
UNIVERSIDADE FEDERAL FLUMINENSE

ÉRICK OLIVEIRA RODRIGUES

Introducing Mathematical Morphology in Machine

Learning

NITERÓI

2017

UNIVERSIDADE FEDERAL FLUMINENSE

ÉRICK OLIVEIRA RODRIGUES

Introducing Mathematical Morphology in Machine

Learning

Thesis presented to the Graduate School of
Computer Science of Universidade Federal
Fluminense as a partial requirement for ob-
taining the Doctor of Science degree in Com-
puter Science. Field: Visual Computing

Advisor:

AURA CONCI

NITERÓI

2017

Érick Oliveira Rodrigues

Introducing Mathematical Morphology in Machine Learning

Thesis presented to the Graduate School of

Computer Science of Universidade Federal

Fluminense as a partial requirement for ob-

taining the Doctor of Science degree in Com-

puter Science. Field: Visual Computing.

Approved in December, 2017.

EXAMINERS

Prof. Dr. Aura Conci - Orientadora/Advisor, UFF

Prof. Dr. Luiz Satoru Ochi, UFF

Prof. Dr. José Viterbo Filho, UFF

Prof. Dr. Panos Liatsis, Khalifa University - UAE

Prof. Dr. Raul Queiroz Feitosa, PUC-RJ

Prof. Dr. Alexandre Gonçalves Evsuko�, UFRJ

Niterói

2017

�It is through science that we prove, but through intuition that we discover.�

Henri Poincaré

Resumo

Esta tese introduz conceitos da morfologia matemática, um campo já estabelecido dentro
da computação visual, ao aprendizado de máquina. Técnicas da morfologia matemática
exploram características de forma e densidade, aspectos que não são devidamente explo-
rados por algoritmos de machine learning tradicionais. Duas implementações de classi�-
cadores são apresentadas conjuntamente ao framework teórico proposto. Na classi�cação,
a ideia principal é rotular o espaço ao redor das instâncias de treino, crescendo esse rotu-
lamento a cada iteração. Nas implementações propostas, este crescimento respeita uma
nova métrica/distância que também é proposta nesta tese. Esta métrica é mais rápida
que as distâncias de Manhattan e Euclidiana nas iterações de vizinhanças discretas. Uma
vez que o espaço de classi�cação encontra-se razoavelmente rotulado, este espaço é uti-
lizado como modelo para classi�car instâncias não rotuladas. Os classi�cadores propostos
obtiveram melhores resultados em relação a 14 outros classi�cadores em 5 de 8 bases de da-
dos, o que é uma forte evidência inicial do poder de predição da proposta, que é inovadora
e ainda está em seus passos iniciais de desenvolvimento. Além disso, um algoritmo de
clusterização que é baseado na reconstrução morfológica também é proposto. Neste caso,
o algoritmo é mais rápido que o estado-da-arte ao passo em que provê resultados onde
formas e densidade dos clusters também são preservadas. O algoritmo de clusterização
possui caracter�ìsticas únicas como um senso intrínseco de clusters máximos que podem
ser criados, uma forma de remover ruído das bases sem custos extra de processamento,
permite alterações no padrão de crescimento dos clusters ao modi�car os elementos es-
truturantes, entre outras. Um experimento considerando mais de 70 voluntários também
demonstrou que clusterizações realizadas com algoritmos sensíveis às formas e densidade
são mais próximos de clusterizações humanas.

Palavras-chave: classi�cadores morfológicos; aprendizado de máquina; aprendizado su-
pervisionado; aprendizado não supervisionado; clusterização; morfologia matemática; di-
latação de imagens; k-NN; teoria dos conjuntos; densidade de clusters; forma de clusters.

Abstract

This thesis introduces concepts from mathematical morphology, an established �eld in
visual computing, to the �eld of machine learning. Mathematical morphology operations
are sensitive to shapes and density, aspects that are not su�ciently exploited in usual
machine learning techniques. Two implementations of classi�ers that use these techniques
are proposed along with a theoretical framework. In classi�cation, the main concept is
to label the space around the training instances, growing this labelling at each iteration.
The growth conforms to a new distance metric proposed herein, which is substantially
faster than Manhattan and Euclidean distances when it comes to iterations of discrete
neighbourhoods. At last, these labelled spaces are used to classify unlabelled instances.
The proposed classi�ers outperformed 14 classi�ers in 5 out of 8 datasets, which is a
strong initial evidence of the predictive power of the approach, which is novel and is in
its early stages of development. Furthermore, a clusterization algorithm that is based
on morphological reconstruction is proposed. In this case, the algorithm is faster than
state-of-the-art techniques while providing clusterization results that preserve shapes and
cluster density. The proposed clusterization scheme possesses a number of unique features
such as an intrinsic sense of maximal clusters that can be created, provides a means of
removing noise from datasets with no extra processing costs, enables a vast amount of
growth patterns, which are controlled by structuring elements, etc. An experiment with
more than 70 volunteers also indicated that clustering algorithms that are sensitive to
shapes and density produce more human-like clusterizations.

Keywords: morphological classi�er; machine learning; data mining; supervised learning;
unsupervised learning; clusterization; mathematical morphology; image dilation; k-nn; set
theory; k-means; cluster density; cluster shape.

List of Figures

1.1 Clusterization results for an arbitrary con�guration. 4

1.2 Fractal data disposition. 5

2.1 A binary image dilation using a cross-shaped structuring element. 10

2.2 A binary image erosion using a cross-shaped structuring element. 11

2.3 A dilation of a grey scale image using a circular structuring element (ring). 12

2.4 An erosion of a grey scale image using a circular structuring element (ring). 13

2.5 Opening of a grey scale image using a circular structuring element (ring). . 13

2.6 Closing of a grey scale image using a circular structuring element (ring). . 14

2.7 A white top-hat transform of a grey scale image using a circular structuring

element (ring). 15

2.8 A black top-hat transform of a grey scale image using a circular structuring

element (ring). 15

2.9 Morphological reconstruction (after idempotence). 16

2.10 Watershed ridge (intersection of two local minimas). 17

2.11 A morphological approach to watersheds. 18

2.12 Results of the watershed algorithm. 18

2.13 Example of a k-NN algorithm in a 2D plane. 20

2.14 A decision tree model with two nodes (two split criterions). 20

2.15 A simple neural network with one hidden layer consisting of m units, n

inputs and l outputs (in this case, a binary output). 21

2.16 A possible 2D SVM model. 22

2.17 A simple Bayes network. 23

List of Figures vi

2.18 A decision table that predicts the class of unlabelled instances based on

the rules r0, r1 and r2. If r0 and r1 are true, the instance is probably a circle. 23

2.19 Class 1 instances are shown in black and class 2 in grey. Both classes are

the exact translation of the other class. 25

2.20 Cluster core extraction using BMCAs. 29

3.1 Partition A0
l consisting of 4 disjoint subsets at iteration 0. 36

3.2 Set partition A1
l consisting of 2 disjoint subsets at iteration 1, where the

dark grey shaded pixels represent the elements that are included in the set

at iteration 1. 37

3.3 Instances of an input two dimensional dataset with class label equal to l. . 46

3.4 Examples of the f function being a dilation with varying structuring ele-

ments at iterations 5 and 25. 47

3.5 Upper-right quadrant of the proposed distance metric. 48

3.6 Distances in R2. The distances are computed from the central element in

the image. Lighter shades of gray indicate greater distances. 54

3.7 A 2D binary example of a 2p-tree (a quad-tree in this case). 63

3.8 Flat representation of the 2p-tree (a quad-tree in this case). 63

3.9 Shape and values of the structuring element B. 66

3.10 An indexed grey scale morphological reconstruction over a number of iter-

ations. 67

3.11 Some steps of the proposed k-MS algorithm. 68

3.12 Overall steps of the k-MS GPU implementation. 72

4.1 Used modi�ed Iris dataset. 78

4.2 Generated classi�cation models on Iris. 78

4.3 Used modi�ed Diabetes dataset. 79

4.4 Generated classi�cation models on Diabetes. 80

4.5 The input T matrix. 84

4.6 Visual results of k-MS with varying values of k. 85

List of Figures vii

4.7 Comparison of the visual results of k-MS to other clusterization algorithms

for k = 4. 87

4.8 Comparison of the visual results of k-MS to other clusterization algorithms

for k = 8. 88

4.9 Comparison of the visual results of k-MS and other clustering algorithms

in �nding genuine morphological clusters. 89

4.10 Obtained clusters with lower values of k. 91

4.11 Result for k = 450 and B2. 92

4.11 Time comparison between k-MS and a parallel k-Means considering a sig-

ni�cant amount of instances. 94

4.12 Run times (s) comparison for varying numbers of instances. 96

5.1 Fractal patterns in nature. 102

5.2 Creation of fractal structures using DLA [9]. 103

5.3 Thicker structures using a stickiness probability [9]. 103

5.4 Structures drawn using spheres of di�erent sizes [9]. 104

List of Tables

3.1 Processing times (s) for each distance (Algorithms 3-6). 52

3.2 Average results obtained with 15 di�erent distance measures (tested on 33

numerical datasets from the UCI repository). 56

4.1 Datasets used in the 2d experiments. 76

4.2 Accuracies in percentage obtained with the modi�ed Iris dataset. 77

4.3 Accuracies in percentage obtained with the modi�ed Diabetes dataset. . . . 81

4.4 Accuracies in percentage obtained with each dataset and classi�cation al-

gorithm. 82

4.5 Training and testing times (s) obtained with MDCRep and MkNNRep in

seconds in the GPU. 83

4.6 Comparison of obtained results based on human volunteers. 86

4.7 Run time performance (s) for the k-MS algorithm as a function of the

number of instances and maximum cluster number k. 95

List of Acronyms

MM : Mathematical Morphology;

k-NN : k-Nearest Neighbours;

BMCA : Binary Morphological Clustering Algorithm;

MkNN : Morphological k-Nearest Neighbours;

MDC : Morphological Dilator Classi�er;

k-MS : k-Morphological Sets;

GRASP : Greedy Randomized Adaptive Search Proble;

2D : 2-Dimensional;

UCI : UC Irvine;

List of Symbols

k :
Represents the amount of clusters or the amount of nearest neighbours

(input parameter of the k-NN algorithm).

A : Represents an input image or a partition of an image.

a :
In the Section 2, it represents elements of the input image A. In Section

2.2, it represents the attributes of a dataset.

B : Represents structuring elements.

b : Represents elements of structuring element B.

dilB : Notation for the dilation operation using structuring element B.

erB : Notation for the erosion operation using structuring element B.

A(a) : Returns the grey level value of image A at position or coordinate a.

opB : Notation for the opening operation using structuring element B.

clB : Notation for the closing operation using structuring element B.

wthB : Notation for the white top-hat operation using structuring element B.

bthB : Notation for the black top-hat operation using structuring element B.

M :
Mask that is used in geodesy to limit the range of morphological opera-

tors.

RB
M(A) :

Notation for the morphological reconstruction using structuring element

B and mask M.

x : Represents instances of a problem (usually labelled instances).

p :
Represents the number of dimensions or the p parameter of the

Minkowski distance (in Section 2.4).

n :
Usually represents the number of elements. In Section 2.4 it represents

the number of dimensions.

l : Represents labels or classes.

L : Represents the total amount of labels in a problem.

c(x) : Returns the known label of instance x.

y : Represents instances of a problem (usually unlabelled instances).

P : Prototype sets.

List of Symbols xi

arg : Argument of a function.

C : Represents clusters.

u : Cluster centroid.

d : Represents distances.

d1 : Represents the Manhattan distance.

d2 : Represents the Euclidean distance.

dp : Represents the Minkowski distance.

d∞ : Represents the Chebyshev distance.

dSD : Represents the Squared Euclidean distance.

dCAD : Represents the Canberra distance.

Perr : Represents the classi�cation error.

terr : Represents a prede�ned misclassi�cation threshold.

ĉ(y) : Function used to classify the unlabelled instance y.

X : Represents the training dataset.

Y :
Represents a dataset of unlabelled instances (the test dataset, or the

dataset that contains instances whose classi�cation is pending).

i : Represents iterations.

q : Used to indicate the complement set partition.

S : Classi�cation space.

φ : Convergence function.

γ : Weights applied to the original instances of training datasets.

σ : Represents the maximal number of iterations.

T :
Represents counters (voting counters) for each class or label of a given

problem.

β :
Similar to a structuring element, it represents a set of rules that indicates

the orientation in which instances are dilated.

τ : Scaling or weighting factor.

W : Width of the input image.

H : Height of the input image.

O : Big-O notation.

s : Scaling factor.

h : Represents the coordinates of p-dimensional elements.

r : Represents the number of rectangles.

Θ : Represents the population of the evolutinary algorithm.

List of Symbols xii

Ψ() : Generates a random number.

ε : Represents individuals in the evolutionary algorithm.

Π : Represents a maximal value/ceil for parameters (a prede�ned threshold).

G :
Represents the grid or the discretized/quantized classi�ca-

tion/clusterization space.

δ : Variable used to increase the size of the structuring element.

Contents

1 Introduction 1

1.1 Publications and Motivation . 2

1.2 Contributions . 6

1.3 Organization . 7

2 Literature Review 9

2.1 Mathematical Morphology (MM) . 10

2.1.1 Mathematical Morphology Applications 19

2.2 Classi�cation . 19

2.2.1 Mathematical Morphology in Classi�cation 24

2.3 Clustering . 25

2.3.1 Mathematical Morphology in Clusterization 28

2.4 Metrics . 30

2.5 Summary . 33

3 Morphological Methodology 34

3.1 De�nitions . 34

3.2 Classi�cation . 35

3.2.1 Morphological k-NN (MkNN) . 41

3.2.2 Morphological Dilator Classi�er (MDC) 43

3.2.2.1 Graphical E�ects of Structuring Elements 45

3.2.3 Rodrigues Distance . 47

Contents xiv

3.2.3.1 De�nition . 52

3.2.3.2 Graphical Analysis in R2 53

3.2.3.3 Performance Analysis Using k-NN 54

3.2.4 Complexity Analysis of MDC and MkNN 57

3.2.5 2D Combinations in Practice . 59

3.2.6 2D Combinations Theory . 60

3.2.7 Classi�cation Model Compression 61

3.2.7.1 Rectangular Compression for Sets 61

3.2.7.2 Partition Trees for Matrices 62

3.2.7.3 Run Length Encoding . 64

3.2.8 Parameter Selection . 64

3.2.8.1 Evolutionary Algorithm 65

3.3 Clustering . 66

3.3.1 Complexity Analysis of k-MS . 70

3.3.2 Parallel and GPU Aspects . 71

3.3.3 Memory Aspects . 73

3.4 Summary . 73

4 Machine Learning Experiments 75

4.1 Classi�cation . 75

4.1.1 Visual 2-Dimensional Experiments 76

4.1.1.1 Used 2D Datasets . 76

4.1.1.2 Iris Dataset . 76

4.1.1.3 Diabetes Dataset . 79

4.1.2 P-Dimensional Experiments . 81

4.2 Clustering . 83

4.2.1 Noiseless Morphology Experiment 84

Contents xv

4.2.2 Comparison with Similar Works . 89

4.2.3 Run Time Analysis . 92

4.3 Summary . 97

5 Conclusion 98

5.1 Discussion . 99

5.2 Future Work . 100

5.2.1 Fractal Approach . 101

References 105

Chapter 1

Introduction

Mathematical Morphology (MM) uses set theory to analyse and process graphical objects.

Some of its mostly famous operations alter their size, shape and convexity. MM operations

are commonly de�ned as set operations. A dilation, for instance, uses a structuring

element (also a set) to displace another set by summing up each pair of elements of both

sets and unites the outcome to the current con�guration.

Mathematical morphology is commonplace in the �eld of visual computing. Unfor-

tunately, this is not the case for machine learning. Some works use a fairly limited

amount of MM operations but are not entirely based on mathematical morphology, they

use heuristics when it comes to connecting instances to their associated cluster. To the

best of our knowledge, no work has ever proposed any classi�cation technique that relies

nor uses mathematical morphology techniques in classi�cation. Thus, classi�cation and

clusterization methods that adhere to mathematical morphology are proposed herein.

Machine learning is well established and is vastly used in the �elds of computer science

and engineering, and to a great extent of subareas, ranging from robotics [23], computer

vision [79], data mining, analysis and knowledge discovery [27], health care [83] and many

others [66, 104]. Supervised learning (which includes classi�cation) requires data of actual

past situations for training algorithms, which are used to predict the outcome, or the label,

of new situations. In this type of learning, the collected data must contain a label or a

class. In other words, supervised learning consists of �nding patterns in order to generate

a predictive model that guesses the label of instances whose label is unknown.

Unsupervised learning (which includes clustering), on the other hand, focuses on

grouping data respecting a similarity measure. In this case, no label is known during the

training phase. This implies that the only data available for training are the instance at-

1.1 Publications and Motivation 2

tributes. The algorithm must be intelligent enough to group and separate these instances

based on heuristics and some sort of similarity analysis. The input data usually consists

of several unlabelled instances, and the algorithm outputs a cluster label for each input

instance.

1.1 Publications and Motivation

Through the course of this PhD research, we have been publishing studies using mathe-

matical morphology and related techniques in image processing (in order of importance

regarding the relationship with the proposal and development of this thesis):

1. Rodrigues, E.; Morais, F.; Morais, N.; Conci, L.; Neto, L.; Conci, A. A

novel approach for the automated segmentation and volume quanti�cation of cardiac

fats on computed tomography. Computer Methods and Programs in Biomedicine

(2015)

2. Rodrigues, E. O.; Pinheiro, V. H. A.; Liatsis, P.; Conci, A. Machine learn-

ing in the prediction of cardiac epicardial and mediastinal fat volumes. Computers

in Biology and Medicine (2017)

3. Rodrigues, E. O.; Rodrigues, L. O.; Oliveira, L. S. N.; Conci, A.; Liatsis,

P. Automated recognition of the pericardium contour on processed ct images using

genetic algorithms. Computers in Biology and Medicine 87 (2017), 38�45

4. Rodrigues, E. O.; Conci, A.; Morais, F. F. C.; Perez, M. G. Towards the

automated segmentation of epicardial and mediastinal fats: A multi-manufacturer

approach using intersubject registration and random forest. IEEE International

Conference on Industrial Technology (ICIT) (2015), 1779�1785

5. Rodrigues, E. O.; Morais, F. F. C.; Conci, A. On the automated segmentation

of epicardial and mediastinal cardiac adipose tissues using classi�cation algorithms.

MEDINFO 2015: EHealth-enabled Health: Proceedings of the 15th World Congress

on Health and Biomedical Informatics 216 (2015)

6. Rodrigues, E. O.; Viterbo, J.; Conci, A.; McHenry, T. A context-aware

middleware for medical image based reports an approach based on image feature

extraction and association rules. IEEE International Conference on Computer Sys-

tems and Applications (2015)

1.1 Publications and Motivation 3

7. Rodrigues, E. O.; Porcino, T. M.; Conci, A.; Silva, A. C. A simple approach

for biometrics: Finger-knuckle prints recognition based on a sobel �lter and similar-

ity measures. International Conference on Systems, Signals and Image Processing

(IWSSIP) (2016)

8. Rodrigues, E. O.; Clua, E. A real time lighting technique for procedurally

generated 2d isometric game terrains. Entertainment Computing - ICEC 2015 9353

(2015), 32�44

Most of these works use machine learning techniques coupled with image processing

techniques to achieve a satis�able graphical solution. In this process, we noticed that

visual computing vastly uses techniques and algorithms from machine learning, while the

opposite is not quite true.

By investing on the idea of bringing concepts from visual computing to machine

learning, we developed a theoretical framework and implementations for classi�cation

and clustering that are based on mathematical morphology. The initial approach was a

paper on clusterization, published in a reputable journal:

9. Rodrigues, E. O.; Torok, L.; Liatsis, P.; Viterbo, J.; Conci, A. k-ms: A

novel clustering algorithm based on morphological reconstruction. Pattern Recogni-

tion 66 (2016), 392�403

In this pattern recognition work, the objective was to explore the capabilities inherit

from MM of recognizing shapes and cluster density. Traditional clustering methods rely

on the spatial dispositions, disregarding density.

Let us suppose that we want to separate the input data shown in Figure 1.1-(a) in

two clusters. Most clusterization algorithms would either produce the results shown in (b)

or (c). Although this reasoning makes sense in terms of spatial disposition, it disregards

density. The two points in the middle are closely related, i.e., they are dense. In density-

based clusterizations these aspects are positively exploited.

1.1 Publications and Motivation 4

Figure 1.1: Clusterization results for an arbitrary con�guration.

A possible density-based solution is the one shown in Figure 1.1-(d), where, in this

case, the two data points at the center belong to the same cluster and the remaining

is placed in a complement cluster or are treated as noise. The clusterization method

proposed in this work uses morphological reconstruction to produce an actual density-

based clusterization similar to this.

The proposed algorithm ended up being more e�cient than state-of-the-art methods

while also being very unique. The following list of features inherent to the proposed

clustering technique is as follows:

1. Sense of maximal clusters that can be created (regardless of the k parameter), where

the k parameter ful�ls the same role as k-Means, i.e., limiting the amount of clusters.

2. Computationally e�cient algorithm as it is amenable to parallelization.

3. Uses structuring elements that alter the way clusters are formed and grouped.

4. Provides a means for removing noise without introducing extra processing costs.

Later, we focused on bringing mathematical morphology to the classi�cation paradigm.

Once again, the premiss was to exploit shapes and density information, which are not suf-

�ciently exploited by traditional classi�ers (more details in Section 2.2.1). Furthermore,

we were inspired by the fact that datasets re�ect nature, and therefore reproduce fractal

behaviour. Let us suppose that the points shown in Figure 1.2 (circles at the leaves of the

tree) illustrate points of a given class. In this case, it is possible to model this information

using a fractal function, represented by the tree.

1.1 Publications and Motivation 5

Figure 1.2: Fractal data disposition.

Mathematical morphology is capable of modelling this information. A set can be

grown in a fractal tree-like fashion (using dynamic structuring elements that adapt at

each iteration) until it reaches a model that accurately encapsulates the data points

shown in Figure 1.2. Some classi�ers use fractal features, fractal analyses, and other

related techniques, but these are not present during or as part of their classi�cation

model construction.

In summary, we provide a theoretical framework that is capable of dealing with fractal

information, shapes and density. Section 2.2.1 describes other features of the proposed

framework, such as the modelling of translations. Furthermore, produced classi�cation

models also stem from the features of mathematical morphology such as the generation

of di�erent results depending on the structuring element/fashion of growth of the model.

A possible approach in constructing classi�ers that use dilations is starting with a set

of training instances whose labels are known and growing them, �lling the space around

these instances in order to cover a wider range of unlabelled instances. As these instances

grow, intersections will occur and either the growth stops or a voting scheme should be

responsible for choosing the correct label when intersections occur.

Implementing these classi�ers brought us to another contribution. We started coding

our classi�cation algorithms in Graphics Processing Units (GPU) to exploit the parallel

potential of the methodology. That is, assuming the instance space is a p-dimensional

grid, positions of the grid near positions that contain instances are iteratively marked as

the model grows. Each grid cell can be grown in parallel, and therefore, as the GPU

paradigm relies on processing the same instruction in parallel with di�erent data, it turns

1.2 Contributions 6

out to be suited for growing several grid positions at once, reducing processing times.

We head towards another issue. The neighbourhood of the grid should be iterated

respecting a set of rules. However, how is it possible to obtain an Euclidean-like iteration

process without using kernels in the GPU? That is, how is it possible to iterate through

the neighbourhood in a discrete environment respecting the Euclidean distance? Kernels

are slow. Furthermore, kernels of inde�nite sizes are required in this case. We must also

acknowledge the fact that grids are discrete spaces. This issue brought us to another

solution, presented in Section 3.2.3, which is more similar to the Euclidean distance in

terms of information while being outstandingly faster to compute when compared to

Manhattan and Euclidean distances.

In 2 dimensions, the proposed distance metric resembles an octagon, while Chebyshev

and Manhattan resemble a square. An octagon is closer to the circle obtained with

the Euclidean distance. The 2D discrete solution for this distance was developed �rst.

After months of calculations, the distance was successfully associated to a combination

of Chebyshev and Minkowski distances, when generalized to p-dimensions. An extensive

search throughout the literature was performed, which indicates that no work has ever

proposed the combination of these distances, and most importantly, no work has ever

associated the proposed Algorithm 6 (that iterates 2D neighbourhoods) to this combined

distance.

