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RESUMO 

A proveniência gerada por sistemas de workflow distintos é geralmente expressa usando 

diferentes formatos. Isto não é um problema quando cientistas analisam grafos de proveniência 

isolados, ou quando eles utilizam o mesmo sistema de workflow. Entretanto, quando há 

necessidade de analisar grafos de proveniência heterogêneos de múltiplos sistemas, as soluções 

existentes não fornecem o apoio necessário. Para resolver este problema, nós propomos uma 

arquitetura de integração de proveniência que adota o ProvONE como modelo de integração e 

mostramos como as bases de dados de proveniência distintas podem ser convertidas para um 

esquema global ProvONE. Desta forma, cientistas podem consultar esta base de dados 

integrada, explorando e interligando proveniência de vários sistemas e workflows diferentes que 

podem representar implementações distintas do mesmo experimento. Para ilustrar a viabilidade 

da nossa abordagem, nós desenvolvemos mapeamentos conceituais entre bases de dados de 

proveniência de quatro sistemas de workflow (e-Science Central, SciCumulus, Taverna e 

VisTrails). Nós fornecemos cartuchos que implementam tais mapeamentos e geramos uma base 

de dados integrada expressa em fatos Prolog. Nós também desenvolvemos regras Prolog que 

permitem que cientistas consultem a base de dados integrada. Resultados de uma avaliação 

experimental demonstram a efetividade e eficiência da nossa abordagem. 

 

Palavras-chave: workflow científico, proveniência, proveniência prospectiva, proveniência 

retrospectiva, análise de proveniência, análise de proveniência integrada, interoperabilidade de 

dados de proveniência, PROV, ProvONE. 

  



    
 

ABSTRACT 

Provenance generated by different workflow systems is generally expressed using 

different formats. This is not an issue when scientists analyze provenance graphs in isolation, 

or when they use the same workflow system. However, when they need to analyze 

heterogeneous provenance graphs from multiple systems, the existing solutions do not provide 

the required support. To address this problem, we propose a provenance integration architecture 

that adopts ProvONE as an integration model and show how different provenance databases 

can be converted to a global ProvONE schema. Scientists can then query this integrated 

database, exploring and linking provenance across several different workflows that may 

represent different implementations of the same experiment. To illustrate the feasibility of our 

approach, we developed conceptual mappings between the provenance databases of four 

workflow systems (e-Science Central, SciCumulus, Taverna, and VisTrails). We provide 

cartridges that implement such mappings and generate an integrated provenance database 

expressed as Prolog facts. We have also developed Prolog rules that enable scientists to query 

the integrated database. Results of an experimental evaluation demonstrates the effectiveness 

and efficiency of our approach. 

 

Keywords: scientific workflow, provenance, prospective provenance, retrospective 

provenance, provenance analysis, integrated provenance analysis, provenance data 

interoperability, PROV and ProvONE models. 
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 – INTRODUCTION 

1.1 MOTIVATION 

Over the last years, scientists have adopted Workflow Management Systems (WfMS) 

to execute their experiments based on computational simulations (COHEN-BOULAKIA et al., 

2017; CRUZ, SERGIO MANUEL SERRA DA et al., 2009; CUI LIN et al., 2009; TAYLOR 

et al., 2014). Workflow Management Systems (WfMS) have been facilitating the design and 

implementation of data-driven computational science experiments, through a high-level 

programming model and a middleware-based runtime environment. Such experiments are 

usually very complex and require many executions with different algorithms and parameters so 

that several aspects of a hypothesis can be analyzed. Each of these executions is called a trial 

of the experiment. A trial of a scientific experiment is directly connected to a scientific 

workflow specification. There are several WfMS such as Kepler (ALTINTAS et al., 2006), 

VisTrails (CALLAHAN et al., 2006b), Taverna (HULL et al., 2006), Swift (ZHAO, YONG et 

al., 2007), Askalon (FAHRINGER et al., 2005), Chiron (OGASAWARA et al., 2013), Pegasus 

(DEELMAN et al., 2005) and SciCumulus (DE OLIVEIRA et al., 2010). Many of them are 

focused on high-performance computing (DE OLIVEIRA et al., 2010; DEELMAN et al., 2005; 

OGASAWARA et al., 2013; ZHAO, YONG et al., 2007), others on visualization 

(CALLAHAN et al., 2006b; LIN et al., 2008), while others focus on a specific domain 

(ABOUELHODA et al., 2012; OINN et al., 2004). However, all of them have a common 

characteristic: they offer mechanisms for capturing, storing and managing provenance data 

(FREIRE et al., 2008). 

Provenance is a fundamental part of the scientific experiment life cycle  (Figure 1) that 

begins in the experiment specification (composition), proceeds to execution and then to the 

analysis phase (MATTOSO et al., 2010). In this life cycle, the Analysis Phase holds the study 

of the results obtained in the execution phase through the collected provenance. Provenance 

can be defined as an audit trail of the experiment and captures information about the steps (i.e. 

activities) used to produce a data product (e.g. data files). Using provenance data, scientists are 

able to analyze the quality and authorship of data and reproduce the achieved results. It also 

helps scientists to discover new research opportunities, bringing to light new problems and 

challenges hidden in the traces of their experiments. It also aids scientists to detect and fix 

mistakes, acting similarly to a debug tool over the source code. In addition, provenance 

analytics is crucial for understanding a scientific experiment result, its dissemination, 
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reproduction, and evolution. As the life cycle suggests, provenance analytics can generate more 

data (graphs, visualizations, etc.), contributing to a data deluge and increasing the work of 

scientist over it (FREIRE; SILVA, 2008b). This way, data analysis and visualization become 

bottlenecks to scientific discovery (MATES et al., 2011). 

 

Figure 1. Scientific experiment life cycle as proposed by Mattoso et al. (2010) 

Let us use, as example, a scenario where two or more collaborative research teams work 

independently on common (or similar) goals, adopting slightly different methods and 

procedures and thus producing workflows that differ in design, implementation, and execution 

middleware, but are otherwise similar in terms of intent, using comparable tools and algorithms. 

The two concrete examples we consistently use throughout this thesis is that of (i) four 

bioinformatics research groups, interested in generating phylogenetic trees and (ii) four 

clinician/geneticist research groups, interested in patient diagnosis. The first four groups 

independently designed and implemented SciPhy (OCAÑA, KARY et al., 2011), SciEvol 

(OCAÑA, KARY A. C. S. et al., 2012a), Phylo, and ML1 workflows, using different WfMS, 

namely SciCumulus (DE OLIVEIRA et al., 2010), VisTrails (CALLAHAN et al., 2006b), 

Taverna (OINN et al., 2004), and e-Science Central (WATSON et al., 2010), respectively. On 

the other hand, the last four groups also designed and implemented four workflows named SVI, 

Pathogenesis, GeneClass, and PatientDiag. These groups also use distinct WfMS (e-Science 

                                                
1 http://eubrazilcloudconnect.eu/content/leishmaniasis-virtual-laboratory 
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Central, VisTrails, Taverna, and SciCumulus, respectively) to run the workflows. Each of these 

workflow systems has their specificities, but they are all capable of collecting retrospective 

provenance traces from their workflow runs, while a subset of them is capable of capturing both 

prospective (information about the workflow specification) and retrospective (information 

about the workflow execution) provenance. Since the phylogenetic analysis and patient 

diagnosis workflows use either the same or similar input data and produce similar outputs, it 

seems natural to try and use the provenance traces of their runs to compare and discuss produced 

results. However, each WfMS used to execute the workflows (VisTrails, Taverna, eScience 

Central and SciCumulus) has its own provenance schema and logical data model to represent 

prospective/retrospective provenance (relational, RDF, XML/relational, and graph-based, 

respectively) as well as to store it. Furthermore, the different nature of the WfMS leads to 

different levels of details in the provenance traces. 

Thus, while in theory it should be possible for researchers to ask questions on any of 

these provenance graphs seamlessly and transparently, the heterogeneity in the design, 

implementation, and execution of their workflows translates into provenance traces that are 

themselves heterogeneous, making it difficult to analyze them jointly. Ultimately, this lessens 

the role of provenance in facilitating scientific discourse. 

Aiming at verifying whether this kind of scenario could be real in practice, we have 

designed a survey2 that was sent to scientists of different institutions around the world. This 

survey has the following question: “Consider a collaborative science scenario where two teams 

execute variations of a given experiment and perform a joint analysis of these experiments, by 

comparing result data, methods, duration, and/or used parameters. In your experience, how 

likely is this scenario going to manifest itself in practice?” We collected the responses and 

analyzed those from scientists which already have used a computational environment to design 

and execute an experiment (82 scientists fit this criteria). From those, just 6 % answered this 

kind of situation is not at all likely to happen. 

Promoting provenance interoperability has been also the goal of several recent 

community efforts in provenance modeling, starting with the Open Provenance Model (OPM) 

(MOREAU; FREIRE; et al., 2008) and culminating with PROV (MOREAU; MISSIER, 

2013a), a W3C recommendation. Further, both ProvONE (MISSIER; DEY; et al., 2013) and 

PROV-Wf (COSTA et al., 2013a) independently extended PROV, adding explicit 

representation of prospective provenance (FREIRE et al., 2008) to the model. In special, 

                                                
2 http://survey.npimentel.net/en/ 
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ProvONE (which is used in this thesis) has been used by many research groups to represent 

provenance from workflow-based experiments. It is an abstract provenance model that can be 

implemented by many WfMS. 

This thesis focuses in solving the following problem: How to enable integrated analysis 

on heterogeneous provenance databases generated by distinct WfMSs from similar (but not 

identical) experiments? 

1.2 GOAL 

In this thesis, we show how provenance interoperability that includes integration of the traces 

and their seamless querying, can be achieved in a practical setting where we assume a degree 

of similarity amongst the traces, as in the science and clinical scenario just outlined.  Our main 

goal is to improve the efficiency and the effectiveness of provenance analysis by integrating 

heterogeneous provenance traces. Our approach aims at allowing scientists to go across 

multiple graphs and analyze provenance without worring about the format, structure, or 

language. 

 We argue that, to be useful, an integration model should include both retrospective and 

prospective provenance (which we henceforth concisely refer to as r-prov and p-prov). Hence, 

we develop a reference classification of provenance space that includes all possible matches 

between different provenance types and traces. 

Specifically, we map provenance structures from different WfMSs to the ProvONE 

model and design an architecture that includes mechanisms to automatically translate particular 

provenance traces to ProvONE. We develop Prolog rules that enable scientists to query the 

integrated database, and new rules can be added as needed. We use Prolog as it provides great 

flexibility both in producing the integrated database, because provenance relationships translate 

to Prolog facts, and in formulating queries with inference capability, using Prolog rules. It is 

worth noticing that Prolog is considered a natural choice due to its syntactic similarity to PROV-

N (MOREAU; MISSIER, 2013b). In addition, Prolog has been successfully used to query and 

analyze provenance data in approaches such as noWorkflow (MURTA et al., 2014). 

Some existing approaches (ELLQVIST et al., 2009; SELTZER et al., 2011; ZHAO, 

JING et al., 2008) work on the integration and querying of provenance from different sources. 

Following work resulting from this thesis (OLIVEIRA et al., 2016), Prabhune et al. (2018; 

2017) also propose an integration approach to analyze heterogeneous provenance graphs by 

using RDF and SPARQL. 
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1.3 RESEARCH METHODOLOGY 

Aiming to achieve our main goal, we define three stages in this work. The stages are: 

problem characterization, the design and implementation of our approach, and its evaluation. 

We present an overview of these stages as follows: 

Problem characterization: in order to obtain the state of the art of provenance analysis, 

we conduct a literature review using the Snowballing technique (GOODMAN, 1961). In this 

technique, we first select a set of papers known to be relevant in the studied area. We call this 

set S. Then, we analyze all papers that are cited by the papers in S. Any paper that is considered 

relevant to the subject is included in S. We also analyze papers that cited the papers in S and 

include the relevant ones in S as well. Such procedure is repeated over all papers in S until no 

paper is added. Based on this set of papers, we analyze the several dimensions involved in 

provenance data analysis. From this, we create a taxonomy to classify and summarize the main 

existing approaches (OLIVEIRA et al., 2018).  

We also submitted a survey to scientists of different institutions around the world asking 

the follow question: “Consider a collaborative science scenario where two teams execute 

variations of a given experiment and perform a joint analysis of these experiments, by 

comparing result data, methods, duration, and/or used parameters. In your experience, how 

likely is this scenario going to manifest itself in practice?” We collect the responses and analyze 

those from scientists which already have used a computational environment to design and 

execute an experiment (82 scientists fit this criteria). From those, just 6 % answered this kind 

of situation is not at all likely to happen. 

After performing the literature review and survey, we elaborate to the following research 

question: “How to analyze heterogeneous provenance graphs, generated by similar but 

heterogeneous in silico experiments, taking into account the syntactic and semantic aspects of 

such graphs?” 

Design and implementation: based on the results obtained from the problem 

characterization stage, we design a reference provenance classification and an architecture that 

brings together heterogeneous provenance traces from different WfMS in a single knowledge 

base of Prolog facts.  

The components of our architecture were developed and tested with different WfMSs. 

After running the implementation of our architecture, the provenance is consolidated in the 

knowledge base along with rules that can be used to query and analyze the workflow execution.  
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Evaluation: our approach was evaluated to verify its efficiency and effectiveness. Hence, 

we performed an experiment involving two groups (A and B) of volunteers (Computer Science 

students and professors) that have a basic knowledge level of Prolog. The experiment was 

conducted in a lab and the volunteers received instructions about the workflow and provenance 

terms and structures and about the knowledge base used. A digital form with 6 questions was 

delivered to them to be answered and they were instructed to register the time they spent to 

answer each of the questions. Group A had to answer the first 3 questions using the non-

integrated approach and then answer 3 more questions using our integrated approach. Group B 

did the same in an inverse order. Besides that, we quantitatively evaluated our approach by 

comparing the storage space and time spent to translate provenance data. 

1.4 CONTRIBUTIONS 

In summary, this work has the following main contributions: 

Problem characterization: We performed a survey asking scientists of different 

institutions around the world about how likely a scenario of integrated provenance analysis 

could manifest in practice. Just 6% of the respondents said this scenario is not at all likely to 

happen. This survey shows how important is the integrated provenance analysis in a real 

situation. We also performed a deep research about provenance analysis approaches and 

designed a new taxonomy that can guide current and future studies in this area. 

 Approach: We proposed an approach to analyze provenance from heterogeneous 

provenance graphs by using ProvONE as a canonical model. We also developed a reference 

classification of provenance space. Finally, the different provenance graphs were brought 

together in a knowledge base with Prolog rules that facilitate the query and analysis process. 

 Implementation: We developed cartridges to automatically translate provenance data 

from similar workflows executed in different and well-known WfMSs (Taverna, VisTrails, 

SciCumulus, and e-Science Central) to Prolog facts, following the ProvONE model.  

 Evaluation: The effectiveness and efficiency of our approach was evaluated by a 

statistical study over results obtained from an experiment with two groups (A and B) of 

volunteers (Computer Science students and professors). Each group received a list of questions 

about provenance generated from two different workflows and had to answer and register the 

time they spent to answer each of the questions. Group A performed the experiment with the 

non-integrated approach while group B performed the same experiment by using our integrated 

approach. We also quantitatively assessed our approach and performed comparative studies. 
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1.5 RESEARCH HISTORY 

I started the PhD in the first semester of 2013 and finished the courses at the end of the same 

year. A summary research history timeline is presented in Figure 2. From 2013, we also started 

the literature review until 2018 when it culminated in a survey accepted at the ACM Computing 

Surveys Journal: 

 OLIVEIRA, Wellington; DE OLIVEIRA, Daniel; BRAGANHOLO, Vanessa. 

Provenance Analytics for Workflow-based Computational Experiments: a Survey. 

ACM Computing Surveys, p. 1–29, 2018 (to appear). 

 

 

Figure 2. Research history timeline 

  

In 2014, we started working with provenance integration and capture approaches. The 

results were published in two events: 

 OLIVEIRA, Wellington; NEVES, Victor C.; OCAÑA, Kary A. C. S.; MURTA, 

Leonardo; DE OLIVEIRA, Daniel; and BRAGANHOLO, Vanessa. Captura e 

Consulta a Dados de Proveniência Retrospectiva Implícita Intra-Atividade. In 

SBBD, 2014. p. 37-46. 

 OLIVEIRA, Wellington; DE OLIVEIRA, Daniel; and BRAGANHOLO, Vanessa. 

Experiencing PROV-Wf for Provenance Interoperability in SWfMSs. In 

International Provenance and Annotation Workshop (IPAW), 2014. p. 294-296. 
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 In 2015, I prepared and presented my research proposal in the qualifying examination 

and started my PhD Sandwich Program at the Newcastle University in UK under the 

supervision of Prof. Paolo Missier.  

During my PhD Sandwich, which finished in 2016, we developed an approach to 

analyze heterogeneous provenance graphs from different WfMSs. The result was written down 

in a paper that was accepted at IPAW (International Provenance and Annotation Workshop). 

This work was awarded the best paper of the workshop. We also performed a comparative study 

between ProvONE and PROV-Wf models. The results were published in the Brazilian e-

Science Workshop in 2016. 

 OLIVEIRA, Wellington; MISSIER, Paolo; Ocaña, Kary A. C. S.; DE OLIVEIRA, 

Daniel; and BRAGANHOLO, Vanessa. Analyzing Provenance Across 

Heterogeneous Provenance Graphs. In International Provenance and Annotation 

Workshop (IPAW), 2016. p. 57-70. 

 OLIVEIRA, Wellington; MISSIER, Paolo; DE OLIVEIRA, Daniel; and 

BRAGANHOLO, Vanessa. Comparing Provenance Data Models for Scientific 

Workflows: an Analysis of PROV-Wf and ProvOne. In Brazilian e-Science 

Workshop (BRESCI), 2016. p. 1-8. 

 In 2017, we designed and implemented an architecture to import domain-specific data 

from external sources (not included in this thesis) and performed the evaluation of our approach: 

 OLIVEIRA, Wellington; OCAÑA, Kary A. C. S.; DE OLIVEIRA, Daniel; 

BRAGANHOLO, Vanessa. Querying Provenance along with External Domain Data 

Using Prolog. Journal of Information and Data Management (JIDM). v. 16, n. 1, p. 

3–18, Apr. 2017.  

In 2018, I intend to submit a paper to the FGCS (Future Generation of Computer Science) 

journal: 

OLIVEIRA, Wellington; MISSIER, Paolo; OCAÑA, Kary A. C. S.; DE OLIVEIRA, Daniel; and 

BRAGANHOLO, Vanessa. A Provenance Integration Architecture for Analyzing 

Heterogeneous Provenance Graphs. FGCS, to be submitted in 2018. 

1.6 ORGANIZATION 

The remainder of this thesis is organized as follows. Chapter 2 describes the provenance 

analysis approaches available in the literature. It also shows our provenance analysis taxonomy 

designed to guide new researches in this area. Chapter 3 presents our approach to analyze 

heterogeneous provenance graphs based on the ProvONE model. Chapter 4 describes the 
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experimental evaluation. First, we run an experiment with Computer Science students and 

professors to assess the effectiveness and efficient of our approach. Then, we performed a 

quantitative experiment and showed the comparative results. Finally, Chapter 5 concludes the 

thesis and points out future work. 
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 - PROVENANCE ANALYSIS FOR WORKFLOW-BASED 

COMPUTATIONAL EXPERIMENTS 

2.1 CONTEXT 

Although most authors agree that provenance data is useful for understanding the 

experiment and for reproducibility purposes, there is still a barrier to be overcome: how to 

analyze huge amounts of information generated by thousands (possibly millions) of large-scale 

workflow executions? In fact, the amount of published scientific papers on the subject 

evidences that provenance analytics has emerged as an important part of many research 

projects. Several technologies, platforms, applications, infrastructure, and standards are being 

proposed. However, to this date, the concepts involved with provenance analytics are not well 

organized, and the research results are incipient when compared to other aspects related to 

provenance such as capturing, modeling, and storing. 

Considering the huge interest on this topic and the difficulty in finding organized 

definitions of its associated concepts, in this chapter, we propose a taxonomy for the provenance 

analytics field and use it to present a survey of the state of the art approaches. Our taxonomy 

provides an understanding of the domain and aims at helping the scientist to compare different 

approaches for provenance analytics. To achieve such purpose, we performed a bibliographical 

survey using a technique known as Snowballing (GOODMAN, 1961). In this technique, we 

first select a set of papers known to be relevant in the studied area. We call this set S. Then, we 

analyze all papers that are cited by the papers in S. Any paper that is considered relevant to the 

subject is included in S. We also analyze papers that cited the papers in S and include the 

relevant ones in S as well. Such procedure is repeated over all papers in S until no paper is 

added. Based on this set of papers, we analyzed the several dimensions involved in provenance 

data analysis. From this, we created a taxonomy to classify and summarize the main existing 

approaches (OLIVEIRA et al., 2018).  

The remaining of this chapter is organized as follows. Section 2.2 describes provenance 

data and its types. Section 2.3 introduces the taxonomy we propose to classify the main types 

of provenance analytics. Section 2.4 describes query languages and mechanisms to access 

provenance data. Section 2.5 brings different computing resources to explore provenance data 

such as data mining and collaboration. Finally, Section 2.6 summarizes the approaches and 

discusses open problems. 
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2.2 BACKGROUND ON PROVENANCE 

Provenance describes the source and historical verification of the path traversed by a 

scientific workflow run to generate its result. It holds information about processes and data used 

to derive a result (DAVIDSON, SUSAN B.; FREIRE, 2008). Provenance gives credibility to 

the experiment, proves its results, makes its reproduction possible, and opens discovery 

opportunities in comparative studies. It improves the understanding and collaborates to a 

comprehension of the experiment as a whole. Furthermore, shared provenance repositories may 

guide the work of other scientists and speed up new scientific discoveries. 

