is illustrated in Figure 3.1.

0

1

2

3

4

1

5

7

5

4

4

1

1

2

6

(a)

0

1

4

2

3

1

4

1

1

7

(b)

Figure 3.1: (a) Sample instance I with 4 customers. The graph is undirected because the
travel times in I are symmetric. (b) An MLP solution for I with cost 33. The latencies
are l(1) = 1, l(2) = 5, l(3) = 6, l(4) = 7 and l(0) = 14.

The MLP is also known in the literature as Delivery Man Problem (Roberti and

Mingozzi, 2014), Traveling Repairman Problem (Afrati, Foto et al., 1986), Traveling De-

liveryman Problem (Tsitsiklis, 1992) and Traveling Salesman Problem with Cumulative

Costs (Bianco et al., 1993). Although MLP seems to be a simple variant of TSP, some

important characteristics are very different in those problems. First, two different view-

points of a distribution system are considered: TSP is server oriented, since one wants to

minimize the total travel time; on the other hand, MLP is customer oriented because the

objective is equivalent to minimizing the average waiting time of customers (Silva et al.,

2012; Sitters, 2002; Archer and Williamson, 2003). Customer satisfaction is the main ob-

jective in many applications, such as home delivery services (Méndez-Díaz et al., 2008),

and has attracted the attention of researchers, as reflected by the considerable number of

MLP variants studied in the very last years (see, for instance, (Lysgaard and Wøhlk, 2014;

Rivera et al., 2016; Nucamendi-Guillén et al., 2016; Sze et al., 2017)). Second, in contrast

to what happens in TSP, simple local changes may affect globally an MLP solution be-

cause the latency of subsequent customers may change (Silva et al., 2012; Sitters, 2002).

This can make it more difficult to solve MLP both exactly and heuristically. For example,

current state-of-the-art exact methods for MLP are not capable of solving consistently

instances with 150 customers, whereas TSP instances with thousands of customers are

solved routinely (Abeledo et al., 2013).

Many complexity results for MLP have been obtained. The problem is NP-Hard

for general metric spaces (Sahni and Gonzalez, 1976), and remains NP-Hard even if the

times correspond to Euclidean distances (Afrati, Foto et al., 1986) or if they are obtained

3.1 Introduction 36

from an underlying graph that is a tree (Sitters, 2002). On the other hand, the problem

is polynomial if the underlying graph is a path (Afrati, Foto et al., 1986; García et al.,

2002), a tree with equal weights or a tree with diameter at most 3 (Blum et al., 1994).

The MLP with deadlines, i.e., with upper bounds on l(ip), is NP-Hard even for paths

(Afrati, Foto et al., 1986). In terms of approximation, hardness results show that one

should not expect to attain arbitrarily good approximation factors for MLP (Blum et al.,

1994). However, 3.59 and 3.03 approximations are known for general metric spaces and

general trees, respectively (Chaudhuri et al., 2003; Archer and Blasiak, 2010). Moreover,

a constant factor approximation is not likely to exist if times do not satisfy the triangle

inequality, just as for TSP (Blum et al., 1994).

The first integer programming formulations were given in (Picard and Queyranne,

1978), where the authors stated TDTSP as a machine scheduling problem and solved

instances with up to 20 jobs by means of a branch-and-bound method over lagrangian

bounds. A new formulation with n constraints was presented in (Fox et al., 1980), but the

authors did not report any computational results. Lucena, (1990) and Bianco et al., (1993)

followed the same approach as Picard and Queyranne, (1978) and employed langragian

bounds in experiments over MLP instances with up to 30 and 60 vertices, respectively.

The latter authors also developed a dynamic programming method capable of attesting

that the bounds obtained for 60-vertex instances were within 3% from optimality. Then,

a series of enumerative strategies based on new formulations was introduced in (Fischetti

et al., 1993; Van Eijl, 1995; Méndez-Díaz et al., 2008; Bigras et al., 2008; Godinho et al.,

2014), as well as cutting planes (Van Eijl, 1995; Méndez-Díaz et al., 2008; Bigras et al.,

2008) and polyhedral studies (Méndez-Díaz et al., 2008). Instances with 60 vertices could

already be solved by the algorithm of Fischetti et al., (1993). More recently, Abeledo et

al., (2013) managed to solve almost all TSPLIB instances with up to 107 vertices using a

branch-cut-and-price algorithm. The authors departed from a formulation by Picard and

Queyranne, (1978) and proposed new inequalities, that are proved to be facet-inducing.

Roberti and Mingozzi, (2014) implemented dual ascent and column generation techniques

to compute a sequence of lower bounds associated with set partitioning formulations where

a column represents an ng-path, which is a path relaxation introduced by Baldacci et al.,

(2011). An ng-path may contain cycles, but just those allowed by the so-called ng-sets.

These sets are iteratively augmented so that less cycles are allowed and improved bounds

are obtained. The final lower bound is used in a dynamic programming recursion to

compute the optimal solution. This method could solve some larger TSPLIB instances,

with up to 150 vertices, and currently holds the status of state-of-the-art exact method

3.1 Introduction 37

for MLP. Finally, heuristic algorithms for MLP can be found in (Ngueveu et al., 2010;

Salehipour et al., 2011; Silva et al., 2012; Mladenović et al., 2013).

This chapter presents a novel branch-and-price algorithm for MLP that strongly

relies on ng-paths. Following the directions of Roberti and Mingozzi, (2014), our method

works over a set partitioning formulation where columns represent ng-paths and the col-

umn generation bounds computed on each node of the tree are derived from dynamically

defined ng-sets. However, we introduce the following improvements on the use of ng-paths.

• Multiple Partial Label Dominance: In the labeling algorithms used for pricing

ng-paths, a partial path P is represented as a label L(P). A key concept in this

kind of algorithm is dominance. A label L(P1) dominates a label L(P2) if every

completion P ′ of P2 is also a feasible completion of P1, and the cost of P1+P ′ is not

larger than the cost of P2 +P ′. In this case, L(P2) can be safely eliminated. In this

chapter, we propose a stronger dominance rule by which some extensions for L(P2)

can be avoided, even though this label cannot be completely disregarded according

to the classical dominance rule. We briefly discuss two alternative implementations

of this new dominance rule, where the best one typically speeds up the labeling

algorithm by factors between 4 and 8.

• Arc-Based ng-Path Relaxation: ng-sets as originally defined by Baldacci et

al., (2011) are a vertex-based memory mechanism. In this chapter, we provide a

generalized definition of them in terms of arcs. We show that this new definition

is particularly useful in the context of dynamically defined ng-sets, allowing strong

bounds to be obtained in more controlled pricing times.

• Fully Dynamic ng-Path Relaxation: We improve the dynamic ng-path relax-

ation of Roberti and Mingozzi, (2014) by introducing a procedure for decreasing the

ng-sets, without changing the current bounds. Such reductions are beneficial for the

pricing time and also help to refine the choice of ng-sets.

Also, other well-known elements of efficient exact algorithms for many other vari-

ants of the vehicle routing problem (VRP) are incorporated into our method, namely

reduced cost fixing, dual stabilization, route enumeration and strong branching. Compu-

tational experiments over MLP instances derived from TSPLIB were conducted to attest

the effectiveness of the new branch-and-price algorithm. The results show that better

bounds can be obtained in less computational time when compared to the state-of-the-art

algorithm, specially because of the new features for the ng-path relaxation. In particu-

3.2 Route Relaxations and Labeling Algorithms 38

lar, the branch-and-price solved all the 9 instances with up to 150 vertices not solved in

Roberti and Mingozzi, (2014). It could also solve 4 additional instances, with more than

150 vertices, never considered before by exact methods.

The remainder of this chapter is organized as follows. Section 3.2 discusses the

ng-path relaxation and labeling algorithms. Section 3.3 introduces the new features for

the ng-path relaxation. The proposed branch-and-price algorithm is described in Section

3.4, where we also give implementation details. Computational experiments are presented

in Section 3.5. Finally, concluding remarks are drawn in the last section.

3.2 Route Relaxations and Labeling Algorithms

This section reviews the route relaxations and labeling algorithms that are related to

current state-of-the-art exact algorithms for VRPs, such as Capacitated VRP (CVRP),

VRP with time windows (VRPTW), and the MLP itself. Such algorithms are based on a

combination of column and cut generation over the following set-partitioning formulation.

min
∑

R∈Ω

cRλR (3.1)

s.t.
∑

R∈Ω

aiRλR = 1, ∀i ∈ C, (3.2)

λR ∈ {0, 1}, ∀R ∈ Ω, (3.3)

where C, Ω, cR and aiR denote, respectively, the set of customers, the set of feasible routes,

the cost of route R, and the number of times route R visits customer i.

As the number of variables in Formulation (3.1)-(3.3) is exponential in |C|, column

generation is typically applied to solve its linear relaxation. The pricing subproblem

depends on the considered variant, but it can often be modeled as the Elementary Resource

Constrained Shortest Path Problem (ERCSPP). In ERCSPP, we are given a directed

graph G′ = (V ′, A′) with vertex set V ′ and arc set A′; source and sink nodes s ∈ V ′ and

t ∈ V ′, respectively; and a set of resources W. Moreover, for each i ∈ V ′ and r ∈ W,

let lri ∈ R and ur
i ∈ R be, respectively, the minimum and the maximum consumption of

resource r in any partial path from s to i. Each partial path P = (i0 = s, i1, . . . , ip) has

an associated vector of resource consumption w(P) ∈ R
|W|, which is computed with the

help of resource extension functions (REFs) fij : R|W| → R
|W|, one for each (i, j) ∈ A′.

3.2 Route Relaxations and Labeling Algorithms 39

More precisely,

w(P) = fip−1ip(w(P
′ = (i0, . . . , ip−1))), (3.4)

if p ≥ 1, or w(P) is any vector that satisfies the bounds of the source node, if p = 0.

That is, the initial resource consumption is a decision variable. The task is to find the

least-cost s − t path containing no cycles and satisfying the resource constraints, where

the cost c(P) of a partial path P = (i0 = s, i1, . . . , ip) is computed with the help of cost

extension functions (CEFs) cij : R
|W| → R, one for each arc (i, j) ∈ A′, as follows:

c(P) =







c(P ′ = (i0, . . . , ip−1)) + cip−1ip(w(P
′ = (i0, . . . , ip−1))), if p ≥ 1

0, otherwise.
(3.5)

See (Irnich, 2008; Irnich and Desaulniers, 2005) for further details on this very

generic definition of ERCSPP. From now on, for ease of presentation and because the

new ideas for the pricing subproblem described in this chapter are only concerned with the

ng-path relaxation, we will assume a definition of the problem in which a single discrete

resource is present and the REF fij : Z → Z for an arc (i, j) ∈ A′ is the function

fij(w) = w + wij, where wij ∈ Z denotes the consumption of this single resource by

the arc. The lower and upper bounds on resource consumption when reaching a vertex

i ∈ V ′ will be denoted as li ∈ Z and ui ∈ Z, respectively. In addition, there exists a CEF

cij : Z → Z for each arc (i, j) ∈ A′. Finally, we will also assume that V ′ = C ∪ {s, t}.

Remark that this simplified definition still covers the MLP case.

ERCSPP is NP-Hard in the strong sense (Dror, 1994) and also a difficult problem

to solve in practice. The hard constraint is the one that imposes elementarity, since

the Resource Constrained Shortest Path Problem (RCSPP) can be solved in pseudo-

polynomial time for a fixed number of resources. RCSPP is a relaxation of ERCSPP

where a vertex can be visited more than once in an optimal path, as long as the resource

constraints are satisfied. In view of this, several state-of-the-art algorithms employ some

route relaxation as an alternative to elementary routes. The idea is to replace set Ω by

some set also containing non-elementary routes so as to make the pricing subproblem

easier. An ideal relaxation would provide the elementary route bound while keeping the

pricing subproblem tractable. It is worth mentioning that such a relaxation is mandatory

in problems where the optimal solution has exactly one route (e.g., MLP), otherwise

the pricing subproblem is as hard as the original problem, rendering column generation

meaningless.

The first route relaxation is just to allow any non-elementary route, as long as it

3.2 Route Relaxations and Labeling Algorithms 40

satisfies the resource constraints. It was already observed in Christofides et al., (1981)

that it is possible to eliminate routes with 2-cycles (subpaths like i → j → i) without

increasing the complexity. The bounds obtained with 2-cycle elimination may be good in

some cases, but are likely to be poor in other cases, specially in routing problems with

many customers per route (Martinelli et al., 2014). This motivated Irnich and Villeneuve,

(2006) to propose an algorithm to forbid cycles of an arbitrary maximum size k. The

pricing subproblem now is referred to as RCSPP with k-cycle elimination. Theoretically,

the proposed algorithm can be used for pricing elementary routes, but only small values

of k can be efficiently used in practice. This is because the complexity of the algorithm

grows factorially with k. Nevertheless, k-cycle elimination for small values of k proved to

be useful at that time, improving column generation based algorithms for several VRP

variants. For example, the branch-cut-and-price for MLP in (Abeledo et al., 2013) uses

k = 5.

Later, Baldacci et al., (2011) introduced a new kind of elementarity relaxation,

the so-called ng-paths (a.k.a. ng-routes). Extensive experiments on several VRP variants

show that ng-routes are almost always more efficient than routes without k-cycles, in

the sense of providing better bounds in less computational time. In contrast to previous

relaxations, cycles eliminated by ng-routes are not distinguished by size. Instead, a cycle

H = (i0, i1, . . . , ip = i0) is forbidden if all customers i1, . . . , ip−1 are able to “remember”

customer i0. Formally speaking, we define an ng-set Ni ⊆ C for each customer i ∈ C. We

assume that i ∈ Ni. Typically, Ni contains the customers that are likely to appear close

to customer i in low-cost paths, e.g., nearest customers to take advantage of a locality

principle that is often present in VRPs. In case j ∈ Ni, we say that i remembers j or

equivalently that j is remembered by i. Then, each path P = (i0, i1, . . . , ip) has an

associated set of forbidden extensions Π(P) that is computed based on the ng-sets:

Π(P) =
{

im ∈ {i0, . . . , ip−1} : im ∈

p
⋂

q=m+1

Niq

}

∪ {ip} (3.6)

In words, a customer im 6= ip belongs to Π(P) if it is remembered by all customers iq

with m < q ≤ p. Therefore, path P is ng-feasible if im /∈ Π(Pm−1 = (i0, i1, . . . , im−1)), 1 ≤

m ≤ p. Alternatively, one can define the ng-path relaxation in terms of the ng-memory

Mi ⊆ C of a customer i, which is the set of customers that remember i, i.e., Mi = {j ∈

C : i ∈ Nj}. In this case, the set of forbidden extensions for path P is computed as:

Π(P) =
{

im ∈ {i0, . . . , ip−1} : iq ∈Mim , q = m+ 1, . . . , p
}

∪ {ip} (3.7)

3.2 Route Relaxations and Labeling Algorithms 41

and a path P is ng-feasible iff between two visits to a customer i, some customer j /∈ Mi

is visited. In this chapter, both concepts (ng-sets and ng-memories) are used. Clearly,

the greater the ng-memories, the closer to elementary are the ng-paths.

The RCSPP with ng-routes is commonly solved by means of a labeling algorithm.

In this kind of algorithm, a label L(P) = (c(P), w(P), v(P),Π(P)) represents a partial

path P in G′ ending at vertex v(P) with cost c(P), resource consumption w(P) , and set

Π(P) of forbidden extensions. We define Ns = Nt = ∅ so as to guarantee that Π(P) is

well-defined for paths in G′ (recall that we have assumed V ′ = C ∪ {s, t}). Initial labels

representing paths defined only by the source vertex s are present in the beginning, one for

each possible resource consumption in [ls, us], and new labels are generated by extending

existing ones along all possible arcs. Labels are processed in increasing order of resource

consumption and dominance rules are applied to eliminate labels not leading to optimal

paths. The general scheme of labeling algorithms with ng-paths is shown in Algorithm

3, where Lj and Uj denote, respectively, the set of processed and unprocessed labels that

correspond to paths ending at vertex j.

Algorithm 3 General Labeling Algorithm with ng-paths

1: Initialize Lj and Uj as empty sets, for all j ∈ V ′

2: Add the initial labels to Us

3: while
⋃

j∈V ′

Uj 6= ∅ do

4: Choose a label L(P) ∈
⋃

j∈V ′

Uj with minimum resource consumption and let i = v(P)

5: for each (i, v) ∈ A′ such that P + v is feasible do
6: Define label L(P + v) = (c(P) + civ(w(P)), w(P) + wiv, v, (Π(P) ∩Nv) ∪ {v})
7: if L(P + v) is dominated by any label in Lv ∪ Uv then
8: continue
9: else

10: Remove labels in Uv dominated by L(P + v)
11: Uv ← Uv ∪ {L(P + v)}
12: Ui ← Ui \ {L(P)}
13: Li ← Li ∪ {L(P)}
14: return best label in Lt

The feasibility test in Line 5 of Algorithm 3 takes into account the resource con-

straints and the extensions forbidden by ng-sets. More precisely, the new path P + v

is feasible if lv ≤ w(P) + wiv ≤ uv and v /∈ Π(P). Regarding the dominance checks

performed in lines 7 and 10, the following conditions are sufficient to verify that a label

L(P ′) dominates a label L(P).

(I) v(P ′) = v(P)

3.3 New Features for the ng-Path Relaxation 42

(II) c(P ′) ≤ c(P)

(III) w(P ′) = w(P)

(IV) Π(P ′) ⊆ Π(P)

3.3 New Features for the ng-Path Relaxation

This section presents new contributions on the use of the ng-path relaxation. Although

in this chapter they are used for solving MLP, we remark that they can be used in several

other problems.