1.2 Contributions

The main contributions of this thesis are:

1. Proposing and applying mathematical morphology techniques in machine

learning. Mathematical morphology has never been properly explored in terms

of classi�cation. Works that use morphological operators to segment and classify

images can be found in the literature (see Section 2.2.1). However, this is the entire

extent to which these techniques are used. We propose a theoretical framework

that works after the discretization/quantization of the space. Training instances

are dilated according to a set of rules. An approach for processing p-dimensional

and multi-class datasets is proposed.

When it comes to clusterization, morphological reconstruction has never been used

as a means of clustering data (see Section 2.3.1). Approaches that consist of using

binary morphological operations have been proposed. Nevertheless, these algorithms

1.3 Organization 7

do not rely entirely on morphological operations. Instead, they look for cluster cores

and use heuristics to categorize instances as belonging to one of the cluster cores.

Unique di�erences between these approaches and the one provided in this work in-

clude the potential of removing noise without additional processing time burdens,

di�erent clusterization results and the possibility of controlling the maximal num-

ber of clusters. Furthermore, the approach also contains an intrinsic sense of the

maximal amount of clusters that can be created.

2. Providing two classi�ers that conform to item 1. Two algorithmic proposals,

namely Morphological Dilator Classi�er (MDC) and Morphological k-Nearest Neigh-

bours (MkNN) are presented. The �rst algorithm is primarily based on morpholog-

ical dilations. The second approach is based on the classical k-NN in conjunction

with mathematical morphology.

3. Providing one very e�cient and unique clusterization algorithm that con-

forms to item 1. The proposed approach, called k-Morphological Sets (k-MS),

uses morphological reconstruction and gradual increases on the structuring element

to form clusters. Morphological reconstructions are performed until the clusters

reach an idempotent con�guration. Next, the structuring element is incremented.

Morphological reconstruction is performed again until reaching idempotence. This

process is repeated until the desired number of clusters is obtained.

4. Proposing a novel and e�cient distance metric. The metric proposal (Section

3.2.3) is a combination of Minkowski and Chebyshev metrics. The most important

contribution lays on its association with a very e�cient 2D neighbourhood iteration.

This distance is substantially faster than Euclidean and Manhattan in terms of 2D

neighbourhood iterations.

1.3 Organization

The content of this thesis is organized as follows. Chapter 2 presents a literature review

respecting the following order: (1) mathematical morphology and its applications, (2)

classi�cation algorithms, (3) clusterization algorithms, and (4) distance metrics.

Chapter 3 describes the proposed theory, methodology and implementation aspects.

This chapter is also divided in two sections, which address the proposed classi�ers (MDC

and MkNN) and the clustering algorithm (k-MS), respectively. In a subsection of the

1.3 Organization 8

classi�ers section (i.e., in Section 3.2.3), a novel metric is proposed and analysed. The

metric is presented within this section as it was coined for the use with morphological

classi�ers. It de�nes the order in which the growth of the instances in the classi�cation

models occurs.

Next, Chapter 4 presents the experimental results considering all the implementations

proposed in this thesis. In the classi�ers case, we compare their e�ciency to 14 algorithms

evaluated on 8 UCI datasets. In this case, the proposed algorithms achieved reasonable

results, outperforming or achieving the same accuracy of traditional classi�ers in 5 cases.

Chapter 4.2 provides two experiments regarding the clusterization algorithm proposal.

The �rst experiment demonstrates that there is in fact a major visual di�erence between

clusterization algorithms that prioritize cluster density and shapes and clusterization ap-

proaches that do not. Later, another visual experiment is performed, where the running

times obtained with state-of-the-art techniques are also compared. In this case, the pro-

posal outperformed state-of-the-art methods in terms of processing times while providing

very accurate results, sensitive to cluster shapes.

The �nal chapter presents the conclusions, bene�ts and disadvantages of the concepts

herein. At last, avenues for future work are presented and discussed.

Chapter 2

Literature Review

The purpose of clustering and classi�cation algorithms understand and extract value from

large sets of structured and unstructured data. Both approaches are very important in

science. Mathematical morphology, on the other hand, is traditionally used in image

processing.

All these three concepts are reviewed throughout this chapter. The �rst section ad-

dresses some basic operations of mathematical morphology. The operations described

herein are required to follow aspects of this thesis. Nevertheless, mathematical morphol-

ogy does become deeper than that, using more complex operations and heuristics. It is

possible to argue that the review contains the basic and intermediate operations of math-

ematical morphology. Watershed and morphological reconstructions, which are part of

mathematical morphology, are sometimes considered complex operations.

Later, classi�cation and clustering are addressed in two di�erent subsections. Al-

though both approaches belong to the machine learning nomenclature, classi�cation and

clustering are based on quite di�erent premises and therefore are built upon quite di�erent

literatures, justifying this organization.

Classi�ers train on data whose label is known a priori. Therefore, it is assumed a

priori that unlabelled instances must be classi�ed as one of the labels available in the

training samples. Regression is also categorized as supervised learning. However, in this

case, instances can be classi�ed with labels that are not available in the training samples,

as they are usually continuous. Nevertheless, labels of training samples are known in both

cases.

Clusterization methods, on the other hand, learn from unlabelled data. This process

can be better illustrated as grouping elements based on a similarity measurement. La-

2.1 Mathematical Morphology (MM) 10

belling data manually is a huge problem as datasets can be huge. Therefore, clusterization

techniques are very important in this case, being able to infer and categorize data without

relying on training labels.

Finally, the last subsection presents a brief review of distance metrics. Metrics are

widely used in virtually all �elds of exact sciences. In this thesis, they are specially

important as they de�ne the fashion of growth of the proposed classi�cation algorithms.

2.1 Mathematical Morphology (MM)

Mathematical morphology [19, 58] is concerned with geometric structures present in sets.

Analysis of image information is performed using set theory [26]. Structuring elements,

which are used in most mathematical morphology operations, are de�ned by a mathe-

matical set of elements that represents their pixels. Dilations and erosions are the two

principles and fundamental operations in MM.

De�nition A dilation of a binary image A = {a1, a2, ..., an}, containing n foreground

pixels, by a structuring element B, is given by [98]:

dilB(A) =
⋃
b∈B

Ab (2.1)

where Ab represents the elements of A translated by b. In other words, dilations are

de�ned by the union of A + b for every element b in B. Each element represents the

position of a pixel. Figure 2.1 illustrates a dilation of a binary image A by a cross-shaped

structuring element B = {(0, 0), (0, 1),(0,−1), (1, 0),(−1, 0)}. The outcome is a less-noisy

binary image, as several dark pixels were erased from the original image (it is evident on

the character's face).

dilB(A)

B=

Figure 2.1: A binary image dilation using a cross-shaped structuring element.

2.1 Mathematical Morphology (MM) 11

Dilations set the intensity of any background pixels via the superposition of the struc-

turing element on each of the foreground pixels of the binary image to the foreground

value. In this speci�c case, since the spatial extent of the structuring element is fairly

limited, it spreads the foreground pixels that already exist to their neighbouring pixels,

thus �lling the gaps of the original image in a symmetrical fashion.

De�nition Erosion is the dual operation in relation to dilation and is de�ned as [98]:

erB(A) =
⋂
b∈B

A−b (2.2)

Figure 2.2 shows the erosion of image A by the same cross-shaped structuring element

B. In contrast, erosion erases pixels (in this representation, brighter pixels) respecting

the structuring element. In this speci�c case, since the spatial extent of the structuring

element is fairly limited, it erodes pixels near the original ones.

erB(A)

B=

Figure 2.2: A binary image erosion using a cross-shaped structuring element.

Morphological operations can also be applied to grey level images [108]. In this case,

the grey level value is accessed by evoking the image function. That is, A(a) returns the

grey level of image A at position a. This also holds for the structuring element, where

B(b) returns the grey level value of the structuring element at position b.

De�nition The grey level dilation of a single element a in image A is given by:

dilB(a) = supb∈B[A(ab) +B(b)] (2.3)

where sup represents the supremum, ab represents the element a translated by b (e.g.,

given a = {0, 0} and b = {−1, 0}, then ab = {−1, 0}), A(ab) represents the grey value of

the element ab in A, and B(b) the grey value of the element b in B.

2.1 Mathematical Morphology (MM) 12

dilB(A)

B=

Figure 2.3: A dilation of a grey scale image using a circular structuring element (ring).

De�nition The grey level dilation of the whole image A is given by:

dilB(A) =
⋃
a∈A

dilB(a) (2.4)

Grey scale dilations translate the structuring element over A and compute the sum of

the neighbouring pixel values (a's and b's) at each possible position (similar to a convolu-

tion). At every possible position a in A, the elements are summed and the supremum of

these elements is placed at the iterated pixel of A. Figure 2.3 illustrates a grey dilation

by a circular structuring element (also called ring).

Similarly, a grey level erosion adopts themin instead of the sup, as shown in Equation

2.5.

De�nition Grey level image erosions of a single element a in image A is de�ned as:

erB(a) = minb∈B[A(ab) +B(b)] (2.5)

De�nition The grey level erosion of the whole image A is given by:

erB(A) =
⋃
a∈A

erB(a) (2.6)

When a grey level erosion is applied to a grey image using the same structuring

element (ring), the result shown on the right side of Figure 2.4 is obtained.

2.1 Mathematical Morphology (MM) 13

erB(A)

B=

Figure 2.4: An erosion of a grey scale image using a circular structuring element (ring).

Opening and closing are operations built upon dilation and erosion and can be applied

to grey level and binary images interchangeably [64].

De�nition Opening is de�ned as �rst eroding and further dilating image A:

opB(A) = dilB(erB(A)) (2.7)

Figure 2.5 illustrates an opening using the same structuring element. It is noticeable

that noise is promptly erased with this approach. Some of the highlights on the hair of

the character are erased entirely without loosing much of the initial image information.

Opening removes brighter components of the image, the size of the components to be

removed varies according to the structuring element.

opB(A)

B=

Figure 2.5: Opening of a grey scale image using a circular structuring element (ring).

De�nition Closing is de�ned as dilating and subsequently eroding image A:

clB(A) = erB(dilB(A)) (2.8)

2.1 Mathematical Morphology (MM) 14

Figure 2.6 illustrates closing using a ring as the structuring element. It is noticeable

that all the black outline is erased while trying to maintain the original shapes of the

input image. Closing, as opposed to the previous operation, removes darker components

of the image.

clB(A)

B=

Figure 2.6: Closing of a grey scale image using a circular structuring element (ring).

White and black top-hat operations use opening and closing, respectively. These

operations subtract the result of the opening or closing from the original image. It is

a very interesting way to remove noise from images and is used as such throughout the

literature. Approaches that use this operation to segment objects/edge detection are also

widely present in the literature [6, 16].

De�nition White top-hat (or simply top-hat) is de�ned as subtracting an image from

its opening [24]:

wthB(A) = A− opB(A) (2.9)

Figure 2.7 illustrates a white top-hat transform. The result displays noise that is

present in the original image. This operation returns the small components (varies ac-

cording to the size of the structuring element) that are brighter than their surroundings.

2.1 Mathematical Morphology (MM) 15

wthB(A)

B=

Figure 2.7: A white top-hat transform of a grey scale image using a circular structuring
element (ring).

The black top-hat operation (or bottom-hat transform) is the dual operation of the

white top-hat. Figure 2.8 shows a black top-hat transform. The outcome represents small

components (shown in black, and varies according to the size of the structuring element)

that are darker than their surroundings.

De�nition Black top-hat (or bottom-hat) is de�ned as subtracting the closing of an

image from its original [24]:

bthB(A) = clB(A)− A (2.10)

bthB(A)

B=

Figure 2.8: A black top-hat transform of a grey scale image using a circular structuring
element (ring).

Geodesic operations use a binary mask M that limits the range of the operation.

De�nition Geodesic dilations are de�ned as:

dilB(A) ∩M (2.11)

2.1 Mathematical Morphology (MM) 16

De�nition Similarly, geodesic erosions are given by:

erB(A) ∩M (2.12)

Morphological reconstructions adopt geodesic dilations [68]. That is, the reconstruc-

tion dilates images using a mask that limits the range of operation. The mask can be

described as a simple binary image. Given a single point in the image and a mask, the

image is dilated until it reaches idempotence. Idempotence is de�ned as f(A) = A, where

f in this case is a morphological operation and A is an arbitrary image [33].

Let the lines illustrated in Figure 2.9-(a) represent the mask and the points c1, c2 and

c3 illustrate seed points to be dilated. The resulting image after idempotence is shown in

Figure 2.9-(b).

c1

c2

c3

(a) Mask and points to be dilated

c1

c3

c2

(b) After the reconstruction

Figure 2.9: Morphological reconstruction (after idempotence).

De�nition Morphological reconstruction is de�ned as RB
M(A) in Equation 2.13, where

M represents the mask.

RB
M(A) = hQ (2.13)

subject to

hq+1 = dilB(hq) ∩M
...

h1 = A

(2.14)

2.1 Mathematical Morphology (MM) 17

where q stands for every iteration until idempotence (q ∈ {1, ..., Q}) at iteration Q, i.e.,
hQ = hQ−1.

The binary morphological reconstruction is not a clustering algorithm by itself. It

spreads pixels in the image limited by mask M and the process is terminated when

idempotence is reached. The outcome is a binary image, such as the one shown in Figure

2.9-(b).

When an appropriate grey-level structuring element and grey level images are used,

while also indexing each pixel with a unique value and still using the same mask M ,

clusters start to form in the outcome image, where each object of Figure 2.9-(b) would

be in a di�erent grey color, associated to a unique label. The main issue with grey scale

morphological reconstructions is that there is no k variable. That is, it is not possible to

limit the amount of clusters to be created using a simple morphological reconstruction.

Furthermore, once the images reach idempotence, it is not possible to merge clusters with

the original formulation.

Watershed is a more complex morphological operation. It segments grey level images

based on local minimas. Grey level images can be seen as height-maps. Watersheds are

usually constructed by �ooding [62], though other approaches exist. Let us suppose �lling

valleys of a mountain with water simultaneously. The moment in which the �ooding or

the water of two or more valleys intersect is de�ned as a watershed ridge. Figure 2.10

illustrates this process.

watershed
 rigde line

valleys
(darker pixels)

Figure 2.10: Watershed ridge (intersection of two local minimas).

Watershed ridges can be calculated using erosions. The original image is subtracted

by its eroded version, which represents the �ooding of the darkest grey values. Figure 2.11

illustrates this operation being applied in sequence. In Figure 2.11-(c), an intersection of

two ridges occurs, which is a watershed ridge (highlighted in red).

2.1 Mathematical Morphology (MM) 18

(a) Original image subtracted

by its eroded version (A −
er(A)).

(b) Eroded version subtracted

by the eroded version of

the eroded version (er(A) −
er(er(A))).

(c) Two times eroded version

subtracted by the three times

eroded version (er(er(A)) −
er(er(er(A)))).

Figure 2.11: A morphological approach to watersheds.

Figure 2.12 demonstrates a possible watershed outcome. In the �rst case 2.12-(a),

the watershed is computed from the original input image. In 2.12-(b), a Gaussian blur

is applied before calculating the watershed, which alters signi�cantly the produced seg-

mentation. The original image has a high incidence of noise, which is clear due to the

oversegmentation shown in 2.12-(a), and is mitigated when the Gaussian blur is applied

(it softens the noise as it is a mean �lter).

(a) Watershed applied to the

input image.

(b) Watershed after a Gaus-

sian blur.

Figure 2.12: Results of the watershed algorithm.

2.2 Classi�cation 19

2.1.1 Mathematical Morphology Applications

In general, mathematical morphology is employed in the literature for geometric feature

�ltering, e.g., to segment structures [94, 110], extracting and enhancing blood vessels

[25, 2], etc. Liu et al. [54] use grey level mathematical morphology operations and a

genetic algorithm to create a thresholding method for images. Furthermore, it is also

used to remove noise [119, 120]. The noise removal potential is evidenced in Figures

2.1-2.7 [117].

The closest that mathematical morphology comes to classi�cation in the present lit-

erature is by providing image descriptors for further classi�cation [93, 55]. In contrast,

clusterization methods that use morphological operations already permeate the literature.

However, as properly addressed in Section 2.3.1, these clusterization methods: (1) rely on

binary operations, (2) are coined for images, and (3) neither use morphological reconstruc-

tion nor a k/number-of-clusters control parameter as input. The power of mathematical

morphology has yet to be fully exploited in the context of machine learning, which is the

main contribution of this thesis.

2.2 Classi�cation

Given a training dataset X = {x1, ..., xn} containing instances such that x ∈ Rp, p being

the number of attributes of the instances, with corresponding labels c(x) ∈ {1, ..., L}, the
classi�cation problem consists of assigning a label l ∈ {1, ..., L} to unlabelled instances y,

given that X can assist the process. In this formulation we assume that each categorical

attribute, if present, is associated to natural numbers.

Several types of classi�ers permeate machine learning. Lazy algorithms [100], for

instance, generate classi�cation models in real time. That is, every time an instance is to

be classi�ed, the algorithm generates a model as a requirement to classify the instance.

Their main weakness stems from that fact, i.e., generating new models when an unlabelled

instance is encountered, which is ine�cient in terms of processing times. However, this

results into a signi�cant strength, i.e., there is no requirement to store a model in memory.

k-NN is one of the most popular lazy algorithms and probably the simplest one. It

requires the k nearest neighbours of an unlabelled instance to be examined in order to

determine its class. The predominant class among the k neighbours is the chosen class.

k-NN is a robust algorithm in terms of accuracy, yet it does not deal very well with noise in

2.2 Classi�cation 20

some speci�c cases and for some values of k. One such occasion is when a small number of

instances of one class is surrounded by several instances of another class. A simple k-NN

with k = 3 is depicted in Figure 2.13, where the unlabelled instance y is checked against

the 3 nearest labelled instances and is classi�ed as the most frequently encountered class

which, in this case, is the square class.

y

Figure 2.13: Example of a k-NN algorithm in a 2D plane.

Decision tree based classi�cation relies on decision tree models. Essentially, these

algorithms generate one or more trees that, in turn, contain several nodes. Each node

split is usually associated to a formulated Boolean criterion that is dependent on one or

more attributes of the dataset. For instance, ai > s, where ai is the attribute at index i

and s is a constant. The split governs the �ow of the decision, and the leaves of the trees

represent the various classes. A popular decision tree algorithm is C4.5 [76, 103] (J48 in

Weka [36]). Random Forests [10] is also a frequently employed algorithm that generates

several decision trees, which are then combined, composing an ensemble learning method

[67]. Figure 2.14 illustrates a possible decision tree based classi�cation model.

a1

a0
> s0 ≤ s0

≠ s1 = s1

Figure 2.14: A decision tree model with two nodes (two split criterions).

2.2 Classi�cation 21

Another type of classi�ers is neural networks. Neural networks are often categorized as

function-based classi�ers. They associate input patterns to output patterns by using the

representation of intermediate layers, activation functions and weights that connect the

various nodes, mimicking the organization of the brain. Two popular neural networks are

the Radial Basis Function Network (RBFNetwork) [11, 12] and the Multilayer Perceptron

[38, 91]. Figure 2.15 shows a feedforward neural network with n input units, m hidden

units and two outputs. The outputs of the hidden units are the weighted sums of the

input attributes after they pass through the activation functions of these units. Finally,

the outputs of this neural network are calculated as the weighted sums of the input from

the hidden units after they pass through the activation function of the output units.

a0

a1

an

...

...

h0

h1

h2

h3

hm

w0 w1

Figure 2.15: A simple neural network with one hidden layer consisting ofm units, n inputs
and l outputs (in this case, a binary output).

Another type of function-based classi�ers is Support Vector Machines (SVM). In sum-

mary, SVM traces hyperplanes that segregate the data, and uses the created clusters or

segregations to predict classes. In its basic form, when no kernel is used, SVM works in a

straightforward fashion. Figure 2.16 illustrates a possible solution, shown by the dashed

line, which separates the data optimally. Optimality in this case refers to higher accuracy

and margin, i.e., gap size g. Since this problem is 2-dimensional, the hyper-plane is a

simple line. Algorithms based on SVM such as Sequential Minimal Optimization (SMO)

[73] also bear the same optimization objective. In Figure 2.16, the training instances are

separated by the dashed line such that if an unlabelled instance falls on the left/right side

of the line, it would be classi�ed as a square/circle, respectively.

2.2 Classi�cation 22

g

g

Figure 2.16: A possible 2D SVM model.

Some of the previously described algorithms can be thought of as probabilistic models.

That is, some decision tree algorithms, for instance, output a probability on the correct-

ness of classi�cation of a certain node, or the respective path on the tree that a given

instance followed. These probabilities can be computed in various ways and therefore

these algorithms could be considered probabilistic. However, some classi�ers are based on

conditional probabilities, more speci�cally, on Bayes Theorem [49]. These are explicitly

categorized as probabilistic. Here, we refer to them as Bayes-based algorithms, with the

popular algorithms being the Naive Bayes [101, 78] and Bayes Net [59, 97]. In Bayes

theorem, P (Ei) denotes the probability of a given event Ei being true. The event could

be, for instance, the probability of an attribute being equal, greater, lower or di�erent

than a certain value. P (Ea|Eb) denotes the conditional probability, which is the proba-

bility of Ea being true given that Eb is true. A simple Bayes net is shown in Figure 2.17.

The joint probabilities at the right of the �gure indicate the probability of the analysed

instance belonging to a certain class, given the described events. Exclamation marks

indicate negation.

2.2 Classi�cation 23

P(E1)

P(!E1)

P(E2 |E1)

P(!E2 |E1)

P(E2 |!E1)

P(!E2 |!E1)

P(E2 ,E1)

P(!E2 ,E1)

P(E2 ,!E1)

P(!E2 ,!E1)

Figure 2.17: A simple Bayes network.

Lazy, decision tree, function, and Bayes classi�ers are probably the most commonly

used classifers in the state-of-the-art. However, another category of classi�ers that often

produces very good results yet is often disregarded, are rule-based classi�ers. Decision

Table [46] and Conjuctive Rule [36] are two such examples. A decision table can be

extraordinarily simple, for instance, a default rule mapping to the majority class. The

generated table can also be relatively easy to understand, as simple rules can be inten-

tionally generated. The process involves heuristical search of subsets of features for rule

�nding, as well as cross-validation [46].

Figure 2.18 shows a decision table model. The �rst variables r0, r1 and r2 represent

rules based on the instances used to train the classi�er. In the second column, for instance,

if rules r0 and r1 are true, then the instance is said to be a circle. In the �fth column, on

the other hand, if an unlabelled instance has rules r0 and r1 equal to false and r2 as true,

then it is classi�ed as a square. The rule itself can be a simple comparison split of an

attribute (e.g., if an attribute value is higher than a constant), as in decision tree models,

or more complex associations.

r0
r1
r2

F
FT

T

T

F
F
T

F
T

T
F

T
T

Figure 2.18: A decision table that predicts the class of unlabelled instances based on the
rules r0, r1 and r2. If r0 and r1 are true, the instance is probably a circle.

2.2 Classi�cation 24

2.2.1 Mathematical Morphology in Classi�cation

To the best of our knowledge, mathematical morphology has not yet been properly ex-

ploited when it comes to classi�cation. Pina et al. [71] use a combination of BMCAs

(see Section 2.3.1 for further details) and watershed, creating a classi�cation method for

satellite images. The algorithm creates cluster cores for each class and uses these cores to

decide to where each unlabelled instance belongs. The authors use a watershed approach,

which produces segmentations for the whole image. Their method is better de�ned as an

image segmentation approach that uses supervised learning.

Tuia et al. [106] use features provided by morphological opening and closing to clas-

sify land use in satellite images. In this case, as opposed to the previously described

work, SVM was the employed classi�cation algorithm. Mlynarczuk [64] uses watershed

to classify images of rocks, again as a descriptor instead of a classi�cation algorithm

itself. Shattuck et al. [95] use dilation, erosion and closing to perform brain segmenta-

tion/classi�cation. In summary, several works considered using mathematical morphology

for image classi�cation. However, none of them use mathematical morphology as a means

of constructing proper classi�cation models that are able to deal with p-dimensional data.

