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Resumo

Recentemente, metaheurísticas híbridas têm se tornado uma tendência em pesquisa opera-
cional. Um exemplo bem sucedido combina Greedy Randomized Adaptive Search Procedu-
res (GRASP) e técnicas de mineração de dados, onde padrões frequentes encontrados em
soluções de alta qualidade podem levar a uma exploração eficiente do espaço de busca,
juntamente com uma redução significativa de tempo computacional. Neste trabalho,
uma heurística estado-da-arte baseada em GRASP para o Problema da Mínima Latên-
cia (PML) é aperfeiçoada por meio de técnicas de mineração de dados em duas variantes
do PML. Experimentos computacionais mostraram que as abordagens com mineração de
dados igualaram ou melhoraram a qualidade de solução para um número expressivo de
instâncias, juntamente com uma redução substancial de tempo de execução. Além disso,
88 novos valores de custos de soluções de ambos problemas são introduzidos na litera-
tura. Para avaliar os resultados reportados, testes de significância estatística, impacto
de uso de padrões minerados, comparações de mesmo tempo e gráficos time-to-target são
apresentados.

Palavras-chave: Problema da Mínima Latência, Metaheurísticas Híbridas, GRASP,
Mineração de Dados



Abstract

Recently, hybrid metaheuristics have become a trend in operations research. A successful
example combines the Greedy Randomized Adaptive Search Procedures (GRASP) and
data mining techniques, where frequent patterns found in high-quality solutions can lead
to an efficient exploration of the search space, along with a significant reduction of com-
putational time. In this work, a GRASP-based state-of-the-art heuristic for the Minimum
Latency Problem (MLP) is improved by means of data mining techniques for two MLP
variants. Computational experiments showed that the approaches with data mining were
able to match or improve the solution quality for a large number of instances, together
with a substantial reduction of running time. In addition, 88 new cost values of solutions
are introduced into the literature. To support our results, tests of statistical significance,
impact of using mined patterns, equal time comparisons and time-to-target plots are
provided.

Keywords: Minimum Latency Problem, Hybrid Metaheuristics, GRASP, Data Mining
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Chapter 1

Introduction

In operations research, metaheuristics are widely used to solve combinatorial optimization
problems, providing near-optimal solutions in practical execution time. Proposed in [15],
Greedy Randomized Adaptive Search Procedures (GRASP) is a well-known metaheuristic
successfully applied to several combinatorial optimization problems. Briefly, GRASP is
a simple iterative process composed of a constructive phase and a local search phase.
Its mechanism works, at each iteration, constructing a feasible solution by a semi-greedy
procedure to, then, be improved by exploring its neighbor search space.

Combining components from different metaheuristics, even from distinct aspects and
paradigms, has become a trend in combinatorial optimization, hence, named as hybrid
metaheuristics [43]. To extend their efficiency and flexibility, hybrid metaheuristics are
also able to incorporate concepts from other fields of study, such as Data Mining (DM).
For instance, a hybrid GRASP with data mining techniques, named Data Mining GRASP,
or simply DM-GRASP, was presented in [35, 36]. This approach succeeded to achieve
promising results not only in terms of solution quality but also in execution time.

DM refers to the automatic extraction of knowledge from datasets, which can be
represented by means of rules or patterns [19]. In heuristics, the basic idea of incorporating
data mining consists in the extraction of patterns from high-quality solutions to efficiently
guide the local search phase. This hybrid approach first appeared tackling the Set Packing
Problem [35, 36]. The adopted strategy in those works divided the original GRASP into
two parts. The first one is responsible for obtaining a set of high-quality solutions (elite
set). Next, a data mining process is applied on this elite set in order to extract a set of
patterns. The second part uses, at each iteration, an extracted pattern from the set of
patterns to generate an initial solution by means of an adapted constructive method. By its
promising results, this approach was also applied to the Maximum Diversity Problem [41],
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the Server Replication for Reliable Multicast Problem [40], the p-Median Problem [33],
the 2-Path Network Design Problem [8] and the One-Commodity Pickup-and-Delivery
Traveling Salesman Problem [18].

Afterward, an adaptive version of DM-GRASP, named Multi DM-GRASP (MDM-
GRASP), was proposed in [32] for the Server Replication for Reliable Multicast Problem.
Different from the DM-GRASP strategy, where the data mining process is performed once,
the approach presented in MDM-GRASP performs the data mining process whenever the
elite set becomes stable. This stability refers to a given number of iterations without
any changes in the elite set. In practical terms, the general quality of the elite set is
progressively enhanced throughout the execution, yielding, at each time, better patterns.
Indeed, the results from the MDM version were superior when compared to those from
the original heuristics and reasonably better than those from the DM version [8, 18, 32],
both in terms of solution quality and computational time.

In this work, we propose the hybridization with data mining of a state-of-the-art
heuristic for the Minimum Latency Problem (MLP), called GILS-RVND. This robust
heuristic was developed in [42] joining GRASP [15], Iterated Local Search (ILS) [23]
and Variable Neighborhood Descent with Random neighborhood ordering (RVND) [29].
Another contribution present in GILS-RVND refers to an evaluation framework for moves
of neighborhood structures that requires O(1) amortized operations, which was originally
proposed for several variants of the Vehicle Routing Problems [22, 44]. Results reported
in [42] showed that for instances up to 50 customers, optimality was found in all cases,
and for instances up to 1000 customers, this heuristic was extremely efficient, thus, out-
performing all existing heuristics approaches at that time regarding solution quality and
computational time.