3.3.1 Multiple Partial Label Dominance

We will now introduce a stronger dominance rule called multiple partial label dominance

(MPLD). Suppose that condition (IV) of the classical dominance rule discussed in Section

3.2 is the only one not satisfied by L(P) and L(P ′). Therefore, label L(P) is not dominated

by label L(P ′) because there exists a vertex i such that P + i is ng-feasible, whereas P ′+ i

is not. While completely disregarding label L(P) because of label L(P ′) is not correct,

some extensions for the former may be unnecessary. For example, in Figure 3.2, one can

see that L(P ′) does not dominate L(P) only because P + 2 is ng-feasible, whereas P ′ + 2

is not. However, observe that Π(P ′ +3) = {4, 3} ⊆ Π(P +3) = {4, 3} since 3 /∈M1 ∪M2.

Thus, label L(P ′ + 3) dominates L(P + 3), which makes the extension of L(P) along the

arc (1, 3) unnecessary as long as L(P ′) is extended along this arc. In this case, we say

that label L(P) is partially dominated by label L(P ′).

M1 = {1, 2, 4}

M2 = {1, 2, 4}

M3 = {1, 3, 4}

M4 = {1, 2, 3, 4}

v(P ′) = v(P)

c(P ′) ≤ c(P)

w(P ′) = w(P)

Π(P ′) 6⊆ Π(P)
L(P)
P = (s, 4, 1) Π(P) = {1, 4}

L(P ′)
P ′ = (s, 2, 4, 1) Π(P ′) = {1, 2, 4}

Figure 3.2: Introducing MPLD. Label L(P ′) does not dominate label L(P), but L(P ′+3)
dominates L(P + 3).

The general result is the following.

Proposition 3.1. Let L(P) and L(P ′) be two labels such that

• v(P ′) = v(P) = i

3.3 New Features for the ng-Path Relaxation 43

• c(P ′) ≤ c(P)

• w(P ′) = w(P)

• Π(P ′) 6⊆ Π(P)

Then any extension to a vertex j ∈ V ′ \
⋃

v∈Π′ Mv can be safely disregarded for L(P),

where Π′ = Π(P ′) \ Π(P).

Proof. Let j ∈ V ′ be a vertex such that (i, j) ∈ A′ and j /∈
⋃

v∈Π′ Mv. Since we have

assumed that j ∈ Mj , we have that j /∈ Π′. Hence, if P + j is ng-feasible, so is P ′ + j

and clearly v(P ′ + j) = v(P + j), c(P ′ + j) ≤ c(P + j) and w(P ′ + j) = w(P + j).

Furthermore, as j /∈
⋃

v∈Π′ Mv, any vertex v ∈ Π′ is forgotten by P ′ + j and P + j, and

thus Π(P ′ + j) ⊆ Π(P + j). Therefore, label L(P ′ + j) dominates label L(P + j).

In view of Proposition 3.1, a label L(P) should also store a set ξ(P) representing

the extensions that can be avoided because of partial dominance, which we call dominated

extensions. Let L(P) be the set of all labels L(P ′) that together with label L(P) satisfy

conditions (I), (II) and (III). By applying the partial dominance from the multiple labels

in L(P), the resulting set of dominated extensions for label L(P) is:

ξ(P) =
⋃

L(P ′)∈L(P)

{

j ∈ V ′ : j /∈
⋃

v∈Π(P ′)
v/∈Π(P)

Mv

}

(3.8)

A small example of MPLD is presented in Figure 3.3. In this example, we have

six nodes (besides source and sink nodes) and labels L(P1), L(P2), L(P3) and L(P4)

represent all partial paths ending at vertex 1 with a given resource consumption. As can

be seen in the figure, we have: L(P1) = ∅,L(P2) = {L(P1)},L(P3) = {L(P1), L(P2)}

and L(P4) = {L(P1), L(P2), L(P3)}. Label L(P1) does not dominate label L(P2) only

because of condition (IV), but any extension of L(P2) to a vertex j /∈ M2 is unnecessary

since Π(P1) \ Π(P2) = {2}, which implies Π(P1 + j) ⊆ Π(P2 + j) if j /∈ M2. Thus,

ξ(P2) = V \M2. Set ξ(P3) is defined as ξ(P3) = (V \ (M2 ∪ M5)) ∪ (V \M5), where

(V \ (M2 ∪M5) is because of label L(P1) and (V \M5) is because of label L(P2). Finally,

ξ(P4) = (V \M5)∪ (V \M3), where (V \M5) is because of label L(P1) or label L(P2) and

(V \M3) is because of label L(P3). All extensions for label L(P4) are either forbidden

because of ng-sets or dominated because of labels L(P1), L(P2) and L(P3), therefore L(P4)

can be removed. This illustrates a situation where MPLD results in complete dominance.

3.3 New Features for the ng-Path Relaxation 44

in
cr

ea
si

n
g

co
st

M1 = {1, 2, 3, 4, 5, 6}

M2 = {1, 2, 5}

M3 = {1, 3, 4}

M4 = {1, 2, 3, 4}

M5 = {1, 2, 5, 6}

M6 = {1, 6}

L(P4)
P4 = (s, 4, 2, 1) Π(P4) = {1, 2, 4} ξ(P4) = {2, 3, 4, 5, 6}

L(P3)
P3 = (s, 3, 4, 1) Π(P3) = {1, 3, 4} ξ(P3) = {3, 4}

L(P2)
P2 = (s, 5, 1) Π(P2) = {1, 5} ξ(P2) = {3, 4, 6}

L(P1)
P1 = (s, 2, 5, 1) Π(P1) = {1, 2, 5} ξ(P1) = {}

Figure 3.3: An example of MPLD. Left: ng-memories. Right: labels representing paths
ending at vertex 1, all of them with the same resource consumption.

The intuition behind MPLD is to avoid extensions by anticipating that a label

L(P + j) would be dominated by a label L(P ′ + j). However, a good implementation of

MPLD is required, otherwise the additional cost of checking for partial dominance will

not pay off, as will be discussed in Section 3.4.2.

3.3.2 Arc-Based ng-Path Relaxation

The main idea exploited by the ng-path relaxation is that, in many problems, cycles are

often confined to small “neighborhoods” of the graph: once a new visit to a node i is

performed by a partial path P , any node j that is not a neighbor of i is forgotten. The set

of nodes remembered by P is computed as a function of ng-memories defined over the set

of vertices V ′. In this section, we show a generalized definition of the ng-path relaxation

where ng-memories are defined in terms of arcs instead of nodes. The inspiration for this

new definition comes from the arc-based limited memory technique developed in (Pecin

et al., 2017c) in order to reduce the impact of the non-robust Rank-1 Chvátal-Gomory

cuts on the labeling algorithm.

For each arc (i, j) ∈ A′, we define an ng-set
−→
N ij ⊆ V ′, which is the set of vertices

remembered by the arc. The arc-based ng-memory of a vertex j ∈ V ′ is defined as the

set of arcs that remember j, i.e.,
−→
M j = {(i, j) ∈ A′ : j ∈

−→
N ij}. Let P = (a0, a1, . . . , ap)

be a partial path in G′ composed of arcs a0 = (s = i0, i1), a1 = (i1, i2), . . . , ap = (ip, ip+1).

Similar to Equations (3.6) and (3.7), we now have the following equivalent definitions of

the set of forbidden extensions for path P :

−→
Π(P) =

{

im ∈ {i0, . . . , ip} : im ∈

p
⋂

q=m

−→
N aq

}

∪ {ip+1} (3.9)

3.3 New Features for the ng-Path Relaxation 45

−→
Π(P) =

{

im ∈ {i0, . . . , ip} : aq ∈
−→
M im , q = m, . . . , p} ∪ {ip+1} (3.10)

Set
−→
Π(P) equals set Π(P) if one defines

−→
Mv = {(i, j) ∈ A′ : i ∈ Mv ∧ j ∈ Mv}

for every vertex v ∈ V ′. This generalized definition is particularly useful in the context

of dynamically defined ng-memories. In this setting, one wants to augment current ng-

memories in order to forbid a given cycle H = (a0 = (i0, i1), a1 = (i1, i2), . . . , ap =

(ip, ip+1 = i0)). For doing so, vertices i1, . . . , ip should be added to the vertex-based ng-

memory Mi0 . However, this forbids not only H , but any cycle H ′ = (i0, . . . , i0) passing

through a subset of {i0, i1, . . . , ip}, which may represent a considerable impact on the

labeling algorithm. On the other hand, the impact of adding a0, . . . , ap−1 to
−→
M i0 is much

less considerable since only cycles H ′ = (i0, . . . , iq, i0), with q = 1, . . . , p, are forbidden —

notice that it is not necessary to add (iq, i0) to
−→
M i0 to forbid a cycle H ′ = (i0, . . . , iq, i0)

because i0 ∈
−→
Π((i0, i1, . . . , iq)) if a0, . . . , aq−1 ∈

−→
M i0 . We will show in our computational

experiments that this reduced impact is crucial for solving hard MLP instances.

Hereafter, the term ng-memory refers to arc-based ng-memory and we will explicitly

indicate if we refer to vertex-based ng-memory.

3.3.3 Fully Dynamic ng-Path Relaxation

Let us consider (arc-based) ng-memories
−→
M and define Ω(

−→
M) as the set of all feasible

ng-routes w.r.t.
−→
M. Notice that Ω ⊆ Ω(

−→
M). As we have discussed before, the following

relaxation of formulation (3.1)-(3.3), hereafter denoted LP (
−→
M), is the basis of several

state-of-the-art column generation based algorithms for vehicle routing problems.

LB(
−→
M) = min

∑

R∈Ω(
−→
M)

cRλR (3.11)

s.t.
∑

R∈Ω(
−→
M)

aiRλR = 1, ∀i ∈ C, (3.12)

λR ≥ 0, ∀R ∈ Ω(
−→
M). (3.13)

The quality of the bound LB(
−→
M) depends on the ng-memories

−→
M. Ideally, one

should define
−→
M so as to guarantee that LB(

−→
M) corresponds to the bound attained if

Ω(
−→
M) is replaced by Ω in the formulation, i.e., if only elementary routes are generated

in the pricing subproblem. This may require large ng-memories, and thus advanced tech-

niques are needed for solving the pricing subproblem in reasonable computational times.

3.3 New Features for the ng-Path Relaxation 46

For example, Martinelli et al., (2014) described an algorithm based on the decremental

state-space relaxation (DSSR) technique suggested by Righini and Salani, (2008) where

ng-memories are iteratively augmented while the best column generated in the pricing

subproblem is not ng-feasible w.r.t. some large ng-memories.

Good bounds can also be obtained if ng-memories are very well chosen, but

not necessarily large. In this regard, Roberti and Mingozzi, (2014) introduced the dy-

namic ng-path relaxation, which is roughly a sequence of non-decreasing lower bounds

LB(M1), LB(M2), . . . , LB(Mk) associated with dynamically defined vertex-based ng-

memories M1,M2, . . . ,Mk. Initial ng-memories M1 correspond to the ∆1 nearest cus-

tomers, and memoriesMk′+1 are computed by extending memoriesMk′, k′ ∈ {1, . . . , k−

1}, in order to forbid the smallest cycle of the column with the largest primal value in a

near-optimal solution of the linear relaxation of LP (Mk′). A limit of ∆2 is imposed for

the size of each ng-memory, and the method stops when no cycle can be forbidden. The

interested reader should consult (Roberti and Mingozzi, 2014) for further details.

In this section, we propose improvements to the dynamic ng-path relaxation, the

main difference being the possibility to also reduce the ng-memories. This reduction is

carried out if the pricing subproblems in the previous iteration of the method have been

considered expensive. However, the role of this reduction is not only to make the pricing

subproblem easier, but also to allow one a better choice of ng-memories. Finally, instead of

forbidding cycles of a single column, we employ a potentially more aggressive algorithm

for augmenting the ng-memories. The fully dynamic ng-path relaxation is outlined in

Algorithm 4, and its main ingredients are described next.

Algorithm 4 Fully Dynamic ng-Path Relaxation

1: procedure fullyDynNgPath(
−→
M, ∆max, αI , βI , αR, βR)

2: k ← 1,
−→
M1 ←

−→
M

3: repeat
4: Compute (λ̄k, π̄k), an optimal primal-dual solution pair of LP (

−→
Mk)

5: if ng-memories reduction condition is satisfied then
6:

−→
Mk ← reduceNGMemories(

−→
Mk, π̄k, αR, βR)

7: Let R be the set of ng-routes associated with the primal solution λ̄k

8:
−→
Mk+1 ← augmentNgMemories(R,

−→
Mk, ∅, ∆max, αI , βI , aggressive)

9: until stop condition is met

Algorithm 5 presents the procedure adopted to augment ng-memories. Up to two

phases are executed for each ng-route R ∈ R: first, the procedure attempts to forbid all

cycles H ∈ H(R) with at most α vertices, where H(R) denotes the set of all cycles of

3.3 New Features for the ng-Path Relaxation 47

R (Phase 1); if no cycle could be forbidden in Phase 1, then all cycles H ∈ H(R) are

considered, regardless of their size, and R is skipped after one cycle could be forbidden

(Phase 2). We prioritize small cycles because they require less augmentations to be

forbidden and many of them are likely to appear repeatedly in low-cost ng-routes. The

ng-routes are sorted in a non-increasing order of primal value or non-decreasing order of

reduced cost, depending on where the procedure is called from (Algorithm 4 or Algorithm

6, respectively). The procedure stops if β ng-routes have been explicitly forbidden. Notice

that parameters α and β control the aggressiveness of the ng-memories augmentation. The

other parameters of this procedure are:

• A set A of forbidden augmentations. This set is used just in the proposed ng-

memories reduction algorithm that will be explained later in this section (observe

that A = ∅ when the procedure is called from Algorithm 4).

• A limit ∆max to γ(j), the number of ng-memories arcs δ−(j) belong to. As usual,

δ−(j) denotes the set of arcs entering vertex j. This is needed because the number

of non-dominated labels representing paths ending at a vertex j may be exponential

in γ(j). Thus, even though arc-based ng-memories are used, the complexity of the

labeling algorithm is still somewhat vertex-dependent.

• The mode of ng-memories augmentation, which is either moderate or aggressive.

Suppose one wants to augment ng-memories so that cycle H = (a0 = (i0 =

v, i1), a1 = (i1, i2), . . . , ap = (ip, ip+1 = v)) is forbidden. In moderate mode, this is

attained by adding arcs a0, . . . , ap−1 to
−→
M v. Notice that cycles H = (v, i1, . . . , iq, v),

with q = 1, . . . , p, are now also forbidden. On the other hand, in aggressive mode,

all arcs between nodes in {v, i1, . . . , ip} are added to
−→
M v, thus forbidding any cycle

starting and ending at v and passing through a subset of {i1, . . . , ip}. This latter

mode is equivalent to the vertex-based augmentations implemented by Roberti and

Mingozzi, (2014).

Quickly, some augmentations performed in previous iterations may become unnec-

essary to guarantee the bound of the current iteration k. Therefore, we propose Algorithm

6 to reduce ng-memories
−→
Mk. This algorithm is based on the same DSSR technique sug-

gested by Righini and Salani, (2008), and also implemented by Martinelli et al., (2014).

A problem-dependent condition (pricing time, number of non-dominated labels, etc.) is

used to trigger such reductions. Initially empty ng-memories are iteratively augmented

in order to forbid the columns with the best reduced costs w.r.t. π̄k. Of course, those

3.3 New Features for the ng-Path Relaxation 48

Algorithm 5 ng-Memories Augmentation Algorithm

1: procedure augmentNgMemories(R,
−→
M, A, ∆max, α, β, mode)

2: input R: set of target ng-routes,
−→
M: current ng-memories, A: set of forbidden

augmentations, ∆max: maximum value allowed for γ(·), α: maximum cycle size in
Phase 1, β: maximum number of ng-routes explicitly forbidden, mode: mode of
augmentation.

3: output: new ng-memories
4:

5: FH ← ∅, FR ← ∅
6: for each R ∈ R do
7: phase← 1
8: for each H = (v, . . . , v) ∈ H(R) in non-decreasing order of size do
9: if |H| > α and phase = 1 then

10: if H(R) ∩ FH = ∅ then
11: phase← 2
12: else
13: break
14: if cycleCanBeForbidden(H ,

−→
M, ∆max, A) then

15:
−→
M← forbidCycle(H ,

−→
M, mode)

16: FH ← FH ∪ {H}, FR ← FR ∪ {R}
17: if phase = 2 then
18: break
19: Stop if |FR| ≥ β

20: return
−→
M

improvements are confined to
−→
Mk and new iterations are performed as long as the best

column generated is not ng-feasible w.r.t.
−→
Mk. The algorithm ends up with a set of re-

duced ng-memories
−→
M such that LB(

−→
M) = LB(

−→
Mk). Even though the final ng-memories

are not necessarily minimal, in practice we have observed that Algorithm 6 often reduces

significantly the size of the ng-memories.

Remark that we have adopted the same algorithm for augmenting ng-memories (i)

in the fully dynamic ng-path relaxation, and (ii) in the ng-memories reduction algorithm,

but with different parameters. In case (i), more aggressive augmentations are needed for

the sake of convergence, whereas in case (ii) moderate augmentations are performed in

order to get smaller final ng-memories. This is mainly controlled by parameter mode of

procedure forbidCycle(·).