Having presented an overview of various classi�cation models, we will shift our at-

tention to the work of Bien et al. [8], which shares some similarities to the proposed

classi�cation methods of this thesis (without using mathematical morphology). A train-

ing dataset X = {x1, ..., xn} ⊂ Rp is considered, where p represents its dimension, along

with prototype sets Pl ⊆ X for each class l, which are used to classify unlabelled in-

stances. At the heart of their proposal is the premise that the prototypes of class l should

consist of points that are close to many training examples of class l and far from training

examples of other classes. Given prototypes P1, ..., PL, an unlabelled instance x ⊂ Rp is

classi�ed according to which of the Pl sets contains the nearest prototype, based on some

distance metric d:

ĉ(x) = arg min
l

min
z∈Pl

d(x, z) (2.15)

Despite the conceptual similarities to this work, the proposed approach bears signi�-

cant di�erences. The �rst di�erence is that our approach considers the shape information

of the classes. Although this is also partially true for the Bien et al. approach, our ap-

proach considers this explicitly and enables the use of operations that can pre-process this

data if necessary. For instance, applying erosion, opening or closing operations to remove

2.3 Clustering 25

noise from the dataset.

Besides, the theory proposed in this thesis does not necessarily lay on the same premise

that each prototype of class l consists of points that are close to most training examples of

class l and far from training examples of other classes, although this may be true for most

datasets in practice. However, in occasions such as when one class is a subtle translation

of the other class, as shown in Figure 2.19, their prototype approach does not perform

reasonably well. A similar situation is also found when, for instance, both classes follow

a fractal or a pseudo-random noise function. The positions of the points belonging to

each class can be exactly predicted if the function is known a priori. However, if this

information is not known, the premise considered by Bien et al. does not hold.

Figure 2.19: Class 1 instances are shown in black and class 2 in grey. Both classes are
the exact translation of the other class.

We overcome this limitation by avoiding the concept of prototypes. Instead, we ex-

ploit the use of morphology-preserving transformations such as the ones o�ered by MM

to expand sets of pattern points corresponding to classes in discretized feature or classi�-

cation space. Using this p-dimensional shape preserving approach [42], the development

of classi�cation models, capable of capturing the topological features of distinct classes,

is enabled. Such an example in 2 dimensions is shown in Figure 2.19, which can be solved

with zero classi�cation errors, unlike the Bien et al. approach. At last, Bien et al. also

highlight that the main strengths of their methodology lie in the ease of understanding

why a given prediction has been made an alternative to (possibly high-accuracy) �black

box� methods. This statement also holds for our methodology.

2.3 Clustering

In contrast to classi�cation, the literature on clustering contains some works that use

mathematical morphology techniques. Still, these techniques are not properly exploited.

2.3 Clustering 26

Given a dataset X = {x1, ..., xL}, containing L instances, where xl ∈ Rn, 0 < l < L, the

common clustering problem consists of partitioning X into k disjoint subsets or clusters

(C1, ..., Ck) such that a cluster criterion is optimized. The most widely used clustering

criterion is the sum of the squared Euclidean distances between each instance xl and its

centroid um (cluster center) of the subset that contains xl [51]. This clustering error is

de�ned in Equation 2.16:

E(C1, ..., Ck) =
L∑
l=1

k∑
m=1

I(xl ∈ Cm)||xl − um|| (2.16)

where I(Y) = 1 if Y is true or I(Y) = 0, otherwise [51], and || || represents the distance
norm.

In terms of applications, clustering techniques are used in a broad range of areas such

as in (1) knowledge discovery, e.g., to separate instances that have common characteristics

in di�erent categories [29, 63, 32], in (2) image processing and analysis, to categorize

types of tumours, diseases and abnormalities [96, 34], in (3) pattern recognition and

image segmentation, to infer the content of images [102, 27], in (4) adaptive controllers

for games [105], where the controls are adapted in real time according to the input of the

user, in (5) robotics [45] for navigation, and in many other instances.

Clustering algorithms usually conform to one or more of the following categories [113]:

1. Centroid-based clustering: Clusters are created respecting a similarity measure.

There is no hierarchy of clusters. Clusters can be adapted in real time. The problem

consists of �nding k cluster centers, further assigning points to the nearest cluster

center. k-Means algorithm falls in this category.

2. Hierarchical: As the name suggests, algorithms that fall in this category seek

to build a hierarchy of clusters. Distance measures can be used with hierarchical

clustering as well. Strategies usually fall into two categories:

(a) Agglomerative: Individual, smaller clusters are created initially. Pairs of

clusters are merged as time advances, moving up on the hierarchy.

(b) Divisive: Huge clusters are created at �rst (usually just a single big cluster).

In this case, the bigger clusters are divided in time until the desired number of

clusters is obtained.

2.3 Clustering 27

3. Statistical clustering: Also called distribution-based clustering, these algorithms

rely on mathematical models or statistics to generate clusters. A simple approach

is generating Gaussian distributions over the data (initialized randomly), whose

parameters are adapted iteratively over time. Algorithms such as EM (Expectation

Maximization) fall in this category.

4. Density-based clustering: Clusters are usually de�ned as areas of higher density.

Points that fall in sparse areas are usually considered noise.

k-Means is arguably the most popular clustering algorithm. Although robust and

simple, it does not consider morphological aspects. In other words, k-Means is not able to

exploit shape and density information. On the contrary, the proposed clustering algorithm

overcomes these limitations by using morphological reconstructions, which are sensitive

to cluster density and to the morphology itself. In this research, we propose and extend

a morphological reconstruction algorithm to include the input parameter k.

Kapyris et al. [44] proposed a clustering algorithm called Chameleon that is capable

of indirectly detecting morphology in datasets. However, their algorithm is not based on

mathematical morphology itself. Instead, it consists of two phases. In the �rst phase it

uses graph-partitioning to cluster the dataset in relatively small sub-clusters, while in the

second phase, it uses an algorithm to �nd the genuine clusters by repeatedly combining

these sub-clusters. Chameleon is categorized as a hierarchical clustering algorithm, which

seeks to build a hierarchy of clusters. It can also be categorized as agglomerative instead

of divisive because clusters start small and are aggregated to form bigger clusters as time

advances, rather than the opposite, i.e., starting with large clusters and dividing them in

time.

It is clear that Chameleon is based on graph operations, which are very di�erent in

relation to mathematical morphology. Although their algorithm is able to indirectly detect

morphology, it lacks the richness of con�gurations that are enabled through mathematical

morphology. In fact, with the clustering algorithm proposed in this thesis, we are not

only able to change the k variable; the structuring element can be replaced as well, which

alters the fashion in which the clusters propagate. Besides, it is possible to perform

pre-processings such as dilations and erosions or combinations of them before and after

clustering images.

Liu et al. [52] proposed a clustering algorithm called TRICLUST, which is based on

the Delaunay triangulation. Furthermore, Liu et al. [53] proposed a clustering algorithm

2.3 Clustering 28

that is similar to previously described approaches. The authors evaluate how well cluster

prototypes are separated and form clusters using a separation measure.

Finally, Yousri et al. [114] proposed a clustering algorithm called Mitosis. This

approach also bears similarities to previous work. In this case, Mitosis uses distance

relatedness patterns as a measure to identifying clusters of di�erent densities. The authors

point out some issues of the Chameleon algorithm such as the slow speed of the algorithm

and the di�culty in tuning its parameters. These four works are the most similar to the

proposed clustering algorithm. It is important to highlight that they do not use concepts

from mathematical morphology.

2.3.1 Mathematical Morphology in Clusterization

Postaire et al. [74] proposed the �rst approach to mathematical morphology clusterization.

Although not de�ned by the authors in their original work, these types of algorithms were

later termed Binary Morphology Clustering Algorithms (BMCAs) [69, 56]. Figure 2.20

illustrates how the process of �nding cluster �cores� work.

2.3 Clustering 29

(a) Original data. (b) Opened twice and closed twice.

(c) Opened twice and closed four times. (d) Opened twice and closed six times.

Figure 2.20: Cluster core extraction using BMCAs.

Opening and closing operations are successively applied to data until reaching con-

nected core clusters, as shown in Figure 2.20-(d). Postaire et al. [74] de�nes the cluster

as a well-connected subset in the data space, which can virtually be of any shape and

size. Once the cluster cores are generated, they are considered to be prototypes. The

remaining data points are assigned to their respective cluster by means of the nearest

neighbour classi�cation rule.

Pedrino et al. [69] introduced an evolutionary algorithm to be used in conjunction

with the original BMCA approach. The idea is fundamentally the same, the input data

is discretized/quantized and opening/closing operations are used to locate cluster cores.

2.4 Metrics 30

However, as a proper structuring element is fairly di�cult to guess beforehand, the authors

improved on this aspect using an optimization algorithm.

Luo et al. [56] advocates for the use of brute force when it comes to selecting the

structuring element assuming that no a priori knowledge is given. Their work is very

similar to Pedrino et al. [69], the main di�erence lays on the fact that the authors use

morphological operations to concatenate instances to the core instead of the k-nearest

approach. All these BMCA algorithms do not accept a k variable, i.e., the number of

clusters is found automatically.

BMCAs [74, 69, 56, 15] rely entirely on binary operations, as opposed to the algorithm

proposed in this work, which works with grey level dilations/image reconstruction. A

substantial and fundamental di�erence is that we do not compute nor locate cluster cores.

In our case, elements are promptly assigned to a cluster index as the processing advances.

This introduces a noise-classi�cation pattern with no extra processing burden, as noise is

segmented in small independent clusters. Furthermore, the clusterization results are very

di�erent while also providing a means of limiting the amount of clusters.

Some algorithms focus on image segmentation/clusterization [7, 30]. These algorithms

create clusters based on the image grey level information. Among other operations, the

morphological watershed operation is used for this matter. The clustering algorithm

proposed in this work uses grey level information just as a means of indexing each data

point in the grid/quantized space. Therefore, the clusterized outcome is not tuned towards

image grey level content. In fact, it is directed towards usual clustering information while

being capable of exploiting density and shapes.

2.4 Metrics

Finally, as a novel distance metric is proposed in this thesis, a brief literature review on

distance metrics is performed in this section. A metric space is a pair (χ, d) where χ is a

set and d is a mapping from χ × χ into R, which satis�es the following conditions. Let

χ be an arbitrary nonempty set and d a real-valued function on the Cartesian product

χ× χ:

d : χ× χ→ R (2.17)

and consider the following four properties, which hold for arbitrary points x, y, z ∈ χ.

2.4 Metrics 31

1. d(x, y) ≥ 0 (symmetry)

2. d(x, y) = 0 i� x = y (non-negativeness)

3. d(x, y) = d(y, x) (positiveness)

4. d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality)

A real-valued function d on χ×χ that satis�es all four properties is a metric in χ, and

the properties themselves are called the metric axioms. A set χ equipped with a metric d

on χ × χ is a metric space, also denoted by the pair (χ, d). When d satis�es all but the

third property, it is called pseudometric. A distance function is any real-valued function

d on χ × χ that satis�es property 1 and 2. Similarly, when the fourth property is not

satis�ed, it is called semimetric [18].

Example Let χ be a non-empty set and d:

d(x, y) =

{
1, if x = y

0, if x 6= y
(2.18)

(χ, d) is a discrete metric space.

The Euclidean distance [109] is the most commonly used metric when it comes to

k-NN and other classi�cation algorithms [111]. This may be associated to the fact that

we are immersed in an Euclidean space, and therefore the Euclidean distance naturally

comes to mind. However, other distances outperform the Euclidean in several occasions,

which may be unintuitive at �rst glance [18].

Euclides once stated that the shortest distance between two points is a line. This

assertion popularized the Pythagorean metric as Euclidean distance, although derived

from the Pythagorean Theorem [14]. The Euclidean distance d2(x, y) between points x

and y, where x, y ∈ Rn, is given by Equation 2.19, where n represents the number of

dimensions in this subsection only.

De�nition Euclidean distance:

d2(x, y) =

√√√√ n∑
i=1

(xi − yi)2 (2.19)

2.4 Metrics 32

The Manhattan distance [35] was proposed by Hermann Minkowski in the late 19th

century [14] and is de�ned as the sum of the absolute di�erences of the Cartesian coordi-

nates, as shown in Equation 2.20.

De�nition Manhattan distance:

d1(x, y) =
n∑
i=1

|xi − yi| (2.20)

Later, Minkowski [43] included an exponent p in its formulation. Minkowski distance

[3], coined after him, is a generalization of both Euclidean (p = 2) and Manhattan (p = 1)

distances. The metric conditions are satis�ed as long as p is equal or greater than 1. p < 1

violates the triangle inequality (fourth condition).

De�nition Minkowski distance:

dp(x, y) = p

√√√√ n∑
i=1

|xi − yi|p (2.21)

When p reaches positive in�nity, the Chebyshev distance [14] is obtained, as shown

in Equation 2.22.

De�nition Chebyshev distance:

d∞(x, y) =
n

max
i=1
|xi − yi| (2.22)

These 4 distances metrics, Euclidean, Manhattan, Minkowski and Chebyshev, are

the mostly commonly known and consequently the mostly commonly applied metrics in

general. However, the Squared Euclidean distance and the Canberra distance are also

considered in this thesis.

The Squared Euclidean dSD is also known as the Sum of Squared Di�erence. This

is the fundamental metric in least squares problems and linear algebra, and is shown in

Equation 2.23.

De�nition Squared Euclidean distance:

dSD(x, y) =
n∑
i=1

(xi − yi)2 (2.23)

2.5 Summary 33

Finally, the Canberra distance is a weighted version of the Manhattan distance initially

proposed by Lance et al. [48] in the `60s, and is shown in Equation 2.24.

De�nition Canberra distance:

dCAD(x, y) =
n∑
i=1

|xi − yi|
|xi|+ |yi|

(2.24)

Cha [14] provides a complete survey on similarity measures. A total of 45 variations of

similarity measures are addressed in his work. A general statistical analysis is performed,

comparing the measures pairwise. No machine learning experiments were presented.

2.5 Summary

This chapter performed an extensive literature review in classi�cation and clusterization

including their relationship with mathematical morphology. Furthermore, a brief review

on metrics was included, as a new distance metric is one of the contributions of this thesis.

As previously stated, mathematical morphology is not su�ciently employed neither in

classi�cation nor clusterization. Clusterization, however, does contain a small associated

literature that uses mathematical morphology. Presumably, this is due to clustering being

a major problem in visual computing, and the connection between these concepts is much

more straight-forward considering images than classi�cation is.

The existing literature on clustering can be summarized as BMCAs, where cluster

cores are found using binary morphological operations. The clustering proposal of this

thesis uses grey level image operators and a novel way of selecting the desired amount

of clusters a priori. The BMCA classi�cation proposal, on the other hand, uses binary

operations. However, no work has ever attempted to do this in classi�cation. A single

work in the literature proposes an image segmentation based on classi�cation, for images

only. In addition, morphology is commonly used as a descriptor or as a feature of the

image space, but not as a classi�cation algorithm itself.

In terms of clusterization, other works in the literature propose di�erent methods,

based on fundamentals other than mathematical morphology, that are sensitive to cluster

density and shapes. The proposed approach is also sensitive to these aspects, and at the

same time is based on di�erent premises and is more e�cient than these related proposals

in terms of processing times. Comparisons regarding these algorithms can be found in

Chapter 4. The following chapter addresses the proposed methodology in detail.

Chapter 3

Morphological Methodology

This chapter describes the proposed methods in classi�cation and clusterization, respec-

tively. Before introducing each implementation, we provide their theoretical framework.

In the following Section 3.1, we provide some de�nitions [37] that belong to set theory

and are used throughout this chapter.

Section 3.2 addresses the classi�cation framework. Two proposed implementations

are addressed at �rst (MkNN and MDC). Later, the proposed metric is presented and

analysed, as it is necessary for the classi�cation process and for the complexity analysis.

In what follows, a complexity analysis of both implementations is performed. An ap-

proach for the combination of 2-dimensional classi�cation models is provided along with

approaches for reducing the storage requirements of the classi�cation models.

Section 3.3 presents the proposed clusterization algorithm (k-MS). A complexity anal-

ysis of the clustering approach is provided in sequence. Finally, parallelization aspects

considering the GPU architecture and memory aspects are addressed and discussed.

3.1 De�nitions

De�nition Set: A set is de�ned as a collection of distinct elements. For instance, num-

bers 1, 2 and 3, considered collectively form a set {1, 2, 3}.

De�nition Subset: A set A is a subset of B if A is contained in B. That is, all elements

of A are also elements of B. Subsets are denoted as A ⊂ B. A ⊆ B indicates that A can

also be equal to B.

De�nition Multiset: A multiset is a set that aggregates repeated elements. {1, 1, 2, 3}

3.2 Classi�cation 35

and {1, 2, 3} relate to the same set but are di�erent multisets.

De�nition Partition: A partition of a set is a grouping of non-empty subsets. For in-

stance, {1, 2, 3} has �ve partitions: {{1}, {2}, {3}}, {{1, 2}, {3}}, {{1, 3}, 2}, {{1}, {2, 3}},
{{1, 2, 3}}.

De�nition Element: An element is a unique member of a set/multiset. As an example,

the multiset {1, 1, 2, 3} contains four elements (its cardinality is equal to 4): 1, 1, 2 and

3, respectively.

3.2 Classi�cation

The essence of the approach for supervised learning is to expand pattern sets such that

the expansion covers the entire feature space, while preserving shapes and density of

the original clusters of labelled instances. We commence a process where subsets are

expanded using set operations from their original state i = 0, to their �nal state, i = Il,

for each class l. For this, we focus on data-driven classi�cation functions, based on the

p-dimensional shape of the original class clusters. The expansion may be terminated

in a speci�c direction if a suitable termination criterion is reached. This termination

criterion can be, for instance, the classi�cation error Perr > terr, where terr is a prede�ned

misclassi�cation threshold.

We consider a class of labelled patterns represented by a number of disjoint clusters

as a multiset. As previously addressed, a multiset is a generalization of the sets concept

which allows the presence of repeated instances. Thus, given a training dataset/multiset

X = {x1, ..., xn} containing instances such that x ∈ S, where S ⊂ Rp, p being the number

of attributes of the instances, with corresponding labels c(x) ∈ {1, ..., L}, an unlabelled

instance y is assigned a label l ∈ {1, ..., L}, such that:

ĉ(y) = l : y ∈ AIll (3.1)

subject to

L⋃
l=1

AIll = S (3.2)

3.2 Classi�cation 36

where Il corresponds to the �nal iteration for class l and AIll is the expanded set partition

of instances belonging to class l, which consists of Jl disjoint subsets a
Il
l,j such that:

AIll =

Jl⋃
j=1

aIll,j (3.3)

In what follows, we describe the methodology for obtaining the expanded set partition

AIll . Let us assume a set of pattern points A0
l belonging to class l, with index 0 referring

to the original set partition of training samples:

A0
l = {x ∈ X : c(x) = l} (3.4)

The original set partition of samples belonging to class l, A0
l , is represented by the

union of the disjoint subsets a0
l,j. An example of this in two dimensions is shown in Figure

3.1. Here, the class set partition A0
l is the union of {a0

l,1, a
0
l,2, a

0
l,3, a

0
l,4}.

l l l
l

ll

l
l

l

l

l

l

l
l

a0l,1
a0l,2

a0l,3

a0l,4

Figure 3.1: Partition A0
l consisting of 4 disjoint subsets at iteration 0.

Next, we consider the expanded set partition Ai+1
l , corresponding to the application

of a set operator f at iteration i:

Ai+1
l = f(Ail)
...

...

A1
l = f(A0

l)

(3.5)

where f(A) is a function that expands set A.

Therefore, given Il iterations of the expanded class set partitions, we have L equiva-

3.2 Classi�cation 37

lence classes as follows:

{A0
1, A1

1, ..., AI11 } Equivalence class 1

{A0
2, A1

2, ..., AI22 } Equivalence class 2
...

...
...

{A0
L, A1

L, ..., AILL } Equivalence class L

(3.6)

A candidate set morphology-preserving operation f based on mathematical morphol-

ogy is the dilation [98]:

f(Ail) = dilB(Ail) (3.7)

by a suitable structuring element B. A potential result for iteration 1 is shown in Figure

3.2, assuming that iteration 0 is shown in Figure 3.1, where in this speci�c case B =

{(0, 0), (−1, 0), (1, 0), (0,−1), (0, 1)}.

l l l
l

lll

l
l

l
l

l

l
l
ll

l
l

l
l

l
l

l

l
l
l

l ll
l

ll
l
l

l
l

l

l
l

a1l,1

a1l,2

Figure 3.2: Set partition A1
l consisting of 2 disjoint subsets at iteration 1, where the dark

grey shaded pixels represent the elements that are included in the set at iteration 1.

In a dilator classi�er, all A0
l can be expanded simultaneously, where intersections of

labels are erased when they occur. The result of the dilation of l classes until they cover

the classi�cation space S is a classi�cation model.

The operation f may be any other operation apart from strict dilations. For instance,

it could be a combination of morphological operations such as dilations and erosions,

a pseudo-random or random function operating on the set partition, etc. Opening and

closings can be used to modify initial data points (e.g., noise removal) such as with the

BMCA algorithms.

3.2 Classi�cation 38

In the case of p-dimensional set partitionsA0
l , patterns are represented in a p-dimensional

hypercube or grid. Each original set partition A0
l is represented by a unique class label

l, and an appropriate set operator (such as a dilation shown in Equation 3.7), is applied

to produce the expanded set partition Ail at iteration i. The set expansion process is

controlled by a convergence function, which monitors a performance measure, e.g., classi-

�cation error. The evolution of a class set partition at iteration i is terminated according

to the convergence function, and the membership of the class set partition is reset to that

at iteration i− 1. In what follows, we provide the de�nition of a Morphological Classi�er

(MC):

De�nition Morphological Classi�er (MC): Assume a partition S of Rp and L set parti-

tions AIll such that:

L⋃
l=1

AIll = S (3.8)

where Il corresponds to the �nal iteration for class l, and each of the set partitions is the

result of morphology-preserving set expansion operations.

A morphological classi�er M is a p-dimensional hypercube or grid, where the value of

each element refers to the predicted label of an unclassi�ed pattern y.

ĉ(y) = l : y ∈ AIll , l ∈ {1, ..., L} (3.9)

The evolution of set partitions AIll is governed by a convergence function φ().

Given a validation dataset with m instances, Y = {y1, ..., ym} ⊂ S, which is a multiset

with corresponding labels c(y1), ..., c(ym) ∈ {1, ..., L}, its accuracy rate is given by:

Accuracy =
|{y ∈ Y : ĉ(y) = c(y)}|

|Y |
(3.10)

where ĉ(y) represents the predicted class of instance y (as shown in Equation 3.3) and

|Y | stands for the cardinality of set Y .

Theorem 3.2.1 proposes a possible methodology for the expansion of the set partitions.

The fundamental concept of the theorem is that it is possible to exploit redundancy, i.e.,

the complement of the union of L − 1 set partitions represents one of the set partitions,

which reduces memory and computational requirements.

3.2 Classi�cation 39

However, with L set partitions, there are L possible options for the complement

set partition, i.e., which candidate complement set partition leads to the best accuracy.

Theorem 3.2.1 proves that the selection of the complement partition a�ects accuracy.

Theorem 3.2.1 Impact of complement set partition Aq on classi�cation performance:

Consider the L expanded set partitions Ail at iteration i, l ∈ {1, ..., L},

Aiq = S \
L⋃
l=1

{
Ail, if l 6= q

∅, otherwise
(3.11)

subject to

S =
L⋃
l=1

Ail, S ⊂ Rp (3.12)

then, there is a set partition AIlq , q ∈ {1, ..., L}, at �nal iteration Il, that maximizes

accuracy for a speci�c classi�cation problem.

Proof Equation 3.11 introduces the use of the complement of a set partition in the expan-

sion process, which reduces memory and processing time requirements. For instance, in

binary classi�cations, the partitions are: Ai1 and Ai2. The expansion is performed in one

of the two partitions, while the other corresponds to the complement of the �rst partition.