Due to the successful results presented by data mining approaches in the literature,
the contribution of this work regards the improvement of GILS-RVND by incorporat-
ing data mining techniques, adopting both DM-GRASP and MDM-GRASP approaches,
named DM-GILS-RVND and MDM-GILS-RVND, respectively, for the two MLP versions
tackled in [42]. These two MLP versions consider either a Hamiltonian path or a Hamil-
tonian circuit as solution, and were divided, according to [42], into 150 instances for the
Hamiltonian path version and 23 instances for the Hamiltonian circuit version.

To extend our experiments for the Hamiltonian circuit version, a 56-instance set is
introduced into this work, including all instances from 120 to 1379 customers found in
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TSPLib1. This new set aims at better evaluating all heuristics, once for the 23-instance
set, whose instances vary from 42 to 107 customers, as there is no clear difference among
the results.

It is noteworthy that the original source codes, as well as the values of the initial
seeds of all experiments from [42], were provided by the authors, which allowed us to
entirely reproduce the original experiments. Submitted to the same prior conditions,
the proposed hybrid heuristics were evaluated and their results were compared to the
original version, using the same set of parameters defined in [42] and following a fair
and strict evaluation. To support all computational experiments reported in this work,
tests of statistical significance, analysis of mined patterns, equal time comparisons and
time-to-target plots were also provided.

From these analyses, the hybrid data mining approaches applied to GILS-RVND
demonstrated their efficiency not only in the improvement of solution quality, but also in
reduction of computational time. An aftermath of these results provided 88 new solution
cost values, or Best Known Solutions (BKS), for the MLP literature.

The remaining of this work is organized as follows. In Chapter 2, the Minimum
Latency Problem is introduced along with its related literature. Chapter 3 presents the
GILS-RVND heuristic. In Chapter 4, the first proposed heuristic with data mining, the
DM-GILS-RVND, is showed and its computational evaluation is displayed in Chapter 5.
The second hybrid heuristic, the MDM-GILS-RVND, and its computational evaluation
are presented in Chapters 6 and 7, respectively. Concluding remarks and future works
are pointed out in Chapter 8.

1Instances collected from http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/index.html



Chapter 2

The Minimum Latency Problem

Firstly studied as the Traveling Repairman Problem (TRP) in [3] and afterward treated
as the Minimum Latency Problem (MLP) [10], this problem is a Traveling Salesman
Problem (TSP) variant and can be defined as follows. Let G = (V,A) be a complete
directed graph, where V = {v0, . . . , vn} stands for the vertices set, being v0 the depot
and the remainder ones representing the customers, and A = {(i, j) : i, j 2 V, i 6= j} is
the set of arcs, where each one is associated with a travel time between vertices i and j.
The goal of the MLP is to find a Hamiltonian circuit in G that minimizes the total
waiting time (latency) of the customers. The latency of the i-th customer, or l(i), is the
sum of all travel times from the depot to the i-th customer present in the Hamiltonian
circuit. Therefore, the latency of all customers from the Hamiltonian circuit aimed to be
minimized in MLP is defined as

P
n

k=0 l(k).

Let S be an MLP feasible solution presented in Figure 2.1(a) and its sequence of
visited customers in Figure 2.1(b). Thus, the total latency (cost value) of S, or f(S), is
the sum of all 11 latencies of each customers of S, which, in short, has cumulative costs,
while in a TSP solution, the costs are a simple sum of all arcs of the solution.

Regarded in [39], another MLP approach does not account the return to the depot
as part of the solution, thus, it searchs for a Hamiltonian path instead. An illustrative
example, following the same format displayed in Figure 2.1, is shown in Figure 2.2 for
this MLP version, where the same scenario was used to clearly indicate the differences
between the two MLP versions.

In a general context, MLP is recognized much harder than TSP, since minor changes
in the sequence of visited customers of an MLP solution can propagate major non-local
changes in its general structure [10]. MLP is proven as NP-Hard for general metric
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spaces or for Euclidian spaces in [38]. In the literature, the MLP is also known as Travel-
ing Repairman Problem [3], Delivery Man Problem [16], Cumulative Traveling Salesman
Problem [9] and School Bus Driver Problem [12].

(a) S with weights (b) Latencies by vertices and cost value of S

Figure 2.1: An MLP feasible solution. Adapted from [37]

(a) S0 with weights (b) Latencies by vertices and cost value of S0

Figure 2.2: An MLP feasible solution considering Hamiltonian path

Many real-life applications are associated to the MLP because of its customer view-
point aspect, different from the server viewpoint aspect present in the TSP. Several ex-
amples of MLP instances can be found in daily life, such as delivery of goods [16], disaster
situations [11], data retrieval in networks [14] and disk-head scheduling [10].

A lot of research in the MLP literature has been developed and notable approaches
for solving this problem can be divided into exact algorithms, approximation algorithms,
and heuristics approaches.

Many exact algorithms have been proposed in the literature for the MLP, and the
most important ones are cited as follows. In [24], a branch-and-bound algorithm based on
a lower bound scheme was developed and tested on instances between 15 and 30 nodes.
A matroidal structure to obtain lower bounds for an enumerative algorithm was used
in [16], involving instances up to 60 vertices. Two exact algorithms that incorporate
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lower bounds provided by Lagrangian relaxations were reported in [9]. Both researches
in [13] and in [28] presented new mixed integer programming formulations, where lower
bounds were obtained by linear programming relaxations. Later on, two new linear integer
formulations, based on previous formulations found in the literature, were proposed in [14],
which could deal with instances with no more than 29 vertices. A branch-and-cut-and-
price algorithm, introduced in [1, 2], succeed to handle instances up to 107 vertices, which
remains nowadays as the largest instance-size treated in the literature. Based on branch-
and-bound, there are also two formulations for the MLP with time windows approach
[21]. Finally, two new integers formulations, considering asymmetrical instances, were
developed in [6].