3.4 Branch-and-Price Algorithm 49

Algorithm 6 ng-Memories Reduction Algorithm

1: procedure reduceNGMemories(
−→
M, π∗, α, β)

2: input:
−→
M: current ng-memories, π∗: dual solution of LP (

−→
M), and parameters to

augmentNgMemories(·)
3: output: new ng-memories
4:

5:
−→
Mori ←

−→
M,
−→
M← ∅, ng-feasible ← false

6: while not ng-feasible do
7: R ← LabelingAlgorithm(

−→
M, π∗)

8: if best route in R is ng-feasible w.r.t.
−→
Mori then

9: ng-feasible ← true
10: else
11: Define A as the set of augmentations that are not confined to

−→
Mori

12:
−→
M← augmentNgMemories(R,

−→
M, A, ∞, α, β, moderate)

13: return
−→
M

Algorithm 7 Test for Cycle Elimination

1: procedure cycleCanBeForbidden(H ,
−→
M, A, ∆max)

2: input: H = (a0 = (v = i0, i1), a1 = (i1, i2), . . . , ap = (ip, ip+1 = v)): target cycle,
−→
M: current ng-memories, A: set of forbidden augmentations, ∆max: maximum
value allowed for γ(·).

3: output: a flag indicating whether H can be forbidden or not
4:

5: for q = 0 to p− 1 do
6: if aq /∈

−→
Mv then

7: γ(iq+1)← |{j ∈ V \ {v} : δ−(iq+1) ∩
−→
M j 6= ∅}|

8: if γ(iq+1) ≥ ∆max or (
−→
M v, aq) ∈ A then

9: return false
10: return true

3.4 Branch-and-Price Algorithm

In this section, we describe the proposed branch-and-price algorithm (BP) for MLP. The

solution of a node in our algorithm, outlined in Algorithm 9, is an iterative approach based

on the fully dynamic ng-path relaxation described in Section 3.3.3. At each iteration k,

we first solve LP (
−→
Mk) by means of a two-stage column generation. The pricing network

G′ = (V ′, A′) has the following definition:

• V ′ = {s, 1, . . . , n, t}, where nodes in {1, . . . , n} represent customers and source and

sink nodes are associated with the depot. Hence, V ′ = V \ {0} ∪ {s, t}.

3.4 Branch-and-Price Algorithm 50

Algorithm 8 Cycle Elimination

1: procedure forbidCycle(H ,
−→
M, mode)

2: input: H = (a0 = (v = i0, i1), a1 = (i1, i2), . . . , ap = (ip, ip+1 = v)): target cycle,
−→
M: current ng-memories, mode: mode of augmentation.

3:

4: for q = 0 to p− 1 do
5: if mode = moderate then
6:

−→
M v ←

−→
Mv ∪ {(iq, iq+1)}

7: else
8: for t = q + 1 to p do
9:

−→
Mv ←

−→
M v ∪ {(iq, it), (it, iq)}

• A′ = {(s, i) : i ∈ {1, . . . , n}} ∪ {(i, t) : i ∈ {1, . . . , n}} ∪ {(i, j) : i, j ∈ {1, . . . , n}, i 6=

j}

• The single resource indicates the number of arcs in a partial path, and hence wij = 1

for any arc (i, j) ∈ A′. Moreover, (li, ui) = (1, n) for a vertex i ∈ {1, . . . , n};

(ls, us) = (0, 0) and (lt, ut) = (n+1, n+1). Therefore, any ng-path generated visits

exactly n customers, although it may contain cycles.

• Finally, the CEF cij : Z → R for an arc (i, j) ∈ A′ is the function cij(w) =

(n−w+1)tij− (µi+µj)/2, where µi, i ∈ {1, . . . , n}, is the value of the dual variable

associated with customer i, and µs = µt = 0.

Of course, branching constraints may also be present in LP (
−→
Mk). In Stage 1 of

column generation, dominance tests take into account only conditions (I), (II) and (III),

thus at most a single ng-path is kept for a given vertex i and resource consumption w,

which is the one with minimum reduced cost. This is a heuristic pricing intended to

quickly generate good ng-paths. When Stage 1 fails to find an ng-path with negative

reduced cost, we switch to Stage 2, where the exact pricing is solved. In both phases, the

dual stabilization technique of Pessoa et al., (2017) is applied for the sake of convergence.

Stage 1 (2) is solved by a mono-directional (bidirectional) labeling algorithm that returns

at most 50 (300) ng-paths. The reader is referred to Section 3.4.1 for further details on

the labeling algorithms.

If the node is the root, the first memories
−→
M1 are equivalent to ng-sets of size

8 defined according to the classical distance-based rule — time-based for the case of

MLP. Otherwise, they correspond to the final memories of the parent node, which are

inherited by the child. In any node, a hybrid strategy for augmenting ng-memories may

be used. Initially, we set mode ← aggressive. The method switches to moderate mode

3.4 Branch-and-Price Algorithm 51

Algorithm 9 Solution of a node

1: procedure solveNode(
−→
M, B, αI , βI , αR, βR, ∆max)

2: k ← 1,
−→
M1 ←

−→
M

3: mode← aggressive

4: repeat
5: Compute (λ̄k, π̄k), an optimal primal-dual solution pair of LP (

−→
Mk) + branching

constraints B
6: if ng-memories reduction condition is satisfied then
7:

−→
Mk ← reduceNGMemories(

−→
Mk, π̄k, αR, βR)

8: mode← moderate

9: continue
10: Apply reduced cost fixing
11: Try to finish the node by enumeration
12: Let R be the set of ng-routes associated with the primal solution λ̄k

13:
−→
Mk+1 ← augmentNgMemories(R,

−→
Mk, ∅, ∆max, αI , βI , mode)

14: k ← k + 1
15: until stop condition is met

if the computational time of a single call to the labeling algorithm exceeds a threshold

value tred. In this case, column generation is interrupted and the ng-memories reduction

algorithm (see Section 3.3.3) is called.

As we have already discussed, the pricing problem corresponds to finding a least-

cost ng-path in the resource constrained network G′ defined in Section 3.2. However, in

practice, we work with an extended network Gext = (V ext, Aext), where:

V ext = {(i, w) : i, w ∈ {1, . . . , n}} ∪ {(s, 0), (t, n+ 1)}

Aext = {((s, 0), (i, 1)) : i ∈ V \ {0}} ∪ {((i, n), (t, n+ 1)) : i ∈ V \ {0}}

∪{((i, w), (j, w + 1)) : (i, j) ∈ A, i 6= 0, j 6= 0}

Network Gext is defined in such a way that resource constraints are naturally sat-

isfied by any ng-path. Once an optimal dual solution π̄k is available, a reduced cost

fixing procedure is used to remove from Aext the arcs that cannot be part of a solution

that improves the current upper bound. For fixing an arc ((i, w), (j, w + 1)), one has to

prove that the minimum reduced cost of an ng-path traversing this arc is above a given

threshold. To compute this cost, the minimum reduced cost of a partial path ending at

(i, w) and of a partial path from (j, w + 1) to the sink node are computed by a forward

and a backward labeling algorithm, respectively. Such a procedure is well-known in the

literature and has been applied in many routing problems (see, for instance, (Irnich et al.,

2010; Roberti and Mingozzi, 2014; Pecin et al., 2017a)). Dual solution π̄k is also used in

3.4 Branch-and-Price Algorithm 52

an enumerative procedure that tries to finish the node. As implemented by Roberti and

Mingozzi, (2014), the enumeration is performed by a mono-directional labeling algorithm

that computes only elementary paths, using completion bounds associated with ng-paths

to prune unpromising partial paths. However, we abort the enumeration if the number

of non-dominated labels is greater than 10 million. If enumeration finishes, either a sin-

gle path representing the best integer solution for the node is returned, or all labels are

eliminated, meaning that this solution does not improve the current upper bound.

Besides the obvious stop conditions (node is solved or pruned), Algorithm 9 stops

if:

• Stop condition I: Labeling algorithm time has exceeded the threshold value tred

twice.

• Stop condition II: No column could be forbidden by augmentNgMemories(·) be-

cause of ∆max.

• Stop condition III: For 5 times, the gap of the current iteration is less than 2%

smaller than the one of the previous iteration.

We branch on an edge {i, j} defined by a strong branching mechanism in the spirit

of the works of Røpke, (2012) and Pecin et al., (2017a). Hence, vertices i and j must

appear consecutively (either i→ j or j → i) in the solution of one child and must not be

consecutive in the solution of the other child. The strong branching procedure evaluates

a number of candidate edges that is based on an estimation for the size of tree rooted

at the current node. As pointed out by Pecin et al., (2017a), the rationale is that the

greater the estimation, the more the cost of evaluating a larger number of candidates will

pay. The evaluation of candidate edges comprises three steps, with an increasing level of

accuracy and a decreasing number of candidates. The three steps to select the branching

edge in a node N are:

• Step 0. We define min{100, TS(N)} candidate edges, where TS(N) is an esti-

mation for the size of the tree rooted at node N . The estimation takes into ac-

count the average bound improvement in the branch history, following the model

of Kullmann, (2009). TS(N) = ∞ if N is the root node. First, we select the best

min{|P|,min{100, TS(N)}/2} candidate edges from a pool P containing the aver-

age scores of the candidates evaluated in previous executions of Step 2 in the whole

branch history. The other candidates are the edges whose values are the closest to

0.5 in the current fractional solution.

3.4 Branch-and-Price Algorithm 53

• Step 1. For each candidate edge {i, j} selected in Phase 0, we perform a rough eval-

uation of both children by solving the master LP of node N with the corresponding

branching constraint, but without any column generation. Let ΩN be the set of

ng-routes present in the master LP of node N . Thus, the branching constraint is

either
∑

R∈ΩN
aRijλR = 0 or

∑

R∈ΩN
aRijλR = 1, where aRij is a binary value assuming

1 if i and j appear consecutively in R. The optimal solution values of the two LPs

are used to evaluate the candidate according to the product rule of (Achterberg,

2007). The best min{5, TS(N)/10} candidates are selected to Step 2.

• Step 2. This step uses the same approach as for Step 1, but heuristic column

generation (Stage 1) is applied when evaluating the children. The selected edge is

the one with the best score in this step, also according to the product rule. If a

candidate is evaluated in this step for the first time, then it is added to the pool P.

Otherwise, its average score is updated in the pool.

We now provide more information on the implementation of the labeling algorithm

and of MPLD.

3.4.1 Labeling Algorithm

Following many related works in the literature — for instance, (Martinelli et al., 2014) and

(Pecin et al., 2017a) — we have adopted the concept of buckets in our implementation of

the general method described in Algorithm 3. A forward bucket
−→
B (j, w) is data structure

that stores all non-dominated labels associated with forward s − j paths with resource

consumption w. Therefore, for each vertex j we define buckets
−→
B (j, w), ∀w ∈ {lj , . . . , uj}.

To accelerate the algorithm, labels in a bucket are kept sorted by non-decreasing order

of cost and dominance checks are performed only between labels of the same bucket, just

as implemented by Pecin et al., (2017a). Buckets are considered by the algorithm in a

non-decreasing order of resource consumption. When a bucket
−→
B (j, w) is reached, we

extend all labels in
−→
B (j, w) over all arcs (j, v) ∈ A. At the end, the optimal s− t paths

will be stored in the buckets associated with the sink node t.

The algorithm outlined above is called mono-directional since all labels kept cor-

respond to partial paths from the source node to some node j and arcs are traversed in

their regular directions. However, in our implementation we have used a bidirectional

labeling algorithm, which generates more diversified sets of s − t paths and is typically

faster than its mono-directional counterpart. A backward path corresponds to a partial

3.4 Branch-and-Price Algorithm 54

path from the sink to some node j obtained by traversing arcs in their reverse directions.

Labels corresponding to such paths are stored in backward buckets
←−
B (j, w). In the forward

(backward) labeling algorithm, one computes non-dominated labels for buckets
−→
B (j, w)

(
←−
B (j, w)) such that w ≤ w∗ (w ≥ w∗), where w∗ = ⌊n

2
⌋. Then, a concatenation procedure

is execute to build complete s − t paths from the partial forward and backward paths.

The reader is referred to (Righini and Salani, 2006) for further references on bidirectional

labeling.

3.4.2 Multiple Partial Label Dominance

Let us consider again labels L(P ′) and L(P) such that conditions stated in Proposition

3.1 are satisfied, and define Π′ = Π(P ′) \ Π(P). As we have discussed, the extensions to

vertices j ∈ V \
⋃

v∈Π′ Mv can be avoided for label L(P). For example, in Figure 3.3, one

can verify that any extension to vertices j /∈ M3 can be avoided for label L(P4) because

of label L(P3), and thus set ξ(P4) is augmented as ξ(P4) ← ξ(P4) ∪ {2, 5, 6}. Such an

operation is performed several times during the course of the labeling algorithm and an

efficient implementation is required, otherwise the gains incurred by MPLD will not pay

off. In what follows, we will describe two approaches that we have tried to take advantage

of this new dominance rule.

Explicit Representation of ξ(·) We first tried an explicit representation of set ξ(P)

inside label L(P).

• Bitmap representation: Let L(P) be a label with v(P) = i. Set ξ(P) is repre-

sented as a bitmap implemented over a 64-bit integer. Each bit is associated with a

different vertex j ∈ V \{i} and is set to 1 to only if j ∈ ξ(P). Before extending label

L(P) over an arc (i, j) ∈ A, we first retrieve the position in the bitmap associated

with vertex j (which is stored in the arc itself) and check in constant time through

bitwise operations if this bit is set to 1. If so, the extension is not performed because

j ∈ ξ(P). Since the bitmap has 64 positions, for large instances it is not possible to

assign a position for each j ∈ V \ {i}. In this case, MPLD will not be completely

explored. More precisely, let Ei be a set of 63 vertices j ∈ V \ {i} that minimizes
∑

j∈Ei
tij , i.e, Ei contains the 63 closest vertices according to the travel times. We

assign the first 63 positions of the bitmap to the vertices of Ei, while the position

of any vertex j /∈ Ei is 64. The 64th bit of the bitmap is then set to 0 so that an

extension over an arc (i, j) such that j /∈ Ei is never avoided because of MPLD.

3.4 Branch-and-Price Algorithm 55

• Precomputed union of memories: The number of different possible sets Π(P) for

a path P such that v(P) = i is 2γ(i). Thus, for two labels L(P1) and L(P2) such that

v(P1) = v(P2) = i, the number of different possible sets Π′ = Π(P1) \ Π(P2) is also

2γ(i). For reasonable values of γ(i), it is practical to precompute sets V \
⋃

v∈Π′ Mv for

every possible Π′. In fact, we have observed that the gains of MPLD are diminished

if these sets are not precomputed. Suppose that label L(P1) partially dominates

label L(P2). Thus, the test of dominance of label L(P2) by label L(P1) comprises

the following steps. First, we compute set Π′ = Π(P1) \Π(P2). Second, a bitmap b1

representing V \
⋃

v∈Π′ Mv is retrieved. Actually, b1 represents Ei ∩ (V \
⋃

v∈Π′ Mv)

since in this implementation the bitmaps keep track of at most 63 extensions. Lastly,

we update b2 as b2 ← b1 ⊗ b2, where b2 is the bitmap representing Ei ∩ ξ(P2) and ⊗

is the bitwise OR operator.

Computational experiments showed that the computational time speedup incurred

by this approach is not significant. The main limitation is that one needs to restrict the

cardinality of sets ξ(·) to at most 63 in order to quickly manipulate the bitmaps repre-

senting them. In this case, MPLD is not completely explored. Moreover, we have adopted

a distance-based criterion to decide the 63 extensions tracked, which may be a very crude

criterion in some cases. For example, an extension over a long arc (i.e., an arc connecting

two customers that are far away from each other) will probably generate a label L(P) with

a large cost, but with few customers in set Π(P). This latter attribute makes very hard

to dominate label L(P), increasing the number of dominance checks in the destination

bucket. Finally, as we will see in Section 3.5, for many instances large values (up to 63)

of γ(·) are needed, breaking this approach. A dynamic definition of tracked extensions

or a more advanced implementation with larger bitmaps would probably improve results,

but the following approach is simpler and mitigates all aforementioned problems.

Implicit Representation of ξ(·)

Recall that, in our implementation of the labeling algorithm, buckets are considered

in a predefined order and labels of a same bucket are extended in a non-decreasing order

of cost. Moreover, we extend all labels of a bucket over an arc, then over another arc

and so on. Let us consider a (forward or backward) bucket B(i, w) and an arc (i, j).

Suppose that a label L(P ′) ∈ B(i, w) has already been extended to a label L(P ′ + j).

Now let L(P) ∈ B(i, w) be a label that has not yet been extended over (i, j) such that

Π(P ′ + j) ⊆ Π(P + j). Since its cost is larger, L(P + j) will be dominated by label

L(P ′ + j) and thus one can avoid the extension of L(P) over (i, j) — this is just an

3.5 Computational Experiments 56

example of MPLD. In general, for each bucket B(i, w) and arc (i, j), we keep a list of

bitmaps representing sets Π(·) of already extended labels. Then, before extending a label

L(P) ∈ B(i, w) over (i, j), we first compute Π(P + j) and check if it is a superset of

some Π(P ′ + j) contained in the list. If so, the extension is not necessary and we proceed

to the next label, otherwise we complete the extension of the label and update the list.

Of course, if Π(P + j) = {j}, then we can stop extending labels in B(i, w) over (i, j).

Furthermore, there is no need to keep the list after considering the extension of all labels

in B(i, w) over (i, j). This approach better explores the potential of MPLD and typically

yields a significant speedup in the pricing time, as will be seen in the next section.