Assuming that Xl is a multiset of instances with labels equal to l, then the accuracy

rate for the binary case is given by:

Accuracy =
|X1

⋂
AI11 |+ |X2

⋂
AI22 |

|X|
(3.13)

Assuming A
Iq
q = AI22 , then |X2

⋂
AI22 | is equivalent to |X2 \AI11 |, as AI22 is the comple-

ment set partition (AI22 = S \ AI11). Thus, the accuracy for A
Iq
q = AI22 is given by:

Accuracy
A

Iq
q =A

I2
2

=
|X1

⋂
AI11 |+ |X2 \ AI11 |
|X|

(3.14)

The previous accuracy concerns to A
Iq
q = AI22 . In the other case, where A

Iq
q = AI11 ,

instead of expanding AI11 , A
I2
2 is expanded, which provides the following accuracy rate:

3.2 Classi�cation 40

Accuracy
A

Iq
q =A

I1
1

=
|X2

⋂
AI22 |+ |X1 \ AI22 |
|X|

(3.15)

We seek to prove that the choice of Aiq has an impact on the accuracy. For that to be

true, we assume that Equation 3.16 is true and derive contradiction. If this does not hold

for at least a single case, then our theorem is proved.

Accuracy
A

Iq
q =A

I2
2

= Accuracy
A

Iq
q =A

I1
1

|X1
⋂
A

I1
1 |+|X2\A

I1
1 |

|X| =
|X2

⋂
A

I2
2 |+|X1\A

I2
2 |

|X|

(3.16)

Let us assume a similar case for both set accuracy computations, where AI11 and AI22 ,

respectively, are expanded to the point where they cover the space S completely, such that

AI11 = AI22 = S. This implies X2 \ AI11 = ∅, X1 \ AI22 = ∅, X1

⋂
AI11 = X1 as well as

X2

⋂
AI22 = X2. Therefore:

|X1
⋂
A

I1
1 |+|X2\A

I1
1 |

|X| =
|X2

⋂
A

I2
2 |+|X1\A

I2
2 |

|X|

|X1

⋂
AI11 |+ |X2 \ AI11 | = |X2

⋂
AI22 |+ |X1 \ AI22 |

|X1

⋂
AI11 |+ |∅| = |X2

⋂
AI22 |+ |∅|

|X1

⋂
AI11 | = |X2

⋂
AI22 |

|X1| = |X2|

(3.17)

|X1| = |X2| is a contradiction as X1 and X2 can be di�erent multisets. Therefore, the

accuracy can be a�ected by the choice of the complement set partition. �

As Theorem 3.2.1 indicates, accuracy rates may vary depending on the chosen com-

plement partition. We recommend the use of brute force approaches in this case. Binary

classi�cation problems were tested in the course of this research, and it is possible to

assume that accuracy varies slightly over partitions, in general. We suspect that this can

be assumed in general case scenarios.

In addition, we assume that the classi�cation space is a discrete space. Depending on

the dataset being used, it can represent a �ner grain of information, i.e., its grid elements

could be smaller, or it each one could encapsulate several instances, i.e., grid elements

would be larger. Datasets can be discretized/quantized in a way that no information is

actually lost.

3.2 Classi�cation 41

3.2.1 Morphological k-NN (MkNN)

In this section, we present an algorithm that is similar to k-NN while still conforming to

the theoretical de�nitions of Section 3.2. This algorithm generates a classi�cation model,

which does not require re-training and therefore is not a lazy classi�er. However, as in

the traditional k-NN, an unlabelled instance y has its surroundings examined until the

algorithm checks k other instances. Finally, it classi�es y as the majority class among

visited neighbouring instances.

Formally, given an unlabelled instance y, its neighbouring instances are visited so

that at iteration i, labelled instances that are at a distance ≤ i from y are visited. If

at any iteration i, the number of visited labelled instances is ≥ k, where k is an input

parameter as in the k-NN, then the unlabelled instance y is said to be of the same class

as the majority of the visited labelled neighbouring instances. The f operation in this

case is given by:

Ai+1
l = f(Ail) = Ail ∪ {y ∈ S : mode({x ∈ X : d(x, y) ≤ i}) = l} (3.18)

where d is a distance function and mode() returns the most frequent label in the multiset.

The algorithm proceeds by analysing and examining the nearest labelled instances. For

a single unlabelled position y in grid or space S, the surrounding labelled instances x are

examined. This whole process is repeated for every possible unlabelled position in the

grid before the algorithm reaches convergence, i.e., it terminates when k nearest instances

have been visited. The convergence function for class l is given by:

φ(Ail) =

{
1, if

∑y∈S
y φa(y) = |S|

0, otherwise
(3.19)

which is subject to

φa(y) = |{x ∈ X : d(x, y) ≤ i}| ≥ k (3.20)

where |S| indicates the total size of the subset or grid S, i.e., the total amount of elements

that represent the grid. Finally, the labelling function of MkNN algorithm conforms

to Equation 3.9. The pseudo-code for constructing its classi�cation model is shown in

Algorithm 1.

3.2 Classi�cation 42

Algorithm 1: Construction of the MkNN classi�cation model.
Data: k and γ are input parameters, where k stands for how many neighbouring

instances should be visited, γ stands for a weight applied to the central

grid position and σ represents the maximal number of iterations. T1, ..., TL

are counters for the classes, X is the training dataset, A0
l respects Equation

3.4 and c(x) returns the class label of instance x.

1 begin

2 for each possible y position in grid S do
3 kaux ← 0; i← 0;

4 for each class l, such that 1 ≤ l ≤ L do Tl ← 0;

5 if y ∈ X then Tc(y) ← γ;

6 while kaux < k do

7 for each instance x ∈ X : d(y, x) = i do

8 Tc(x) ← Tc(x) + 1;

9 kaux ← kaux + 1;

10 i← i+ 1;

11 if σ < i then break;

12 maxl← receives the l that maximizes Tl;

13 Ai+1
maxl ← (

⋃i2<i+1
i2=0 Ai2maxl) ∪ {y};

14 Return AIl1 , ..., A
Il
L ;

3.2 Classi�cation 43

3.2.2 Morphological Dilator Classi�er (MDC)

The Morphological Dilator Classi�er inherits more properties of mathematical morphol-

ogy than MkNN. This algorithm dilates positions in grid S until a termination criterion

is reached. The f operation for the MDC is governed by a rule β that indicates the

orientation in which the instances are dilated. Function f is then given by:

Ai+1
l = f(Ail) = dil(Ail, B(d, i, β)) (3.21)

where the operator dil refers to a p-dimensional dilation of the expanded set partition Ail
at iteration i by the p-dimensional structuring element B. The structuring element B is

a set whose structure is de�ned by the choice of distance d, the distance measure i (or

iteration counter) and the orientation factor β.

Examples of expansion rules for β, which alter the orientation of the structuring

element and hence the expansion of the associated set partition for the case of two di-

mensions, are:

β =


e1 ≥ −|e2| : to the left

e2 ≥ |e1| : to the bottom

e1 ≤ |e2| : to the right

e2 ≤ −|e1| : to the top

(3.22)

where e1 represents the x coordinate of e and e2 its y coordinate. Combinations of these

rules are also possible. Di�erent expansions and p-dimensional rules can also be applied.

For the MDC implementation of this work, we consider these 4 di�erent orientations and

any combination of them, resulting in a total of 16 di�erent growth patterns.

For more detail, the f function of MDC is given by:

Ai+1
l = f(Ail) = Ail ∪ {y ∈ S : d(x, y) = i, x ∈ Ail, β} (3.23)

Besides, the convergence function of MDC is given by:

φ(Ail) =

{
1, if Perr(A

i
l) < terr ∨ i ≥ σ

0, otherwise
(3.24)

where Perr is a classi�cation error measure and terr is a error threshold, indicating the

3.2 Classi�cation 44

maximal accepted error prior to the classi�er terminating training. σ forces expansions

to terminate if i exceeds σ. ∨ represents the Boolean or operation. The individual error

PinstErr(y) of an instance y is given by:

PinstErr(y) =

{
1, if τTl < Tu, u ∈ {1, ..., L}, u 6= l

0, otherwise
(3.25)

where Tl is a counter of neighbouring instances of y that have been engulfed by the

expansion and belong to class l. τ is a scaling factor that, such as in GRASP [72], allows

for the expansion to continue even if Tl < Tu. The total error of the set partition is the

sum of PinstErr such that:

Perr(A
i
l) =

y∈Ai
l∑

y

PinstErr(y) (3.26)

The pseudo-code for generating the MDC classi�cation model is shown in Algorithm

2.

3.2 Classi�cation 45

Algorithm 2: Construction of the MDC classi�cation model.
Data: γ, τ , β and σ are input parameters. γ stands for a weight applied to the

central instance, τ controls the convergence as shown in Equation 3.25, β a

orientation or expansion altering rule, as shown in Equation 3.22, and σ is

a threshold for the number of partition set expansions. T1, ..., TL are

counters for the classes 1...L, X is the training dataset and A0
l respects

Equation 3.4. q indicates the complement set partition.

1 begin

2 for each class l, such that 1 ≤ l ≤ L, l 6= q do

3 i← 0; for each instance e ∈ Ail do
4 for each class ltwo, such that 1 ≤ ltwo ≤ L do Tltwo ← 0;

5 Tc(e) ← γ;

6 while PinstErr(e) = 0 and i < σ do

7 for each instance x ∈ X : d(e, x) ≤ i do

8 Tc(x) ← Tc(x) + 1;

9 if PinstErr(e) = 0 then

10 Ai+1
l = Ail ∪ {y ∈ S : d(e, y) ≤ i, y 6∈ Ail2 : l2 ∈ {1, ..., L}};

11 i← i+ 1;

12 Apply the complement operation to set partition AIqq as described in Equation

3.11;

13 Return AIl1 , ..., A
Il
L ;

3.2.2.1 Graphical E�ects of Structuring Elements

Algorithms for morphological classi�cation were addressed. However, di�erences on clas-

si�cation models that originate from the choice of di�erent structuring elements have

not yet been shown. Di�erent structuring elements or rules β can modify the expansion

progress of the partition sets dramatically. Figure 3.3 shows an input dataset containing

a single label that we wish to dilate.

3.2 Classi�cation 46

Figure 3.3: Instances of an input two dimensional dataset with class label equal to l.

At di�erent iterations, e.g., 5 and 25, we would have the following sets A5
l and A25

l

for the given class l. In these examples, the used structuring elements were: B1 =

{(0, 0), (−1, 0),(1, 0), (0,−1),(0, 1)}, B2 = {(0, 0),(−1, 0)}, B3 = {(0, 0),(1,−1)}, B4 =

{(0, 0), (1, 0),(0, 1)}, B5 = {(0, 0), (1, 0),(1,−1)}, B6 = {(0, 0), (−1, 0),(5, 5)}, respec-

tively.

3.2 Classi�cation 47

(a) A5
l and B1 (b) A25

l and B1 (c) A5
l and B2 (d) A25

l and B2

(e) A5
l and B3 (f) A25

l and B3 (g) A5
l and B4 (h) A25

l and B4

(i) A5
l and B5 (j) A25

l and B5 (k) A5
l and B6 (l) A25

l and B6

Figure 3.4: Examples of the f function being a dilation with varying structuring elements
at iterations 5 and 25.

Di�erent structuring elements lead to very distinct classi�cation models, as illustrated

in Figure 3.4. This fact can be explored respecting particularities of each dataset. In 3.4-

(l), for instance, it is clear that the classi�cation model does not need to be �connected�.

Brute force is still recommended for the general case. For a even broader case, a symmetric

structuring element such as the cross-shaped one or ring can be used.

3.2.3 Rodrigues Distance

The two classi�er implementations that were presented up to this point consider p-

dimensional multi-labelled data. In the experiments (Chapter 4), however, we decided

to process p-dimensional datasets as combinations of 2-dimensional models. Several

2D �weak� learners can be created from p-dimensional data and combined to form a

3.2 Classi�cation 48

p-dimensional classi�cation model.

2D models are faster to compute and more e�cient to store. Not every pairwise

combination of attributes has to be explored. Even if necessary, it is still more e�cient

(proved in Theorem 3.2.3). Heuristics can be used to eliminate some of these combinations.

In this subsection, we introduce a distance that is very e�cient in GPUs or in low level

environments for 2D neighbourhood iterations. The order in which the neighbours of a

pixel y are visited in both MkNN and MDC algorithms is shown in Figure 3.5, for the

upper-right quadrant. The 3 remaining quadrants (left, bottom and bottom-left) respect

the same ordering.

1
11 2
3

3
4

4 5
6

6

7

7
8

8 9
1011121314

13
12
11
1015

16
17
18
19
201918171615

y

Figure 3.5: Upper-right quadrant of the proposed distance metric.

This iteration, however, can be performed using di�erent approaches. If we consider

the Chebyshev distance, the solution is straightforward in terms of algorithmic logic. A

loop iterates through the two lines above and below the central pixel and through the

columns at its left and right. At each increment of the distance, the lines and columns

are shifted by 1. Algorithm 3 illustrates the concept. After convergence, Nd contains the

pixels at distances d from the central pixel (xc, yc).

It is slightly more di�cult to perform neighbourhood iterations using the Manhattan

distance. Manhattan can be seen as the Chebyshev distance rotated by 45 degrees in R2.

However, the implementation requires a few more operations and variables, which slightly

increases the overall processing time. Algorithm 4 describes the process.

Using any other distance than Chebyshev and Manhattan requires much more e�ort.

The Euclidean distance requires a quantization/approximation process. The distances can

be pre-computed and stored in a kernel or processed in real time. However, storing large

amounts of data in kernels consume a signi�cant amount of memory when computing

large distances. Accessing this data also impacts negatively on the overall processing

performance. In the GPU, for instance, these kernels would have to be located in global

3.2 Classi�cation 49

Algorithm 3: Neighbourhood iteration using the Chebyshev distance.
Data: I stands for an arbitrary image, I(x, y) represents its pixel value at

position (x, y). D represents the maximal distance to be computed and Nd

is a set that contains all the pixels at distance d from central pixel (xc, yc).
1 d← 1;
2 while d < D do

3 for (l← −d; l ≤ d; l← l + 1) do
4 Nd ← Nd ∪ I(xc + l, yc − d);
5 Nd ← Nd ∪ I(xc + l, yc + d);
6 if l 6= d and l 6= −d then // Avoiding duplicates at corners

7 Nd ← Nd ∪ I(xc − d, yc + l);
8 Nd ← Nd ∪ I(xc + d, yc + l);

9 d← d+ 1;

Algorithm 4: Neighbourhood iteration using the Manhattan distance.
Data: I stands for an arbitrary image, I(x, y) represents its pixel value at

position (x, y). D represents the maximal distance to be computed and Nd

is a set that contains all the pixels at distance d from central pixel (xc, yc).
1 d← 1; xa ← 0; ya ← 0;
2 while d < D do

3 for (g ← 0; g < 4; g ← g + 1) do
4 switch g do
5 case 0 do xa ← xc; ya ← yc + d;
6 case 1 do xa ← xc + d; ya ← yc;
7 case 2 do xa ← xc; ya ← yc − d;
8 case 3 do xa ← xc − d; ya ← yc;

9 for (l← 0; l ≤ d; l← l + 1) do
10 Nd ← Nd ∪ I(xa, ya);
11 switch g do
12 case 0 do xa ← xa + 1; ya ← ya − 1;
13 case 1 do xa ← xa − 1; ya ← ya − 1;
14 case 2 do xa ← xa − 1; ya ← ya + 1;
15 case 3 do xa ← xa + 1; ya ← ya + 1;

16 d← d+ 1;

3.2 Classi�cation 50

memory, whose access is slow. Computing kernels in real time is also very ine�cient.

Algorithm 5 illustrates an arguably e�cient way of iterating through the neighbour-

hood of the central pixel (xc, yc) using the Euclidean distance without storing the re-

spective distances in a pre-built kernel. Two early breaks are employed to speed up the

computation.

Algorithm 5: Neighbourhood iteration using the Euclidean distance.
Data: I stands for an arbitrary image, I(x, y) represents its pixel value at

position (x, y). D represents the maximal distance to be computed and Nd

is a set that contains all the pixels at distance d from central pixel (xc, yc),
and abs represents the absolute integer value.

1 d← 1; xa ← 0; ya ← 0;
2 while d < D do

3 for (ls← 0; ls < d/2; ls← ls+ 1) do
4 foundFirst ← false;
5 for (l← d; l ≥ 0; l← l − 1) do
6 �nished ← false;
7 for (ln← l; ln ≥ −l; ln← ln− (2 ∗ l)) do
8 xa ← xc + ln; ya ← yc − d+ ls;
9 if δ then
10 Nd ← Nd ∪ I(xa, ya);
11 foundFirst ← true;
12 else �nished ← foundFirst;
13 ya ← yc + d− ls;
14 if abs(

√
(xc − xa)2 + (yc − ya)2) = d then Nd ← Nd ∪ I(xa, ya);

15 if ln 6= d then // duplicates

16 xa ← xc − d+ ls; ya ← yc + ln;
17 if abs(

√
(xc − xa)2 + (yc − ya)2) = d then Nd ← Nd ∪ I(xa, ya);

18 xa ← xc + d− ls;
19 if abs(

√
(xc − xa)2 + (yc − ya)2) = d then Nd ← Nd ∪ I(xa, ya);

20 if ln = 0 then break;

21 if �nished then break;

22 d← d+ 1;

On average, the Chebyshev distance (Algorithm 3) iterates neighbourhoods up to

distance D = 2500 in 0.098 seconds. D represents the size of the discrete neighbourhood

around the pixel that is being iterated. The Manhattan distance (Algorithm 4), on the

other hand, takes approximately 0.146 seconds to iterate through the same neighbourhood.

The Euclidean distance (Algorithm 5), at last, requires a total of 36.125 seconds, which

is signi�cantly worse.

When it comes to optimization, especially in GPU computing, these di�erences on the

3.2 Classi�cation 51

performance impact on the overall processing times even more. Besides, the Manhattan

distance does not add any information to the neighbourhood iteration when compared to

the Chebyshev distance. As previously stated, the Manhattan distance is identical to the

Chebyshev distance, but rotated by 45 degrees in R2.

On the other hand, using the Euclidean distance implies a huge computational burden,

where its implementation is approximately 368 times slower than Chebyshev forD = 2500,

and it gets even worse as D increases. This work proposes an intermediate distance metric

between Chebyshev and Euclidean that adds information, as opposed to Manhattan, and

is far more e�cient when it comes to neighbourhood iterations.

This distance (its mathematical formulation is shown in Equation 3.27) was estab-

lished while attempting to improve the neighbourhood iterations of morphological classi-

�ers in GPUs, which heavily rely on low level operations. As previously stated, a metric

closer to the Euclidean distance was desired, but the reported time burden was incom-

patible with practical cases. Algorithm 6 shows the iteration process of the proposed

distance.

Algorithm 6: Neighbourhood iteration using the proposed/Rodrigues distance.

Data: I stands for an arbitrary image, I(x, y) represents its pixel value at
position (x, y). D represents the maximal distance to be computed and Nd

is a set that contains all the pixels at distance d from central pixel (xc, yc).
1 d← 1; da ← d;
2 while d < D do

3 Nda ← Nda ∪ I(xc + d, yc);
4 Nda ← Nda ∪ I(xc − d, yc);
5 Nda ← Nda ∪ I(xc, yc + d);
6 Nda ← Nda ∪ I(xc, yc − d);
7 for (l← 1; l ≤ d; l← l + 1) do
8 N(da+l) ← N(da+l) ∪ I(xc + d, yc − l);
9 N(da+l) ← N(da+l) ∪ I(xc + d, yc + l);
10 N(da+l) ← N(da+l) ∪ I(xc − d, yc − l);
11 N(da+l) ← N(da+l) ∪ I(xc − d, yc + l);
12 if l 6= d then
13 N(da+l) ← N(da+l) ∪ I(xc − l, yc + d);
14 N(da+l) ← N(da+l) ∪ I(xc + l, yc + d);
15 N(da+l) ← N(da+l) ∪ I(xc − l, yc − d);
16 N(da+l) ← N(da+l) ∪ I(xc + l, yc − d);

17 da ← da + d+ 1;
18 d← d+ 1;

This proposed iteration (Algorithm 6) achieves almost Chebyshev-like time perfor-

3.2 Classi�cation 52

mances and obtains an iteration fashion that is closer to the Euclidean. The result of the

proposed distance in R2 for p = 1 is an octagon (Chebyshev and Manhattan distances

produce squares). That is, the octagon is much closer to the circular pattern produced

by the Euclidean distance than the squares produced by the Manhattan and Chebyshev

distances. Table 3.1 shows the processing times obtained with each one of the algorithms

(Algorithms 3-6) as the size of the neighbourhood D is increased. These results were

obtained using Java 7 and an Intel i7-7700HQ, clocked at 2.8 GHz averaged over 100

runs.

Table 3.1: Processing times (s) for each distance (Algorithms 3-6).

Sizes (D) Chebyshev Manhattan Euclidean Rodrigues

500 0.0022 0.0024 0.3069 0.0022

1000 0.0109 0.0116 2.3290 0.0115

1500 0.0295 0.0407 7.8285 0.0318

2000 0.0583 0.0829 18.5112 0.0624

2500 0.0985 0.1460 36.1253 0.1050

3000 0.1517 0.2228 62.2829 0.1599

3500 0.2377 0.3397 98.8083 0.2454

4000 0.3031 0.4672 147.6250 0.3166

4500 0.4030 0.5923 204.2881 0.4243

Table 3.1 demonstrates that the proposed distance is in fact faster than the Manhattan

and Euclidean distances. On average, it was 1.3 times faster than Manhattan and 329.5

times faster than Euclidean. In what follows, a formal mathematical de�nition of this

distance is presented.

3.2.3.1 De�nition

The proposed distance is a combination of Chebyshev and Minkowski distances, weighted

by w1 and w2, as shown in Equation 3.27. As w1 increases in regard to w2, the distance

becomes more like Minkowski. On the contrary, when w2 increases it converges towards

Chebyshev. Algorithm 6 considers w1 = w2 = p = 1.

3.2 Classi�cation 53

De�nition The proposed distance is de�ned as:

dw1,w2,p(x, y) = w1 dp(x, y) + w2 d∞(x, y)
...

dw1,w2,p(x, y) = w1
p
√∑n

i=1 |xi − yi|p + w2
n

max
i=1
|xi − yi|

(3.27)

As two metrics are being summed up, it is straightforward to infer from the formula-

tion that as long as w1, w2 > 0 and p ≥ 1, all the metric conditions are satis�ed, including

the triangle inequality.

In what follows, Theorem 3.2.2 demonstrates in detail how the metrics conditions are

satis�ed for dw1,w2,p(x, y).

Theorem 3.2.2 dw1,w2,p(x, y) is a metric given that p ≥ 1, w1 > 0 and w2 > 0.

Proof 1O dw1,w2,p(x, y) ≥ 0→ dp(x, y) and d∞(x, y) are metrics themselves and therefore

provide values equal or greater than 0, their sum is also equal or greater than 0.

2O dw1,w2,p(x, y) = 0 ⇔ x = y → dp(x, y) and d∞(x, y) both return 0 if and only if

x = y. The sum of these two results in 0 only if both are 0.

3O dw1,w2,p(x, y) = dw1,w2,p(y, x) → 0, It is known a priori that both metrics dp(x, y)

and d∞(x, y) satisfy 3O. Therefore, dp(x, y) = dp(y, x) and d∞(x, y) = d∞(y, x), which

proves that w1 dp(x, y) + w2 d∞(x, y) = w1 dp(y, x) + w2 d∞(y, x).

4O dw1,w2,p(x, z) ≤ dw1,w2,p(x, y) + dw1,w2,p(y, z) → Once again, as both dp(x, z) ≤
dp(x, y) +dp(y, z) and d∞(x, z) ≤ d∞(x, y) +d∞(y, z) are true, consequently, w1 dp(x, z) +

w2 d∞(x, z) ≤ w1 dp(x, y) + w2 d∞(x, y) + w1 dp(y, z) + w2 d∞(y, z) is also satis�ed. �

3.2.3.2 Graphical Analysis in R2

Figure 3.6 shows how the proposed distance compares to other distances in R2. The

proposed distance is in fact a mixture of Chebyshev and Manhattan (for p = 1), as shown

in Figure 3.6-(l). It is possible to argue that the distance is an intermediate step between

Manhattan/Chebyshev and Euclidean, and therefore it adds information in relation to

Manhattan and Chebyshev. However, it requires far less processing power (as shown in

Algorithm 6) in regard to Euclidean or even Manhattan. In the cases where p < 1, the

respective distances are not metrics. The condition w1 = w2 = 1 is respected for all the

distances in this �gure.

