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LÚCIA MARIA DE ASSUMPÇÃO DRUMMOND
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Resumo

Em um ambiente de nuvem computacional, aplicações de alto desempenho podem sofrer
interferência ao serem executadas em máquinas virtuais que estejam alocadas em uma
mesma máquina f́ısica. Embora alguns trabalhos tenham proposto estratégias de alocação
de máquinas virtuais cientes deste problema, nenhuma dessas estratégias empregou um
método adequado para predizer a interferência nem considerou, ao mesmo tempo, tanto
a minimização da interferência quanto do número de máquinas f́ısicas ativas na nuvem.
Nesta tese, define-se o Problema de Alocação de Máquinas Virtuais ciente da Interferência
para Aplicações de Alto Desempenho de Baixa Escalabilidade, um problema que tem a
finalidade de minimizar, simultaneamente, (i) a interferência sofrida por aplicações de
alto desempenho que estejam sendo executadas em uma mesma máquina f́ısica e (ii)
o número de máquinas f́ısicas necessárias para alocar essas aplicações na nuvem. Este
trabalho apresenta uma formulação matemática para o problema, além de propor uma
estratégia baseada na metaheuŕıstica Busca Local Iterada para resolvê-lo. Para predizer
a interferência, esta estratégia utiliza um modelo quantitativo e multivariado que leva em
conta a quantidade e similaridade de acesso aos recursos compartilhados e o número de
aplicações co-alocadas. Uma análise experimental, utilizando aplicações reais da área de
petróleo e o benchmark HPCC, mostraram que o método proposto foi capaz de superar,
em termos de redução de interferência, várias heuŕısticas da literatura. Os resultados
reveleram que, mesmo usando o número de máquinas f́ısicas indicados por tais heuŕısticas,
a estratégia proposta conseguiu reduzir o ńıvel de interferência sofrido pelas aplicações
alocadas na nuvem.

Palavras-chave: Alocação de Máquinas Virtuais, Interferência entre Aplicações, Com-
putação em Nuvem, Computação de Alto Desempenho.



Abstract

The cross-interference problem may occur when applications are executed in virtual ma-
chines placed in a same physical machine. Although many previous works have proposed
several different strategies for Virtual Machine Placement, neither of them have employed
a suitable method for predicting cross-interference nor have considered the minimization
of the number of used physical machines at the same time. In this thesis, we define the
Interference-aware Virtual Machine Placement Problem for small-scale HPC applications
in Clouds (IVMPP) that tackles both problems by minimizing, at the same time, the
cross-interference of small-scale HPC applications, that can share physical machines, and
the number of physical machines used to allocate them. We propose a mathematical
formulation and a strategy based on the Iterated Local Search framework to solve this
problem. Moreover, we also propose a quantitative and multivariate model to predict
interference for a set of applications allocated to the same physical machine. Experiments
executed in a real scenario, by using applications from the oil and gas industry and the
HPCC benchmark suite, showed that our method outperforms several heuristics from
the related literature in terms of interference, while using the same number of physical
machines.

Keywords: Virtual Machine Placement, Cross-application Interference, Cloud Comput-
ing, High Performance Computing.
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Chapter 1

Introduction

High Performance Computing (HPC) is broadly used for solving complex problems in sev-

eral scientific fields such as cosmology, molecular dynamics, quantum chemistry, climate

and human genetics [41]. HPC enables scientists to extrapolate their knowledge beyond

theoretical and experimental fields in order to understand and optimize known scenar-

ios, or even for predicting natural phenomena like storms, earthquakes and tornadoes.

Thus, high computational power delivered by HPC systems is essential to enhance human

knowledge by helping scientist to answer the most fundamental questions concerning the

universe.

HPC has also been employed to solve engineering or business problems like the ones

faced by petroleum and automotive industries. Specifically in petroleum industry, HPC

is used in processes responsible for improving oil and gas production in a new or devel-

oped field [59] [40] or to explore areas where petroleum can be found and recovered [11]

[30]. In addition, HPC has become indispensable to execute Big Data analysis in the

large and complex amount of data continuously gathered by companies [80]. From data

analysis results, these companies can get insight into customer behavior so that they can

recommend products and services according to its needs and desires [16].

Besides that, HPC has been frequently used to tackle combinatorial optimization

problems such as packing [26], vehicle routing [83], resource allocation and scheduling

[31]. In this sort of problems, an optimal solution must be identified from a finite set

of feasible solutions. Due to the high number of possible solutions, HPC is employed

to accelerate search methods like heuristics and meta-heuristics in such a way that a

near-optimal solution can be found in a reasonable time.

Typically, HPC applications are executed in dedicated datacenters. In general, these
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environments are equipped with performance-oriented machines, and low latency and

high bandwidth networks like Infiniband [50] [82] [18]. More specifically, low latency is

particularly critical for synchronous and tightly-coupled HPC applications [49] since a

single delay in communication layer can affect their entire execution. Moreover, in these

environments, HPC applications are singly executed in a given physical machine in order

to avoid concurrent access to shared and non-sliceable resources [43]. For all these reasons,

a specialized and dedicated infrastructure is still nowadays the main option to run HPC

applications.

However, in the past few years, Cloud Computing has emerged as a promising al-

ternative to execute these applications. This new computational paradigm brings some

attractive advantages when compared with a dedicated infrastructure, such as rapid provi-

sioning of resources and significant reduction in operating costs related to energy, software

licence and hardware obsolescence [13] [34] [90]. In order to leverage the adoption of clouds

for running HPC applications, some initiatives, such as UberCloud, have provided a free

and experimental HPC on-demand service, where users can discuss their experiences by

using such environment for executing their HPC applications [38].

Despite these advantages, some challenges must be overcome to bridge the gap be-

tween performance provided by a dedicated infrastructure and the one supplied by clouds.

Overhead introduced by virtualized layer [27] and hardware heterogeneity [42], for exam-

ple, affect negatively the performance of HPC applications when executed in clouds. In

addition, the absence of a high-performance network can prevent synchronous and tightly-

coupled HPC applications from being satisfactorily executed in this environment [13] [70]

[44] [50].

Besides these problems, the performance of HPC applications can be particularly

affected by resource sharing policies usually adopted by cloud providers. In general, one

physical server can host many virtual machines holding distinct applications [69] [28].

Although virtualization layer provides a reasonable level of resource isolation [48], some

shared resources, like cache and main memory, cannot be sliced over all applications

running in the virtual machines. As a consequence, these co-located applications can

experience mutual interference, resulting in performance degradation [43] [51] [53].

In face of the cross-application interference problem, some works, such as [43], [52],

[96], [21], [51], [28], and [78], proposed Virtual Machine Placement (VMP) strategies to

avoid or, at least, reduce the effect that interference imposes in co-located HPC applica-

tions. Some of those works just used a static matrix of interference or proposed a naive
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procedure to determine it. Other works, even proposing more general methods to de-

termine interference, considered just one kind of shared resource, the Shared Last Level

Cache (SLLC), or adopted an approach that evaluates only general and subjective char-

acteristics of HPC applications. However, as discussed in Chapter 3, all of these methods

are not suitable for determining the interference because this problem is directly related

to the amount and similarity of concurrent access to SLLC, DRAM (Dynamic Random

Access Memory) and virtual network, and to the number of co-located applications.

Moreover, the vast majority of those works proposed VMP strategies that neglected

an important issue on clouds: the minimization of the number of used physical machines.

Those works did not evaluate that goal because it is, actually, the opposite of reducing

interference. Indeed, to minimize the number of physical machines, a VMP strategy

should consolidate all applications in a small number of physical machines, increasing

consequently the interference. On the other hand, the interference could be alleviated

by spreading out applications in the set of available physical machines, what would rise

the number of used physical machines. However, minimizing the number of used physical

machines is essential to reduce operational costs related to power consumption and cooling

systems [25].

Concerning the number of physical machines, [43] and [51] proposed VMP strategies

that aims to minimize the number of used physical machines also considering the inter-

ference problem. However, those works neither treated both of those problems together

nor sought for the effective minimization of interference. In [43], the VMP strategy treats

both problems separately by prioritizing one or another objective depending on the class

of HPC application. In [51], the authors proposed a solution which attempts to minimize

the number of physical machines while keeping interference within bounds. Although

conflicting, the minimization of interference and the number of used physical machines

can be evaluated together by using a multi-objective approach. Thus, a VMP strategy,

aware of interference, can allocate virtual machines in such a way that a better trade-off

between minimizing interference and number of used machines can be achieved.

1.1 Objective

In this thesis, we define the Interference-aware Virtual Machine Placement Problem for

Small-scale HPC Applications in Clouds (IVMPP), a multi-objective problem that aims

to minimize, at the same time, (i) the interference experienced by small-scale HPC ap-
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plications executed in a same physical machine and (ii) the number of physical machines

used to allocate them.

IVMPP targets small-scale HPC applications, i.e., applications that can be entirely

placed in a physical machine, because the network interconnection still remains as the

major performance limiting factor for running medium and high scale HPC applications

in clouds [89] [35] [81]. Even in specific HPC clouds as the Amazon EC2 Compute Cluster

[66], the network layer prevents tightly-coupled HPC applications, which performs a lot of

synchronous and intensive communication, from being satisfactorily executed [50]. On the

other hand, clouds offer a reasonable service performance for small-scale HPC applications

because such applications can avoid the performance penalty usually imposed by the

physical network [49] [43] [36] [47]. At last, notice that, with the recent increase of the

number of cores in modern physical machines1, small-scale HPC applications can scale up

to many cores when fully allocated to a single physical machine.

Firstly, we define formally the IVMPP by introducing a mathematical formulation,

and then we propose a strategy based on the Iterated Local Search (ILS) framework

to solve it. That proposed strategy, called IVMPP ILS, is basically comprised of three

phases. At first, the IVMPP ILS executes a greedy constructive method to generate a

high quality initial solution. After creating this initial solution, the IVMPP ILS executes

a VND (Variable Neighborhood Descent) procedure to improve the current solution until

reaching the local optima. Next, the algorithm applies a perturbation in the current local

minimum in order to escape from the local optima. Furthermore, at the end of each ILS

iteration, the IVMPP ILS evokes the constructive method to create a new solution to be

submitted to the ILS. This multistart approach provides the necessary diversification to

overcome local minimum towards global optimum [64].

In order to predict interference, the IVMPP ILS uses a multivariate and quantitative

prediction model also proposed in this work. This proposed interference prediction model

takes into account (i) the amount of simultaneous accesses to shared resources, (ii) the

similarity between the applications access profiles, and (iii) the number of co-located ap-

plications. More specifically, our proposed model considers the effect that SLLC, DRAM

and virtual network concurrent accesses produce in cross-application interference. Those

three resources are considered particularly critical because (i) SLLC and DRAM are shared

among cores of a processor [93] [12] and, (ii) virtual network, although not being a hard-

1Recently, Intel® launched processor Xeon Platinum 8180M with 28 cores. Thus, a physical server
that supports two of these processors, such as Gigabyte® MD61-SC2, provides 56 cores in total. Similarly,
the server Supermicro® AS-1023US-TR4 provides 64 cores with two AMD® EPYC 7601. In addition,
the SW26010 processor, a homegrown Chinese manycore chip, has 260 cores in total.
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ware resource, is emulated by the hypervisor, shared by all virtual machines.

The cross-interference prediction model was validated by using two real-life HPC

applications frequently used in the petroleum industry, namely the Multiphase Filtration

Transport Simulator (MUFITS) [72] and the Pre-stack Kirchhoff Time Migration (PKTM)

[14], and applications provided by the High Performance Computing Challenge (HPCC)

benchmark [23]. Those applications were executed with different instances as input and

the results showed that our model predicted cross-application interference with maximum

and median errors of 13.88% and 3.59%, respectively. Besides that, the prediction error

was less than 10% in 93% of all tested cases.

Concerning the minimization of the number of used physical machines, we adopted

in our VMP strategy an approach similar to the one employed by [43]. This approach is

based on the Vector Bin Packing problem, a variant of the classical Bin Packing problem,

and aims to balance the use of physical resources by considering both the size and shape

of the exploitable volume of resources available in the cloud environment [67].

Our proposed VMP strategy was evaluated by using a set of instances created from

the aforementioned validation workload. Results achieved by our strategy were compared

with the ones obtained by the most widely used heuristics to minimize the number of

machines in clouds. The obtained results indicate that, even using the same number of

physical machines given by those heuristics, our strategy was able to reduce the level of

interference experienced by co-located applications up to 41%.

1.2 Contributions

The main contributions of this work are the following:

1. A formal definition and the corresponding mathematical formulation for the Interference-

aware Virtual Machine Placement Problem for Small-scale HPC Applications in

Clouds (IVMPP). This problem aims to minimize, simultaneously, the interference

experienced by applications allocated to the same physical machine and the number

of physical machines used to allocate them in the cloud environment.

2. A strategy based on the Iterated Local Search (ILS) framework to solve the IVMPP.

Besides being composed of the most common ILS components like perturbation and

local search heuristics, the proposed strategy also employs a multistart mechanism.

In this mechanism, new solutions, generated from a greedy constructive method,
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are submitted to the ILS at the end of each iteration. This approach enables our

strategy to cover a larger area of the set of feasible solutions.

3. A synthetic application template which allows to create a set of applications that

perform distinct access levels to shared resources. Such applications are created by

varying properly the input parameters of the proposed template. A synthetic appli-

cation based on this template executes two well-defined phases commonly present

in HPC applications.

4. An empirical evaluation presenting the multivariate and quantitative nature of the

cross-application interference problem. This experimental analysis was carried out

by using a set of synthetic applications specially created to investigate the cross-

application interference problem. This synthetic workload, which was generated

from our proposed application template, is comprised of applications that put dis-

tinct access pressure on shared resources.

5. A multivariate and quantitative model able to predict cross-application interference

level by considering (i) the amount of concurrent accesses to SLLC, DRAM and

virtual network, (ii) the similarity between the amount of applications accesses, and

(iii) the number of co-located applications.

6. An experimental analysis, executed in a real scenario, of both the prediction model

and the VMP strategy, by using a real reservoir petroleum simulator, a seismic

migration algorithm, and applications from a well-known HPC benchmark.

1.3 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 presents related works

and discusses the main contributions of our proposal when compared with them. Chapter

3 describes the proposed multivariate and quantitative model for predicting interference,

showing its building process and validation. Chapter 4 presents the criterion used by the

proposed VMP strategy to minimize the number of used physical machines. In Chapter

5, we formally define the IVMPP and introduce the proposed VMP strategy to solve it.

Finally, conclusions and directions for future work are presented in Chapter 6.



Chapter 2

Related Work

At first, this chapter introduces works which deals with the cross-application interference

problem in Section 2.1. Then, we describe in Section 2.2 papers that solve the Virtual

Machine Placement (VMP) problem considering the interference issue. Finally, in Section

2.3, we present papers that consider both the minimizing of interference and number of

used physical machines to solve the VMP problem.

2.1 Cross-application Interference Problem

Mury et al. [68] argued that cross-application interference could be determined by adopt-

ing a classification of applications. Such qualitative approach is based on the Thirteen

Dwarfs which classifies applications according to computational methods usually adopted

in scientific computing. Such classification is not suitable for determining interference

because, as will be described in Section 3.4.3, two applications belonging to a same class

can present distinct interference levels. Besides that, these results also pointed out that

a same application can present distinct interference levels when solving instances with

different sizes. Actually, experiments conducted in [43] also showed this same behav-

ior when applications EP (Embarrassingly Parallel) and LU (Lower-Upper Gauss-Seidel

solver)1 presented distinct interference levels when solving instances of different sizes.

Chi et al. [29] evaluated experimentally the degree at which the performance of a

guest virtual machine degrades under different combinations of background workloads.

These experiments were carried out by using single-threaded applications like basic Linux

commands (cat, gzip, gpg, bzip2), memory tests (cachebench) and games (gnugo). These

simple applications are quite different from HPC applications because the latter typically

1Applications EP, LU, CG, IS and FT are provided by the Nas Parallel Benchmark (NPB).
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uses the virtual network for communication. As that paper tested only single-threaded

applications, the effect of virtual network access contention in cross-application interfer-

ence was not properly assessed. However, as will be described in Section 3.2.3, the level of

interference experienced by co-located HPC applications can vary significantly depending

on the amount of accumulated access to virtual network. Therefore, the level of dispute

over this shared resource should also be considered when predicting interference for this

sort of application.

Koh et al. [53], similarly to [29], also used single-threaded applications, such as gzip2

and grep, to evaluate the extent to which the performance of co-located applications is

affected when running in a virtualized environment. They conducted interference experi-

ments by allocating two applications to the same physical machine in order to investigate

the cause of this problem. As stated before, those single-threaded applications are not

suitable for properly assessing the interference problem for HPC applications. This hap-

pens because single-threaded applications do not allow to evaluate the concurrent access

to virtual network, one of the causes of cross-interference problem. Moreover, by consid-

ering just two co-located applications, that work ignored the fact that the interference

level tends to increase with the rising of the number of co-located applications, as will be

shown in experiments described in Section 3.5.

Rameshan et al. [78] proposed a procedure to prevent latency sensitive applications,

such as video streaming and web services, from being adversely affected by batch appli-

cations when co-located in a same physical machine. In such proposal, latency sensitive

applications calls the proposed procedure whenever they are under interference caused by

batch applications. The procedure, based on the information collected when it is called,

predicts the next period of interference. From this prediction, the procedure throttles the

batch application before it imposes interference to latency applications one more time.

Thus, that work just proposed a way to work around the interference experienced by

latency sensitive applications by monitoring the conditions that lead to occurrence of this

problem. So, neither the cause of the interference problem was investigated nor a solution

to determine interference experienced by HPC applications was proposed.

Unlike those works, our proposed model is able to predict interference for HPC appli-

cations by taking into account the amount of concurrent access to virtual network and to

other shared resources like SLLC and DRAM.
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2.2 Virtual Machine Placement Aware of Interference

Basto [21] argued that a VMP strategy, aware of interference, could improve the perfor-

mance of applications when executed in clouds. To validate this argument, the author

modified the simulator Simgrid so that it simulated the cross-application interference ef-

fect by using a static interference matrix. This interference matrix, that was based on

results obtained from other papers, is composed of values related to the interference ef-

fect for three types of applications: cpu-bound, memory-bound and i/o-bound. So, by

consulting the type of application in this matrix, Simgrid was able to simulate the corre-

sponding interference level for the set of co-located applications. After modifying Simgrid,

the author presented a new version of the OpenStack scheduler which selects the physical

machine with the highest processor frequency and the lowest expected interference to host

incoming virtual machines. This expected interference, which is also calculated from this

static interference matrix, indicates the degree of interference currently present in the

physical host. Since the work used only interference values observed in previous papers,

it did not conduct any investigation to figure out the cause of the cross-interference prob-

lem. Besides not proposing any method to determine interference, that work did not also

evaluate its approach in a real physical machine.

Yokoyama et al. [96] proposed an interference-aware VMP strategy to allocate virtual

machines in a private HPC cloud. Their proposed strategy seeks for the maximization of

application throughput, i.e., it aims to execute, in a given time interval, the maximum

number of applications in this environment. In order to reach this goal, their proposal

tries to reduce applications execution times by alleviating the interference effect. The

VMP strategy reduces the interference effect by co-locating applications with comple-

mentary access profiles according to a static interference matrix. This interference matrix

was acquired from interference experiments accomplished with benchmark applications

such as HPL (High Performance Linpack) and PARPACBench. So, by using the same

set of applications earlier considered in the interference experiments, the authors evalu-

ated the VMP strategy and showed that the throughput can really be increased through

an interference-aware co-location. The authors stated, however, that the obtained in-

terference values were influenced by factors not investigated. So, they only verified the

hypothesis that reducing interference is really essential to rise the performance of HPC

applications when executed in clouds.

Jin et al. [52] classified applications in three SLLC access classes, called (i) cache-

pollution, (ii) cache-sensitive and (iii) cache-friendly. Then, they proposed a VMP strat-
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egy based on the co-locating of HPC applications with compatible SLLC access profiles.

This work claimed that cache-pollution applications should be preferably co-located with

cache-friendly applications rather than being co-located with cache-sensitive ones. How-

ever, through some practical experiments they showed that the approach may fail. More

specifically, EP and IS (Integer Sort), classified as cache-friendly, experienced distinct in-

terference levels when co-located with CG (Conjugate Gradient), categorized as a cache-

pollution application. Besides that, although both CG and FT (Fast Fourier Transform)

were classified as cache-pollution applications, CG did not present interference when co-

located with itself, whereas FT experienced interference when co-located with CG. These

results indicate that a qualitative approach based on SLLC access pattern is not suitable

for determining cross-application interference precisely.

Chen et al. [28] introduced the cache contention aware VMP problem. This problem

aims to minimize performance degradation of virtual machines by reducing SLLC access

contention in a physical host. Besides presenting a formal definition of the problem,

the authors also proposed a heuristic to solve it. Such heuristic tries to minimize the

total cache contention degree by avoiding to co-locate virtual machines with intensive

cache consumption, i.e., virtual machines that use a large space of the shared cache. To

estimate the total cache contention degree, this work proposed an algorithm based on

the concept of stack distance which allows to capture the temporal reuse behavior of an

application when executed in a system with a fully or set-associative cache. Although this

paper proposed a quantitative solution to determine interference, the proposed method

deems SLLC access contention as being the unique cause of cross-application interference.

However, as will be discussed in Section 3.2.3, the level of interference experienced by

co-located applications is affected by concurrent access to virtual network and DRAM, as

well. In addition, their proposed VMP strategy is application-agnostic. This means that

the VMP strategy treats each virtual machine as a separate placement problem, that is,

it disregards the relation between virtual machines and applications running in the top of

them [41]. As a consequence, the VMP strategy may allocate a set of virtual machines,

holding the same application, in distinct physical machines. Due to the absence of a high-

performance network, this approach can worsen the performance of an HPC application by

spreading out the corresponding virtual machines across the set of physical hosts available

in the cloud environment.

The works above either introduced only the interference problem or proposed methods

which are insufficiently accurate to predict cross-application interference. Moreover, all

of them overlooked the importance of minimizing the number of physical machines used
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to allocate applications in clouds. Unlike those works, the VMP strategy proposed in

this paper aims to minimize, simultaneously, the interference experienced by co-located

applications and the number of physical machines needed to allocate them.

2.3 Virtual Machine Placement Aware of Interference
and Usage of Physical Machines

Jersak et al. [51] modified some well-known placement heuristics to consider not only the

number of used machines but also the cross-application interference. Thus, the authors

adapted the heuristics FFD (First Fit Decreasing), BFD (Best Fit Decreasing) and WFD

(Worst Fit Decreasing) to not overcome an interference threshold when allocating virtual

machines to physical hosts. In order to predict interference, the authors devised a simple

interference model used as a proof of concept with their heuristics. In such model, the

level of interference is defined as a function of the number of virtual machines co-executing

in a physical machine. So, the model considers that the higher the number of virtual

machines, the higher the interference level is. However, in our work we show that for

the same number of virtual machines, the interference can vary drastically. This happens

because interference is related to the amount of access to shared resources and not to the

number of virtual machines being co-executed in a host. Additionally, those heuristics aim

only not to overcome a predefined interference threshold, and do not seek for minimizing

the interference.

Gupta et al. [43] proposed a VMP strategy that attempts either to avoid interference

or to minimize the number of used machines, depending on the class of HPC applica-

tions. Tightly-coupled synchronous HPC applications, for example, are always allocated

to a dedicated physical machine, i.e., a machine that will host only a single applica-

tion at a time. On the other hand, for the remaining classes of HPC applications, the

VMP strategy seeks for the minimization of the number of physical machines, though

also observing an acceptable interference criteria. This interference criteria is based on

a maximum SLLC accumulated access limit which is defined from experimental analysis.

Authors claimed that this SLLC accumulated threshold guarantee an acceptable level of

interference for applications allocated to the same physical machine. Although this work

proposed a quantitative strategy to alleviate the interference problem, only one shared

resource, SLLC, was considered. However, as will be presented in Section 3.2.3, our exper-

iments showed that other shared resources such as virtual network and DRAM can also

influence interference and, consequently, should be systematically evaluated. Moreover,
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their proposed VMP strategy treats, separately, the minimization of interference and the

number of used physical machines because, depending on the HPC class, it focuses on

solving one or another problem. Furthermore, this VMP strategy did not minimize, in

fact, the interference since it is just concerned about not trespassing a given interference

limit.