Non-exact approaches, such as approximation algorithms, also appear in the literature
for the MLP. Reported in [10], a polynomial time algorithm reached an approximation
factor (ratio) of 144. Later on, known for their relevancy, approximation algorithms with
ratio of 3.59 and 3.03 were reported in [12] and [7], respectively.

Finally, several important heuristics have been proposed to solve the MLP. Apart
from an enumerative algorithm, a heuristic approach was also designed in [16]. Heuristics
for MLP, VRP and TSP were introduced in [11], where the reported experiments used
different objective functions. In [31], a memetic algorithm to obtain upper bounds was
developed. Beyond two exact formulations presented in [21] for the MLP with time
windows, two heuristic algorithms with and without a tabu list component were developed.
Two GRASP-based heuristics with Variable Neighborhood Search (VNS) and another one
with Variable Neighborhood Descent (VND) were elaborated and presented in [39].

Developed and published in [42], the GILS-RVND, a simple and effective algorithm for
the MLP based on GRASP, ILS and RVND, holds nowadays the best results for a set of
173 instances, including instances up to 1000 customers, being 23 instances tested in [1, 2]
and 150 instances from [39]. One year later, these instances were also adopted in [30] to
test two General Variable Neighborhood Search (GVNS) heuristics proposed on the basis
of different strategies for the local search phase. The results reported in [30] were only
compared to results reported in works that introduced these instances [1, 2, 39], where
some improvement on these instances was observed. Although the GVNS heuristics and
GILS-RVND were not directly compared, analysing their reported results, GILS-RVND
presented a general better performance in terms of solution quality. Thus, based on these
evidences, GILS-RVND can be considered as a state-of-the-art heuristic for the MLP.
Recently, parallel versions based on GILS-RVND were also proposed in [37].



Chapter 3

GILS-RVND: the State-of-the-Art

Algorithm

GILS-RVND is a heuristic that joins components of Greedy Randomized Adaptive Search
Procedures (GRASP) [15], Iterated Local Search (ILS) [23], and Variable Neighborhood
Descent with Random neighborhood ordering (RVND) [29]. Beyond these components,
a framework capable of evaluating moves of neighborhood structures in O(1), developed
in [22] and extended in [44], was, for the first time, applied into a heuristic for the MLP.

In [15], GRASP is presented as a simple iterative process composed of two phases
in each iteration, a constructive phase, and a local search phase. This iterative process
ends when the stopping criterion is met, and then, the best solution found is returned.
Responsible for generating feasible initial solutions, the constructive phase of GRASP
uses a random component to control its greediness, allowing distinct starts for the local
search phase at each iteration. In the constructive phase, a partial solution (initially
empty) is built by inserting an element at a time until it becomes complete. The initial
solution is probably not near-optimal, so, for its improvement, it is submitted to the
second phase of GRASP, the local search phase. This phase systematically explores the
search space of the problem, in order to replace the current solution to a better one
considering the neighborhood. When the current solution cannot be further improved by
neighbor solutions, the local search phase terminates. The GRASP terminates when its
stopping criterion is reached, such as a predefined number of iterations.

Iterated Local Search (ILS) is a simple and flexible metaheuristic for optimization
problems [23]. Basically, this metaheuristic builds its initial solution once, and submit
it to an iterative process composed of a local search phase, a perturbation mechanism
and an acceptance criterion for solutions. Considering a basic ILS, the initial solution s
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can be entirely random or constructed by a semi-greedy procedure. Next, the loop of
the ILS starts with the local search component working to improve s by browsing in
its neighborhood. After the local search, s is submitted to a perturbation mechanism,
allowing to avoid a drawback of being trapped into local optima that may happen to
occur during the algorithm execution. This mechanism modifies the solution in such way
to escape from a local optima, hence, leading the local search phase to explore another
search space area. Finally, ILS uses an acceptance criterion to replace the best global
solution by s, where s is chosen not only by the usual cost value factor, but also from
factors involving random acceptance and diversification, as suggested in [23]. The iterative
process of ILS terminates when the stopping criterion of the loop is reached, returning
the best global solution found so far.

Branching from the Variable Neighborhood Descent (VND) [29], the VND with Ran-
dom neighborhood ordering, or RVND, follows the same principles of VND, except for
the deterministic ordering present in VND. The VND mechanism works applying a set of
neighborhood structures onto a solution, considering a previously defined order. On the
other hand, the ordering of these structures is randomized in RVND.

Furthermore, a notable contribution included into GILS-RVND refers to a simple eval-
uation framework that requires O(1) amortized operations to evaluate neighbor solutions.
This approach was firstly presented in [22] and extended in [44] for many Vehicle Routing
Problem variants.