3.5 Computational Experiments

This section reports our computational experiments over 40 TSPLIB instances with up

to 200 vertices. The proposed BP algorithm was implemented in C++ over the BaPCod

platform of Vanderbeck et al., (2017). The LP solver adopted is IBM CPLEX Optimizer

version 12.6.0. All experiments were conducted on an Intel Xeon E5-2680 v3, running

at 2.5 GHz with a single thread. We will compare our results to those obtained by the

algorithm of Roberti and Mingozzi, (2014) on an Intel Xeon X7350, running at 2.93

GHz. According to the CPU benchmark website www.cpuboss.com, the single thread

performance of our CPU is about 1.5 times better than the one of Roberti and Mingozzi,

(2014). Therefore, our computational times are increased by this factor in Table 3.1.

Preliminary experiments suggested the following parameter values: tred = 100 seconds,

αR = αI = 5, βR = βI = 200 and ∆max = 63. The solutions found are provided in

Appendix A

3.5.1 Main Results

Table 3.1 presents the main results of the proposed BP and the results of Roberti and

Mingozzi, (2014) over instances with up to 152 vertices. In this case, we set a time limit

of 2 days for BP. For what concerns the results of Roberti and Mingozzi, (2014), we

report the following data: lb, the final lower bound; tlb, the computational time to obtain

such lower bound; ttot, the total computational time; and gap, the percentage gap before

applying enumeration. A symbol “-” in column ttot indicates that enumeration failed to

find the optimal solution. The results of the proposed method are divided into root node

and complete BP. For the root node, we report the first and last lower bounds obtained,

3.5 Computational Experiments 57

lb0 and lbk, where k is the number of ng-memories augmentations performed. Further,

we present the average and maximum values of γ(·) and the time spent at the root node.

We also indicate if the method has switched to moderate mode in the root node. For the

complete BP, we report the final bounds and gap, the total computational time and the

number of nodes solved. All computational times in Table 3.1 are given in seconds.

We can observe in Table 3.1 that the proposed BP outperforms the method of

Roberti and Mingozzi, (2014) in most instances. In particular, 6 instances were solved for

the first time and the BKS for instance kroA150 was improved from 1831766 to the optimal

value 1825769 (see Figure 3.4). The main advantage of our method is the possibility of

dealing with larger ng-memories without combinatorial explosion. For example, for the 6

instances solved only by BP, the maximum values of γ(·) are greater than 30, reaching

62 in eil101. This is possible only because of the proposed generalized definition of ng-

sets in terms of arcs. Instances pr136, pr152 and kroB150 could not be solved, but we

remark that “pr” instances have a special structure with a lot of symmetry (see Figure

3.5). However, we will show in the next section that a specific parameterization of our

method is capable of solving those 3 instances.

 0

 500

 1000

 1500

 2000

 0 500 1000 1500 2000 2500 3000 3500 4000

Figure 3.4: Optimal solution of kroA150. The dashed arcs are the ones entering or leaving
the depot.

Table 3.2 shows the results of BP over large TSPLIB instances with up to 200

vertices. To our knowledge, this is the first time that such large instances are considered by

an exact method for MLP. The upper bounds were computed by the method of Silva et al.,

3.5
C

om
p
u
tation

al
E

x
p
erim

en
ts

58

Table 3.1: Results of BP over TSPLIB instances used by Roberti and Mingozzi, (2014). Computational times are normalized according
to the CPU benchmark website www.cpuboss.com.

Roberti and Mingozzi, (2014) Proposed Method

Root Node B&P

switched Max. Avg.
Instance z∗

lit
lb tlb ttot gap lb0 lbk k mode γ(·) γ(·) troot lb ub gap nodes ttot

dantzig42 12528 12528 5 5 0.00 12528 12528 0 no 8 8.0 4.7 12528 12528 0.00 1 4.7

swiss42 22327 22327 3 3 0.00 22327 22327 0 no 8 8.0 2.1 22327 22327 0.00 1 2.1

att48 209320 209320 7 7 0.00 209320 209320 0 no 8 8.0 8.5 209320 209320 0.00 1 8.5

gr48 102378 102378 15 15 0.00 102378 102378 0 no 8 8.0 7.2 102378 102378 0.00 1 7.2

hk48 247926 247926 19 19 0.00 247926 247926 0 no 8 8.0 10.1 247926 247926 0.00 1 10.1

eil51 10178 10178 10 10 0.00 10178 10178 0 no 8 8.0 6.5 10178 10178 0.00 1 6.5

berlin52 143721 143721 10 10 0.00 143721 143721 0 no 8 8.0 10.1 143721 143721 0.00 1 10.1

brazil58 512361 512361 36 36 0.00 512361 512361 0 no 8 8.0 17.7 512361 512361 0.00 1 17.7

st70 20557 20557 61 61 0.00 20557 20557 0 no 8 8.0 24.0 20557 20557 0.00 1 24.0

eil76 17976 17976 91 91 0.00 17976 17976 0 no 8 8.0 26.6 17976 17976 0.00 1 26.6

pr76 3455242 3423016 169 223 0.93 3375941 3455242 2 no 11 8.6 169.1 3455242 3455242 0.00 1 169.3

gr96 2097170 2087792 365 369 0.45 2061228 2097170 2 no 11 8.7 215.3 2097170 2097170 0.00 1 215.3

rat99 57986 57541 540 - 0.77 57064 57623 17 yes 38 25.7 1467.9 57986 57986 0.00 3 3180.4

kroA100 983128 980428 679 688 0.27 968668 983128 3 no 15 10.3 337.2 983128 983128 0.00 1 337.2

kroB100 986008 986008 197 197 0.00 986008 986008 0 no 8 8.0 75.2 986008 986008 0.00 1 75.2

kroC100 961324 957564 409 428 0.39 939298 961324 5 no 22 14.7 815.7 961324 961324 0.00 1 815.9

kroD100 976965 972814 708 729 0.42 957467 976965 2 no 13 9.2 290.0 976965 976965 0.00 1 290.0

kroE100 971266 971266 266 266 0.00 971266 971266 0 no 8 8.0 87.7 971266 971266 0.00 1 87.7

rd100 340047 339919 317 317 0.04 337230 340047 1 no 10 8.2 213.1 340047 340047 0.00 1 213.3

eil101 27513 27235 630 - 1.01 26892 27319 17 yes 62 35.1 4943.9 27513 27513 0.00 3 6238.9

lin105 603910 603910 154 154 0.00 603910 603910 0 no 8 8.0 85.5 603910 603910 0.00 1 85.5

pr107 2026626 2026626 246 246 0.00 2007255 2026626 2 no 12 9.1 470.9 2026626 2026626 0.00 1 470.9

gr120 363454 360460 4685 - 0.82 353054 359970 18 yes 41 25.2 10532.0 363454 363454 0.00 11 79351.6

pr124 3154346 3154346 14080 14080 0.00 3001043 3154346 21 yes 31 20.2 58283.6 3154346 3154346 0.00 1 58283.6

bier127 4545005 4545005 723 723 0.00 4513768 4545005 1 no 12 8.3 307.7 4545005 4545005 0.00 1 307.7

ch130 349874 348015 2385 - 0.53 341809 348013 16 yes 43 25.7 3767.8 349874 349874 0.00 3 7810.0

pr136 6199268 6160253 17190 - 0.63 5908131 6155720 23 yes 31 22.7 15845.4 6175226 6199268 0.39 7 259200.0

gr137 4061498 4025358 7844 - 0.89 3952022 4017150 15 yes 33 19.8 12140.2 4061498 4061498 0.00 15 65614.2

pr144 3846137 3841847 8043 8061 0.11 3671878 3846137 4 no 13 9.9 6101.5 3846137 3846137 0.00 1 6101.6

ch150 444424 444118 2585 2588 0.07 438450 444424 6 no 22 12.6 1742.6 444424 444424 0.00 1 1743.0

kroA150 1831766 1818024 5187 - 0.75 1794351 1813870 13 yes 33 17.4 7250.5 1825769 1825769 0.00 15 93566.8

kroB150 1793204 1775914 20120 - 0.96 1720498 1752709 17 yes 42 24.7 12265.3 1766343 1793204 1.52 19 259200.0

pr152 5064566 4931382 31218 - 2.63 4803249 4984428 15 yes 18 13.2 127472.1 4988337 5064566 1.53 3 259200.0

3.5 Computational Experiments 59

 2000

 4000

 6000

 8000

 10000

 12000

 4000 6000 8000 10000 12000 14000

Figure 3.5: Optimal solution of pr136. The dashed arcs are the ones entering or leaving
the depot.

Table 3.2: Results of BP over large TSPLIB instances

Root Node B&P

switched Max. Avg.
Instance z∗

lit
lb0 lbk k mode γ(·) γ(·) troot lb ub gap nodes ttot

u159 2972030 2892904 2960764 25 yes 43 26.65 19881.7 2972030 2972030 0.00 3 21437.5

si175 1808532 1801860 1808195 20 yes 38 22.04 22874.3 1808532 1808532 0.00 3 24004.1

brg180 174750 164672 174750 8 no 18 13.42 3353.6 174750 174750 0.00 1 3353.7

rat195 218675 216725 217830 13 yes 50 25.50 3529.6 218632 218632 0.00 11 55814.8

d198 1186049 1128131 1144047 12 yes 23 10.97 30457.7 1147364 1186050 3.37 7 172800.0

kroA200 2672437 2600209 2631523 15 yes 45 24.39 20536.9 2637610 2672438 1.32 17 172800.0

kroB200 2669515 2580374 2636041 15 yes 30 15.08 13809.2 2643616 2669516 0.98 13 172800.0

(2012). Instances u159, si175, brg180 and rat195 were solved in reasonable computational

times and small BP trees, but BP finished with considerable gaps for the other instances.

For rat195, BP found an optimal solution with cost 218632, an improvement of 43 units

over the heuristic solution found by the method of Silva et al., (2012) (see Figure 3.6). In

spite of the new contributions presented in this chapter, MLP instances with about 200

vertices still seem to be very challenging.

3.5.2 Longer runs with moderate mode

Here we show that our method can solve some more hard instances by using a different

parameterization. The idea of this parameterization is to augment ng-memories very

slowly and over a large number of iterations. More precisely, we adopt moderate mode in

3.5 Computational Experiments 60

 0

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100 120

Figure 3.6: Optimal solution of rat195. The dashed arcs are the ones entering or leaving
the depot.

Table 3.3: Results of BP over hard instances with a different parameterization

Root Node B&P

Max. Avg.
Instance z∗

lit
lb0 lbk k γ(·) γ(·) troot lb ub gap nodes ttot

pr136 6199268 5908131 6182837 125 52 37.43 45071.2 6199268 6199268 0.00 15 187356.3

kroB150 1793204 1720498 1760182 103 63 44.98 13371.8 1786546 1786546 0.00 23 293479.1

pr152 5064566 4803249 4980497 110 26 17.22 38839.8 5064566 5064566 0.00 3 281061.9

d198 1186049 1128131 1145300 101 31 17.68 27433.4 1152702 1186050 2.89 17 432000.0

kroA200 2672437 2600209 2639043 100 63 48.40 32154.6 2651933 2672438 0.77 18 432000.0

kroB200 2669515 2580374 2646679 115 63 39.91 61444.4 2653034 2669516 0.62 15 432000.0

all iterations of Algorithm 9, set a time limit of 5 days for BP and change stop conditions

I and III as below.

• Stop condition I: Labeling algorithm time has exceeded the threshold value

tred = 150.

• Stop condition III: For 100 times, the gap of the current iteration is less than

2% smaller than the one of the previous iteration.

Table 3.3 shows the results obtained. For the first time, instances pr136, pr152 and

kroB150 were solved to optimality. Therefore, we solved all instances that were not solved

by Roberti and Mingozzi, (2014). Furthermore, the BKS for kroB150 was improved from

1793204 to the optimal value 1786546, an improvement of 0.03% (see Figure 3.7). Still,

3.5 Computational Experiments 61

we should point out that such a parameterization is useful only for hard instances. In

general, BP has a worse performance if a weaker tailing off condition is used.

 0

 500

 1000

 1500

 2000

 0 500 1000 1500 2000 2500 3000 3500 4000

Figure 3.7: Optimal solution of kroB150. The dashed arcs are the ones entering or leaving
the depot.

3.5.3 Multiple Partial Label Dominance

Table 3.4 shows the performance of the labeling algorithm with and without MPLD. The

average results presented in that table concern the exact calls to the labeling algorithm in

the first descent of column generation with ng-sets of a given fixed size in {8, 12, 16}. A

representative subset of the instances was used. With ng-sets of size 16, instances pr124,

pr144 and pr152 exceeded a time limit of 300 seconds for a single call of the labeling

algorithm, thus no results are reported in those cases. It can be seen in Table 3.4 that

the new dominance rule has a significant impact on the labeling algorithm. The average

number of extensions decreased by an order of magnitude for any tested instance. This

allowed the algorithm to achieve remarkable average speedups of 4.37, 6.01 and 7.28 in

computational time for ng-sets of sizes 8, 12 and 16, respectively. Of course, with good

lower and upper bounds and some rounds of reduced cost fixing, the pricing networks

gets sparser and those speedups are smaller, but still considerable. Surprisingly, for most

instances, the percentage of non-dominated labels that are never extended — column

MPLD (%) — is significantly large. This means that not rarely a label is completely

dominated by a set of two or more labels, but not by a single label as required by the

3.5 Computational Experiments 62

classical dominance rule.

Table 3.4: Performance of the labeling algorithm with/without multiple partial label
dominance

Avg. time (s) Avg. number of extensions MPLD

Instance |Ni| without with factor without (×106) with (×106) factor (%)

gr120 8 1.16 0.33 3.51 17.90 1.97 9.08 24.54

pr124 8 1.83 0.48 3.82 30.38 2.60 11.68 7.76

bier127 8 1.78 0.42 4.23 28.37 2.56 11.07 11.56

ch130 8 1.78 0.42 4.25 27.06 2.58 10.47 16.83

pr136 8 2.35 0.55 4.26 36.67 3.08 11.89 19.58

gr137 8 1.63 0.46 3.53 28.54 2.99 9.55 17.73

pr144 8 8.51 1.28 6.64 108.24 5.38 20.11 2.01

ch150 8 2.26 0.61 3.71 36.25 3.75 9.66 24.69

kroA150 8 2.74 0.69 3.98 42.51 3.90 10.89 18.29

kroB150 8 2.96 0.73 4.07 44.23 3.97 11.14 17.64

pr152 8 7.77 1.27 6.11 108.04 5.87 18.41 5.08

Average for ng 8 4.37 12.18 15.06

gr120 12 4.74 0.82 5.76 53.77 2.98 18.04 19.40

pr124 12 38.77 15.66 2.48 203.96 9.73 20.96 4.03

bier127 12 8.40 1.46 5.77 85.20 4.24 20.09 11.58

ch130 12 7.60 1.14 6.68 81.84 3.98 20.58 16.33

pr136 12 11.40 1.80 6.32 120.52 5.44 22.17 13.50

gr137 12 7.87 1.41 5.59 95.40 4.93 19.33 13.96

pr144 12 174.41 33.38 5.23 555.34 19.80 28.05 1.62

ch150 12 8.55 1.27 6.72 102.46 5.09 20.11 22.03

kroA150 12 12.12 1.62 7.48 129.82 5.82 22.32 16.56

kroB150 12 14.06 2.04 6.90 140.31 6.37 22.02 15.14

pr152 12 212.33 29.70 7.15 731.47 23.54 31.08 2.28

Average for ng 12 6.01 22.25 12.40

gr120 16 28.68 5.21 5.50 158.58 6.84 23.18 12.30

pr124 16 - - - - - - -

bier127 16 57.66 8.99 6.42 256.19 9.41 27.22 9.46

ch130 16 35.69 4.35 8.21 210.17 7.62 27.58 13.70

pr136 16 65.27 8.96 7.29 334.53 13.12 25.51 10.41

gr137 16 48.09 8.84 5.44 286.45 11.56 24.78 10.08

pr144 16 - - - - - - -

ch150 16 40.89 5.12 7.98 279.85 9.47 29.55 16.99

kroA150 16 66.00 6.69 9.86 360.41 11.21 32.16 13.62

kroB150 16 89.06 11.86 7.51 409.30 13.98 29.28 12.40

pr152 16 - - - - - - -

Average for ng 16 7.28 27.41 12.37

3.5.4 Modes of ng-memories augmentation

The general conclusions suggested by our computational experience with the modes of

ng-memories augmentation can be summarized as follows: (i) aggressive augmentations

achieve a given bound in fewer iterations, however the pricing time may increase quickly;

on the other hand, (ii) moderate augmentations need many more iterations to achieve

the same bound, however the pricing time remains much more controlled. Figure 3.8

presents results on instance kroB150 that support those conclusions and also to show

that the hybrid strategy may decrease the overall computational time. The charts in the

left part of the figure plot the lower bound (x axis) vs average pricing time (y axis) at

3.6 Conclusions 63

each iteration of each augmentation mode. The charts in the right plot, for the same

runs, lower bound vs total elapsed time. All the runs reported in the figure disabled the

enumeration procedure.

We can clearly observe (i) and (ii) in Figure 3.8 (a). For example, the run with

aggressive augmentations produced the bound around 1.745×106 after 10 iterations, in a

total elapsed time of 36 minutes. On the other hand, the run with moderate augmentations

needed 43 iterations to produce the same bound, in a total elapsed time of 58 minutes.

However, the average pricing times in the latter run were very controlled (around 1 second

along all the 43 iterations), while in former run the average pricing time began to increase

a lot after the 7th iteration. Eventually, the very large pricing times made the run with

aggressive augmentations slower than the one with moderate augmentations (112 minutes

against 79 minutes for reaching a bound around 1.751× 106).