Bose and Frew (2005) survey a more general classification on provenance that can be 

applied in different areas such as e-Science, GIS (Geographic Information System), Databases, 

etc. The authors prefer to use the term lineage instead of provenance to describe the historical 

data derivation and transformation. Based on a literature review, they provide a metamodel for 

lineage retrieval with three main components: Workflow Model, Metadata, and Lineage 

Recovering Model. Similarly, Ragan et al. (2016) present an organizational framework of 

provenance types and purposes to different domains (scientific workflows, map creation, 3D 

modeling, financial analysis, etc.) focusing on visualization and data analysis. Considering 

provenance in e-Science, Simmhan et al. (2005) define provenance as a type of metadata that 

brings the data derivation history, starting from its original sources. Their work also exposes a 

taxonomy of provenance data features based on its use, granularity, representation, storage, and 

dissemination. Such classification aids the verification of issues related to provenance that were 

not resolved by existing work in the literature. 

Especially for scientific workflows, provenance can be classified as prospective and 

retrospective. Prospective provenance represents the specification of computational tasks that 

will be executed. It corresponds to the steps to be followed to achieve a result. Retrospective 

provenance is given by executed activities and information about the environment used to 

produce a data product, consisting of a structured and detailed history of the execution of 

computational tasks (FREIRE et al., 2008). It can also be specialized in explicit and implicit. 

Retrospective provenance is called explicit when it is previously declared in the workflow 

specification. On the other hand, retrospective implicit provenance (or just implicit provenance) 

represents hidden provenance data captured over accessed or changed objects inside implicit 

dataflows. It corresponds to the dataflows that were not explicitly declared in the workflow 

specification (MARINHO et al., 2011; NEVES et al., 2017). As an example, implicit 



25 
 

provenance allows us to debug an activity and to identify file changes that silently occurred due 

to the fact that the activity is being used as a black box. 

Freire et al. (2008) classify the mechanisms for capturing provenance into three types: 

(i) workflow-based; (ii) activities-based; and (iii) operating system (OS)-based. Workflow-

based approaches monitor the workflow as a whole. They are provided by the WfMS and thus 

are tightly coupled to them. Activities-based approaches are those in which the activities are 

responsible for collecting their own provenance. These mechanisms can be independent of the 

WfMS, but require adaptation/instrumentation of the workflow activities (MARINHO et al., 

2011; NEVES et al., 2013). Finally, OS-based approaches can capture fine-grained 

retrospective provenance, but overall, they do not capture prospective provenance, or, when 

they do it, they are unable to relate prospective and retrospective provenance. Due to the huge 

amount of generated information, the capture and querying process can be complex (FREIRE 

et al., 2008). In addition to these, we subdivide the activity-based approaches in (iv) inter and 

(v) intra-activities capture mechanisms. Inter-activity approaches capture information at the end 

of each activity. On the other hand, intra-activity approaches capture changes during the activity 

execution and can capture overlapping changes that occurred between the beginning and the 

end of the activity execution. 

Cruz et al. (2009) use the capture mechanisms described by Freire et al. (2008) to 

classify provenance at capture levels in their taxonomy of provenance systems. Herschel and 

Hlawatsch (2016) give us a more general provenance classification. They define provenance in 

different types such as Data Provenance, Workflow Provenance, Information System 

Provenance, and Provenance (metadata). In their classification, Workflow Provenance can have 

Process Type, Computational Model, and Granularity that is divided in coarse-grained (control-

flow-based) or fine-grained (individual data-based). Our taxonomy can be seen as an evolution 

of the taxonomies proposed by Bose and Frew (2005), Simmhan et al. (2005), and Cruz et al. 

(2009) and also the classification defined by Herschel and Hlawatsch (2016) and  Herschel et 

al. (2017), focusing on provenance analytics. Section 2.3 describes the elements that compose 

our taxonomy for provenance analytics. 

2.3 A TAXONOMY FOR PROVENANCE ANALYTICS 

Provenance analytics can be performed over different provenance types and 

granularities. It can also use many access methods and heterogeneous formats for representing 

data. As mentioned in Section 2.2, both Bose and Frew (2005) and Simmhan et al. (2005) create 

metamodels or taxonomies to classify and describe types, granularities, and representations of 
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provenance. Besides them, Cruz et al. (2009) also define a general taxonomy to classify 

provenance characteristics in WfMS, and Herschel and Hlawatsch (2016) provide a general 

classification of provenance types and adapted visualizations. The taxonomy we propose in this 

chapter (Figure 3) differs from the previous ones in the sense that it focuses on the major 

features of provenance analytics. It provides the classification of the provenance analytics 

approaches into categories based on different aspects of this field and on the requirements of a 

scientific experiment. 

This section describes six sub-taxonomies that compose the more general taxonomy we 

propose. For the sake of simplicity, our taxonomy, presented in Figure 3, classifies the 

characteristics of provenance analytics approaches regarding type, granularity, model, format, 

access methods, and computing resources. In the following, we describe each term associated 

with the provenance analytics taxonomy. 

 

Figure 3: Provenance analytics taxonomy 

1. Type. As discussed in Section 2.2, provenance can be classified as prospective and 

retrospective. Usually, the majority of the analytic tools just consider these types of 

provenance. However, to analyze the complete provenance trail, scientists need to connect 
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all types of generated provenance data (prospective, explicit retrospective, and implicit 

retrospective provenance). 

2. Granularity. There are many ways to capture and analyze provenance data. We follow, in 

part, the capture mechanisms presented by Freire et al. (2008) (workflow-based, activities-

based, and OS-based) and described in Section 2.2 to classify the granularities of 

provenance analytics. Furthermore, we distinguish two types of granularities: process 

granularity and data granularity. Process granularity corresponds to the kind of process the 

provenance is linked to, for instance, workflow, activity (inter and intra-activity) or OS. It 

is the owner of the provenance. On the other hand, data granularity distinguishes the 

different levels of details (fine or coarse grain). It has four levels, as described below. 

2.1. Dataset. Provenance data can be organized in a set of similar or related data. In this 

classification, datasets are coarse-grained data used or generated by processes. 

2.2. File. At this granularity level, provenance is captured and analyzed from information 

about accesses and changes occurred over physical raw files generated or consumed by 

workflow activities (i.e. filename, directory, type of modification, modification time, 

etc.). 

2.2.1. Row. Analysis performed over provenance data at row level considers data about 

accesses and changes occurred over each file content line generated or consumed 

by workflow activities. It is the finest grain that can be captured by a provenance 

system over this type of artifact. 

2.3. Value. This provenance granularity level concerns input and output data exchanged by 

activities or programs/processes. Normally, it corresponds to return of function calls, 

function or procedure parameters, and message exchange among services. 

2.4. Relation. A relation (e.g. a relational table) is a structured type that consists of one or 

more columns. Instances of a relation have a set of tuples. Each tuple has a single value 

for each column. A relation may be associated with other relations. 

3. Model. The facilities provided by the use of WfMS make the development and management 

of in silico experiments much easier. However, there are issues related to the heterogeneity 

of the provenance data they generate. Each workflow system uses a different syntactic 

structure (model) to represent and store provenance, which creates a barrier to provenance 

integration. This way, several recent community efforts have culminated with the 

development of generic models to represent provenance and to promote provenance 

interoperability. We include the most expressive of these models in our taxonomy. 
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3.1. OPM. The Open Provenance Model (OPM) was the first model designed to represent 

retrospective provenance data. It enables exchanging provenance information and the 

development and share of tools that operate on it (MOREAU et al., 2011). OPM has 

three types of elements (Artifact, Process, and Agent) that can be related through 

predetermined relationships (used, wasGeneratedBy, wasControlledBy, 

wasTriggeredBy, and wasDerivedFrom). 

3.1.1. D-OPM. DataONE-OPM (D-OPM) is a provenance model that extends OPM. 

It was designed in the context of the DataONE Project, and it can represent the 

workflow structure, traces from workflow executions, data structure, and 

workflow evolution (CUEVAS-VICENTTIN et al., 2012). 

3.2. PROV. PROV provides a generic data model (i.e., PROV-DM) to outline provenance. 

It is a W3C recommendation and was designed to be an agnostic model to represent 

provenance from different areas. Its data model is capable of representing data 

transformations, ownership, etc. PROV may also be extended to fulfill requirements of 

particular domains. The elements Entity, Activity, and Agent along with the 

relationships Used, WasGeneratedBy, WasInformedBy, WasAssociatedWith, 

WasDerivedFrom, WasAttributedTo, and ActedOnBehalfOf form its core. 

3.2.1. ProvONE. ProvONE extends the PROV model with an explicit representation 

of prospective provenance, thus capturing the most relevant information on 

scientific workflow processes. It is designed to accommodate extensions for 

specific scientific workflow systems (MISSIER; DEY; et al., 2013). It includes 

both prospective and retrospective provenance and allows for easy integration of 

terms from external vocabularies, including Dublin Core or WfMS. 

3.2.2. PROV-Wf. PROV-Wf is a conceptual model for the representation of 

prospective and retrospective provenance collected from the execution of scientific 

workflows. It is also a specialization of the PROV model and provides specific 

elements to the scientific experiments context. According to COSTA et al. 

(2013b), their elements can be classified into three main types: (i) Structure of the 

Experiment; (ii) Execution of the Experiment; and (iii) Environment 

Configuration. 

3.2.3. Wf4Ever. The Wf4Ever team also extends PROV and uses the term wfdesc and 

wfprov to describe prospective and retrospective provenance respectively in the 

context of research objects (CORCHO et al., 2012). Their model can represent 

both executable and abstract workflows. 
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4. Format. Usually, provenance captured by one WfMS is stored using a specific format that 

can vary according to the domain and user needs (FREIRE et al., 2008). Even when the 

abstraction model differs from the storage model, they share an essential information type: 

processes and data dependency. Normally, provenance data is represented as a directed 

acyclic graph (DAG). On the other hand, many provenance systems have used different 

formats to represent and store provenance data such as RDF triples, relational tables, graphs, 

XML, and JSON. 

5. Access Methods. Due to the large volume of provenance data an experiment can generate, 

it is necessary to use appropriate and friendly ways to access, filter, and group it. Moreover, 

access methods are very dependent on the models and formats in which provenance is 

represented and stored. We classify the mechanisms or tools to access provenance data as 

WfMS-coupled (the mechanism works inside the system) and standalone (the mechanism 

is decoupled from the WfMS that generates the provenance data). Furthermore, each 

mechanism may use different ways to access provenance data, as described next. 

5.1. Query Language. Data analyses approaches can use common languages such as SQL 

(ELMASRI; NAVATHE, 2010), XQuery (BOAG et al., 2010), XPath (BERGLUND 

et al., 2010), and SPARQL (PRUD’HOMMEAUX; SEABORNE, 2008), depending 

on the data storage model (Relational, XML, RDF) or specialized languages such as 

VDL (Virtual Data Language) (FOSTER et al., 2002), OPQL (OPM Query Language) 

(LIM et al., 2011), QLP (Query Language for Provenance) (ANAND, M.K. et al., 

2010), among others, which were specially developed to query provenance data. 

5.2. Visual. Some approaches use visualization tools to present provenance data through 

images (hierarchical trees, graphs, timelines, etc.). These tools ease the construction of 

human inferences and the identification of patterns in the analyzed data. Visualization 

can also be used to add meaning and summarize 

5.3. API. APIs provide specialized algorithms, search mechanisms, and interfaces to query 

provenance data on various data sources. 

6. Computing Resources. Scientists may explore and extract useful information over 

provenance data through different computing resources. Each one is built upon a specific 

provenance model. Our taxonomy describes some of the main available resources as 

follows. 

6.1. Inference. In some cases, provenance data is better understood when we have 

information on both its structure (syntactic) and semantics. Inference in this context 
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plays an important role because it can derive new relations on both the syntactic and 

semantics aspects. 

6.2. Similarity/Evolution. Each piece of data can be versioned so that its evolution can be 

tracked. In the provenance analytics context, this becomes interesting when applied to 

Workflows, Programs, Graphs, and Files. It can help us to follow their changing 

history, reuse it, or compare versions to find out their differences and similarities. 

6.3. Collaboration. Crowdsourcing (HOWE, 2006) has helped many initiatives in the 

computing area. There are already some Web systems that aid users to share workflows, 

provenance data, their understandings, and questions about scientific experiments. 

These systems inherit features from blog systems and social networks such as 

Facebook, MySpace, Twitter, and Flickr. Usually, these environments offer wide space 

to discuss and disseminate ideas. 

6.4. Data Mining. This resource allows the discovery of new patterns that could not be 

observed in a direct way in the experiment. These patterns may help scientists to extract 

hidden information over huge amounts of data generated by numerous workflow 

executions. Applying data mining over provenance repositories can generate data 

clusters, creating compositions that aggregate data and facilitate provenance analytics. 

6.5. Customization. Analyzing provenance is far from trivial due to the large amount of 

data produced by the execution of various experiment trials on WfMS. In this sense, 

customization of provenance graphs and views can be a very useful mechanism to filter 

information and show just pieces of information that make sense for a given scientist 

perspective. 

6.6. Summarization. Summarization plays an important role on provenance analytics by 

shrinking data, spotting the most useful information, and throwing distractions out. 

The next sections discuss the state of the art approaches for provenance analytics 

available in the literature using our proposed taxonomy as a guide. We focus on Access 

Methods (Section 2.4) and Computing Resources (Section 2.5), since the other aspects of our 

taxonomy are not directly related to analysis. Instead, they classify provenance types, models, 

formats, and granularity, which are crucial for the analysis tools that run over provenance data. 

2.4 ACCESS METHODS FOR PROVENANCE ANALYTICS 

Approaches that provide access methods for provenance analytics use query languages, 

APIs, and visual mechanisms to facilitate the scientists’ analysis. Sometimes is not easy to 

identify the best analytical method. However, people tend use queries and/or API when they 
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know what they are looking for (HERSCHEL; HLAWATSCH, 2016), and use visualizations 

otherwise. 

Figure 4 shows a timeline of the provenance data access approaches based on our 

provenance analytics taxonomy. The year 2008 concentrates more papers about provenance 

querying. Visual approaches appear consistently almost on the entire timeline, while specialized 

languages are more present among 2008 and 2012 (just one language appears in 2002), and few 

API are provided. 

 

Figure 4: Provenance data access approaches timeline 

This section is organized as follows. Section 2.4.1 describes initiatives that propose or 

use query languages to query provenance. Section 2.4.2 lists some approaches to visualize 

provenance data. Finally, Section 2.4.3 presents API to query provenance data. Approaches are 

discussed in chronological order as much as possible and grouped by similar features. 

2.4.1 QUERY LANGUAGES 

Several systems in the literature use query languages to provide scientists with analysis 

capabilities. Foster et al. (2002) propose a specialized language named VDL (Virtual Data 

Language). VDL is simpler than other languages such as SQL, SPARQL or Datalog (CERI et 

al., 1989). It constitutes a bridge to provenance query on different relational data sources. It is 

implemented in SQL and supports data definition and query statements. It works as a lingua 

franca to the Chimera virtual data grid (FOSTER et al., 2002). VDL is independent of the 

catalog schema and its query results are tasks represented as DAG, which abstracts the data 

storage system and is a well-suited format for analysis. VDL is also able to recursively query 

the provenance graph. Furthermore, Foster et al. (2002) define an interpreter to convert VDL 

to SQL. In a later effort, Zhao et al. (2006) propose some extensions to the Virtual Data Model 
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aiming at providing an integration between prospective, retrospective provenance, and semantic 

annotations. 

The Prototype Lineage Server (BOSE, R.; FREW, 2004) allows for browsing lineage 

metadata in a workflow invocation through HTML links that shows provenance information in 

XML. It also has an RDF vocabulary that enables to create properties, relationships, and query 

RDF/XML provenance using SquishQL3. 

Chebotko et al. (2010) present a system named RDFPROV. It stores RDF provenance 

triples (ontology-based) in a relational database. Queries are written in SPARQL and converted 

to SQL through a mapping layer. RDFPROV also translates queries regardless of the schema. 

RDFPROV is used with the VIEW system (LIM et al., 2011, 2013) and shown to be better for 

providing provenance metadata than Sesame (BROEKSTRA et al., 2002) and Jena (CARROLL 

et al., 2004). RDFPROV comes with a provenance ontology that bears many similarities to 

OPM (MOREAU; FREIRE; et al., 2008), although they were developed in parallel and 

independently. In the same way, Gaspar et al. (2011) propose an architecture called SciProv 

that represents provenance according to the OPM model. It uses Web semantic tools (RDF, 

ontology, and OWL) that allow the lineage inference. The architecture of its provenance system 

enables users to perform queries on SPARQL. Data collected from workflows are obtained by 

means of instrumentation (using Web services) and stored in a relational database. 

Developed to capture fine-grained provenance, PASS (Provenance-aware storage 

systems) (HOLLAND, DAVID A. et al., 2008) collects implicit retrospective provenance at 

the OS level. Holland et al. (2008) developed a SQL-like provenance query language called nq 

(new query) to PASS. This language represents each provenance entity as a row and each 

attribute as a column. In another work, Holland et al. (2008) define a new semi-structured 

language to PASS called PQL (Provenance Query Language). PQL extends the semi-structured 

language Lorel (ABITEBOUL et al., 1997). The difference between Lorel and PQL is that in 

the later the edges between nodes were extended to be bidirectional (HOLLAND, D. et al., 

2008). This enables ascendant and descendant navigation between nodes. PQL keeps what is 

fundamental to provenance and other traditional languages ignore: the idea of path 

(HOLLAND, D. et al., 2008). Similarly, ES3 (FREW, JAMES et al., 2008) has an OS-level 

capture approach that captures implicit retrospective provenance from passive trace monitoring 

over Linux operating system processes. It represents and stores all generated provenance in an 

XML database. To analyze the collected provenance, it uses XML provenance requests with 

                                                
3 http://ilrt.org/discovery/2001/02/squish/ 
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XQuery constraint expressions (FREW, JAMES et al., 2008). Like PASS, ES3 does not 

consider workflow representations and both approaches retrieve large amounts of information 

that makes their analysis more difficult. Furthermore, they depend on a specific operating 

system to be executed and require a post-processing phase to interrelate the implicit provenance 

with the prospective provenance (inferred by them). 

The QLP (Query Language for Provenance) is a query language based on graphs. Its 

syntax is similar to other languages that work with XML and XPath, as well as to languages 

that use generalized path expressions such as Lorel (ANAND, M.K. et al., 2010). QLP allows 

for querying lineage relations between nodes and invocations, in-out edges, and other input and 

output invocation structures. They also have structural relations between nodes. QLP language 

brings a series of desirable features to a provenance query language such as physical data 

independence, workflow system independence, preservation of provenance relationships, 

incremental query and transparent optimization (ANAND, MANISH KUMAR et al., 2009; 

ANAND, M.K. et al., 2010). It returns a set of lineage edges instead of a set of nodes that would 

require additional steps to reconstruct their relationships. The results are shown in a graph form 

by a system called Provenance Browser that also internally converts QLP to SQL (ANAND, 

M.K. et al., 2010). Provenance Browser runs standalone or integrated into the Kepler system. 

Lim et al. (2011, 2013) describe a query language based on OPM called OPQL (OPM 

Query Language). OPQL generates a new provenance graph as the output of a query over a 

given provenance graph. The language is weakly coupled to the storage schema and was 

implemented in the OPMProv system. OPMProv uses a relational database and is capable of 

storing, processing and querying provenance data according to the OPM model (LIM et al., 

2011). The OPM model works as a conceptual model to OPM-Prov that maps OPQL language 

to SQL. Provenance data representations in XML (that are structured according to an XML 

Schema, following the PROV model (MOREAU; MISSIER, 2013b)) can be inserted in 

OPMProv using a mapping procedure. Such procedure fragments the XML document on tuples 

and stores them into a relational database. Lim et al. (2013) extend their work and describe a 

Web service to OPM-Prov, allowing users to perform queries using OPQL in a provenance 

browser called OPMProvisD (desktop version) and OPMProvisW (Web version). Both 

browsers enable users to visualize and navigate on provenance graphs of the “original” 

provenance data and provenance data generated after the execution of queries on OPQL. They 

also allow for Zoom-in and Zoom-out functions as well as grouping or ungrouping displayed 

objects. OPMProv can also work as a provenance manager to the View system (LIM et al., 
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2013). Provenance queries can also be performed directly on the View system using SPARQL 

and SQL (LIN et al., 2008). 

Similarly, Gadelha et al. (2012) developed a structured language called SPQL 

(Structured Provenance Query Language). SPQL’s syntax is similar to SQL. It uses embedded 

functions, stored procedures, and materialized views. It also allows recursive queries based on 

the SQL:1999 standard. Queries on SPQL are internally translated to SQL by the MTCProv 

system. This system is integrated to the parallel script system Swift. MTCProv is a provenance 

query framework for Swift and a successor to the VDS (Virtual Data System) (FOSTER et al., 

2002). 