Both of papers proposed VMP strategies that, despite being interference-aware, treated,

separately, the problems of minimizing interference and the number of used physical ma-

chines. Actually, by considering only an interference limit, none of them really attempted

to minimize the level of interference that arises in a cloud environment. Note that, even

within a maximum interference limit, there could be allocation arrangements that would

result in lower interference levels. Moreover, those works employed, in their VMP strate-

gies, a naive or incomplete method to determine interference.

In addition, their methods were based on benchmark applications results. However,

this kind of application may be not suitable to investigate the interference problem since

the amount of access to shared resources cannot be controlled. Consequently, experiments

conducted with those applications do not allow to evaluate, systematically, the relation

between distinct access levels to shared resources and resulting interference.

Unlike those works, we propose a VMP strategy which aims to minimize, simulta-

neously, the level of interference experienced by co-located applications and the number

of physical machines, by using a quantitative and multivariate prediction model which

evaluates concurrent access to three shared and non-sliceable resources.



Chapter 3

Cross-application Interference Prediction
Model

In order to minimize the interference level, the proposed VMP strategy uses an interference

prediction model that was built upon a synthetic interference dataset. This dataset is

comprised of distinct levels of access to shared resources and the corresponding interference

level experienced by the set of co-located applications. From this interference dataset, the

model was created by using the Multiple Regression Analysis, a multivariate statistical

technique.

Firstly, we describe in Section 3.1 some basic assumptions and definitions used through-

out this thesis. Next, in Section 3.2, we present an interference dataset which was specially

created to investigate the interference problem. Then, we describe the cross-application

interference model created upon that interference dataset in Section 3.3. The validation

of the proposed model is discussed in Section 3.4, while an extended prediction model is

presented in Section 3.5. At last, in Section 3.6, we discuss the precision of the extended

model by comparing it with a model exclusively generated from real experimental results.

3.1 Basic Definitions and Assumptions

As stated in Chapter 1, our work focuses on small-scale HPC applications, that is, HPC

applications that are entirely allocated to a single physical machine. Thus, in this work,

we assumed that virtual machines holding one application are not allocated to more than

one physical machine. In other words, the allocation of one application to a physical

machine is equivalent to the allocation of all virtual machines, holding that application,

to the same physical machine.
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In this work, we considered three shared and non-sliceable resources when investi-

gating interference: (i) SLLC, (ii) DRAM and (iii) virtual network. We evaluated SLLC

because concurrent access to this shared resource was pointed out in previous papers, as

earlier described in Chapter 2, as one of the major causes of interference problem. Since

SLLC access contention can impose a high interference to co-located applications, we also

investigated concurrent access to DRAM, another critical component of memory subsys-

tem. In addition, we also investigated the virtual network access contention because this

shared resources is commonly used by small-scale HPC applications running in a same

physical machine.

We now define formally the amount of individual and accumulated access of applica-

tions to shared resources, besides describing metrics used to measure the cross-application

interference in the cloud environment.

The individual access (B) of an application i to a shared resource s is defined as the

sum of access of all virtual machines, holding this application, to s, where Ni is the total

number of virtual machines hosting i and Vi,j,s is the amount of access of virtual machine

Vj, hosting application i, to a shared resource s:

Bi,s =

Ni∑
j=1

Vi,j,s (3.1)

In the context of this work, the amount of access to SLLC and DRAM are measured

in terms of millions of references per second (MR/s), while the access to virtual network

is expressed as the amount of megabytes transmitted per second (MB/s).

From individual access, we defined the accumulated access (T ) as the sum of all indi-

vidual access (B) to a shared resource s performed by applications co-located in m, where

Am is the set of applications allocated to the physical machine m:

Ts,m =
∑
∀i∈Am

Bi,s (3.2)

This accumulated access represents the total pressure put by applications in a given

shared resource.

In this work, the negative impact experienced by co-located applications is measured

in terms of the interference level (F ):
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Fm =

∑
∀i∈Am

Li,Am

|Am|
(3.3)

So, the interference level experienced by the set of applications allocated to m is

calculated as the average slowdown (L) of applications allocated to this physical machine.

Particularly, in this thesis, the slowdown is expressed as the percentage of additional

time spent by one application when it is concurrently executed with other ones. Formally,

the slowdown (L) of one application i is equal to the ratio of the execution time achieved

by this application when executed concurrently with other ones (Ki,Am) to the time when

executed by itself (Hi) minus 1:

Li,Am =
Ki,Am

Hi

− 1 (3.4)

For example, suppose that the execution times of two applications, namely A1 and

A2, when executed in a dedicated physical machine, were equal to 60 and 80 seconds,

respectively. Suppose also that both applications, when concurrently executed in that

physical machine, spent 100 seconds. In this case, the slowdown of applications A1 and

A2 would be, respectively, 67% and 25%. This percentage represents how much additional

time these applications needed to complete their executions when allocated to the same

physical machine. Thus, the interference level between these applications would be 46%,

which means that these two applications would experience, in average, 46% of mutual

interference when allocated to the same physical machine.

From the interference level, we define the sum of interference levels which is used

to assess the overal interference of cloud environment. Formally, the sum of interference

levels (Z) is equal to the sum of interference levels calculated for each physical machine

of the cloud environment (M):

Z =
∑
∀m∈M

Fm (3.5)

At last, we assumed that the interference level is equal to zero in cases where just one

application is allocated to a physical machine. This assumption is derived from the fact

that this isolated application does not contend for any shared resource.
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3.2 Generating a Cross-application Interference Dataset

As mentioned before, we built our proposed interference prediction model from an inter-

ference dataset that was specially created to investigate the cross-application interference

problem.

In order to create that interference dataset, several co-locating experiments were con-

ducted by using applications with distinct access burden. Those applications were gener-

ated from a synthetic application template, originally presented in this work.

3.2.1 Generating Synthetic Applications

Access contention to shared resources is the main cause of interference experienced by ap-

plications allocated to the same physical machine. To study cross-application interference,

the vast majority of previous papers employed real applications provided by traditional

HPC benchmarks. However, a real application does not allow to control the number of

accesses to each shared resource, and consequently, to evaluate systematically the relation

between concurrent accesses and the resulting interference.

Thus, we propose an application template from which synthetic applications with

distinct access levels are created. From this template, we can create an application which

puts a high pressure to SLLC, while keeping a low access level to virtual network, for

example. Thus, a set of synthetic applications created from that template allows to

observe interference in face of different levels of accesses to SLLC, DRAM and virtual

network.

In order to represent the usual behavior of HPC applications [85], the proposed syn-

thetic application template presents, alternately, two distinct and well-defined phases.

The first one, called Computation Phase, represents the phase at which the applica-

tion performs tasks involving calculation and data movement. The other one, namely

Communication Phase, is the phase where the application exchanges information among

computing pairs.

The proposed application template is shown in Algorithm 1. Firstly, the synthetic

application executes the Main Loop (lines 1 to 13) whose total number of iterations is

controlled by parameter AppIter. This parameter adjusts the execution time of the ap-

plication. Next, the synthetic application executes Computation Phase Loop (lines 2 to

9) at which it performs the Computation Phase with the number of iterations defined
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by Comp. This Computation Phase is based on the benchmark STREAM [10] which is

widely used to measure the performance of memory subsystems [92]. In order to measure

sustainable memory bandwidth, this benchmark executes four simple vector kernels, as

presented in Table 3.1. Because SUM presents the highest access memory ratio, it was

chosen to be included in the proposed template.

Algorithm 1 Synthetic application template

Input parameters: AppIter, Comp, AccessStep, WSSCtrl, CompInt, DtAmount,
Comm
/* Main Loop*/

1: for x=1 to AppIter do
/* Computation Phase Loop*/

2: for y=1 to Comp do
/* Memory Access Loop*/

3: for i=1 to WSSCtrl step AccessStep do
4: A[i] = B[i] + C[i];

/*Compute-intensive Loop*/
5: for k=1 to CompInt do
6: T = SquareRoot(T);
7: end for
8: end for
9: end for

/* Communication Phase Loop*/
10: for z=1 to Comm do
11: All-to-All-Communication(D,DtAmount);
12: end for
13: end for

The SUM operation is executed by the inner loop Memory Access Loop (lines 3 to

8) which is controlled by two input parameters, WSSCtrl and AccessStep. The first one

defines the sizes of vectors A, B and C, and is indirectly used to determine application’s

Working Set Size (WSS) [54]. A small WSS usually increases application’s cache hit ratio

because all data needed by it in a given time interval can be entirely loaded in cache. On

the other hand, when the application has a WSS greater than cache capacity, its cache hit

ratio decreases because all data is fetched from main memory. Thus, WSS can be used

to control the cache hit ratio and, consequently, control the number of DRAM references

per second also.

The second parameter of Memory Access Loop, AccessStep, controls the step at which

the vector elements are accessed. Thus, when AccessStep is equal to 1, all elements

of vectors A, B and C are accessed consecutively, resulting in a high cache hit ratio.

Otherwise, when AccessStep is set to a high value, more data is fetched from main memory,
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Name Operation Bytes per Iteration
COPY a[i] = b[i] 16
SCALE a[i] = b[i]*q 16
SUM a[i] = b[i] + c[i] 24

TRIAD a[i] = b[i] + c[i]*q 24

Table 3.1: STREAM kernels

resulting in performance degradation. In other words, this parameter provides another

way to control the cache hit ratio and to manipulate the number of DRAM references per

second.

Thus, the number of DRAM references per second and application’s cache hit ratio can

be controlled by performing a fine tuning of both parameters WSSCtrl and AccessStep.

When the application presents a high cache hit ratio, DRAM receives few references

per second because data is already available in SLLC. Likewise, the number of memory

references increases when application presents a low cache hit ratio.

Besides controlling DRAM access, these parameters allow to handle the number of

SLLC references per second as well. When the application presents a low cache hit

ratio, the number of SLLC references per second decreases. This happens because, before

accessing new data, the previous referenced data, not found in SLLC, has to be fetched

from DRAM. Consequently, the application’s data access rate is reduced, decreasing also

the number of SLLC references per second. On the other hand, when the application

presents a high cache hit ratio, the number of SLLC references per second increases.

Because most data is rapidly fetched from SLLC, application increases the number of

memory access requests per second.

After performing the SUM operation (line 4), the synthetic application executes

Compute-intensive Loop which repeatedly calculates the square root of variable T (line

6). This loop, whose number of iterations is defined by CompInt, makes the applica-

tion more or less compute-intensive. Note that when CompInt is set to a high value,

the number of memory references decreases. This happens because variable T , being fre-

quently referenced, is kept stored in the first cache level (cache L1), preventing memory

subsystem lower levels from being accessed. As a result, SLLC and DRAM references per

second decreases. Thus, together with WSSCtrl and AccessStep, CompInt is also used to

manipulate the number of DRAM and SLLC references per second.

After Computing Phase Loop execution, the synthetic application performs Commu-

nication Phase by executing Communication Phase Loop (lines 10 to 12) whose number of
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iterations is determined by the input parameter Comm. This phase is based on MPBench

benchmark [5], a tool commonly used to evaluate distributed memory systems based on

MPI (Message Passing Interface) [46]. From all MPI operations tested by this benchmark,

MPI_Alltoall was particularly interesting for this work because it is widely used in sci-

entific applications. When using this collective operation, all application’s processes send

and receive to/from each other the same amount of data [87].

For each Comunnication Phase Loop iteration, the application executes All-to-All-

Communication() function (line 11) that employs MPI_Alltoall of a vector D whose size

is defined by the input parameter DtAmount. So, this input parameter is used to handle

the number of bytes transmitted in the virtual network.

Synthetic applications with distinct access profiles can be generated by varying prop-

erly these aforementioned input parameters, whose descriptions are summarized in Table

3.2.

Input Parameter Description
AppIter Application’s total number of iterations

Comp Total number of iterations of Computation Phase

Comm Total number of iterations of Communication Phase

WSSCtrl Working set size

AccessStep Step which vector elements are accessed

CompInt Total number of iterations of Compute-intensive Loop

DtAmount Amount of data exchanged among processes

Table 3.2: Application template input parameters

Unlike adopting real applications, with this proposed synthetic application template,

several applications that put distinct pressure levels to SLLC, DRAM and virtual net-

work can be generated, providing a proper way to investigate systematically the relation

between number of accesses and cross-application interference.

3.2.2 Used Synthetic Applications

In this section, we present the set of synthetic applications generated from the previously

presented application template. Applications with distinct amounts of individual accesses

were generated, considering three target access levels for each of the three shared resources.

The amount of individual accesses to each shared resource is expressed by distinct metrics,

such as number of references to memory per second or transmitted bytes per second, and

the range of those values are different. To treat those access rates jointly, we normalized
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those values in an interval between 0.0 and 1.0, where score 1.0 represents the highest

possible access rates achieved by an application based on the proposed template, and

score 0.0 represents no access. These scores, in our work, represent different access levels

to the shared resources. Then, we created applications with high, medium and low access

levels to SLLC, DRAM and virtual network, where the high access level corresponds, in

our proposal, to the highest access rate to each shared resource, and medium and low

access levels correspond to 50% and 10% of this high access rate, respectively.

To generate those applications with these distinct access levels, we varied the input

parameters of the application template and monitored the resulted access rates to each

shared resource by using the following monitoring tools: PAPI (Performance Application

Programming Interface) [9], OProfile [7] and SAR (System Activity Report) [76]1.

We executed this set of synthetic applications in a Itautec MX214 server whose con-

figuration details are described in Table 3.3. As illustrated in Figure 3.1, this server is

equipped with two NUMA (Non-Uniform Memory Access) nodes interconnected by a QPI

(Quick Path Interconnect) of 6.4 GT/s. Each NUMA node has 24GB of DRAM memory

and a Intel Xeon X5675 3.07GHz processor with six cores sharing a 12MB SLLC unit.

Moreover, the virtual environment was provided by KVM (Kernel-based Virtual Machine)

hypervisor running on top of Ubuntu Server.

Furthermore, we considered that a single virtual machine has one core and 4GB of

main memory. By assigning just one core to each virtual machine, we guarantee that all

communication is performed over the virtual network. Thus, we can stress this shared

resource to evaluate its influence in the interference experienced by co-located applications.

In our proposal, each application uses six of those virtual machines. We used CPU

affinity to deploy half of the virtual machines of the application in each NUMA node,

i.e., three virtual machines were deployed in “NUMA Node #1”, while the others were

deployed in “NUMA Node #2”, in a dedicated machine. In this scenario, accesses to

shared resources, specifically SLLC and DRAM, are balanced over two NUMA nodes.

Moreover, that configuration will be helpful to evaluate cross-application interference as

will be discussed in the next section.

The set of the generated synthetic applications and the corresponding access profiles

are presented in Table 3.4, whereas the template input parameters, chosen to generate

each application, are described in Table 3.5. All applications execute the same number of

1Remark that, besides Oprofile and PAPI, other monitoring tools such as Perf [8] can also be used to
profile applications by collecting the information available in hardware performance counters.
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Model Itautec MX214
CPU 2x Intel Xeon X5675 3.07 GHz
DRAM 48 GB DDR3 1333 MHz
Disk 5.8 TB SATA 3 GB/s
QPI 6,4 GT/s
Operating System Ubuntu 15.04
Kernel 3.19.0-15
Hypervisor KVM
Hardware Emulation Qemu 2.2.0

Table 3.3: Configuration of the machine used in experiments

iterations (AppIter = 25) and parameters Comp and Comm were set to ensure that they

spent approximately the same amount of time executing Computation and Communica-

tion Phases. Moreover, all scores were rounded to one decimal place. This explains, for

example, why applications S1 and S7, although having presented distinct absolute values,

were classified in the same SLLC score.

Absolute Value Individual Score
App. SLLC DRAM NET SLLC DRAM NET

S1 1635 4 300 1.0 0.0 0.1
S2 851 61 324 0.5 0.1 0.1
S3 239 41 312 0.1 0.1 0.1
S4 444 444 318 0.3 1.0 0.1
S5 224 224 324 0.1 0.5 0.1
S6 797 240 318 0.5 0.5 0.1
S7 1597 18 2892 1.0 0.0 1.0
S8 890 43 2810 0.5 0.1 1.0
S9 220 49 2910 0.1 0.1 1.0
S10 438 438 2832 0.3 1.0 1.0
S11 214 214 2892 0.1 0.5 1.0
S12 817 241 2838 0.5 0.5 1.0
S13 1575 22 1392 1.0 0.0 0.5
S14 890 52 1362 0.5 0.1 0.5
S15 228 49 1335 0.1 0.1 0.5
S16 438 438 1375 0.3 1.0 0.5
S17 221 221 1404 0.1 0.5 0.5
S18 824 239 1380 0.5 0.5 0.5

Table 3.4: Generated synthetic applications and the corresponding access profiles when
executed in a dedicated machine

Applications S1, S7 and S13 achieved the highest SLLC number of references per sec-

ond. In order to reach this high SLLC individual access, we adjusted the input parameters

to ensure that all memory references were directly satisfied by SLLC, which resulted in a
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Figure 3.1: NUMA nodes and processors used in our experiments

0.0 DRAM score. Thus, although score 0.0 was not considered as one of the three target

access levels, there is no way to achieve the highest number of SLLC references per second

without reducing drastically the number of accesses to DRAM.

On the other hand, the number of memory references satisfied by SLLC has to decrease

to rise the number of DRAM references per second. To achieve a high DRAM individual

access, all memory references should result in accesses to main memory, i.e., the SLLC hit

ratio must be close to 0%. However, even in that case, the number of SLLC references per

second is not equal to zero, because all references to DRAM are also treated by SLLC.

This explains why applications S4, S10 and S16, which achieved the highest number of

DRAM references per second, exhibited a SLLC score equal to 0.3, though this score was

not considered as one of the target access levels.

Thus, concerning the memory subsystem, we were not able to generate all possible

combinations involving the three access levels. A high number of individual accesses to

SLLC implies in a low number of accesses to DRAM. As a consequence, it is not possible

to generate an application where both SLLC and DRAM scores are equal to 1.0 or an

application which puts, simultaneously, a high and medium pressure on SLLC and DRAM,
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Parameters

App. AppIter Comp Comm WSSCtrl AccessStep CompInt DtAmount

S1 25 120000 5200 7000 512 0 22600

S2 25 90000 5200 9000 1024 6 22600

S3 25 40000 5200 11500 2048 22 22600

S4 25 7500 5200 30000 512 0 22600

S5 25 2700 5200 39000 512 21 22600

S6 25 20000 5200 11800 256 2 22600

S7 25 120000 1500 7000 512 0 749568

S8 25 90000 1500 9000 1024 6 749568

S9 25 40000 1500 11500 2048 22 749568

S10 25 7500 1500 30000 512 0 749568

S11 25 2700 1500 39000 512 21 749568

S12 25 20000 1500 11800 256 2 749568

S13 25 120000 150000 7000 512 0 150000

S14 25 90000 150000 9000 1024 6 150000

S15 25 40000 150000 11500 2048 22 150000

S16 25 7500 150000 30000 512 0 150000

S17 25 2700 150000 39000 512 21 150000

S18 25 20000 150000 11800 256 2 150000

Table 3.5: Template input parameters chosen to create synthetic applications

for example.

At last, concerning virtual network, the highest amount of transmitted bytes was

achieved by increasing input parameter DtAmount up to reaching the maximum amount

of data that the hypervisor is able to handle at the same time. We varied DtAmount

to find out the virtual network saturation threshold. When this limit is exceeded, the

amount of bytes transmitted per second decreases, regardless of increasing DtAmount.

Although we did not generate all possible combinations of applications, we were able to

create a synthetic workload with distinct computational burden. As can be seen in Figure

3.2, this set of synthetic applications comprises a wide range of access profiles, varying

from low access applications, such as S3 and S5, to the ones that put, simultaneously, a

high pressure on two shared resources such as S7 and S10. We claim that this broad range

of access profiles is suitable for conducting a deeper evaluation of the cross-application

interference problem.

3.2.3 Measuring Cross-applications Interference

In this section, we present experiments to determine cross-applications interference. The

previously presented synthetic applications were executed in a two-by-two fashion to ob-
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Figure 3.2: Synthetic applications with distinct access profiles

tain the resulting interference level in several cases. Because each synthetic application

used half of available resources (memory and CPU), we were able to co-locate two of

those applications in the physical machine, without exceeding the available resources in

the system. That allocation represents a realistic scenario, usually found in clouds, where

all resources available in a physical machine are fully allocated to maximize resource uti-

lization, i.e., to minimize the number of used physical machines in the cloud environment

[84].

The generated synthetic applications do not present exactly the same execution time,

so to keep concurrency among co-located applications until the end of the experiment, the

smaller execution time application was re-started automatically as many times as neces-

sary to cover the entire execution of the longer application. We adopted such approach

to fairly measure the interference experienced by both applications, regardless of their

execution times.

The overall interference results are summarized in Figure 3.3. Around 54% of the total

concurrent executions (93 occurrences) achieved an interference level less than 50%, while

37% of co-locations (63 occurrences) experienced interference levels between 50% and

100%. Besides that, in around 9% of all cases (15 occurrences) co-location applications

reached interference levels greater than 100%. These results presented a coefficient of
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Figure 3.3: Frequency of cross-applications interference levels

variation2 close to 59% which allows to assert that these synthetic experiments comprised

a large range of interference levels.

A deeper analysis accomplished in these results revealed that there is a correlation

between interference level and SLLC accumulated score. As can be seen in Figure 3.4,

interference level tends to increase as SLLC accumulated score rises. Indeed, the Pearson’s

correlation coefficient between SLLC accumulated score and interference level is around

0.76, indicating a strong, positive and linear relationship between these both variables.

Thus, this observation corroborates the hypothesis that the amount of accesses to shared

resources can really influence cross-application interference.

In addition, these experiments allowed to confirm that mutual access to other shared

resources besides SLLC can also impact the interference level. Consider, for example,

SLLC accumulated score equal to 0.40, in Figure 3.4, it may occur in cases with distinct

interference levels. In other words, although SLLC accumulated access presents a strong

correlation with interference level, there is, at least, another factor influencing it.

Actually, the interference level increases as concurrent access to virtual network also

2Also known as relative standard deviation, the coefficient of variation is defined as the ratio of the
standard deviation to the mean.
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Figure 3.4: SLLC accumulated score versus interference level

does. As illustrated in Figure 3.5, when virtual network accumulated score is equal to

0.2 and 2.0, the corresponding interference levels are around 28% and 60%, respectively.

For the same SLLC accumulated score, the cross-application interference levels vary more

than 30% depending on the amount of access to virtual network.

Similarly, results revealed that concurrent access to DRAM can also impose a negative

impact in interference level. As highlighted in Table 3.6, the interference level can change

substantially depending on the accumulated access to DRAM. For instance, application

S2, when allocated with itself, achieved an interference level equal to 71.12%. On the

other hand, application S6, even presenting the same SLLC and virtual network access

profiles than S2, experienced an interference level around 58% higher than the latter. This

same behaviour can be observed for applications S8 and S12. Thus, besides SLLC and

virtual network, the accumulated access to DRAM can also affect the level of interference

experienced by applications that share a common physical machine.

In addition, some co-locations, even though present almost the same amount of accu-

mulated access to the three shared resources, reached interference levels varied by more

than 45%. In the subset of interference results, listed in Table 3.7, for example, the

co-location “S14xS8” experienced an interference level 46% higher than the co-location

“S15xS7”, although both have the same virtual network accumulated score, 1.5, and differ

slightly about DRAM and SLLC accumulated scores. Applications S15 and S7 present
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Figure 3.5: Virtual network accumulated score versus interference level when SLLC was
equal to 0.40

Co-execution
Accumulated Score Interference

LevelSLLC DRAM NET
S2 x S2 1.0 0.2 0.2 71.12%
S6 x S6 1.0 1.0 0.2 129.28%
S8 x S8 1.0 0.2 2.0 94.02%

S12 x S12 1.0 1.0 2.0 136.09%

Table 3.6: Subset of experiments showing the influence of DRAM accumulated score in
interference levels

distinct SLLC individual access values, the former presents a lower number of SLLC in-

dividual access than the latter. This explains why this co-location does not present a

high interference level, even achieving a high SLLC accumulated access. On the other

hand, the co-location “S14xS8”, although presents a SLLC accumulated access similar to

co-location “S15xS7”, achieved a high interference level because both applications, which

present similar SLLC individual access, evenly competed for SLLC. As can be seen in

Table 3.7, this also happened in co-locations that present virtual network accumulated

scores equal to 0.6 and 0.2.