The idea of the hybrid strategy is to take advantage of the aggressive augmentations

in the first iterations (to converge faster to a given bound), and switch to moderate mode

when the pricing time becomes too large. For example, as shown in Figure 3.8 (b), the

run with the hybrid strategy (using tred = 10) switched to moderate mode in the 11th

iteration. The ng-memories reduction algorithm made the pricing time to decrease from

6.6 to 1 second. After that, the hybrid achieves the bound of 1.751 × 106 in its 31st

iteration, with an elapsed time of 55 minutes.

Our computational experience shows that the hybrid strategy is also beneficial for

the robustness of the proposed method. Even though some instances are better solved if

only moderate augmentations are performed (e.g. eil101 and gr120), instance pr144 cannot

be solved (due to slow convergence) in reasonable time without aggressive augmentations.

3.6 Conclusions

This chapter dealt with the Minimum Latency Problem (MLP), a variant of the Traveling

Salesman Problem (TSP) where the objective is to minimize the sum of waiting times

of customers. A branch-and-price (BP) algorithm over a set partitioning formulation

was introduced, where columns are ng-paths. As implemented by Roberti and Mingozzi,

(2014), our algorithm is based on dynamically defined ng-memories. The proposed BP

benefits from well-known elements of efficient exact method for routing problems, such as

dual stabilization, reduced cost fixing, route enumeration and strong branching.

3.6 Conclusions 64

 0

 5

 10

 15

 20

 25

 30

 35

 1.72 1.725 1.73 1.735 1.74 1.745 1.75 1.755

A
ve

ra
ge

 P
ric

in
g

T
im

e
(s

)

Lower Bound (x 1000000)

aggressive moderate

 0

 20

 40

 60

 80

 100

 120

 1.72 1.725 1.73 1.735 1.74 1.745 1.75 1.755

E
la

ps
ed

 T
im

e
(m

in
)

Lower Bound (x 1000000)

aggressive moderate

(a) Aggressive versus moderate augmentations on instance kroB150.

 0

 1

 2

 3

 4

 5

 6

 7

 1.72 1.725 1.73 1.735 1.74 1.745 1.75

A
ve

ra
ge

 P
ric

in
g

T
im

e
(s

)

Lower Bound (x 1000000)

hybrid moderate

 0

 10

 20

 30

 40

 50

 60

 70

 1.72 1.725 1.73 1.735 1.74 1.745 1.75

E
la

ps
ed

 T
im

e
(m

in
)

Lower Bound (x 1000000)

hybrid moderate

(b) Hybrid versus moderate augmentations on instance kroB150. The filled circle indicates the
last iteration of the hybrid strategy in which aggressive augmentations were performed (tred =
10).

Figure 3.8: Modes of augmentation: impact on pricing and elapsed times.

3.6 Conclusions 65

Although those elements are very important for the good performance of BP, the

main sources of efficiency of our method are the new features for the ng-path relaxation.

For example, the new dominance rules typically speeds up the labeling algorithm by

factors between 4 and 8. Furthermore, the proposed generalized definition of ng-sets in

terms of arcs opened the way for less harmful augmentations of ng-memories (moderate

augmentations), in contrast to the vertex-based augmentations introduced by Roberti and

Mingozzi, (2014) (aggressive augmentations). Nevertheless, our experiments showed that

a good strategy for augmenting ng-memories is to start with aggressive augmentations, and

then switch to moderate ones if the pricing time is too large. The proposed ng-memories

reduction algorithm is beneficial in this transition, reverting previous augmentations that

are not needed to attain the current bound. We should mention that we did try to use

this reduction of ng-memory more frequently, but it is time-consuming for large instances

and affects the convergence of Algorithm 9. Still, we believe that the combination of

augmentations and reductions of ng-memories deserves further investigation.

All the 9 instances not solved by Roberti and Mingozzi, (2014) were solved. Also,

BP could solve the larger instances u159, si175, br180 and rat195, but could not solve

d198, kroA200 and kroB200. In general, MLP instances with about 150 vertices (or more)

are still very challenging. As for future works, we intend to investigate the impact of the

new features for the ng-path relaxation on other routing problems.

Chapter 4

Conclusions

This thesis presented theoretical and practical contributions on the use of column gen-

eration over set partitioning formulations. The contributions are generic and can be

potentially applied for solving several combinatorial problems. In particular, they are

closely related to state-of-the-art exact algorithms for several vehicle routing problems.

On the theoretical side, we studied the set packing and set partitioning polytopes

associated with a binary n-row matrix having all 2n − 1 non-empty columns, denoted as

CSPP≤(n) and CSPP=(n), respectively. The motivation for investigating these polytopes

comes from the application of column generation for solving set partitioning problems.

We showed the precise relation between these polytopes: with very few exceptions, every

facet-inducing inequality for CSPP≤(n) is also facet-inducing for CSPP=(n), and vice-

versa. Thus, the study of CSPP=(n) reduces to the study of CSPP≤(n). For example,

this property is useful for proving that an inequality is facet-inducing for CSPP=(n) by

showing that it is facet-inducing for CSPP≤(n), which is often easier. We also studied

rank 1 facets of these polytopes. In detail, we characterized the set of multipliers that

induce rank 1 clique facets and described infinite families of multipliers that induce facets

for arbitrarily large dimensions. Regarding these theoretical contributions, promising

research avenues include:

• Investigating whether a modification of Theorem 2.1 holds for more general cases –

a promising case is when the matrix A contains all singleton columns.

• Investigating the practical behavior of the new rank 1 facets found in this work.

On the practical side, this thesis presented a new branch-and-price algorithm for

the Minimum Latency Problem, a variant of the classical Traveling Salesman Problem.

4 Conclusions 67

The proposed algorithm relies on well-known elements of efficient exact methods for rout-

ing problems, such as dual stabilization, reduced cost fixing, route enumeration and strong

branching. However, the main sources of efficiency of our method are the new features for

the ng-path relaxation, which is the state-of-the-art route relaxation employed by several

exact algorithms for routing problems. The proposed method was capable of solving all

the instances solved by Roberti and Mingozzi, (2014), besides all the 9 instances that they

could not solve. Also, larger instances with up to 200 (never considered before by exact

methods) could also be solved. As for future works, we intend to investigate the impact

of the new features for the ng-path relaxation on other routing problems.

References

Abeledo, H. et al. “The time dependent traveling salesman problem: polyhedra and

algorithm”. In: Mathematical Programming Computation 5.1 (2013), pp. 27–55 (cit.

on pp. 35, 36, 40).

Achterberg, T. “Constraint integer programming”. PhD thesis. Technische Universitat

Berlin, 2007 (cit. on p. 53).

Afrati, Foto et al. “The complexity of the travelling repairman problem”. In: RAIRO-

Theor. Inf. Appl. 20.1 (1986), pp. 79–87 (cit. on pp. 35, 36).

Araóz, J. “Polyhedral Neopolarities”. PhD thesis. University of Waterloo, 1974 (cit. on

p. 17).

Archer, A. and A. Blasiak. “Improved approximation algorithms for the minimum

latency problem via prize-collecting strolls”. In: Proceedings of the 21th Annual

ACM-SIAM Symposium on Discrete Algorithms. Austin, Texas, 2010, pp. 429–447

(cit. on p. 36).

Archer, A. and D. P. Williamson. “Faster approximation algorithms for the minimum

latency problem”. In: Proceedings of the 40th Annual ACM-SIAM Symposium on

Discrete algorithms. Baltimore, Maryland, 2003, pp. 88–96 (cit. on p. 35).

Archetti, C., N. Bianchessi, and M. G. Speranza. “A column generation approach

for the split delivery vehicle routing problem”. In: Networks 58.4 (2011), pp. 241–

254 (cit. on p. 13).

Balas, E. and E. Zemel. “Graph substitution and set packing polytopes”. In: Networks

7.3 (1977), pp. 267–284 (cit. on p. 16).

REFERENCES 69

Balas, E. “Some Valid Inequalities for the Set Partitioning Problem”. In: Annals of

Discrete Mathematics 1 (1977), pp. 13 –47 (cit. on pp. 17, 26).

Balas, E. and M. W. Padberg. “Set Partitioning: A Survey”. In: SIAM Review 18.4

(1976), pp. 710–760 (cit. on p. 17).

Balas, E. and E. Zemel. “Critical Cutsets of Graphs and Canonical Facets of Set-

Packing Polytopes”. In: Mathematics of Operations Research 2.1 (1977), pp. 15–19

(cit. on p. 16).

Baldacci, R., A. Mingozzi, and R. Roberti. “New Route Relaxation and Pricing

Strategies for the Vehicle Routing Problem”. In: Operations Research 59.5 (2011),

pp. 1269–1283 (cit. on pp. 36, 37, 40).

Barahona, F. and A. R. Mahjoub. “Compositions of Graphs and Polyhedra II: Stable

Sets”. In: SIAM Journal on Discrete Mathematics 7.3 (1994), pp. 359–371 (cit. on

p. 16).

— “Compositions of Graphs and Polyhedra III: Graphs with No W4 Minor”. In: SIAM

Journal on Discrete Mathematics 7.3 (1994), pp. 372–389 (cit. on p. 16).

Bianco, L., A. Mingozzi, and S. Ricciardelli. “The traveling salesman problem with

cumulative costs”. In: Networks 23.2 (1993), pp. 81–91 (cit. on pp. 35, 36).

Bigras, L.-P., M. Gamache, and G. Savard. “The time-dependent traveling salesman

problem and single machine scheduling problems with sequence dependent setup

times”. In: Discrete Optimization 5.4 (2008), pp. 685–699 (cit. on p. 36).

Blum, A. et al. “The minimum latency problem”. In: Proceedings of the 26th An-

nual ACM Symposium on Theory of Computing. Montreal, Quebec, Canada, 1994,

pp. 163–171 (cit. on p. 36).

Cánovas, L., M. Landete, and A. Marín. “New facets for the set packing polytope”.

In: Operations Research Letters 27.4 (2000), pp. 153 –161 (cit. on p. 16).

Caprara, A. and M. Fischetti. “{0, 1/2}-Chvátal-Gomory cuts”. In: Mathematical

Programming 74.3 (1996), pp. 221–235 (cit. on p. 19).

REFERENCES 70

Chaudhuri, K. et al. “Paths, trees, and minimum latency tours”. In: Proceedings of the

44th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2003.

Cambridge, MA, USA, 2003, pp. 36–45 (cit. on p. 36).

Chen, D.-S., R. G. Batson, and Y. Dang. Applied Integer Programming. John Wiley

& Sons, Inc., 2009, pp. 334–358 (cit. on p. 13).

Cheng, E. and W. H. Cunningham. “Wheel inequalities for stable set polytopes”. In:

Mathematical Programming 77.2 (1997), pp. 389–421 (cit. on p. 16).

Cheng, E. and S. de Vries. “On the Facet-Inducing Antiweb-Wheel Inequalities for

Stable Set Polytopes”. In: SIAM Journal on Discrete Mathematics 15.4 (2002),

pp. 470–487 (cit. on p. 16).

Christofides, N., A. Mingozzi, and P. Toth. “Exact algorithms for the vehicle routing

problem, based on spanning tree and shortest path relaxations”. In: Mathematical

Programming 20.1 (1981), pp. 255–282 (cit. on p. 40).

Chvátal, V. “On certain polytopes associated with graphs”. In: Journal of Combinatorial

Theory, Series B 18.2 (1975), pp. 138 –154 (cit. on p. 16).

Chvátal, V. “Edmonds polytopes and a hierarchy of combinatorial problems”. In: Dis-

crete Mathematics 4.4 (1973), pp. 305 –337 (cit. on p. 19).

Corrêa, R. C. et al. “General cut-generating procedures for the stable set polytope”.

In: Discrete Applied Mathematics (2017), pp. – (cit. on p. 17).

Dash, S., R. Fukasawa, and O. Günlük. “On a generalization of the master cyclic

group polyhedron”. In: Mathematical Programming 125.1 (2010), pp. 1–30 (cit. on

p. 17).

Desaulniers, G. “Branch-and-Price-and-Cut for the Split-Delivery Vehicle Routing

Problem with Time Windows”. In: Operations Research 58.1 (2010), pp. 179–192

(cit. on p. 13).

Dror, M. “Note on the Complexity of the Shortest Path Models for Column Generation

in VRPTW”. In: Operations Research 42.5 (1994), pp. 977–978 (cit. on p. 39).

REFERENCES 71

Dunkel, J. and A. S. Schulz. “The Gomory-Chvátal Closure of a Nonrational Poly-

tope Is a Rational Polytope”. In: Mathematics of Operations Research 38.1 (2013),

pp. 63–91 (cit. on p. 19).

Eisenbrand, F. “NOTE – On the Membership Problem for the Elementary Closure of

a Polyhedron”. In: Combinatorica 19.2 (1999), pp. 297–300 (cit. on p. 19).

Fischetti, M., G. Laporte, and S. Martello. “The delivery man problem and cu-

mulative matroids”. In: Operations Research 41.6 (1993), pp. 1055–1064 (cit. on

p. 36).

Fox, K. R., B. Gavish, and S. C. Graves. “Technical Note-An n-Constraint For-

mulation of the (Time-Dependent) Traveling Salesman Problem”. In: Operations

Research 28.4 (1980), pp. 1018–1021 (cit. on p. 36).

García, A., P. Jodrá, and J. Tejel. “A note on the traveling repairman problem”. In:

Networks 40.1 (2002), pp. 27–31 (cit. on p. 36).

Giles, R. and L. Trotter. “On stable set polyhedra for K1,3-free graphs”. In: Journal of

Combinatorial Theory, Series B 31.3 (1981), pp. 313 –326 (cit. on p. 16).

Godinho, M. T., L. Gouveia, and P. Pesneau. “Natural and extended formulations

for the Time-Dependent Traveling Salesman Problem”. In: Discrete Applied Math-

ematics 164, Part 1 (2014). Combinatorial Optimization, pp. 138 –153 (cit. on

p. 36).

Gomory, R. E. “An algorithm for integer solutions to linear programs”. In: Recent Ad-

vances in Mathematical Programming. Ed. by R. Graves and P. Wolfe. McGraw-Hil,

New York, 1963, pp. 269–302 (cit. on p. 19).

Irnich, S. “Resource extension functions: properties, inversion, and generalization to

segments”. In: OR Spectrum 30.1 (2008), pp. 113–148 (cit. on p. 39).

Irnich, S. and G. Desaulniers. “Shortest path problems with resource constraints”. In:

Column generation (2005), pp. 33–65 (cit. on p. 39).

REFERENCES 72

Irnich, S. and D. Villeneuve. “The Shortest-Path Problem with Resource Constraints

and k-Cycle Elimination for k ≥ 3”. In: INFORMS Journal on Computing 18.3

(2006), pp. 391–406 (cit. on p. 40).

Irnich, S. et al. “Path-Reduced Costs for Eliminating Arcs in Routing and Scheduling”.

In: INFORMS Journal on Computing 22.2 (2010), pp. 297–313 (cit. on p. 51).

Jepsen, M. et al. “Subset-Row Inequalities Applied to the Vehicle-Routing Problem

with Time Windows”. In: Operations Research 56.2 (2008), pp. 497–511 (cit. on

p. 18).

Kullmann, O. “Fundaments of branching heuristics”. In: Handbook of Satisfiability. Ed.

by A. Biere et al. Vol. 185. Frontiers in Artificial Intelligence and Applications.

IOS Press, 2009, pp. 205–244 (cit. on p. 52).

Letchford, A. N., S. Pokutta, and A. S. Schulz. “On the membership problem for

the {0, 1/2}-closure”. In: Operations Research Letters 39.5 (2011), pp. 301 –304

(cit. on p. 19).

Lucena, A. “Time-dependent traveling salesman problem - The deliveryman case”. In:

Networks 20.6 (1990), pp. 753–763 (cit. on p. 36).

Lysgaard, J. and S. Wøhlk. “A branch-and-cut-and-price algorithm for the cumulative

capacitated vehicle routing problem”. In: European Journal of Operational Research

236.3 (2014), pp. 800 –810 (cit. on p. 35).

Mahjoub, A. R. “On the stable set polytope of a series-parallel graph”. In: Mathematical

Programming 40.1 (1988), pp. 53–57 (cit. on p. 16).

Martinelli, R., D. Pecin, and M. Poggi. “Efficient elementary and restricted non-

elementary route pricing”. In: European Journal of Operational Research 239.1

(2014), pp. 102 –111 (cit. on pp. 40, 46, 47, 53).

Méndez-Díaz, I., P. Zabala, and A. Lucena. “A new formulation for the traveling

deliveryman problem”. In: Discrete Applied Mathematics 156.17 (2008), pp. 3223–

3237 (cit. on pp. 35, 36).

REFERENCES 73

Mladenović, N., D. Urošević, and S. Hanafi. “Variable neighborhood search for the

travelling deliveryman problem”. In: 4OR 11.1 (2013), pp. 57–73 (cit. on p. 37).

Nemhauser, G. L. and L. E. Trotter. “Properties of vertex packing and independence

system polyhedra”. In: Mathematical Programming 6.1 (1974), pp. 48–61 (cit. on

p. 16).

Ngueveu, S., C. Prins, and R. Wolfler Calvo. “An effective memetic algorithm for

the cumulative capacitated vehicle routing problem”. In: Computers & Operations

Research 37.11 (2010), pp. 1877–1885 (cit. on p. 37).

Nucamendi-Guillén, S. et al. “A mixed integer formulation and an efficient meta-

heuristic procedure for the k-Travelling Repairmen Problem”. In: Journal of the

Operational Research Society 67.8 (2016), pp. 1121–1134 (cit. on p. 35).

Padberg, M. W. “On the Complexity of Set Packing Polyhedra”. In: Annals of Discrete

Mathematics 1 (1977), pp. 421 –434 (cit. on p. 16).