VisTrails offers a specialized query language called vtPQL (SCHEIDEGGER et al., 

2008). vtPQL uses tags to search provenance that is stored at different layers: vistrail level (vt), 

workflow level (wf) and execution level (log). vtPQL is similar to SQL with attributes, 

predicates, and additional functions such as upstream(x) that returns all activities that preceded 

x, and executed(x) that returns true in case activity x has been executed (SCHEIDEGGER et al., 

2008). The vtPQL language is WfMS dependent (VisTrails) and strongly coupled to the storage 

schema (relational). 

Extending OPM to represent workflow structure and evaluation, Cuevas-Vincenttin et 

al. (2012) present a new provenance model called D-OPM. They provide a reference 

implementation aiming at interoperation with multiple systems and a query mechanism based 

on Regular Path Queries (RPQs). RPQs return pairs of nodes in a graph according to a regular 

expression. The query mechanism was developed using relational database facilities to achieve 

interoperability and extensibility. In a later work, Dey et al. (2013) demonstrate the 

implementation of RPQ variants by using Datalog and RDBMS. Dey et al. (2012) also present 

a provenance model based on graphs that extends the OPM model. Unlike the OPM model, 

instead of considering only retrospective provenance, it defines a unified provenance model 

that also considers prospective provenance and temporal dimension of entities relationships. 

Provenance queries over this model are performed through Datalog (CERI et al., 1989). 

Both Dey et al. (2012) and Cohen et al. (2006) use Datalog to define rules, including 

temporal dimension and prospective provenance data to the OPM graphs (DEY et al., 2012) or 

creating user views (COHEN et al., 2006) over provenance data. The authors use clear 

semantics and the power of the Datalog inference to elaborate recursive and non-recursive 

queries on causal dependency graphs. Despite adopting a more direct and compact form of rules 

definitions and queries, Datalog imposes a certain level of difficulty to non-experienced users. 
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Built on the Neo4j graph database, PBase (CUEVAS-VICENTTÍN et al., 2014) 

provides a unified provenance repository that follows the ProvONE model. PBase also offers 

an interface to pose provenance queries on a NoSQL database (Neo4J) by using the Cypher 

language. For now, PBase supports uploads of the VisTrails XML format. In another work, 

Vicenttin et al. (2014) change the PBase format to RDF (stored in the TDB, the RDF triple 

store of the Jena Framework) and adopt SPARQL as PBASE’s query language. 

2.4.2 VISUAL 

The visual data analysis can enable for detection, comparison, and validation of 

expected results, hiding details, and showing the semantic necessary to its understanding. It also 

improves the data interpretation, facilitates decision making, and leads scientists to unexpected 

science discovery (HANSEN et al., 2011). As opposed to data mining that automatically 

discovers patterns (see Section 2.5.2), visualization requires that users infer “the pattern”. 

However, the major barrier to the effective use of visualization is the lack of appropriate data 

management techniques that are needed to make data exploration scalable (CALLAHAN et al., 

2006a). Thus, visualization should be considered as part of the data exploration process and not 

only as visualization of results (SILVA; FREIRE, 2008). In fact, as in the Big Data analytics 

scenario, visualization can represent an ample range of information that could be very hard to 

understand by using just numbers or text. In this context, the old maximum “a picture is worth 

a thousand words” expresses how meaningful a visual representation can be. In this section, we 

describe several approaches that apply tools and techniques that aim to aid scientists in 

performing visual provenance analysis. Many approaches we describe here work on 

visualization of provenance data represented as a graph with nodes that represent data or 

activities invocation and edges that represent relationships between these nodes. Some of them 

allow for graph summarization, grouping, ungrouping, and workflow versioning to verify more 

interesting provenance features and improve the knowledge about the workflow. 

We start by discussing tools designed to create visualization (VIEGAS et al., 2007). 

Then, we discuss approaches that provide provenance views based on Semantic Web concepts 

(CHEUNG; HUNTER, 2006; DEL RIO; DA SILVA, 2007; HOEKSTRA; GROTH, 2014; 

ZHAO, JUN et al., 2004). After that, we present tools that allow users for customizing and/or 

personalizing provenance views (ANAND, MANISH KUMAR et al., 2009, 2012; ANAND, 

M.K. et al., 2010; BITON, O. et al., 2008; BITON, OLIVIER et al., 2007; CHEN et al., 2012; 

COHEN-BOULAKIA et al., 2008; KARSAI et al., 2016; KOHWALTER et al., 2016; 

MISSIER; WOODMAN; et al., 2013; SELTZER; MACKO, 2011; STITZ et al., 2016). 
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Following, we list visualization tools that allow for provenance querying by using previous 

workflows and controlling the workflow evolution (HLAWATSCH et al., 2015; SILVA et al., 

2007). Then, we present approaches that work with filesystem provenance visualization and 

diff (BORKIN et al., 2013; GUO; SELTZER, 2012). Finally, we discuss approaches that take 

into account metadata integration (FREW, J.; BOSE, 2001; SIMMHAN, Y.L. et al., 2006). 

While running part of a workflow can generate a new dataset in minutes, systems such 

as SciRun spend hours or even days to generate the visualization of these data (FREIRE et al., 

2006). Similar to SciRun, the systems Paraview and MayaVi allow for creating and 

manipulating complex visualizations of dataflows. However, they lack support to large scale 

data exploration (CALLAHAN et al., 2006a; SILVA et al., 2007). On the other hand, initiatives 

such as Many Eyes (VIEGAS et al., 2007) have encouraged users with little ability on the 

creation and manipulation of visualization tools. Many Eyes offers an open website that enables 

users to load data and use different components to create visualizations. Similarly, various 

proposals try to provide a user-friendly tool aiming at extracting important information over 

provenance data. 

Working on the myGrid project, Zhao et al. (2004) use semantic web technologies such 

as RDF, ontology and semantic inferencing mechanisms (Algernon) for representing and 

adding semantics to heterogeneous provenance data. They demonstrate how provenance graphs 

in RDF can be visualized on the Haystack, a Semantic Web browser (QUAN; KARGER, 2004). 

Based on the ABC ontology model, Cheung and Hunter (2006) propose a standalone system 

named Provenance Explorer that takes provenance in the RDF format and yields customized 

visualizations of provenance graphs by using Jena (CARROLL et al., 2004). The provenance 

graphs are personalized according to the user’s requirements or access permissions. Its GUI 

shows provenance in a coarse-grained view and allows users for expanding it in a fine-grained 

view. Provenance Explorer also has a platform for publishing scientific results. 

Probe-It! (DEL RIO; DA SILVA, 2007) is another visualization tool for rendering 

provenance information from inference engines and workflows. Provenance is encoded as 

Proof Markup Language (PML) documents, that references sources stored in an IW-Base 

repository (MCGUINNESS et al., 2004). It has multiple viewers, each suited to different 

provenance elements. Provenance information in Probe-It! is composed of results (intermediate 

and final), justifications (a graph of the workflow trace), and provenance (information about 

the services and sources). Del Rio et al. (2010) improved the usability and performance of 

Probe-It! by adding support to a Google Earth-like navigation, zoom in/out, information 

abstraction and a preprocessing system that caches visualization. 
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Working on PROV-O RDF serialization of PROV, Hoekstra and Groth (2014) propose 

a Web-based visualization tool named PROV-O-Viz to analyze provenance from different 

sources. They use Sankey Diagrams to determine important activities and understand how data 

flows through and between activities. It highlights entities and activities that have more 

dataflows by changing their size in the diagram. It is also able to infer missing information. 

In the same direction, Anand et al. (ANAND, MANISH KUMAR et al., 2009) define a 

navigation model with three granularity levels for visualizing dataflow graphs: (i) actor level, 

(ii) invocation level, and (iii) data dependency level. They also define navigation model 

operators: expand, collapse, group, ungroup, filter, navigate, standard views and flow-graph 

views. Furthermore, they present an architecture that computes the difference between the 

current view (created by the user) and the original provenance stored in the database (ANAND, 

MANISH KUMAR et al., 2009). The implementation of this approach is described by Anand 

et al. (2012) by using a relational model. 

Provenance Browser is a system that can run either integrated to the Kepler system or 

standalone (ANAND, M.K. et al., 2010). It offers an interface to visualize, navigate, and query 

provenance. Provenance Browser’s architecture allows data to be introduced directly in the 

browser or through a relational provenance database. It also allows for navigating on different 

views: dependency history, collection history (composed nodes), and invocation dependency 

(ANAND, M.K. et al., 2010). In a view, the user can go forward or backward in the execution 

history. Provenance Browser has a generic provenance model that has a straightforward 

conversion to OPM. A part of its exhibition window also shows the collection structure of XML 

nodes together with details of activity invocations (also called actor). The functions available 

to query (by using QLP), group, ungroup, filter, and navigate help to improve the user 

understanding over the displayed provenance graph. 

Davidson et al. (2007) propose an approach to omit provenance data that is not of 

interest for a particular user. In this approach, the union of various relevant modules (or 

activities) to a particular user module composes views. The user indicates which workflow 

modules are relevant to her and then, from an abstraction mechanism, provenance information 

is shown according to the view defined by each user. In this way, the user can only visualize 

data passed between modules of his user view (workflow modules partition) and cannot 

visualize data that are internal to the composed modules. Biton et al. (2007) implement this user 

view idea in the ZOOM*UserView system. This system aims to construct user views and 

provides an interface to query provenance data. In the ZOOM system, the causal graph 

representation is constructed from input (read) and output (write) events of the provenance base 
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tables and of their relationships with other tables in the schema (COHEN-BOULAKIA et al., 

2008). The user interface graphically shows the workflow with its atomic modules, allowing 

users to select modules that are relevant to them. From this selection, the system creates 

composed modules. The interface also presents the created composed modules (on a graph) to 

allow users to perform queries. Thus, by clicking on an edge, the user can see the data set that 

passed between two activities (also called steps or modules) (BITON, O. et al., 2008). To create 

a user view model, Cohen et al. (2008) use Datalog. Datalog is also used to execute queries 

over views created on provenance data. Despite the benefits reached with the creation of the 

user views by ZOOM (BITON, O. et al., 2008; BITON, OLIVIER et al., 2007), its 

implementation (aggregation of activities in compositions) does not allow the whole original 

dependency path of provenance (before the aggregation) to be discovered. Davidson et al. 

(2007, 2009) expose these issues, calling them unsound views. These views received this name 

because they do not preserve information about the original dependency flow of provenance 

data. Sun et al. (2009A) and Hu et al. (2012) also work on this problem. 

Exploring the provenance graph in an interactive manner without requiring users to 

specify rules in advance is a desirable feature in provenance management systems. Provenance 

Map Orbiter is a system that works this way (SELTZER; MACKO, 2011). It automatically 

performs the data summarization, without the necessity of user intervention. Provenance Map 

Orbiter uses graph summarization (RDF or OPM) to present to the user a high-level view of the 

provenance graph and semantic zoom, showing only relevant nodes. In the first step of the 

algorithm, all activities are considered primary nodes and classified as summary nodes (the user 

can also designate nodes that are more relevant as primary). Next, nodes that represent the 

generated steps by one summary node are grouped into this generator node. Finally, all 

immediate neighbor nodes (descendants and ascendants) of all nodes belonging to the summary 

node are inserted in it. Visualization is given through a timeline that shows the workflow 

activities tree. Provenance Map Orbiter also allows for using filters that are graphically 

exhibited. Borkin et al. (2013) compare Provenance Map Orbiter to their new filesystem 

provenance visualization tool named InProv. InProv uses a different way to represent 

provenance views. Filesystem provenance is shown with an interactive radial-based tree layout 

rather than node-link diagram. It summarizes activities and shows the inter-relationships within 

the data. They also developed a time-based hierarchical node grouping that can be used to match 

the user’s mental model. Results from a qualitative evaluation indicate that the time-based node 

grouping improves the performance and usability of both InProv and Provenance Map Orbiter 

systems. For now, InProv does not have a similarity functionality to compare files. Similarly, 
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BURRITO (GUO; SELTZER, 2012) captures and analyzes provenance on OS-level and has a 

Computational Context Viewer that offers an HTML page to graphically display the diff 

between different input files versions and command-line parameters and relates them to the 

effects over output file versions. 

Also working on graph summarization, Stitz et al. (2016) present the AVOCADO 

(Adaptive Visualization of Comprehensive Analytical Data Origins) approach aiming for 

reducing the complexity of the graph using hierarchical and motif-based aggregation. 

AVOCADO also allows users to expand regions in the provenance graph that are interesting to 

the user based on a degree-of-interest (DoI) function. 

Based on graph abstraction, Missier et al. (2014) define a Provenance Abstraction 

Model (PAM) and a simple policy model implemented into the ProvAbs tool. Their tool loads 

provenance in PROV-N format and stores provenance in a Neo4J database. From this database, 

queries can be posed by using Neo4J Traverse API and Cypher language. In this work, they 

only include the generation and usage relations on Activity and Entity nodes. 

Chen et al. (2012) present a set of techniques for exploring and explaining provenance 

such as a layout algorithm, visual style, graph abstraction techniques, and graph matching 

algorithm. They implement these mechanisms into Cytoscape (SHANNON et al., 2003). 

Cytoscape reads XML files yielded by the Karma provenance server (SIMMHAN, Y.L. et al., 

2006) and generates provenance graphs. Using Cytoscape, Karsai et al. (2016) design a 

prototype called ProvOwl to simplify provenance graphs visualization. They developed this 

prototype based on a clustering approach from a previous work (ProvAbs) (MISSIER et al., 

2014). The provenance graph uses the PROV model representation. ProvOwl allows users to 

combine several nodes, zoom-in/out, filter, or rearrange nodes. Similarly, Kohwalter et al. 

(2016) present a PROV-N compliant tool named Prov Viewer. It shows provenance as a graph 

and integrates many features and mechanisms such as filtering, collapsing, zooming, coloring, 

graph merging, and domain configuration that add semantics. It allows users to analyze 

provenance in different granularities. 

VisTrails uses the VTK (Visualization Toolkit) library to create visualizations of 

provenance data (CALLAHAN et al., 2006b). It offers scalable parameter exploration and 

makes use of 3D visualization techniques, volume renderization, and isosurfacing (SILVA et 

al., 2007). It also allows visual queries through QBE (query-by-example) that enable querying 

provenance using previous workflows. A QBE query is constructed in the same interface used 

to design the workflow. Conditions and parameter values can also be set up to filter the query 

result. The tool also provides the version history of each generated workflow. It is linked to a 
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particular workflow configuration (pipeline), and to the executions (log) with their respective 

provenance data that can be queried in a specific field. Hlawatsch et al. (2015) add new features 

to VisTrails to visualize the evolution of workflow modules. They include visualizations of 

module lifetimes and events with grouping and filtering mechanisms, a visual representation of 

version branches, and it is able to combine multiple visualizations.  

Also working on provenance visualization, Cuevas-Vincenttin et al. (2014) present 

PBase, a visualization tool to analyze provenance. It has a Web-based graphical user interface 

that can simultaneously represent prospective and retrospective provenance as a graph with 

identified nodes. 

Frew and Bose (2001) present the Earth System Science Workbench (ESSW) that 

manages a data infrastructure and logs experiments through an API. The processes and their 

relationships are captured as XML and stored in the MySQL database. ESSW uses Graphviz 

for generating provenance graphs visualizations from CGI scripts. It also allows accessing 

metadata information by clicking on the depicted graph nodes. Each experiment (process) in 

ESSW is related to a model (workflow template). Karma also has its own tool to visualize 

provenance graphs called Karma Provenance Browser. It integrates provenance, metadata, 

services, workflows and data products through the API service (SIMMHAN, Y.L. et al., 2006). 

Finally, Schreiber and Struminski (2017) introduce a visualization technique for 

provenance using comics strips aiming for self-explaining and easy-to-understand visualization 

of data provenance called PROV Comics. The comics are generated automatically from 

provenance graphs compliant with PROV model. They create a visual mapping between each 

PROV element (Agent, Activity, and Entity) and visual/textual elements such as shapes, colors, 

icons, letters, and labels. 

2.4.3 API 

Due to the transparency provided by different APIs, the use of complex algorithms can 

be facilitated. Some APIs also allow one to search various datasets with different structures and 

formats in a convenient way. In the paragraphs that follow, we present some provenance 

analysis approaches that rely on these features by using Web Services (DA CRUZ, S.M.S. et 

al., 2008; SIMMHAN, Y.L. et al., 2006), Java APIs (WOODMAN et al., 2011), among other 

APIs to provide independent provenance query mechanisms. 

The service-oriented Karma provenance framework provides a query mechanism 

through a Web service interface (SIMMHAN, Y.L. et al., 2006). For querying workflow traces 

and provenance from data and processes, its Web service interface requires information such 
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as Workflow ID, Service ID and Data Product ID. Other queries can be performed over 

provenance data in the XML format and their results are stored in a relational database. An 

evaluation carried out by Simmhan et al. (2008) showed that the API and the Karma service 

client get to answer just four out of nine queries proposed by the First Provenance Challenge 

(MOREAU; LUDÄSCHER; et al., 2008). A reimplementation of Karma, called Komadu, is 

presented by Suriarachchi et al. (2015). Komadu is a standalone and open source tool that aims 

at capturing and visualizing provenance from scientific tools, infrastructures, and repositories. 

While Karma uses OPM to represent provenance, Komadu uses the PROV model and provides 

an ingest API to fed the system with provenance notifications and another API to query 

provenance data. To allow provenance graph visualization, it uses the Cytoscape system. 

Differently from Karma, Komadu allows for tracking provenance starting from some data 

product or agent. 

Similarly, Matriohska (DA CRUZ, S.M.S. et al., 2008) offers a service architecture that 

works in cluster, grid and cloud environments. It traces and stores the history of the distributed 

execution process over distributed, autonomous, replicated, and heterogeneous resources. 

Matriohska has a provenance query API that allows scientists to query multiple data sources. 

Woodman et al. (2011) propose operations to query provenance traces generated by 

workflows enacted in the e-Science Central platform (WATSON et al., 2010). This platform 

stores provenance traces in their natural format (DAG) on Neo4j (a non-relational graph 

database) (MILLER, 2013). Queries can be posed using the Java library available to the Neo4j 

framework and leverage the facilities provided by its storage format. Neo4j provides a traversal 

operation that allows users to define a starting node and traversal rules (WOODMAN et al., 

2011). It also has a visualization tool that allows scientists to navigate backward and forward 

through the provenance graph. 

2.5 COMPUTING RESOURCES FOR PROVENANCE ANALYTICS 

Provenance data access can be performed through query languages and visualizations, 

but scientists also need tools that allow them to manipulate and extract useful information from 

provenance data. There are some computing resources available to aid them in this task as we 

present in this section. Figure 5 shows a timeline of such approaches.  

This section is organized as follows. Section 2.5.1 presents systems that use similarity 

mechanisms to compare provenance data. Section 2.5.2 describes initiatives that apply data 

mining and algorithms to ease provenance analytics. Finally, Section 2.5.3 lists some 

approaches that use collaboration to analyze provenance data. 
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Figure 5: Timeline of Computing Resources for provenance analytics 

2.5.1 SIMILARITY 

Comparison of different workflow executions can help to verify mistakes and improve 

workflow quality. In this sense, Bao et al. (2009) present a prototype called PDIFFView 

(Provenance Difference Viewer). It works over series graphs (child nodes ordered by loop) and 

parallel graphs (child nodes disordered by fork) forming an SPFL (series-parallel forking and 

looping). It defines the difference between two executions as the minimum sequence cost of 

path edition operations. Transformations from one execution to another can contain the 

following path edition operations: insertion, deletion, expansion, and contraction. Composite 

modules that hold some internal difference are marked in different colors. When the user clicks 

on a node or edge, she can see a note about the used parameters and data. It is also possible to 

expand the composite module to see other details. PDIFFView allows scientists to load and 

save workflow specifications and executions from/to local library or import and export from/to 

XML files (BAO; COHEN-BOULAKIA; DAVIDSON; GIRARD, 2009). 

Missier et al. (2013) develop an algorithm named PDIFF to analyze and compare 

provenance graphs. Their algorithm queries provenance traces generated by workflow 

executions in the e-Science Central platform (WATSON et al., 2010). PDIFF assists 

reproducibility analysis by identifying possible causes of divergent results such as data and 

workflow evolution, service version upgrades (problems related to the workflow decay 

(ROURE et al., 2011)), and also non-deterministic behavior in some of the services. It is also 

able to compare three different types of files: text or CSV, XML, and mathematical models. 

PDIFF was added to the e-Science Central platform to help scientists to detect diverging outputs 

when trying to reproduce workflows. 

VisTrails can compute the difference between workflows. It saves the workflow 

evolution history and offers visual tools to compare execution results of different versions of 
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workflows. This mechanism computes the difference between two nodes in the history tree. 

VisTrails has a semi-automatic analogy mechanism. It enables scientists to apply the difference 

between two workflow versions over a third workflow. Such mechanism allows scientists to 

save time and effort to construct new workflows (FREIRE; SILVA, 2008b). Despite the fact 

that VisTrails provides a visual tool to compare results of different executions, it does not offer 

a mechanism to compare the path traversed (dependency graph) to achieve that result. 

Similar to PASS and ES3, the provenance system BURRITO (GUO; SELTZER, 2012) 

captures implicit retrospective provenance in the OS level. BURRITO was developed to be an 

electronic lab notebook to researchers and can cover a wider number of domains such as 

bioinformatics, CS, and finance. It comprises a core (GUI window interactions, OS-level 

provenance, and NILFS versioning file system) and a set of plugins (audio recordings, digital 

sketches, sticky notes, web browsing history, text editor interactions, command invocation, and 

clipboard events). BURRITO stores user’s activities in the MongoDB database (ABRAMOVA; 

BERNARDINO, 2013). To analyze the collected provenance, it has a Computational Context 

Viewer that offers an HTML page to graphically display the diff between different input files 

versions and command-line parameters and relates them to the effects over output file versions. 