So, besides accumulated access to shared resources, the similarity between the amounts

of application’s individual access has a direct impact in the interference level experienced

by applications when allocated to a same physical machine. Indeed, this justifies the

difference between the interference levels achieved by co-locations listed in Table 3.7.
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Co-execution
Accumulated Score Interference

LevelSLLC DRAM NET
S1 x S3 1.1 0.1 0.2 34.10%
S2 x S2 1.0 0.2 0.2 71.12%
S13 x S3 1.1 0.1 0.6 31.51%
S14 x S2 1.0 0.2 0.6 71.83%
S15 x S7 1.0 0.2 1.5 41.67%
S14 x S8 1.1 0.1 1.5 87.97%

Table 3.7: Results of accumulated score and interference levels for a subset of experiments

In order to measure the level of similarity between two applications, we define the

similarity factor (E):

Ei,j,s = 1− |Bi,s −Bj,s| (3.6)

So, the similarity factor of two applications regarding to a shared resource s is calcu-

lated as the difference between 1 (highest individual access score) and the absolute value

resultant from the difference between the amount of individual accesses (B) of applications

i and j to a shared resource s.

Note that, because the individual accesses (B) of applications are normalized between

0 and 1, the similarity factor will fall in this same interval. A similarity factor close to 1

indicates a high level of similarity between applications, while values close to 0 mean that

the applications present distinct access profiles concerning a shared resource. In other

words, the higher the similarity factor is, the higher the level of similarity between two

applications will be. For example, concerning SLLC, the similarity factors for co-locations

“S14xS8” and “S15xS7” are equal to 1.0 and 0.1, respectively. These values point out that

S14 and S8 present a higher level of similarity than the one presented by S14 and S8.

Indeed, as previously discussed, the applications S14 and S8 evenly compete for SLLC,

while S15 and S7 put distinct access pressure on this shared resource.

As similarity factor is used to assess similarity between pairs of applications, we de-

vised an additional metric to measure the overall level of similarity for all applications

placed in the same physical machine. Then, we define the global similarity factor (G) as

follows:

Gs,m =

∑
∀i,j∈Am/i 6=j

Ei,j,s

u
(3.7)



3.3 A Multivariate and Quantitative Cross-application Interference Prediction Model 29

In short, the global similarity factor is equal to the average of all similarity factors,

concerning a shared resource s, calculated for each pair of applications allocated to the

physical machine m, where u is the number of 2-combinations of Am.

Results of the above described experiments showed that the cross-application inter-

ference is influenced by the following factors:

• amount of simultaneous accesses to SLLC;

• amount of simultaneous accesses to virtual network;

• amount of simultaneous accesses to DRAM;

• similarity between the amounts of applications’ individual accesses to each shared

resource;

As presented above, the cross-application interference problem is influenced by four

different factors, which reveals its multivariate nature. Because a multivariate statistical

technique allows to examine the relationship among multiple variables, in this work we

adopted this method to create a model for predicting the interference level experienced

by co-located applications.

3.3 A Multivariate and Quantitative Cross-application
Interference Prediction Model

In this section, we describe the proposed prediction model that was created by using

the Multiple Regression Analysis technique. In Section 3.3.1, we briefly introduce this

statistical method, while in Section 3.3.2 we describe how it was applied to build our

prediction model.

3.3.1 Multiple Regression Analysis - Main Concepts

Multiple Regression Analysis (MRA) is a multivariate statistical technique that allows to

explain the relationship between one dependent variable and, at least, two independent

variables. This technique is used to create a model, called statistical variable, able to

predict the value of the dependent variable from the known values of independent variables

[88].
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Basically, MRA comprises four macro steps as illustrated in flowchart of Figure 3.6.

Firstly, in Variables Selection step, the most likely variables to explain the behavior of

the response variable are selected. Although some statistical techniques such as matrix of

correlation can provide some insights about which variables must be chosen, this process

is mainly guided by the researcher’s knowledge about the problem [45] [71].

After that, the Model Estimation step is executed, where the terms of the model are

determined and their coefficients are automatically estimated by using the Least Squares

Method. Next, the Model Evaluation step is executed to evaluate the goodness-of-fit level,

i.e., how satisfactorily the estimated model fits to the data used in the building process.

Besides that, the statistical significance of regression and coefficients are also assessed. In

case that the estimated model does not present a satisfactory goodness-of-fit level or a

desired statistical significance level, a new model must be estimated by executing, again,

the Model Estimation step. Otherwise, the estimated model is ready to be validated in

the Model Validation step by using an “unseen” dataset, i.e, a dataset not previously used

in the process of model estimation [45] [71] [65] [91].

Figure 3.6: Main steps of Multiple Regression Analysis

Although non specialized programs such as Excel and Matlab can be used for building
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a model from MRA, this process is usually accomplished by using commercial statistical

packages such as Eviews [1], SPSS [3], and Minitab [4], or free software ones like Gretl

[20] or R [77]. In general, such specific tools provide a full multivariate analysis toolbox

that allows to conduct a deep analysis on the estimated model.

3.3.2 Building the Interference Prediction Model

By using Minitab version 17.1.0, we followed the aforementioned steps to build our pro-

posed model. At first, we executed the Variables Selection step to identify which variables

should be selected as independent ones. As the synthetic dataset was generated specifi-

cally to investigate interference, the selection step was straightforward. We determined

the accumulated scores and global similarity factors of the three shared resources as in-

dependent variables and cross-application interference level as the dependent one. We

aimed to generate a model able to predict the interference level from the known values of

accumulated scores and global similarity factors.

After the Variable Selection step, we repeatedly executed both the Model Estimation

and Model Evaluation steps until reaching a parsimonious model with satisfactory levels

of goodness-of-fit and statistical significance. A parsimonious model is able to perform

better out-of-sample predictions because, due to its simplicity, it is not usually overfitted

to the sample [91].

Our multivariate and quantitative model for predicting interference is described as

follows:

Fm =(0.7498 ∗ TSLLC,m ∗GSLLC,m)+

(0.1598 ∗ TNET,m ∗GNET,m)+

(0.1456 ∗ TDRAM,m ∗GDRAM,m ∗ TSLLC,m)

(3.8)

As can be seen in the prediction model, the global similarity factors, GSLLC , GDRAM

and GNET , were employed to weight the influence that accumulated accesses, TSLLC ,

TDRAM and TNET , impose in the interference. Moreover, the total amount of access to

DRAM was weighted by SLLC accumulated access since all accesses to DRAM are firstly

treated in SLLC.

The coefficients calculated for each term, namely 0.7498, 0.1598 and 0.1456, indicate

that the interference is more influenced by simultaneous and accumulated access to SLLC,
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represented in the model by the term TSLLC,m∗GSLLC,m. However, as previously discussed,

the access to virtual network (TNET ∗GNET ) and DRAM (TDRAM ∗GDRAM,m ∗ TSLLC,m),

that together presents a coefficient very close to 0.31, can also affect interference. Thus,

depending on the value of the SLLC accumulated score, the interference can also be

primarily determined by accumulated accesses to DRAM and virtual network.

That model presented an Adjusted Coefficient of Regression, that is Adjusted R-

squared (R2-adj), around 0.912, which means that 91.2% of variance can be explained

through that estimated model. In other words, high R2-adj indicates that the model is

suitable for the used dataset and gives accurate predictions about the dependent variable.

In addition, we assessed statistical significance of the regression model and coefficients

of each term by applying the F hypothesis test. At a level of significance of 0.05, test

F revealed that regression and its coefficients can be considered as being statistically

significant since resulted p-values were smaller than the level of significance. These results

indicate that each coefficient is a meaningful addition to prediction model because changes

in the independent variable value are related to changes in the dependent variable.

Moreover, an analysis accomplished on residuals showed that the estimated model did

not violate any of the MRA basic assumptions. Thus, the residuals presented (i) linearity,

(ii) homocedasticity3 and (iii) normal distribution.

3.4 Experimental Tests and Results

In this section, we describe the experimental tests accomplished to assess the quality

of our proposed prediction model. In Section 3.4.1, we describe the workload used for

conducting experimental tests. In Section 3.4.2, we present predictions made by using our

model, while in Section 3.4.3 we evaluate how precisely these predictions match to the

interference levels achieved in real experiments.

3.4.1 Description of the Used Real Applications

In order to evaluate the quality of our prediction model, we carried out experiments

by using two real applications used in petroleum industry, MUFITS and PKTM, and

applications from the High Performance Computing Challenge benchmark (HPCC).

3In the context of regression analysis, this term refers to the circumstance in which the variance of
residuals across values predicted for the dependent variable is constant.
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MUFITS [6] is employed by petroleum engineers to study the behavior of petroleum

reservoir over time [72]. From simulation results, they can make inferences about future

conditions of the reservoir in order to maximize oil and gas production in a new or devel-

oped field [13]. Basically, the simulator employs partial differential equations to describe

the multiphase fluid flow (oil, water and gas) inside a porous reservoir rock [73]. Reser-

voir simulation is one of the most expensive computational problems faced by petroleum

industry since a single simulation can take days, even weeks, to finish. Computational

complexity of this problem arises from the high spatial heterogeneity of multi-scale porous

media [59].

PKTM is a seismic migration method that provides a subsurface image from earth.

This migrated image, that is generated from a raw seismic section, can reveal geological

structures where oil and gas can be detected and further recovered. A raw seismic section

must be migrated because the acquisition process can produce a subsurface image that

originally does not represent the real geological structure found in the target area. PKTM

is one of the most used migration methods in industry due to its simplicity, efficiency, fea-

sibility and I/O flexibility. Similarly to reservoir simulator, the seismic migration process

is also computationally expensive and a single execution can take several hours to finish,

even when executed in supercomputers [94] [14].

Besides using both applications, we tested applications from HPCC [2], a widely

adopted benchmark to evaluate HPC systems [97]. Although HPCC provides seven ker-

nels in total, we just used the ones that represent real HPC applications or operations

commonly employed in scientific computing. A brief description of these four kernels

follows [60] [32].

• HPL (High Performance Linpack): solves a dense linear system of equations by

applying the Lower-Upper Factorization Method with partial row pivoting. This

application, that is usually employed to measure sustained floating point rate of

HPC systems, is the basis of evaluation for the Top 500 list4.

• DGEMM (Double-precision General Matrix Multiply): performs a double precision

real matrix-matrix multiplication by using a standard multiply method. Even not

being a complex real application, this kernel represents one of the most common

operation performed in scientific computing, the matrix-matrix multiplication.

• PTRANS (Parallel Matrix Transpose): performs a parallel matrix transpose. As

4https://www.top500.org/
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their pairs of processors communicate with each other simultaneously, this applica-

tion is a useful test to evaluate the total communications capacity of the network.

• FFT (Fast Fourier Transform): computes a Discrete Fourier Transform (DFT) of a

very large one-dimensional complex data vector and is often used to measure floating

point rate execution of HPC systems.

We considered, for each application, distinct instances to certify that our proposal is

able to predict interference, regardless of the size and characteristics of the instance being

solved. In MUFITS, we considered instances usually adopted in the related literature.

The first one, labeled here as “I1”, considers a simulation of CO2 injection in the Johansen

formation by using a real-scale geological model of the formation. The other one, labeled

here as “I2”, is related to the 10th SPE (Society of Petroleum Engineers) Comparative

Study. Both instances are available on the MUFITS Web site [6].

Concerning PKTM, we used synthetic and real seismic sections, labeled here as “I1”

and “I2”, respectively. The synthetic seismic section, and its respective velocity model,

were created by using a synthetic seismograph. This sort of seismic section, such as the

Marmousi and SEG/EAGE models, are commonly used for evaluating geophysical solu-

tions, techniques, and algorithms [56] [57] [24] [79] [95], because they faithfully represent

geological features found in real seismic sections. Even so, we also used a real seismic

section composed of data collected from a real seismic data acquisition. This data was

acquired in Brazil, but, for confidentiality reasons, we cannot inform the exact localization

where this acquisition took place.

For HPCC, we considered instances whose details are described in Table 3.8. Note

that, specifically for PTRANS and DGEMM, we created a small instance, called I3,

to be executed with only one virtual machine. Instances for HPCC were created by

adjusting parameters “#N”, “N” and “NB” which correspond, respectively, to the number

of problems, the size of the problem treated by the application and the size of the block.

Remark that each input parameter has a specific meaning for each application. For

example, in case of DGEMM, input parameter“N” is used to set the dimension of matrices

to be multiplied, while this same parameter, in case of FFT, determines the size of vector

of real numbers to be transformed to the frequency domain. More detailed information

about these input parameters can be found on the HPCC Web site [2].
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Application Instance
HPCC Parameters
#N N NB

HPL
I1 1 18000 80
I2 1 15000 80

DGEMM
I1 1 3000 80
I2 1 18000 80
I3 1 1000 80

PTRANS
I1 1 24000 80
I2 5 500 80
I3 1 18000 80

FFT
I1 1 65000 10
I2 1 40000 10

Table 3.8: Description of HPCC applications instances

3.4.2 Predicting Interference with the Proposed Model

In order to assess the prediction model in distinct scenarios, we considered four co-location

schemes: A, B, C and D. In schemes A and B, all applications, solving both I1 and I2,

were co-located in a two-by-two and three-by-three fashions, respectively. In scheme C,

we co-located all applications, except PKTM, in a six-by-six fashion, but solving just I1.

At last, in D we co-located applications PTRANS and DGEMM in a twelve-by-twelve

fashion when solving I3. In addition, each virtual machine used in all co-location schemes

has the same configuration as described in Section 3.2.2. So, an application running with

4 virtual machines would use 4 CPU and 16 GB of main memory in total, for example.

Moreover, as performed in synthetic experiments, half of virtual machines allocated to

each application was deployed to a NUMA node.

As presented before, the prediction model relies on the amount of individual access to

shared resources to estimate the cross-application interference. So, to test our proposed

model, we firstly executed each of those applications in a dedicated physical machine to

acquire their corresponding access profiles to the three shared resources. This profiling

was executed in the server previously described in Section 3.2.2.

Individual access scores achieved by each application are described in Table 3.9. FFT

achieved the highest access rate to virtual network, while PTRANS, when solving I1, im-

posed the highest pressure to SLLC and DRAM. Moreover, as DGEMM and PKTM are

embarrassingly parallel applications, they presented a low access level to virtual network.

It is worth mentioning that some applications decreased their access rates to shared re-

sources when executing with a lower number of virtual machines. This is expected since

the same application, when executed with a lower number of processes, decreases, usually,
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the amount of individual access to shared resources.

App. Label Application Instance
Virtual

Machines
Individual Score

SLLC DRAM NET

MUFITS.I1.P6 MUFITS I1 6 0.053 0.127 0.004

MUFITS.I2.P6 MUFITS I2 6 0.030 0.000 0.008

MUFITS.I1.P4 MUFITS I1 4 0.049 0.075 0.003

MUFITS.I2.P4 MUFITS I2 4 0.024 0.000 0.006

MUFITS.I1.P2 MUFITS I1 2 0.016 0.027 0.000

HPL.I1.P6 HPL I1 6 0.026 0.062 0.015

HPL.I2.P6 HPL I2 6 0.028 0.057 0.019

HPL.I1.P4 HPL I1 4 0.018 0.041 0.014

HPL.I2.P4 HPL I2 4 0.012 0.038 0.011

HPL.I1.P2 HPL I1 2 0.008 0.011 0.005

DGEMM.I1.P6 DGEMM I1 6 0.017 0.021 0.000

DGEMM.I2.P6 DGEMM I2 6 0.010 0.024 0.000

DGEMM.I1.P4 DGEMM I1 4 0.011 0.023 0.000

DGEMM.I2.P4 DGEMM I2 4 0.007 0.016 0.000

DGEMM.I1.P2 DGEMM I1 2 0.004 0.009 0.000

DGEMM.I3.P1 DGEMM I3 1 0.003 0.005 0.000

PTRANS.I1.P6 PTRANS I1 6 0.183 0.214 0.322

PTRANS.I2.P6 PTRANS I2 6 0.018 0.000 0.111

PTRANS.I1.P4 PTRANS I1 4 0.136 0.091 0.194

PTRANS.I2.P4 PTRANS I2 4 0.015 0.000 0.038

PTRANS.I1.P2 PTRANS I1 2 0.054 0.041 0.189

PTRANS.I3.P1 PTRANS I3 1 0.050 0.029 0.000

FFT.I1.P4 FFT I1 4 0.070 0.164 0.517

FFT.I2.P4 FFT I2 4 0.068 0.169 0.493

FFT.I1.P2 FFT I1 2 0.041 0.086 0.306

PKTM.I1.P6 PKTM I1 6 0.004 0.000 0.001

PKTM.I2.P6 PKTM I2 6 0.001 0.000 0.001

PKTM.I1.P4 PKTM I1 4 0.003 0.000 0.001

PKTM.I2.P4 PKTM I2 4 0.001 0.000 0.001

Table 3.9: SLLC, DRAM and virtual network individual scores of real applications exe-
cutions

Considering the individual profile of each application, we applied our model to predict

what would be the interference experienced by those applications if they were co-located

according to the aforementioned schemes. Prediction results point out that the mini-

mum and maximum predicted interference levels would be equal to 0.20% and 49.60%,

respectively. The minimum interference level was predicted for co-location “PKTM.I2.P6

x PKTM.I2.P6”, while the maximum one was estimated for FFT.I1.P2 when co-located

with itself in a six-by-six fashion. As expected, the lowest and highest interference levels

were predicted for co-locations that involved, respectively, applications with low and high

access rates to SLLC, DRAM and virtual network. In other words, our model indicated
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that PKTM, DGEMM and HPL would suffer a low cross-interference, while FFT and

PTRANS would present the highest interference levels.

However, specifically for PTRANS, our model points out that interference experi-

enced by this application would vary significantly depending on the instance being solved.

Our model indicated that PTRANS.I1.P6 would experience an interference level around

40% when co-located with itself in a two-by-two fashion, while PTRANS.I2.P6, when

co-located in same conditions, would present an interference level of approximately 12%.

In addition, our model predicted that PTRANS and DGEMM, although belonging

to the same Dwarf class, namely Dense Linear Algebra, would present distinct interfer-

ence levels when co-located with themselves. So, prediction results indicated that the

interference level resulted from co-location “PTRANS.I1.P6xPTRANS.I1.P6” would be

approximately equal to 40%, while ”DGEMM.I1.P6xDGEMM.I1.P6” would experience

an interference level close to 3%.

Furthermore, our model predicted that FFT.I1.P4 and MUFITS.I1.P4, although pre-

senting similar SLLC access rates, would experience distinct interference levels when co-

located with themselves in a three-by-three fashion. Specifically, our solution predicted

that FFT.I1.P4 would present a mutual interference around 40%, while MUFITS.I1.P4

would suffer a cross-interference approximately equal to 12%.

At last, although all co-locations used exactly the same number of virtual machines

(twelve), the model predicted that those applications would experience distinct levels of

interference.

3.4.3 Analysis of the Interference Prediction Model

In order to evaluate the quality of our proposed model, we executed all co-locations

defined in schemes A, B, C and D in the physical server earlier described in Section 3.2.2,

and, for each co-location, we calculated the prediction error achieved by our model. The

prediction error is defined as the absolute value of the difference between the interference

level predicted by our model and the real interference level obtained in a real scenario.

The complete set of results achieved in these interference experiments are described in

Appendix .

As can be seen in Figure 3.7, our model presented a median prediction error equal to

3.91%, and, in approximately 92% of all tested cases,the error was less than 10%. Remark

that, in only 0.75% of all co-locations (5 occurrences), the prediction error was higher than
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15%. Such results showed that our model was able to predict, for several co-locations,

the interference level with a reasonable prediction error. Thus, the model was capable of

estimating interference level for a set of real HPC applications with heterogeneous access

profiles and computation patterns.
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Figure 3.7: Frequency of prediction errors

Some interesting results are highlighted in Table 3.10. At first, as predicted by our

model, experimental results showed that PTRANS, when executing with six virtual ma-

chines, really presented distinct interference levels when treating I1 and I2. Our model was

able to predict interference of PTRANS regardless of the instance being solved because

it takes into account the amount of accesses of applications to shared resources. Indeed,

as can be seen in Table 3.9, the amount of individual access of PTRANS to all shared

resources, when solving I1, is significantly higher than the one achieved when treating I2.

Besides that, those experimental results confirmed that PTRANS and DGEMM, even

belonging to the same Dwarf class, presented distinct interference levels. This result allows

to state that a qualitative approach based on Dwarfs classes is not enough to precisely

determine interference. On the other hand, our model was able to predict that PTRANS

and DGEMM would present, respectively, high and low interference levels.

Moreover, results also showed that SLLC access contention is not the only cause of
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Co-location
Interference Level Prediction

ErrorReal Predicted
PTRANS.I1.P6xPTRANS.I1.P6 44.50% 39.97% 4.53%
PTRANS.I2.P6xPTRANS.I2.P6 5.31% 12.11% 6.80%

PKTM.I2.P6xPKTM.I2.P6 0.03% 0.20% 0.17%
DGEMM.I1.P6xDGEMM.I1.P6 7.79% 2.50% 5.29%

FFT.I1.P4xFFT.I1.P4xFFT.I1.P4 49.31% 40.45% 8.87%
MUFITS.I1.P4xMUFITS.I1.P4xMUFITS.I1.P4 22.85% 11.65% 11.20%

Table 3.10: Prediction errors for a subset of interference experiments with real applications

the cross-interference problem. FFT.I1.P4 and MUFITS.I1.P4, although having a similar

amount of SLLC individual accesses, experienced distinct interference levels. As shown

in Table 3.10, our model predicted satisfactorily the interference experienced by these

applications. Although both applications present similar SLLC access rates, FFT.I1.P4,

that experienced a higher interference, puts a higher pressure on virtual network than

MUFITS.I1.P4.

Furthermore, our model correctly predicted that applications could experience distinct

interference levels even when using the same number of virtual machines. Thereby, the

number of virtual machines running in a physical host cannot be used as a parameter to

determine the level of interference experienced by co-located applications.

All these findings allow to assert that solutions based only on (i) number of running

virtual machines, (ii) Dwarfs classes or (iii) SLLC access contention are not suitable for

determining interference. Our proposed model satisfactorily predicted interference for

these specific cases because it takes into account the amount of simultaneous access to

SLLC, DRAM and virtual network, besides considering similarities between applications

access profiles.

3.5 Extending the Interference Prediction Model

Although the prediction model has achieved satisfactory results, we observed that the

error increases with the rising of co-located applications. As shown in Figure 3.8, the me-

dian prediction error calculated for co-locations of scheme A was equal to 3.10%, whereas

in scheme D the error raised to 7.95%. Besides that, as presented in Figure 3.9, predic-

tion errors higher than 15% occurred exclusively in schemes C and D, that is, for cases

where six or twelve applications were allocated to the same physical machine. Our model

presented high prediction errors for these cases because it was built upon a dataset com-
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prised only of results obtained from two-by-two fashion experiments. In other words, we

supposed that only the accumulated access to shared resources and similarities among

applications profiles were enough to predict interference, regardless of the number of co-

located applications.
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Figure 3.8: Median prediction errors for each co-location scheme

However, as can be seen in Table 3.11, the interference level is also affected by the

number of applications allocated to the same physical machine. Consider, for example,

applications MUFITS.I1.P6 and MUFITS.I1.P2 when co-located with themselves in a two-

by-two and six-by-six fashion, respectively. Although co-location“6 x MUFITS.I1.P2”has

a smaller amount of accumulated access to shared resources than “2 x MUFITS.I1.P6”,

the former presented a higher interference level than the latter. This possibly happens

because the level of concurrency in co-location “6 x MUFITS.I1.P2” is higher than in “2 x

MUFITS.I1.P6”, that is, in the first co-location there are four more applications disputing

over shared resources than in the second one.

Accumulated Score

Co-location
Number
App.

SLLC DRAM NET
Interference

Level

2 x MUFITS.I1.P6 2 0.11 0.25 0.02 10.72%

6 x MUFITS.I1.P2 6 0.10 0.16 0.00 22.95%

Table 3.11: Results of accumulated score and interference levels for a subset of experiments

Therefore, besides the amount of accumulated access to shared resources and similarity
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Figure 3.9: Prediction errors per co-location scheme

among applications profiles, this level of dispute over shared resources might also be

considered when predicting interference for a set of co-located applications. In order to

measure this level of concurrency, we defined the concurrency factor (R) in a physical

machine m as the ratio between the number of applications allocated to m (|Am|) minus

1 and the maximum number of applications that can be allocated to the physical machine

(n) minus 1:

Rm =
|Am| − 1

n− 1
(3.9)

As this factor is used to measure the level of dispute over shared resources, it is

calculated only for cases where more than one application are allocated to the same

physical machine. Anyway, when just one single application is running in the physical

machine, the prediction model is neither used since interference level, for those cases, is

assumed to be equal to zero, as already stated in Section 3.1.