— “On the facial structure of set packing polyhedra”. In: Mathematical Programming

5.1 (1973), pp. 199–215 (cit. on p. 16).

Pecin, D. et al. “Improved branch-cut-and-price for capacitated vehicle routing”. In:

Mathematical Programming Computation 9.1 (2017), pp. 61–100 (cit. on pp. 13,

18, 20, 51–53).

Pecin, D. et al. “Limited memory Rank-1 Cuts for Vehicle Routing Problems”. In:

Operations Research Letters 45.3 (2017), pp. 206 –209 (cit. on pp. 17–19, 26).

Pecin, D. et al. “New Enhancements for the Exact Solution of the Vehicle Routing

Problem with Time Windows”. In: INFORMS Journal on Computing 29.3 (2017),

pp. 489–502 (cit. on pp. 13, 18, 20, 26, 44).

Pessoa, A. et al. “Automation and combination of linear-programming based stabi-

lization techniques in column generation”. In: INFORMS Journal on Computing

Forthcoming (2017) (cit. on p. 50).

REFERENCES 74

Pessoa, A. et al. “Exact algorithm over an arc-time-indexed formulation for parallel

machine scheduling problems”. In: Mathematical Programming Computation 2.3

(2010), pp. 259–290 (cit. on p. 13).

Picard, J.-C. and M. Queyranne. “The Time-Dependent Traveling Salesman Problem

and Its Application to the Tardiness Problem in One-Machine Scheduling”. In:

Operations Research 26.1 (1978), pp. 86–110 (cit. on p. 36).

Poggi de Aragão, M. and E. Uchoa. “Integer program reformulation for robust

branch-and-cut-and-price”. In: Annals of Mathematical Programming in Rio. Ed.

by L. Wolsey. Búzios, Brazil, 2003, pp. 56–61 (cit. on p. 19).

Rebennack, S. et al. “A Branch and Cut solver for the maximum stable set problem”.

In: Journal of Combinatorial Optimization 21.4 (2011), pp. 434–457 (cit. on p. 16).

Righini, G. and M. Salani. “New Dynamic Programming Algorithms for the Re-

source Constrained Elementary Shortest Path Problem”. In: Networks 51.3 (2008),

pp. 155–170 (cit. on pp. 46, 47).

— “Symmetry helps: Bounded bi-directional dynamic programming for the elemen-

tary shortest path problem with resource constraints”. In: Discrete Optimization

3.3 (2006), pp. 255 –273 (cit. on p. 54).

Rivera, J. C., H. M. Afsar, and C. Prins. “Mathematical formulations and exact

algorithm for the multitrip cumulative capacitated single-vehicle routing problem”.

In: European Journal of Operational Research 249.1 (2016), pp. 93 –104 (cit. on

p. 35).

Roberti, R. and A. Mingozzi. “Dynamic ng-Path Relaxation for the Delivery Man

Problem”. In: Transportation Science 48.3 (2014), pp. 413–424 (cit. on pp. 13, 35–

38, 46, 47, 51, 52, 56–58, 60, 63, 65, 67).

Røpke, S. “Branching decisions in branch-and-cut-and-price algorithms for vehicle rout-

ing problems”. In: Presentation in Column Generation 2012 (2012) (cit. on p. 52).

REFERENCES 75

Rossi, F and S Smriglio. “A branch-and-cut algorithm for the maximum cardinality

stable set problem”. In: Operations Research Letters 28.2 (2001), pp. 63 –74 (cit. on

p. 16).

S. Xavier, Álinson and M. Campêlo. “A New Facet Generating Procedure for the

Stable Set Polytope”. In: Electronic Notes in Discrete Mathematics 37 (2011),

pp. 183 –188 (cit. on p. 17).

Sahni, S. and T. Gonzalez. “P-complete approximation problems”. In: Journal of The

ACM 23.3 (3 1976), pp. 555–565 (cit. on p. 35).

Salehipour, A. et al. “Efficient GRASP+VND and GRASP+VNS metaheuristics for

the traveling repairman problem”. In: 4OR 9.2 (2011), pp. 189–209 (cit. on p. 37).

Sherali, H. D. and Y. Lee. “Tighter representations for set partitioning problems”. In:

Discrete Applied Mathematics 68.1 (1996), pp. 153 –167 (cit. on p. 17).

Silva, M. M. et al. “A simple and effective metaheuristic for the Minimum Latency

Problem”. In: European Journal of Operational Research 221.3 (2012), pp. 513 –

520 (cit. on pp. 35, 37, 57, 59).

Sitters, R. “The minimum latency problem is NP-hard for weighted trees”. In: Proceed-

ings of the 9th International Conference on Integer Programming and Combinato-

rial Optimization, IPCO 2002. Cambridge, MA, USA, 2002, pp. 230–239 (cit. on

pp. 35, 36).

Sze, J. F., S. Salhi, and N. Wassan. “The cumulative capacitated vehicle routing prob-

lem with min-sum and min-max objectives: An effective hybridisation of adaptive

variable neighbourhood search and large neighbourhood search”. In: Transportation

Research Part B: Methodological 101 (2017), pp. 162 –184 (cit. on p. 35).

Toth, P. et al. Vehicle Routing: Problems, Methods, and Applications, Second Edition.

Philadelphia, PA, USA: Society for Industrial and Applied Mathematics, 2014 (cit.

on pp. 13, 14).

Trotter, L. “A class of facet producing graphs for vertex packing polyhedra”. In: Discrete

Mathematics 12.4 (1975), pp. 373 –388 (cit. on p. 16).

REFERENCES 76

Tsitsiklis, J. N. “Special cases of traveling salesman and repairman problems with time

windows”. In: Networks 22.3 (1992), pp. 263–282 (cit. on p. 35).

Van Eijl, C. A. A polyhedral approach to the delivery man problem. Tech. rep. COSOR

95-19. Eindhoven University of Technology, 1995 (cit. on p. 36).

Vanderbeck, F., R. Sadykov, and I. Tahiri. BaPCod — a generic Branch-And-Price

Code. Tech. rep. 2017 (cit. on p. 56).

Wolsey, L. A. “Further facet generating procedures for vertex packing polytopes”. In:

Mathematical Programming 11.1 (1976), pp. 158–163 (cit. on p. 16).