BURRITO also has an Activity Context Viewer that is similar to the Computational Context 

Viewer and displays information in four fields about one version of the chosen source file: diffs, 

resources read, resources written, and annotations. With the more general propose, BURRITO 

does not relate retrospective provenance with the prospective provenance generated by one 

WfMS. 

2.5.2 DATA MINING TECHNIQUES TO PROVENANCE ANALYTICS 

According to Davidson and Freire (2008), provenance data mining can lead to the 

discovery of new patterns that may simplify and refine the workflow. Some of these patterns 

are imperceptible to human eyes and depend on automated application of data mining 

techniques over the dataset. Data mining generates patterns that describe and distinguish 

provenance dataset properties, detects lack of provenance data, and finds out more descriptive 

knowledge of provenance groupings (CHEN et al., 2012, 2014). In the same direction, Big Data 

analytics try to extract useful information from data sets. However, Big Data analytics works 

on voluminous data sets and takes into account scalability issues. The approaches presented by 

Chen et al. (2012, 2014) and described in this section, also considers these aspects. Moreover, 

most of the approaches presented in this section address different types of pattern discovery 

problems of provenance analysis by using techniques such as clustering and association rules. 
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We open this section by presenting a tool that mines semantically annotated provenance 

(ZHAO, JUN et al., 2008). Then we describe an approach to simplify large provenance datasets 

to be mined (CHEN et al., 2012, 2014). We finish by discussing an approach to aggregate 

provenance graphs by types (MOREAU, 2015). 

Ouzo is a system that combines different types of provenance supported by Taverna 

through semantic annotations. It overlaps secondary provenance on logs and primary lineage 

data represented by an ontology defined in RDF (ZHAO, JUN et al., 2008). Using Ouzo, Zhao 

et al. (2008) present a component called Provenance Query and Answer (ProQA). ProQA mines 

the Ouzo database to capture provenance data, provenance abstraction, and semantic logic. It 

allows for abstraction over primary provenance through a set of typed views or user 

specifications. ProQA supports an abstraction interpretation over user tags and queries of 

internal and external provenance data. It offers a “provenance workflow” to analyze 

provenance. Its queries can be performed on nested workflows and are capable of returning 

provenance information generated from one or various executions. ProQA can also perform 

ontological inference and inference based on an informal taxonomy for provenance queries. 

Chen et al. (2012) describe a provenance representation based on logical time aiming at 

reducing the feature space (number of characteristics) of large provenance datasets. They 

present an algorithm called Logical Clock-P that divides an OPM provenance graph in a sorted 

partition. After that, it organizes the representations of each subset in a sequence. They create 

representations for time and frequency to support clustering, classification, and association rule 

mining. Logical Clock-P algorithm reduces the feature space, keeping only the most important 

to be mined. In a more recent work (CHEN et al., 2014), they evaluate the potential of data 

mining using their temporal representation. According to their findings, k-means is the best 

algorithm for clustering workflows based on such representation. 

Moreau (2015) presents an approach to automatically combine provenance graphs by 

using an Aggregation of Provenance Types (APT). It converts provenance paths up to some 

length k into attributes (provenance types). Also, it groups nodes that have the same type. Both 

of these steps are performed using SPARQL queries. Moreau’s approach also includes numeric 

values to represent the frequency of nodes and edges to enable outliers’ detection. A 

conformance check is done by converting an APT summary into an OWL2 ontology without 

the frequency information. 
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2.5.3 COLLABORATION 

Websites of social networks and blogs allow that millions of people share information 

about their personal life, disseminate their work, entrepreneurship, discuss ideas and clarify 

doubts. Such information dissemination, sharing, and discussion initiatives have motivated the 

use of this mass of engaged users to constitute one collective intelligence. In this sense, Viegas 

et al. (2007) describe a website named Many Eyes. This website offers an analysis environment 

of social data over visualizations constituted from data loaded by various users around the 

world. It allows users to create visualizations combining their own data with visualization 

components available on the website. Furthermore, it offers a blog-like discussion mechanism. 

Instead of scaling just to data size, Many Eyes scales the audience (discussions about created 

visualizations). 

Based on this same approach, Freire and Silva (2008a) begin a discussion about the use 

of social data analysis on the comprehension, refinement, and reuse of shared provenance 

repositories. By querying and analyzing information in shared repositories, scientists could use 

the crowd wisdom to take lessons, build new experiments, and reduce the time to new insights. 

From this point, Mates et al. (2011) present a system called CrowdLabs that adopts a model 

used in social websites. CrowdLabs enables users to share data, workflow versions, libraries, 

packages, datasets, and results. It allows sharing and visualization of provenance data. 

CrowdLabs has a Client API that allows client applications (VisTrails, Wiki, CMS and other 

clients) to connect to the Web server and to publish workflows and provenance data. Moreover, 

VisTrails servers are interconnected to the same provenance database. 

myExperiment is also a “scientific website.” It provides a virtual environment to 

collaboration and sharing of workflows, experiments, files, research objects, groups, among 

other digital objects (DE ROURE et al., 2009). myExperiment allows scientists to find out new 

workflows, download, execute and edit them in Taverna (HULL et al., 2006) and then load the 

updated version back to myExperiment. The myExperiment website also allows workflow 

execution (DE ROURE et al., 2009). However, myExperiment is focused on workflows that 

integrate Web services related to the bioinformatics domain (MATES et al., 2011). 

The scientific social websites myExperiment (DE ROURE et al., 2009) and CrowdLabs 

(MATES et al., 2011) offer support for searching, sharing, visualizing, and discussing 

provenance data. However, their infrastructure still does not allow more advanced, data mining, 

and 3D visualization. Furthermore, there are still scalability limitations on the size of the 

provenance dataset and the security model (MATES et al., 2011). According to Altintas et al. 
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(2011), the “collaborative provenance” requires its own data model that extends provenance 

models of common workflows by the introduction of attributes that characterize the nature of 

user collaborations as well as their strength/weight. 

2.6 DISCUSSION AND OPEN PROBLEMS 

Table 1 and  Table 2 summarize our survey of the main languages, computing resources, 

mechanisms and tools proposed to the provenance analytics and list some of their most relevant 

features according to our taxonomy. While Table 1 focuses on WfMS built-in approaches, 

Table 2 focuses on standalone approaches for provenance analytics. Most of the approaches 

analyze provenance in the workflow or activity granularity. We can also notice that most of the 

visual approaches use specialized provenance query languages, except for ZOOM, which uses 

Datalog, and others that do not have a query language (i.e., Provenance Map Orbiter and 

PDIFFView). 

A large part of the provenance systems uses RDBMS, RDF, or XML to store provenance 

data. Some provenance systems provide common query languages directly related to these 

storage schemas (FOSTER et al., 2002), such as SQL, SPARQL, Datalog, XQuery or XPath. 

For example, SciProv (GASPAR et al., 2011) uses the SPARQL, Taverna (ZHAO, JUN et al., 

2008) uses TriQL, Karma and SciCumulus use SQL, PreServ (SIMMHAN, YOGESH L. et al., 

2006) uses XQuery and XPath, and Dey et al. (2012) use Datalog to query a data model that 

extends OPM. Despite the fact that there are trends in working with queries applied directly on 

a graph structure, aggregation operations (i.e., count, max, min, etc.) in this type of model are 

costly. In contrast, in the relational model, they are straightforward. On the other hand, common 

languages are considered high-level languages for computing science professionals, but they 

may not be suitable for scientists. Scientists need more user-friendly languages that allow them, 

for example, to elaborate recursive queries and group data in a transparent and easier manner. 

All provenance analytics approaches work on explicit retrospective provenance types, 

except PASS, ES3, Matriohska, and BURRITO, that work just on implicit retrospective 

provenance. Most of them also work on prospective provenance. Provenance types are 

intrinsically connected to the provenance granularity. Hence, prospective and explicit 

retrospective provenance may be analyzed from approaches that consider workflow and activity 

granularity. On the other hand, approaches that take into account file, value, and/or tuple 

granularities may analyze implicit retrospective provenance.
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Table 1: WfMs built-in approaches classified by the provenance analytics taxonomy 

Approach Access Methods 
Query 

Language/Tool 
Format/Model Type Granularity 

Computing  
Resources 

Taverna 
Visual, Common Query 
Language 

Process Tree, TriQL, ProQA, 
and Querying Algorithm by 
Missier et al. (2010) 

XML, Graph, RDF, and 
Relational 

Prospective, Explicit 
Retrospective 

Workflow, Activity, File, 
Value 

Data Mining, 
Inference 

e-Science Central Visual, API PDIFF, Neo4J Java API OPM, Graph 
Prospective and Explicit 
Retrospective 

Workflow, Activity, File, 
Value 

Collaboration, 
Similarity 

SciProv Common Query Language SPARQL RDF, OPM, Relational 
Prospective, Explicit 
Retrospective 

Workflow, Activity, File, 
Value 

Inference 

Karma 
Visual, Common Query 
Language, API 

Karma Provenance Browser, 
SQL, Web 
Service 

OPM, XML, Relational 
Prospective, Explicit 
Retrospective 

Workflow, Activity, File, 
Value 

- 

PreServ Common Query Language XQuery, XPath XML 
Prospective, Explicit 
Retrospective 

Workflow, Activity, File, 
Value 

- 

Chimera Specialized Query Language Virtual Data Language (VDL) 
XML and Relational 
Database 

Prospective, Explicit 
Retrospective 

Workflow, Activity, File, 
Value 

- 

View 
Common and Specialized 
Query Language, and Visual 

SPARQL, SQL, 
OPQL, RDFPROV, 
OPMProvis (also 
standalone) 

RDF, OPM, Relational 
Prospective and Explicit 
Retrospective 

Workflow, Activity, File, 
Value 

Summarization 

Swift Specialized Query Language SPQL, MTCProv Relational 
Prospective, Explicit 
Retrospective 

Workflow, Activity, File, 
Value 

- 

Kepler 
Specialized Query Language, 
Visual 

QLP, Provenance Browser 
(also standalone) 

Relational, XML 
Prospective, Explicit 
Retrospective 

Workflow, Activity, File, 
Value 

Summarization 

VisTrails 
Specialized Query Language, 
Visual 

vtPQL, QBE Relational, XML 
Prospective, Explicit 
Retrospective 

Workflow, Activity, File, 
Value 

Similarity, 
Workflow 
Evolution 

SciCumulus Common Query Language 
SQL, (GONÇALVES et al., 
2012) 

Relational 
Prospective, Explicit 
Retrospective, Implicit 
Retrospective 

Workflow, Activity, File, 
Value, Tuple 

- 

Chiron Common Query Language SQL Relational 
Prospective, Explicit 
Retrospective 

Workflow, Activity, File, 
Value, Tuple 

- 
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Table 2: Standalone approaches classified by the provenance analytics taxonomy 

 

Approach Access Methods 
Query 

Language/Tool Format/Model Type Granularity Computing Resources 

Dey et al. (2012) Common Query Language Datalog OPM, Graph, File System 
Prospective, Explicit 
Retrospective 

Workflow, Activity, File, 
Value Inference 

ES3 Common Query Language 
XML requests with 
XQuery XML Implicit Retrospective OS, File, Value - 

PASS 
Specialized Query 
Language New Query (nq), PQL 

Berkeley DB, Graph/ Semi 
structured Data, File System Implicit Retrospective OS, File, Value, Tuple - 

Provenance 
Map Orbiter Visual 

Graphic Filters and 
Timeline OPM, RDF/N3 Explicit Retrospective 

Activity and OS, File, 
Value Summarization 

ZOOM 
Common Query Language 
and Visual 

Datalog and Graphic 
filters Relational, XML 

Prospective, Explicit 
Retrospective 

Workflow, Activity, File, 
Value 

Customization, 
Summarization, Inference 

PDIFFView Visual PDIFFView tool Series-parallel 
Prospective, 
Explicit Retrospective Workflow, Activity, Similarity 

Logical Clock-P - Logical Clock-P OPM, Graph Explicit Retrospective Activity, File, Value Data Mining 

CrowdLabs Visual, API Social website Relational, XML 
Prospective, Explicit 
Retrospective 

Workflow, Activity, File, 
Value Collaboration 

myExperiment Visual, API Social website XML, RDF 
Prospective, Explicit 
Retrospective 

Workflow, Activity, File, 
Value Collaboration 

Matriohska API - Document Implicit Retrospective OS, File, Value - 

Prov Viewer Visual - PROV, graph Explicit Retrospective Activity, File, Value Summarization 

Prov-O-Viz Visual, API - RDF 
Implicit, Explicit 
Retrospective Activity, File, Value Inference 

Provenance 
Explorer Visual - RDF Explicit Retrospective Activity, File, Value 

Summarization, 
Customization, Inference 

Probe-It! Visual - RDF Explicit Retrospective Activity, File, Value 
Customization, 
Summarization 
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Table 2: Standalone approaches classified by the provenance analytics taxonomy (cont.) 

Approach Access Methods 
Query 

Language/Tool Format/Model Type Granularity Computing Resources 

Visualization 
Techniques into 
Cytoscape Visual - XML Explicit Retrospective Activity, File, Value Summarization, Similarity 

InProv Visual Timeline Files 
Implicit, Explicit 
Retrospective Activity, OS, File, Value Summarization 

ProvOwl Visual Cytoscape 
PROV, XML, 
Graph Explicit Retrospective Activity, File, Value Summarization 

ProvAbs 
Visual, Common 
Query Language 

Neo4J Traverse 
API, Cypher PROV, Graph Explicit Retrospective Activity, File, Value Summarization 

AVOCADO Visual - JSon Explicit Retrospective Activity, File, Value 
Summarization, 
Customization 

PBase 
Visual, Common 
Query Language Cypher, SPARQL ProvONE, RDF 

Prospective, Explicit 
Retrospective 

Workflow, Activity, File, 
Value - 

ESSW, Prototype 
Lineage Server 

Visual Common Query 
Language, Visual Graphviz SquishQL 

XML, Relational 
RDF/XML 

Explicit Retrospective 
Explicit Retrospective 

Activity, File, Value 
Activity, File, Value - 

Komadu Visual, API Cytoscape 
PROV, XML, 
CSV, Relational Explicit Retrospective Activity, File, Value - 

BURRITO Visual - File, noSQL Implicit Retrospective Activity, OS, File, Value Similarity 

D-OPM 
Specialized 
Query Language RPQs variants 

D-OPM, Graph, 
Relational, Datalog Prospective, Retrospective 

Workflow, Activity, File, 
Value Inference 

APT Common Query Language SPARQL, OWL2 RDF Explicit Retrospective Activity, File, Value Summarization 

myGrid Visual Haystack RDF Explicit Retrospective Activity, File, Value - 
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The study of methods and techniques to analyze provenance is still a relatively 

unexplored field when compared to the existing research about capture, storage, and 

provenance management. Some information summarization approaches (BITON, OLIVIER et 

al., 2007; COHEN-BOULAKIA et al., 2008; LIM et al., 2011, 2013) try to hide details so that 

the scientist can focus on information that is more important to the experiment understanding, 

allowing them to save time. The definition of views over provenance based on profiles also 

benefits the analysis work (BITON, OLIVIER et al., 2007), since each scientist has a different 

capability of perception and identification of patterns. This allows for richer inferences. 

New specialized provenance query languages are being driven by provenance models 

such as OPM and PROV. This type of initiative can help the community to define, in the future, 

a standardized common provenance query language that is storage, schema, and WfMS 

independent. Despite being a powerful tool, the analysis of a huge provenance dataset through 

query languages can be arduous, both regarding query construction and performance. 

Furthermore, when using languages such as SPARQL to query relational databases, scientists 

have to face the learning challenge of a new language. They will also face limitations about 

nested queries and aggregations (HOLLAND, D. et al., 2008). 

Collaborative work has emerged as a good ally of provenance analytics since it allows 

using a collective intelligence. This collective intelligence can open scientific discussions to 

users spread across the world. However, much still needs to be done for these approaches to 

meet the performance and security needs of the current scientific community. 

We believe the refinement of all these analysis methods and tools and their intensive 

use by scientists will allow a huge acceleration of science, on an even larger scale than that 

occurred with the popularization of the WfMS. Until then, there is a huge path ahead for 

computer scientists. In this thesis, we propose an integrated provenance analysis approach that 

allows scientists to traverse heterogeneous provenance graphs. Our goal is to reduce the gap 

between the different provenance formats and models and solve the problems faced by the 

scientists in the analysis of heterogeneous traces. 
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  - QUERYING PROVENANCE ACROSS HETEROGENEOUS 

PROVENANCE GRAPHS 

3.1 INTRODUCTION 

Provenance generated by different workflow systems is generally expressed using different 

formats. This is not an issue when scientists analyze provenance graphs in isolation, or when 

they use the same workflow system. However, analyzing heterogeneous provenance graphs 

from multiple systems poses a challenge. The provenance graphs generated by these workflow 

systems can have different formats (i.e., RDF, XML, relational tables, etc.) and a proprietary 

structure. Hence, analyzing provenance across these heterogeneous graphs and exploring the 

possible intersections between them become a hard and error prone task for scientists. 

To address the aforementioned problem, we propose a reference classification and a 

provenance integration architecture that adopts ProvONE as an integration model and show 

how different provenance databases can be converted to a global ProvONE schema. Scientists 

can then query this integrated database, exploring and linking provenance across several 

different workflows that may represent different implementations of the same experiment. To 

illustrate the feasibility of our approach, we developed conceptual mappings between the 

provenance databases of four workflow systems (e-Science Central, SciCumulus, Taverna, and 

VisTrails). We provide cartridges that implement these mappings and generate an integrated 

provenance database expressed as Prolog facts. To demonstrate its usage, we have developed a 

set of Prolog rules that enable scientists to query the integrated database. 

The choice of Prolog comes naturally in this scenario, since, besides being able to 

represent a wide variety of data (MURTA et al., 2014; OLIVEIRA et al., 2016), it also allows 

for more expressive power than SQL since it adds inference capabilities. Datalog would also 

provide these same advantages. In fact, syntactically, Datalog is a subset of Prolog and its 

clauses can be parsed and executed by a Prolog interpreter (CERI et al., 1989). Although 

Datalog is more efficient on relational database queries (it processes the whole relation by using 

a set-oriented approach rather than the one-tuple-at-time approach of Prolog), Datalog limits 

the way rules can be written. As an example, it does not allow a rule to use a variable that does 

not appear in its body (CHONG, 2016). Thus, examples such as the one on Figure 6 would not 

be allowed in Datalog. 
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Figure 6. Example of rule that cannot be expressed in Datalog 

The remainder of this chapter is organized as follows. Section 3.2 describes the 

workflows used as running examples and the semantic mapping between them. A reference 

classification of the provenance space as well as the mapping between the different WfMs are 

presented in Section 3.3. Section 3.4 describes the integration architecture. Section 3.5 presents 

Prolog rules and queries. Finally, Section 3.6 concludes this chapter. 

3.2 RUNNING EXAMPLES 

This Section aims at presenting two types of workflows: one that aims at performing 

phylogenetic analysis, and another one that focuses on diagnosing patients. We use them as 

running examples. Each of these workflows is implemented in four different WfMS (Taverna, 

SciCumulus, VisTrails, and e-Science Central). We have executed all of them aiming at 

collecting provenance. The semantic mapping between the implementations of each of the 

workflows is made by linking similar activities. 

3.2.1 PHYLOGENETIC ANALYSIS WORKFLOW 

Our first example is a phylogenetic analysis experiment designed by four research 

groups and executed in four different WfMS. This analysis aims at generating phylogenetic 

trees from DNA, RNA and amino acid sequences, along with other statistics, which can then 

be used to infer the evolutionary relationship of a set of genes, species, or other taxa (a group 

of one or more populations of an organism or organisms used to form a biological unit). This 

experiment is modeled by four workflows named SciPhy, ML, SciEvol, and Phylo. 

As illustrated in Figure 7, the SciPhy workflow consists of five activities: (i) 

DataSelection; (ii) Mafft; (iii) ReadSeq; (iv) ModelGenerator; and (v) RAxML. The ML 

workflow is composed of six activities: (i) ImportFile; (ii) FilterDuplicates; (iii) ClustalW; (iv) 

MEGA-Maximum Likelihood; (v) CSVExport; and (vi) ExportFiles. The SciEvol workflow 

has four activities: (i) Mafft; (ii) ReadSeq; (iii) RAxML, and (iv) Codeml. Finally, the Phylo 

workflow has 8 activities: (i) FindDir; (ii) Clear; (iii) Alignment; (iv) Convertion; (v) 

Evolutionary Model; (vi) GenerateTree1; (vii) GenerateTree2; and (viii) GenerateTree3.  All 

workflows were set up with similar input data and parameters. Although the number of 

activities differs among them, two key activities appear in all workflows, namely sequence 

alignment and tree generation. Their mappings (Mafft  ClustalW and RAxML  MEGA  
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RAxML/Codeml  GenerateTree1/ GenerateTree2/ GenerateTree3) help us compare the 

critical elements of the workflows. The remaining activities are responsible for format 

conversions and some optional optimizations in the process.  