In order to verify the influence of the level of concurrency in the prediction model, we

generated an extended interference dataset comprised of distinct values for the concur-

rency factor. This dataset was created by varying the number of synthetic applications



3.5 Extending the Interference Prediction Model 42

Individual Score

Application
Number of
Virtual

Machines
SLLC DRAM NET

S1 4 1.008 0.000 0.113
S3 4 0.119 0.009 0.109
S4 4 0.257 0.867 0.090
S7 4 0.922 0.036 0.495
S10 4 0.262 0.892 0.487
S12 4 0.713 0.059 0.494
S13 4 0.954 0.000 0.337
S16 4 0.257 0.867 0.326
S18 4 0.717 0.072 0.352
S3 2 0.066 0.000 0.026
S7 2 0.571 0.000 0.279
S10 2 0.502 0.070 0.309
S18 2 0.482 0.000 0.177
S3 1 0.033 0.000 0.000
S7 1 0.282 0.000 0.000

Table 3.12: SLLC, DRAM and virtual network individual scores of synthetic applications
executed with a lower number of virtual machines

allocated to the same physical machine. In order to vary the number of co-located appli-

cations, we configured some applications from synthetic workload to be executed with a

lower number of virtual machines, as listed in Table 3.12. By using applications with 6,

4, 2 and 1 virtual machines, we could allocate 2, 3, 6, and 12 applications to the same

physical machine to accomplish several co-locating experiments along the lines of schemes

A, B, C and D. So, we created the extended interference dataset by calculating, for each

co-location, (i) the resulting interference level, (ii) the concurrency factor, (iii) the global

similarity factors and (iv) the accumulated amount of access to shared resources.

From this new dataset and considering concurrency factor as an additional indepen-

dent variable, we applied the MRA building process to create the extended interference

prediction model:

Fm =(0.5680 ∗ TSLLC,m ∗Rm)+

(0.6758 ∗ TSLLC,m ∗GSLLC,m)+

(0.1422 ∗ TNET,m ∗GNET,m)+

(0.0516 ∗ T 2
DRAM,m ∗GDRAM,m)

(3.10)
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This parsimonious and statistically significant model presented aR2-adj around 94.55%

which is higher than the one achieved by the previous model (91.21%). As SLLC access

contention is one of the major causes of interference, the concurrency factor was used

in this new model to weight the amount of accumulated access to this shared resource

(TSLLC,m ∗Rm).

By using this extended model, we repeated the validation experiments with the real

applications. We used the extended model for predicting the interference levels according

to the co-location schemes A, B, C and D, and, for each co-location, we calculated the

corresponding prediction error. The extended model achieved a median prediction error

equal to 3.59% and, in approximately 93% of all tested cases, the error was less than 10%.

Moreover, the maximum error achieved by the extended model was equal to 13.88%

which is significantly lower than the one presented by the previous model, around 29.42%.

Moreover, as can be seen in Figure 3.10, the median prediction error remains almost the

same for all co-location schemes. In short, those results indicate that, unlike the previous

model, the extended model was able to deal properly with the negative effect that the

number of co-located applications introduces in the interference level.
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3.6 Comparing Extended and Gold Standard Predic-
tion Models

The previous results showed that the extended model was able to predict the interference

level experienced by a set of real HPC applications. Despite those satisfactory results, we

devised an additional test to evaluate the precision of the extended model by comparing

it with a gold standard model. This model was generated exclusively from the dataset

provided by real experiments. Because it was built from the validation dataset, we suppose

that this gold standard model provides the best predictions for this sample. From this

test, we aim to evaluate how close the extended model is from the gold standard model

in terms of prediction error.

Thus, we applied the MRA building process in the dataset provided by the real ex-

periments in order to create the gold standard model:

Fm =(0.2303 ∗ TSLLC,m ∗Rm)+

(0.9048 ∗ TSLLC,m ∗GSLLC,m)+

(0.0652 ∗ TNET,m ∗GNET,m)+

(0.6804 ∗ T 2
DRAM,m ∗GDRAM,m)

(3.11)

This model presented the same terms of the extended model and achieved an R2-adj

around 94.13%, practically the same of the extended model (94.55%).

As can be seen in Figure 3.11, the gold standard model achieved a median prediction

error equal to 3.18% which is smaller than the one presented by the extended model.

This is expected since the gold standard model was built and validated by using the same

dataset, whereas the extended model was validated from an unseen dataset. Moreover,

the interquartile range5, calculated for both models, revealed that the results obtained

from the gold standard model presented a smaller data dispersion than the extended

model. This means that values are concentrated around the median prediction error

which confirms the reliability of this value to represent the central tendency of data.

Although the gold standard model presented a lower median prediction error than the

extended model, the difference between the median prediction errors for both models is

not significant, i.e., less than 0.5%. Likewise, the small difference between the interquartile

5The interquartile range is a measure of statistical dispersion calculated from the difference between
the first and third quartiles.
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Figure 3.11: Prediction errors achieved by extended and gold standard models

range, around 0.4%, points out that the variations in both samples are similar.

Those results confirmed that the extended model really achieved very good predictions

for the validation dataset, even being built upon an interference dataset generated from

synthetic applications. In short, this analysis indicates that the model is capable of

performing satisfactory out-of-sample predictions.



Chapter 4

Efficient Usage of Physical Machines

IVMPP has two objectives: (i) minimizing the interference experienced by applications

that share a same physical machine and (ii) minimizing the total number of physical hosts

required to allocate those applications in the cloud environment. The first goal aims to

rise the performance of HPC applications when executed in clouds, while the second

one, besides reducing energy costs, allows cloud provider to rapidly deliver computational

resources.

In this chapter, we present the criterion adopted by our proposal to achieve that

second objective, i.e., to accomplish an efficient usage of physical resources in such a way

that the number of active physical machines can be minimized. First, we briefly discuss in

Section 4.1 the relevance of minimizing the number of used physical machines in clouds.

Next, in Section 4.2, we show that the traditional approach, commonly used to achieve

this goal, may not be suitable for dealing properly with the VMP problem. In Section

4.3, we finally describe the criterion used by our VMP strategy to minimize the number

of used physical machines through a balanced and efficient usage of resources.

4.1 Background

A typical cloud computing environment is comprised of a set of physical machines, where

each of them is equipped with some virtualization mechanism. This virtualization mech-

anism provides virtual machines where users can execute their own operating system and

applications [15]. A physical machine is said to be active, or in use, when it holds, at

least, one single virtual machine. Otherwise, that physical machine is considered as being

unused or inactive.
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Minimizing the number of used physical machines is crucial in cloud environments for

two main reasons. At first, the cloud provider can promptly satisfy incoming requests since

there will be, possibly, a greater number of physical machines available to host new virtual

machines. In other words, it can provide the illusion of infinite resource capacity. This

capacity, though theoretical, allows customers to rapidly obtain computational resources

without considering constraints related to physical space, energy provisioning and cooling

capacity. This advantage eliminates the need for users to plan far ahead for provisioning

computational resources required to deploy their applications in clouds [17]. Secondly, it

also allows to reduce the total energy consumption in a datacenter. An unused physical

machine can either be switched off or put in power saving mode, thus reducing the energy

needed to keep a datacenter working in a given time interval [22]. As a consequence, cloud

providers can decrease its TCO (Total Cost of Ownership) by dwindling energy operational

costs. Moreover, as a high percentage of carbon emissions is directly attributed to energy

consumption1, the reduction of power consumption can also contribute to slow down the

progress of global climate change [86].

In order to achieve a minimal usage of physical machines, a VMP strategy must

accomplish an efficient and balanced usage of physical resources. Consider, for example,

two scenarios illustrated in Figure 4.1. In both scenarios, namely A and B, the cloud

computing environment is comprised of three physical machines, each one with 10 CPUs.

In scenario A, after six allocation requests (time t6 ), the physical machines M1 and

M2 can only host virtual machines with 1 and 2 CPUs, respectively. Thus, to host

the virtual machine with 3 CPUS, requested in t7, the VMP strategy should necessarily

use an addition physical machine, M3. But, if the allocation of virtual machines was

accomplished as illustrated in scenario B, that virtual machine with 3 CPUs could be

promptly allocated in M1, thus avoiding to activate a new physical machine to satisfy

that incoming request.

Therefore, as shown by that simple example, the virtual machine placement strategy

can significantly influence the number of physical machines needed to serve all allocation

requests.

1About 98 % of CO2 emissions (or 87 % of all CO2-equivalent emissions from all greenhouse gases)
can be directly attributed to energy consumption, according to a report by the EIA (Energy Information
Administration) [86].
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Figure 4.1: Relation between efficient usage of resources and minimization of used physical
machines

4.2 Vector Bin Packing

Several works, such as [55] and [61], proposed solutions based on the classical Bin Packing

(BP) problem to minimize the number of physical machines in clouds. In this problem, a

set of items of various sizes has to be packed into the smallest number of bins [39] [63]. In

the context of VMP problem, items and bins are used to represent, respectively, virtual

and physical machines. Moreover, dimensions of items and bins correspond, in the VMP

problem, to physical resources requested and delivered by virtual and physical machines,

respectively. These physical resources can be, for example, the number of CPUs and

amount of main memory.

When considering just one dimension (physical resource, in case of VMP problem),

both VMP and BP problems are very similar to each other. However, VMP cannot be

tackled as a BP problem for cases where more than one dimension is being evaluated.

Notice that, though two-dimension BP allows to place items side-by-side or one above the

other, this is not a valid operation in the context of the VMP problem. Such operation

cannot be executed in VMP context because a virtual machine cannot use the same

physical resource already assigned to other virtual machine. In other words, once the

physical resource is allocated to a virtual machine, it cannot be reallocated to another

one [67] [75]

To clarify this issue, consider the example illustrated in Figure 4.2. In this example,

the Cartesian plane is used to represent the allocation of virtual machines to a physical

machine, where abscissa and ordinate axes correspond to the number of CPUs and amount

of main memory, respectively. Note that, in such example, new virtual machines can only
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be placed in the area indicated by the hatched rectangle. Indeed, this is the unique area

where both resources are not allocated to any virtual machine. Conversely, if a new virtual

machine was placed in areas marked with “X”, there would be a resource overlapping, i.e.,

two virtual machines would be using the same physical resource.

Figure 4.2: VMP in two-dimension resource space [67]

Before this anomaly, some works postulated that an approach based on a vector of

resources could be more suitable for dealing with the VMP problem [43] [67] [75]. In this

novel approach, called Vector Bin Packing (VBP), the available physical resources are

represented as multidimensional normalized vectors, where each dimension corresponds to

a physical resource. Similarly, requested resources for virtual machines are also represented

in the same way. By treating the amount of requested and available resources as a

vector, the aforementioned problem of overlapping physical resources is avoided since

each physical resource is individually compared and evaluated.

4.3 Allocation Metrics

In this work, we used the following vectors of resources to address the VMP problem:

(i) remaining resources of the physical machine (
−−−→
REM), (ii) requested resources (

−−−→
REQ)

and (iii) remaining resources after allocating requested resources (
−−−→
RAF ). Each of these

vectors has two elements, corresponding to the amount of CPU and main memory. As

the amount of CPU (number of cores) and main memory (gigabytes) assumes distinct

range of values, we normalized them with respect to the corresponding total amount of
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resources in the physical machine. For example, a CPU and a memory requests equal to

0.5 means that the application will allocate half of the total amount of CPU and main

memory provided in the physical machine.

From these vectors, we used the following two metrics to determine the best physical

machine to allocate a set of applications. The first one, called alignment factor, was also

used in [43] and is calculated as the angle between vectors
−−−→
REQ and

−−−→
REM :

θ = acos

(
(REQ.cpu ∗REM.cpu) + (REQ.mem ∗REM.mem)

(
√
REQ.cpu2 +REQ.mem2) ∗ (

√
REM.cpu2 +REM.mem2)

)
(4.1)

This factor is used to evaluate the shape of the exploitable volume of resources, al-

lowing to assess whether required and remaining resources are complementary to each

other. To provide a better understanding on this metric, consider, for example, the sce-

nario presented in Figure 4.3. In such example, a VMP strategy should select, from two

physical machines - M1 and M2, the best one to allocate a virtual machine requesting

0.3 and 0.2 of CPU and main memory, respectively. Suppose that the amount of physical

resources, left on each physical machine, is indicated by the values of vector
−−−→
REM . Since

both physical machines have enough resources to allocate the new virtual machine, the

decision comes down to choosing the one that will yield the smaller resource wastage.
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Figure 4.3: Example of resource allocation

By calculating the alignment factor for both physical machines, we can assert that

M1 would be the best choice for that case. As can be seen in Figure 4.3, vectors
−−−→
REM

and
−−−→
REQ, in M1, present a smaller angle if compared with the same vectors in M2. This

means that the amount of resources required by the new virtual machine fits better to the

amount of resources left in M1. In fact, the incoming virtual machine requires a greater



4.3 Allocation Metrics 51

amount of CPU than main memory and, in a complementary way, the physical machine

M1 presents a greater amount of remaining CPU than main memory.
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Figure 4.4: Resultant resource usage after allocation supposed in Figure 4.3

Note that, if the new virtual machine was placed in M2 instead of M1, there would be

a resource wastage in that physical machine. As can be seen in Figure 4.4, this resource

wastage comes from the fact that 40% of CPU available in that physical machine cannot

be longer used for any virtual machine. On the other hand, in case of M1, we can observe

a balanced use of resources since there would be almost the same amount of remaining

main memory and CPU.

The other metric, called residual factor, is equal to the length of vector
−−−→
RAF :

τ =
√
RAF.cpu2 +RAF.mem2 (4.2)

This metric is used to assess the size of exploitable volume of resources, i.e, it measures

the amount of resources left in the physical machine after the allocation of the requested

resources. This second metric is used as a tiebreaker for the first metric, i.e., for cases

with the same alignment factor, the residual factor is used to select the physical machine

which will result in the smallest resource wastage.

For example, consider the scenario illustrated in Figure 4.5, where two physical ma-

chines, namely M1 and M2, have allocated the respective amount of resources indicated

by vectors
−−−→
REM . In addition, suppose that a new virtual machine, requesting 0.3 of CPU

and main memory, should be placed in one of those physical machines. Note that, though

the alignment factor is exactly the same for both physical machines (0.00), the allocation

of requested resources in M2 would result in a more efficient usage of physical resources.

In fact, as shown in Figure 4.6, resources in M2 would be fully allocated, whereas M1
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would still have a small amount of remaining resources. Depending on the minimal size

of virtual machines offered by the cloud, this small piece of remaining resources may not

be even allocated, thus resulting in resource wastage.
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Figure 4.5: Example of resource allocation in two physical machines.
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Figure 4.6: Resultant resource usage after allocation supposed in Figure 4.5

In short, when allocating a new set of virtual machines, our VMP strategy first seeks

for the physical machine which results in the smallest alignment factor. However, in case

of a tie, the VMP strategy selects, among the physical machines with the same alignment

factor, the one which presents the smallest residual factor. We claim that this criterion is

suitable for accomplishing a balanced and efficient usage of physical resources because it

considers both the shape (alignment factor) and the size (residual factor) of the exploitable

volume of resources available in the cloud environment.



Chapter 5

An Interference-aware Virtual Machine
Placement Strategy

In this chapter, we formally introduce the IVMPP in Section 5.1, while in Section 5.2 we

describe our proposed strategy to solve it. At last, in Section 5.3, we describe experimental

tests accomplished to evaluate our proposal.

5.1 Mathematical Formulation of IVMPP

In this section, we present a mathematical formulation for the IVMPP whose notations

are summarized in Table 5.1. Let M be the set of physical machines available in a cloud

environment and A the set of applications to be allocated in that environment. Moreover,

we define the total amount of main memory and number of CPUs provided by each

physical machine as Mem and Cpu, respectively. Similarly, the amount of CPU and main

memory required by an application i ∈ A is defined as mi and ci, respectively. It is

worth mentioning that, in this work, we assume that all physical machines have the same

hardware configuration, i.e., they are equipped with the same amount of CPU and main

memory.

Moreover, we define γQ as the interference level experienced by a subset of applications

Q ⊆ A when allocated to a same physical machine and ω as the maximum interference

level that can be reached on each physical machine. We now define a binary variable

Xi,j for each i ∈ A and j ∈ M such that Xi,j is equal to 1 if and only if application i is

allocated to the physical machine j, and equal to 0, otherwise. In addition, we define a

binary variable Yj for each j ∈ M such that Yj is equal to 1 if and only if the physical

machine j is being used, i.e., if there is, at least, one application allocated to it. Yj is equal
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to 0 if no application is allocated to j. This problem can be formulated as the integer

programming problem described in the following equations:

min





∑
j∈M

[∑
Q⊆A

(∏
i∈Q

Xi,j

)
.γQ

]
ω.
∑
j∈M

Yj


.α +


∑
j∈M

Yj

|M |

 .(1− α)

)
(5.1)

∑
i∈A

Xi,j = 1,∀i ∈ A (5.2)

∑
i∈A

Xi,j.mi ≤Mem.Yj,∀j ∈M (5.3)

∑
i∈A

Xi,j.ci ≤ Cpu.Yj,∀j ∈M (5.4)

Xi,j ≤ Yj,∀i ∈ A, ∀j ∈M (5.5)

Yj+1 ≤ Yj,∀j = {1...|M | − 1} (5.6)

Xi,j ∈ {0, 1}, ∀i ∈ A,∀j ∈M (5.7)

Yj ∈ {0, 1},∀j ∈M (5.8)

The objective function defined in Expression 5.1 seeks for minimization of the sum of

interference levels presented in each physical machine and the number of machines used

to allocate all applications. Note that the sum of interference levels was normalized with

respect to the maximum sum of interference levels that can be reached in our environment,

i.e., ω.
∑
j∈M

Yj.

Besides that, we normalized the number of used machines concerning the total num-

ber of physical machines available in the cloud environment. As both objectives were

normalized between 0 and 1, we can use the weight α to determine the relevance of each

objective. Therefore, when α is set to 1 the objective function prioritizes the minimizing
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Notation Description
M Set of available physical machines
A Set of applications to be allocated

Mem Total amount of memory on each physical machine
Cpu Total amount of CPU on each physical machine
mi Amount of memory requested by application i
ci Amount of CPU requested by application i
γQ Interference level experienced by subset of applications Q
ω Maximum interference level achieved in the environment
Xi,j Variable is equal to 1 whether application i is allocated to machine j
Yj Variable is equal to 1 whether physical machine j is being used
α Weight to determine the relevance of each objective

Table 5.1: Description of notations used in mathematical formulation for the IVMPP

of the sum of interference levels, and when α is close to 0 the function will minimize

the number of used physical machines. Thus, this parameter can be adjusted to reach a

desirable trade-off between both objectives.

Constraints described in Equation 5.2 ensure that each application is entirely allocated

to just one physical machine. Inequalities defined in (5.3) and (5.4) enforce that the total

amount of CPU and main memory available in physical machines are not exceeded. In

Inequalities (5.5) we defined constraints to guarantee that a physical machine is used if and

only if it holds, at least, one single application. As all physical machines permutation yields

feasible solutions, we added a set of constraints, defined in (5.6), that eliminates symmetry

by establishing an order at which machines shall be used in the cloud environment. At

last, constraints described in (5.7) and (5.8) define the binary and integrality requirements

on the variables.

5.2 Multistart Iterated Local Search for the IVMPP

The classic VMP problem is classified as a NP-Hard problem [74]. So, IVMPP, that is a

variant of VMP, can also be classified as a NP-Hard problem. For this sort of problem,

exact procedures have often proven to be incapable of finding solutions in a reasonable

time.

Therefore, we propose in this work a solution based on the Iterated Local Search (ILS)

framework that belongs to the class of local search algorithms such as VNS (Variable

Neighborhood Search) and GRASP (Greedy Randomized Adaptive Search Procedure)

[58]. As depicted in Figure 5.1, a metaheuristic based on ILS firstly creates an initial
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Figure 5.1: Iterated Local Search

solution to be submitted to a local search procedure. This procedure aims to find the

best solution in a given neighborhood. So, to escape from local optima, the ILS applies

perturbations on the current solution in order to provide the diversification needed to find

the global optimum solution. Moreover, in this work, we adopted a multistart approach

where new initial solutions are submitted to ILS, allowing it to explore larger areas of the

search space.

The input data for our method is comprised of (i) the set of applications to be allocated

to the cloud (A), containing for each of them the amount of requested CPU and memory,

and the individual access to each of the three shared resources, and (ii) the set of physical

machines (M). Notice that the amount of physical resources, CPU and main memory,

were normalized with respect to the total amount of resource provided by the physical

machine.

In order to present our proposed algorithm, we need to introduce some additional

notation. We define a placement solution s = {(a1,m1), (a2,m1), (a3,m2)...} as the set

of 2-tuples (a,m) representing that the application a is allocated to physical machine m.

Moreover, we define Z(s) as the normalized sum of interference levels predicted for solution

s. This sum of interference levels is calculated by estimating the level of interference

presented by each physical machine of solution s. To estimate this level of interference,

we used the extended prediction model earlier described in Section 3.5.

In addition, we define M(s) as the normalized number of physical machines used in

s, and ECPU(s) and EMEM(s) as the percentage of amount of CPU and main memory

exceeded in solution s, respectively. A solution is considered feasible if and only if ECPU(s)

and EMEM(s) are equal to zero.
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We define a cost function f : S → R, where S is the set of all possible solutions, as

follows:

f(s) = Z(s).α +M(s).(1− α) + ECPU(s).λ+ EMEM(s).λ (5.9)

Similarly to the objective function described in the math model, this function f(s)

attempts to minimize the sum of levels of interference and the number of used machines.

In addition, f(s) penalizes, in accordance with parameter λ, unfeasible solutions, which

use more CPU and memory than the available amount in the environment.

Our proposed solution, called IVMPP ILS, is described in Algorithm 2. For each

iteration of the Multistart Loop (lines 2 to 15), the algorithm executes the procedure

ConstructivePhase (line 3) to create a new solution to be submitted to the ILS. Then,

ILS Loop (lines 4 to 13) performs a local search in the neighborhood of the current

solution through Variable Neighborhood Descent (VND) method (line 5). Both VND and

ConstructivePhase are described in detail later.

After executing VND, IVMPP ILS evaluates the quality of the current solution s (line

6). If s represents an improvement on the best current solution s∗, it is set as the actual

best solution and the counter j is reset to 1 (lines 7 and 8). Otherwise, the counter j is

incremented (line 10). Then, the algorithm executes the procedure Perturbation (line 12)

that applies a perturbation on the current solution in order to escape from local optima.

Perturbation executes j random movements of three classical local search movements

for the original VMP problem: Move1, Move2 and Swap1. Heuristics Move1 and Move2,

move, respectively, one and two applications to another used physical machine, while

Swap1 performs one swap operation, i.e., it swaps two applications between two distinct

physical machines. Furthermore, this procedure also adds a new physical machine to the

solution, before executing the last perturbation (i.e., when j is equal to iterMaxILS ) of a

given initial solution (i.e., solution created by ConstructivePhase).

Algorithm 3 presents the ConstructivePhase. Firstly, the algorithm sorts the list of

applications in decreasing order (line 1) by considering the following sequence: (i) amount

of accesses to SLLC, (ii) amount of requested CPU and main memory, and (iii) amount of

accesses to virtual network and DRAM. Next, the algorithm inserts one physical machine

into the set of used machines (lines 2 and 3). Then, the procedure executes Allocation

Loop (lines 4 to 20) that basically performs two steps: (i) the selection of two applications

from the list of sorted applications and (ii) the selection of a physical machine to allocate
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Algorithm 2 IVMPP ILS

Input: A,M ,β,iterMaxILS, iterMaxMultiStart
Output: s∗

1: s∗ = ∅; f(s∗) =∞; i = 1; j = 1;
/*Multistart Loop*/

2: while i ≤ iterMaxMultiStart do
3: s = ConstructivePhase(A,M, β);

/*ILS Loop*/
4: repeat
5: s = VND(s, A,M);
6: if (f(s) < f(s∗)) then
7: s∗ = s;
8: j = 1;
9: else

10: j = j + 1;
11: end if
12: s = Perturbation(s, j);
13: until j ≤ iterMaxILS
14: i = i+ 1;
15: end while
16: return s∗

them.

The process of selecting this pair of applications is described as follows. Firstly, the

algorithm creates the sets of applications First and Last that are composed, respectively,

of the first and last Na elements of the sorted list of applications (lines 5 to 7). This

number of applications is defined by the parameter β that is used to control the degree of

randomness of this constructive phase. Next, the algorithm selects, randomly, applications

i and j from First and Last, respectively (line 8). By selecting applications from the head

and tail of the sorted list, this process aims to co-locate applications with complementary

access profiles and amount of requested resources, thus resulting in a low interference

level.