This framework allows calculating cost values of neighbor solutions using prepro-
cessed data structures, which turns to be much faster than the traditional evaluation of
considering all customers one by one. At first, a solution s is decomposed into many
subsequences, and each subsequence cost value is stored in specific data structures. Next,
when the neighborhood of s is explored for better solutions, each neighbor solution can be
reached using these data structures, where a specific order of subsequences will generate a
neighbor solution. Each specific order is associated with a neighborhood structure. Since
five classic TSP neighborhood structures were used in [42], five different orders of subse-
quences were defined. Therefore, the use of preprocessed cost values of subsequences to
calculate cost values of neighbor solutions made GILS-RVND a very efficient algorithm.

Therefore, the combination of components from GRASP, ILS, RVND, and the above
framework culminated in the development of GILS-RVND, for both MLP versions already
mentioned in Chapter 2. Reported in [42], this heuristic found optimal solutions for
instances up to 50 customers and was effective to find good solutions for instances up
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to 1000 customers. All previous heuristic approaches for the MLP were outperformed
by GILS-RVND at that time. This heuristic also opened new challenges for the MLP
literature, since its computational time and solution quality improved other heuristic
approaches for the MLP. Thus, GILS-RVND is regarded as the state-of-art proposal for
both MLP variants.

The pseudocode of GILS-RVND is detailed in Algorithm 1. Firstly, the cost of the
current best solution s⇤ is initialized (line 1). In the outer loop, for each one of the
I
Max

iterations, an initial solution s is generated by a constructive procedure requiring
an ↵ 2 R to control the greediness level of this procedure (line 3). Given as input data,
the R set contains I

Max

random values from the interval [0, 1). Before the inner loop, s
is copied to s0 and iterILS counter is set to zero (lines 4-5). From this point, s0 refers
to the best solution of the local search phase (lines 6-14). The basic idea of this phase
prevails on the exploration of the neighborhood of s using a RVND procedure (line 7) and
a perturbation mechanism over s0 (line 12) until I

ILS

consecutive attempts without any
improvement of s0. This perturbation avoids a solution drawback of being trapped into
local optima, which will be later detailed. If the cost value of s, or f(s), is lower than
f(s0) (as MLP is a minimization problem), then, s0 is updated and iterILS is reset. After
this checking, s0 is perturbed and iterILS is increased by one unit (lines 12-13). Before
the outer loop ending, s⇤ may be updated according to s0 by means of their cost values
(lines 15-17). Once all I

Max

iterations are performed, s⇤ is returned (line 19).

In order to show how initial solutions are generated, the constructive procedure of
GILS-RVND is explained in Algorithm 2. At first, the depot (vertex 0) is straightaway
inserted into the partial solution s whilst the remaining ones fill the Customer List (CL)
(lines 1-2). For simplification purposes, a variable r is declared to always hold the last
inserted customer into s throughout this algorithm execution, where it receives the depot
as initial value (line 3). Next, a systematic process to fill s is executed in a loop (lines 4-11).
At each iteration, the customers of CL are firstly sorted in ascending order by the travel
time between each one and r (line 5). After this sorting, the best (↵ x 100)% customers
from the CL are copied to the Restricted Customer List (RCL), where the less is ↵, the
shorter is RCL, and ↵ = 0 stands for the best customer of RCL (line 6). Since RCL gets
filled, a random customer from this list, or c, is selected to, then, be appended at the
end of s (lines 7-8). As c is now the last customer of s, it updates the r variable to the
sorting of CL at the next loop iteration and, finally, gets removed from CL (lines 9-10).
Eventually, all elements from CL are transferred to s, turning the partial solution into a
feasible complete solution returned by the algorithm (line 12).
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Algorithm 1 GILS-RVND(I
Max

, I
ILS

, R)

1: f(s⇤) 1;
2: for i = 1, . . . , I

Max

do
3: s ConstructiveProcedure(↵ 2 R);
4: s0  s;
5: iterILS  0;
6: while iterILS < I

ILS

do
7: s RV ND(s);
8: if f(s) < f(s0) then
9: s0  s;

10: iterILS  0;
11: end if
12: s Perturb(s0);
13: iterILS  iterILS + 1;
14: end while
15: if f(s0) < f(s⇤) then
16: s⇤  s0;
17: end if
18: end for
19: return s⇤

Next, the RVND procedure and the perturbation mechanism used in the local search
of GILS-RVND are described. In a general view of RVND, given a set of neighborhood
structures (NS), the RVND randomly selects a neighborhood structure nh 2 NS to try
the improvement of the best current solution s. If s is improved by nh, s is updated and
NS is restored to its original state. Otherwise, nh is removed from NS. In other words,
at the next iteration, NS will be either equal to the NS given as input or the current
NS without nh. Once all neighborhood structures, in sequence, fail to improve s, this
procedure returns s. Five TSP traditional neighborhood structures were used in this local
search phase and they are described below:

• Swap: two customers are interchanged.

• 2-opt: two non-adjacent arcs are removed and two others are inserted.

• Reinsertion: one customer is relocated to another position.

• Or-opt-2: one arc is relocated to another position.

• Or-opt-3: two adjacent arcs are relocated to another position.

In algorithmic terms, the RVND described before is detailed in Algorithm 3. At
first, a neighborhood structures list (NS) with all neighborhood structures (line 1) and
the data structures on subsequences of s are initialized (line 2). These data structures
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Algorithm 2 ConstructiveProcedure(↵)
1: s {0};
2: CL GenerateCL();
3: r  0;
4: while CL 6= ; do
5: CL SortCL(CL, r);
6: RCL FillRCL(CL,↵);
7: c SelectRandomClient(RCL);
8: s s [ {c};
9: r  c;

10: CL CL� {c}
11: end while
12: return s

are components of the evaluation framework, which divides s into many subsequences to
evaluate its neighborhood in O(1) amortized operations. In the inner loop (lines 3-13), a
neighborhood structure is randomly selected from NS (line 4) to try the improvement of s
(line 5). This improvement is made with a best improvement strategy, where the returned
solution s0 is either better than s or s itself. If s is improved by s0, then s is updated, NS is
reset and the data structures on subsequences are updated using s as reference (lines 6-9),
otherwise, the current neighborhood structure is removed from NS (lines 10-11). Once all
neighborhood structures fail to improve s, this solution is returned (line 14).