 

(a) 

 

(b) 

 

 

 

 

 

(c)  

(d) 

Figure 7. Four Phylogenetic Analysis Workflow implementations: (a) SciPhy, (b) 
ML, (c) SciEvol, and (d) Phylo. 

These workflow abstractions presented in Figure 7 could be set up by a collaborative 

group of scientists that work independently on similar goals (i.e., generated phylogenetic trees 
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for evolutionary analysis). Despite the fact that they adopt slightly different methods and 

procedures and thus producing workflows that differ in design, implementation, and execution 

middleware, the workflows are similar in terms of intent. Additionally, they use comparable 

tools and algorithms. Since the phylogenetic analysis workflow implementations use either the 

same or similar input data and produce similar outputs, it seems natural to try and use the 

provenance traces of their executions to compare and discuss produced results.  However, the 

heterogeneity in the design, implementation, and execution of these workflows translates into 

provenance traces that are themselves heterogeneous, making it difficult to analyze them 

jointly. 

3.2.2 DIAGNOSIS ANALYSIS WORKFLOWS 

The Diagnosis Analysis workflow automate the clinical pathogenic diagnosis for patient by 

using the gene variants of a person (obtained from the genome processing) along with external 

data sources. Each implementation of this workflow receives as input variant records (single-

nucleotide mutations or indels) of a patient and a set of phenotypes and it is able to classify 

genes as pathogenic, benign, or unknown (MISSIER et al., 2015). The classification is 

performed by using information from external knowledge sources such as OMIM4 and 

ClinVar5, which holds the disease-gene and disease-variant mappings, respectively. There are 

four workflows that implement Diagnosis Analysis named SVI, Pathogenesis, GeneClass, and 

PatientDiag. Those workflows were also designed and executed by four different WfMS. 

As depicted in Figure 8, the SVI (Single-nucleotide Variant Integration) workflow is 

composed of seven activities: (i) Patient_Filter; (ii) Gene_in_scope; (iii) Patient_Gene_Join; 

(iv) Clinvar_Right_Join; (v) Filter_Pathogenic; (vi) Filter_Benign; and (vii) Filter_Amber. The 

Pathogenesis workflow consists of five activities: (i) FilterVariants; (ii) FilterGene; (iii) 

JoinVariantGene; (iv) JoinClinvar; and (v) Classify. The GeneClass workflow also holds five 

activities: (i) FilterVariants; (ii) FilterGene; (iii) JoinVariantGene; (iv) JoinClinvar; and (v) 

Classify. In the same way, PatientDiag includes five activities: (i) filter_variant; (ii) filter_gene; 

(iii) join_var_gene; (iv) join_clinvar; and (v) classify_clinvar.  

The four workflows shown in Figure 8 are set up with similar activities, input data, and 

parameters. As aforementioned in the phylogenetic workflow analysis scenario, other 

collaborative groups of scientists, which work on diagnosis analysis, could also have interest in 

discussions about the results produced by the different workflow implementations. After 

                                                
4 https://omim.org/downloads/ 
5 ftp://ftp.ncbi.nlm.nih.gov/pub/clinvar/ 
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running their workflows, they can compare and analyze provenance traces from distinct 

diagnosis workflows, improve the workflow settings and experiment results. Although the 

number of the workflow activities differs, all of them are related and have similar goals. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 8. Four Diagnosis Analysis Workflow implementations: (a) SVI, (b) 
Pathogenesis, (c) GeneClass, and (d) PatientDiag. 

3.2.3 SEMANTIC MAPPING 

Each type of workflow (Phylogenetic and Diagnosis) was implemented using different design 

and specification (e.g. number and name of activities), but each group of four workflows has 

similar goals, which make it useful to compare the achieved results. To clarify the use of 

specific parameter values in both the Phylogenetic and Diagnosis workflows, domain experts 

from each group defined semantic mappings between pairs of workflow activities in all of the 
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workflow implementations, as presented in Table 3 and Table 4. We use this mapping to 

compare the provenance of similar or equal data and activities from distinct and heterogeneous 

provenance graphs, and later to drive the design of cross-traces queries. The related set of data 

and activities are placed inside of each bracket after the label. In this way, a single query can 

go across two or more provenance graphs and bring together information related to equal or 

similar data and activities. 

Table 3. Semantic relationships among activities of four implementations of the 
Phylogenetic analysis workflow 

SciPhy ML SciEvol Phylo Description 

DataSelection ImportFile and 
FilterDuplicates 

- FindDir, Clear Importing, filtering, and 
selection of data. 

Mafft ClustalW Mafft Alignment Sequence alignment. 

ReadSeq - ReadSeq Convertion Conversion of alignment format. 

ModelGenerator - - Evolutionary 
Model 

Choice of the evolutionary 
model. 

RAxML MEGA-Maximum 
Likelihood and 
ExportFiles 

RAxML, 
Codeml 

GenerateTree1 
GenerateTree2 
GenerateTree3 

Generation of the phylogenetic 
tree. 

- CSVExport - - Exporting filtered sequences on 
CSV format. 

Table 4. Semantic relationships among activities of the four implementations of 
the Diagnosis Analysis workflow 

SVI Pathogenesis GeneClass PatientDiag Description 

Patient_Filter FilterVariants SeparateVariants filter_variant Filtering of patient’s 
variants 

Gene_in_scope FilterGene SeparateGene filter_gene Filtering of gene map 

Patient_Gene_Join JoinVariantGene ComposeVariantsGene join_var_gene Joining of filtered 
patient’s variants and 
gene map 

Clinvar_Right_Join JoinClinvar ComposeClinvar join_clinvar Joining the previous 
result with clinvar data 

Filter_Pathogenic, 
Filter_Benign, and 
Filter_Amber 

Classify LabelClinvar classify_clinvar Classification of the 
gene as pathogenic, 
benign or amber 

3.3 PROVENANCE ANALYSIS ACROSS HETEROGENEOUS PROVENANCE 

GRAPHS 

This section describes a reference classification that illustrates the different kinds of 

intersections between p-prov, r-prov, and single or multiple provenance graphs. Then, it 

introduces a mapping among entities and relationships of ProvONE and four proprietary 

models. Finally, it shows ProvONE assertions as Prolog facts. 
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3.3.1 A REFERENCE CLASSIFICATION OF THE PROVENANCE SPACE AND OF 

ITS QUERIES 

We argue that, in the collaborative scenario outlined in the introduction of this thesis, scientists 

can benefit from provenance graphs that (a) include both p-prov and r-prov, and (b) include 

traces from similar workflows. The combination of p-prov and r-prov has been proposed before 

in many papers (BELHAJJAME et al., 2015; COSTA et al., 2013a; MISSIER; SAHOO; et al., 

2010), and p-prov enables new types of queries to be made on r-prov, such as find all data 

produced by any activity that occurs downstream from block X in the workflow. Other 

interesting queries that span r-prov and p-prov are presented later in this section. The case for 

point (b) is that the ability to perform analysis on combined provenance graphs will help 

collaborative teams to obtain deeper understanding from related workflows with different levels 

of details. As we have seen in the running examples of this chapter, this is possible because 

these workflows typically share similarities on their activities, data flows, or input parameters. 

When detailed provenance graphs from similar workflows are available, scientists can use those 

sources to clarify their understanding and get more insights about the experiment. 

Given two provenance traces PG1 and PG2, each from a different workflow run (from 

the same or different workflow implementations), and each providing both r-prov and p-prov, 

we can categorize the set of all possible provenance queries as illustrated in Figure 9. In this 

Venn diagram, queries are classified according to the provenance data needed to answer them. 

For instance, queries in class C1 operate on p-prov only and on one graph at a time, while C3 

queries require both p-prov and r-prov, on one graph. Class C6 is perhaps the most challenging, 

as it operates simultaneously on p-prov and r-prov, and on both graphs. Note that our 

classification is conceptual, and the actual fragment returned by a query is sensitive to the values 

of query parameters. 

Example queries for each of the classes are listed in Table 5. Note that queries from 

classes C1, C2 and C3 are easily answered using provenance captured by most WfMS. 

However, queries of classes C4, C5 and C6 require additional mapping information that is not 

automatically provided by those systems. This mapping encompasses two aspects: (a) a 

syntactic mapping between heterogeneous schemas of provenance data and (b) a semantic 

mapping that informs the similarity or equivalence between p-prov elements. The syntactic 

mapping of local and global provenance schemas using ProvONE is described in the next 

section, while a sample of a semantic mapping of four workflows specifications for the 

phylogenetic analysis experiment appears in Table 3. 
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Figure 9. Classification of provenance fragments and corresponding queries 

Table 5. Provenance queries on intersection classes 

Note that the semantic mapping is informed by researchers/domain experts. It is used as 

support information to compare data used or generated by similar activities. Later, we will come 

# Queries Class 

Q1 Retrieve all programs with their input and output ports for the workflow w’ and 
provenance graph g’. 

C1 

Q2 Retrieve all activity executions with their generated data for the workflow execution w’ 
and provenance graph g’. 

C2 

Q3 Retrieve the time consumed by each activity execution for the workflow execution w’ 
and provenance graph g’. 

C2 

Q4 Retrieve the complete activity execution trace that influenced the generation of the data 
d’. 

C2 

Q5 Retrieve the complete dataflow trace of the output data d’ for the workflow execution w’ 
and provenance graph g’. 

C2 

Q6 Retrieve all programs (plans) of each execution and their input parameters for the 
workflow execution w’ and provenance graph g’. 

C3 

Q7 Retrieve the workflow version, and the time consumed by each workflow execution for 
the workflow wf’ and provenance graph g’. 

C3 

Q8 Retrieve all programs with their input and output ports for each workflow specification.  C4 

Q9 Retrieve all activity executions with their generated data for each workflow execution. C5 

Q10 Retrieve the time consumed by each activity execution for each workflow execution. C5 

Q11 Retrieve the ports, workflow executions, provenance graphs, and the complete activity 
execution trace that influenced the generation of all data. 

C6 

Q12 Retrieve the complete dataflow trace and workflow for each workflow execution. C6 

Q13 Retrieve the time consumed by each workflow execution for each workflow and 
provenance graph.  

C6 

Q14 Retrieve all programs (plans) of each activity execution and their input parameters for 
each workflow wf’.  

C6 
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back to the queries and classes presented in this section and we will demonstrate how an 

integrating architecture enables their implementation. 

3.3.2 MAPPING PROVENANCE MODELS TO PROVONE 

Executing queries in each of the classes presented in Figure 9 requires converting PG1, PG2, 

… PGN to a common provenance model. We now illustrate the integration process using four 

different WfMSs, SciCumulus, Taverna, VisTrails, and e-Science Central. As mentioned 

before, SciPhy, SciEvol, Phylo, and ML, which run on each of these WfMS respectively, share 

the common goal of generating phylogenetic trees while SVI, Pathogenesis, GeneClass, and 

Patient_Diag also run on those WfMS and share the common goal of generating patient’s 

diagnosis. All WfMS collect provenance data at different levels of detail, and heterogeneity is 

present both in format as well as in content. 

SciCumulus captures p-prov and r-prov and stores them in a relational database (tables) in a 

PostgreSQL database system. VisTrails also captures p-prov and r-prov and records them as 

XML files or in a relational database (MySQL). Taverna stores p-prov and r-prov as RDF files 

described by a compact W3C Recommendation Language named Turtle6 and following the 

PROV and Wf4Ever (wfdesc, wfprov)7 provenance models. Finally, e-Science Central stores 

just r-prov as a graph in a Neo4J database. However, it maintains information about the 

workflow structure in a relational database (PostgreSQL) enriched with several additional data 

related to the workflow viewing (i.e., coordinates of each graph object) and exports it to JSON 

files. 

We use ProvONE (Figure 10) as a global schema for integrating provenance traces 

produced by the four systems. ProvONE extends the PROV model with an explicit 

representation of p-prov, thus capturing the most relevant information on scientific workflow 

processes, and is designed to accommodate extensions for specific scientific workflow systems 

(MISSIER; DEY; et al., 2013).  

Table 6 and Table 7 describes the logical mapping between elements of the four source 

provenance traces, and the corresponding ProvONE elements. The structure of each relational 

table from SciCumulus and VisTrails, the RDF file from Taverna, and JSON file from e-Science 

Central, which hold p-prov, were mapped to the corresponding ProvONE entities and 

relationships (light blue rectangles in Figure 10). Furthermore, the nodes and edges of e-Science 

Central database (Neo4J), relational tables of SciCumulus and VisTrails, and RDF triples of 

                                                
6  https://www.w3.org/TR/turtle/ 
7  http://wf4ever.github.io/ro/ 
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Taverna that hold r-prov were mapped to ProvONE entities and relationships (dark yellow 

rectangles in Figure 10). The gaps in the SciCumulus, VisTrails, Taverna, and e-Science Central 

column indicate missing information. 

 
Figure 10. ProvONE conceptual model, from the DataONE documentation8 

As there is no previous relation between p-prov and r-prov in the e-Science Central database 

and the exported JSON files, we use some information such as invocations (activities call) and 

blocks (or activities) identifiers to unify them. The relation between p-prov and r-prov is 

straightforward in SciCumulus since it stores p-prov and r-prov in the same database during the 

workflow execution (i.e. at runtime). VisTrails and Taverna also generate p-prov that can be 

exported as relational tables and Turtle files respectively. 

3.3.3 PROVONE ASSERTIONS AS PROLOG FACTS 

As aforementioned, we use ProvONE as our canonical model. By using ProvONE as a bridge 

to link entities and relationships from heterogeneous provenance structures, we bring all data 

together facilitating the query and analysis process. To leverage these benefits, we have to 

stablish a mapping between the source (from different WfMSs) and target (ProvONE) 

structures. 

                                                
8  http://jenkins-1.dataone.org/jenkins/view/Documentation%20Projects/job/ProvONE-

Documentation-trunk/ws/provenance/ProvONE/v1/provone.html 
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In this section, we show the mapping and examples of how provenance traces from 

specific workflow executions can be represented as Prolog facts. We have chosen Prolog as it 

allows great flexibility both in producing the integrated database (provenance relationships are 

translated to facts) and in formulating powerful queries with inference capability (rules). 

Four fragments of provenance graphs for e-Science Central, VisTrails, Taverna, and 

SciCumulus, respectively, are depicted in Figure 11 and Figure 12, Figure 13, and Figure 14 

after mapping to ProvONE. Gray boxes represent p-prov, orange boxes correspond to r-prov, 

and light blue boxes are entities (p-prov and r-prov). Since all four provenance graphs are 

represented using the same model, queries can easily traverse all of these provenance graphs. 

Table 6 and Table 7 present the mapping between SciCumulus, e-Science Central, 

VisTrails, and Taverna schemas and ProvONE. Table 8, Table 9, Table 10, and Table 11 present 

examples of Prolog facts for the aforementioned workflow fragments (the complete set of facts 

and rules is available at GitHub at https://github.com/dew-uff/integrated-provenance-analysis). 

As the syntax of Prolog facts is similar to the PROV-N notation, each entity and activity was 

named and labeled in a similar style, using an identifier followed by a set of properties 

 

  

Figure 11. Part of e-Science Central 
provenance for a phylogenetic workflow  

Figure 12. Part of SciCumulus 
provenance for a phylogenetic workflow 

  
Figure 13. Part of VisTrails 

provenance for a diagnosis workflow  
Figure 14. Part of Taverna 

provenance for a diagnosis workflow 
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Table 6. Mapping between ProvOne, SciCumulus, e-Science Central, VisTrails, and Taverna provenance models 

# ProvONE SciCumulus e-Science Central VisTrails Taverna 

1 provone:workflow cworkflow invocation workflow wfdesc:Workflow 

2 provone:program cactivity blocks module, annotation wfdesc:Process 

3 provone:port crelation connections port, function prov:Role, wfdesc:Input, 
wfdesc:Output 

4 provone:execution eworkflow, eactivity, 
eactivation 

Service Run, Workfow 
Run 

module_exec, 
annotation 

wfprov:ProcessRun 

5 provone:execution 

(Workflow Execution) 

eworkflow, eactivity, 
eactivation 

Service Run, Workfow 
Run 

workflow_exec wfprov:WorkflowRun 

6 provone:user emachine - machine prov:agent, prov:Association 

7 provone:document efile DataVersion parameter, function wfprov:Artifact 

8 provone:data idataselection, 
odataselection, omafft, 
oreadseq, 
omodelgenerator, oraxml 

properties parameter, function wfprov:Artifact 

9 provone:visualization - - thumbnail wfprov:Artifact 

10 provone:hadPlan eactivation, eactivity, 
cactivity, eworkflow, 
cworkflow 

Service Run, blocks workflow_exec, 
workflow, module, 
module_exec 

wfprov:ProcessRun, 
wfprov:describedByProcess 

11 prov:wasDerivedFrom 

(Data) 

efile, cmapping Used, DataVersion - wfprov:Artifact, prov:used, 
prov:wasGeneratedBy 

12 prov:wasDerivedFrom 

(Program) 

- Run_Of, Instance_Of, 
Service Run, Service 
Version, Workflow 
Version 

- - 

13 prov:used efile, cmapping Used, DataVersion, 
Service Run 

module_exec, 
parameter, function, 
workflow_exec 

wfprov:ProcessRun, prov:used 
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Table 7. Mapping between ProvOne, SciCumulus, e-Science Central, VisTrails, and Taverna provenance models (cont.) 

# ProvONE SciCumulus e-Science Central VisTrails Taverna 

14 prov:wasGeneratedBy eafile Was_Generated_By, 
DataVersion, Service 
Run 

- wfprov:Artifact, 
prov:wasGeneratedBy 

15 prov:wasAssociatedWith eactivation, emachine - workflow_exec, machine wfprov:ProcessRun, 
prov:wasAssociatedWith 

16 prov:wasInformedBy cmapping Used, 
Was_Generated_By, 
Service Run 

module_exec, port wfprov:ProcessRun, 
prov:wasInformedBy 

17 provone:hasInPort crelation, cmapping, 
cactivity 

blocks, connections module, port wfdesc:hasInput, 
wfdesc:Process 

18 provone:hasOutPort crelation, cmapping, 
cactivity 

blocks, connections module, port wfdesc:hasOutput, 
wfdesc:Process 

19 provone:hasSubProgram cworkflow, cactivity invocation, blocks workflow, module wfdesc:Workflow, 
wfdesc:hasSubProcess 

20 provone:hasDefaultPara
m 

cfield connections, properties parameter, function wfprov:describedByParamet
er 

21 provone:wasPartOf eworkflow, eactivity, 
eactivation 

Contained, Service Run workflow_exec, 
module_exec 

wfprov:wasPartOfWorkflow
Run, wfprov:ProcessRun 

22 provone:hadInPort crelation, cmapping, 
cactivity, eactivity, 
eactivation 

Service Run, 
connections 

module, module_exec, 
port 

prov:Role, wfdesc:Input 

23 provone:hadOutPort crelation, cmapping, 
cactivity, eactivity, 
eactivation 

Service Run, 
connections 

module, module_exec, 
port 

prov:Role, wfdesc:Output 
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Table 8. Prolog instances for each SciCumulus, e-Science Central, VisTrails, and Taverna ProvOne construct of a phylogenetic 
workflow 

# Prolog Instances for 
SciCumulus 

Prolog Instances for e-
Science Central 

Prolog Instances for VisTrails Prolog Instances for Taverna 

1 entity(w1s,[prop(prov:typ
e,['prov:plan', 

'provone:workflow']),prop
(prov:label,'sciphy')]). 

entity(w6480,[prop(pr
ov:type,['prov:plan', 

'provone:workflow']),
prop(prov:label,'ML 
Pipeline')]). 

entity(w1v,[prop(prov:t
ype,['prov:plan','provo
ne:workflow']),prop(pro
v:label,'SciEvol')]). 

entity('http://ns.taverna.org.uk/2010/work
flowBundle/bf1675f4-adc3-41dd-829c-
7cfd1888e02b/workflow/Workflow1/',[prop(pr
ov:type,['prov:plan','provone:workflow']),
prop(prov:label,'Workflow1')]). 

2 entity(pg2s,[prop(prov:ty
pe,['prov:plan', 

'provone:program']),prop(
prov:label,'mafft')]). 

entity(pg9,[prop(prov
:type,['prov:plan','p
rovone: 

program']),prop(prov:
label,'CSVExport')]). 

entity(pg391v,[prop(pro
v:type,['prov:plan','pr
ovone:program']),prop(p
rov:label,'RAxML 
7.2.8')]). 

entity('http://ns.taverna.org.uk/2010/work
flowBundle/bf1675f4-adc3-41dd-829c-7cfd 
1888e02b/workflow/Workflow1/processor/Conv
ertion/',[prop(prov:type,['prov:plan','pro
vone:program']),prop(prov:label,'Convertio
n')]). 

3 agent(u1s,[prop(prov:type
,['provone:user']),prop(p
rov:label,'wellington-

VirtualBox')]). 

- agent(u11v,[prop(prov:t
ype,['provone:user']),p
rop(prov:label,'wellmor
')]). 

agent('taverna-engine',[prop(prov:type,[ 
'provone:user']),prop(prov:label,'TavernaE
ngine')]). 