After selecting this pair of applications, the best physical machine to allocate them

is chosen among the set of physical machines with enough resources to allocate both

applications (line 10). The method selects the best physical machine by using the criterion

described in Section 4.3, i.e., the physical machine which would present the smallest

alignment and residual factors, in this order.

However, if none of the physical machines, already in use, has available resources to

allocate applications i and j, the ConstructivePhase takes a new physical machine from

M to allocate them (lines 12 to 14), i.e., the method activates a new physical machine to
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Algorithm 3 ConstructivePhase

Input: A,M ,β
Output: s

1: App = Sort(A);
2: Used = Used ∪ {m1};
3: M = M\{m1};

/*Allocation Loop*/
4: while App 6= ∅ do
5: Na = dβ.|App|e;
6: First = first Na elements of App;
7: Last = last Na elements of App;
8: Choose randomly applications i ∈ First and j ∈ Last;
9: if There is m ∈ Used with enough resources to allocate i and j then

10: Choose the best one to allocate i and j;
11: else if M 6= ∅ then
12: Pick up any m ∈M
13: Used = Used ∪ {m};
14: M = M\{m};
15: else
16: Choose randomly m ∈ Used ;
17: end if
18: s = s ∪ {(i,m), (j,m)};
19: App = App\{i, j};
20: end while
21: return s

allocate both applications. This approach aims to reduce the number of used machines

because it takes new machines only when it is absolutely necessary. Moreover, if none of

physical machines is capable of allocating that pair of applications, the method chooses

randomly a physical machine to hold them (line 16). At last, both applications i and j are

allocated to the selected physical machine and removed from the sorted list of applications

(lines 18 and 19). Notice that unfeasible solutions can be generated by this constructive

method. However, their corresponding costs are very high due to the penalty applied in

the proposed cost function.

At last, Algorithm 4 presents the VND method. This method executes iteratively

these classical local search movements for the original VMP problem: the Move1, Swap1,

and Move2, in this order. As we adopted the strategy of first improving, these heuristics

stop executing upon improving the current solution. In addition, the VND halts when no

improvement is achieved in these neighborhoods.
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Algorithm 4 VND

Input: s,A,M
Output: s

1: M1 = S1 = M2 = True;
2: while M1 or S1 or M2 do
3: M1 = S1 = M2 = False;

/*Starts executing Move1(), the simplest local search*/
4: s′ = Move1(s, A,M);
5: if (f(s′) < f(s)) then
6: s = s′;
7: M1 = True;
8: end if

/*If Move1() not improved current solution, executes Swap1()*/
9: if (not M1) then

10: s′ = Swap1(s, A,M);
11: if (f(s′) < f(s)) then
12: s = s′;
13: S1 = True;
14: end if
15: end if

/*If neither Move1() nor Swap1() succeeded, executes Move2()*/
16: if (not Mov1 and not Swa1) then
17: s′ = Move2(s, A,M);
18: if (f(s′) < f(s)) then
19: s = s′;
20: M2 = True;
21: end if
22: end if
23: end while
24: s = s;
25: return s

5.3 Experimental Tests and Results

We carried out experiments to assess our proposal concerning its ability for reducing the

sum of interference levels, while keeping a low number of used machines. Moreover, we

executed additional experiments to verify the optimality of solutions of our proposal, by

comparing them with the ones given by an exact procedure.

In Section 5.3.1, we present the set of instances used as input for the IVMPP in our

analysis. The comparison between IVMPP ILS and the most used heuristics to minimize

the number of used machines is discussed in Section 5.3.2. At last, in Section 5.3.3, we

evaluate our proposal with respect to its capability of finding near-optimal solutions.
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5.3.1 Generating Instances for the IVMPP

In order to evaluate our proposal, we created a set of instances for the IVMPP by consid-

ering the real workload described in Section 3.4.1.

An instance for the IVMPP is composed of (i) the set of applications to be allocated

in the cloud environment and (ii) the number of physical machines available in that

environment. For each application, the amount of individual access to SLLC, DRAM and

virtual network, and the normalized amount of requested CPU and main memory are also

given as input to the problem. In this work, we considered that all physical machines

available in the cloud environment has the same hardware configuration, i.e., they have

the same amount of CPU and main memory. As the amount of requested resources are

normalized with respect to the total amount of resources available in physical machines, we

could abstract this latter information from the IVMPP instance. Thus, if one application

requires 0.5 of CPU, it is requesting 50% of the total amount of CPU available in the

physical machine. Notice that this approach prevents the VMP strategy from being

concerned about the absolute number of cores or amount of main memory available in the

physical machines.

Individual Access
Required
Resources

App. Label
Number of

VM
SLLC DRAM NET CPU Memory

PTRANS.I1.P6 6 0.183 0.214 0.322 0.50 0.50
FFT.I2.P4 4 0.070 0.164 0.517 0.33 0.33

DGEMM.I3.P1 1 0.003 0.005 0.000 0.08 0.08
HPL.I2.P6 6 0.028 0.057 0.019 0.50 0.50

MUFITS.I1.P2 2 0.016 0.027 0.000 0.17 0.17
Number of

Available PM
5

Table 5.2: Example of instance for the IVMPP

Consider, for example, the instance illustrated in Table 5.2. In this example, five

applications should be allocated in a cloud environment whose number of available physical

machines is also equal to five. Note that the amount of requested resources are normalized

with respect to the total amount of physical resources available in the machine used in

our experiments.

We created 100 instances for the IVMPP, where the number of applications at each

instance varied from 5 to 50 (interval of 5). More specifically, we generated 10 instances
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with 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50 applications. Each instance is a sample of

applications randomly selected from the workload described in Section 3.4.1. It is worth

mentioning that an application can appear more than once in a same instance.

In addition, for all instances, the number of machines available in the cloud envi-

ronment was set as the total number of applications to be allocated. For example, the

number of physical machines of the instance illustrated in Table 5.2 is equal to 5 since

this is exactly the same number of applications to be allocated in the cloud. From this

approach, we can evaluate whether IVMPP ILS sacrifices the minimization of physical

machines in favor of the minimization of interference. Indeed, by adopting this config-

uration, IVMPP ILS has the option to spread out the applications, using all physical

machines, in order to fully avoid interference in the cloud environment.

5.3.2 Comparing IVMPP_ILS with Classical Heuristics

The following heuristics are widely used to minimize the number of machines when allo-

cating virtual machines in clouds: Best Fit (BF), First Fit (FF), Worst Fit (WF), Best Fit

Decreasing (BFD), First Fit Decreasing (FFD) and Worst Fit Decreasing (WFD). Since

these greedy algorithms have shown to be effective for solving this problem in previous

works [51] [19], they were also used as a baseline here, in our experiments.

This experimental evaluation was executed in two phases. At first, we performed

several offline experiments to calibrate the value of parameter α, i.e., to find out the α

that gives a good trade-off between reducing both interference and the number of used

physical machines. After that, by using the calculated α, we executed some experiments

in a real scenario to verify the accuracy of the results achieved in the offline tests.

5.3.2.1 Calibrating Parameter α

The parameter α is used to adjust the behavior of IVMPP ILS so that it can minimize,

as much as possible, both objectives. Thereby, initially, several offline experiments were

executed to calibrate such parameter.

We tested our proposal and the other heuristics over the set of instances earlier de-

scribed in Section 5.3.1. In order to assess our proposal against those heuristics, we

devised the following two metrics. In the first one, we determined the percentage of test

cases where our solution achieved a strictly smaller sum of interference levels than the

one reached by the heuristic. Concerning the minimization of interference, this metric
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allows to quantify the number of test cases where our solution outperformed the tested

heuristic.

In the second metric, we calculated the percentage of cases where our proposal used

a smaller or equal number of physical machines than the one used by the heuristic. By

using this metric, we expect to evaluate the number of cases where our solution achieved

the minimal number of physical machines needed to allocate all applications in the cloud

environment.

Note that, when comparing with a single heuristic, the best trade-off between minimiz-

ing interference and the number of physical machines is achieved when both metrics, reach,

simultaneously, 100% of evaluated instances. In this hypothetical scenario, IVMPP ILS

would reduce interference for all instances, while keeping, at least, the same number of

used physical machines given by the heuristic.

Concerning IVMPP ILS, the input parameter α, which allows to control the relevance

of each objective, was varied from 0.00 to 1.00 (interval of 0.10). By varying this parame-

ter, we can verify the behavior of IVMPP ILS with respect to minimizing both interference

and number of physical machines. The remaining input parameters of IVMPP ILS were

defined from an empirical evaluation. So, parameters β, λ, iterMaxILS and iterMaxMulti-

start were fixed in 0.4, 0.5, 10 and 50, respectively. As IVMPP ILS is a non-deterministic

algorithm, we repeated the execution of each instance until reaching a coefficient of vari-

ation smaller than 2%. Moreover, we restricted the execution time of IVMPP ILS in all

cases to 15 seconds.

All codes were compiled with GCC (Gnu C Compiler) version 4.9.2 with optimization

flag O3 which enables the process of automatic vectorization [62].
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Figure 5.2: IVMPP ILS vs FF
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Figure 5.3: IVMPP ILS vs FFD

Results of the comparison between IVMPP ILS and heuristics FF, FFD, BF, BFD,
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WF, and WFD are presented in Figures 5.2 to 5.7, respectively. As expected, when α

was set to 0.00 or 1.00, IVMPP ILS prioritizes one or another objective. More specif-

ically, when α was equal to 1.0, IVMPP ILS always achieved, in comparison with all

heuristics, a strictly smaller sum of interference levels, though using a greater number of

physical machines. This happens because, in such configuration, IVMPP ILS allocates

each application to a different physical machine.
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Figure 5.4: IVMPP ILS vs BF
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Figure 5.5: IVMPP ILS vs BFD

On the other hand, when α was set to 0.00, IVMPP ILS presented, for all heuristics,

the worst result concerning interference minimization. However, even in that case, our

solution outperformed the heuristics in, at least, 32% of instances (result for WF, as shown

in Figure 5.6). This behaviour can be explained by the strategy used to construct initial

solutions. As previously described in Section 5.2, an initial solution is generated by co-

allocating applications with complementary access profiles and complementary amount of

requested resources. As a consequence, the initial solution tends to present a low sum of

interference levels and number of physical machines, as well. Thus, even when IVMPP ILS

seeks only for the minimization of used physical machines, the initial solution may present

small interference levels.
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Figure 5.6: IVMPP ILS vs WF
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Figure 5.7: IVMPP ILS vs WFD
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Considering all experiments, the best trade-off between reducing interference and

number of used machines was achieved by our proposal when α was equal to 0.70. In

this case, our proposal has always achieved a smaller or equal number of used machines,

besides reaching, at least, a smaller interference in 88% of all evaluated instances, as shown

in Figure 5.6. In other words, this value of α enabled IVMPP ILS to reach, at the same

time, the highest values for both metrics in all experiments, i.e., IVMPP ILS achieved (i)

a strictly smaller sum of interference levels and (ii) a smaller or equal number of physical

machines than heuristics in 88% and 100% of tested cases, respectively.

However, it is worth mentioning that the heuristic achieved the best interference

levels only when it also used a greater number of physical machines than our solutions

(see Figure 5.8). This behaviour is expected since interference can really be reduced by

allocating applications to more physical machines. In those cases, the heuristic penalized

the minimization of physical machines to achieve a lower sum of interference levels. In

short, in those cases, heuristic solutions were not better than our solutions.
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Figure 5.8: Results achieved by IVMPP ILS and heuristcs when alpha was equal to 0.7

In only 2 instances, which represents 2% of all tested cases, all heuristics (except for

WF) indeed outperformed our solution by achieving a smaller sum of interference levels

while using the same number of machines indicated by our proposal. As shown in Table

5.3, heuristics FF and BF, for instance“IVMPP 5.5”, reached a smaller sum of interference
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levels than IVMPP ILS. This same behavior can be observed for heuristics FFD, BFD

and WFD when solving the instance “IVMPP 40.7”. Even so, the difference between the

sum of interference levels was smaller than 1%. More specifically, the difference was equal

to 0.03% and 0.95% for instances “IVMPP 5.5” and “IVMPP 40.7”, respectively.

Sum of
Interference Levels

Instance
Number

of
Applications

Heuristics
Outperformed
IVMPP ILS

IVMPP ILS Heuristics

Number
of Used
Physical
Machines

IVMPP 5.5 5 FF, BF 13.27% 13.24% 2

IVMPP 40.7 40 FFD, BFD, WFD 113.02% 112.07% 14

Table 5.3: Cases where heuristics outperformed IVMPP ILS

Those results indicate that our proposal was able to reduce the sum of interference

levels, while using a small, perhaps minimal, number of physical machines. In addition,

the results showed that the cloud provider can use our strategy to dynamically adjust

the behavior of its virtual machine placement policy by varying the value of parameter α.

Thus, the cloud provider can easily prioritizes one or another objective according to its

needs.

5.3.2.2 Experiments in a Real Scenario

By using the selected value for the parameter α (0.70), we conducted a second phase of

experiments to verify, in a real scenario, the efficiency of IVMPP ILS in reducing the sum

of interference levels, while keeping the same number of physical machines given by the

greedy heuristics.

Thereby, we selected five instances where the number of physical machines given by our

solution and heuristics was exactly the same. Thus, we could accomplish a fair comparison

between the tested strategies. For each instance, we executed applications in accordance

with the placement determined by IVMPP ILS and by the heuristic that presented the

lower sum of interference levels in offline experiments. Next, we calculated the sum of

interference levels that our proposal and the heuristic achieved in the real scenario. These

experiments were executed in a set of physical machines whose configurations were detailed

in Section 3.2.2.

Results show that our strategy, even using the same number of physical machines

of the other heuristic, reduced the sum of interference levels up to 41%, as presented in
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Figure 5.9: Sum of interference levels achieved in a real scenario

Figure 5.9. Moreover, it is worth mentioning that the difference between the predicted

sum of interference levels and the one achieved in real experiments was, in average, around

8%.

Notice that the highest difference between the sum of interference levels achieved by

our solution and the one reached by heuristics occurred when they solved the instance

“IVMPP 15.1”whose details are described in Table 5.4. In such case, IVMPP ILS reached

a sum of interference levels 41.25% smaller than FF, the best greedy heuristic in this case.

IVMPP ILS outperformed FF in that case because it co-located applications with

complementary access profiles, as can be seen in Figure 5.10. For example, our solu-

tion placed “PTRANS.I1.P6”, a high access rate application, in a dedicated physical ma-

chine (“PM2”), thus, avoiding a possible cross-interference. On the other hand, heuristic

FF, unlike our proposal, allocated “PTRANS.I1.P6” together with “PTRANS.I1.P4” and

“DGEMM.I1.P2”, leading to an interference level equal to 32.83%. This high interference

level stems from the fact that those applications put a high pressure on the three shared

resources, as can be verified in Table 5.4.

Besides that, FF achieved a high interference level in the physical machine “PM1”,

around 46%, because it co-located applications that resulted in accumulated access scores
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Individual Access
Required
Resources

App. Label
Number of

VM
SLLC DRAM NET CPU Memory

PTRANS.I1.4 4 0.1362 0.0908 0.1938 0.33 0.33
FFT.I2.4 4 0.0703 0.1643 0.5168 0.33 0.33

PTRANS.I1.6 6 0.1828 0.2135 0.3216 0.50 0.50
FFT.I2.4 4 0.0703 0.1643 0.5168 0.33 0.33

PTRANS.I1.4 4 0.1362 0.0908 0.1938 0.33 0.33
HPL.I2.6 6 0.0277 0.0566 0.0192 0.50 0.50

DGEMM.I1.2 2 0.0043 0.0090 0.0000 0.17 0.17
FFT.I1.4 4 0.0680 0.1694 0.4931 0.33 0.33

MUFITS.I1.4 4 0.0245 0.0004 0.0058 0.33 0.33
FFT.I2.4 4 0.0410 0.0856 0.3058 0.17 0.17

DGEMM.I2.4 4 0.0067 0.0158 0.0000 0.33 0.33
DGEMM.I3.1 1 0.0031 0.0045 0.0000 0.08 0.08
PTRANS.I2.6 6 0.0177 0.0002 0.1113 0.50 0.50

HPL.I2.6 6 0.0277 0.0566 0.0192 0.50 0.50
HPL.I1.4 4 0.0180 0.0414 0.0137 0.33 0.33

Table 5.4: Instance IVMPP 15.1

equal to 0.28, 0.42 and 1.23 for SLLC, DRAM and virtual network, respectively. Con-

versely, our solution avoided to allocate, in the same physical machine, two applications

“FFT.I2.P4” because this application presents the highest access rate for the virtual net-

work.

Furthermore, we could observe that the difference between the sum of interference

levels achieved by our solution and the greedy heuristics tended to increase with the rising

of the number of applications. For example, our solution achieved a sum of interference

levels 2% smaller than the heuristics solutions when solving instance “IVMPP 5.7”. On

the other hand, for instance “IVMPP 15.1”, which has 10 times more applications than

“IVMPP 5.7’, this difference raised to 41%. In fact, as a higher number of applications

incurs in a larger amount of placement combinations and our solution explores several

distinct combinations of co-locations, it is expected, for those cases, that IVMPP ILS

achieves smaller sums of interference levels solutions than the ones greedily found by the

heuristics.

Those results allowed to confirm conclusions drawn from offline experiments. IVMPP ILS

was really able to reduce the level of interference experienced by HPC applications without

increasing the number of physical machines needed to allocate them in cloud environments.
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(a) IVMPP ILS (b) FF

Figure 5.10: Interference levels break down per physical machine for placement given by
IVMPP ILS and FF when solving IVMPP 15.1

5.3.3 Comparing IVMPP_ILS with an Exact Approach

As presented in the previous section, IVMPP ILS achieved good solutions in a reasonable

execution time, spending less than 15 seconds to solve each instance, when compared with

other heuristics from the related literature. In spite of those satisfactory results, there

is no guarantee that our proposal has achieved the best solution for any of the tested

IVMPP instances, since metaheuristics, although can often find good solutions with less

computational effort than exact approaches, do not guarantee that a globally optimal

solution can be found. So, to have another parameter of solution quality, IVMPP ILS

was also compared with IVMPP EXACT, a naive exact procedure for solving IVMPP, in

a sample of small instances.

IVMPP EXACT enumerates all possible solutions and selects the one with the small-

est cost. This sort of procedure, also known as exhaustive or direct search, evaluates

each possible solution of a discrete problem to determine the optimal one. As this exact

approach executes an exhaustive search on the space of possible solutions, the computa-

tional time of this method grows exponentially with the size of instance being solved. In

the context of IVMPP, the size of instance is related to the number of applications to be

allocated in the cloud environment. Thus, the greatest the number of applications in the

instance, the higher the execution time of IVMPP EXACT is.

Due to its computational complexity, IVMPP EXACT was just used to solve small
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Number
of App.

Instance
IVMPP EXACT IVMPP ILS

Gap
Cost Time (s) Cost Time (s)

5

IVMPP 5.1 0.123759 0 0.123788 0 0.02%
IVMPP 5.2 0.128015 0 0.128015 0 0.00%
IVMPP 5.3 0.128016 0 0.128016 0 0.00%
IVMPP 5.4 0.128427 0 0.128427 0 0.00%
IVMPP 5.5 0.127375 0 0.127398 0 0.02%
IVMPP 5.6 0.132018 0 0.132083 0 0.05%
IVMPP 5.7 0.132136 0 0.132205 0 0.05%
IVMPP 5.8 0.130486 0 0.130486 0 0.00%
IVMPP 5.9 0.126877 0 0.126885 0 0.01%
IVMPP 5.10 0.135305 0 0.135305 0 0.00%

6

IVMPP 6.1 0.107733 0 0.107735 0 0.00%
IVMPP 6.2 0.157338 0 0.157345 0 0.00%
IVMPP 6.3 0.117550 0 0.117617 0 0.06%
IVMPP 6.4 0.110082 0 0.110082 0 0.00%
IVMPP 6.5 0.105597 0 0.105597 0 0.00%
IVMPP 6.6 0.120686 0 0.120686 0 0.00%
IVMPP 6.7 0.153522 0 0.153522 0 0.00%
IVMPP 6.8 0.152300 0 0.152312 0 0.01%
IVMPP 6.9 0.121506 0 0.121684 0 0.15%
IVMPP 6.10 0.112187 0 0.112190 0 0.00%

7

IVMPP 7.1 0.134135 16 0.134153 0 0.01%
IVMPP 7.2 0.139690 16 0.139690 0 0.00%
IVMPP 7.3 0.141633 16 0.141645 0 0.01%
IVMPP 7.4 0.132102 16 0.132105 0 0.00%
IVMPP 7.5 0.173459 16 0.173459 0 0.00%
IVMPP 7.6 0.137693 16 0.137714 0 0.02%
IVMPP 7.7 0.129884 16 0.129889 0 0.00%
IVMPP 7.8 0.106974 16 0.106994 0 0.02%
IVMPP 7.9 0.134610 16 0.134610 0 0.00%
IVMPP 7.10 0.135761 16 0.135770 0 0.01%

8

IVMPP 8.1 0.152632 111 0.152638 0 0.00%
IVMPP 8.2 0.125171 111 0.125364 0 0.15%
IVMPP 8.3 0.124114 111 0.124148 0 0.03%
IVMPP 8.4 0.114537 110 0.114578 0 0.04%
IVMPP 8.5 0.119423 110 0.119555 0 0.11%
IVMPP 8.6 0.117526 112 0.117544 0 0.02%
IVMPP 8.7 0.156977 112 0.157014 0 0.02%
IVMPP 8.8 0.117246 112 0.117263 0 0.01%
IVMPP 8.9 0.154842 112 0.154864 0 0.01%
IVMPP 8.10 0.130006 110 0.130008 0 0.00%

Table 5.5: Results achieved by IVMPP ILS and IVMPP EXACT when solving a set of
instances
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instances which could be solved within 12 hours time limit. Therefore, we considered

instances with 5, 6, 7 and 8 applications, where instances with 6 to 8 applications were ex-

clusively created for this analysis and were not considered in our previous experiments. To

solve instances with 8 applications, we implemented a parallel version of IVMPP EXACT

that was executed with 12 processors. It is worth mentioning that we have tried to solve

instances with 9 applications. However, even using 12 processors, the exact procedure

was not able to solve this kind of instance in less than 24 hours.

As can be seen in Table 5.5, IVMPP ILS obtained good solutions with small gaps,

around 0.02% in average. Moreover, for some instances (“IVMPP 7.9” and “IVMPP 5.2”,

for example), our solution and the exact procedure achieved exactly the same cost. Thus,

for that cases, IVMPP ILS was able to reach the optimal solution for the problem. Those

experiments were repeated 10 times and the coefficient of variation, for all cases, was less

than 0.18%.

At last, we acknowledge that this evaluation is not enough to assess the capability of

our proposal on reaching optimal or, at least, near-optimal solutions. However, we claim

that those results, together with the previous experiments, indicate that our solution is

indeed capable of giving good solutions for the IVMPP.



Chapter 6

Conclusions and Future Work

This chapter describes the main results and contributions of this work. In Section 6.1, we

highlight the main findings of this thesis, while we point out in Section 6.2 some interesting

directions for future research in this topic area.

6.1 Concluding Remarks

In this work, we defined the Interference-aware Virtual Machine Placement Problem for

Small-scale HPC Applications in Clouds (IVMPP). This problem aims to minimize, si-

multaneously, (i) the interference experienced by small-scale HPC applications executed

in a same physical machine and (ii) the number of physical machines used to allocate

them. Besides presenting a mathematical formulation for the problem, we introduced a

strategy based on the Iterated Local Search (ILS) framework to solve it. This strategy,

called IVMPP ILS, employs a multistart approach where new solutions are repeatedly

submitted to the ILS as a means to create a more effective searching process.

To estimate interference for a set of co-located applications, our VMP strategy uses

a quantitative and multivariate interference prediction model that was also proposed in

this work. This model considers the amount and similarities of concurrent access to three

shared and non-sliceable resources (SLLC, DRAM and virtual network) and the number

of co-located applications. Because of the multivariate nature of the cross-interference

problem, we generated this model by applying a multivariate statistical technique in a

synthetic interference dataset. This dataset was created through interference experiments

accomplished with applications that put distinct access pressure on shared resources.