77

APPENDIX A -- MLP Solutions

Optimal solution of dantzig42

depot → 1 → 41 → 40 → 39 → 38 → 37 → 36 → 34 → 33 → 32 → 31 → 30 → 29 →

28 → 27 → 25 → 26 → 23 → 24 → 7 → 6 → 5 → 4 → 3 → 2 → 8 → 9 → 11 → 10 →

22 → 21 → 20 → 19 → 18 → 17 → 15 → 14 → 13 → 12 → 16 → 35 → depot

Optimal solution of swiss42

depot → 1 → 6 → 4 → 3 → 27 → 2 → 28 → 30 → 29 → 8 → 9 → 23 → 41 → 10 → 25

→ 11 → 12 → 18 → 26 → 5 → 13 → 19 → 14 → 16 → 15 → 37 → 7 → 17 → 31 → 36

→ 35 → 20 → 33 → 34 → 32 → 38 → 22 → 39 → 21 → 40 → 24 → depot

Optimal solution of att48

depot → 8 → 37 → 30 → 43 → 17 → 6 → 27 → 5 → 36 → 18 → 26 → 16 → 42 → 29

→ 35 → 45 → 32 → 19 → 46 → 20 → 12 → 24 → 13 → 22 → 10 → 11 → 14 → 39 →

21 → 15 → 2 → 33 → 28 → 4 → 47 → 38 → 31 → 23 → 9 → 44 → 34 → 3 → 25 → 41

→ 1 → 40 → 7 → depot

Optimal solution of gr48

depot → 12 → 15 → 10 → 47 → 28 → 6 → 27 → 45 → 17 → 33 → 22 → 24 → 2 → 18

→ 3 → 29 → 37 → 19 → 34 → 1 → 44 → 42 → 46 → 36 → 23 → 9 → 11 → 30 → 4

→ 32 → 7 → 21 → 20 → 31 → 26 → 16 → 8 → 13 → 35 → 5 → 25 → 14 → 39 → 38

→ 41 → 40 → 43 → depot

Optimal solution of hk48

depot → 1 → 14 → 47 → 25 → 28 → 31 → 24 → 27 → 12 → 21 → 11 → 17 → 13 →

37 → 6 → 46 → 7 → 5 → 33 → 35 → 39 → 9 → 8 → 22 → 2 → 4 → 40 → 23 → 34 →

16 → 30 → 19 → 10 → 15 → 41 → 3 → 45 → 44 → 38 → 43 → 26 → 36 → 18 → 42

→ 20 → 32 → 29 → depot

Optimal solution of eil51

depot → 21 → 1 → 15 → 49 → 8 → 48 → 4 → 37 → 10 → 31 → 26 → 50 → 45 → 11

→ 46 → 17 → 3 → 16 → 36 → 43 → 14 → 44 → 32 → 9 → 29 → 33 → 20 → 28 → 19

Appendix A -- MLP Solutions 78

→ 34 → 35 → 2 → 27 → 30 → 25 → 7 → 47 → 5 → 22 → 6 → 42 → 23 → 13 → 24

→ 12 → 40 → 18 → 39 → 41 → 38 → depot

Optimal solution of berlin52

depot → 21 → 31 → 48 → 35 → 34 → 33 → 38 → 39 → 36 → 37 → 47 → 23 → 4 →

14 → 5 → 3 → 24 → 45 → 43 → 15 → 49 → 19 → 22 → 29 → 1 → 6 → 41 → 20 → 30

→ 17 → 2 → 44 → 18 → 40 → 7 → 8 → 9 → 42 → 32 → 50 → 11 → 27 → 26 → 25

→ 46 → 12 → 13 → 51 → 10 → 28 → 16 → depot

Optimal solution of brazil58

depot → 17 → 43 → 57 → 23 → 56 → 11 → 26 → 42 → 48 → 46 → 50 → 51 → 9 →

34 → 40 → 1 → 53 → 54 → 47 → 2 → 28 → 35 → 16 → 25 → 18 → 5 → 27 → 13 →

32 → 44 → 55 → 45 → 33 → 14 → 36 → 20 → 38 → 10 → 21 → 7 → 4 → 22 → 29 →

12 → 39 → 24 → 8 → 31 → 19 → 52 → 49 → 3 → 15 → 37 → 41 → 30 → 6 → depot

Optimal solution of st70

depot → 35 → 28 → 12 → 69 → 30 → 68 → 58 → 62 → 65 → 21 → 37 → 22 → 15 →

46 → 36 → 57 → 49 → 9 → 51 → 59 → 11 → 33 → 20 → 16 → 42 → 40 → 5 → 41 →

17 → 3 → 1 → 6 → 31 → 2 → 7 → 27 → 13 → 19 → 29 → 43 → 67 → 8 → 26 → 45

→ 39 → 60 → 44 → 24 → 38 → 61 → 53 → 32 → 66 → 47 → 10 → 55 → 64 → 50 →

4 → 52 → 56 → 14 → 23 → 18 → 25 → 48 → 54 → 34 → 63 → depot

Optimal solution of eil76

depot → 72 → 61 → 27 → 73 → 1 → 29 → 47 → 28 → 44 → 26 → 51 → 33 → 45 → 7

→ 34 → 6 → 66 → 25 → 75 → 74 → 3 → 67 → 5 → 50 → 16 → 11 → 39 → 2 → 43

→ 31 → 8 → 38 → 71 → 57 → 9 → 37 → 64 → 65 → 10 → 52 → 13 → 18 → 53 → 12

→ 56 → 14 → 4 → 36 → 19 → 69 → 59 → 70 → 68 → 35 → 46 → 20 → 60 → 21 →

63 → 41 → 42 → 40 → 55 → 22 → 62 → 32 → 15 → 48 → 23 → 17 → 49 → 24 → 54

→ 30 → 58 → depot

Optimal solution of pr76

depot → 1 → 2 → 3 → 4 → 19 → 18 → 30 → 29 → 28 → 25 → 26 → 27 → 42 → 41

→ 53 → 52 → 51 → 48 → 49 → 50 → 65 → 64 → 55 → 54 → 57 → 56 → 62 → 63 →

61 → 60 → 58 → 59 → 40 → 39 → 33 → 32 → 31 → 34 → 38 → 37 → 35 → 36 → 17

→ 16 → 15 → 14 → 13 → 12 → 11 → 10 → 9 → 8 → 5 → 6 → 7 → 74 → 75 → 22 →

21 → 20 → 24 → 23 → 45 → 44 → 43 → 47 → 46 → 68 → 67 → 66 → 69 → 70 → 71

→ 72 → 73 → depot

Optimal solution of gr96

Appendix A -- MLP Solutions 79

depot → 29 → 30 → 31 → 35 → 36 → 37 → 38 → 39 → 40 → 41 → 42 → 48 → 49 →

52 → 51 → 50 → 54 → 55 → 56 → 58 → 70 → 71 → 72 → 74 → 73 → 83 → 84 → 85

→ 86 → 89 → 88 → 87 → 77 → 76 → 75 → 67 → 66 → 65 → 63 → 62 → 61 → 60 →

59 → 24 → 23 → 22 → 25 → 21 → 20 → 18 → 17 → 19 → 16 → 15 → 14 → 13 → 12

→ 11 → 9 → 8 → 7 → 6 → 5 → 4 → 3 → 2 → 1 → 28 → 34 → 33 → 32 → 43 → 44

→ 45 → 46 → 47 → 53 → 57 → 68 → 69 → 81 → 80 → 82 → 90 → 91 → 92 → 94 →

93 → 95 → 64 → 27 → 26 → 10 → 78 → 79 → depot

Optimal solution of rat99

depot → 1 → 9 → 10 → 11 → 2 → 3 → 13 → 4 → 5 → 6 → 7 → 8 → 17 → 16 → 15

→ 14 → 22 → 23 → 24 → 25 → 34 → 35 → 43 → 33 → 42 → 41 → 40 → 31 → 30 →

29 → 28 → 36 → 37 → 47 → 38 → 39 → 49 → 50 → 51 → 52 → 53 → 62 → 61 → 60

→ 59 → 48 → 58 → 57 → 56 → 55 → 64 → 65 → 66 → 67 → 68 → 69 → 70 → 71 →

80 → 79 → 78 → 77 → 76 → 75 → 83 → 84 → 85 → 86 → 87 → 88 → 89 → 98 → 97

→ 96 → 95 → 94 → 93 → 92 → 91 → 90 → 82 → 81 → 72 → 74 → 73 → 63 → 54 →

46 → 45 → 27 → 18 → 19 → 12 → 21 → 20 → 32 → 44 → 26 → depot

Optimal solution of kroA100

depot → 62 → 5 → 48 → 89 → 78 → 52 → 87 → 15 → 21 → 93 → 17 → 23 → 37 →

35 → 83 → 9 → 71 → 20 → 73 → 58 → 16 → 14 → 10 → 31 → 44 → 90 → 97 → 22

→ 76 → 59 → 61 → 34 → 85 → 26 → 11 → 19 → 56 → 8 → 6 → 54 → 82 → 33 → 28

→ 45 → 42 → 2 → 13 → 70 → 40 → 99 → 47 → 29 → 38 → 95 → 77 → 51 → 4 → 36

→ 32 → 75 → 12 → 94 → 81 → 49 → 43 → 1 → 53 → 39 → 63 → 68 → 72 → 67 →

84 → 80 → 24 → 86 → 50 → 60 → 57 → 66 → 27 → 92 → 91 → 7 → 41 → 88 → 30

→ 79 → 55 → 96 → 74 → 18 → 3 → 64 → 25 → 65 → 69 → 98 → 46 → depot

Optimal solution of kroB100

depot → 94 → 89 → 20 → 9 → 67 → 85 → 48 → 37 → 19 → 79 → 29 → 74 → 68 →

25 → 99 → 55 → 61 → 4 → 66 → 39 → 38 → 69 → 52 → 72 → 84 → 92 → 10 → 2 →

27 → 90 → 96 → 98 → 7 → 28 → 75 → 58 → 31 → 97 → 11 → 70 → 45 → 24 → 8 →

26 → 60 → 34 → 93 → 56 → 6 → 83 → 57 → 51 → 53 → 87 → 22 → 21 → 54 → 76

→ 23 → 17 → 44 → 35 → 95 → 18 → 91 → 40 → 16 → 77 → 12 → 62 → 30 → 47 →

81 → 32 → 14 → 5 → 3 → 82 → 63 → 13 → 41 → 1 → 15 → 49 → 42 → 88 → 86 →

65 → 73 → 59 → 33 → 71 → 36 → 64 → 78 → 80 → 46 → 43 → 50 → depot

Optimal solution of kroC100

depot → 52 → 84 → 14 → 12 → 78 → 63 → 19 → 41 → 54 → 66 → 30 → 46 → 5 →

53 → 74 → 21 → 7 → 16 → 24 → 89 → 33 → 57 → 97 → 87 → 27 → 38 → 37 → 70

Appendix A -- MLP Solutions 80

→ 71 → 82 → 61 → 49 → 94 → 93 → 90 → 75 → 69 → 22 → 34 → 1 → 67 → 29 →

88 → 40 → 58 → 72 → 2 → 68 → 13 → 98 → 18 → 91 → 9 → 35 → 56 → 73 → 99 →

32 → 44 → 80 → 96 → 95 → 86 → 51 → 10 → 83 → 47 → 65 → 43 → 62 → 50 → 15

→ 36 → 8 → 77 → 81 → 6 → 25 → 60 → 31 → 23 → 45 → 28 → 17 → 48 → 92 → 3

→ 59 → 11 → 39 → 26 → 64 → 79 → 76 → 20 → 85 → 4 → 42 → 55 → depot

Optimal solution of kroD100

depot → 49 → 33 → 80 → 37 → 65 → 7 → 51 → 45 → 75 → 79 → 77 → 30 → 98 →

44 → 32 → 67 → 13 → 64 → 85 → 95 → 15 → 62 → 53 → 90 → 76 → 42 → 63 → 84

→ 58 → 2 → 82 → 39 → 5 → 17 → 24 → 19 → 9 → 8 → 54 → 25 → 86 → 91 → 47

→ 1 → 99 → 29 → 34 → 50 → 18 → 36 → 61 → 4 → 52 → 59 → 43 → 92 → 3 → 70

→ 38 → 72 → 14 → 83 → 40 → 23 → 26 → 87 → 78 → 12 → 93 → 31 → 96 → 97 →

48 → 69 → 88 → 89 → 16 → 10 → 22 → 41 → 21 → 57 → 28 → 35 → 66 → 74 → 6

→ 73 → 60 → 71 → 56 → 81 → 46 → 11 → 27 → 55 → 94 → 20 → 68 → depot

Optimal solution of kroE100

depot → 73 → 20 → 6 → 75 → 11 → 31 → 57 → 62 → 87 → 34 → 39 → 24 → 53 →

44 → 98 → 16 → 83 → 48 → 61 → 55 → 19 → 14 → 22 → 63 → 94 → 35 → 58 → 97

→ 50 → 68 → 46 → 2 → 45 → 25 → 78 → 15 → 72 → 60 → 70 → 80 → 88 → 13 →

51 → 43 → 71 → 67 → 37 → 32 → 21 → 38 → 42 → 85 → 18 → 93 → 17 → 23 → 28

→ 99 → 77 → 52 → 33 → 36 → 76 → 84 → 95 → 10 → 1 → 3 → 81 → 66 → 26 → 86

→ 40 → 74 → 91 → 69 → 5 → 54 → 90 → 92 → 29 → 89 → 47 → 41 → 4 → 7 → 64

→ 96 → 9 → 79 → 56 → 30 → 65 → 12 → 8 → 59 → 49 → 27 → 82 → depot

Optimal solution of rd100

depot → 59 → 7 → 68 → 14 → 62 → 85 → 96 → 66 → 12 → 48 → 20 → 74 → 81 →

84 → 13 → 11 → 3 → 31 → 8 → 25 → 73 → 19 → 77 → 32 → 9 → 26 → 91 → 55 →

45 → 49 → 72 → 16 → 71 → 69 → 37 → 53 → 18 → 36 → 27 → 92 → 76 → 94 → 58

→ 75 → 57 → 87 → 83 → 30 → 65 → 97 → 93 → 5 → 78 → 52 → 98 → 46 → 56 →

35 → 10 → 60 → 4 → 80 → 79 → 64 → 89 → 50 → 82 → 47 → 29 → 21 → 40 → 33

→ 6 → 41 → 23 → 24 → 42 → 39 → 54 → 95 → 38 → 99 → 43 → 28 → 34 → 22 → 1

→ 88 → 15 → 44 → 51 → 63 → 90 → 67 → 70 → 17 → 61 → 86 → 2 → depot

Optimal solution of eil101

depot → 68 → 26 → 100 → 52 → 57 → 12 → 93 → 5 → 95 → 98 → 58 → 92 → 84 →

60 → 15 → 90 → 99 → 97 → 36 → 91 → 94 → 96 → 86 → 1 → 56 → 40 → 21 → 74

→ 73 → 71 → 72 → 20 → 39 → 25 → 11 → 79 → 67 → 2 → 76 → 75 → 49 → 32 →

80 → 8 → 50 → 29 → 69 → 30 → 87 → 6 → 51 → 88 → 17 → 82 → 59 → 4 → 83 →

Appendix A -- MLP Solutions 81

16 → 44 → 7 → 81 → 47 → 46 → 18 → 10 → 61 → 9 → 62 → 89 → 31 → 19 → 65 →

70 → 34 → 33 → 77 → 78 → 28 → 23 → 53 → 54 → 24 → 3 → 55 → 38 → 66 → 22

→ 14 → 42 → 41 → 13 → 43 → 37 → 85 → 45 → 35 → 48 → 63 → 64 → 27 → depot

Optimal solution of lin105

depot → 1 → 5 → 6 → 9 → 10 → 14 → 102 → 20 → 21 → 28 → 31 → 30 → 29 → 27

→ 22 → 19 → 26 → 23 → 18 → 15 → 16 → 17 → 24 → 25 → 35 → 36 → 41 → 40 →

42 → 45 → 51 → 52 → 57 → 56 → 53 → 50 → 46 → 43 → 44 → 39 → 48 → 47 → 49

→ 54 → 55 → 58 → 104 → 61 → 62 → 69 → 68 → 73 → 74 → 80 → 72 → 75 → 79 →

85 → 78 → 76 → 71 → 66 → 67 → 70 → 77 → 81 → 82 → 83 → 84 → 90 → 91 → 95

→ 96 → 100 → 101 → 92 → 88 → 89 → 97 → 98 → 99 → 94 → 93 → 87 → 86 → 65

→ 64 → 60 → 59 → 38 → 37 → 34 → 33 → 13 → 12 → 3 → 4 → 8 → 7 → 2 → 11 →

32 → 103 → 63 → depot

Optimal solution of pr107

depot → 3 → 2 → 5 → 1 → 4 → 6 → 8 → 9 → 7 → 10 → 11 → 12 → 15 → 14 → 17

→ 13 → 16 → 19 → 22 → 23 → 20 → 18 → 21 → 24 → 27 → 26 → 29 → 25 → 28 →

31 → 34 → 35 → 32 → 30 → 33 → 36 → 39 → 38 → 41 → 37 → 40 → 43 → 46 → 47

→ 42 → 44 → 45 → 48 → 51 → 50 → 53 → 52 → 49 → 54 → 105 → 106 → 104 → 103

→ 55 → 100 → 98 → 101 → 102 → 99 → 97 → 94 → 96 → 95 → 56 → 93 → 57 → 90

→ 88 → 91 → 92 → 89 → 87 → 84 → 86 → 85 → 58 → 83 → 59 → 80 → 78 → 81 →

82 → 79 → 77 → 74 → 76 → 75 → 60 → 73 → 61 → 72 → 69 → 70 → 71 → 68 → 67

→ 64 → 66 → 65 → 63 → 62 → depot

Optimal solution of gr120

depot → 75 → 28 → 29 → 31 → 91 → 27 → 119 → 60 → 15 → 59 → 7 → 69 → 115 →

33 → 3 → 25 → 70 → 46 → 54 → 88 → 47 → 101→ 100→ 109→ 111→ 35 → 103 →

98 → 61 → 36 → 66 → 56 → 72 → 113 → 79 → 26 → 4 → 62 → 76 → 63 → 108 → 20

→ 92 → 1 → 114 → 10 → 22 → 8 → 81 → 2 → 118 → 102 → 37 → 6 → 55 → 40 →

41 → 97 → 16 → 117 → 48 → 49 → 45 → 19 → 106 → 112 → 68 → 64 → 42 → 67 →

78 → 57 → 99 → 32 → 51 → 107 → 24 → 18 → 17 → 84 → 116 → 30 → 65 → 21 →

85 → 93 → 80 → 58 → 14 → 77 → 44 → 13 → 74 → 43 → 86 → 73 → 104 → 71 → 39

→ 23 → 110 → 95 → 53 → 89 → 5 → 83 → 34 → 9 → 105 → 82 → 38 → 94 → 11 →

96 → 87 → 52 → 50 → 12 → 90 → depot

Optimal solution of pr124

depot → 7 → 1 → 2 → 3 → 5 → 31 → 30 → 29 → 33 → 32 → 61 → 65 → 64 → 62 →

63 → 67 → 68 → 69 → 70 → 71 → 72 → 73 → 74 → 75 → 76 → 77 → 78 → 79 → 91

Appendix A -- MLP Solutions 82

→ 92 → 93 → 94 → 95 → 96 → 97 → 98 → 99 → 123 → 122 → 121 → 120 → 119 →

118 → 117 → 116 → 115 → 114 → 83 → 81 → 80 → 82 → 66 → 59 → 60 → 58 → 35

→ 34 → 28→ 27→ 26 → 6 → 25→ 36→ 37 → 23 → 24→ 21→ 22 → 38 → 39 → 20

→ 19 → 40 → 41 → 42 → 43 → 44 → 18 → 17 → 16 → 15 → 8 → 9 → 10 → 11 → 12

→ 13 → 14 → 50 → 49 → 48 → 47 → 46 → 45 → 51 → 52 → 87 → 88 → 103 → 104

→ 105→ 106 → 107 → 108→ 109 → 110 → 111→ 112 → 113 → 102→ 101 → 100 →

90 → 89 → 84 → 85 → 86 → 53 → 54 → 55 → 56 → 57 → 4 → depot

Optimal solution of bier127

depot → 6 → 104 → 113 → 5 → 105 → 14 → 107 → 19 → 16 → 20 → 21 → 3 → 18 →

71 → 7 → 22 → 23 → 8 → 10 → 2 → 89 → 115 → 59 → 58 → 61 → 60 → 90 → 57 →

63→ 99→ 9→ 119→ 12→ 114→ 49→ 120→ 55→ 4 → 51→ 123→ 46→ 52→ 48

→ 117 → 47 → 44 → 102 → 43 → 53 → 56 → 50 → 1 → 15 → 13 → 11 → 30 → 26 →

29 → 40 → 35 → 36 → 34 → 39 → 42 → 33 → 41 → 38 → 37 → 25 → 24 → 32 → 121

→ 27 → 28 → 31 → 79 → 78 → 76 → 17 → 73 → 72 → 66 → 67 → 70 → 69 → 68 →

74 → 75 → 77 → 116 → 83 → 80 → 125 → 82 → 81 → 62 → 118 → 95 → 108→ 87 →

86 → 85 → 84 → 109 → 103 → 124 → 88 → 91 → 98 → 64 → 112 → 65 → 54 → 45 →

93 → 111 → 110 → 106 → 126 → 92 → 94 → 122 → 96 → 97 → 100 → 101 → depot

Optimal solution of ch130

depot → 40 → 38 → 70 → 129 → 49 → 1 → 117 → 79 → 45 → 19 → 92 → 36 → 21

→ 46 → 39 → 22 → 32 → 20 → 17 → 7 → 107 → 113 → 2 → 82 → 116 → 111 → 61

→ 104 → 127 → 15 → 44 → 75 → 108 → 60 → 128 → 123 → 25 → 96 → 69 → 106 →

126 → 103 → 42 → 33 → 16 → 30 → 26 → 18 → 99 → 14 → 28 → 23 → 115 → 94 →

78 → 86 → 11 → 80 → 102 → 76 → 93 → 88 → 109 → 97 → 67 → 47 → 24 → 112 →

31 → 35 → 83 → 118 → 110 → 122 → 100 → 81 → 56 → 8 → 55 → 64 → 51 → 74 →

73 → 98 → 72 → 91 → 37 → 105 → 57 → 48 → 52 → 119 → 59 → 50 → 41 → 43 →

54 → 121 → 13 → 9 → 95 → 66 → 12 → 77 → 120 → 125 → 29 → 58 → 89 → 124 →

84 → 65 → 27 → 114 → 4 → 10 → 63 → 68 → 85 → 87 → 6 → 62 → 53 → 34 → 3 →

71 → 90 → 5 → 101 → depot

Optimal solution of pr136

depot → 6 → 7 → 1 → 15 → 19 → 31 → 26 → 27 → 18 → 16 → 5 → 4 → 29 → 28 →

30 → 37 → 40 → 41 → 36 → 49 → 53 → 65 → 60 → 61 → 52 → 50 → 39 → 38 → 63

→ 62 → 64 → 71 → 73 → 72 → 97 → 96 → 98 → 85 → 83 → 74 → 75 → 70 → 82 →

86 → 99 → 104 → 109 → 108 → 119 → 117 → 105 → 107 → 106 → 131 → 130 → 135

→ 129→ 128 → 134 → 120→ 116 → 121 → 127→ 110 → 111 → 115→ 122 → 126 →

Appendix A -- MLP Solutions 83

133 → 125 → 124 → 132 → 123 → 114 → 102 → 113 → 112 → 103 → 100 → 91 → 90

→ 101 → 89 → 80 → 68 → 79 → 78 → 81 → 88 → 92 → 93 → 76 → 77 → 69 → 66 →