4 entity(dc13s,[prop(prov:t
ype,['provone: 

document']),prop(prov:lab
el,'FILE13'), 

prop(prov:value,'ORTHOMCL
256.mafft')]). 

entity(dc51559,[prop(
prov:type,['provone:d
ocument']),prop(prov:
label,'sequence-map. 
csv'), 

prop(prov:type,'null'
),prop(prov:value,'nu
ll')]). 

entity(d1641v,[prop(pro
v:type,['provone:data',
'String']),prop(prov:la
bel,'MafftDir'),prop(pr
ov:value,'C:/bda/mafft-
win')]). 

entity('http://ns.taverna.org.uk/2011/data
/a7433bae-822a-43fa-896c-7073b13da84b/ 
error/a313534c-6c4e-40d1-94d4-0cad73bb3e0 
e/0',[prop(prov:type,['provone:data']),pro
p(prov:label,'model'),prop(prov:value,'a31
3534c-6c4e-40d1-94d4-0cad73bb3e0e.err' 
)]). 

5 hadPlan(ex2s,pg2s). hadPlan(ex51556,pg9). hadPlan(ex31v,pg391v). hadPlan('http://ns.taverna.org.uk/2011/run
/a7433bae-822a-43fa-896c-
7073b13da84b/process/77bedf56-baa0-4c6a-
ad24-bd28f3838f21/','http://ns.taverna. 
org.uk/2010/workflowBundle/bf1675f4-adc3-
41dd-829c-7cfd1888e02b/workflow/Workflow1 
/processor/Convertion/'). 
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Table 9. Prolog instances for each SciCumulus, e-Science Central, VisTrails, and Taverna ProvOne construct of a phylogenetic 
workflow (cont.) 

# Prolog Instances for 
SciCumulus 

Prolog Instances for e-Science 
Central 

Prolog Instances for VisTrails Prolog Instances for Taverna 

6 wasDerivedFrom(dc13s
,dc1s). 

wasDerivedFrom(dc51559,d
c2012). 

- wasDerivedFrom('http://ns.taverna.org.
uk/2011/data/a7433bae-822a-43fa-896c-
7073b13da84b/error/00aa1dfd-48a9-4fb4-
878e-
8ae728e6bf9d/0','http://ns.taverna. 
org.uk/2011/data/a7433bae-822a-43fa-
896c-7073b13da84b/error/a313534c-6c4e-
40d1-94d4-0cad73bb3e0e/0'). 

7 - wasDerivedFrom(pg9, 
pgV50025). 

- - 

8 used(ex2s,dc1s). used(ex51556,d97). used(ex51556,d97). used('http://ns.taverna.org.uk/2011/ru
n/a7433bae-822a-43fa-896c-
7073b13da84b/ 
process/76ee6ee2-cbcc-46ec-a29f-
b696f99 
08ba4/','http://ns.taverna.org.uk/2011
/data/a7433bae-822a-43fa-896c-
7073b13da 
84b/error/a313534c-6c4e-40d1-94d4-
0cad73 
bb3e0e/0'). 

9 wasGeneratedBy(dc13s
,ex2s). 

wasGeneratedBy(dc51559,e
x51556). 

- wasGeneratedBy('http://ns.taverna.org.
uk/2011/data/a7433bae-822a-43fa-896c-
7073b13da84b/error/00aa1dfd-48a9-4fb4-
878e-
8ae728e6bf9d/0','http://ns.taverna.org
.uk/2011/run/a7433bae-822a-43fa-896c-
7073b13da84b/process/419b56fd-d66c-
4750-ab15-fb3083f3ffac/'). 

10 wasAssociatedWith(ex
2s,u1s). 

- wasAssociatedWith(ew11v,u
11v). 

wasAssociatedWith('http://ns.taverna.o
rg.uk/2011/run/a7433bae-822a-43fa-
896c-7073b13da84b/process/76ee6ee2-
cbcc-46ec-a29f-
b696f9908ba4/','taverna-engine'). 
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Table 10. Prolog instances for each SciCumulus, e-Science Central, VisTrails, and Taverna ProvOne construct of a diagnosis 
analysis workflow 

# Prolog Instances for 
SciCumulus 

Prolog Instances for e-Science 
Central 

Prolog Instances for 
VisTrails 

Prolog Instances for Taverna 

1 entity(w1s,[prop(pr
ov:type,['prov:plan
','provone:workflow
']),prop(prov:label
,'patientdiag')]). 

entity('esc:svi-
esc/workflow/694/30049',[pr
op(prov:type,['prov:plan','
provone:workflow']),prop(pr
ov:label,'SVI')]). 

entity(w1v,[prop(pr
ov:type,['prov:plan
','provone:workflow
']),prop(prov:label
,'Pathogenesis')]). 

entity('http://ns.taverna.org.uk/2010/workflowB
undle/ea0b115a-fbda-4caa-9f9b-
e015fa884ed5/workflow/Workflow8/',[prop(prov:ty
pe,['prov:plan','provone:workflow']),prop(prov:
label,'Workflow8')]). 

2 entity(pg1s,[prop(p
rov:type,['prov:pla
n','provone:program
']),prop(prov:label
,'filter_variant')]
). 

entity('esc:svi-
esc/block/blocks-core-
manipulation-
3rowjoin/797',[prop(prov:ty
pe,['prov:plan','provone:pr
ogram']),prop(prov:label,'3
wayRowJoin')]). 

entity(pg141v,[prop
(prov:type,['prov:p
lan','provone:progr
am']),prop(prov:lab
el,'GeneMap')]). 

entity('http://ns.taverna.org.uk/2010/workflowB
undle/ea0b115a-fbda-4caa-9f9b-
e015fa884ed5/workflow/Workflow8/processor/Compo
seVariantsGene/',[prop(prov:type,['prov:plan','
provone:program']),prop(prov:label,'ComposeVari
antsGene')]). 

3 agent(u1s,[prop(pro
v:type,['provone:us
er']),prop(prov:lab
el,'wellmor')]). 

agent('esc:svi-
esc/engine/IP:10.2.0.5',{'e
sc:Architecture':"x86_64",'
esc:CPUModel':"Xeon",'esc:C
PUVendor':"Intel",'esc:OS':
"Linux"}). 

agent(u11v,[prop(pr
ov:type,['provone:u
ser']),prop(prov:la
bel,'wellmor')]). 

agent('taverna-engine',[prop(prov:type, 
['provone:user']),prop(prov:label,'TavernaEngin
e')]). 

4 entity(d28s,[prop(p
rov:type,['provone:
data']),prop(prov:l
abel,'varpath'),pro
p(prov:value,’svi-
cl 
assification-MUN 
0785-CV1602GM160 
308.csv')]). 

entity('esc:svi-
esc/document/2175/2176',[pr
op(prov:type,['provone:docu
ment']),prop(prov:label,'ge
nemap2-161031-
esc'),prop(prov:value,'gene
map2-161031-esc.txt')]). 

entity(d51v,[prop(p
rov:type,['provone:
data']),prop(prov:l
abel,'value'),prop(
prov:value,‘variant
_summary.csv')]). 

entity('http://ns.taverna.org.uk/2011/data/7667
6230-4711-4a10-b7bc-9a0d093dc526/ 
ref/fbca0988-9237-4e3a-abf3-d78013741817 
',[prop(prov:type,['provone:data']),prop(prov:l
abel,'join_variants_gene'),prop(prov:value,'joi
n_variants_gene')]). 

5 hadPlan(ex1s,pg1s). hadPlan('esc:svi-
esc/invocation/30115/block/
58644E52-D670-0900-6105-
0CD62F6E70C7','esc:svi-
esc/block/blocks-core-
manipulation-
3rowjoin/797'). 

hadPlan(ew11v,w1v). hadPlan('http://ns.taverna.org.uk/2011/run/7667
6230-4711-4a10-b7bc-9a0d093dc526/ 
process/cff62007-0684-410f-a9a3-7279c67c 
4fa1/','http://ns.taverna.org.uk/2010/workflowB
undle/ea0b115a-fbda-4caa-9f9b-
e015fa884ed5/workflow/Workflow8/processor/Separ
ateVariants/'). 
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Table 11. Prolog instances for each SciCumulus, e-Science Central, VisTrails, and Taverna ProvOne construct of a diagnosis 
analysis workflow (cont.) 

# Prolog Instances for 
SciCumulus 

Prolog Instances for e-
Science Central 

Prolog Instances for 
VisTrails 

Prolog Instances for Taverna 

6 - wasGeneratedBy('tr-
30115-36ED8706-6AE1 
-83E0-97D8-EB10CD8 
080FC-imported-da 
ta','esc:svi-esc/ 
invocation/30115/bloc
k/36ED8706-6AE1-83E0-
97D8-EB10CD808 
0FC'). 

- wasDerivedFrom('http://ns.taverna.org.uk/2011
/data/76676230-4711-4a10-b7bc-
9a0d093dc526/ref/d61a950d-edab-4b8e-b0fa-
b3a72191bd58','http://ns.taverna 
.org.uk/2011/data/76676230-4711-4a10-b7bc-
9a0d093dc526/ref/fbca0988-9237-4e3a-abf3-
d78013741817'). 

7 -  - - 

8 used(ex1s,d28s). used('esc:svi-
esc/invocation/30115/
block/502FD710-7C1A-
05CD-2BFC-
89CD28547DAB','tr-
30115-4CE28CBA-9234-
3AA8-1564-
36A10B955350-
filtered-data'). 

used(ew11v,d81v). used('http://ns.taverna.org.uk/2011/run/76676
230-4711-4a10-b7bc-
9a0d093dc526/process/cff62007-0684-410f-a9a3-
7279c67c4fa1/','http://ns.taverna. 
org.uk/2011/data/76676230-4711-4a10-b7bc-
9a0d093dc526/ref/dea13e4c-b8ea-4d5e-8450-
311b90842ffe'). 

9 wasGeneratedBy(d
38s,ex1s). 

wasGeneratedBy('tr-
30115-36ED8706-6AE1-
83E0-97D8-
EB10CD8080FC-
imported-
data','esc:svi-
esc/invocation/30115/
block/36ED8706-6AE1-
83E0-97D8-
EB10CD8080FC'). 

- wasGeneratedBy('http://ns.taverna.org.uk/2011
/data/76676230-4711-4a10-b7bc-
9a0d093dc526/ref/12c1dee8-292f-45a9-b6e6-
e4743ff9b783','http://ns.taverna. 
org.uk/2011/run/76676230-4711-4a10-b7bc-
9a0d093dc526/process/7b48a5f5-5555-44e3-b246-
6ad005f949ca/'). 

10 wasAssociatedWit
h(ew8s,u1s). 

wasAssociatedWith('es
c:svi-esc/invocation 
/30115','esc:svi-esc/ 
engine/IP:10.2.0.5'). 

wasAssociatedWith(
ew11v,u11v). 

wasAssociatedWith('http://ns.taverna.org.uk/2
011/run/76676230-4711-4a10-b7bc-
9a0d093dc526/process/2b2e2efb-d872-4d53-ba8d-
603a0f651543/','taverna-engine'). 
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delimitated by brackets. The general form is:  

 

prov_element(element_id, [prop(), prop()…]) 

 

As an example, the fact entity(w1s,[prop(prov:type,['prov:plan', 'provone:workflow']), 

prop(prov:label,'sciphy')]) represents an entity with identifier w1s and two properties: 

prov:type and prov:label. This entity represents a workflow named sciphy. All entities and 

activities are linked to the PROV and ProvONE models by using the prefix “prov:” and 

“provone:”, respectively. The type of entities and the attributes described in the PROV and 

ProvONE models are placed after the entities prefix, as can be seen in the last example. 

Furthermore, entity identifiers were modified to make them unique in the global schema and 

facts were created to identify the provenance graphs and relate them to their workflows. The 

provenance graph facts follow the pattern: 

 

dataSet(provenance_graph_id, provenance_graph_name) 

 

Relationships use the identifiers of each ProvONE element. The relationships written in 

Prolog use the same structure of the PROV and ProvONE models. First, they have the 

relationship name and then the identifiers of each involved entity, activity, or agent. Those are 

placed between parenthesis and separated by comma. The general form for this element is: 

 

relationship_name(element_id1, element_id2) 

 

As an example, the fact wasGeneratedBy(d38s, ex1s) represents a relationship between 

the data d38s and the execution ex1s. Hence, the fact wasGeneratedBy(d38s, ex1s) can be read 

in this way: “the data d38s was generated by the execution ex1s”. 

 

The semantic mapping described in Section 3.2.3 is also defined in Prolog by adding 

facts that follow the form: 

 

 sameAs(label,[],[]) and equivalentTo(label, [],[]) 

 

These facts represent the semantic relationships between data and activities of 

heterogeneous provenance graphs. The element label of sameAs and equivalentTo facts 
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corresponds to the action or abstraction of interrelated data or activities inserted between 

brackets. As an example, we have the fact sameAs(“input_sequences”, [d28s], [d51v]), where 

we assume the data d28s is equal to the data d51v. Another example is equivalentTo 

(“alignment”, [ex2s], [ex81v]), where ex2s and ex81v are considered equivalent executions. 

Regarding completeness, note that the e-Science Central provenance graph (rows 6 of 

Table 6 and 15 of Table 7) does not hold information about the agent, while the SciCumulus, 

Taverna, and VisTrails provenance graph do not store the program versions (row 12 of Table 

6). Besides that, VisTrails does not capture information about the relationships 

wasDerivedFrom and wasGeneratedBy. 

3.4 PROVENANCE INTEGRATION ARCHITECTURE 

This section presents the proposed Provenance Integration Architecture. Converting from 

SciCumulus, VisTrails, Taverna, and e-Science Central proprietary provenance to ProvONE 

requires the implementation of specialized adapters, or cartridges in the proposed architecture, 

one for each system. Provenance obtained from these cartridges is stored in a unified knowledge 

base as Prolog facts, as previously discussed. The cartridges may be implemented in any 

language, but in the version presented in this thesis they are implemented in Java using the 

mapping of ProvONE, SciCumulus, VisTrails, Taverna, and e-Science Central provenance 

models presented in Table 6. The implementation for each of the cartridges is available at 

GitHub (https://github.com/dew-uff/integrated-provenance-analysis). 

Using the knowledge base, various teams may access provenance and work 

collaboratively on the provenance analysis task. They can use pre-defined logical rules to query 

the provenance database, and thus get more information about similar experiments. Figure 15 

gives an overview of the provenance gathering, conversion, integration and query processes. 

The SciCumulus cartridge gets p-prov and r-prov from the relational database and 

converts them to Prolog by using the mappings presented in Table 6. The e-Science Central 

cartridge fetches r-prov from the graph database and extracts p-prov from JSON files. The 

cartridge developed for VisTrails reads its provenance repository in MySQL, stored as 

relational tables, and translate them to facts. Finally, Taverna’s cartridge reads provenance data 

that is represented as RDF files (textually represented as Turtle documents) and structured as 

research objects, and converts them to Prolog. 
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Figure 15. Provenance integration architecture 

Clearly, extending the approach to integrating other provenance sources requires new 

cartridges to be developed. This effort is similar to database integration efforts that are well 

known in the literature (BATINI et al., 1986). In our approach, implementing new cartridges 

does not require the development of ontologies, as proposed by other approaches (FILETO et 

al., 2003; SAHOO et al., 2009). Usually, the definition of entities and relationships of an 

ontology is not trivial and require a consensus among experts of a given domain.  

3.5 QUERYING THE INTEGRATED TRACES  

Using the proposed architecture, we are now able to express queries that span different types of 

provenance and different types of graphs. Queries performed on the integrated schema are 

expressed in Prolog as rules. To illustrate, we have implemented the queries listed in Table 5, 

which exemplify the intersection classes of Figure 9. Specifically, the dataTrace and dataFlow 

rules implement queries Q5 and Q12. Query Q5 covers class C2 and retrieves r-prov from either 

provenance graph PG1 or provenance graph PG2, while Q12 covers class C6 and retrieves p-

prov and r-prov from both PG1 and PG2. Although these queries are quite similar, Q12 retrieves 

the trace of data for all executions, while Q5 considers only one of the workflow systems. The 

rules were designed for retrieving all data that influenced the generation of a particular data 

product. The query result is a historical data trace that shows which input files influenced the 

generation of a given output. 

Table 12 and Table 13 show the query calls (and their associated results) with the 

parameters used to query the data trace for a specific result generated by SciCumulus, e-Science 

Central, VisTrails, and Taverna running the phylogenetic analysis workflows. On the other 
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hand, Table 14, and Table 15, show the queries and results generated by the same WfMSs 

running the diagnosis analysis workflows. 

 

dataTrace(PGName, WkfName, WExName, OutputId, InputId) :- 

 distinct(trace(PGName, WkfName, WExName, OutputId, InputId)). 

 

trace(PGName, WkfName, WExName, OutputId, InputId) :- 

 dataSet(PGId, PGName), 

 hasDataSet(WkfId, PGId), 

 activity(WExId,[prop(prov:type,['provone:execution']), 

               prop(prov:label, WExName),_,_,_]), 

 entity(WkfId,[prop(prov:type,ETypes),prop(prov:label,WkfName)]), 

 member('provone:workflow', ETypes), 

 hadPlan(WExId,WkfId), 

 wasPartOf(ExId, WExId), 

 wasGeneratedBy(OutputId, ExId), 

 dataFlow(OutputId, InputId). 

 

dataFlow(Output, Input) :- 

 wasDerivedFrom(Output, Input). 

 

dataFlow(Output, Input) :- 

 wasDerivedFrom(Output, X), 

 dataFlow(X, Input). 

 

Query Q5 (Table 12 and Table 14) retrieves the input files that influenced the generation 

of a specific output file that belongs to a particular workflow execution, workflow specification 

(phylogenetic and diagnosis analysis workflows), and WfMS informed in the query statement 

as input parameters. To perform comparative analysis between the different provenance graphs, 

a simple query (i.e., sameAs(Label,[X],[Y]) and equivalentTo(Label,[X],[Y])) could also be 

posed to obtain the same or equivalent output files identifiers. As VisTrails provenance graph 

does not hold information about the dataflow (wasDerivedFrom relationship), there is no 

answer for the data trace queries.  

Query Q12 (Table 13 and Table 15) returns the input files that influenced the generation 

of all output files that belongs to a particular workflow execution, workflow specification, and 

WfMS. In this case, the query has no values for all parameters. Hence, the query returns the 

dataflow for all workflow executions, specifications, and provenance systems stored in the 

knowledge base.  
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Table 12. Prolog queries (Q5) and results for the phylogenetic workflows  

Workflow WfMS Prolog Query and Results 

SciPhy SciCumulus 

dataTrace('SciCumulus', 'sciphy', 'sciphy-1', dc19s, 
InputId). 

InputId = dc6s; InputId = dc12s; InputId = dc13s; 
InputId = dc14s; InputId = dc1s; 

ML 
e-Science  
Central 

dataTrace('e-Science Central', 'ML Pipeline', 'Testing 
ML Pipeline', dc51559, InputId). 

InputId = dc2012. 

SciEvol VisTrails 

dataTrace('VisTrails', 'SciEvol', 'SciEvol*', Data, 
InputId). 

- 

Phylo Taverna 

dataTrace('Taverna', 'Workflow1', 'Workflow run of 
Workflow1@en', 
'http://ns.taverna.org.uk/2011/data/a7433bae-822a-43fa-
896c-7073b13da84b/error/00aa1dfd-48a9-4fb4-878e-
8ae728e6bf9d/0', InputId). 

InputId = 'http://ns.taverna.org.uk/2011/data/a7433bae-
822a-43fa-896c-7073b13da84b/error/a313534c-6c4e-40d1-
94d4-0cad73bb3e0e/0'. 

Table 13. Prolog queries (Q12) and results for the phylogenetic workflows 

Workflow WfMS Prolog Query and Results 

All All 

dataTrace(Dataset, Workflow, WorkflowExecution, OuputId, 
InputId),nl. 

Dataset = 'e-Science Central', 
Workflow = 'ML Pipeline', 
WorkflowExecution = 'Testing ML Pipeline', 
OuputId = dc51559, 
InputId = dc2012; 
 
Dataset = 'Taverna', 
Workflow = 'Workflow1', 
WorkflowExecution = 'Workflow run of Workflow1@en', 
OuputId = 'http://ns.taverna.org.uk/2011/data/…/error/00 
aa1dfd-48a9-4fb4-878e-8ae728e6bf9d/0', 
InputId = 'http://ns.taverna.org.uk/2011/data/a7433bae-
822a-43fa-896c-7073b13da84b/error/a313534c-6c4e-40d1-
94d4-0cad73bb3e0e/0'; 
 
Dataset = 'SciCumulus', 
Workflow = sciphy, 
WorkflowExecution = 'sciphy-1', 
OuputId = dc6s, 
InputId = dc1s; 
 
Dataset = 'SciCumulus', 
Workflow = sciphy, 
WorkflowExecution = 'sciphy-1', 
OuputId = dc12s, 
InputId = dc1s; 
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Table 14. Prolog queries (Q5) and results for the diagnosis workflows on 
SciCumulus, e-Science Central, VisTrails, and Taverna provenance graphs 

Workflow WfMS Prolog Query and Results 

PatientDiag SciCumulus 

dataTrace('SciCumulus',  patientdiag, 'patient 
diag-exec', d128s, InputId).  
InputId = d108s; InputId = d118s; InputId = d78s; 
InputId = d88s; InputId = d98s; InputId = d38s; 
InputId = d48s; InputId = d58s; InputId = d68s; 
InputId = d18s; InputId = d28s; 

SVI 
e-Science  
Central 

dataTrace('eSC', 'SVI', 'SVI_Exec', 'tr-30115-
36ED8706-6AE1-83E0-97D8-EB10CD8080FC-imported-
data', InputId). 