Algorithm 3 RVND(s)

1: NS  SetNeighborhoodList();
2: InitializeDataStructuresOnSubsequences(s);
3: while NS 6= ; do
4: nh SelectRandomNeighborhood(NS);
5: s0  FindBestNeighbor(nh, s);
6: if f(s0) < f(s) then
7: s s0;
8: NS  SetNeighborhoodList();
9: UpdateDataStructuresOnSubsequences(s);

10: else
11: NS  NS � {nh};
12: end if
13: end while
14: return s

The perturbation mechanism used in the local search is implemented by a move known
as Double-bridge [26], and it was initially proposed for the TSP to escape from local
optimum. Considering a solution to be perturbed, as the pictorial example shown in
Figure 3.1, this move consists in a plain removal of four arcs and insertion of four other
arcs, keeping the feasibility of the solution.
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(a) (b) (c)

Figure 3.1: A double-bridge move applied to a solution



Chapter 4

DM-GILS-RVND: the First Proposal

Divided into three sections, this chapter aims at presenting the process of incorporating
data mining techniques into GILS-RVND. In Section 4.1, data mining concepts that base
the hybridization of heuristics are introduced. Next, Section 4.2 demonstrates how these
concepts are incorporated into heuristics, presenting a general framework seen so far in
the literature. Finally, Section 4.3 details our first hybrid GILS-RVND with data mining,
which is explained by means of algorithms and illustrative examples.

4.1 Data Mining Concepts

Data Mining (DM) is the process of discovering knowledge from datasets, which can be
described in terms of rules and patterns [19]. Mining this knowledge requires specific
techniques to transform bulks of dataset registers into useful information. A common
application of data mining techniques can be seen in e-commerce datasets, where these
techniques are used to extract interesting frequent itemsets representing customer prefer-
ences, in such way that new business strategies can be developed to increase the sales.

In a dataset composed of transactions, where each transaction correponds to a set of
elements from an application domain, different relationships among data can be mined
in terms of frequent itemsets (patterns). An itemset, which is a subset of items of the
application domain, is mined if its support, a percentage indicator of its occurrence in the
dataset, is greater or equal to a given minimum support, so known as frequent itemset.
Therefore, the frequent itemsets mining process consists in identifying all frequent item-
sets in the dataset regarding a given minimum support. Besides that, maximal frequent
itemsets can also be mined, where a maximal frequent itemset corresponds to a frequent
itemset that is not a subset of any frequent itemset.
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Having these concepts stated, let E = {e1, e2, e3, . . . , en} be a set of the elements from
the application domain. A transaction t is a subset of E and a dataset D is a set of
transactions. A frequent itemset F , with support sup, is a subset of E which occurs in
at least (sup⇥ 100)% of the transactions in D. Thus, identifying all frequent itemsets in
D with a minimum sup (sup

min

) specified as a parameter is the Frequent Itemset Mining
(FIM) problem, where several efficient algorithms have been proposed, such as Apriori [4]
and FP-Growth [20]. The algorithm FP-Max* was proposed to mine efficiently maximal
frequent itemsets [17].

For exemplification purposes, Table 4.1 provides a dataset D composed of five trans-
actions. Let E = {1, 2, 3, 4, 5} be a set of all elements of the application domain and
sup

min

equal to 80%. By applying a FIM technique in D, the frequent itemsets extracted
are {2}, {3}, {5}, {2, 3} and {2, 5}, since they occur in, at least, 80% of all transactions
of D. Note that, in case of mining maximal frequent itemsets, only {2, 3} and {2, 5} are
extracted as these itemsets are not subsets of any frequent itemsets.

# Transaction
t1 {1, 2, 3, 4, 5}
t2 {1, 2, 3, 5}
t3 {2, 3, 4, 5}
t4 {1, 2, 5}
t5 {2, 3, 4}

Table 4.1: Dataset D composed of five transactions

The following sections display, respectively, the general framework of the hybridization
of heuristics with data mining done so far in the literature, and how this hybridization is
employed in GILS-RVND.

4.2 Hybridization of Heuristics with Data Mining

The process of incorporating data mining techniques into heuristics comes from the idea
of extracting patterns of near-optimal solutions which can be used to lead the search for
better solutions. Proposed in [35, 36], the Data Mining GRASP (DM-GRASP) is a simple
two-phase GRASP separated by a data mining process. In its first phase, which lasts for a
significant number of GRASP iterations, the best d visited solutions are stored in a set D,
which is named elite set. Indeed, each solution of D represents a transaction t. After the
first phase, the data mining process, which is an application of a FIM technique, extracts
a list of patterns P from D using a predefined sup

min

.
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Next, the second phase of DM-GRASP executes the remaining GRASP iterations,
where, at each iteration, a pattern p 2 P is given as input to a hybrid constructive
method. This method generates initial solutions based on patterns, which will guide the
local search phase. It is noteworthy to highlight that this hybridization process does not
modify the local search phase in any aspect.