3.2 Classi�cation 54

(a) Minkowski (p=0.5) (b) Minkowski (p=0.75) (c) Manhattan /

Minkowski (p=1)

(d) Euclidean /

Minkowski (p=2)

(e) Minkowski (p=3) (f) Minkowski (p=4) (g) Chebyshev /

Minkowski (p=∞)

(h) Sum of Squared Dif-

ferences

(i) Canberra (j) Proposal (p=0.5) (k) Proposal (p=0.75) (l) Proposal (p=1)

(m) Proposal (p=2) (n) Proposal (p=3) (o) Proposal (p=4)

Figure 3.6: Distances in R2. The distances are computed from the central element in the
image. Lighter shades of gray indicate greater distances.

3.2.3.3 Performance Analysis Using k-NN

In this subsection, we present a practical experiment using 33 numerical datasets from

the UCI repository. This encompass all the entirely numerical datasets in their repository

excluding kdd-JapaneseVowels and Liver Disorders. We varied the distance measurements

3.2 Classi�cation 55

and the k variable of the traditional k-NN classi�er to generate the results shown in Table

3.2.

Categorical attributes are widely used with k-NN and other classi�ers that are sup-

posedly made to work with numerical/continuous values. The commonly employed as-

sumption is that if the categorical value is equal, the distance between these two instances

is said to be 1. Otherwise, the categorical distance is set to 0. Although this assumption

works well and enables the processing of categorical datasets by numerical classi�ers, it

could bias the experiments. If an arbitrary dataset contains 9 categorical and 1 numerical

attributes, the distance measurement would be applied in just one of the attributes (1

dimensional). These assumptions could more frequently improve the performance of a

certain distance in detriment of others by chance. In order to avoid biasing the results,

categorical datasets were disregarded from this experiment.

The �rst three columns of Table 3.2 show the mean accuracy, true positive and true

negative rates achieved by each distance. Accuracy is de�ned as the number of true

positives and true negatives divided by the total population. The last �ve columns concern

to the Mean k, Max k, P-value, how many times the accuracy obtained with the distance

was better than the average accuracy, and the amount of occasions where the accuracy

obtained with the respective distance was the best one (equal to the maximal obtained

accuracy).

The k variable was tested with values from 1 to 200 for each combination of distance

and dataset. The value for k that achieved the best accuracy was selected. The �fth

column (Mean k) represents the average k chosen over all the 33 datasets for each one of

the distances. The sixth column (Max k) represents the maximal k with the respective

distance, also over the 33 datasets.

In the seventh column, P-value is computed considering the accuracy values of each

distance in relation to the accuracy obtained with Minkowski distance where p = 0.5,

which was the distance that obtained the best mean accuracy (highlighted in bold in the

second column of Table 3.2).

In summary, a total of 33 datasets from the UCI repository, 15 distances and values

for k varying from 1 to 200 were evaluated. The proposed distance obtained accuracies

that were better than the average more often than its counterparts (in 26 cases out of 33).

Furthermore, it also obtained the best accuracy more frequently (in 9 out of 33 cases).

As a remark, the proposed distance is also faster in than Manhattan and Euclidean in

neighbourhood iterations.

3.2 Classi�cation 56

T
ab
le
3.
2:

A
ve
ra
ge

re
su
lt
s
ob
ta
in
ed

w
it
h
15

di
�
er
en
t
di
st
an
ce

m
ea
su
re
s
(t
es
te
d
on

33
nu

m
er
ic
al

da
ta
se
ts

fr
om

th
e
U
C
I
re
p
os
it
or
y)
.

D
is
ta
nc
es

M
ea
n
A
cc

M
ea
n
T
P
M
ea
n
T
N

M
ea
n
k
M
ax

k
P
-V
al
ue

B
et
te
r

th
an

A
ve
ra
ge

B
es
t

E
uc
lid

ea
n
D
is
ta
nc
e

0.
82
3

0.
76
8

0.
86
7

11
.2

49
0.
55
2

19
6

C
he
by
sh
ev

D
is
ta
nc
e

0.
78
6

0.
73
3

0.
86
0

14
.4

10
8

0
.1
2
9

9
4

M
an
ha
tt
an

D
is
ta
nc
e

0.
83
4

0.
78
0

0.
87
8

10
.7

70
0.
78
7

24
4

M
in
ko
w
sk
i
D
is
ta
nc
e
(p

=
0.
5)

0
.8
4
2

0
.7
8
9

0
.8
8
4

12
.3

97
1.
00
0

25
9

M
in
ko
w
sk
i
D
is
ta
nc
e
(p

=
0.
75
)

0.
83
7

0.
78
5

0.
88
2

10
.8

68
0.
87
4

24
4

M
in
ko
w
sk
i
D
is
ta
nc
e
(p

=
3)

0.
82
1

0.
76
6

0.
86
7

10
.2

47
0.
51
6

16
6

M
in
ko
w
sk
i
D
is
ta
nc
e
(p

=
4)

0.
82
0

0.
76
6

0.
86
7

10
.5

47
0.
49
0

18
8

C
an
b
er
ra

D
is
ta
nc
e

0.
69
5

0.
62
7

0.
82
8

24
.1

19
0

0
.0
0
4

10
8

Su
m

of
Sq

ua
re
d
D
i�
er
en
ce

0.
82
3

0.
76
8

0.
86
7

11
.2

49
0.
55
2

19
6

P
ro
p
os
ed

(R
od

ri
gu
es
)
D
is
ta
nc
e
(p

=
0.
5)

0.
84
0

0.
78
8

0
.8
8
4

10
.8

68
0.
95
0

2
6

5
P
ro
p
os
ed

(R
od

ri
gu
es
)
D
is
ta
nc
e
(p

=
0.
75
)

0.
83
5

0.
78
1

0.
87
9

10
.8

66
0.
81
6

2
6

3
P
ro
p
os
ed

(R
od

ri
gu
es
)
D
is
ta
nc
e
(p

=
1)

0.
82
9

0.
77
6

0.
87
5

11
.7

10
1

0.
67
7

23
9

P
ro
p
os
ed

(R
od

ri
gu
es
)
D
is
ta
nc
e
(p

=
2)

0.
82
1

0.
76
6

0.
86
7

11
.4

45
0.
51
9

17
4

P
ro
p
os
ed

(R
od

ri
gu
es
)
D
is
ta
nc
e
(p

=
3)

0.
82
0

0.
76
8

0.
86
8

10
.9

47
0.
50
1

18
5

P
ro
p
os
ed

(R
od

ri
gu
es
)
D
is
ta
nc
e
(p

=
4)

0.
82
0

0.
76
5

0.
86
7

10
.8

47
0.
48
9

16
8

3.2 Classi�cation 57

3.2.4 Complexity Analysis of MDC and MkNN

Theorem 3.2.3 provides the worst-case complexity of the proposed classi�ers assuming

that they use combinations of 2-dimensional models to generate a p-dimensional model.

Theorem 3.2.3 The worst-case step complexity of MkNN and MDC is O(W + H) for

2-dimensions and O(p2(W +H)) for p-dimensional combinations of 2-dimensional classi-

�cation models in the GPU, where W and H represent the width and height of the image,

respectively.

Proof The neighbourhood of each instance in all implementations is checked respecting

distance dw1,w2,p (see Section 3.2.3). Assuming that the classi�ers run in the GPU, each

pixel/element of the image is theoretically processed in parallel.

The worst case scenario consists of growing element a until it covers the entire image.

That is, the growth is equal to the diagonal length of the image (i.e., the distance between

the element of the upper-left and the element of the bottom-right):

O(a) =

O(dw1,w2,p((0, 0), (W − 1, H − 1))) =

O(w1
p
√∑n

i=1 |xi − yi|p + w2
n

max
i=1
|xi − yi|)

(3.28)

As w2
n

max
i=1
|xi − yi| is always equal or greater than w1

p
√∑n

i=1 |xi − yi|p, then:

O(a) =

O(w2
n

max
i=1
|xi − yi|) =

O(max(W − 1, H − 1)) =

O(W +H)

(3.29)

Therefore, the worst-case complexity is O(W +H). In the ensemble approach, where

2D dimensional models are combined considering p attributes, its complexity is given by:

O(

(
p

2

)
(W +H)) (3.30)

which is the cost for generating a 2D model multiplied by the number of combinations of

every two attributes. Expanding this equation:

3.2 Classi�cation 58

O(
p!(W +H)

(p− 2)!
)

O(
p(p− 1)(p− 2)!(W +H)

(p− 2)!
)

O(p(p− 1)(W +H))

O((p2 − p)(W +H))

and �nally:

O(p2(W +H)) (3.31)

�

Combining 2D models is much better in practice than computing dilations for p-

dimensions directly. If we apply the expansions in 3 dimensions, for instance, we get a

cubic complexity of O(W 3 +H3 +D3), whereW,H and D represent the width, height and

depth. Let us suppose a hypothetical but frequent scenario such as: W = H = D = sp,

where s is a scaling factor that relates the size of the grid to the number of dimensions of

the problem. Then, with the proposed ensemble approach we have:

O(p2(W +H)) = p2((sp) + (sp)) = 2p3s (3.32)

operations. In the case of expanding the set partitions in p-dimensions directly, we have

a total of:

O(W 3 +H3 +D3) = (sp)3 + (sp)3 + (sp)3 = 3s3p3 (3.33)

operations. Relating these two equations:

3s3p3 < 2p3s (3.34)

assuming that p and s are greater than 0, this inequality is only satis�ed if p > 0 and

s <
√

2
3
, or, similarly, if 3s2 < 2. That is, the 2D combination approach will only achieve

a greater number of steps if s <
√

2
3
. However, s is greater than

√
2
3
for virtually every

practical classi�cation problem.

3.2 Classi�cation 59

For instance, if the number of dimensions p of the problem is equal to 1, which is

theoretically the best case, the complexity in the combinations case is 2s and in the p-

dimensional case 3s3. In the best possible case it is already clear (2s < 3s3) that it is

more e�cient to use 2D combinations instead of the direct p-dimensional approach.

3.2.5 2D Combinations in Practice

Let us suppose that an arbitrary input dataset has 4 dimensions, excluding the class label,

such as the original UCI Iris dataset. In this case, we have a total of 6 combinations of

2 pairs of features (0 and 1, 0 and 2, 0 and 3, 1 and 2, 1 and 3, and 2 and 3). Each one

of these combinations is a 2D dataset. 2-dimensional models are trained with each one

of these combinations, and hence each combination produces a respective classi�cation or

predictive model. In total, we have 6, 2-dimensional classi�cation models.

Now, let us suppose that we want to classify instances using these generated predictive

models. Each combination produces a vote for the label of an unlabelled instance. These

votes can be combined in a number of di�erent ways. A simple approach would be to

label unlabelled instances as the label that received more votes among the models. This

is exactly what is done in the p-dimensional experiments in Section 4.1, although these

votes could be combined in more complex ways.

We consider the fact that some of these 2D models do not produce very accurate votes.

Thus, just the votes of the best 2D models are considered, i.e., the ones that achieved the

best accuracies while training and testing with one of the 2D combinations (the training

and validation is performed using 10-fold cross validation). The number of 2D models

that should have their vote considered was chosen empirically for each experiment. We

can fairly say, however, after all the performed experiments, that numbers close to 0 work

far better than numbers close to
(
p
2

)
, as models with worst accuracies usually rely on

features that are not very accurate (they do not split the data very well among classes).

It is clear that the number of combinations stems from the number of features of the

dataset, which is not related at all to its number of instances. Iris has 4 features and

150 instances. Thus, the increment in the complexity using the combinations would be a

vote (which is O(1), since for 2D models it is possible to use matrices, and one position

in the matrix is visited), multiplied by the number of combinations. The complexity

for generating a 2D model is O(W + H), as previously shown. Thus, the worst-case

complexity required for generating 6 of these models is given by the multiplication of this

value with the number of combinations, which is given by
(
p
2

)
, where p is the number of

3.2 Classi�cation 60

dimensions (4 for the Iris dataset). The resultant complexity is O(p2(W + H)), which is

the worst-case complexity reported in Theorem 3.2.3.

3.2.6 2D Combinations Theory

Multi-label p-dimensional classi�cations are de�ned as the aggregation of 2 dimensional

binary classi�cation models. A multi-label classi�cation where class labels l belong to

{1, ..., L} is decomposed in L binary problems. For binary problem l = 1, the classi�cation

models predict if an unlabelled instance belongs or not to class 1. For binary problem 2,

the same follows, i.e., the models are trained to predict if an unlabelled instance belongs

to class 2 or not. This is repeated for all L class labels.

The �nal class label is given by the aggregation of these L votes, respecting the

accuracy of each binary problem that is obtained using 10-fold cross validation during the

training phase of the algorithm. Votes of classes that obtain the highest accuracies are

computed �rst. Let us suppose we have the following set:

Accuracy : 90.4%← label : 1

Accuracy : 70.1%← label : 2

Accuracy : 92.6%← label : 3

(3.35)

As class 3 has the highest accuracy, i.e., 92.6%, its votes are considered �rst in detri-

ment of the others. That is, if this classi�cation model classi�es an unlabelled instance

with label 3, then it is left as that. If this is not the case, i.e., not label 3, then the

instance is tested for the model with the next higher accuracy, which is 90.4%, and the

same procedure is repeated. If it is labelled as 1, then it is said to be label 1. Otherwise,

it is labelled as 2. For this procedure to work properly, true positive rates are expected

to be greater than true negative rates in the binary models. Otherwise, a contrary logic

should be used instead. Logical combinations or even decision tables can be used as well

for computing the �nal label.

A total of
(
p
2

)
or less votes are considered for each binary labelling procedure. Some

votes can be disregarded according to the accuracy of each 2D model, since they can

provide weak or bad votes. At �rst, we rank all 2D models according to the accuracy

obtained during the 10-fold cross validation in the training phase. Later, we consider a

threshold parameter that indicates how many models should be considered in the voting.

Say, if we have 22, 2D models (22 combinations of pairwise features), and the threshold

3.2 Classi�cation 61

says that just the 10 best models are worthful, then the 12 least accurate models are

disregarded. In this case, for the given binary problem, the algorithm will provide 10

votes, each one indicating if the instance belongs to a class or not. The majority of the

votes indicates the predicted label.

3.2.7 Classi�cation Model Compression

The classi�cation models produced by our approach are, in theory, sets that contain p-

dimensional instances. The storage of the model in practice can be performed using the

said sets or using p-dimensional matrices.

3.2.7.1 Rectangular Compression for Sets

In the �rst case, the classi�cation model is given by:

AIll = {(h1, ..., hp)1, ..., (h1, ..., hp)n} (3.36)

where p represents the dimension of the problem, n represents the total amount of in-

stances in the classi�cation model and h represents the coordinate of each element.

For p dimensions, pnk bits are required to store the model as a set, as demonstrated

below:

{(h1)1, ..., (h1)n} : nk bits

{(h1, h2)1, ..., (h1, h2)n} : 2nk bits
...

...

{(h1, ..., hp)1, ..., (h1, ..., hp)n} : pnk bits

(3.37)

where k is the amount of bits designed for each variable that, in turn, represent coordinates

of the elements in the set.

However, if rectangles are stored in a compressed notation (e.g., (x : x+ θx, y : y+ θy)

for two dimensions), where θj represents the size or range of the rectangle in dimension

j, k extra bits are required to indicate this extended notation and further pk bits are

required to store all θj. The required amount of bits is given by:

3.2 Classi�cation 62

{(h1 : h1 + θ1, h2 : h2 + θ2)1,

(h1 : h1 + θ1, h2 : h2 + θ2)2}
: 2(4k + k) bits

...
...

{(h1 : h1 + θ1, ..., hp : hp + θp)1, ...,

(h1 : h1 + θ1, ..., hp : hp + θp)r}
: r(2pk + k) bits

(3.38)

where r represents the total amount of rectangles.

A single rectangle of size (θ1, ..., θp) requires (2pk+ k) bits. Thus, r(2pk+ k) bits are

required to store r rectangles. In contrast, storing the same r rectangles using Equation

3.37, assuming the rectangles are p-dimensional squares, requires r(θ1 × θ2 × ... × θp)

elements, which is the area of the p-dimensional rectangles multiplied by their quantity.

This results to a r(θ1 × θ2 × ... × θp)k bits requirement. The equivalence of these two

equations is given by:

r(2pk + k) = r(θ1 × θ2 × ...× θp)k (3.39)

and it is reached when p is greater than (θ1× θ2× ...× θp)/2−1/2. This shows that if p is

lesser than (θ1 × θ2 × ...× θp)/2− 1/2, the compression approach is much more e�cient,

which is virtually always the case (except for very, very small rectangles).

3.2.7.2 Partition Trees for Matrices

The second option is to consider images or matrices to store the classi�cation models. In

this case, another type of compression can be used. We propose the use of 2p-trees to

separate the matrix in p-dimensional quadrants, i.e., orthants. One of the positive aspects

of working with matrices is that most implemented morphological operators work with

matrices or, for the 2D case, images. Figure 3.7 shows a 2p-tree representing a 4x4 binary

image. Figure 3.8 shows the same 2p-tree in a �at perspective, where the used orientations

are: left-right and top-bottom.

3.2 Classi�cation 63

Figure 3.7: A 2D binary example of a 2p-tree (a quad-tree in this case).

Figure 3.8: Flat representation of the 2p-tree (a quad-tree in this case).

The 2p-tree representation consists of dividing the entire matrix in 2p orthants, recur-

sively, until the desired representation precision has been reached. In Figure 3.7, the entire

image is divided in 4 quadrants at �rst. The top-right and bottom-left quadrants contain

uniform colors, black and white, respectively, and these nodes are promptly turned into

leaves. The top-left and bottom-right quadrants are divided in 4 quadrants each, due to

the fact that the pixel values in these quadrants are not uniform. The next level of the

tree is the deepest level in this case, where the quadrants cannot be divided further. The

leaves of this tree contain values for the binary case (black and white), but it is possible to

generalize the representation for grey-scale images, i.e., multi-label classi�cation models,

where the leaves of the tree store the respective grey-level (or label) value.

It is clear that when the tree branches halt prematurely, storage compression is

achieved. In Figure 3.7, two of the nodes of the second level are actually leaves, and

were prematurely pruned due to the uniform pattern of the data in their respective quad-

rants. Thus, the 8 elements of the original image are compressed in 2. The worst-case

complexity for reaching any element in the tree is O(log 2p n), which is very e�cient. The

image shown in Figure 3.7 is written as:

� �XX01X10111011�

3.2 Classi�cation 64

in depth-�rst order, which contains 13 values. `X' represents a branch or parent node. The

original image contains 16 values and the compressed version contains 13. In this case, a

compression of 3 elements is obtained. A more signi�cant compression can be observed

in larger uniform classi�cation models. Classi�cation models obtained with the proposed

algorithms, as shown in the results section, are highly prone to this type of compression,

i.e., they are very uniform in most regions.

For p-dimensional classi�cation matrices, each element in the string formulation must

represent all possible classes in the problem, i.e., k must respect 2k ≥ L, where L is the

amount of possible distinct classes [99].

3.2.7.3 Run Length Encoding

Finally, a text-compression such as run-length encoding [40, 79, 83] can be applied to

both approaches, i.e., it can be applied to the approach that uses sets as well as to the

p-dimensional matrices approach, before storing the classi�cation model. The set, as

well as the 2p-trees, can be written as a single string and therefore text-compression and

run-length encoding apply.

Run-length encoding consists of replacing characters repetitions with a unique occur-

rence of the character along with the times that the occurrence happens in sequence. The

sequence �AAAABBC� can be written as �3A2BC�, which requires less memory. Run-

length encoding can also be applied along with some pattern recognition approaches,

where patterns that occur the most can be substituted by another prede�ned set of pat-

terns that consume less memory [17].

3.2.8 Parameter Selection

In this section, we will shift our attention to parameter optimization. The performance

of classi�ers depends on the chosen set of input parameters. In order to fairly compare

the performance of the morphological classi�ers to other classi�cation algorithms and

to visualize the obtained results, we performed two separate sets of experiments. The

�rst set consists of experiments with 2 dimensional datasets. That is, two p-dimensional

datasets were reduced to 2 dimensions for better visualization, and the parameters of each

classi�ers were tuned using an evolutionary algorithm (EA) [88].

The parameters were optimized using two methodologies. The �rst consists of using

EA for tuning of numerical parameters, while categorical attributes were manually con-

3.2 Classi�cation 65

�gured. The second approach uses Auto-Weka [103], which determines the best suited

algorithm from the Weka [36] machine learning framework and an appropriate set of

parameters, including a subset of the dataset attributes if it leads to a performance im-

provement.

3.2.8.1 Evolutionary Algorithm

The proposed EA consists of a combination of an elitist strategy, mutation and cross-

over. The size of the population carried on to the next generation was set to 20. At

�rst, 20 individuals are randomly generated. In each generation, a single individual is

created. This individual receives randomly selected parameters of two randomly selected

parents (cross-over). After that, mutation is performed on the selected parameters. This

individual has its objective function computed to con�rm whether it may enter in the top

20. If that is true, then the individual with the smallest objective function value among

the top 20 is removed. The objective function is de�ned as the accuracy of the classi�er

on 10-fold cross validation. Algorithm 7 illustrates the overall process of the EA.

Algorithm 7: Evolutionary algorithm to select the numerical set of parameters for
the classi�cation algorithms.
Data: Θ is the population at each generation, Ψ() is a function that generates a

random number ∈ [0, 1], ε represents individuals and Π represents a
maximal value of each parameter (a prede�ned threshold), chosen
according to the classi�cation algorithm.

1 begin

2 w ← 0;
3 Θ← randomly generate 20 individuals;
4 while the target time has not been reached do

5 ε1 ← take the (40Ψ()%20)th best �t individual in Θ;
6 ε2 ← take the (40Ψ()%20)th best �t individual in Θ;
7 εnew ← randomly fuse the parameters of ε1 and ε2 (e.g., take parameter 1

from ε2, parameter 2 from ε1, parameter 3 from ε1, etc, where this choice
is completely at random until all parameters are populated);

8 εnew ← perform a mutation on εnew if Ψ() < 0.6, i.e., for each parameter s,

if Ψ() < 0.6, then the parameter s = s+
Ψ()Πs−Ψ()Πs

2
w
50

;

9 if the objective function of εnew is higher than of any individual in Θ then

10 Take out the least �t individual from Θ and insert εnew;

11 w ← w + 1;

Each EA run was limited to a total of 12 hours of evolution. This was also the case for

Auto-Weka. Since MkNN and MDC were faster than the algorithms in Weka, for these

3.3 Clustering 66

cases, the genetic EA was set to converge in 6 hours.

3.3 Clustering

As the methodology that concerns to classi�cation has been presented, we will now shift

our attention to the clustering proposal. As opposed to the previous section, where two

classi�cation algorithms were proposed, this section focuses on proposing a single clusteri-

zation algorithm, called k-Morphological Sets (k-MS), which is capable of segmenting and

grouping data respecting shapes and cluster density [89]. The method is mostly based on

morphological reconstruction.

Before heading to how the algorithm works, we de�ne how data is preprocessed. At

�rst, an image or grid G is constructed. G(x, y) returns the index value x × y in case

there is an instance at position (x, y) or 0 otherwise. An image mask M(x, y) returns 1

in case an instance is positioned at (x, y) and 0 otherwise.

Once image G is created, a reconstruction RB
M(G) is applied. The structuring element

B in Figure 3.9 is used, where its element values are 0 (including the central element

marked with ×) and the total size is 1 with respect to the sup metric. The size of the

structuring element can be altered, which leads to distinct types of clusterizations. The

shape of the element can be modi�ed as long as it contains all directions (e.g., left, right,

up and down for the case of 2 dimensions). If this is not the case, the algorithm may

reach a potential deadlock.

B

0 0 0

0X0

0 0 0

Figure 3.9: Shape and values of the structuring element B.

A structuring element with contain only zeros implies that the dilation would just

spread the biggest values through some parts of G (limited by mask M), biased by the

size and shape of the structuring element. Therefore, after the reconstruction, a clusterized

image is obtained, such as in Figure 3.10. Figure 3.10-(a) illustrates a possible image G

with grey values {1, 2, 8, 9, 12, 14, 17, 18} (which are also the indexes of the pixels), all the

3.3 Clustering 67

other pixels are set to background (and are not shown in the �gure). Figures 3.10-(a) to

(e) illustrate the morphological reconstruction as time advances. In Figure 3.10-(e), we

have two clusters after a total of 4 iterations (a to d) and idempotence has been reached.