InputId = 'esc:svi-esc/document/2175/2176'; 
InputId = 'esc:svi-
esc/invocation/30115/block/36ED8706-6AE1-83E0-
97D8-EB10CD8080FC/properties'; 

Pathogenesis VisTrails 

dataTrace('VisTrails', 'Pathogenesis', ' 
Pathogenesis*', d51v, InputId). 

- 

GeneClass Taverna 

dataTrace('Taverna', 'Workflow8', WExName, 
'http://ns.taverna.org.uk/2011/data/76676230-4711-
4a10-b7bc-9a0d093dc526/ref/9d1a8823-daff-41d0-
ac0f-c6da25bbeec4', InputId). 

InputId = 'http://ns.taverna.org.uk/2011/data/ 
76676230-4711-4a10-b7bc-9a0d093dc526/ref/12c1dee8-
292f-45a9-b6e6-e4743ff9b783'; 

 

These query instances hide the complexity of the Prolog rules and become suitable for 

non-experts in the Prolog language. Note that the user may bind none, one, or multiple 

parameter values. For example, if one specifies no parameter values (i.e., Q12), the query will 

return the graph name, workflow name, execution name, along with the input and output data 

for all datasets. This makes Prolog queries a flexible resource to retrieve provenance according 

to specific requirements. 

3.6 CONCLUDING REMARKS 

The integration of heterogeneous provenance graphs can be a powerful tool for 

provenance analytics. In particular, it can provide considerable advantages for research teams 

that work collaboratively on similar experiments. In this chapter, we have presented an 

approach that enables integrating and querying provenance data from similar workflows 

designed and implemented in different systems with different specifications.  

We propose a Provenance Integration Architecture that uses an integration model 

(ProvONE) that includes both p-prov and r-prov and create cartridges that convert different  
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Table 15. Prolog queries (Q12) and results for the diagnosis workflows on 
SciCumulus, e-Science Central, VisTrails, and Taverna provenance graphs 

Workflow WfMS Prolog Query and Results 

All All 

dataTrace(Dataset, Workflow, WorkflowExecution, OuputId, 
InputId),nl. 

Dataset = 'SciCumulus', 
Workflow = patientdiag, 
WorkflowExecution = 'patientdiag-exec', 
OuputId = d148s, 
InputId = d18s; 
 
Dataset = 'SciCumulus', 
Workflow = patientdiag, 
WorkflowExecution = 'patientdiag-exec', 
OuputId = d148s, 
InputId = d28s; 
 
Dataset = eSC, 
Workflow = 'SVI', 
WorkflowExecution = 'SVI_Exec', 
OuputId = 'tr-30115-36ED8706-6AE1-83E0-97D8-EB10CD8080FC-
imported-data', 
InputId = 'esc:svi-esc/document/2175/2176'; 
 
Dataset = eSC, 
Workflow = 'SVI', 
WorkflowExecution = 'SVI_Exec', 
OuputId = 'tr-30115-36ED8706-6AE1-83E0-97D8-EB10CD8080FC-
imported-data', 
InputId = 'esc:svi-esc/invocation/30115/block/36ED8706-
6AE1-83E0-97D8-EB10CD8080FC/properties'; 
 
Dataset = 'Taverna', 
Workflow = 'Workflow8', 
WorkflowExecution = 'Workflow run of Workflow8@en', 
OuputId = 'http://ns.taverna.org.uk/2011/data/76676230-
4711-4a10-b7bc-9a0d093dc526/ref/d61a950d-edab-4b8e-b0fa-
b3a72191bd58', 
InputId = 'http://ns.taverna.org.uk/2011/data/76676230-
4711-4a10-b7bc-9a0d093dc526/ref/fbca0988-9237-4e3a-abf3-
d78013741817'; 
 
Dataset = 'Taverna', 
Workflow = 'Workflow8', 
WorkflowExecution = 'Workflow run of Workflow8@en', 
OuputId = 'http://ns.taverna.org.uk/2011/data/76676230-
4711-4a10-b7bc-9a0d093dc526/ref/d61a950d-edab-4b8e-b0fa-
b3a72191bd58', 
InputId = 'http://ns.taverna.org.uk/2011/data/76676230-
4711-4a10-b7bc-9a0d093dc526/ref/9d1a8823-daff-41d0-ac0f-
c6da25bbeec4'; 
 

provenance databases to a global ProvONE schema of Prolog facts. Our approach introduces 

classes that explore intersection between p-prov, r-prov, and heterogeneous provenance graphs 

and presents related queries that run across both provenance graphs and retrieve information 
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with different contents and levels of detail. Prolog rules were developed for each pre-defined 

query, taking advantage of inference and unification facilities provided by Prolog.  

In the next chapter, we evaluate the effectiveness and efficiency of our approach and the 

overhead it imposes.  
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 – EXPERIMENTAL EVALUATION 

4.1 INTRODUCTION 

As discussed in the Introduction, we performed a survey about provenance integrated 

analysis, which demonstrates that this is a realistic scenario. However, in such scenario, is the 

proposed integrated analysis more efficient and effective than analyzing the non-integrated 

provenance graphs individually? How much overhead the translation to Prolog poses on the 

repository? To answer these questions, we designed two experiments to assess whether 

scientists can benefit from the proposed approach to correctly query heterogeneous provenance 

graphs in shorter time. 

4.2 EFFICIENCY AND EFFECTIVENESS EVALUATION 

As presented in the previous chapters, our approach uses Prolog to represent and query 

provenance that is stored in a single knowledge base of facts and rules. Since not everyone has 

a previous experience with Prolog, we invited computer science students and professors with 

various levels of knowledge in the Prolog language. Then, the volunteers filled a personal 

profile form (Appendix A) with their personal information, their Prolog knowledge level and 

programing experience. Based on this information, we divided the 22 volunteers into 2 groups 

(named Group 1 and Group 2), aiming at balancing the knowledge level of Prolog across the 

groups. The vast majority of the volunteers had basic knowledge in Prolog (i.e., they are aware 

on how to elaborate rules and queries by using unification, conjunction, and disjunction 

operations). 

As most students and professors are not scientific workflows experts, we created 2 

simple workflows (named Curriculum and Skills) that aim at evaluating people’s resumes. The 

workflows are composed by programs that evaluate common resume sections such as 

education, professional experience, publication, among others. The Curriculum workflow was 

designed and executed in VisTrails while the Skills workflow was designed and executed in 

SciCumulus. The p-prov and r-prov generated from both workflow systems were converted to 

Prolog facts using the cartridges we developed for these systems (see Chapter 3). Figure 16 

shows the graphical representation of Curriculum (a) and Skills (b) workflows. In those 

representations, ellipse elements represent the input and output data and rectangles represent 

activities. The arrows show the dataflow between activities through their input and output ports 

(little black squares). 
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Figure 16. Graphical representation of Curriculum and Skills workflows 

Since we wanted to evaluate which method would be better to analyze heterogeneous 

provenance graphs, we then designed 6 questions that cover all classes that include 2 

provenance graphs (C4, C5, and C6), described in our reference classification in Chapter 3. 

Table 16 lists those questions, their related class, and the complexity score for each question. 

The complexity score is based on the kind of class. Furthermore, examples of possible Prolog 

queries for each question and approach are shown in Table 17 and Table 18. 

Table 16. Questions and their related classes 

# Question Class Complexity 
Score 

1 Which of the workflows executed in less time? C5 1 

2 List the programs of both workflows with their respective executions. C6 2 

3 What was the input data used in the execution of programs 
“Final_Evaluation” and “Score_Graduation”? 

C6 2 

4 Analyze the workflows and list equivalent or identical data and programs. C4 1 

5 What are the input parameters of all programs in both workflows? C4 1 

6 Are the names of users/agents the same in both workflow executions? C5 1 
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Table 17. Example of Prolog queries using the Standalone Approach 

# Prolog Query 

1 entity(WkfId,[prop(prov:type,['prov:plan','provone:workflow']),_]), 
activity(ExWId,[_,prop(_,ExName),prop(_,StartTime),prop(_, EndTime), 
_]),  
hadPlan(ExWId,WkfId), nl. 

2 entity(WkfId,[prop(prov:type,['prov:plan','provone:workflow']), 
prop(prov:label,WkfName)]), 
entity(PgId,[prop(prov:type,['prov:plan','provone:program']),prop(pro
v:label,PgName)]), 
activity(ExId, [_, prop(_, ExName),_, _, _]),  
hasSubProgram(WkfId, PgId), 
hadPlan(ExId,PgId), nl. 

3 entity(PgId,[_,prop(_,PgName)]),  
activity(ExId, [_, prop(_, ExName),_, _, _]), 
used(ExId, Data),  
hadPlan(ExId,PgId),  
entity(PgId,[_,prop(_,'Final_Evaluation ')]), nl. 
 
entity(PgId,[_,prop(_,PgName)]),  
activity(ExId, [_, prop(_, ExName),_, _, _]),used(ExId, Data),  
hadPlan(ExId,PgId),  
entity(PgId,[_,prop(_,'Score_Graduation')])), nl. 

4 entity(PgId,[prop(prov:type,['prov:plan','provone:program']),prop(pro
v:label,PgName)]),nl; 
entity(DtId,[prop(prov:type,['provone:data',_]),prop(prov:label,DtNam
e),prop(prov:value,DtValue)]),nl. 

5 entity(WkfId,[prop(prov:type,['prov:plan','provone:workflow']), 
prop(prov:label,WkfName)]), 
hasSubProgram(WkfId, PgId), 
entity(PgId,[prop(prov:type,['prov:plan','provone:program']),prop(pro
v:label,PgName)]), 
entity(Param,[prop(prov:type,['provone:data',_]),prop(prov:label,Para
mName),prop(prov:value,ParamValue)]), 
hasDefaultParam(Port,Param),  
hasInPort(PgId, Port), nl. 

6 agent(UserId, [_, prop(_,User)]),wasAssociatedWith(WkfEx,UserId), nl. 

We include new facts sameAs(label,[],[]) and equivalentTo(label, [],[]) to describe the 

semantic relationships between data and activities of Curriculum and Skills workflows. The 

element label of sameAs and equivalentTo facts corresponds to the action or abstraction of 

interrelated data or activities. The related set of data and activities are placed inside of each 

bracket after the label. In this way, a single query can go across two or more provenance graphs 

to bring together information related to equal or similar data and activities. Table 19 lists data 

and activities of Curriculum and Skills workflow that have compatible content or behavior. 
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Table 18. Example of Prolog queries questions using Integrated Approach 

# Prolog Query 
1 activity(ExWId, [_, prop(_, ExName),prop(_, StartTime), prop(_, 

EndTime), _]), 
hadPlan(ExWId, _), 
hadDataSet(ExWId,_),nl. 

2 entity(WkfId,[prop(prov:type,['prov:plan','provone:workflow']), 
prop(prov:label,WkfName)]), 
entity(PgId,[prop(prov:type,['prov:plan','provone:program']),prop(prov
:label,PgName)]), 
activity(ExId, [_, prop(_, ExName),_, _, _]),  
hasSubProgram(WkfId, PgId),hadPlan(ExId,PgId), nl. 

3 entity(PgId,[_,prop(_,PgName)]), 
activity(ExId, [_, prop(_, ExName),_, _, _]),  
used(ExId, Data), 
hadPlan(ExId,PgId),  
(entity(PgId,[_,prop(_,'Avaliacao_Final')]); 
entity(PgId,[_,prop(_,'pontuar_titulacao')])), nl. 

4 sameAs(Tag,X) ; equivalentTo(Tag,X), nl. 

5 entity(WkfId,[prop(prov:type,['prov:plan','provone:workflow']), 
prop(prov:label,WkfName)]), 
hasSubProgram(WkfId, PgId), 
entity(PgId,[prop(prov:type,['prov:plan','provone:program']),prop(prov
:label,PgName)]), 
entity(Param,[prop(prov:type,['provone:data',_]),prop(prov:label,Param
Name),prop(prov:value,ParamValue)]), 
hasDefaultParam(Port,Param), 
hasInPort(PgId, Port), nl. 

6 agent(UserId, [_, prop(_,User)]), wasAssociatedWith(WkfEx,UserId), nl. 
 

Table 19. Semantic relationships between data and activities of two resume workflows 

Curriculum Skills Description 

Curriculo Skills Input file containing the Resume 

Splict_Sections Divide_Areas Fragments of the resume into 
sections 

Filter_Publication, 
Evaluate_Publication 

Score_Publication Evaluates the academic 
publications, providing a score as 
output 

Evaluate_Experience Filter_Experience, 
Score_Experience 

Evaluates the professional 
experience, producing a score as 
output 

Evaluate_Education Score_Graduation Evaluates academic degrees 
(education), producing a score as 
output 

Final_Evaluation Generate_Average Averages all previous scores 

Final_Grade Final_Score Generates a file containing the 
final score achieved 
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The experiment took place in computing science labs of three different institutions 

(Universidade Federal de Juiz de Fora - UFJF9, Universidade Federal Fluminense - UFF10, and 

Instituto Federal do Sudeste de Minas Gerais - IFSEMG11). Before the volunteers started to 

answer the proposed questions, they received an explanation about both workflows 

(Curriculum and Skills), provenance terms, and the structure of the knowledge base 

(provenance datasets in Prolog). After that, they were advised to follow this step-by-step: (i) 

fill their names in a form; (ii) read one of the questions; (iii) take note of the start time; (iv) 

verify the datasets and workflow mappings; (v) write and execute the Prolog queries; (vi) copy 

and paste the query to the form; (vii) copy and paste the query result to the form; (viii) answer 

the proposed question, and (ix) finally, take note of the end time. After that, go back to step (ii) 

until there are no more questions to be answered. 

The experiment questions were divided in two stages (Stage 1 and Stage 2) and 

answered by using two different approaches (Approach A and Approach B). Approach A 

represents the original non-integrated approach. By using Approach A, the volunteers have to 

query two different provenance databases (SciCumulus and VisTrails) stored in two different 

knowledge bases (Prolog files). On the other hand, Approach B represents the integrated 

approach we propose in this thesis. By using the Approach B volunteers are able to query both 

provenance databases (SciCumulus and VisTrails), which are stored in a single knowledge base 

enriched with semantic information. From now on, we will refer to them as Standalone 

Approach and Integrated Approach, respectively. 

Following the Latin square technique (COCHRAN; COX, 1950) to ensure the equality 

of the experiment, each group of volunteers (Group 1 and Group 2) answered 3 questions in 

each stage by using Standalone Approach and Integrated Approach in an inverse order. First, 

in the Stage 1, Group 1 answered the first three out of six proposed questions using Standalone 

Approach. Then, in Stage 2, they answered the last three questions using Integrated Approach. 

Group 2 did the opposite. They answered the same three first questions using Integrated 

Approach and the last three questions using Standalone Approach. 

4.2.1 RESULTS AND EVALUATION PER QUESTION 

The experiment was designed to evaluate the efficiency and effectiveness of the proposed 

integration architecture (Integrated Approach) when compared to the original stand-alone 

                                                
9 www.ufjf.br 
10 www.ic.uff.br 
11 www.riopomba.ifsudestemg.edu.br 
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approaches (Standalone Approach). First of all, we grade the volunteer`s answers. Each correct 

answer received the score 1, wrong answers received 0, and whenever the answer was somehow 

correct it received 0.5. Then, we compute the time spent to answer each question. Hence, in our 

evaluation, the efficiency is defined as the ratio of the question’s score by the time consumed 

to answer it, while effectiveness is simply the achieved score. It is important to highlight that it 

is possible that one can be efficient by giving half-correct answers very fast. However, it is 

worth noting that one does not get any efficiency gains by answering wrong (score = 0), so 

efficiency is a measure of actual effort.  

  

 

Figure 17. Results for the effectiveness variable of questions/answers 1 to 6 

We analyze each question/answer separately and compare their results for the 

Standalone Approach and Integrated Approach. The results for the effectiveness, time spent 

and efficiency variables for each question/answer can be seen in Figure 17, Figure 18, and 

Figure 19, respectively.  
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Considering the effectiveness variable (Figure 17), the Standalone Approach and the 

Integrated Approach presented the same result for question 2. On the other hand, the Integrated 

Approach presented more correct answers in questions 1, 4, 5, and 6 while the Standalone 

Approach presented more correct answers in question 3. On the other hand, the time spent 

(Figure 18) was smaller by using the Standalone Approach in questions 2, 5, and 6 while 

questions 1, 3, and 4 were answered faster by using the Integrated Approach. Finally, the 

Standalone Approach was more efficient (Figure 19) in question 3 than the Integrated 

Approach. However, the Integrated Approach presented better efficiency in questions 1, 2, 4, 

5, and 6.  

  

Figure 18. Results for the time spent in questions/answers 1 to 6 
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Figure 19. Results for the efficiency variable of questions/answers 1 to 6 

The Shapiro test showed a non-normal distribution for data per question. This way, we 

applied the Wilcoxon test considering the p-value < 0.5 (95% of confidence) to check the 

statistical significance of such results. As the number of answers per question is quite small (11 

for each approach), the Wilcoxon test results could be compromised. This way, we also use the 

Cliff Delta (CLIFF, 1996) to evaluate the effect size of the results (the strength of their 

difference). Cliff Delta is a non-parametric test aiming to quantify the difference between two 

groups. Table 20 shows the p-value and Cliff Delta results for the effectiveness, time spent, and 

efficiency variables of each question/answer.  

According to the results, only the effectiveness of question 5, the time spent of questions 

4 and 6, and the efficiency of question 4 has statistical significance (p-value < 0.05). On the 

other hand, the Cliff Delta test reveals a medium to a large effect size for the effectiveness in 
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question 1, 3, 4, 5, and 6. The same occurred for the time spent in questions 1, 4, 5, and 6, and 

for the efficiency in questions 1, 3, 4, and 5. 

Note that questions 2 and 3 are harder (they touch both types of provenance and are of 

class C6). We have listed the complexity level of each query previously in Table 16. For 

example, questions in the C6 class, which involves p-prov and r-prov, are classified as hard 

questions (score 2). On the other hand, questions in class C4, which involves just p-prov, and 

questions in class C5, which involves only r-prov, are classified as normal (score 1). Questions 

2 and 3 are exactly the questions where the Standalone Approach was slightly better than 

Integrated Approach according to Figure 17, Figure 18, and Figure 19. However, the difference 

in this case is not statistically significant.  

Although Questions 5 and 6 are not classified as hard, the total time of the Integrated 

Approach for these questions was higher than that of the Standalone Approach, and the 

difference in this case is statistically significant. To try to understand what happened in 

questions 5 and 6, and in the remaining questions more precisely, Figure 20, Figure 21, Figure 

22, Figure 23, Figure 24, and Figure 25 present the histogram of the time spent by each 

participant to answer those queries. Each histogram shows the time consumed by each 

participant to answer the proposed questions. To clarify the understanding about the results, 

each bar on the histogram was filled with different colors. In this way, for correct answers the 

bar was filled with green, for wrong answers it was used red, and for half-correct answers it 

was painted with yellow. 

(a) (b) 

Figure 20. Histograms for the time spent by all participants in question 1 by 
using the Standalone (a) and Integrated (b) approaches 

 As can be seen in Figure 20 (a), even the most participants that used Standalone 

Approach getting half-correct answers, the total time consumed was greater than the Integrated 

Approach (as shown in Figure 18). On the other hand, most participants got more correct 

answers by using the Integrated Approach in less time. 
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(a) (b) 

Figure 21. Histograms for the time spent by all participants in questions 2 by 
using the Standalone (a) and Integrated (b) approaches 

(a) (b) 

Figure 22. Histograms for the time spent by all participants in questions 3 by 
using the Standalone (a) and Integrated (b) approaches 

(a) (b) 

Figure 23. Histograms for the time spent by all participants in questions 4 by 
using the Standalone (a) and Integrated approaches 
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(a) (b) 

Figure 24. Histograms for the time spent by all participants in questions 5 by 
using the Standalone (a) and Integrated approaches 

As previously described, the Standalone Approach got a better result in the total time 

spent in questions 5 and 6. However, as can be seen in Figure 24 and Figure 25, most questions 

answered by the participants that used the Standalone Approach were wrong while most 

questions answered by the participants that used the Integrated Approach were correct. 

(a) (b) 

Figure 25. Histograms for the time spent by all participants in questions 6 by 
using the Standalone (a) and Integrated approaches 

From the statistical point of view, a very consistent breakout result was not achieved. 

Part of it is due the multiple variables and different levels of complexity for each question. This 

can be seen in the results for time spent in question 2 where the volunteers took longer to answer. 

The same occurred with efficiency in question 3 that was classified as a hard question and most 

of the volunteers could not answer it correctly. In the next section, we show the general results 

that involve all questions and perform an overall evaluation considering the effectiveness, time 

spent, and efficiency of the Standalone and Integrated approaches. 

 

 

 



87 
 

Table 20. Statistical significance measured by p-value and Cliff Delta 

Question Effectiveness time spent Efficiency 

 p-value Cliff Delta p-value Cliff Delta p-value Cliff Delta 

1 0.1167 -0.3553719 
(medium) 

0.1471 0.3719008 
(medium) 

0.09942 -0.4214876 
(medium) 

2 1 1.011265e-17 
(negligible) 

0.9211 -0.03305785 
(negligible) 

1 -0.008264463 
(negligible) 

3 0.4245 0.1818182 
(small) 

0.8175 -0.0661157 
(negligible) 

0.209 0.3090909 
(small) 

4 0.3744 -0.1983471 
(small) 

0.02121 0.5867769 
(large) 

0.01396 -0.6198347 
(large) 

5 0.01273 -0.5371901 
(large) 

0.1446 -0.3719008 
(medium) 

0.09344 -0.4214876 
(medium) 

6 0.1933 -0.2727273 
(small) 

0.01385 -0.6198347 
(large) 

0.7127 -0.09917355 
(negligible) 

4.2.2 EXPERIMENT RESULTS AND OVERALL EVALUATION 

In this section, we describe the big picture of the experimental results. We analyze all 

questions/answers and compare their results for the Standalone Approach and the Integrated 

Approach. Figure 26 shows the general results (all questions/answers) for the effectiveness, 

time spent, and efficiency, respectively. As presented in Figure 26, the Integrated Approach 

got a higher percentage of right answers (71.97%) when compared to the Standalone Approach 

(56.06%). The total time consumed by the Integrated Approach was slightly smaller than that 

of the Standalone Approach (676 and 759 minutes, respectively). Considering efficiency, the 

Integrated Approach presented better results with a higher median than the Standalone 

Approach. 