The prediction model was validated by using a petroleum reservoir simulator, a seismic
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migration method and applications from the widely adopted HPCC benchmark. These

real-life HPC applications were executed with instances of distinct sizes and character-

istics, and experiments were accomplished by considering different co-location schemes

and number of applications. Results showed that our model achieved a median prediction

error equal to 3.59% and, for 93% of all tested cases, it reached a prediction error less

than 10%. These results pointed out that our model, though it was built from a synthetic

interference dataset, was capable of predicting interference for a set of real small-scale

HPC applications running in distinct circumstances. Moreover, our experiments also in-

dicated that solutions based just on (i) number of running virtual machines, (ii) Dwarfs

classes or (iii) SLLC access contention may not be suitable for determining interference.

By using a set of instances created from the validation workload, we carried out ex-

periments to compare our proposal with the most common heuristics used to minimize the

number of active machines in clouds. At first, we accomplished several offline experiments

to calibrate our proposal concerning its ability to find a good trade-off between reducing,

at the same time, the interference and number of used machines. After that, we conducted

real experiments to confirm, in practice, the conclusions drawn in offline experiments. Re-

sults showed that our strategy reduced interference up to 41%, while keeping the same

number of physical machines given by those heuristics. IVMPP ILS outperformed other

heuristics because, even using the minimal number of physical machines, it was able to

co-locate applications with complementary access profiles.

In addition, we evaluated the optimality of solutions given by IVMPP ILS. We com-

pared it with an exact procedure that is able to find the optimal solution for an IVMPP

instance. This experimental evaluation revealed that our strategy achieved good solutions

since the gap was, in average, around 0.02%. Although this experimental evaluation was

accomplished with small IVMPP instances, these results corroborate the claim that our

proposal is able to find good solutions for the IVMPP.

6.2 Future Work

In this section, we present some promising future directions derived from the contributions

of this thesis.

1. Consider other shared resources: our proposed model considers concurrent

accesses to SLLC, DRAM and virtual network to estimate the level of interference

experienced by co-located applications. However, it would be interesting to extend
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the proposed model so that it takes into account the negative impact that concurrent

access to other shared resources has in interference. For example, the model could

consider the amount of simultaneous access to disk since the concurrent access to this

shared resource may have a devastating influence in cross-application interference

[33].

2. Evaluate access contention with other metrics: to measure the amount of

access to DRAM and virtual network, we used, in this work, the number of refer-

ences per second and the amount of bytes transmitted per second, respectively. We

adopted these metrics because they allow to capture the pressure that co-located

applications put in those shared resources. Although those metrics have proven

to be suitable for predicting interference, perhaps other metrics, such as the total

amount of allocated memory or the number of packets transmitted, for example,

could reveal another perspective of the access contention degree imposed by those

shared resources.

3. Incorporate hardware characteristics in the prediction model: all experi-

ments described in this thesis were executed in the same hardware configuration,

that is, in the same physical machine model. So, we did not conduct any investiga-

tion to verify whether interference varies in distinct hardware configurations. The

negative impact caused by access contention may change depending on issues like

the size of SLLC, number of DRAM channels, memory frequency and so on. To

incorporate such additional information into the prediction model, it could be used,

for example, online machine learning techniques[37]. Thus, the model coefficients

could be dynamically adjusted concerning those specific characteristics in the cloud

environment.

4. Online approach: to decide the placement of virtual machines, our strategy needs

to know in advance the set of applications that should be allocated in the cloud.

Although this offline approach can be used in practice by accumulating a given num-

ber of requests before performing placement decisions, an online approach, which

allocates virtual machines as they arrive, could enhance the contribution of this

work. To propose that strategy, the online approach should be able to determine

in what extent the live migration of virtual machines would affect the execution of

small-scale HPC applications.

5. Communication through physical network: due to the poor scalability of

HPC applications in clouds, we decided to focus our research in small-scale HPC
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applications, that is, applications that could be entirely placed in a physical machine.

But, depending on the level of interference, an application could benefit more of

using the physical network than of being fully allocated to a physical machine.

Thus, our proposed strategy could be expanded to evaluate the trade-off between

reducing the level of interference and the cost of using the physical network. This

improvement could enhance the solution so that it was able to deal with medium

and high-scale HPC applications also.



Bibliography

[1] EViews. http://www.eviews.com. Last accessed in February 2018.

[2] HPC Challenge Benchmark. http://icl.cs.utk.edu/hpcc/. Last accessed in

February 2018.

[3] IBM SPSS Statistics. http://www.ibm.com/SPSS/Statistics. Last accessed in

February 2018.

[4] Minitab. http://www.minitab.com/. Last accessed in February 2018.

[5] MPBench. http://icl.cs.utk.edu/llcbench/mpbench.html. Last accessed in

February 2018.

[6] MUFITS Reservoir Simulation Software. http://www.mufits.imec.msu.ru/. Last

accessed in February 2018.

[7] OProfile. http://oprofile.sourceforge.net. Last accessed in February 2018.

[8] Perf Monitoring Tool. https://perf.wiki.kernel.org/index.php/Main_Page.

Last accessed in February 2018.

[9] Performance Application Programming Interface (PAPI). http://icl.utk.edu/

papi/. Last accessed in February 2018.

[10] STREAM: Sustainable Memory Bandwidth in High Performance Computers. https:

//www.cs.virginia.edu/stream/. Last accessed in February 2018.

[11] Abdelkhalek, R.; Calandra, H.; Coulaud, O.; Roman, J.; Latu, G. Fast

Seismic Modeling and Reverse Time Migration on a GPU Cluster. In International

Conference on High Performance Computing & Simulation. (2009), IEEE, pp. 36–43.
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APPENDIX A -- Complete Interference Results

Table A.1: Interference results for co-location scheme “A”

Applications

Real

Interference

Level

PTRANS.I1.P6 PTRANS.I1.P6 44.50%

PTRANS.I2.P6 PTRANS.I2.P6 5.31%

DGEMM.I2.P6 DGEMM.I2.P6 7.70%

DGEMM.I1.P6 DGEMM.I1.P6 7.79%

HPL.I2.P6 HPL.I2.P6 11.40%

HPL.I1.P6 HPL.I1.P6 10.75%

PTRANS.I1.P6 PTRANS.I2.P6 22.56%

DGEMM.I2.P6 DGEMM.I1.P6 7.25%

HPL.I2.P6 HPL.I1.P6 10.66%

PTRANS.I1.P6 HPL.I2.P6 18.37%

PTRANS.I1.P6 HPL.I1.P6 18.30%

PTRANS.I1.P6 DGEMM.I2.P6 12.69%

PTRANS.I1.P6 DGEMM.I1.P6 12.71%

HPL.I2.P6 DGEMM.I2.P6 7.45%

HPL.I1.P6 DGEMM.I1.P6 7.46%

HPL.I2.P6 DGEMM.I1.P6 7.91%

HPL.I1.P6 DGEMM.I2.P6 7.80%

PTRANS.I2.P6 HPL.I2.P6 9.96%

PTRANS.I2.P6 HPL.I1.P6 10.47%

PTRANS.I2.P6 DGEMM.I2.P6 9.27%

PTRANS.I2.P6 DGEMM.I1.P6 8.64%

FFT.I2.P4 FFT.I2.P4 20.69%
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Table A.1 continued from previous page

Applications

Real

Interference

Level

FFT.I2.P4 PTRANS.I1.P6 26.39%

FFT.I2.P4 HPL.I2.P6 10.61%

FFT.I2.P4 DGEMM.I2.P6 7.41%

FFT.I2.P4 PTRANS.I2.P6 8.25%

FFT.I2.P4 HPL.I1.P6 11.10%

FFT.I2.P4 DGEMM.I1.P6 6.34%

FFT.I1.P4 FFT.I1.P4 22.76%

FFT.I1.P4 PTRANS.I1.P6 26.51%

FFT.I1.P4 HPL.I2.P6 11.21%

FFT.I1.P4 DGEMM.I2.P6 6.65%

FFT.I1.P4 PTRANS.I2.P6 8.31%

FFT.I1.P4 HPL.I1.P6 11.01%

FFT.I1.P4 DGEMM.I1.P6 6.96%

FFT.I2.P4 FFT.I1.P4 25.29%

MUFITS.I1.P6 MUFITS.I1.P6 10.72%

MUFITS.I1.P6 PTRANS.I1.P6 21.83%

MUFITS.I1.P6 PTRANS.I2.P6 7.32%

MUFITS.I1.P6 HPL.I2.P6 9.83%

MUFITS.I1.P6 HPL.I1.P6 9.74%

MUFITS.I1.P6 DGEMM.I2.P6 5.98%

MUFITS.I1.P6 DGEMM.I1.P6 6.81%

MUFITS.I1.P6 FFT.I2.P4 11.23%

MUFITS.I1.P6 FFT.I1.P4 9.08%

MUFITS.I2.P6 MUFITS.I2.P6 4.02%

MUFITS.I2.P6 PTRANS.I1.P6 23.07%

MUFITS.I2.P6 PTRANS.I2.P6 5.28%

MUFITS.I2.P6 HPL.I2.P6 8.28%

MUFITS.I2.P6 HPL.I1.P6 8.97%

MUFITS.I2.P6 DGEMM.I2.P6 9.14%

MUFITS.I2.P6 DGEMM.I1.P6 7.66%
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Table A.1 continued from previous page

Applications

Real

Interference

Level

MUFITS.I2.P6 FFT.I2.P4 10.07%

MUFITS.I2.P6 FFT.I1.P4 9.79%

MUFITS.I2.P6 MUFITS.I1.P6 8.84%

PKTM.I1.P6 PKTM.I1.P6 0.17%

PKTM.I1.P6 PKTM.I2.P6 0.43%

PKTM.I1.P6 MUFITS.I2.P6 2.08%

PKTM.I1.P6 MUFITS.I1.P6 1.71%

PKTM.I1.P6 HPL.I2.P6 3.93%

PKTM.I1.P6 HPL.I1.P6 4.13%

PKTM.I1.P6 FFT.I2.P4 5.09%

PKTM.I1.P6 FFT.I1.P4 3.81%

PKTM.I1.P6 PTRANS.I1.P6 2.78%

PKTM.I1.P6 PTRANS.I2.P6 0.27%

PKTM.I1.P6 DGEMM.I2.P6 4.07%

PKTM.I1.P6 DGEMM.I1.P6 3.81%

PKTM.I2.P6 MUFITS.I2.P6 1.85%

PKTM.I2.P6 MUFITS.I1.P6 1.35%

PKTM.I2.P6 HPL.I2.P6 2.65%

PKTM.I2.P6 HPL.I1.P6 2.53%

PKTM.I2.P6 FFT.I2.P4 3.66%

PKTM.I2.P6 FFT.I1.P4 4.67%

PKTM.I2.P6 PTRANS.I1.P6 3.01%

PKTM.I2.P6 PTRANS.I2.P6 0.24%

PKTM.I2.P6 DGEMM.I2.P6 3.70%

PKTM.I2.P6 DGEMM.I1.P6 3.28%

PKTM.I2.P6 PKTM.I2.P6 0.03%
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Table A.2: Interference results for co-location scheme “B”

Applications

Real

Interference

Level

HPL.I1.P4 PTRANS.I1.P4 DGEMM.I1.P4 11.51%

HPL.I1.P4 HPL.I1.P4 HPL.I1.P4 13.85%

DGEMM.I1.P4 DGEMM.I1.P4 DGEMM.I1.P4 9.60%

PTRANS.I1.P4 PTRANS.I1.P4 PTRANS.I1.P4 37.04%

HPL.I1.P4 HPL.I1.P4 PTRANS.I1.P4 17.45%

HPL.I1.P4 HPL.I1.P4 DGEMM.I1.P4 13.22%

PTRANS.I1.P4 PTRANS.I1.P4 DGEMM.I1.P4 27.03%

PTRANS.I1.P4 PTRANS.I1.P4 HPL.I1.P4 23.28%

DGEMM.I1.P4 DGEMM.I1.P4 HPL.I1.P4 11.15%

DGEMM.I1.P4 DGEMM.I1.P4 PTRANS.I1.P4 12.46%

FFT.I2.P4 FFT.I2.P4 FFT.I2.P4 48.81%

FFT.I2.P4 FFT.I2.P4 HPL.I1.P4 27.82%

FFT.I2.P4 FFT.I2.P4 DGEMM.I1.P4 27.50%

FFT.I2.P4 FFT.I2.P4 PTRANS.I1.P4 42.21%

FFT.I2.P4 HPL.I1.P4 HPL.I1.P4 19.32%

FFT.I2.P4 PTRANS.I1.P4 PTRANS.I1.P4 40.91%

FFT.I2.P4 DGEMM.I1.P4 DGEMM.I1.P4 12.39%

FFT.I2.P4 PTRANS.I1.P4 HPL.I1.P4 24.74%

FFT.I2.P4 PTRANS.I1.P4 DGEMM.I1.P4 20.17%

FFT.I2.P4 HPL.I1.P4 DGEMM.I1.P4 15.62%

MUFITS.I1.P4 PTRANS.I1.P4 PTRANS.I1.P4 24.77%

MUFITS.I1.P4 HPL.I1.P4 HPL.I1.P4 15.20%

MUFITS.I1.P4 DGEMM.I1.P4 DGEMM.I1.P4 10.63%

MUFITS.I1.P4 FFT.I2.P4 FFT.I2.P4 34.83%

MUFITS.I1.P4 MUFITS.I1.P4 PTRANS.I1.P4 19.76%

MUFITS.I1.P4 MUFITS.I1.P4 HPL.I1.P4 20.55%

MUFITS.I1.P4 MUFITS.I1.P4 FFT.I2.P4 25.88%

MUFITS.I1.P4 MUFITS.I1.P4 DGEMM.I1.P4 15.75%

MUFITS.I1.P4 MUFITS.I1.P4 MUFITS.I1.P4 22.85%

MUFITS.I1.P4 PTRANS.I1.P4 DGEMM.I1.P4 14.51%
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MUFITS.I1.P4 PTRANS.I1.P4 HPL.I1.P4 18.90%

MUFITS.I1.P4 DGEMM.I1.P4 HPL.I1.P4 13.20%

MUFITS.I1.P4 PTRANS.I1.P4 FFT.I2.P4 28.76%

MUFITS.I1.P4 DGEMM.I1.P4 FFT.I2.P4 15.82%

MUFITS.I1.P4 FFT.I2.P4 HPL.I1.P4 20.14%

DGEMM.I2.P4 DGEMM.I2.P4 DGEMM.I2.P4 10.54%

DGEMM.I2.P4 DGEMM.I2.P4 HPL.I2.P4 11.66%

DGEMM.I2.P4 DGEMM.I2.P4 PTRANS.I2.P4 6.00%

DGEMM.I2.P4 DGEMM.I2.P4 FFT.I1.P4 11.86%

DGEMM.I2.P4 HPL.I2.P4 HPL.I2.P4 12.77%

DGEMM.I2.P4 HPL.I2.P4 PTRANS.I2.P4 8.67%

DGEMM.I2.P4 HPL.I2.P4 FFT.I1.P4 15.92%

DGEMM.I2.P4 PTRANS.I2.P4 PTRANS.I2.P4 2.08%

DGEMM.I2.P4 PTRANS.I2.P4 FFT.I1.P4 11.72%

DGEMM.I2.P4 FFT.I1.P4 FFT.I1.P4 24.69%

HPL.I2.P4 HPL.I2.P4 HPL.I2.P4 15.39%

HPL.I2.P4 HPL.I2.P4 PTRANS.I2.P4 10.52%

HPL.I2.P4 HPL.I2.P4 FFT.I1.P4 19.75%

HPL.I2.P4 PTRANS.I2.P4 PTRANS.I2.P4 4.99%

HPL.I2.P4 PTRANS.I2.P4 FFT.I1.P4 14.28%

HPL.I2.P4 FFT.I1.P4 FFT.I1.P4 30.96%

PTRANS.I2.P4 PTRANS.I2.P4 PTRANS.I2.P4 0.11%

PTRANS.I2.P4 PTRANS.I2.P4 FFT.I1.P4 14.52%

PTRANS.I2.P4 FFT.I1.P4 FFT.I1.P4 27.72%

FFT.I1.P4 FFT.I1.P4 FFT.I1.P4 47.31%

HPL.I1.P4 HPL.I1.P4 DGEMM.I2.P4 12.94%

HPL.I1.P4 HPL.I1.P4 HPL.I2.P4 15.44%

HPL.I1.P4 HPL.I1.P4 PTRANS.I2.P4 10.62%

HPL.I1.P4 HPL.I1.P4 FFT.I1.P4 19.80%

HPL.I1.P4 DGEMM.I2.P4 DGEMM.I2.P4 11.44%
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HPL.I1.P4 DGEMM.I2.P4 HPL.I2.P4 12.86%

HPL.I1.P4 DGEMM.I2.P4 PTRANS.I2.P4 7.24%

HPL.I1.P4 DGEMM.I2.P4 FFT.I1.P4 15.07%

HPL.I1.P4 HPL.I2.P4 HPL.I2.P4 15.56%

HPL.I1.P4 HPL.I2.P4 PTRANS.I2.P4 10.72%

HPL.I1.P4 HPL.I2.P4 FFT.I1.P4 19.63%

HPL.I1.P4 PTRANS.I2.P4 PTRANS.I2.P4 5.21%

HPL.I1.P4 PTRANS.I2.P4 FFT.I1.P4 16.51%

HPL.I1.P4 FFT.I1.P4 FFT.I1.P4 31.43%

DGEMM.I2.P4 DGEMM.I2.P4 DGEMM.I1.P4 10.15%

DGEMM.I2.P4 DGEMM.I2.P4 PTRANS.I1.P4 15.34%

DGEMM.I2.P4 DGEMM.I2.P4 FFT.I2.P4 21.31%

DGEMM.I2.P4 HPL.I2.P4 PTRANS.I1.P4 16.89%

DGEMM.I2.P4 HPL.I2.P4 FFT.I2.P4 15.63%

DGEMM.I2.P4 HPL.I2.P4 DGEMM.I1.P4 11.72%

DGEMM.I2.P4 PTRANS.I2.P4 DGEMM.I1.P4 8.22%

DGEMM.I2.P4 PTRANS.I2.P4 PTRANS.I1.P4 12.42%

DGEMM.I2.P4 PTRANS.I2.P4 FFT.I2.P4 11.45%

DGEMM.I2.P4 FFT.I1.P4 DGEMM.I1.P4 12.70%

DGEMM.I2.P4 FFT.I1.P4 PTRANS.I1.P4 22.68%

DGEMM.I2.P4 FFT.I1.P4 FFT.I2.P4 23.52%

DGEMM.I2.P4 DGEMM.I1.P4 DGEMM.I1.P4 9.77%

DGEMM.I2.P4 DGEMM.I1.P4 HPL.I1.P4 11.06%

DGEMM.I2.P4 DGEMM.I1.P4 PTRANS.I1.P4 14.51%

DGEMM.I2.P4 DGEMM.I1.P4 FFT.I2.P4 13.27%

DGEMM.I2.P4 HPL.I1.P4 PTRANS.I1.P4 15.95%

DGEMM.I2.P4 HPL.I1.P4 FFT.I2.P4 14.48%

DGEMM.I2.P4 PTRANS.I1.P4 PTRANS.I1.P4 23.22%

DGEMM.I2.P4 PTRANS.I1.P4 FFT.I2.P4 20.10%

DGEMM.I2.P4 FFT.I2.P4 FFT.I2.P4 25.75%
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HPL.I2.P4 HPL.I2.P4 DGEMM.I1.P4 13.39%

HPL.I2.P4 HPL.I2.P4 PTRANS.I1.P4 19.73%

HPL.I2.P4 HPL.I2.P4 FFT.I2.P4 19.44%

HPL.I2.P4 PTRANS.I2.P4 DGEMM.I1.P4 9.12%

HPL.I2.P4 PTRANS.I2.P4 PTRANS.I1.P4 15.42%

HPL.I2.P4 PTRANS.I2.P4 FFT.I2.P4 14.50%

HPL.I2.P4 FFT.I1.P4 DGEMM.I1.P4 15.59%

HPL.I2.P4 FFT.I1.P4 PTRANS.I1.P4 31.83%

HPL.I2.P4 FFT.I1.P4 FFT.I2.P4 29.78%

HPL.I2.P4 DGEMM.I1.P4 DGEMM.I1.P4 10.89%

HPL.I2.P4 DGEMM.I1.P4 HPL.I1.P4 12.97%

HPL.I2.P4 DGEMM.I1.P4 PTRANS.I1.P4 15.84%

HPL.I2.P4 DGEMM.I1.P4 FFT.I2.P4 15.29%

HPL.I2.P4 HPL.I1.P4 PTRANS.I1.P4 19.52%

HPL.I2.P4 HPL.I1.P4 FFT.I2.P4 19.32%

HPL.I2.P4 PTRANS.I1.P4 PTRANS.I1.P4 30.32%

HPL.I2.P4 PTRANS.I1.P4 FFT.I2.P4 27.74%

HPL.I2.P4 FFT.I2.P4 FFT.I2.P4 29.95%

PTRANS.I2.P4 PTRANS.I2.P4 DGEMM.I1.P4 3.73%

PTRANS.I2.P4 PTRANS.I2.P4 PTRANS.I1.P4 8.30%

PTRANS.I2.P4 PTRANS.I2.P4 FFT.I2.P4 11.57%

PTRANS.I2.P4 FFT.I1.P4 DGEMM.I1.P4 11.67%

PTRANS.I2.P4 FFT.I1.P4 PTRANS.I1.P4 21.62%

PTRANS.I2.P4 FFT.I1.P4 FFT.I2.P4 24.85%

PTRANS.I2.P4 DGEMM.I1.P4 DGEMM.I1.P4 7.71%

PTRANS.I2.P4 DGEMM.I1.P4 HPL.I1.P4 9.02%

PTRANS.I2.P4 DGEMM.I1.P4 PTRANS.I1.P4 12.18%

PTRANS.I2.P4 DGEMM.I1.P4 FFT.I2.P4 11.80%

PTRANS.I2.P4 HPL.I1.P4 PTRANS.I1.P4 15.63%

PTRANS.I2.P4 HPL.I1.P4 FFT.I2.P4 14.40%
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PTRANS.I2.P4 PTRANS.I1.P4 PTRANS.I1.P4 24.20%

PTRANS.I2.P4 PTRANS.I1.P4 FFT.I2.P4 24.60%

PTRANS.I2.P4 FFT.I2.P4 FFT.I2.P4 32.47%

FFT.I1.P4 DGEMM.I1.P4 DGEMM.I1.P4 11.42%

FFT.I1.P4 DGEMM.I1.P4 HPL.I1.P4 15.17%

FFT.I1.P4 DGEMM.I1.P4 PTRANS.I1.P4 22.63%

FFT.I1.P4 DGEMM.I1.P4 FFT.I2.P4 23.91%

FFT.I1.P4 HPL.I1.P4 PTRANS.I1.P4 27.54%

FFT.I1.P4 HPL.I1.P4 FFT.I2.P4 27.09%

FFT.I1.P4 PTRANS.I1.P4 PTRANS.I1.P4 42.64%

FFT.I1.P4 PTRANS.I1.P4 FFT.I2.P4 41.31%

FFT.I1.P4 FFT.I2.P4 FFT.I2.P4 47.46%

FFT.I1.P4 FFT.I1.P4 DGEMM.I1.P4 26.35%

FFT.I1.P4 FFT.I1.P4 PTRANS.I1.P4 40.06%

FFT.I1.P4 FFT.I1.P4 FFT.I2.P4 45.26%

DGEMM.I2.P4 DGEMM.I2.P4 MUFITS.I2.P4 9.07%

DGEMM.I2.P4 DGEMM.I2.P4 MUFITS.I1.P4 12.47%

DGEMM.I2.P4 HPL.I2.P4 MUFITS.I2.P4 9.44%

DGEMM.I2.P4 HPL.I2.P4 MUFITS.I1.P4 11.99%

DGEMM.I2.P4 PTRANS.I2.P4 MUFITS.I2.P4 3.26%

DGEMM.I2.P4 PTRANS.I2.P4 MUFITS.I1.P4 10.98%

DGEMM.I2.P4 FFT.I1.P4 MUFITS.I2.P4 12.55%

DGEMM.I2.P4 FFT.I1.P4 MUFITS.I1.P4 16.73%

DGEMM.I2.P4 DGEMM.I1.P4 MUFITS.I2.P4 8.99%

DGEMM.I2.P4 DGEMM.I1.P4 MUFITS.I1.P4 10.10%

DGEMM.I2.P4 HPL.I1.P4 MUFITS.I2.P4 9.84%

DGEMM.I2.P4 HPL.I1.P4 MUFITS.I1.P4 12.50%

DGEMM.I2.P4 PTRANS.I1.P4 MUFITS.I2.P4 13.19%

DGEMM.I2.P4 PTRANS.I1.P4 MUFITS.I1.P4 18.55%

DGEMM.I2.P4 FFT.I2.P4 MUFITS.I2.P4 13.61%
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DGEMM.I2.P4 FFT.I2.P4 MUFITS.I1.P4 17.51%