12
89
14 1718

12

(a)

28
149
14 1818

18

(b)

814
1414
14 1818

18

(c)

1414
1414
14 1818

18

(d)

Figure 3.10: An indexed grey scale morphological reconstruction over a number of itera-
tions.

This morphological reconstruction does not separate input data in a prescribed num-

ber of clusters. Instead, the algorithm separates the data based on �connectivity�, relying

on the size and shape of the structuring element. Therefore, we introduce an internal

variable δ that is responsible for increasing the size of the structuring element B. That

is, in the beginning of the clusterization, the size of δ would be minimum, as depicted in

Figure 3.11-(a). With a structuring element of this size, the algorithm reaches an idem-

potent con�guration. Therefore, we gradually increase the size of the structuring element

until it reaches the remaining grey instances at the bottom of the image, shown in (b).

At each increment of δ, the algorithm checks for the condition of idempotence, and if it

is still idempotent, it increments δ. Otherwise, the algorithm resets δ to the minimum,

such as shown in (c). At that stage, the grey level value of the instances at the bottom

reaches the upper instances, passing the index of the bottom cluster to them (d). Figure

3.11 depicts a hypothetical situation where k = 1, i.e., just one cluster is desired.

3.3 Clustering 68

δ

(a)

δ

(b)

δ

(c)

(d)

Figure 3.11: Some steps of the proposed k-MS algorithm.

Algorithm 8 shows a high-level overview of the proposed algorithm, where δ is a factor

that multiplies the size of the structuring element B. In the beginning of the algorithm, δ

is set to 1. A morphological reconstruction operation is then performed on image G using

the structuring element B and maskM . The reconstruction consists of dilating the image

and applying the mask until idempotence has been reached, as exempli�ed in Section 2.1

and also in Figure 3.10.

Later, the number of unique values in G is computed, which is equivalent to the num-

ber of clusters present in G at that moment. This computation is performed using early

breaks, as shown in Algorithm 9, to speed up the processing. If G has more than k clus-

ters, the algorithm continues to the next step, where δ is incremented. G is dilated once.

If G is idempotent, then δ is incremented until G is not idempotent. The idempotence is

overcome when an index that belongs to a certain cluster reaches another with a di�erent

index. When this is the case, the algorithm resets δ to 1 and starts the same process all

over again. With less than k or exactly k clusters in G, the algorithm terminates. In

contrast to the more general view, Algorithm 9 shows a more detailed, low level version

of the k-MS algorithm.

3.3 Clustering 69

Algorithm 8: High-level k-Morphological Sets algorithm.
Data: G is the grey scale image that contains xy a value at position (x, y) if there

is an instance in the input dataset in this position, and 0 otherwise. M is

the mask previously described, B the structuring element, k is the desired

maximal number of clusters to be created and R the reconstruction

function

1 begin

2 δ ← 1;

3 Perform reconstruction RδB
M (G);

4 If the number of clusters in G is less or equal to k, i.e., if there is a total

number of k or less di�erent grey level values in G, stop the algorithm here;

5 δ ← δ + 1;

6 Dilate G, that is: G← dilδB(G);

7 If G is idempotent (G = dilδB(G)) then return to line 5;

8 Otherwise, return to line 2;

3.3 Clustering 70

Algorithm 9: Low-level k-Morphological Sets algorithm.
Data: B is the structuring element, k is the desired maximum number of clusters

to be created and R the reconstruction function

1 begin

2 �nished ← false;

3 δ ← 1;

4 while !�nished do

5 idempotent ← true; �nished ← true;

6 Reset or remove values from the kArray (the array contains at most k

di�erent values);

7 for every instance or data point p in the input dataset do

8 paux ← p;

9 If the surroundings of pixel p, respecting the structuring element B and

δ, contains a higher value than p, then p receives the highest

surrounding value;

10 if !idempotent then continue; // first early break

11 if paux 6= p then idempotent ← false;

12 if !�nished then continue; // second early break

13 if kArray does not contain the value of p then

14 if kArray is fully populated then �nished ← false;

15 else Add the value of p to kArray at a vacant position;

16 if idempotent then δ ← δ + 1;

17 else δ ← 1;

18 �nished ← �nished and idempotent;

19 Returns all the instances p where each one is indexed with a unique cluster

index (amount of clusters ≤ k);

3.3.1 Complexity Analysis of k-MS

As it can be seen in Algorithm 9, an inner �for� loop depends on the total number of

instances n in the dataset. Within this loop, there is another loop that is dependent on

the k variable. Thus, in the worst case scenario, a total of O(n× k) steps is required for

computing a single dilation of the dataset. The maximum number of dilations for two

clusters to reach each other in the worst case is equal to the distances of the two farthest

instances in the dataset divided by the initial δ (which is equal to 1 in our case).

3.3 Clustering 71

Let us assume that d̂ represents this maximum distance between the two farthest

instances in the dataset. Then d̂/δ represents the maximum number of dilations that

must be performed for two clusters to reach each other. Since k is the number of desired

clusters and assuming the worst case scenario, a single cluster is produced by the algorithm

regardless of k > 1 (this would not happen in practice, however it serves for the purposes

of complexity analysis), then d̂/δ would have to be performed a total of k times at worst

case. This leaves us with the complexity shown in Equation 3.40, which is equivalent to

(kd̂/δ)× (nk).

O

(
k2d̂n

δ

)
(3.40)

Variables δ and k are constants and independent of n so they can be excluded from

the analysis. Thus, this results in a O(d̂n) complexity. The variable d̂ can be expressed

in terms of n because if the number of instances in the dataset increases, the maximum

distance between two possible instances can also increase. In the worse case scenario we

would have O(n2).

As a remark, Karypis et al. [44] do not provide a complexity or time analysis re-

garding Chameleon in their work. D. Liu et al. [52] and Yousri et al. [114] provide a

complexity of O(n log n) for the TRICLUST and Mitosis algorithms. Although the worst

case complexities of their algorithms are better than ours, it is possible to argue that in

practice our algorithm was faster, as discussed in the following experiments and conclu-

sion chapters. This also reinforces the fact that computational complexity is di�erent to

run time analysis.

3.3.2 Parallel and GPU Aspects

Besides the CPU implementation of the algorithm, we propose and evaluate parallel im-

plementations of k-MS, which includes a GPU implementation. The GPU algorithm is

divided in two kernels. The �rst kernel receives a binary image M containing input in-

stances. M(x, y) equals 1 if an instance belongs to that position and equals 0 otherwise.

G is constructed based on M , and contains unique indices for each instance. Figure 3.12

illustrates the steps of the k-MS algorithm and its synchronization with the CPU.

3.3 Clustering 72

M

M

Figure 3.12: Overall steps of the k-MS GPU implementation.

The parallel versions of the algorithm (CPU and GPU) work very similarly to the one

shown in Algorithm 9. The main di�erence is that the �for� loop in line 7 is processed in

parallel. In the GPU implementation, the early breaks in lines 10 and 12 do not produce an

improvement of processing times, since GPUs use the SIMD (Single Instruction Multiple

Data) paradigm, where the same instruction is performed in every thread at the same

time. Thus, even if some threads escape from the loop early, other threads that are

scheduled to run together will eventually push the processing time to the worst case, as

if the early break instructions are not present.

However, the early breaks do obtain improvements with CPU parallel implementations

because they do not adhere to the SIMD paradigm. In fact, they are able to process

di�erent instructions in parallel. Furthermore, the performance of the GPU algorithm

will not be very good for large values of k. This is true because of two facts: (1) the

early breaks do not work, and (2) more atomic operations have to be performed in each

position of the k-array to avoid concurrency of the various threads, and performing a slow

operation several times adds a signi�cant overhead to running times.

The cluster counting in the GPU is performed as follows: after the dilation of each

pixel in G (line 9 of Algorithm 9), a �for� loop iterates through an array of size k. If

the value is not within the array and the array is not full, then the value is placed at a

3.4 Summary 73

vacant position using the atomic compare and swap operation. Otherwise, if the value is

not within the array and the array is full, then an atomic and sets the �nished boolean

variable to false. Similarly to the sequential version, the output of the algorithm is the G

matrix with k or less distinct indexes or grey level values (ignoring the background value)

and the k-array, containing every index of every cluster in the matrix. Each cluster has a

unique and distinct index with relation to the remaining ones.

3.3.3 Memory Aspects

The k-MS algorithm requires g(n, L, k) bits of memory, as shown in Equation 3.41, where

n represents the number of dimensions of the instances, L represents the amount of

instances and k stands for the size of the k-array, which is also the number of desired

clusters. Integers of 32 bits were used in the implementation. However, this can be

increased or decreased as desired, depending on the input dataset.

g(n, L, k) = sizeof(int)× (nL+ k) + sizeof(δ)

+sizeof(finished) + sizeof(idempotent)
(3.41)

In our speci�c case, we set δ to an integer so that sizeof(δ) is equal to 32 bits and

sizeof(finished)+sizeof(idempotent) equals to 2 bits, each one being Boolean variables.

The experiments in this work were not su�cient to over�ow the memory of the used GPU

(Nvidia GTX 960M). In addition, the algorithm requires subtle amounts of local memory,

which would not over�ow any GPU shared nor local memory.

3.4 Summary

In this chapter, we provided de�nitions, theoretical frameworks and algorithmic implemen-

tations for classi�cation and clustering. Proposed classi�ers are based on a neighbourhood

iteration paradigm, where a novel e�cient distance is used. The clusterization algorithm,

on the other hand, does not use this distance.

An extensive complexity analysis was performed for both approaches. In the clas-

si�cation case, this analysis is used to prove that combining 2D models is in fact more

e�cient than solving problems using p-dimensional approaches in the worst case. A formal

compression method is also proposed at the end of the classi�ers section.

3.4 Summary 74

The clusterization algorithm, on the other hand, is simpler and is currently tuned

towards image processing. However, it can be readily applied to p-dimensional datasets.

Morphological operations support p-dimensions, where, in this case, each element in

the set is a p-dimensional element. The elements of the structuring element are also

p-dimensional.

A complexity analysis and GPU implementation regarding the clusterization method

were presented. In this case, we discussed how the GPU SIMD paradigm impacts on per-

formance. In the next chapter, we perform experiments comparing both implementations

to state-of-the-art algorithms.

Chapter 4

Machine Learning Experiments

This chapter is segmented in two main sections and comprises all the experiments per-

formed in this thesis with the exception of the experiments related to the proposed dis-

tance, which were presented in the previous chapter. The �rst section (4.1) addresses

the experimental results and comparisons regarding the classi�cation approach. The sec-

ond section (4.2) addresses the experimental results of the clusterization method and its

comparison to state-of-the-art algorithms.

4.1 Classi�cation

First and foremost, we introduce the framework used in this section for the classi�cation

experiments. Weka [36], which is a Java based machine learning framework, was the

used framework, apart from MDC and MkNN. MkNN and MDC were programmed in

CUDA/C/C++ and their source code is available at [81], along with a list of datasets.

All the implementations proposed in this work conform to the use of the complement

approach shown in Theorem 3.2.1 due to the described bene�ts.

The following subsection focus on comparing classi�ers regarding 2-dimensional binary

datasets. In this case, it is possible to visualize the results produced by the proposed

morphological classi�ers, and how they behave in each case. We brie�y address the used

datasets, and later provide the results obtained with this experiment. Later, a set of

experiments that use multi-label p-dimensional datasets is addressed in Section 4.1.2.

4.1 Classi�cation 76

4.1.1 Visual 2-Dimensional Experiments

In this section, we describe the details of used 2D datasets as well as the performance

of the classi�ers, visual results and comparisons. In Section 4.1.2, experiments with p-

dimensional datasets are presented.

The �rst implementation of the proposed classi�ers considers input datasets as mul-

tisets. The second implementation excludes repetitions. The subscript Rep in the name

of the algorithms indicates the version that uses the multiset concept. Combining 2D

models is an e�cient way to approach the problem using morphological classi�ers, as

demonstrated in Section 3.2.4.

4.1.1.1 Used 2D Datasets

Two reduced versions of datasets from the UC Irvine (UCI) repository [107] were consid-

ered in this set of experiments. The �rst one is the commonly known Iris dataset. The

number of attributes of this dataset was reduced to 2. The attributes sepallength and

petallength were randomly selected and the remaining were excluded, except for the class

label. The instances whose classes were equal to Iris-setosa were also removed from the

dataset in order to transform this problem into a binary classi�cation problem.

The second dataset was Diabetes, and the selected attributes were plas and insu. The

original dataset already consists of a binary classi�cation problem and thus no instance

was removed. Table 4.1 illustrates this information and the total number of instances of

each dataset.

Table 4.1: Datasets used in the 2d experiments.

Dataset
Selected

Attributes

Number of

Instances

Iris sepallength, petallength 100 (per label: 50 - 50)

Diabetes plas, insu 768 (per label: 500 - 268)

4.1.1.2 Iris Dataset

The results obtained with the Iris dataset and each algorithm (each optimized with EA

and manual adjustments) as well as the Auto-Weka approach are shown in Table 4.2.

4.1 Classi�cation 77

Table 4.2: Accuracies in percentage obtained with the modi�ed Iris dataset.

Classi�er Acc (%) TP (%) TN (%)

Multilayer Perceptron [70] 95 92 98

RBF Network [11] 94 94 94

Conjunctive Rule [70] 94 92 96

SPegasos [70] 93 92 94

k-NN (IBk) [4] 93 94 92

SVM [20] 93 92 94

SMO [73] 93 92 94

Auto-Weka [103] 93 92 94

REPTree [70] 92 88 96

Random Forest [10] 91 92 90

Decision Table [28] 91 88 94

C4.5 (J48Graft) [70] 91 88 94

C4.5 (J48) [77] 91 94 88

Bayes Net [13] 91 88 94

Naive Bayes [92] 91 88 94

Hoe�ding Tree [41] 87 88 86

MkNN 95 98 92

MkNNRep 94 96 92

MDC 95 100 90

MDCRep 95 98 92

Rep stands for the version of the algorithm that regards repetitions (multiset).

The algorithms highlighted in bold are the ones being proposed in this work.

Apart from the morphological classi�ers, the Multilayer Perceptron achieved the high-

est accuracy, 95%. Three implementations of the proposed algorithms also achieved 95%

of accuracy with this dataset (MkNN, MDC and MDCRep). In 2-dimensional cases, MkNN

and MDC produce high true positive rates, usually higher than other classi�cation algo-

rithms while maintaining high accuracies (this is more evident with the MDC algorithm).

Figure 4.1 shows the 2D Iris dataset. The classes that are equal to 1 are shown as red

circles while the ones that are equal to 2 are depicted as green squares. In this case, the

dataset is nearly linearly separable.

4.1 Classi�cation 78

sepal length

pe
ta
l l
en
gt
h

4.9 7.9
3

6.9

Figure 4.1: Used modi�ed Iris dataset.

10-fold cross validation separates the dataset in 10 partitions. At the �rst iteration,

a classi�cation model is created trained on 10− 1 partitions and tested on the remaining

1. This process is repeated 9 more times while always switching the test partition to a

partition that has not yet been used as a test set.

Figure 4.2 shows one of the classi�cation models of the 10 iterations (or folds) of

the Iris dataset shown in Figure 4.1. These images are classi�cation models AI11 of the

implementations (a) MkNN, (b) MkNNRep, (c) MDC and (d) MDCRep, respectively. The

10 generated classi�cation models for each fold can be found in [81].

(a) MkNN (b) MkNNRep (c) MDC (d) MDCRep

Figure 4.2: Generated classi�cation models on Iris.

The darker grey area in Figure 4.2 represents what does not belong to AI11 , while the

lighter grey represents instances that belong to AI11 . Assuming we are disregarding the

repetition of instances and conceiving the fact that this dataset almost does not contain

repeated instances, then the more the lighter gray area intersects instances labelled as 1

(red circles) and excludes the ones labelled as 2 (green squares), the higher the accuracy

of the model. This statement is true in general for similar cases.

4.1 Classi�cation 79

4.1.1.3 Diabetes Dataset

Figure 4.3 shows the 2D Diabetes dataset. Figure 4.4, on the other hand, shows the

classi�cation models of one fold of each proposed algorithm. In the case of MDCRep, the

orientation parameter β chosen by the EA was equal to all directions but left. Therefore,

the dilator clearly grows the structure in the other 3 directions. In the case of MDC, β

restricted the growth downwards.

pl
as

insu
0
0

846

199

Figure 4.3: Used modi�ed Diabetes dataset.

4.1 Classi�cation 80

(a) MkNN

(b) MkNNRep

(c) MDC

(d) MDCRep

Figure 4.4: Generated classi�cation models on Diabetes.

This dataset, in particular, has more repetitions than the previous Iris dataset, and

therefore it is a di�cult to infer something from the classi�cation models shown in Figure

4.4.

Table 4.3 shows the obtained results on the 2D Diabetes dataset. In this case,

MkNNRep and SMO outperformed the remaining algorithms, and tied on the accuracy.

However, MDC still produced a high true positive rate. Auto-Weka, in this case, also

selected LMT as the best classi�er.

This case was the worst for the proposed algorithms, where just for MkNNRep case,

all the averaged indexes of the classi�ers in comparison have been outperformed.

4.1 Classi�cation 81

Table 4.3: Accuracies in percentage obtained with the modi�ed Diabetes dataset.

Classi�er Acc (%) TP (%) TN (%)

SMO [73] 74.86 91.6 43.7
SPegasos [70] 74.60 90.6 44.8
Multilayer Perceptron [70] 74.60 88.2 49.3
SVM [20] 74.60 89.8 46.3
Auto-Weka [103] 74.47 88 49.3
Hoe�ding Tree [41] 74.08 89.4 45.5
RBF Network [11] 73.82 90.4 42.9
Naive Bayes [92] 73.69 89.8 43.7
k-NN (IBk) [4] 73.43 84.8 52.6
REPTree [70] 73.04 86.6 47.8
C4.5 (J48Graft) [70] 73.04 88.8 43.7
C4.5 (J48) [77] 73.04 88.8 43.7
Decision Table [28] 72.65 90.6 39.2
Conjunctive Rule [70] 72.52 81.4 56
Bayes Net [13] 71.35 83.6 48.5
Random Forest [10] 68.48 80.4 46.3

MkNN 72.65 88.6 46.2
MkNNRep 74.86 88.6 49.2
MDC 71.61 91.4 37.7
MDCRep 73.43 89 44.4
Rep stands for the version of the algorithm that regards repetitions (multiset).
The algorithms highlighted in bold are the ones being proposed in this work.

4.1.2 P-Dimensional Experiments

In this subsection, experiments and comparisons are performed with p-dimensional bi-

nary and multi-label datasets. We considered 8 datasets from the UCI public repository.

The proposed p-dimensional approach uses a combination for 2-dimensional classi�cation

models, due to previously described advantages (see Theorem 3.2.3).

Each pairwise combination of features generates a binary predictive model. The total

number of models is given by
(
p
2

)
, where p represents the number of features or dimensions

of the dataset. An unlabelled instance is classi�ed using the votes of some of the
(
p
2

)
models, where each vote indicates if an instance belongs or not to a class label.

Multi-label datasets were separated in L binary problems, where L is the number of

labels in the dataset. That is, binary classi�ers were trained for each one of the L classes.

Let us suppose a three-classes multi-label problem (classes 1, 2 and 3). For class 1, the

instances in the dataset either belong or not to class 1. Thus, this constitutes a binary

problem for class 1. Two other binary problems are created for class 2 and 3.

Next, for the binary problem of class 1, the approach follows as previously described.(
p
2

)
binary classi�cation models are generated for the class 1 problem. Each model provides

4.1 Classi�cation 82

a vote for an unlabelled p-dimensional instance. In total, we have
(
p
2

)
or less (according

to the signi�cance of the model/vote) votes that decide if the instance belongs to class

1 or not. The procedure is repeated for the other two possible classes, class 2 and class

3. At the end, each binary problem (class 1, class 2 and class 3) provides a vote for each

one of the class labels. The majority of votes indicates the predicted label. Section 3.2.6

addresses this decomposition logic in more detail.

Table 4.4 contains the accuracies obtained with each classi�er for each dataset. The

proposed classi�ers obtained competitive accuracy rates. In the case of Iris, Tae, Haber-

man, Heart Statlog and Breast W, the proposed classi�ers obtained the highest accuracy.

This proves that using mathematical morphology in classi�cation is feasible. Further

enhancements, however, are still necessary for constructing a top-tier morphological clas-

si�er.

Table 4.4: Accuracies in percentage obtained with each dataset and classi�cation algo-
rithm.

Classi�ers Iris Diabetes
Liver

Disorders
Tae

Column
2C

Haberman
Heart
Statlog

Breast
W

RandomForest 95.33 77.78 61.15 68.87 81.48 69.28 81.48 96.70
Multilayer Perceptron 97.33 75.67 65.07 54.96 78.51 69.28 78.51 94.99
RBFNetwork 95.33 75.39 66.95 52.98 84.07 73.85 84.07 95.85
Conjunctive Rule 66.66 71.87 60.86 37.74 74.07 73.52 74.07 91.70
kNN 96.66 74.73 57.68 62.25 81.11 73.85 81.11 96.70
SVM 96.66 77.47 56.81 54.30 66.66 75.49 66.66 96.85
SMO 96.66 77.34 64.63 58.27 84.07 73.85 84.07 97.28
REPTree 94.00 75.26 61.44 54.30 78.51 73.52 78.51 94.27
DecisionTable 92.66 70.18 63.47 47.01 84.81 72.54 84.81 95.27
J48Graft 94.66 73.69 60.28 60.26 77.07 73.20 77.07 94.84
J48 96.00 73.82 59.13 59.60 76.66 72.87 76.66 94.56
NaiveBayes 96.00 76.30 64.05 54.30 83.70 76.14 83.70 97.13
BayesNet 94.00 74.34 61.44 47.01 81.11 72.54 81.11 97.13
Hoe�dingTree 95.33 76.17 63.76 53.64 83.30 74.83 83.30 95.99

MDCRep 98.00 75.39 65.79 66.66 81.29 75.81 84.07 97.42

MkNNRep 98.00 75.13 66.37 72.46 81.93 76.14 84.81 96.99

MDCRep? 4.62 0.39 3.88 11.98 1.64 2.61 4.42 1.76
MkNNRep? 4.77 0.34 4.40 18.87 2.42 2.64 5.30 1.41

? represents the percentage improvement in comparison to the averaged accuracy of all
classi�ers.
MDCRep and MkNNRep represent the two proposed classi�ers computing repetitions.

Table 4.5 shows the training and testing times of MDC and MkNN for each evaluated

4.2 Clustering 83

dataset. Training times include the phase to train and build the 2D models for all the

pairwise feature combinations as well as the multi-label training, if applicable for the

dataset, considering 9/10 of the original dataset. Testing times include the time for

testing the dataset in 1/10 of the dataset (one partition of the 10-fold cross validation).

Although training requires a little bit of time, testing times are remarkably fast due to

the nature of the classi�cation model, which are matrices whose elements are accessed

with O(1) complexity in the worst case.

Table 4.5: Training and testing times (s) obtained with MDCRep and MkNNRep in seconds
in the GPU.

Datasets
MDC Train
Time (s)

MDC Test
Time (s)

MkNN Train
Time (s)

MkNN Test
Time (s)

Iris 0.1223382649 0.0000030028 0.1594423040 0.0000009341
Diabetes 6.4961881040 0.0004020527 14.2825142510 0.0002412080
Liver Disorders 1.8445822000 0.0000200820 0.9116863500 0.0000295500
Tae 3.6113764500 0.0000900310 3.6986199000 0.0006007500
Column 2C 2.9733453099 0.0000601520 6.1188321300 0.0000798789
Haberman 0.8608457292 0.0000100440 0.8368868598 0.0000100000
Heart Statlog 9.3438252208 0.0001833519 13.3958921399 0.0023547693
Breast W 5.1447441331 0.0003430842 13.9826192997 0.0003608940

Real test times may be even lesser than the ones reported in Table 4.5. The test-time

is very fast due to the O(1) classi�cation complexity for each 2D attribute combination.

Therefore, reported times may be overly in�uenced by program initialization. In sum-

mary, both training and test times are feasible, although we may not see a signi�cant

improvement in processing times related to the GPU paradigm with these datasets.