Initially, the DM-GRASP was successfully applied to optimization problems that rep-
resent solutions as sets of elements [8, 27, 33, 40, 41]. The mining of itemsets for this
category of problems was straightforward, since itemsets are sets of elements. However,
this technique cannot be directly employed when the ordering of the elements is relevant
in the solution, in this case named as permutation.

In [18], a DM-GRASP-based strategy for a Traveling Salesman Problem (TSP) variant
was proposed to deal with permutations as follows. Instead of the intuitive mining of
vertices, which are the solution elements, this technique considered the mining of arcs –
which naturally holds the ordering of the vertices. Basically, each pair of vertices (i, j),
an arc of a solution, is mapped to an identifier that represents it (a

i!j

). This mapping is
performed to all solutions from the elite set, i.e., transforming the solutions into sets of
elements, which are then easily dealt by a FIM technique.

As the MLP solutions are also represented by permutations, this mapping approach
was adopted in this work. In Section 4.3, the hybridization with data mining applied
into GILS-RVND, the hybrid constructive method and the adopted mapping of arcs are
specified.

4.3 Hybridization of GILS-RVND with Data Mining

This section describes the first hybrid heuristic with data mining proposed in this work,
which is named DM-GILS-RVND and is based on DM-GRASP strategy [35]. The DM-
GILS-RVND is divided into two phases with half of the total number of iterations each,
separated by the data mining process. In the first phase, which is identical to the original
heuristic, the best solutions found are stored in the elite set D of size d. A solution s is
eligible to be inserted into D either s is better than the worst solution of D, or D is not
full. Also, D does not allow identical solutions. After the first phase, the data mining
process is performed and outputs a set of patterns P with support greater or equal to a
given minimum support sup

min

. Then, the second phase uses, at each iteration, a pattern
p from P to construct an initial solution by means of a hybrid constructive procedure. At
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the end, the best solution found is returned.

Figure 4.1 wraps the main idea behind the hybridization applied to GILS-RVND in
an illustrative scenario. Assume two solutions, S1 and S2, stored in an elite set of size 2,
represented by Figures 4.1(a) and 4.1(b), and sup

min

equal to 100%. Since MLP solutions
are permutations, the mapping approach developed in [18] is adopted for constructing
pattern-based solutions for this problem. As a result, a pattern, i.e., a set of mined
arcs, is extracted from the elite set. This pattern is highlighted in dashed lines and gray
backgrounds in Figure 4.1(c). Based on this pattern, a solution, shown in Figure 4.1(d), is
then generated by the hybrid constructive procedure, which will be later explained. Note
that all mined arcs are inserted into the resulting solution.

(a) Solution S1 (b) Solution S2

(c) Pattern extracted from the elite set (d) A pattern-based solution

Figure 4.1: Use of mined frequent arcs to generate initial solutions

Specifically, this hybridization with data mining is presented in Algorithm 4. At the
beginning, the cost of the best global solution s⇤ is initialized (line 1). In the first phase
of the strategy (lines 2-19), which comprises the first half of the iterations, the algorithm
remains the same as GILS-RVND, except for the presence of the UpdateEliteSet(D, d, s)
function (line 8). This function inserts s, which is a solution returned by the RVND
procedure, in D if s is unique in D and its cost value is better than the worst solution
cost value in D. After the first phase, the data mining process is executed, requiring
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D, d, sup
min

and MaxP as input parameters, where MaxP is an integer threshold for
the number of selected patterns (line 20). In our hybridization, the list of patterns P

(of size MaxP ) is composed of the largest patterns found by the FIM technique. These
patterns are kept in P in increasing order by the number of arcs. In the second phase of the
algorithm (lines 21-37), which executes the second half of iterations, a hybrid constructive
procedure replaces the original constructive procedure (line 22). This hybrid procedure,
which is later explained, requires ↵ 2 R and a pattern p selected in a round-robin way
from P . Next, the remainder lines of the second part are equal to their respective part of
GILS-RVND. At the end of all multi-start iterations, s⇤ is returned (line 38).

Regarding the construction of the elite set, it is important to highlight that the inserted
solutions can come from different multi-start iterations or, eventually, from an unique
iteration. Experiments using insertion criteria that increase the degree of diversification
of the elite set solutions, such as limiting the insertion of at most two solutions per
iteration into it, have been executed, obtaining worse results.

In this work, the extraction of the patterns is performed by the FPMax* algorithm1,
which is a efficient implementation for extracting maximal frequent itemsets [17].

For generating initial solutions using patterns, the hybrid constructive procedure of
the DM-GILS-RVND tries to insert segments of solution when possible, where a segment
of solution is a sequence of consecutive arcs found in the given pattern. Considering the
example showed in Figure 4.1(c), three segments of solution were found in the extracted
pattern, which were used to generate a solution, illustrated in 4.1(d). It is important to
emphasize that during this construction, only the first vertex of a segment is available to
be chosen, so that, when the first vertex is selected, the entire segment is inserted at once.