DGEMM.I2.P4 MUFITS.I2.P4 MUFITS.I2.P4 7.21%

DGEMM.I2.P4 MUFITS.I2.P4 MUFITS.I1.P4 11.84%

DGEMM.I2.P4 MUFITS.I1.P4 MUFITS.I1.P4 14.09%

HPL.I2.P4 HPL.I2.P4 MUFITS.I2.P4 12.23%

HPL.I2.P4 HPL.I2.P4 MUFITS.I1.P4 16.15%

HPL.I2.P4 PTRANS.I2.P4 MUFITS.I2.P4 6.17%

HPL.I2.P4 PTRANS.I2.P4 MUFITS.I1.P4 12.48%

HPL.I2.P4 FFT.I1.P4 MUFITS.I2.P4 16.08%

HPL.I2.P4 FFT.I1.P4 MUFITS.I1.P4 23.60%

HPL.I2.P4 DGEMM.I1.P4 MUFITS.I2.P4 10.33%

HPL.I2.P4 DGEMM.I1.P4 MUFITS.I1.P4 12.82%

HPL.I2.P4 HPL.I1.P4 MUFITS.I2.P4 11.66%

HPL.I2.P4 HPL.I1.P4 MUFITS.I1.P4 15.72%

HPL.I2.P4 PTRANS.I1.P4 MUFITS.I2.P4 16.66%

HPL.I2.P4 PTRANS.I1.P4 MUFITS.I1.P4 22.71%

HPL.I2.P4 FFT.I2.P4 MUFITS.I2.P4 20.05%

HPL.I2.P4 FFT.I2.P4 MUFITS.I1.P4 22.43%

HPL.I2.P4 MUFITS.I2.P4 MUFITS.I2.P4 8.76%

HPL.I2.P4 MUFITS.I2.P4 MUFITS.I1.P4 13.60%

HPL.I2.P4 MUFITS.I1.P4 MUFITS.I1.P4 17.91%

PTRANS.I2.P4 PTRANS.I2.P4 MUFITS.I2.P4 0.85%

PTRANS.I2.P4 PTRANS.I2.P4 MUFITS.I1.P4 9.03%

PTRANS.I2.P4 FFT.I1.P4 MUFITS.I2.P4 10.39%

PTRANS.I2.P4 FFT.I1.P4 MUFITS.I1.P4 18.12%

PTRANS.I2.P4 DGEMM.I1.P4 MUFITS.I2.P4 5.36%

PTRANS.I2.P4 DGEMM.I1.P4 MUFITS.I1.P4 10.47%

PTRANS.I2.P4 HPL.I1.P4 MUFITS.I2.P4 6.56%

PTRANS.I2.P4 HPL.I1.P4 MUFITS.I1.P4 12.29%

PTRANS.I2.P4 PTRANS.I1.P4 MUFITS.I2.P4 11.38%
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PTRANS.I2.P4 PTRANS.I1.P4 MUFITS.I1.P4 19.10%

PTRANS.I2.P4 FFT.I2.P4 MUFITS.I2.P4 11.84%

PTRANS.I2.P4 FFT.I2.P4 MUFITS.I1.P4 19.12%

PTRANS.I2.P4 MUFITS.I2.P4 MUFITS.I2.P4 3.39%

PTRANS.I2.P4 MUFITS.I2.P4 MUFITS.I1.P4 10.31%

PTRANS.I2.P4 MUFITS.I1.P4 MUFITS.I1.P4 16.10%

FFT.I1.P4 FFT.I1.P4 MUFITS.I2.P4 28.20%

FFT.I1.P4 FFT.I1.P4 MUFITS.I1.P4 35.12%

FFT.I1.P4 DGEMM.I1.P4 MUFITS.I2.P4 12.04%

FFT.I1.P4 DGEMM.I1.P4 MUFITS.I1.P4 18.17%

FFT.I1.P4 HPL.I1.P4 MUFITS.I2.P4 16.16%

FFT.I1.P4 HPL.I1.P4 MUFITS.I1.P4 22.95%

FFT.I1.P4 PTRANS.I1.P4 MUFITS.I2.P4 25.08%

FFT.I1.P4 PTRANS.I1.P4 MUFITS.I1.P4 34.24%

FFT.I1.P4 FFT.I2.P4 MUFITS.I2.P4 25.71%

FFT.I1.P4 FFT.I2.P4 MUFITS.I1.P4 34.57%

FFT.I1.P4 MUFITS.I2.P4 MUFITS.I2.P4 13.82%

FFT.I1.P4 MUFITS.I2.P4 MUFITS.I1.P4 19.81%

FFT.I1.P4 MUFITS.I1.P4 MUFITS.I1.P4 28.69%

DGEMM.I1.P4 DGEMM.I1.P4 MUFITS.I2.P4 8.48%

DGEMM.I1.P4 HPL.I1.P4 MUFITS.I2.P4 10.24%

DGEMM.I1.P4 PTRANS.I1.P4 MUFITS.I2.P4 13.40%

DGEMM.I1.P4 FFT.I2.P4 MUFITS.I2.P4 15.25%

DGEMM.I1.P4 MUFITS.I2.P4 MUFITS.I2.P4 7.48%

DGEMM.I1.P4 MUFITS.I2.P4 MUFITS.I1.P4 10.87%

HPL.I1.P4 HPL.I1.P4 MUFITS.I2.P4 12.04%

HPL.I1.P4 PTRANS.I1.P4 MUFITS.I2.P4 15.76%

HPL.I1.P4 FFT.I2.P4 MUFITS.I2.P4 16.18%

HPL.I1.P4 MUFITS.I2.P4 MUFITS.I2.P4 8.98%

HPL.I1.P4 MUFITS.I2.P4 MUFITS.I1.P4 12.94%
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PTRANS.I1.P4 PTRANS.I1.P4 MUFITS.I2.P4 25.44%

PTRANS.I1.P4 FFT.I2.P4 MUFITS.I2.P4 23.36%

PTRANS.I1.P4 MUFITS.I2.P4 MUFITS.I2.P4 13.26%

PTRANS.I1.P4 MUFITS.I2.P4 MUFITS.I1.P4 20.41%

FFT.I2.P4 FFT.I2.P4 MUFITS.I2.P4 31.09%

FFT.I2.P4 MUFITS.I2.P4 MUFITS.I2.P4 14.02%

FFT.I2.P4 MUFITS.I2.P4 MUFITS.I1.P4 21.81%

MUFITS.I2.P4 MUFITS.I2.P4 MUFITS.I2.P4 4.03%

MUFITS.I2.P4 MUFITS.I2.P4 MUFITS.I1.P4 10.38%

MUFITS.I2.P4 MUFITS.I1.P4 MUFITS.I1.P4 15.90%

PKTM.I1.P4 PKTM.I1.P4 PKTM.I1.P4 3.04%

PKTM.I1.P4 PKTM.I1.P4 HPL.I1.P4 6.71%

PKTM.I1.P4 PKTM.I1.P4 HPL.I2.P4 6.40%

PKTM.I1.P4 PKTM.I1.P4 DGEMM.I2.P4 6.05%

PKTM.I1.P4 PKTM.I1.P4 DGEMM.I1.P4 5.99%

PKTM.I1.P4 PKTM.I1.P4 FFT.I2.P4 7.41%

PKTM.I1.P4 PKTM.I1.P4 FFT.I1.P4 5.97%

PKTM.I1.P4 PKTM.I1.P4 PTRANS.I1.P4 9.06%

PKTM.I1.P4 PKTM.I1.P4 PTRANS.I2.P4 5.21%

PKTM.I1.P4 HPL.I1.P4 HPL.I1.P4 13.95%

PKTM.I1.P4 HPL.I1.P4 HPL.I2.P4 10.65%

PKTM.I1.P4 HPL.I1.P4 DGEMM.I2.P4 9.00%

PKTM.I1.P4 HPL.I1.P4 DGEMM.I1.P4 9.40%

PKTM.I1.P4 HPL.I1.P4 FFT.I2.P4 12.48%

PKTM.I1.P4 HPL.I1.P4 FFT.I1.P4 10.20%

PKTM.I1.P4 HPL.I1.P4 PTRANS.I1.P4 12.86%

PKTM.I1.P4 HPL.I1.P4 PTRANS.I2.P4 8.53%

PKTM.I1.P4 HPL.I2.P4 HPL.I2.P4 10.02%

PKTM.I1.P4 HPL.I2.P4 DGEMM.I2.P4 8.60%

PKTM.I1.P4 HPL.I2.P4 DGEMM.I1.P4 8.55%
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PKTM.I1.P4 HPL.I2.P4 FFT.I2.P4 12.08%

PKTM.I1.P4 HPL.I2.P4 FFT.I1.P4 9.80%

PKTM.I1.P4 HPL.I2.P4 PTRANS.I1.P4 13.05%

PKTM.I1.P4 HPL.I2.P4 PTRANS.I2.P4 6.33%

PKTM.I1.P4 DGEMM.I2.P4 DGEMM.I2.P4 7.76%

PKTM.I1.P4 DGEMM.I2.P4 DGEMM.I1.P4 7.70%

PKTM.I1.P4 DGEMM.I2.P4 FFT.I2.P4 10.82%

PKTM.I1.P4 DGEMM.I2.P4 FFT.I1.P4 7.67%

PKTM.I1.P4 DGEMM.I2.P4 PTRANS.I1.P4 10.97%

PKTM.I1.P4 DGEMM.I2.P4 PTRANS.I2.P4 7.67%

PKTM.I1.P4 DGEMM.I1.P4 DGEMM.I1.P4 8.54%

PKTM.I1.P4 DGEMM.I1.P4 FFT.I2.P4 10.31%

PKTM.I1.P4 DGEMM.I1.P4 FFT.I1.P4 8.45%

PKTM.I1.P4 DGEMM.I1.P4 PTRANS.I1.P4 12.14%

PKTM.I1.P4 DGEMM.I1.P4 PTRANS.I2.P4 5.53%

PKTM.I1.P4 FFT.I2.P4 FFT.I2.P4 15.15%

PKTM.I1.P4 FFT.I2.P4 FFT.I1.P4 18.40%

PKTM.I1.P4 FFT.I2.P4 PTRANS.I1.P4 21.80%

PKTM.I1.P4 FFT.I2.P4 PTRANS.I2.P4 14.51%

PKTM.I1.P4 FFT.I1.P4 FFT.I1.P4 15.29%

PKTM.I1.P4 FFT.I1.P4 PTRANS.I1.P4 15.98%

PKTM.I1.P4 FFT.I1.P4 PTRANS.I2.P4 8.82%

PKTM.I1.P4 PTRANS.I1.P4 PTRANS.I1.P4 19.23%

PKTM.I1.P4 PTRANS.I1.P4 PTRANS.I2.P4 9.93%

PKTM.I1.P4 PTRANS.I2.P4 PTRANS.I2.P4 2.12%

PKTM.I2.P4 PKTM.I2.P4 PKTM.I2.P4 5.05%

PKTM.I2.P4 PKTM.I2.P4 HPL.I1.P4 7.85%

PKTM.I2.P4 PKTM.I2.P4 HPL.I2.P4 7.46%

PKTM.I2.P4 PKTM.I2.P4 DGEMM.I2.P4 6.89%

PKTM.I2.P4 PKTM.I2.P4 DGEMM.I1.P4 6.83%
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Table A.2 continued from previous page

Applications

Real

Interference

Level

PKTM.I2.P4 PKTM.I2.P4 FFT.I2.P4 7.21%

PKTM.I2.P4 PKTM.I2.P4 FFT.I1.P4 5.24%

PKTM.I2.P4 PKTM.I2.P4 PTRANS.I1.P4 8.37%

PKTM.I2.P4 PKTM.I2.P4 PTRANS.I2.P4 3.64%

PKTM.I2.P4 HPL.I1.P4 HPL.I1.P4 10.66%

PKTM.I2.P4 HPL.I1.P4 HPL.I2.P4 10.09%

PKTM.I2.P4 HPL.I1.P4 DGEMM.I2.P4 8.95%

PKTM.I2.P4 HPL.I1.P4 DGEMM.I1.P4 9.06%

PKTM.I2.P4 HPL.I1.P4 FFT.I2.P4 12.62%

PKTM.I2.P4 HPL.I1.P4 FFT.I1.P4 10.34%

PKTM.I2.P4 HPL.I1.P4 PTRANS.I1.P4 13.46%

PKTM.I2.P4 HPL.I1.P4 PTRANS.I2.P4 9.11%

PKTM.I2.P4 HPL.I2.P4 HPL.I2.P4 10.86%

PKTM.I2.P4 HPL.I2.P4 DGEMM.I2.P4 9.18%

PKTM.I2.P4 HPL.I2.P4 DGEMM.I1.P4 8.78%

PKTM.I2.P4 HPL.I2.P4 FFT.I2.P4 10.98%

PKTM.I2.P4 HPL.I2.P4 FFT.I1.P4 10.90%

PKTM.I2.P4 HPL.I2.P4 PTRANS.I1.P4 12.59%

PKTM.I2.P4 HPL.I2.P4 PTRANS.I2.P4 8.84%

PKTM.I2.P4 DGEMM.I2.P4 DGEMM.I2.P4 10.62%

PKTM.I2.P4 DGEMM.I2.P4 DGEMM.I1.P4 7.94%

PKTM.I2.P4 DGEMM.I2.P4 FFT.I2.P4 8.06%

PKTM.I2.P4 DGEMM.I2.P4 FFT.I1.P4 8.66%

PKTM.I2.P4 DGEMM.I2.P4 PTRANS.I1.P4 11.19%

PKTM.I2.P4 DGEMM.I2.P4 PTRANS.I2.P4 7.94%

PKTM.I2.P4 DGEMM.I1.P4 DGEMM.I1.P4 8.33%

PKTM.I2.P4 DGEMM.I1.P4 FFT.I2.P4 9.97%

PKTM.I2.P4 DGEMM.I1.P4 FFT.I1.P4 9.50%

PKTM.I2.P4 DGEMM.I1.P4 PTRANS.I1.P4 13.90%

PKTM.I2.P4 DGEMM.I1.P4 PTRANS.I2.P4 8.04%
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Table A.2 continued from previous page

Applications

Real

Interference

Level

PKTM.I2.P4 FFT.I2.P4 FFT.I2.P4 14.66%

PKTM.I2.P4 FFT.I2.P4 FFT.I1.P4 11.70%

PKTM.I2.P4 FFT.I2.P4 PTRANS.I1.P4 16.80%

PKTM.I2.P4 FFT.I2.P4 PTRANS.I2.P4 9.88%

PKTM.I2.P4 FFT.I1.P4 FFT.I1.P4 14.71%

PKTM.I2.P4 FFT.I1.P4 PTRANS.I1.P4 16.35%

PKTM.I2.P4 FFT.I1.P4 PTRANS.I2.P4 9.11%

PKTM.I2.P4 PTRANS.I1.P4 PTRANS.I1.P4 18.71%

PKTM.I2.P4 PTRANS.I1.P4 PTRANS.I2.P4 12.37%

PKTM.I2.P4 PTRANS.I2.P4 PTRANS.I2.P4 2.07%

PKTM.I2.P4 PKTM.I1.P4 PKTM.I2.P4 4.49%

PKTM.I2.P4 PKTM.I1.P4 HPL.I1.P4 7.29%

PKTM.I2.P4 PKTM.I1.P4 HPL.I2.P4 6.70%

PKTM.I2.P4 PKTM.I1.P4 DGEMM.I2.P4 6.29%

PKTM.I2.P4 PKTM.I1.P4 DGEMM.I1.P4 8.21%

PKTM.I2.P4 PKTM.I1.P4 FFT.I2.P4 5.90%

PKTM.I2.P4 PKTM.I1.P4 FFT.I1.P4 4.45%

PKTM.I2.P4 PKTM.I1.P4 PTRANS.I1.P4 8.08%

PKTM.I2.P4 PKTM.I1.P4 PTRANS.I2.P4 2.92%

PKTM.I1.P4 PKTM.I1.P4 PKTM.I2.P4 3.76%

PKTM.I1.P4 PKTM.I1.P4 MUFITS.I2.P4 3.21%

PKTM.I1.P4 MUFITS.I2.P4 HPL.I1.P4 7.49%

PKTM.I1.P4 MUFITS.I2.P4 HPL.I2.P4 6.59%

PKTM.I1.P4 MUFITS.I2.P4 DGEMM.I2.P4 6.77%

PKTM.I1.P4 MUFITS.I2.P4 DGEMM.I1.P4 6.29%

PKTM.I1.P4 MUFITS.I2.P4 FFT.I2.P4 10.84%

PKTM.I1.P4 MUFITS.I2.P4 FFT.I1.P4 6.83%

PKTM.I1.P4 MUFITS.I2.P4 PTRANS.I1.P4 9.50%

PKTM.I1.P4 MUFITS.I2.P4 PTRANS.I2.P4 3.01%

PKTM.I2.P4 PKTM.I2.P4 MUFITS.I2.P4 4.50%
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Table A.2 continued from previous page

Applications

Real

Interference

Level

PKTM.I2.P4 MUFITS.I2.P4 HPL.I1.P4 7.55%

PKTM.I2.P4 MUFITS.I2.P4 HPL.I2.P4 7.46%

PKTM.I2.P4 MUFITS.I2.P4 DGEMM.I2.P4 6.41%

PKTM.I2.P4 MUFITS.I2.P4 DGEMM.I1.P4 7.61%

PKTM.I2.P4 MUFITS.I2.P4 FFT.I2.P4 9.33%

PKTM.I2.P4 MUFITS.I2.P4 FFT.I1.P4 6.86%

PKTM.I2.P4 MUFITS.I2.P4 PTRANS.I1.P4 11.15%

PKTM.I2.P4 MUFITS.I2.P4 PTRANS.I2.P4 3.57%

PKTM.I1.P4 PKTM.I1.P4 MUFITS.I1.P4 3.88%

PKTM.I1.P4 MUFITS.I1.P4 HPL.I1.P4 8.87%

PKTM.I1.P4 MUFITS.I1.P4 HPL.I2.P4 8.62%

PKTM.I1.P4 MUFITS.I1.P4 DGEMM.I2.P4 7.55%

PKTM.I1.P4 MUFITS.I1.P4 DGEMM.I1.P4 7.06%

PKTM.I1.P4 MUFITS.I1.P4 FFT.I2.P4 11.30%

PKTM.I1.P4 MUFITS.I1.P4 FFT.I1.P4 11.99%

PKTM.I1.P4 MUFITS.I1.P4 PTRANS.I1.P4 15.02%

PKTM.I1.P4 MUFITS.I1.P4 PTRANS.I2.P4 7.38%

PKTM.I2.P4 PKTM.I2.P4 MUFITS.I1.P4 4.26%

PKTM.I2.P4 MUFITS.I1.P4 HPL.I1.P4 9.03%

PKTM.I2.P4 MUFITS.I1.P4 HPL.I2.P4 8.67%

PKTM.I2.P4 MUFITS.I1.P4 DGEMM.I2.P4 6.27%

PKTM.I2.P4 MUFITS.I1.P4 DGEMM.I1.P4 7.21%

PKTM.I2.P4 MUFITS.I1.P4 FFT.I2.P4 13.09%

PKTM.I2.P4 MUFITS.I1.P4 FFT.I1.P4 10.81%

PKTM.I2.P4 MUFITS.I1.P4 PTRANS.I1.P4 13.29%

PKTM.I2.P4 MUFITS.I1.P4 PTRANS.I2.P4 5.60%

PKTM.I1.P4 MUFITS.I2.P4 MUFITS.I2.P4 3.39%

PKTM.I1.P4 MUFITS.I1.P4 MUFITS.I1.P4 12.60%

PKTM.I1.P4 MUFITS.I2.P4 MUFITS.I1.P4 5.29%

PKTM.I2.P4 MUFITS.I2.P4 MUFITS.I2.P4 3.78%
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Table A.2 continued from previous page

Applications

Real

Interference

Level

PKTM.I2.P4 MUFITS.I1.P4 MUFITS.I1.P4 10.51%

PKTM.I2.P4 MUFITS.I2.P4 MUFITS.I1.P4 6.70%

PKTM.I2.P4 PKTM.I1.P4 MUFITS.I2.P4 2.96%

PKTM.I2.P4 PKTM.I1.P4 MUFITS.I1.P4 3.47%

Table A.3: Interference results for co-location scheme “C”

Applications

Real

Interference

Level

PTRANS.I1.P2 PTRANS.I1.P2 PTRANS.I1.P2 PTRANS.I1.P2 PTRANS.I1.P2 PTRANS.I1.P2 46.25%

PTRANS.I1.P2 PTRANS.I1.P2 PTRANS.I1.P2 PTRANS.I1.P2 PTRANS.I1.P2 HPL.I1.P2 33.98%

PTRANS.I1.P2 PTRANS.I1.P2 PTRANS.I1.P2 PTRANS.I1.P2 PTRANS.I1.P2 FFT.I1.P2 42.72%

PTRANS.I1.P2 PTRANS.I1.P2 PTRANS.I1.P2 PTRANS.I1.P2 PTRANS.I1.P2 DGEMM.I1.P2 31.09%

PTRANS.I1.P2 PTRANS.I1.P2 PTRANS.I1.P2 PTRANS.I1.P2 PTRANS.I1.P2 MUFITS.I1.P2 35.81%

PTRANS.I1.P2 PTRANS.I1.P2 PTRANS.I1.P2 PTRANS.I1.P2 HPL.I1.P2 HPL.I1.P2 27.17%

PTRANS.I1.P2 PTRANS.I1.P2 PTRANS.I1.P2 PTRANS.I1.P2 HPL.I1.P2 FFT.I1.P2 33.75%

PTRANS.I1.P2 PTRANS.I1.P2 PTRANS.I1.P2 PTRANS.I1.P2 HPL.I1.P2 DGEMM.I1.P2 24.75%

PTRANS.I1.P2 PTRANS.I1.P2 PTRANS.I1.P2 PTRANS.I1.P2 HPL.I1.P2 MUFITS.I1.P2 28.43%

PTRANS.I1.P2 PTRANS.I1.P2 PTRANS.I1.P2 PTRANS.I1.P2 FFT.I1.P2 FFT.I1.P2 43.57%

PTRANS.I1.P2 PTRANS.I1.P2 PTRANS.I1.P2 PTRANS.I1.P2 FFT.I1.P2 DGEMM.I1.P2 33.26%

PTRANS.I1.P2 PTRANS.I1.P2 PTRANS.I1.P2 PTRANS.I1.P2 FFT.I1.P2 MUFITS.I1.P2 36.73%

PTRANS.I1.P2 PTRANS.I1.P2 PTRANS.I1.P2 PTRANS.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 23.59%

PTRANS.I1.P2 PTRANS.I1.P2 PTRANS.I1.P2 PTRANS.I1.P2 DGEMM.I1.P2 MUFITS.I1.P2 26.54%

PTRANS.I1.P2 PTRANS.I1.P2 PTRANS.I1.P2 PTRANS.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 38.01%

PTRANS.I1.P2 PTRANS.I1.P2 PTRANS.I1.P2 HPL.I1.P2 HPL.I1.P2 HPL.I1.P2 24.17%

PTRANS.I1.P2 PTRANS.I1.P2 PTRANS.I1.P2 HPL.I1.P2 HPL.I1.P2 FFT.I1.P2 29.55%

PTRANS.I1.P2 PTRANS.I1.P2 PTRANS.I1.P2 HPL.I1.P2 HPL.I1.P2 DGEMM.I1.P2 22.64%

PTRANS.I1.P2 PTRANS.I1.P2 PTRANS.I1.P2 HPL.I1.P2 HPL.I1.P2 MUFITS.I1.P2 25.24%

PTRANS.I1.P2 PTRANS.I1.P2 PTRANS.I1.P2 HPL.I1.P2 FFT.I1.P2 FFT.I1.P2 38.05%

PTRANS.I1.P2 PTRANS.I1.P2 PTRANS.I1.P2 HPL.I1.P2 FFT.I1.P2 DGEMM.I1.P2 26.90%

PTRANS.I1.P2 PTRANS.I1.P2 PTRANS.I1.P2 HPL.I1.P2 FFT.I1.P2 MUFITS.I1.P2 31.48%

PTRANS.I1.P2 PTRANS.I1.P2 PTRANS.I1.P2 HPL.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 20.59%