4.2 Clustering

We will now shift our attention to the clusterization experiments. Three distinct groups

of experiments are performed in this section. The �rst group, described in Section 4.2.1,

evaluates and compares the results obtained with k-MS and other popular clusterization

algorithms that are usually employed in high dimensional clusterization and do not nec-

essarily aim to be sensitive to density and shapes. The results of the clusterizations are

analysed by volunteers, who were instructed to select the most human-like segmentations.

4.2 Clustering 84

The visual output of k-MS algorithm is also analysed as variable k is increased. The

dataset used in this section is noiseless.

The second group of experiments, addressed in Section 4.2.2, compares the visual

results obtained in a noisy publicly available dataset [44]. In this case, we compare k-MS to

clusterization algorithms with similar intents, i.e., algorithms that are sensitive to density

and shapes. The behaviour of k-MS is also analysed using di�erent input parameters.

Finally, in the third group of experiments (Section 4.2.3), we perform an extensive time

analysis, comparing the running times obtained by the di�erent implementations of k-MS

with the other clusterization algorithms. The structuring element used for almost all of

this section is shown in Figure 3.9.

4.2.1 Noiseless Morphology Experiment

The input data shown in Figure 4.5 is considered for this noiseless group of experiments,

where the black pixels represent the instances in a 2 dimensional space. The �rst exper-

iment consists of running k-MS while varying the input k variable in order to visualize

how the algorithm groups di�erent objects in the image gradually. Figure 4.6 shows the

results of the clusterizations for di�erent values of k.

Figure 4.5: The input T matrix.

4.2 Clustering 85

1 2
1

3

4

(a) k = 4

1 2
6

3

5

4

(b) k = 6

1

8

2
6

3

5

4

7

(c) k = 8

1

2

21

22

3

45
6

7

12

131415

16 17

20
18 19

8
9
10

11

(d) k = 25

Figure 4.6: Visual results of k-MS with varying values of k.

It is possible to see in Figure 4.6-(a) that, for k = 4, k-MS grouped the exclamation

mark and the paws in the same cluster. This occurs because the image boundary was

disregarded. That is, if x coordinate being iterated end up being larger than the width of

the image then the x%width position is considered instead. For k = 6, in image (b), the

algorithm separated this cluster and the big cluster at the bottom that were previously

grouped together for k = 4. The amount of valid clusters keeps increasing until k = 22.

If k > 22, the algorithm still separates the dataset in 22 clusters, such as shown in (d),

where k is equal to 25.

In addition, we compare the clusterization results obtained by k-MS considering two

4.2 Clustering 86

Table 4.6: Comparison of obtained results based on human volunteers.

Algorithms
Choice for
k = 4 (%)

Error for
k = 4 (%)

Choice for
k = 8 (%)

Error for
k = 8 (%)

SimpleKMeans 10.4 51.07 4.1 19.53
EM 6.3 37.46 16.3 20.22
MTree 4.2 59.05 4.1 59.02
Farthest First 12.5 50.49 2 27.07
Canopy 8.3 41.63 0 25.64
k-MS 58.3 0 73.5 0

values for k and various clustering algorithms that support the k variable in the Weka

[36] framework, namely, (1) the k-Means implementation called SimpleKMeans [5], (2)

Expectation Maximization (EM) [65], (3) MTree [21], (4) Farthest First [39] and (5)

Canopy [60]. Figure 4.7 shows clusterization results for k = 4 and Figure 4.8 for k =

8. The di�erent clusters are represented in di�erent colors. The images are somewhat

di�erent because the one generated with k-MS was outputted by our algorithm and the

remaining from the Weka visualization tool.

Figure 4.5 was presented to 73 volunteers, where they were instructed to answer the

simple question: �If you were to separate this image in k groups, which image among

the ones in Figures 4.7 and 4.8 would be the closest to your separation?�. Two questions

were asked for k = 4 and for k = 8, separately. Table 4.6 compares the average choice of

these participants in percentage. The error column shows the average rate of incorrectly

classi�ed instances (in this case, pixels) in relation to the clusterization performed by our

algorithm.

Given the results in Table 4.6, it is possible to infer that k-MS is the most �human-

like� algorithm. For k = 4, the percentage of volunteers that voted for k-MS was 58.3%,

which is signi�cantly lower than for the k = 8 case (73.5%). This may be so due to the

fact that, for k = 4, the exclamation mark on the left side was placed in the same cluster

as the paws on the right side and this may have prevented volunteers from voting for

k-MS in this occasion. In this group of experiments, dilations extrapolated the image

boundaries on purpose to check how the volunteers would vote. Moving towards the right

direction of the paws, the image boundary is extrapolated and the exclamation mark is

reached faster than any other shape in the image. This is the exact reason for clustering

together the exclamation mark and the paws in the k = 4 case. This could be avoided by

conserving the image boundaries. In conclusion, the choice for k-MS was more frequent

than for the remaining algorithms in both occasions regardless of the extrapolation.

4.2 Clustering 87

(a) SimpleKMeans (b) EM

(c) MTree (d) Farthest First

(e) Canopy (f) k-MS

Figure 4.7: Comparison of the visual results of k-MS to other clusterization algorithms
for k = 4.

4.2 Clustering 88

(a) SimpleKMeans (b) EM

(c) MTree (d) Farthest First

(e) Canopy (f) k-MS

Figure 4.8: Comparison of the visual results of k-MS to other clusterization algorithms
for k = 8.

4.2 Clustering 89

4.2.2 Comparison with Similar Works

In this subsection, the clusterizations performed with k-MS, Chameleon, Mitosis, TRI-

CLUST and M. Liu et al. algorithms on the dataset provided by Karypis et al. [44] are

analysed and compared. In contrast to the previous Section 4.2.1, the clusterization algo-

rithms are prepared to deal with density and shapes. Figure 4.9 shows the clusterizations

obtained with each algorithm.

(a) M. Liu et al. [53] (b) TRICLUST [52]

(c) Mitosis [114] (d) Chameleon [44]

(e) k-MS (k = 450) (f) k-MS (Removed Noise)

Figure 4.9: Comparison of the visual results of k-MS and other clustering algorithms in
�nding genuine morphological clusters.

4.2 Clustering 90

It can be seen in Figure 4.9 that the M. Liu et al. clusterization is di�cult to visualize

as the authors present it in their work. The symbols represent the di�erent clusters and

the letter Z in their image can be ignored. The authors of TRICLUST present the result

without the noise of the initial dataset. Therefore, we cannot determine how well their

algorithm would handle cluster noise.

The clusterizations of Mitosis and M. Liu et al. recognize the exact amount of genuine

clusters (total of 9 clusters), such that all noise in the image is clusterized together with

these genuine clusters. This outcome can be bad in some occasions such as when noise

is expected to be removed or when it should not be aggregated in a genuine cluster. A

practical example of this is image data that was collected by physical sensors.

On the other hand, the clusterization generated by Chameleon recognizes 9 genuine

clusters as well as 3 other clusters that contain outliers. Chameleon and k-MS are the

only two algorithms capable of segregating outliers in di�erent clusters. k-MS goes even

further, it indicates whether the clusters can be formed given a prede�ned k amount of

clusters.

The result shown in Figure 4.9-(e) shows the clusters obtained with k-MS algorithm,

where each cluster is depicted in a di�erent color. In noisy datasets such as this one, the

value of k should be large, otherwise k-MS would not be able to recognize the genuine

clusters in the dataset. Furthermore, if the dataset is too sparse, it is also recommended

to perform dilations on the dataset before applying k-MS, since the clusterization would

be more accurate and converge faster.

When low values for k are considered, e.g., a maximum of 9 clusters, then the obtained

result is shown in Figure 4.10-(a). In this case, the instances are too close to each other

such that when dilated, several intersections occur, producing at the end of the processing

the recognition of 9 clusters that are not the genuine ones. All genuine clusters were placed

within a unique cluster in this case and the remaining were outliers (which cannot even

be properly seen, as they are single points in this image).

4.2 Clustering 91

(a) k = 9 (b) k = 300

Figure 4.10: Obtained clusters with lower values of k.

As k is increased to around 300, images like the one in Figure 4.10-(b) start to be

generated. For k = 300, k-MS found 166 valid clusters, and the genuine clusters are now

divided in two di�erent clusters. Increasing k to 450 leads to the result shown in Figure

4.9-(e), where 450 valid clusters were found and the 9 genuine ones are separated correctly.

In this case, k-MS took 6.33 seconds to generate these 450 valid clusters in the CPU.

The image shown in Figure 4.9-(f) is a version of (e) where all the noise is removed.

This removal is fairly simple to be performed. Given a threshold τ , all clusters that

contain τ or less pixels are erased. This is another particular and interesting property of

k-MS. In the speci�c case of Figure 4.9-(e), τ was equal to 200 pixels.

It is also possible to change the structuring element to obtain di�erent results. For in-

stance, instead of usingB1 = {(0, 0), (0, 1), (0,−1), (1, 0), (−1, 0), (−1,−1), (1,−1), (−1, 1),

(1, 1)} which is shown in Figure 3.9, B2 = {(0, 0), (0, 1), (0,−1), (1, 0), (−1, 0), (−10,−10),

(10,−10), (−10, 10), (10, 10)} could be used instead, where the diagonal pixels are more

distant from the origin than others. For k = 450 and B2 the result shown in Figure 4.11 is

obtained. In this case, 372 valid clusters were found and the running time was at least 400

times faster than with B1. Several combinations of clusters can be generated by tweaking

the two parameters of k-MS.

4.2 Clustering 92

Figure 4.11: Result for k = 450 and B2.

At last, all the addressed algorithms were able to recognize the genuine clusters in

this dataset. Due to this fact, we did not ask volunteers to choose a best segmentation,

as volunteers would be overly in�uenced by the di�erent types of images that each author

adopted.

4.2.3 Run Time Analysis

An extensive time analysis experiment is performed in this section. In order to compare

and measure the time performance on datasets with a large amount of instances, we

considered the GPU-oriented k-Means algorithm presented in [31], which is based on [50]

and [57]. However, this implementation could not handle the size of the instances we

evaluated, which is a positive aspect of k-MS. Therefore, our comparisons on this section

address just the implementations of [50], which is a parallel k-Means for the CPU using

OpenMP [1]. We tested the sequential k-Means provided by them as well but it was

always slower than the parallel one, and therefore it was disregarded.

The threshold variable of the Liao algorithm [50] was set to 10−12, which essentially

means that the algorithm stops when less than 10−10% of the instances change mem-

bership, i.e., change clusters. Since this is a low number, we are essentially setting the

algorithm to converge when no instance changes membership. The comparisons are shown

in Figure 4.11, for instances of 512×512, 1024×1024 and 4096×4096, respectively. The

presented results, however, would vary depending on the computer speci�cation. A Quad-

core Intel i7-4720HQ, with 8 threads in OpenMP and in Java, and a Nvidia GTX 960M

were used in these experiments.

4.2 Clustering 93

(a) 512× 512 image, containing a total of 36,529 data points or instances.

(b) 2048 × 2048 image, containing a total of 584,235 data points or

instances.

4.2 Clustering 94

(c) 8192 × 8192 image, containing a total of 9,352,084 data points or

instances.

Figure 4.11: Time comparison between k-MS and a parallel k-Means considering a signif-
icant amount of instances.

It is possible to see that k-Means starts faster for low values of k but is overcome

in every occasion after a particular size of k. As the size of k increases, so does the

running time of clusterization algorithms in general. However, due to the early break in

k-MS, the running times obtained with k-MS may even decrease, regarding the CPU, as

k increases. This happens because the clusterization converges faster with higher values

of k (less morphological reconstructions), and the early breaks reduce the time of the

clusters veri�cation. Furthermore, the GPU implementation is only viable if the amount

of instances is very large and k is small. Small values of k reduce the amount of atomic

operations that have to be performed, which reduces the processing time of the algorithm.

Table 4.7 shows the running times obtained with k-MS for smaller amounts of in-

stances. This comparison is necessary because no reported time performances of these

algorithms considering a signi�cantly high number of instances is present in the litera-

ture. The �rst column of the table indicates the values of k, and the �rst line indicates

the amount of instances. In this case, just the CPU C/C++ sequential implementation

was considered for a fair comparison.

4.2 Clustering 95

T
ab
le
4.
7:

R
un

ti
m
e
p
er
fo
rm

an
ce

(s
)
fo
r
th
e
k-
M
S
al
go
ri
th
m

as
a
fu
nc
ti
on

of
th
e
nu

m
b
er

of
in
st
an
ce
s
an
d

m
ax
im

um
cl
us
te
r
nu

m
b
er
k
.

k
10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00
0

11
00
0

12
00
0

2
0.
14
7

0.
06
6

0.
12
5

0
.0
7
4

0
.0
7
9

1
.5
1
7

0
.9
0
2

0
.7
5
2

0
.7
4
7

0
.7
6
5

0
.7
3
9

0
.7
4
0

4
0.
15
6

0.
06
9

0.
12
8

0.
07
4

0.
85
6

1.
53
7

0.
97
5

0.
81
2

0.
80
4

0.
79
7

0.
80
0

0.
79
7

8
0.
15
3

0.
07
2

0.
13
6

0.
08
6

0.
89
1

1.
65
9

1.
08
7

0.
85
9

0.
84
2

0.
86
5

0.
83
8

0.
86
1

16
0.
12
9

0.
08
1

0.
11
0

0.
08
9

0.
10
5

1.
85
6

1.
17
9

0.
96
0

0.
95
7

0.
96
2

0.
96
9

0.
96
5

32
0.
11
3

0.
10
8

0.
14
0

0.
12
6

0.
13
5

2.
32
9

1.
55
7

1.
33
1

1.
45
8

1.
32
3

1.
32
3

1.
25
1

64
0.
13
3

0.
13
2

0.
11
7

0.
15
6

0.
11
9

3.
10
4

2.
11
8

1.
81
8

1.
85
3

1.
86
7

1.
70
8

1.
67
3

12
8

0.
09
0

0.
14
3

0
.0
8
4

0.
11
8

0.
09
4

3.
73
5

2.
63
5

2.
23
4

2.
46
9

2.
34
7

2.
14
6

2.
10
9

25
6

0
.0
5
2

0.
07
9

0.
12
5

0.
09
0

0.
09
4

2.
71
0

3.
47
8

1.
98
7

3.
35
9

2.
95
0

1.
39
7

1.
53
8

51
2

0.
05
6

0
.0
6
1

0.
09
7

0.
09
6

0.
11
8

2.
66
8

1.
50
4

2.
04
8

1.
68
0

1.
12
7

1.
04
5

1.
60
6

T
h
e
ti
m
e
s
in

b
o
ld

re
p
re
se
n
t
th
e
b
e
st

ti
m
e
s
in

th
e
c
o
lu
m
n
,
w
h
il
e
th
e
o
n
e
s
h
ig
h
li
g
h
te
d
in

re
d
re
p
re
se
n
t
th
e
w
o
rs
t.

4.2 Clustering 96

D. Liu et al. [52] provide a plot in their work that contains the running times with

di�erent numbers of instances. Yousri et al. [114] provide four plots with the same intent,

where each corresponds to a di�erent dataset. Just these two works, among [44, 52, 53,

114, 22, 47, 118, 116, 115], provide a time analysis while varying the amount of instances.

We approximated the times shown in these plots, and compared them to the worst times

that our algorithm achieved (the ones highlighted in red in Table 4.7). The comparison

can be seen in Figure 4.12.

Figure 4.12: Run times (s) comparison for varying numbers of instances.

This comparison is not fair due to several reasons, which includes the fact that the

used datasets are di�erent. In our case, images that had the 512×512 proportion were

used, where n instances were generated at random places. Yousri et al. [114] provide four

plots for comparing running times, the one with the lowest values was chosen, while in

our case, the highest values in Table 4.7 were selected, such that Yousri et al. algorithm

(Mitosis) as well as TRICLUST are favoured. Still, k-MS was faster than both Mitosis

and TRICLUST in every occasion.

4.3 Summary 97

4.3 Summary

This chapter presented results and experimental analyses regarding classi�cation and clus-

terization when using morphological operators. When it comes to classi�cation, proposed

algorithms were able to provide good accuracy rates even when considering p-dimensional

datasets (outperforming competitive classi�ers), which indicates, as initial evidence, that

the use of morphology in classi�cation can be fertile in several aspects. At total, we

provide four di�erent implementations of two algorithmic proposals, each one considering

slightly di�erent premises.

Regarding the clusterization part, we were able to provide a very unique clustering

algorithm that is able to recognize density and cluster shapes. This algorithm ended

up being faster than all state-of-the-art clustering algorithms that are sensible to cluster

density and shapes. In this comparison, we considered all works that used the dataset

shown in Figure 4.9, that we were able to �nd, for a proper visual comparison. It is

clear that, regarding both approaches, mathematical morphology is at least feasible in

this matter.

Chapter 5

Conclusion

This thesis focused on introducing mathematical morphology-based techniques to machine

learning, which has never been properly addressed in the literature. To the best of our

knowledge, no classi�er that uses mathematical morphology exists, with the exception of

image classi�cation that uses binary operations. Clustering methods that use mathemat-

ical morphology are present in the literature, though in a very limited number. We cover

all of them in the literature review chapter. These methods are not entirely based on

mathematical morphology and do not use grey level operations. These are mostly based

on BMCAs.

Two classi�cation algorithms (4 variants at total) and one clusterization algorithm

were proposed and described in this thesis. In the classi�cation case, the proposed al-

gorithms (MDC and MkNN) tied or outperformed other 14 well established classi�ers

in 5 out of 8 p-dimensional UCI datasets. In all of these cases, the proposed classi�ers

obtained a higher accuracy than the accuracy averaged across all classi�ers.

The clusterization proposal is a whole di�erent case. k-MS outperformed all state-of-

the-art clustering algorithms that are sensitive to cluster shape and density in terms of

processing times. Besides, it is the only algorithm that has an intrinsic sense of maximal

clusters that can be created. Given a prede�ned k variable, the algorithm outputs either

k or less clusters, depending on the data con�guration. When density is regarded, it is not

possible to separate high density clusters in some occasions. Let us suppose connected

data points forming a shape of a circle. In this case, if k > 1, the algorithm would

still segregate the data in a unique cluster. In addition, it is also the only algorithm in

the literature that provides a noise removal paradigm without requiring extra processing

costs.

5.1 Discussion 99

An extra major contribution consists of a metric that was coined on the process of

iterating image neighbourhoods using GPUs. GPUs rely on low level instruction environ-

ments and therefore complex data structures are not practical. This proposed distance

is closer to Euclidean in terms of neighbourhood iteration, when compared to Chebyshev

and Manhattan, while being faster to compute. In fact, when plotted in R2, the proposed

metric displays an octagon, which is closer to the circle displayed by the Euclidean metric.

As the proposal consists of a sum of two metrics, we prove that it a metric as well.

It is substantial to argue that the use of morphology in machine learning is feasible

and may be highly fertile in the future, when algorithms of this kind are further improved.

5.1 Discussion

Classi�cation experiments presented herein focus on proposing and evaluating 2-dimensional

models and further aggregating them to form p-dimensional classi�cation models, where

p stands for the number of features or dimensions of the dataset. Although our theo-

retical framework and proposed algorithms readily work for p-dimensional datasets, we

proved that it is faster, in terms of the number of required operations in the worst-case

scenario, to generate 2-dimensional classi�cation models and to combine them, rather

than working in p-dimensional spaces and creating p-dimensional classi�cation models.

These 2-dimensional models are combined using a voting scheme, originating an ensemble

classi�er.

The complexity for checking whether an instance belongs to a certain class using

matrices is O
(
p
2

)
in the worst case, using the combination of 2D models. This is a very

fast instance classi�cation that is not dependant on the number of instances in the dataset.

The classi�cation time is potentially faster than decision-tree based classi�cation, which

are already fairly fast in comparison to other classi�cation paradigms.

Drawbacks include the fact that training morphological classi�ers may be slow, partic-

ularly when dilations are performed in p-dimensions directly. However, due to the nature

of the operations performed, such classi�ers are amenable to parallelization. Moreover,

in a fashion similar to the training of deep learning networks, slow training times may

not be considered a major disadvantage, as the actual classi�cation process is almost

instantaneous and classi�cation models demonstrate reasonable accuracy rates.

In what concerns to the clusterization proposal, k-MS is substantially di�erent from

all state-of-the-art clusterization algorithms due to: (1) having a sense of maximal clusters

5.2 Future Work 100

that can be created, (2) being able to be e�ciently implemented in parallel, (3) permitting

the use of structuring elements that can alter the way that clusters propagate and are

created, (4) providing a fast and simple means for removing noise with no extra processing

costs and, (5) due to its simplicity. In addition, k-MS is also faster than all the remaining

evaluated algorithms, including sequential and parallel k-Means, TRICLUST [52] and

Mitosis [114].

Although the k-MS proposal works with p-dimensional datasets, we optimized the im-

plementation used in this work for images. This implementation can be further extended

to work with p-dimensional datasets and can be applied in several �elds such as in data

mining, machine learning and other areas of computer vision. As a �nal remark, all the

source code and datasets used in this work are available in [80, 81].

5.2 Future Work

Other possibilities to explore in the morphological classi�ers regard is introducing more

rules for the expansion fashion of MDC. The current MDC proposal is fairly naive, and

that naiveness certainly produces more classi�cation errors than necessary. Currently,

the fashion of growth is limited and does not encompass complex directions. Further-

more, di�erent structuring elements, growth rules and distances (for the neighbourhood

iteration) could be used in each 2D model, which has not been evaluated.

Dynamic structuring elements are also a potential improvement. That is, the dynamic

word indicates structuring elements that are modi�ed during the classi�cation model

construction. This can be used to generate or mimic a fractal growth, for instance. These

structuring elements can be modi�ed using prede�ned heuristics.

We attempted to grow models in a fractal fashion. This produced acceptable results,

but this fractal approach was too simple and it did not outperform most classi�ers, being

worse than the current approach described in this thesis. However, the idea of exploring

fractal information in datasets has not yet been explored. The proposed morphological

framework allows for this possibility, it just requires further enhancements to properly

deal with it.

Another clear avenue is to explore algorithms that are dilated in p-dimensions us-

ing p-dimensional morphological operations such as p-dimensional dilations, conditional

thickening [61] and others, in an e�cient approach. p-dimensional dilation experiments

have been carried, but they are fairly di�cult to be implemented e�ciently (in terms

5.2 Future Work 101

of memory storage and processing times). Nevertheless, p-dimensional approaches are

still feasible. Future research may focus on reducing these burdens by using approxima-

tions (such as prototypes or cluster-cores) and other heuristics, enabling p-dimensional

morphological approaches to be performed in real time for a broad extent of datasets.

In addition, data compression techniques can be applied to reduce the burden of

memory requirements. We aim to further explore the application of such techniques

and to propose e�cient ways of storing classi�cation models regarding large datasets in

future works. It is necessary to highlight, however, that the combination approach using

2D models works well even with large datasets, as memory and processing burdens are

mitigated.

When it comes to clusterization, future work involve porting, and evaluating to a

broader extent, the clusterization algorithm proposed in this work. Fractal based growths

can also be explored, which has not been attempted yet. Similarly to the classi�ca-

tion case, dynamic structuring elements and more complex mathematical morphology

techniques such as conditional thickening [61], skeletonization [75], and others, could be

applied.

5.2.1 Fractal Approach

In this last section, we provide an overview of what could be done using fractals for con-

structing classi�cation models. Attractive and inspirational images can be constructed

using principles from chemistry and physics. One of such examples is the di�usion lim-

ited aggregation (DLA), which describes the di�usion and aggregation of zinc ions in

an electrolytic solution onto electrodes. Di�usion refers to the fact that particles form-

ing structures wander around randomly before attaching themselves (aggregation) to the

structure. Limited refers to the fact that particles are expected to be in low concentra-

tions such that they do not come in contact with each other and the structure grows one

particle at a time [9]. One of the �rst studies on this matter was introduced by Witten

et al. [112]. DLA represents fractal behaviour, which is very frequent in nature. Other

examples can be found in coral growth (Figure 5.1-a), vegetables (Figure 5.1-b), trees

(Figure 5.1-c), lightning (Figure 5.1-d), etc.

5.2 Future Work 102

(a) (b)

(c) (d)

Figure 5.1: Fractal patterns in nature.