This hybrid constructive procedure is detailed in Algorithm 5. Firstly, the depot
(vertex 0) is placed into the partial solution s (line 1). Then, the Consecutive Arcs
Lists (CAL) are generated using the pattern p as input (line 2). Each list in CAL is
basically a sequence of adjacent arcs found in p. Based on CAL, the Customers List (CL)
of this algorithm is then created with those that do not exist in any list of CAL and
those that are the very first customer of each list in CAL (line 3). Next, if the vertex 0 is
the first vertex of a list in CAL, then this list is appended to s and removed from CAL
(lines 4-7). After, the variable r receives the last inserted vertex in s (line 8). In the inner
loop (lines 9-21), r is used as reference in the sorting of CL (line 10), as already explained
in Algorithm 2. Next, the RCL is filled with the (↵ x 100)% best customers from CL

1Available at http://fimi.ua.ac.be/.
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to, then, a customer c be randomly selected from RCL (lines 10-12). The customer c is
checked in all first elements of each CAL list and, if found, the entire segment is inserted
into s and removed from CAL (lines 13-15), otherwise, only c is inserted into s (lines
16-17). After this conditional block, r is updated and c is removed from CL (lines 19-20).
When CL becomes empty, s is returned by the algorithm (line 22).
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Algorithm 4 DM-GILS-RVND(I
Max

, I
ILS

, R,D, d, Sup,MaxP )

1: f(s⇤) 1;
2: for i = 1, . . . , I

Max

/2 do
3: s ConstructiveProcedure(↵ 2 R);
4: s0  s;
5: iterILS  0;
6: while iterILS < I

ILS

do
7: s RV ND(s);
8: UpdateEliteSet(D, d, s);
9: if f(s) < f(s0) then

10: s0  s;
11: iterILS  0;
12: end if
13: s Perturb(s0);
14: iterILS  iterILS + 1;
15: end while
16: if f(s0) < f(s⇤) then
17: s⇤  s0;
18: end if
19: end for
20: P  MinePatterns(D, d, Sup,MaxP );
21: for i = 1, . . . , I

Max

/2 do
22: s HybridConstructiveProc(↵ 2 R, p 2 P );
23: s0  s;
24: iterILS  0;
25: while iterILS < I

ILS

do
26: s RV ND(s);
27: if f(s) < f(s0) then
28: s0  s;
29: iterILS  0;
30: end if
31: s Perturb(s0);
32: iterILS  iterILS + 1;
33: end while
34: if f(s0) < f(s⇤) then
35: s⇤  s0;
36: end if
37: end for
38: return s⇤
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Algorithm 5 HybridConstructiveProcedure(↵, p)
1: s {0};
2: CAL GenerateCAL(p);
3: CL GenerateCLFromCAL(CAL);
4: if {9 cal 2 CAL | 0 is the first customer in cal} then
5: s s [ cal;
6: CAL CAL� cal;
7: end if
8: r  SelectLastCustomer(s);
9: while CL 6= ; do

10: CL SortCL(CL, r);
11: RCL FillRCL(CL,↵);
12: c SelectRandomClient(RCL);
13: if {9 cal 2 CAL | c is the first customer in cal} then
14: s s [ cal;
15: CAL CAL� cal;
16: else
17: s s [ {c};
18: end if
19: r  SelectLastCustomer(s);
20: CL CL� {c}
21: end while
22: return s



Chapter 5

Computational Experiments for

DM-GILS-RVND

This chapter reports several computational experiments used to compare GILS-RVND and
DM-GILS-RVND performances and it is divided into four sections, described as follows.
Section 5.1 presents the methodology used in our experiments. Based on this methodology,
Sections 5.2 and 5.3 report experiments for the MLP variants, respectively for Hamiltonian
circuits and for Hamiltonian paths. At last, Section 5.4 extends the evaluation of these
two heuristics with extra analysis.

5.1 Comparison Methodology

The original GILS-RVND source-code was granted by the authors to develop our proposed
DM-GILS-RVND. This source-code was implemented in C++ and compiled with the
g++ 4.4.3, in single thread of a Intel®CoreTM i7 3.40GHz with 16GB of RAM under
GNU/Linux Ubuntu 14.04 (64-bits).

All computational experiments reported in [42] were fully re-executed in our research
with the same set of parameters, the same g++ compiler and the same seeds of pseudo-
random numbers. For these experiments, reported in Sections 5.2 and 5.3, I

Max

= 10,
I
ILS

= min{100, n} and R = {0.00, 0.01, . . . , 0.25} are given as input parameters. Also,
as indicated in [42] and reproduced in our work, each heuristic was executed 10 times for
each instance, which used a distinct seed of pseudo-random numbers. Exclusively for DM-
GILS-RVND, sup

min

= 70%, d = 10 and MaxP = 5 were defined. In fact, sup
min

= 70%

was chosen based on the best trade-off between solution quality and computational time
found in our experiments, different from the usual sup

min

= 20%, adopted in [27, 32,



5.1 Comparison Methodology 22

40, 41], that presented impracticable averages of computational time due to the mining
process. The elite set size d = 10 was based on the promissing results of DM-GRASP
seen in [27, 32, 40, 41], and MaxP = 5 was naturally determined by the five remaining
multi-start iterations assigned to the second phase of DM-GILS-RVND.

For Sections 5.2 and 5.3, tables are used to report the results of the experiments.
In these tables, the first column represents the tested instance, and the following one
stands for its best known solution (BKS) in the literature. The next three columns show,
respectively, the Best Solution, the Average Solution and the Average Time for each in-
stance submitted to GILS-RVND in the already mentioned 10 executions. Likewise, the
same is applied in the next three columns regarding DM-GILS-RVND. The last column
demonstrates the percentage time gap of average time between the strategies. This value
is calculated using the Equation 5.1, where DMHeuristic and BaseHeuristic mean, re-
spectively, the value of the Average Time column of DM-GILS-RVND and GILS-RVND.
Additionally, shown at the bottom of the table, the general Average of all time gaps and
a counter of Better results are provided, being this last one a number of winnings of
a heuristic over the another one, eligible only for Best Solution, Average Solution and
Average Time columns.