PTRANS.I1.P2 PTRANS.I1.P2 PTRANS.I1.P2 HPL.I1.P2 DGEMM.I1.P2 MUFITS.I1.P2 22.72%

PTRANS.I1.P2 PTRANS.I1.P2 PTRANS.I1.P2 HPL.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 26.60%

PTRANS.I1.P2 PTRANS.I1.P2 PTRANS.I1.P2 FFT.I1.P2 FFT.I1.P2 FFT.I1.P2 48.32%

PTRANS.I1.P2 PTRANS.I1.P2 PTRANS.I1.P2 FFT.I1.P2 FFT.I1.P2 DGEMM.I1.P2 35.57%

PTRANS.I1.P2 PTRANS.I1.P2 PTRANS.I1.P2 FFT.I1.P2 FFT.I1.P2 MUFITS.I1.P2 41.47%

PTRANS.I1.P2 PTRANS.I1.P2 PTRANS.I1.P2 FFT.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 25.97%

PTRANS.I1.P2 PTRANS.I1.P2 PTRANS.I1.P2 FFT.I1.P2 DGEMM.I1.P2 MUFITS.I1.P2 29.69%

PTRANS.I1.P2 PTRANS.I1.P2 PTRANS.I1.P2 FFT.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 33.14%

PTRANS.I1.P2 PTRANS.I1.P2 PTRANS.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 19.48%

PTRANS.I1.P2 PTRANS.I1.P2 PTRANS.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 MUFITS.I1.P2 21.52%

PTRANS.I1.P2 PTRANS.I1.P2 PTRANS.I1.P2 DGEMM.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 25.20%

PTRANS.I1.P2 PTRANS.I1.P2 PTRANS.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 29.94%

PTRANS.I1.P2 PTRANS.I1.P2 HPL.I1.P2 HPL.I1.P2 HPL.I1.P2 HPL.I1.P2 20.28%

PTRANS.I1.P2 PTRANS.I1.P2 HPL.I1.P2 HPL.I1.P2 HPL.I1.P2 FFT.I1.P2 24.65%

PTRANS.I1.P2 PTRANS.I1.P2 HPL.I1.P2 HPL.I1.P2 HPL.I1.P2 DGEMM.I1.P2 19.67%

PTRANS.I1.P2 PTRANS.I1.P2 HPL.I1.P2 HPL.I1.P2 HPL.I1.P2 MUFITS.I1.P2 20.65%

PTRANS.I1.P2 PTRANS.I1.P2 HPL.I1.P2 HPL.I1.P2 FFT.I1.P2 FFT.I1.P2 30.13%

PTRANS.I1.P2 PTRANS.I1.P2 HPL.I1.P2 HPL.I1.P2 FFT.I1.P2 DGEMM.I1.P2 22.53%

PTRANS.I1.P2 PTRANS.I1.P2 HPL.I1.P2 HPL.I1.P2 FFT.I1.P2 MUFITS.I1.P2 25.00%

PTRANS.I1.P2 PTRANS.I1.P2 HPL.I1.P2 HPL.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 18.11%

PTRANS.I1.P2 PTRANS.I1.P2 HPL.I1.P2 HPL.I1.P2 DGEMM.I1.P2 MUFITS.I1.P2 19.78%

PTRANS.I1.P2 PTRANS.I1.P2 HPL.I1.P2 HPL.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 22.39%

PTRANS.I1.P2 PTRANS.I1.P2 HPL.I1.P2 FFT.I1.P2 FFT.I1.P2 FFT.I1.P2 37.38%

PTRANS.I1.P2 PTRANS.I1.P2 HPL.I1.P2 FFT.I1.P2 FFT.I1.P2 DGEMM.I1.P2 27.79%
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Table A.3 continued from previous page
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Real

Interference
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PTRANS.I1.P2 PTRANS.I1.P2 HPL.I1.P2 FFT.I1.P2 FFT.I1.P2 MUFITS.I1.P2 32.93%

PTRANS.I1.P2 PTRANS.I1.P2 HPL.I1.P2 FFT.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 21.14%

PTRANS.I1.P2 PTRANS.I1.P2 HPL.I1.P2 FFT.I1.P2 DGEMM.I1.P2 MUFITS.I1.P2 22.93%

PTRANS.I1.P2 PTRANS.I1.P2 HPL.I1.P2 FFT.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 26.55%

PTRANS.I1.P2 PTRANS.I1.P2 HPL.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 16.62%

PTRANS.I1.P2 PTRANS.I1.P2 HPL.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 MUFITS.I1.P2 18.06%

PTRANS.I1.P2 PTRANS.I1.P2 HPL.I1.P2 DGEMM.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 20.00%

PTRANS.I1.P2 PTRANS.I1.P2 HPL.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 23.34%

PTRANS.I1.P2 PTRANS.I1.P2 FFT.I1.P2 FFT.I1.P2 FFT.I1.P2 FFT.I1.P2 46.06%

PTRANS.I1.P2 PTRANS.I1.P2 FFT.I1.P2 FFT.I1.P2 FFT.I1.P2 DGEMM.I1.P2 34.76%

PTRANS.I1.P2 PTRANS.I1.P2 FFT.I1.P2 FFT.I1.P2 FFT.I1.P2 MUFITS.I1.P2 39.55%

PTRANS.I1.P2 PTRANS.I1.P2 FFT.I1.P2 FFT.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 27.76%

PTRANS.I1.P2 PTRANS.I1.P2 FFT.I1.P2 FFT.I1.P2 DGEMM.I1.P2 MUFITS.I1.P2 30.20%

PTRANS.I1.P2 PTRANS.I1.P2 FFT.I1.P2 FFT.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 35.61%

PTRANS.I1.P2 PTRANS.I1.P2 FFT.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 22.51%

PTRANS.I1.P2 PTRANS.I1.P2 FFT.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 MUFITS.I1.P2 23.97%

PTRANS.I1.P2 PTRANS.I1.P2 FFT.I1.P2 DGEMM.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 27.69%

PTRANS.I1.P2 PTRANS.I1.P2 FFT.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 34.13%

PTRANS.I1.P2 PTRANS.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 15.82%

PTRANS.I1.P2 PTRANS.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 MUFITS.I1.P2 17.48%

PTRANS.I1.P2 PTRANS.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 19.27%

PTRANS.I1.P2 PTRANS.I1.P2 DGEMM.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 21.20%

PTRANS.I1.P2 PTRANS.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 25.51%

PTRANS.I1.P2 HPL.I1.P2 HPL.I1.P2 HPL.I1.P2 HPL.I1.P2 HPL.I1.P2 18.81%

PTRANS.I1.P2 HPL.I1.P2 HPL.I1.P2 HPL.I1.P2 HPL.I1.P2 FFT.I1.P2 22.39%

PTRANS.I1.P2 HPL.I1.P2 HPL.I1.P2 HPL.I1.P2 HPL.I1.P2 DGEMM.I1.P2 17.59%

PTRANS.I1.P2 HPL.I1.P2 HPL.I1.P2 HPL.I1.P2 HPL.I1.P2 MUFITS.I1.P2 19.38%

PTRANS.I1.P2 HPL.I1.P2 HPL.I1.P2 HPL.I1.P2 FFT.I1.P2 FFT.I1.P2 26.39%

PTRANS.I1.P2 HPL.I1.P2 HPL.I1.P2 HPL.I1.P2 FFT.I1.P2 DGEMM.I1.P2 20.02%

PTRANS.I1.P2 HPL.I1.P2 HPL.I1.P2 HPL.I1.P2 FFT.I1.P2 MUFITS.I1.P2 22.02%

PTRANS.I1.P2 HPL.I1.P2 HPL.I1.P2 HPL.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 16.43%

PTRANS.I1.P2 HPL.I1.P2 HPL.I1.P2 HPL.I1.P2 DGEMM.I1.P2 MUFITS.I1.P2 17.66%

PTRANS.I1.P2 HPL.I1.P2 HPL.I1.P2 HPL.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 19.50%

PTRANS.I1.P2 HPL.I1.P2 HPL.I1.P2 FFT.I1.P2 FFT.I1.P2 FFT.I1.P2 30.53%

PTRANS.I1.P2 HPL.I1.P2 HPL.I1.P2 FFT.I1.P2 FFT.I1.P2 DGEMM.I1.P2 23.28%

PTRANS.I1.P2 HPL.I1.P2 HPL.I1.P2 FFT.I1.P2 FFT.I1.P2 MUFITS.I1.P2 27.19%

PTRANS.I1.P2 HPL.I1.P2 HPL.I1.P2 FFT.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 18.69%

PTRANS.I1.P2 HPL.I1.P2 HPL.I1.P2 FFT.I1.P2 DGEMM.I1.P2 MUFITS.I1.P2 20.67%

PTRANS.I1.P2 HPL.I1.P2 HPL.I1.P2 FFT.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 22.87%

PTRANS.I1.P2 HPL.I1.P2 HPL.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 15.72%

PTRANS.I1.P2 HPL.I1.P2 HPL.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 MUFITS.I1.P2 16.19%

PTRANS.I1.P2 HPL.I1.P2 HPL.I1.P2 DGEMM.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 17.58%

PTRANS.I1.P2 HPL.I1.P2 HPL.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 20.51%

PTRANS.I1.P2 HPL.I1.P2 FFT.I1.P2 FFT.I1.P2 FFT.I1.P2 FFT.I1.P2 39.99%

PTRANS.I1.P2 HPL.I1.P2 FFT.I1.P2 FFT.I1.P2 FFT.I1.P2 DGEMM.I1.P2 28.97%

PTRANS.I1.P2 HPL.I1.P2 FFT.I1.P2 FFT.I1.P2 FFT.I1.P2 MUFITS.I1.P2 34.69%

PTRANS.I1.P2 HPL.I1.P2 FFT.I1.P2 FFT.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 23.71%

PTRANS.I1.P2 HPL.I1.P2 FFT.I1.P2 FFT.I1.P2 DGEMM.I1.P2 MUFITS.I1.P2 25.37%

PTRANS.I1.P2 HPL.I1.P2 FFT.I1.P2 FFT.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 28.51%

PTRANS.I1.P2 HPL.I1.P2 FFT.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 19.26%

PTRANS.I1.P2 HPL.I1.P2 FFT.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 MUFITS.I1.P2 19.82%

PTRANS.I1.P2 HPL.I1.P2 FFT.I1.P2 DGEMM.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 21.52%

PTRANS.I1.P2 HPL.I1.P2 FFT.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 24.74%

PTRANS.I1.P2 HPL.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 14.90%

PTRANS.I1.P2 HPL.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 MUFITS.I1.P2 15.16%

PTRANS.I1.P2 HPL.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 16.43%

PTRANS.I1.P2 HPL.I1.P2 DGEMM.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 18.53%

PTRANS.I1.P2 HPL.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 20.29%

PTRANS.I1.P2 FFT.I1.P2 FFT.I1.P2 FFT.I1.P2 FFT.I1.P2 FFT.I1.P2 50.15%

PTRANS.I1.P2 FFT.I1.P2 FFT.I1.P2 FFT.I1.P2 FFT.I1.P2 DGEMM.I1.P2 37.84%

PTRANS.I1.P2 FFT.I1.P2 FFT.I1.P2 FFT.I1.P2 FFT.I1.P2 MUFITS.I1.P2 42.22%

PTRANS.I1.P2 FFT.I1.P2 FFT.I1.P2 FFT.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 28.98%

PTRANS.I1.P2 FFT.I1.P2 FFT.I1.P2 FFT.I1.P2 DGEMM.I1.P2 MUFITS.I1.P2 32.37%

PTRANS.I1.P2 FFT.I1.P2 FFT.I1.P2 FFT.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 36.60%

PTRANS.I1.P2 FFT.I1.P2 FFT.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 21.22%

PTRANS.I1.P2 FFT.I1.P2 FFT.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 MUFITS.I1.P2 24.43%
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Table A.3 continued from previous page

Applications

Real

Interference

Level

PTRANS.I1.P2 FFT.I1.P2 FFT.I1.P2 DGEMM.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 27.03%

PTRANS.I1.P2 FFT.I1.P2 FFT.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 31.88%

PTRANS.I1.P2 FFT.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 16.27%

PTRANS.I1.P2 FFT.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 MUFITS.I1.P2 17.42%

PTRANS.I1.P2 FFT.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 20.24%

PTRANS.I1.P2 FFT.I1.P2 DGEMM.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 25.36%

PTRANS.I1.P2 FFT.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 27.30%

PTRANS.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 14.13%

PTRANS.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 MUFITS.I1.P2 14.56%

PTRANS.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 15.50%

PTRANS.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 17.27%

PTRANS.I1.P2 DGEMM.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 20.10%

PTRANS.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 25.30%

HPL.I1.P2 HPL.I1.P2 HPL.I1.P2 HPL.I1.P2 HPL.I1.P2 HPL.I1.P2 17.70%

HPL.I1.P2 HPL.I1.P2 HPL.I1.P2 HPL.I1.P2 HPL.I1.P2 FFT.I1.P2 19.25%

HPL.I1.P2 HPL.I1.P2 HPL.I1.P2 HPL.I1.P2 HPL.I1.P2 DGEMM.I1.P2 15.80%

HPL.I1.P2 HPL.I1.P2 HPL.I1.P2 HPL.I1.P2 HPL.I1.P2 MUFITS.I1.P2 17.64%

HPL.I1.P2 HPL.I1.P2 HPL.I1.P2 HPL.I1.P2 FFT.I1.P2 FFT.I1.P2 22.78%

HPL.I1.P2 HPL.I1.P2 HPL.I1.P2 HPL.I1.P2 FFT.I1.P2 DGEMM.I1.P2 19.14%

HPL.I1.P2 HPL.I1.P2 HPL.I1.P2 HPL.I1.P2 FFT.I1.P2 MUFITS.I1.P2 20.67%

HPL.I1.P2 HPL.I1.P2 HPL.I1.P2 HPL.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 16.44%

HPL.I1.P2 HPL.I1.P2 HPL.I1.P2 HPL.I1.P2 DGEMM.I1.P2 MUFITS.I1.P2 16.49%

HPL.I1.P2 HPL.I1.P2 HPL.I1.P2 HPL.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 17.74%

HPL.I1.P2 HPL.I1.P2 HPL.I1.P2 FFT.I1.P2 FFT.I1.P2 FFT.I1.P2 27.37%

HPL.I1.P2 HPL.I1.P2 HPL.I1.P2 FFT.I1.P2 FFT.I1.P2 DGEMM.I1.P2 21.53%

HPL.I1.P2 HPL.I1.P2 HPL.I1.P2 FFT.I1.P2 FFT.I1.P2 MUFITS.I1.P2 23.64%

HPL.I1.P2 HPL.I1.P2 HPL.I1.P2 FFT.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 17.75%

HPL.I1.P2 HPL.I1.P2 HPL.I1.P2 FFT.I1.P2 DGEMM.I1.P2 MUFITS.I1.P2 18.27%

HPL.I1.P2 HPL.I1.P2 HPL.I1.P2 FFT.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 21.58%

HPL.I1.P2 HPL.I1.P2 HPL.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 15.87%

HPL.I1.P2 HPL.I1.P2 HPL.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 MUFITS.I1.P2 15.92%

HPL.I1.P2 HPL.I1.P2 HPL.I1.P2 DGEMM.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 18.08%

HPL.I1.P2 HPL.I1.P2 HPL.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 18.87%

HPL.I1.P2 HPL.I1.P2 FFT.I1.P2 FFT.I1.P2 FFT.I1.P2 FFT.I1.P2 35.45%

HPL.I1.P2 HPL.I1.P2 FFT.I1.P2 FFT.I1.P2 FFT.I1.P2 DGEMM.I1.P2 26.41%

HPL.I1.P2 HPL.I1.P2 FFT.I1.P2 FFT.I1.P2 FFT.I1.P2 MUFITS.I1.P2 29.06%

HPL.I1.P2 HPL.I1.P2 FFT.I1.P2 FFT.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 20.27%

HPL.I1.P2 HPL.I1.P2 FFT.I1.P2 FFT.I1.P2 DGEMM.I1.P2 MUFITS.I1.P2 22.05%

HPL.I1.P2 HPL.I1.P2 FFT.I1.P2 FFT.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 27.63%

HPL.I1.P2 HPL.I1.P2 FFT.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 19.39%

HPL.I1.P2 HPL.I1.P2 FFT.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 MUFITS.I1.P2 20.22%

HPL.I1.P2 HPL.I1.P2 FFT.I1.P2 DGEMM.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 21.56%

HPL.I1.P2 HPL.I1.P2 FFT.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 25.00%

HPL.I1.P2 HPL.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 15.12%

HPL.I1.P2 HPL.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 MUFITS.I1.P2 15.07%

HPL.I1.P2 HPL.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 16.02%

HPL.I1.P2 HPL.I1.P2 DGEMM.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 17.85%

HPL.I1.P2 HPL.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 20.04%

HPL.I1.P2 FFT.I1.P2 FFT.I1.P2 FFT.I1.P2 FFT.I1.P2 FFT.I1.P2 42.98%

HPL.I1.P2 FFT.I1.P2 FFT.I1.P2 FFT.I1.P2 FFT.I1.P2 DGEMM.I1.P2 31.81%

HPL.I1.P2 FFT.I1.P2 FFT.I1.P2 FFT.I1.P2 FFT.I1.P2 MUFITS.I1.P2 34.86%

HPL.I1.P2 FFT.I1.P2 FFT.I1.P2 FFT.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 21.97%

HPL.I1.P2 FFT.I1.P2 FFT.I1.P2 FFT.I1.P2 DGEMM.I1.P2 MUFITS.I1.P2 26.75%

HPL.I1.P2 FFT.I1.P2 FFT.I1.P2 FFT.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 33.04%

HPL.I1.P2 FFT.I1.P2 FFT.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 18.71%

HPL.I1.P2 FFT.I1.P2 FFT.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 MUFITS.I1.P2 20.71%

HPL.I1.P2 FFT.I1.P2 FFT.I1.P2 DGEMM.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 22.70%

HPL.I1.P2 FFT.I1.P2 FFT.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 26.33%

HPL.I1.P2 FFT.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 15.46%

HPL.I1.P2 FFT.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 MUFITS.I1.P2 16.74%

HPL.I1.P2 FFT.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 18.24%

HPL.I1.P2 FFT.I1.P2 DGEMM.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 20.54%

HPL.I1.P2 FFT.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 24.36%

HPL.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 14.45%

HPL.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 MUFITS.I1.P2 14.73%

HPL.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 14.83%
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HPL.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 15.50%

HPL.I1.P2 DGEMM.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 17.88%

HPL.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 20.70%

FFT.I1.P2 FFT.I1.P2 FFT.I1.P2 FFT.I1.P2 FFT.I1.P2 FFT.I1.P2 59.63%

FFT.I1.P2 FFT.I1.P2 FFT.I1.P2 FFT.I1.P2 FFT.I1.P2 DGEMM.I1.P2 40.05%

FFT.I1.P2 FFT.I1.P2 FFT.I1.P2 FFT.I1.P2 FFT.I1.P2 MUFITS.I1.P2 46.36%

FFT.I1.P2 FFT.I1.P2 FFT.I1.P2 FFT.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 30.21%

FFT.I1.P2 FFT.I1.P2 FFT.I1.P2 FFT.I1.P2 DGEMM.I1.P2 MUFITS.I1.P2 34.50%

FFT.I1.P2 FFT.I1.P2 FFT.I1.P2 FFT.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 39.21%

FFT.I1.P2 FFT.I1.P2 FFT.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 23.17%

FFT.I1.P2 FFT.I1.P2 FFT.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 MUFITS.I1.P2 25.06%

FFT.I1.P2 FFT.I1.P2 FFT.I1.P2 DGEMM.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 29.42%

FFT.I1.P2 FFT.I1.P2 FFT.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 36.02%

FFT.I1.P2 FFT.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 19.37%

FFT.I1.P2 FFT.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 MUFITS.I1.P2 20.29%

FFT.I1.P2 FFT.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 21.75%

FFT.I1.P2 FFT.I1.P2 DGEMM.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 24.97%

FFT.I1.P2 FFT.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 30.73%

FFT.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 15.40%

FFT.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 MUFITS.I1.P2 15.60%

FFT.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 17.02%

FFT.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 19.46%

FFT.I1.P2 DGEMM.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 23.00%

FFT.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 26.37%

DGEMM.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 14.22%

DGEMM.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 MUFITS.I1.P2 13.98%

DGEMM.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 14.24%

DGEMM.I1.P2 DGEMM.I1.P2 DGEMM.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 16.71%

DGEMM.I1.P2 DGEMM.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 17.51%

DGEMM.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 19.94%

MUFITS.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 MUFITS.I1.P2 22.95%

Table A.4: Interference results for co-location scheme “D”

Applications
Real

Interference
Level

PT.I3.P1 PT.I3.P1 PT.I3.P1 PT.I3.P1 PT.I3.P1 PT.I3.P1 PT.I3.P1 PT.I3.P1 PT.I3.P1 PT.I3.P1 PT.I3.P1 PT.I3.P1 77.04%
PT.I3.P1 PT.I3.P1 PT.I3.P1 PT.I3.P1 PT.I3.P1 PT.I3.P1 PT.I3.P1 PT.I3.P1 PT.I3.P1 PT.I3.P1 PT.I3.P1 DG.I3.P1 65.89%
PT.I3.P1 PT.I3.P1 PT.I3.P1 PT.I3.P1 PT.I3.P1 PT.I3.P1 PT.I3.P1 PT.I3.P1 PT.I3.P1 PT.I3.P1 DG.I3.P1 DG.I3.P1 56.74%
PT.I3.P1 PT.I3.P1 PT.I3.P1 PT.I3.P1 PT.I3.P1 PT.I3.P1 PT.I3.P1 PT.I3.P1 PT.I3.P1 DG.I3.P1 DG.I3.P1 DG.I3.P1 52.36%
PT.I3.P1 PT.I3.P1 PT.I3.P1 PT.I3.P1 PT.I3.P1 PT.I3.P1 PT.I3.P1 PT.I3.P1 DG.I3.P1 DG.I3.P1 DG.I3.P1 DG.I3.P1 40.55%
PT.I3.P1 PT.I3.P1 PT.I3.P1 PT.I3.P1 PT.I3.P1 PT.I3.P1 PT.I3.P1 DG.I3.P1 DG.I3.P1 DG.I3.P1 DG.I3.P1 DG.I3.P1 32.85%
PT.I3.P1 PT.I3.P1 PT.I3.P1 PT.I3.P1 PT.I3.P1 PT.I3.P1 DG.I3.P1 DG.I3.P1 DG.I3.P1 DG.I3.P1 DG.I3.P1 DG.I3.P1 27.81%
PT.I3.P1 PT.I3.P1 PT.I3.P1 PT.I3.P1 PT.I3.P1 DG.I3.P1 DG.I3.P1 DG.I3.P1 DG.I3.P1 DG.I3.P1 DG.I3.P1 DG.I3.P1 24.87%
PT.I3.P1 PT.I3.P1 PT.I3.P1 PT.I3.P1 DG.I3.P1 DG.I3.P1 DG.I3.P1 DG.I3.P1 DG.I3.P1 DG.I3.P1 DG.I3.P1 DG.I3.P1 24.60%
PT.I3.P1 PT.I3.P1 PT.I3.P1 DG.I3.P1 DG.I3.P1 DG.I3.P1 DG.I3.P1 DG.I3.P1 DG.I3.P1 DG.I3.P1 DG.I3.P1 DG.I3.P1 21.23%
PT.I3.P1 PT.I3.P1 DG.I3.P1 DG.I3.P1 DG.I3.P1 DG.I3.P1 DG.I3.P1 DG.I3.P1 DG.I3.P1 DG.I3.P1 DG.I3.P1 DG.I3.P1 16.68%
PT.I3.P1 DG.I3.P1 DG.I3.P1 DG.I3.P1 DG.I3.P1 DG.I3.P1 DG.I3.P1 DG.I3.P1 DG.I3.P1 DG.I3.P1 DG.I3.P1 DG.I3.P1 13.70%
DG.I3.P1 DG.I3.P1 DG.I3.P1 DG.I3.P1 DG.I3.P1 DG.I3.P1 DG.I3.P1 DG.I3.P1 DG.I3.P1 DG.I3.P1 DG.I3.P1 DG.I3.P1 14.31%

Due to space constraint, we shorten applications names in Table A.4. So, “PT.I3.P1”

and “DG.I3.P1” means “PTRANS.I3.P1” and “DGEMM.I3.P1”, respectively.



105

APPENDIX B -- Published Papers

• Alves, M.; Drummond, L. Análise de Desempenho de um Simulador de Reservatórios
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