Similar fractal processes can be simulated in a number of di�erent ways in computer

environments. As a practical example, an image with a single black pixel in its center is

created. Later, new points are introduced at the borders, which randomly walk through

the image until they are close enough to stick to a pre-existent pixel. Figure 5.2-(a)

illustrates this process. Aternatively, a line can also be used as an attractor, instead of a

single point. New pixels are introduced from the top of the image while the boundaries of

the images are disregarded, i.e., if points move o� the left boundary they appear on the

right and vice-versa. Figure 5.2-(b) illustrates this second example.

5.2 Future Work 103

(a) Point attractor at the center. (b) Line attractor at the bottom.

Figure 5.2: Creation of fractal structures using DLA [9].

It is also possible to vary the approach aiming to change the thickness of the produced

fractals. A stickiness probability can be given to new points, which indicate how likely

is their attachment to the contacted pixel. Figure 5.3 illustrates the idea. Figure 5.3-(a)

represents a higher probability of sticking to previously existent pixels than the one shown

in Figure 5.3-(b).

(a) (b)

Figure 5.3: Thicker structures using a stickiness probability [9].

5.2 Future Work 104

Spheres of di�erent sizes can also be used instead of single points. If we colour them

by the order in which they stick to previous elements, we would have results such as the

ones shown in Figure 5.4. Larger spheres can be used in more dense areas, or as a means

of approximation, while small spheres can be used in less dense subspaces.

(a) Fractal formed with spheres of di�erent sizes. (b) A second potential outcome using spheres of dif-

ferent sizes.

Figure 5.4: Structures drawn using spheres of di�erent sizes [9].

It may be clear by now how this described process is related to the classi�cation

approach. Methodologies similar to these could be used to formulate a classi�cation

model. Training points can represent these initial attractor points (one label should be

processed at a time). As time advances, new elements that randomly walk through the

classi�cation space, stick to this growing structure. The misclassi�cation error should be

computed at each change of the model and, if necessary, the iteration is halted. The result

of this process is used to predict the label of unlabelled instances. That is, if an unlabelled

instance belongs to an arbitrary fractal structure, then it most probably belongs to the

same class of points that form the initial structure.

Although very inspiring, this approach bears signi�cant di�culties in terms of ef-

�ciency. Furthermore, it is very di�cult to implement an algorithm of such kind. In

p-dimensional spaces, how would we de�ne the path of new points? Heuristics could be

used, but it is still extremely costly. Either combinations of 2D images should be used,

or approximations of these paths must be developed to reduce the time burden. Future

works will also focus on this described approach.

References

[1] Openmp, 2017. Available at http://www.openmp.org/.

[2] Abbadi, E.; Khdhair, N.; Saadi, A.; Hamood, E. Blood vessels extraction
using mathematical morphology. Journal of Computer Science 10 (2013), 1389�
1395.

[3] Ali, A. R.; Couceiro, M. S.; Hassanien, A. E.; Hemanth, D. J. Fuzzy
c-means based on minkowski distance for liver ct image segmentation. Intelligent
Decision Technologies 10, 4 (2016), 393�406.

[4] Altman, N. S. An introduction to kernel and nearest-neighbor nonparametric
regression. The American Statistician 46 (1992), 175�185.

[5] Arthur, D.; Vassilvitskii, S. k-means++: the advantages of carefull seeding.
Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms
(2007), 1027�1035.

[6] Bai, X.; Zhou, F. Analysis of new top-hat transformation and the application for
infrared dim small target detection. Pattern Recognition 43 (2010), 2145�2156.

[7] Bicego, M.; Cristani, M.; Fusiello, A.; Murino, V. Watershed-based un-
supervised clustering. International Workshop on Energy Minimization Methods in
Computer Vision and Pattern Recognition (2003), 83�94.

[8] Bien, J.; Tibshirani, R. Prototype selection for interpretable classi�cation. The
Annals of Applied Statistics 5 (2011), 2403�2424.

[9] Bourke, P. Dla - di�usion limited aggregation, 2014. Available at http:

//paulbourke.net/fractals/dla/.

[10] Breiman, L. Random forests. Machine Learning 45 (2001), 5�32.

[11] Broomhead, D. S.; Lowe, D.Multivariable functional interpolation and adaptive
networks. Complex Systems 2 (1988), 321�355.

[12] Buhmann, M. D. Radial Basis Functions: Theory and Implementations. Cam-
bridge University, 2003.

[13] Castillo, E.; Gutierrez, J.; Hadi, A. Learning Bayesian Networks. 1997.

[14] Cha, S. Comprehensive survey on distance/similarity measures between probability
density functions. International Journal of Mathematical Models and Methods in
Applied Sciences (2007), 300�307.

References 106

[15] Chen, C. S.; Yeh, C. W. An e�cient dilation-based clustering algorithm for
automatic optical inspection. The 11th International Conference on Information
Sciences, Signal Processing and their Applications (2012).

[16] Chen, T.; Wu, Q. H.; Torkaman, R. R.; Hughes, J. A pseudo top-hat
mathematical morphological approach to edge detection in dark regions. Pattern
Recognition 35 (2002), 199�210.

[17] Conci, A.; Azevedo, E.; Leta, F. R. Computacao Gra�ca: Teoria e Pratica.
Elsevier, 2003.

[18] Conci, A.; Kubrusly, C. S. Distance between sets: A survey. Advances in
Mathematical Sciences and Applications 17 (2017), 1343�4373.

[19] Conci, A.; Saade, D. C. M.; GalvÃ£o, S. S. L.; Sequeiros, G. O.;
MacHenry, T. A new measure for comparing biomedical regions of interest in
segmentation of digital images. Discrete Applied Mathematics 197 (2015), 103�113.

[20] Cortes, C.; Vapnik, V. Support-vector networks. Machine Learning 20 (1995),
273.

[21] Cristian, M.; Dumitru, M.; Burdescu, D. Using m tree data structure as
unsupervised classi�cation method. Informatica (Slovenia) 36 (2012), 153�160.

[22] Daneshgar, A.; Javadi, R.; Razavi, S. B. S. Clustering and outlier detection
using isoperimetric number of trees. Pattern Recognition 46 (2013), 3371�3382.

[23] Dominguez-Lopez, J.; Damper, R.; Crowder, R.; Harris, C. Adaptive
neurofuzzy control of a robotic gripper with on-line machine learning. Robotics and
Autonomous Systems 48 (2004), 93�110.

[24] Dougherty, E. R. An Introduction to Morphological Image Processing. Society
of Photo Optical, 1992.

[25] Dufour, A.; Tankyevych, O.; Naegel, B.; Talbot, H.; Ronse, C.;
Baruthio, J.; DoklÃ¡dal, P.; Passat, N. Filtering and segmentation of 3d
angiographic data: Advances based on mathematical morphology. Medical Image
Analysis 17 (2013), 147�164.

[26] Facon, J. A morfologia matemática e suas aplicacões em processamento de ima-
gens. VII Workshop de Visao Computacional (2011).

[27] Fayyad, U.; Piatetsky-Shapiro, G.; Smyth, P.; Uthurusamy, R. Trends in
data mining and knowledge discovery. Advances in Knowledge Discovery and Data
Mining (1996).

[28] Fisher, D. L. Data, documentation, and decision tables. Communications of the
ACM 9 (1966), 26�36.

[29] Gan, G.; Ma, C.; Wu, J. Data clustering: theory, algorithms, and applications,
vol. 20. Siam, Series on Estatistics and Applied Mathematics, 2007.

References 107

[30] Geraud, T.; Strub, P. Y.; Darbon, J. Color image segmentation based on
automatic morphological clustering. Proceedings of Image Processing (2001).

[31] Giuroiu, S. Cuda k-means clustering. http://serban.org/software/kmeans/.

[32] Goldsmith, J. Unsupervised learning of the morphology of a natural language.
Computational Linguistics 27 (2001), 153�198.

[33] Gonzalez, R. C.; Woods, R. E.; Eddins, S. L. Morphological reconstruction:
From digital image processing using matlab. Available at http://mathworks.com/
tagteam/64199_91822v00_eddins_final.pdf.

[34] Goswami, S.; Bhaiya, L. K. P. Brain tumour detection using unsupervised
learning based neural network. Communication Systems and Network Technologies
(2013), 573�577.

[35] Greche, L.; Jazoui, M.; Es-Sbai, N.; Majda, A.; Zarghili, A. Comparison
between euclidean and manhattan distance measure for facial expressions classi�-
cation. Wireless Technologies, Embedded and Intelligent Systems (WITS) (2017).

[36] Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Wit-
ten, I. H. The weka data mining software: An update. SIGKDD Explorations 11
(2009).

[37] Halmos, P. R. Naiva Set Theory. Springer, 1998.

[38] Haykin, S. Neural Networks: A Comprehensive Foundation. Prentice Hall, 1998.

[39] Hochbaum, S. A best possible heuristic for the k-center problem. Mathematics of
Operations Research 10 (1985), 180�184.

[40] Huang, L.; Kim, H.; Furst, J.; Raicu, D. A run-length encoding approach for
path analysis of c. elegans search behavior. Comput Math Methods Med (2016).

[41] Hulten, G.; Spencer, L.; Domingos, P. Mining time-changing data streams.
Proceedings of the seventh ACM SIGKDD international conference on Knowledge
discovery and data mining (2001), 97�106.

[42] Jonker, P. P.; Svensson, S. The generation of n dimensional shape primitives.
Lecture Notes in Computer Science 2886 (2003), 420�433.

[43] Kamimura, R.; Uchida, O. Greedy network-growing by minkowski distance
functions. Proceedings of the 2004 IEEE International Joint Conference on Neural
Networks (2004).

[44] Karypis, G.; Han, E. H.; Kumar, V. Chameleon: Hierarchical clustering using
dynamic modeling. Computer 32 (1999), 68�75.

[45] Koenig, S.; Simmons, R. G. Unsupervised learning of probabilistic models for
robot navigation. Proceedings of the IEEE International Conference on Robotics
and Automation 3 (1993), 1050�4729.

[46] Kohavi, R. The power of decision tables. Proceedings of the European Conference
on Machine Learning (1995), 174�189.

References 108

[47] Kumar, K. M.; Reddy, A. R. M. A fast dbscan clustering algorithm by accel-
erating neighbor searching using groups method. Pattern Recognition 58 (2016),
39�48.

[48] Lance, G. N.; Williams, W. T. Computer programs for hierarchical polythetic
classi�cation. The Computer Journal 9, 1 (1966), 60�64.

[49] Lee, P. M. Bayesian Statistics. Wiley, 2012.

[50] Liao, W. Parallel k-means data clustering. Available at http://users.eecs.

northwestern.edu/~wkliao/Kmeans/index.html.

[51] Likas, A.; Vlassis, N.; Verbeek, J. J. The global k-means clustering algorithm.
Pattern Recognition 36 (2003), 451�461.

[52] Liu, D.; Nosovskiy, G. V.; Sourina, O. E�ective clustering and boundary
detection algorithm based on delaunay triangulation. Pattern Recognition Letters
29 (2008), 1261�1273.

[53] Liu, M.; Jiang, X.; Kot, A. C. A multi-prototype clustering algorithm. Pattern
Recognition 42, 5 (2009), 689�698.

[54] Liu, M.; Liu, Y.; Hu, H.; Nie, L. Genetic algorithm and mathematical morphol-
ogy based binarization method for strip steel defect image with non-uniform illu-
mination. Journal of Visual Communication and Image Representation 37 (2016),
70�77.

[55] Lucena, M.; Martinez-Carrillo, A. L.; Fuertes, J. M.; Carrascosa, F.;
Ruiz, A. Decision support system for classifying archaeological pottery pro�les
based on mathematical morphology. Multimed Tools Appl 75 (2016), 3677.

[56] Luo, H.; Kong, F.; Zhang, K.; He, L. A clustering algorithm based on mathe-
matical morphology. Proceedings of the 6th World Congress on Intelligent Control
and Automation (2006).

[57] MacQueen, J. Some methods for classi�cation and analysis of multivariate obser-
vations. Berkeley Symposium on Mathematical Statistics and Probability 1 (1967),
281�297.

[58] Matheron, G.; Serra, J. The birth of mathematical morphology.

[59] Matzkevich, I.; Abramson, B. The topological fusion of bayes nets. UAI'92
Proceedings of the Eighth international conference on Uncertainty in arti�cial intel-
ligence (1992), 191�198.

[60] McCallum, A.; Nigam, K.; Ungar, L. E�cient clustering of high dimensional
data sets with application to reference matching. Proceedings of the sixth ACM
SIGKDD internation conference on knowledge discovery and data mining ACM-
SIAM symposium on Discrete algorithms (2000), 169�178.

[61] Meyer, F. Automatic screening of cytological specimens. Computer Vision, Graph-
ics, and Image Processing (1986), 356�369.

References 109

[62] Meyer, F.; Maragos, P. Multiscale morphological segmentations based on wa-
tershed, �ooding, and eikonal pde. International Conference on Scale-Space Theo-
ries in Computer Vision (1999), 351�362.

[63] Michalski, R. S. Knowledge acquisition through conceptual clustering: A theo-
retical framework and an algorithm for partitioning data into conjunctive concepts.
Policy Analysis and Information Systems 4 (1980), 219�244.

[64] Mlynarczuk, M. Description and classi�cation of rock surfaces by means of
laser pro�lometry and mathematical morphology. International Journal of Rock
Mechanics and Mining Sciences 47 (2010), 138�149.

[65] Moon, T. K. The expectation-maximization algorithm. IEEE Signal Processing
Magazine 13 (1996), 47�60.

[66] Morik, K. Applications of machine learning. Current Developments in Knowledge
Acquisition 599 (2005), 9�13.

[67] Opitz, D.; Maclin, R. Popular ensemble methods: An empirical study. Journal
of Arti�cial Intelligence Research 11 (1999), 169�198.

[68] Ortiz, F.; Torres, F. Vectorial morphological reconstruction for brightness elim-
ination in colour images. Real-Time Imaging 10 (2004), 379�387.

[69] Pedrino, E. C.; Nicoletti, M. C.; Saito, J. H.; Cura, L. M. V.; Roda,
V. O. A binary morphology-based clustering algorithm directed by genetic algo-
rithm. IEEE International Conference on Systems, Man, and Cybernetics (SMC)
(2013).

[70] Pentaho. Data mining community documentation.
http://wiki.pentaho.com/display/DATAMINING, 2016.

[71] Pina, P.; Barata, T. Classi�cation by mathematical morphology. Proceedings of
the 2003 IEEE International Geoscience and Remote Sensing Symposium (2003).

[72] Pitsoulis, L.; Resende, M. Greedy randomized adaptive search procedures. Hand-
book of Applied Optimization, 2003.

[73] Platt, J. C. Fast training of support vector machines using sequential minimal
optimization. Advances in Kernel Methods - Support Vector Learning (1998), 185�
208.

[74] Postaire, J. G.; Zhang, R. D.; Botte, L. Cluster analysis by binary morphol-
ogy. IEEE Transactions on Pattern Analysis and Machine Intelligence 15 (1993),
170�180.

[75] Pudney, C. Distance-ordered homotopic thinning: A skeletonization algorithm for
3d digital images. Computer Vision and Image Understanding (1998), 404�413.

[76] Quinlan, J. R. C4.5: programs for machine learning. Morgan Kaufmann Pub-
lishers Inc., 1993.

References 110

[77] Quinlan, J. R. C4.5: Programs for Machine Learning. Morgan Kaufmann Pub-
lishers, 2014.

[78] Rish, I. An empirical study of the naive bayes classi�er. Tech. rep., 2001.

[79] Rodrigues, E.; Morais, F.; Morais, N.; Conci, L.; Neto, L.; Conci, A. A
novel approach for the automated segmentation and volume quanti�cation of cardiac
fats on computed tomography. Computer Methods and Programs in Biomedicine
(2015).

[80] Rodrigues, E. O. k-morphological sets: Source and datasets. Available at https:
//github.com/Oyatsumi/kMorphologicalSets.

[81] Rodrigues, E. O. Morphological classi�ers source code.
https://github.com/Oyatsumi/Morphological-Classi�ers/tree/master, 2016.

[82] Rodrigues, E. O.; Clua, E. A real time lighting technique for procedurally
generated 2d isometric game terrains. Entertainment Computing - ICEC 2015 9353
(2015), 32�44.

[83] Rodrigues, E. O.; Conci, A.; Borchartt, T. B.; Paiva, A. C. Comparing
results of thermographic images based diagnosis for breast diseases. Proceedings of
IWSSIP (2014), 39�42.

[84] Rodrigues, E. O.; Conci, A.; Morais, F. F. C.; Perez, M. G. Towards the
automated segmentation of epicardial and mediastinal fats: A multi-manufacturer
approach using intersubject registration and random forest. IEEE International
Conference on Industrial Technology (ICIT) (2015), 1779�1785.

[85] Rodrigues, E. O.; Morais, F. F. C.; Conci, A. On the automated segmenta-
tion of epicardial and mediastinal cardiac adipose tissues using classi�cation algo-
rithms. MEDINFO 2015: EHealth-enabled Health: Proceedings of the 15th World
Congress on Health and Biomedical Informatics 216 (2015).

[86] Rodrigues, E. O.; Pinheiro, V. H. A.; Liatsis, P.; Conci, A. Machine learn-
ing in the prediction of cardiac epicardial and mediastinal fat volumes. Computers
in Biology and Medicine (2017).

[87] Rodrigues, E. O.; Porcino, T. M.; Conci, A.; Silva, A. C. A simple approach
for biometrics: Finger-knuckle prints recognition based on a sobel �lter and similar-
ity measures. International Conference on Systems, Signals and Image Processing
(IWSSIP) (2016).

[88] Rodrigues, E. O.; Rodrigues, L. O.; Oliveira, L. S. N.; Conci, A.; Liatsis,
P. Automated recognition of the pericardium contour on processed ct images using
genetic algorithms. Computers in Biology and Medicine 87 (2017), 38�45.

[89] Rodrigues, E. O.; Torok, L.; Liatsis, P.; Viterbo, J.; Conci, A. k-ms: A
novel clustering algorithm based on morphological reconstruction. Pattern Recog-
nition 66 (2016), 392�403.

References 111

[90] Rodrigues, E. O.; Viterbo, J.; Conci, A.; McHenry, T. A context-aware
middleware for medical image based reports an approach based on image feature
extraction and association rules. IEEE International Conference on Computer Sys-
tems and Applications (2015).

[91] Rosenblatt, F. Principles of Neurodynamics: Perceptrons and the Theory of
Brain Mechanisms. Spartan Books, 1961.

[92] Russell, S.; Norvig, P. Arti�cial Intelligence: A Modern Approach. Prentice
Hall, 1995.

[93] Serna, A.; Marcotegui, B. Detection, segmentation and classi�cation of 3d
urban objects using mathematical morphology and supervised learning. ISPRS
Journal of Photogrammetry and Remote Sensing 93 (2014), 243�255.

[94] Sharma, Y.; Meghrajani, Y. K. Brain tumor extraction from mri image us-
ing mathematical morphological reconstruction. Emerging Technology Trends in
Electronics, Communication and Networking (2014).

[95] Shattuck, D. W.; Sandor-Leahy, S. R.; Schaper, K. A.; Rottenberg,
D. A.; Leahy, R. M. Magnetic resonance image tissue classi�cation using a
partial volume model. NeuroImage 13 (2001), 856�876.

[96] Silva, L. F.; Santos, A.; Bravo, R. S.; Silva, A. C.; Muchaluat-Saade,
D. C.; Conci, A. Hybrid analysis for indicating patients with breast cancer using
temperature time series. Computer Methods and Programs in Biomedicine 130
(2016), 142�153.

[97] Silva, L. F.; Santos, A. A.; Bravo, R. S.; Silva, A. C.; Muchaluat-Saade,
D. C.; Conci, A. Hybrid analysis for indicating patients with breast cancer using
temperature time series. Computer Methods and Programs in Biomedicine 130
(2016), 142�153.

[98] Sonka, M.; Hlavac, V.; Boyle, R. Image Processing, Analysis and Machine
Vision. Springer US, 1993.

[99] Sonka, M.; Hlavac, V.; Boyle, R. Image Processing, Analysis and Machine
Vision. Cengage Learning, 2014.

[100] Spyromitros, E.; Tsoumakas, G.; Vlahavas, I. An empirical study of lazy
multilabel classi�cation algorithms. Arti�cial Intelligence: Theories, Models and
Applications 5138 (2008), 401�406.

[101] Stuart, R.; Peter, N. Arti�cial Intelligence: A Modern Approach. Prentice
Hall, 2003.

[102] Su, M.; Chou, C. A modi�ed version of the k-means algorithm with a distance
based on cluster symmetry. IEEE Transactions on Pattern Analysis and Machine
Intelligence 23 (2001), 674�680.

References 112

[103] Thornton, C.; Hutter, F.; Hoos, H. H.; Leyton-Brown, K. Auto-weka:
combined selection and hyperparameter optimization of classi�cation algorithms.
Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining (2013), 847�855.

[104] Torok, L.; P., M.; Trevisan, D. G.; Clua, E.; Montenegro, A. A mobile
game controller adapted to the gameplay and users behavior using machine learning.
Entertainment Computing - ICEC 9353 (2015), 3�16.

[105] Torok, L.; Pelegrino, M.; Trevisan, D.; Clua, E.; Montenegro, A. A
mobile game controller adapted to gameplay and user's behavior using machine
learning. Entertainment Computing - ICEC 2015 9353 (2015), 3�16.

[106] Tuia, D.; Pacifici, F.; Kanevski, M.; Emery, W. J. Classi�cation of very
high spatial resolution imagery using mathematical morphology and support vector
machines. IEEE Transactions on Geoscience and Remote Sensing 17 (2009), 3866�
3879.

[107] UCI. Uci datasets. http://repository.seasr.org/Datasets/UCI/ar�/, 2016.

[108] Vincent, L. Morphological grayscale reconstruction in image analysis: applica-
tions and e�cient algorithms. Image Processing 2 (1993), 176�201.

[109] Wang, L.; Zhang, Y.; Feng, J. On the euclidean distance of images. IEEE
Transactions on Pattern Analysis and Machine Intelligence 27, 8 (2005), 1334�1339.

[110] Wang, M.; Zhou, C.; Pei, T.; Luo, J. A mathematical morphology based scale
space method for the mining of linear features in geographic data. Data Mining and
Knowledge Discovery 12 (2006), 97�118.

[111] Weinberger, K. Q.; Saul, L. K. Distance metric learning for large margin near-
est neighbor classi�cation. The Journal of Machine Learning Research 10 (2009),
207�244.

[112] Witten, T. A.; Sander, L. M. Di�usion-limited aggregation, a kinetic critical
phenomenon. Physical Review Letters 47, 19 (1981).

[113] Xiu, R.; Wunsch, D. Survey of clustering algorithms. IEEE Transactions on
Neural Networks 16 (2005), 645�678.

[114] Yousri, N. A.; Kamel, M. S.; Ismail, M. A. A distance-relatedness dynamic
model for clustering high dimensional data of arbitrary shapes and densities. Pattern
Recognition 42 (2009), 1193�1209.

[115] Yu, J.; Hong, R.; Wang, M.; You, J. Image clustering based on sparse patch
alignment framework. Pattern Recognition 47 (2014), 3512�3519.

[116] Zarinbal, M.; Zarandi, M. H. F.; Turksen, I. Relative entropy collaborative
fuzzy clustering method. Pattern Recognition 48 (2015), 933�940.

[117] Ze-Feng, D.; Zhou-Ping, Y.; You-Lun, X. High probability impulse noise-
removing algorithm based on mathematical morphology. IEEE Signal Processing
Letters (2006), 31�34.

References 113

[118] Zhong, C.; Yue, X.; Zhang, Z.; Lei, J. A clustering ensemble: Two-level-
re�ned co-association matrix with path-based transformation. Pattern Recognition
48 (2015), 2699�2709.

[119] Zhou, Y.; Wang, R.; Huang, W.; Yuan, Y.; Chen, X.; Wang, L. Attenuation
of di�raction noise in marine surveys with mathematical morphology. Society of
Exploration Geophysicists (2016), 5654.

[120] Zhu, Z.; Shen, J.; Yu, H. Noise removal and fracture analysis in borehole images
using mathematical morphology and compressive sensing. 78th EAGE Conference
and Exhibition 2016 (2016).