   
Figure 26. Effectiveness, Time Spent and Efficiency variables 
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We used the Shapiro Wilk test (SHAPIRO; WILK, 1965) to verify that none of the 

distributions satisfy the normality assumption. Thus, we used a Wilcoxon test (WILCOXON, 

1945)) to confirm if the difference among the results were statistically significant. The results 

indicate that the results are significantly different for effectiveness (p-value = 0.0437) and 

efficiency (p-value = 0.03048) but not for time spent (p-value = 0.8948).  

4.3 OVERHEAD EVALUATION 

This section aims at evaluating possible storage and processing overheads related to the 

provenance translation to Prolog. As described in Chapter 3 and Chapter 1, our approach allows 

for analyzing provenance across heterogeneous graphs. 

 The evaluation was executed in a notebook with 2.0 GHz, 2 cores and 4 logical 

processors, 8 GB of RAM, 500 GB (SSD) of Hard Disk, and Microsoft Windows 10 operating 

system. 

4.3.1 WORKFLOWS 

For this experiment, we have chosen the SciEvol (OCAÑA, KARY A. C. S. et al., 2012b) and 

Phylo workflows. SciEvol and Phylo are similar scientific workflows implementations that aim 

at generating phylogenetic trees from DNA, RNA, or amino acid sequences. Phylogenetic trees 

determine the inferred evolutionary relationships among various biological species. A graphical 

representation of SciEvol and Phylo is presented in Figure 27 and Figure 28 respectively. 

SciEvol is composed of four activities. They are responsible for executing the phylogenetic 

analysis (or gene phylogeny) and are named as: (a) Mafft, (b) ReadSeq, (c) RAxML, and (d) 

Codeml. The Phylo workflow comprises eight activities named as: (a) FindDir, (b) Clear, (c) 

Alignment, (d) Convertion, (e) Evolutionary Model, (f) Generate Tree1, (g) Generate Tree2, 

and (h) GenerateTree3. Each activity is associated with a specific program. Mafft and Alignment 

activities may be implemented by MAFFT (KATOH; TOH, 2010), Kalign (LASSMANN et 

al., 2009), ClustalW (LARKIN et al., 2007), or ProbCons (DO et al., 2005). Each alignment 

program receives a multi-FASTA file as input, then produces a MSA as output. Multi-FASTA 

is a text-based format for representing either nucleotide sequences or peptide sequences, in 

which nucleotides or amino acids are represented using single-letter codes. Besides producing 

the MSA file, some programs such as ClustalW produce auxiliary files such as a probabilistic 

matrix (PM) that can be used for reconstructing the sequences. PM is produced by ClustalW, 

but it is not informed by the program, i.e. scientists only discover that this auxiliary file exists 

if they search on the file directory (implicit provenance). Following, the ReadSeq and 
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Conversion are implemented by ReadSeq (GILBERT, 2002). ReadSeq receives the MSA in 

different formats (one for each MSA program) and then converts it to the PHYLIP format 

(FELSENSTEIN, 1989). The Model activity is implemented by ModelGenerator (KEANE et 

al., 2006). There are several different evolutionary models available, and ModelGenerator 

chooses the best one) to use in the CodeML, RAxML, GenerateTree1, GenerateTree2, and 

GenerateTree3 by RAxML (STAMATAKIS, 2006). In SciEvol and Phylo, we consider pre-

chosen evolutionary models (BLOSUM62, CPREV, JTT, WAG, or RtREV) and we obtain 

several trees for each one of the MSA programs used. The activities FindDir and Clear use a 

simple algorithm that searches the workflow’s directory and deletes all files generated in a 

previous workflow execution. 

 

Figure 27. Graphical representation of the SciEvol workflow designed in 
VisTrails 

We used VisTrails (CALLAHAN et al., 2006b) to run SciEvol and Taverna (HULL et 

al., 2006) to run Phylo in our experiment. VisTrails stores the provenance data in a MySQL 

relational database while Taverna stores provenance in Turtle files. 
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Figure 28. Graphical representation of the Phylo workflow designed in Taverna 

 

After running the workflows, the scientist starts the Cartridges to translate provenance 

data into ProvONE facts and store it in the Knowledge Base. The translations are needed once 

each WfMS uses a specific format and structure to represent provenance (i.e., relational, RDF, 

XML, etc). Then, the scientist informs the semantic mapping between the activities and data of 

the different workflow implementations. Once all data is stored into the provenance database 

as Prolog facts, scientists can start submitting Prolog queries that combine provenance from 

distinct workflow executions. 

4.3.2 PROCESSING TIME 

In the processing time evaluation, we considered the time spent by the developed mechanisms 

to translate provenance in Prolog facts. We use the provenance graphs generated by Taverna 

and VisTrails when they executed the phylogenetic workflows Phylo and SciEvol, respectively. 

Table 21 shows the results of the processing time evaluation. We use an input file with the size 

of 3KB in the execution of Phylo workflow and 4KB in the execution of SciEvol workflow.  

The Translation Time corresponds to the time spent in the translation process, where 

each provenance repository is translated to Prolog facts and stored in the knowledge base. The 

Workflow Execution Time shows the time consumed by each WfMS to execute the workflows. 

All measurements are given in seconds. To facilitate the comparison, each dataset was 
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populated with one workflow specification and one execution. As can be seen in Table 21, the 

Translation Time is very small and the overhead in the translation process is negligible. 

Table 21. Time spent in the translation and workflow execution processes 

Workflow Provenance Dataset Translation Time Workflow Execution Time 

Phylo Taverna 1.17 sec 179.00 sec 

SciEvol VisTrails 0.34 sec 13.00 sec 

Comparing the workflow execution time of Phylo workflow in Taverna, the time 

consumed in the provenance translation process was much smaller (179 sec and 1.06 sec, 

respectively). Additionally, the time spent in the translation of the provenance generated by 

VisTrails was 35.13 times smaller than the execution time of the SciEvol workflow. 

4.3.3 STORAGE OVERHEAD 

We also measure the size of each provenance dataset before and after the translation. Aiming 

at collecting the dataset growth for different numbers of workflow executions, we have 

analyzed 1, 10, and 100 executions of Phylo and SciEvol workflows. The results of such 

measurement are shown in Table 22, Table 23, and Table 24. In those tables, the Original 

Dataset shows the size of the dataset generated by a WfMS in a specific format and proprietary 

model. In this case, Taverna uses RDF (Turtle files) to store provenance while VisTrails uses 

relational tables (MySQL). On the other hand, the Translated Dataset represents the size of the 

knowledge base composed by Prolog facts. 

Table 22. Size of the datasets before and after the translation process for 1 
execution 

Workflows Provenance Dataset Original Dataset Translated Dataset 

Phylo Taverna 76.9 KB 25 KB 

SciEvol VisTrails 736 KB 13 KB 

 

Table 23. Size of datasets before and after the translation process for 10 
executions 

Workflows Provenance Dataset Original Dataset Translated Dataset 

Phylo Taverna 776 KB 250 KB 

SciEvol VisTrails 736 KB 33 KB 
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Table 24. Size of datasets before and after the translation process for 100 
executions 

Workflows Provenance Dataset Original Dataset Translated Dataset 

Phylo Taverna 7,884 KB 2,500 KB 

SciEvol VisTrails 800 KB 233 KB 

 

 

(a) 

 

(b) 

Figure 29. Sizes of the datasets for 1 execution of Phylo (a) and SciEvol (b) workflows 

As presented in  

Table 22, the Translated Dataset size of Phylo workflow is more than 3 times smaller 

than the size of the original dataset in Taverna. On the other hand, the Translated Dataset size 

of SciEvol is 56.6 times smaller than the original dataset in VisTrails for 1 workflow execution. 

The original dataset generated after 10 executions of Phylo and SciEvol workflows is 

of size 776 KB and 736 KB, respectively. The size of the Original and Translated datasets for 

10 executions of Phylo and SciEvol workflows are shown in Table 23. The Translated Dataset 

is more than 3 times smaller than the Original Dataset of Phylo workflow while the Translated 

Dataset of SciEvol workflow is 22.3 times smaller than the Original Dataset. 

 After 100 executions of Phylo and SciEvol workflows, the Original Dataset of each one 

got 7,884 KB and 800 KB, respectively. The size of each dataset (Original and Translated) is 

listed in Table 24 and graphically exposed in the charts of Figure 29. The Original Datasets of 

Phylo and SciEvol workflows are more than 3 times greater than the Translated Datasets in 

both cases. 

The Translated Dataset produced by 1, 10, and 100 executions of Phylo and SciEvol 

workflows got smaller size than the Original Dataset in all cases, as shown in the charts of 

Figure 29. This is due the fact that just the provenance elements that have their correspondent 

elements in ProvONE were extracted and translated from the heterogeneous provenance 

datasets to the global knowledge base of Prolog facts. Moreover, the knowledge base structure 
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is composed of simple elements representing facts and rules that have no big impact over the 

provenance dataset. 

4.4 CONCLUDING REMARKS 

The experiments presented in this chapter evaluated the answers given by volunteers to 

questions based on classes 4, 5, and 6 (described in Chapter 3) that consider distinct provenance 

graphs. We compare the effectiveness, time spent and efficiency variables based on the answers 

given by two different group of volunteers using the Standalone and Integrated approach. The 

results show the Integrated approach is more effective in most questions/answers (1, 4, 5, and 

6). The result for the efficiency variable was even better for the Integrated approach where it 

got higher values for questions/answers 1, 2, 4, 5 and 6. The time spent was small in the half of 

the questions/answers (2, 5, and 6) by using the Standalone approach. This is due to the fact 

that most answers given by the volunteers (questions 5 and 6) that used the Standalone approach 

were not correct. On the other hand, the general results showed that the Integrated approach 

was better than the Standalone approach for all variables (effectiveness, time spent, and 

efficiency). Besides that, we got statistical significance (p-value < 0.05) for the effectiveness 

and efficiency variables in the general results for all questions. 

We also performed an overhead evaluation to assess the impact of the translation and 

process. The time spent in this process was negligible if compared with the workflow execution 

time. The Translated datasets size was smaller than the Original datasets for all numbers of 

executions (1, 10, and 100). 
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 – CONCLUSION 

5.1 FINAL REMARKS 

Analyzing provenance data is still an open, yet fundamental problem that deserves special 

attention from the scientific community. In this sense, the integration of heterogeneous 

provenance data sources can be a powerful tool for provenance analytics. In particular, it can 

provide considerable advantages for research teams that work collaboratively on similar 

experiments. In this thesis, we have presented an approach that enables integrating and querying 

provenance data from similar workflows designed and implemented in different systems with 

different specifications. We also developed mechanisms that allow for scientists to analyze 

different types of provenance data. 

To achieve the provenance heterogeneous analysis, we propose a Provenance 

Integration Architecture that uses an integration model (ProvONE) that includes both p-prov 

and r-prov and create cartridges that convert different provenance databases to a global 

ProvONE schema of Prolog facts. Our approach introduces classes that explore intersection 

between p-prov, r-prov, and heterogeneous provenance graphs and presents related queries that 

run across both provenance graphs and retrieve information with different contents and levels 

of detail. Prolog rules were developed for each pre-defined query, taking advantage of inference 

and unification facilities provided by Prolog.  

In our case studies, Prolog queries were executed and they could retrieve the data traces 

from both provenance graphs. New Prolog rules can easily be designed to accommodate new 

requirements, and new cartridges can be developed for other workflow systems using the 

proposed architecture. The development of cartridges for the provenance translation of four 

well-known workflow systems shows its feasibility and encourages the development of new 

cartridges. 

We conduct an experimental evaluation with volunteers where the Standalone 

provenance analysis approach was compared to the Integrated approach. The experiment 

evaluated the answers given by volunteers to questions that consider distinct provenance 

graphs. We compare the effectiveness, time spent and efficiency variables based on the answers 

given by the volunteers using the Standalone and Integrated approach. The results show the 

Integrated approach is more effective in most questions/answers. The result for the efficiency 

variable was even better for the Integrated approach where it got higher values for 

questions/answers. The time spent was smaller in half of the questions/answers by using the 
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Standalone approach. This is due to the fact that most answers given by the volunteers that used 

the Standalone approach were not correct. On the other hand, the general results showed that 

the Integrated approach was better than the Standalone approach for all variables. Besides that, 

we got statistical significance (p-value < 0.05) for the effectiveness and efficiency variables in 

the general results for all questions. 

There are some limitations, however. In our evaluation, volunteers that have different 

knowledge levels of Prolog were invited to participate of the experiment. We tried to make a 

balance in the distribution of volunteers between the Standalone and Integrated approaches 

based on their expertise informed in the personal profile form (Appendix A). However, there is 

no way to confirm that 100% of those levels were correctly informed. Some of them, for 

example, have studied or used Prolog some years ago. Hence, these volunteers had some basic 

difficulties during the experiment that could somehow have influenced the results. During the 

experiment, we also detected that some volunteers had some difficulties with the SWI Prolog 

program used in Linux OS. This could have made them spend more time to run the queries and 

answer the questions. 

Before the beginning of the experiment, we presented terms, concepts, and technologies 

related to workflows and provenance. Therefore, some volunteers that have some previous 

contact with this subject could have better results than the volunteers that have no idea about 

what workflow or provenance are.  

We also performed an overhead evaluation to verify possible processing and storage 

problems. The time spent in those processes was negligible if compared with the workflow 

execution time. The Translated datasets size was smaller than the Original datasets for all 

numbers of executions (1, 10, and 100).  

The overhead evaluation included different number of executions to see how the 

datasets scale in different scenarios (workflows execution and provenance translation). 

However, the impact of huge datasets with 1,000 executions or more, for example, was not 

measured and evaluated.  

5.2 CONTRIBUTIONS 

A list of the contributions of this thesis is as follows: 

 We conducted a survey with 82 scientists from different countries that confirm the 

scenario of integrated provenance analysis can manifest in practice; 

 We published a survey about provenance analysis approaches; 

 We designed a new taxonomy that can guide current and future studies in this area; 
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 We defined a reference classification of the provenance space; 

 We proposed an approach to analyze provenance from heterogeneous provenance 

graphs by using ProvONE as a canonical model; 

 We developed cartridges to automatically translate provenance data from similar 

workflows executed in different and well-known WfMSs (Taverna, VisTrails, 

SciCumulus, and e-Science Central) to Prolog facts, following the ProvONE model; 

 We developed mechanisms to infer some relationships that are not present in the original 

provenance datasets; 

 We designed and implemented a new form of provenance representation in Prolog that 

includes PROV and ProvONE prefix and attributes; 

 We constituted a global knowledge base of Prolog facts and rules structured following 

the ProvONE model;  

 We implemented a set of Prolog rules that facilitate the query and analysis process of 

heterogeneous provenance; 

 We conducted an experimental evaluation including the effectiveness, time spent, and 

efficiency variables; 

 We conducted an overhead evaluation of the translation process (execution and storage). 

All of those contributions were compiled in the form of papers/articles that were 

submitted to different Computer Science events and journals. A list of the papers written during 

the PhD period is presented as follows: 

 OLIVEIRA, Wellington; DE OLIVEIRA, Daniel; BRAGANHOLO, Vanessa. 

Provenance Analytics for Workflow-based Computational Experiments: a Survey. ACM 

Computing Surveys, p. 1–29, 2018 (to appear). 

 OLIVEIRA, Wellington; NEVES, Victor C.; OCAÑA, Kary A. C. S.; MURTA, Leonardo; 

DE OLIVEIRA, Daniel; and BRAGANHOLO, Vanessa. Captura e Consulta a Dados de 

Proveniência Retrospectiva Implícita Intra-Atividade. In SBBD, 2014. p. 37-46. 

 OLIVEIRA, Wellington; DE OLIVEIRA, Daniel; and BRAGANHOLO, Vanessa. 

Experiencing PROV-Wf for Provenance Interoperability in SWfMSs. In International 

Provenance and Annotation Workshop (IPAW), 2014. p. 294-296. 

 OLIVEIRA, Wellington; MISSIER, Paolo; Ocaña, Kary A. C. S.; DE OLIVEIRA, 

Daniel; and BRAGANHOLO, Vanessa. Analyzing Provenance Across Heterogeneous 

Provenance Graphs. In International Provenance and Annotation Workshop (IPAW), 

2016. p. 57-70. 
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 OLIVEIRA, Wellington; MISSIER, Paolo; DE OLIVEIRA, Daniel; and 

BRAGANHOLO, Vanessa. Comparing Provenance Data Models for Scientific 

Workflows: an Analysis of PROV-Wf and ProvOne. In Brazilian e-Science Workshop 

(BRESCI), 2016. p. 1-8. 

 OLIVEIRA, Wellington; OCAÑA, Kary A. C. S.; DE OLIVEIRA, Daniel; 

BRAGANHOLO, Vanessa. Querying Provenance along with External Domain Data 

Using Prolog. Journal of Information and Data Management (JIDM). v. 16, n. 1, p. 3–

18, Apr. 2017. 

OLIVEIRA, Wellington; MISSIER, Paolo; OCAÑA, Kary A. C. S.; DE OLIVEIRA, 

Daniel; and BRAGANHOLO, Vanessa. A Provenance Integration Architecture for Analyzing 

Heterogeneous Provenance Graphs. FGCS, to be submitted in 2018. 

5.3 FUTURE WORK 

As future work, we plan to develop a benchmark of completeness to evaluate provenance from 

different WfMSs. We intend to investigate how to cover gaps in similar provenance graphs by 

using our intersection classes. Furthermore, a semi-automatic mechanism to suggest semantic 

links between data and processes is in progress. In this sense, we intend to investigate other 

solutions such as the one proposed by Leme et al. (2009) that developed similarity functions to 

schema matching for an OWL dialect. 

 We also plan to make querying easier by providing an interface where the user would 

be able to select attributes, and the system would automatically generate the corresponding 

Prolog query. This would eliminate the need of a Computer Scientist to write the rules in our 

current approach. An initial idea is discussed by Martins (2013). 

To facilitate the comparison between the activities and data from heterogeneous 

provenance graphs, we plan to extract metadata from the file system about the size, modified 

date, extension, and other properties of data and programs. From these information, we could 

provide suggestions about similar data and activities. Once the scientist confirms the equality 

or similarity between the them, such mechanism could add this information automatically in 

the knowledge base. 

The cartridges developed in this work cover well-known WfMS that are used for many 

scientists around the world. However, new cartridges can be implemented to translate 

provenance from other WfMS to a global knowledge base of facts that follows ProvONE model. 

We intend to design a Web portal and implement services to provide the translation, 

sharing, integration, and querying of provenance datasets for all scientists spread out across the 
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globe. Such tool will help scientists that want to share their results and improve their 

experiments analysis by working collaboratively. 

Finally, we plan to evaluate the efficiency and effectiveness of our approach in real 

teams of scientists that work collaboratively.    
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APENDIX A – PERSONAL PROFILE FORM 

1. Personal Data 

Name _________________________________ 

E-mail_________________________________ 

2. Academic Degree  

( ) PhD 

( ) PhD student 

( ) Master 

( ) Master student 

( ) Undergraduate 

( ) Undergraduate student  

Date of course start __/__/____ 

Date of course completion (or expectation for the course completion) __/__/____ 

3. Experience 

3.1.How many years of experience in development for each type of software project 

bellow do you have? 

 None 1 - 2 years 3 - 4 years 5 - 6 years More than 6 years 

Personal      

Academic      

Open Source      

Company      

3.2.How many years of experience in Prolog development do you have? 

( ) None 

( ) 6 months 

( ) 1-2 years 

( ) 3-4 years 

( ) More than 4 years 

 

3.3. Please, check your experience level in Prolog language study and/or usage? 
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a) None 

b) I have studied and practiced at school 

c) I have studied and practiced in short courses 

d) I have studied and practiced by myself searching in books and in the internet 

e) I have used in company projects 

f)   I have used in personal projects 

4. Experiment 

4.1. Whether you profile fill the desired requirements for the experiment, would you 

like to participate in it?  

The experiment will take about 1 hour and 30 minutes and will take place at 

UFFJ/UFF/IFSEMG Computer Science lab in the first week of June of 2017. 

( ) Yes 

( ) No 

4.2. Whether your answered was “yes” to the previous question, please, check your 

all available schedules to participate in the experiment. 

( ) Monday morning 

( ) Monday afternoon 

( ) Monday night 

( ) Tuesday morning 

( ) Tuesday afternoon 

( ) Tuesday night 

( ) Wednesday morning 

( ) Wednesday afternoon 

( ) Wednesday night 

( ) Thursday morning 

( ) Thursday afternoon 

( ) Thursday night 

( ) Friday morning 

( ) Friday afternoon 

      ( ) Friday night 