57 → 56 → 67 → 55 → 46 → 34 → 45 → 44 → 47 → 54 → 58 → 59 → 42 → 43 → 35

→ 32 → 24 → 20 → 13 → 23 → 22 → 33 → 21 → 12 → 3 → 11 → 10 → 2 → 9 → 8

→ 25 → 14 → 48 → 87 → 94 → 95 → 118 → 84 → 51 → 17 → depot

Optimal solution of gr137

depot → 1 → 2 → 3 → 4 → 17 → 18 → 6 → 5 → 8 → 7 → 9 → 28 → 29 → 35 → 36

→ 40 → 11 → 12 → 13 → 14 → 44 → 45 → 46 → 47 → 41 → 42 → 37 → 31 → 30 →

25 → 23 → 19 → 20 → 21 → 22 → 24 → 26 → 27 → 51 → 52 → 53 → 54 → 55 → 56

→ 60 → 57 → 58 → 59 → 61 → 62 → 63 → 64 → 65 → 66 → 67 → 68 → 69 → 70 →

88 → 89 → 90 → 92 → 93 → 94 → 96 → 97 → 98 → 99 → 100 → 101 → 102 → 103 →

115 → 113 → 112 → 111 → 110 → 117 → 118 → 119 → 120 → 121 → 122 → 123 →

126 → 127 → 128 → 129 → 130 → 131 → 132 → 133 → 134 → 82 → 83 → 84 → 80 →

79 → 78 → 77 → 76 → 75 → 73 → 50 → 49 → 48 → 43 → 38 → 32 → 33 → 34 → 39

→ 71 → 72 → 74 → 87 → 86 → 81 → 85 → 135 → 136 → 125 → 124 → 116 → 109 →

108 → 107 → 106 → 105 → 104 → 114 → 95 → 91 → 15 → 16 → 10 → depot

Optimal solution of pr144

depot → 2 → 3 → 4 → 5 → 1 → 27 → 28 → 29 → 26 → 25 → 34 → 35 → 24 → 23 →

21 → 22 → 36 → 37 → 38 → 39 → 7 → 6 → 8 → 9 → 10 → 11 → 18 → 19 → 20 → 17

→ 16 → 40 → 41 → 15 → 14 → 42 → 43 → 44 → 70 → 71 → 69 → 68 → 67 → 66 →

65 → 64 → 63 → 62 → 61 → 60 → 45 → 46 → 47 → 58 → 59 → 57 → 56 → 55 → 54

→ 53 → 52 → 51 → 50 → 49 → 48 → 78 → 79 → 80 → 81 → 82 → 83 → 84 → 85 →

109 → 108 → 107 → 106 → 105 → 104 → 103 → 86 → 87 → 102 → 101 → 100 → 99

→ 98 → 95 → 94 → 92 → 93 → 96 → 97 → 89 → 88 → 77 → 76 → 75 → 74 → 73 →

72 → 90 → 91 → 115 → 116 → 117 → 118 → 119 → 120 → 121 → 122 → 123 → 124

→ 125→ 126 → 127 → 128→ 129 → 133 → 132→ 131 → 130 → 114→ 134 → 135 →

136→ 137 → 138 → 139 → 140 → 141 → 142→ 143 → 110 → 111 → 112 → 113 → 30

→ 31 → 32 → 33 → 13 → 12 → depot

Optimal solution of ch150

depot → 97 → 102 → 33 → 86 → 75 → 72 → 47 → 62 → 29 → 83 → 6 → 7 → 88 →

95 → 34 → 92 → 125 → 32 → 104 → 110 → 15 → 132 → 14 → 77 → 58 → 78 → 120

→ 87 → 93 → 9 → 112 → 2 → 61 → 148 → 124 → 21 → 103 → 3 → 149 → 114 → 43

→ 70 → 44 → 127 → 67 → 118 → 90 → 105 → 12 → 73 → 122 → 30 → 26 → 128 →

143→ 146→ 48 → 71 → 79 → 13 → 121 → 76 → 130→ 31 → 22 → 37 → 66 → 42 →

Appendix A -- MLP Solutions 84

108 → 50 → 19 → 24 → 109 → 80 → 28 → 85 → 134 → 69 → 107 → 101 → 113 → 98

→ 18 → 1 → 36 → 5 → 27 → 8 → 41 → 119 → 46 → 138 → 39 → 52 → 11 → 23 →

117→ 126→ 68 → 35 → 60 → 10 → 147 → 129 → 16 → 65 → 59 → 38 → 56 → 40 →

100 → 115 → 133 → 137 → 53 → 91 → 45 → 89 → 55 → 82 → 140 → 57 → 54 → 49

→ 136 → 131 → 64 → 84 → 141 → 17 → 74 → 25 → 145 → 96 → 142 → 99 → 4 →

106 → 94 → 81 → 123 → 51 → 20 → 63 → 111 → 135 → 144 → 116 → 139 → depot

Optimal solution of kroA150

depot → 129 → 62 → 5 → 48 → 89 → 105 → 78 → 136 → 133 → 52 → 87 → 15 → 21

→ 93 → 17 → 23 → 37 → 103 → 110 → 101 → 98 → 35 → 126 → 58 → 140 → 73 →

20 → 16 → 14 → 10 → 31 → 108 → 90 → 97 → 22 → 109 → 76 → 59 → 61 → 149 →

34 → 85 → 26 → 11 → 19 → 56 → 6 → 116 → 8 → 144 → 86 → 124 → 50 → 60 → 24

→ 80 → 139 → 134 → 33 → 82 → 54 → 148 → 119 → 114 → 122 → 42 → 135 → 40

→ 70 → 99 → 13 → 2 → 45 → 28 → 131 → 111 → 106 → 29 → 120 → 100 → 38 → 95

→ 77 → 51 → 4 → 36 → 102 → 145 → 32 → 75 → 12 → 94 → 125 → 81 → 115 → 49

→ 43 → 113 → 143 → 1 → 53 → 39 → 63 → 68 → 107 → 66 → 104 → 141 → 147 →

132 → 137 → 88 → 30 → 79 → 121 → 41 → 7 → 91 → 138 → 55 → 142 → 118 → 117

→ 123 → 25 → 128 → 65 → 64 → 3 → 96 → 74 → 18 → 9 → 83 → 71 → 112 → 46 →

130 → 92 → 27 → 57 → 72 → 67 → 84 → 146 → 47 → 127 → 44 → 69 → depot

Optimal solution of kroB150

depot → 52 → 84 → 14 → 12 → 78 → 109 → 19 → 63 → 41 → 54 → 66 → 30 → 46 →

103 → 148 → 5 → 53 → 133 → 74 → 21 → 111 → 7 → 105 → 16 → 24 → 89 → 33 →

144 → 108 → 97 → 147 → 87 → 27 → 38 → 37 → 100 → 55 → 118 → 70 → 123 → 71

→ 82 → 61 → 49 → 132 → 94 → 93 → 122 → 90 → 75 → 130 → 138 → 120 → 110 →

69 → 22 → 101 → 20 → 121 → 88 → 40 → 58 → 117 → 72 → 2 → 68 → 13 → 140 →

98 → 104 → 18 → 91 → 9 → 35 → 56 → 73 → 99 → 32 → 44 → 80 → 96 → 143 → 95

→ 149 → 51 → 10 → 83 → 127 → 102 → 47 → 65 → 43 → 62 → 50 → 126 → 145 →

134→ 15 → 119 → 36 → 8 → 81 → 77 → 25 → 60 → 131 → 31 → 116→ 23 → 136 →

124→ 45 → 141 → 28 → 17 → 48 → 92 → 142 → 3 → 115 → 11 → 39 → 26 → 106 →

129 → 64 → 146 → 79 → 114 → 76 → 29 → 67 → 34 → 1 → 137 → 112 → 107 → 113

→ 57 → 125 → 85 → 4 → 42 → 128 → 139 → 59 → 135 → 86 → 6 → depot

Optimal solution of pr152

depot → 34 → 35 → 33 → 15 → 36 → 32 → 31 → 14 → 2 → 30 → 29 → 28 → 13 →

37 → 27 → 26 → 12 → 4 → 25 → 24 → 23 → 11 → 38 → 22 → 21 → 10 → 6 → 19 →

20 → 18 → 9 → 7 → 8 → 16 → 17 → 39 → 40 → 59 → 60 → 61 → 62 → 58 → 57 →

Appendix A -- MLP Solutions 85

41 → 63 → 82 → 85 → 106 → 105 → 104 → 86 → 103 → 110 → 111 → 102 → 101 →

100 → 87 → 56 → 64 → 65 → 66 → 55 → 54 → 43 → 67 → 80 → 88 → 99 → 112 →

113 → 79 → 89 → 98 → 97 → 96 → 78 → 68 → 53 → 44 → 69 → 70 → 71 → 52 → 51

→ 45 → 46 → 50 → 72 → 74 → 73 → 49 → 48 → 47 → 75 → 76 → 92 → 93 → 94 →

91 → 77 → 90 → 95 → 114 → 115 → 123 → 124 → 125 → 151 → 149 → 150 → 126 →

127 → 122 → 121 → 128 → 129 → 148 → 147 → 146 → 130 → 131 → 120 → 119 →

132 → 133 → 145 → 144 → 143 → 134 → 135 → 118 → 117 → 136 → 137 → 142 →

141 → 140 → 138 → 139 → 116 → 109 → 108 → 107 → 84 → 83 → 81 → 42 → 5 → 3

→ 1 → depot

Optimal solution of u159

depot → 158 → 2 → 1 → 3 → 4 → 155 → 156 → 154 → 153 → 152 → 151 → 6 → 150

→ 149 → 148 → 145 → 146 → 147 → 7 → 8 → 9 → 11 → 10 → 143 → 144 → 142 →

12 → 13 → 14 → 15 → 16 → 141 → 140 → 138 → 139 → 137 → 36 → 35 → 37 → 38

→ 39 → 40 → 41 → 42 → 43 → 44 → 45 → 46 → 47 → 48 → 49 → 50 → 51 → 52 →

53 → 62 → 61 → 63 → 64 → 65 → 66 → 67 → 68 → 69 → 70 → 71 → 77 → 78 → 79

→ 80 → 81 → 82 → 83 → 84 → 85 → 96 → 97 → 98 → 99 → 100 → 101 → 102 → 103

→ 104 → 105 → 106 → 94 → 95 → 86 → 87 → 93 → 88 → 89 → 90 → 91 → 92 → 107

→ 108→ 109 → 110 → 111→ 112 → 113 → 114→ 115 → 116 → 117→ 118 → 119 →

120 → 121 → 122 → 129 → 123 → 128 → 127 → 130 → 131 → 133 → 132 → 134 →

135 → 136 → 34 → 33 → 32 → 31 → 30 → 18 → 19 → 20 → 17 → 21 → 22 → 23 →

24 → 26 → 25 → 27 → 28 → 29 → 54 → 55 → 56 → 57 → 58 → 59 → 60 → 72 → 73

→ 74 → 75 → 76 → 126 → 124 → 125 → 157 → 5 → depot

Optimal solution of si175

depot → 1 → 9 → 8 → 7 → 6 → 35 → 34 → 36 → 38 → 39 → 40 → 81 → 41 → 42 →

43 → 82 → 44 → 45 → 83 → 47 → 46 → 48 → 50 → 49 → 51 → 53 → 54 → 55 → 57

→ 59 → 58 → 60 → 61 → 63 → 66 → 65 → 67 → 68 → 69 → 70 → 71 → 72 → 73 →

74 → 75 → 76 → 108 → 94 → 107 → 93 → 106 → 92 → 91 → 105 → 90 → 104 → 89

→ 103 → 88 → 102 → 147 → 146 → 112 → 113 → 158 → 168 → 161 → 157 → 114 →

156 → 115 → 155 → 160 → 166 → 165 → 116 → 164 → 154 → 153 → 152 → 151 →

163 → 162 → 174 → 117 → 119 → 133 → 121 → 122 → 123 → 124 → 125 → 126 →

127 → 128 → 129 → 130 → 131 → 132 → 120 → 139 → 145 → 144 → 143 → 142 →

134 → 140 → 141 → 138 → 137 → 136 → 135 → 173 → 172 → 171 → 111 → 167 →

170 → 169 → 159 → 79 → 37 → 80 → 97 → 98 → 84 → 100 → 99 → 85 → 101 → 86

→ 56 → 21 → 62 → 64 → 23 → 24 → 25 → 26 → 27 → 28 → 29 → 30 → 118 → 31 →

3 → 22 → 20 → 19 → 18 → 17 → 16 → 15 → 14 → 13 → 12 → 11 → 10 → 5 → 4 →

Appendix A -- MLP Solutions 86

33 → 32 → 78 → 77 → 95 → 96 → 52 → 87 → 109 → 150 → 149 → 148 → 110 → 2 →

depot

Optimal solution of brg180

depot → 11 → 10 → 9 → 8 → 7 → 6 → 5 → 4 → 3 → 2 → 1 → 165 → 166 → 167 →

156 → 157 → 158 → 159 → 160 → 161 → 162 → 163 → 164 → 129 → 130 → 131 →

120 → 121 → 122 → 123 → 124 → 125 → 126 → 127 → 128 → 83 → 72 → 73 → 74 →

75 → 76 → 77 → 78 → 79 → 80 → 81 → 82 → 143 → 132 → 133 → 134 → 135 → 136

→ 137 → 138 → 139 → 140 → 141 → 142 → 95 → 84 → 85 → 86 → 87 → 88 → 89 →

90 → 91 → 92 → 93 → 94 → 119 → 108 → 109 → 110 → 111 → 112 → 113 → 114 →

115 → 116 → 117 → 118 → 107 → 96 → 97 → 98 → 99 → 100 → 101 → 102 → 103 →

104 → 105 → 106 → 45 → 46 → 47 → 36 → 37 → 38 → 39 → 40 → 41 → 42 → 43 →

44 → 71 → 60 → 61 → 62 → 63 → 64 → 65 → 66 → 67 → 68 → 69 → 70 → 57 → 58

→ 59 → 48 → 49 → 50 → 51 → 52 → 53 → 54 → 55 → 56 → 155 → 144 → 145 → 146

→ 147 → 148 → 149 → 150 → 151 → 152 → 153 → 154 → 21 → 22 → 23 → 12 → 13

→ 14 → 15 → 16 → 17 → 18 → 19 → 20 → 179 → 168 → 169 → 170 → 171 → 172 →

173 → 174 → 175 → 176 → 177 → 178 → 33 → 34 → 35 → 24 → 25 → 26 → 27 → 28

→ 29 → 30 → 31 → 32 → depot

Optimal solution of rat195

depot → 1 → 2 → 3 → 4 → 5 → 6 → 7 → 8 → 9 → 10 → 11 → 12 → 25 → 24 → 23

→ 22 → 21 → 20 → 19 → 18 → 17 → 16 → 15 → 14 → 27 → 28 → 29 → 30 → 31 →

32 → 33 → 34 → 35 → 36 → 49 → 48 → 47 → 46 → 45 → 44 → 43 → 42 → 41 → 40

→ 39 → 52 → 53 → 54 → 55 → 56 → 57 → 58 → 59 → 60 → 61 → 62 → 63 → 64 →

77 → 76 → 75 → 74 → 73 → 72 → 71 → 70 → 69 → 68 → 67 → 66 → 65 → 78 → 79

→ 80 → 81 → 82 → 83 → 84 → 85 → 86 → 87 → 88 → 89 → 90 → 103 → 102 → 101

→ 100 → 99 → 98 → 97 → 96 → 95 → 94 → 93 → 92 → 91 → 104 → 105 → 106 →

107 → 108 → 109 → 110 → 111 → 112 → 113 → 126 → 125 → 124 → 123 → 122 →

121 → 120 → 119 → 118 → 117 → 130 → 131 → 132 → 133 → 134 → 135 → 136 →

137 → 138 → 139 → 140 → 153 → 152 → 151 → 150 → 149 → 148 → 147 → 146 →

145 → 144 → 143 → 156 → 157 → 158 → 159 → 160 → 161 → 162 → 163 → 164 →

165 → 166 → 179 → 178 → 177 → 176 → 175 → 174 → 173 → 172 → 171 → 170 →

169 → 182 → 183 → 184 → 185 → 186 → 187 → 188 → 189 → 190 → 191 → 192 →

193 → 194 → 181 → 180 → 168 → 167 → 155 → 154 → 141 → 142 → 129 → 128 →

127 → 114 → 115 → 116 → 51 → 50 → 38 → 37 → 26 → 13 → depot

Best known solution of d198

Appendix A -- MLP Solutions 87

depot → 1 → 6 → 5 → 2 → 3 → 4 → 7 → 8 → 9 → 10 → 11 → 12 → 85 → 99 → 84

→ 70 → 68 → 57 → 56 → 41 → 42 → 55 → 43 → 54 → 59 → 58 → 67 → 66 → 69 →

72 → 71 → 83 → 86 → 98 → 97 → 96 → 87 → 82 → 73 → 65 → 60 → 53 → 44 → 37

→ 30 → 31 → 36 → 35 → 32 → 33 → 27 → 29 → 28 → 22 → 21 → 23 → 20 → 24 →

25 → 26 → 34 → 38 → 46 → 50 → 49 → 47 → 48 → 62 → 78 → 91 → 90 → 79 → 77

→ 63 → 76 → 75 → 80 → 64 → 51 → 45 → 52 → 61 → 74 → 81 → 88 → 89 → 95 →

94 → 93 → 92 → 100 → 101 → 102 → 103 → 104 → 113 → 112 → 111 → 105 → 106

→ 110→ 109 → 108 → 107→ 119 → 118 → 117→ 116 → 115 → 114→ 121 → 120 →

122 → 123 → 168 → 124 → 125 → 130 → 129 → 132 → 131 → 133 → 139 → 140 →

142 → 141 → 146 → 145 → 148 → 147 → 152 → 151 → 161 → 160 → 159 → 158 →

157 → 156 → 155 → 154 → 153 → 138 → 137 → 134 → 135 → 128 → 126 → 169 →

127 → 136 → 143 → 144 → 149 → 150 → 162 → 163 → 164 → 165 → 171 → 170 →

181 → 182 → 180 → 176 → 175 → 172 → 173 → 174 → 177 → 179 → 183 → 184 →

178 → 193 → 194 → 197 → 196 → 195 → 185 → 192 → 191 → 186 → 187 → 190 →

189→ 188→ 167→ 166 → 19 → 18→ 17→ 16 → 15 → 14 → 13→ 39→ 40→ depot

Best known solution of kroA200

depot → 52 → 114 → 116 → 110 → 131 → 84 → 144 → 190 → 26 → 197 → 122 → 14

→ 12→ 78→ 159→ 161→ 63→ 19→ 54→ 41 → 134→ 185→ 126→ 111→ 119 →

46 → 30 → 156 → 106 → 108 → 5 → 53 → 74 → 154 → 182 → 21 → 133 → 7 → 16 →

24 → 142 → 89 → 33 → 57 → 140 → 170 → 199 → 97 → 113 → 87 → 147 → 27 → 38

→ 37→ 55→ 151→ 177→ 195→ 70 → 129→ 71→ 82→ 61 → 184→ 167→ 172 →

22 → 168 → 67 → 34 → 1 → 180 → 124 → 160 → 79 → 76 → 157 → 192 → 127 → 59

→ 100 → 3 → 162 → 92 → 105 → 148 → 18 → 91 → 9 → 174 → 35 → 56 → 73 → 99

→ 155 → 32 → 44 → 196 → 80 → 96 → 103 → 164 → 95 → 165 → 51 → 10 → 83 →

169→ 121 → 115→ 187→ 43→ 62→ 193→ 50 → 15 → 117→ 123→ 137→ 8 → 77

→ 81 → 198 → 25 → 60 → 135 → 31 → 23 → 158 → 173 → 120 → 45 → 171 → 48 →

17 → 109 → 28 → 183 → 36 → 178 → 152 → 65 → 118 → 98 → 13 → 191 → 107 →

68 → 141 → 179 → 130 → 188 → 72 → 2 → 58 → 40 → 88 → 153 → 20 → 139 → 163

→ 101 → 75 → 69 → 143 → 149 → 90 → 94 → 93 → 181 → 194 → 112 → 175 → 132

→ 136 → 42 → 104 → 4 → 85 → 138 → 49 → 128 → 102 → 145 → 66 → 176 → 64 →

186 → 150 → 29 → 166 → 146 → 39 → 11 → 189 → 47 → 125 → 86 → 6 → depot

Best known solution of kroB200

depot → 94 → 97 → 31 → 166 → 174 → 58 → 135 → 28 → 7 → 98 → 75 → 96 → 90

→ 128 → 27 → 157 → 10 → 92 → 121 → 84 → 72 → 52 → 169 → 148 → 69 → 197 →

38 → 39 → 116 → 189 → 110 → 67 → 48 → 85 → 137 → 165 → 107 → 151 → 37 →

Appendix A -- MLP Solutions 88

19 → 79 → 180 → 133 → 29 → 74 → 100 → 149 → 68 → 25 → 99 → 55 → 112 → 178

→ 78 → 187 → 126 → 123 → 64 → 140 → 183 → 36 → 71 → 168 → 6 → 83 → 57 →

51 → 115 → 162 → 53 → 153 → 190 → 176 → 142 → 170 → 87 → 22 → 21 → 192 →

143→ 159 → 152→ 23→ 17→ 44→ 35→ 118→ 95→ 136 → 18 → 150→ 91→ 199

→ 101 → 147 → 40 → 191 → 16 → 77 → 154 → 12 → 186 → 125 → 62 → 30 → 47 →

194 → 155 → 120 → 81 → 63 → 13 → 124 → 119 → 41 → 108 → 1 → 15 → 104 → 76

→ 102 → 182 → 139 → 105 → 158 → 49 → 184 → 42 → 195 → 185 → 59 → 73 → 164

→ 86 → 113 → 167 → 132 → 65 → 144 → 198 → 177 → 130 → 156 → 171 → 34 → 60

→ 26 → 175 → 179 → 93 → 56 → 33 → 8 → 24 → 45 → 145→ 160 → 70 → 106 → 11

→ 173 → 89 → 20 → 122 → 141 → 9 → 188 → 66 → 196 → 4 → 131 → 193 → 61 →

80 → 46 → 172 → 138 → 103 → 54 → 163 → 88 → 117 → 181 → 82 → 3 → 5 → 32 →

146 → 14 → 111 → 127 → 50 → 109 → 43 → 129 → 134 → 161 → 114 → 2 → depot

	Introduction
	On the Complete Set Packing and Set Partitioning Polytopes
	A Branch-and-Price Algorithm for the Minimum Latency Problem
	Conclusions
	References
	Appendix A – MLP Solutions