Gap(%) = (100(DMHeuristic� BaseHeuristic))/BaseHeuristic (5.1)

In order to support these evaluations, statistical significance tests (SSTs) were carried
out on all instances results. By applying these tests, we intend to verify, in statistical
terms, whether the results generated by both heuristics implied in a significant difference,
reinforcing the application of DM into GILS-RVND, or not.

Fairly, all instances were submitted to paired SSTs with 5% of significance level,
where a data sample stands for the 10 solution cost values obtained by a heuristic solving
a instance. Therefore, two-sample tests were used to perform each paired SST, either
using Wilcoxon test or Student’s t-test. To decide which two-sample test had to be used,
the normality of the data samples were beforehand verified by the Shapiro-Wilk test.
If both data samples followed a normal distribution, the Student’s t-test was applied,
otherwise, the Wilcoxon test was used. With no exception, all SSTs reported in this work
were carried out on R platform [34].

For interpreting the results of a statistical test, two hypothesis must be considered,
the null hypothesis and the alternative hypothesis. Moreover, in a SST, it is important to
decide between one-tailed and two-tailed tests. One-tailed tests are used when the relation
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“A < B” or “A > B” is suitable, while two-tailed tests are assumed when the relation “A 6=
B” is relevant. Seeing this, as we intended to verify the performance of DM-GILS-RVND
over GILS-RVND, one-tailed tests were chosen. Thus, the null hypothesis in our tests
considered the algorithm A is better or equal to algorithm B, whereas the alternative
hypothesis meant that the algorithm B performed better than algorithm A.

The p-value (numeric result from a SST) is used to determinate if the null hypothesis
will be rejected or not. If the p-value is lower than the significance level, which was
defined to 5%, the null hypothesis must be rejected and, hence, the alternative hypothesis
is accepted, meaning that there was statistical significance. Otherwise, a p-value greater
or equal to 5% means that the null hypothesis should not be rejected.

Broadening our evaluation between DM-GILS-RVND and GILS-RVND, Section 5.4
extends the comparison of both strategies towards different analysis.

5.2 Experiments for Hamiltonian Circuit

This section presents the computational results of GILS-RVND and DM-GILS-RVND for
the MLP variant that considers Hamiltonian circuits as solutions, where two instance sets
were tested. A set of 23 instances varying from 42 to 107 customers, originally selected
in [1, 2] from TSPLib, and another set composed of all 56 instances with 120 to 1379
customers from TSPLib, which has not been previously tested in the literature.

Table 5.1 reports the results for the set of 23 instances. In this scenario, both heuristics
found the optimal solutions in all 21 instances and matched the best known solutions
in the remainder two instances, with DM-GILS-RVND performing in average of 5.06%
faster than GILS-RVND. Considering the Better counter, GILS-RVND got two better
average solutions over DM-GILS-RVND, whereas DM-GILS-RVND was faster than GILS-
RVND in 17 instances. Although DM-GILS-RVND did not match or improve two average
solutions, no statistical significance was observed in this set.

Regarding the 56-instance set for this MLP variant, Table 5.2 displays its compu-
tational results. It is noteworthy that no instance of this set has been recorded in the
literature for this MLP variant, thus, BKS column is omitted. Seen at the GAP(%) Time
column, the performance enhancement of DM-GILS-RVND is confirmed as the problem
gets harder, achieving 21.09% less computational time in general average. For the Bet-
ter counter, DM-GILS-RVND outperformed the original strategy in all aspects, being 19
wins against 5 loses for best solution, 30 wins against 14 loses for average solution, and 55
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wins against one lose in average time. In statistical terms, five instances for the Student’s
t-test and two instances for the Wilcoxon test, where DM-GILS-RVND was better than
GILS-RVND, were statistically significant. Beyond that, one instance was statistically
significant for the Student’s t-test where GILS-RVND was better than DM-GILS-RVND.

GILS-RVND DM-GILS-RVND

Instance OPT/
BKS

Best
Solution

Average
Solution

Average
Time (s)

Best
Solution

Average
Solution

Average
Time (s)

GAP(%)
Time

dantzig42 12528 12528 12528.0 0.17 12528 12528.0 0.17 0.00
swiss42 22327 22327 22327.0 0.16 22327 22327.0 0.16 0.00
att48 209320 209320 209320.0 0.29 209320 209320.0 0.29 0.00
gr48 102378 102378 102378.0 0.31 102378 102378.0 0.29 -6.45
hk48 247926 247926 247926.0 0.28 247926 247926.0 0.28 0.00
eil51 10178 10178 10178.0 0.40 10178 10178.0 0.40 0.00
berlin52 143721 143721 143721.0 0.39 143721 143721.0 0.39 0.00
brazil58 512361 512361 512361.0 0.55 512361 512361.0 0.52 -5.45
st70 20557 20557 20557.0 0.99 20557 20557.0 0.94 -5.05
eil76 17976 17976 17976.0 1.52 17976 17976.0 1.44 -5.26
pr76 3445242 3445242 3445242.0 1.35 3455242 3455242.0 1.33 -1.48
pr76r 345427 345427 345427.0 1.38 345427 345427.0 1.28 -7.25
gr96 2097170 2097170 2097170.0 2.84 2097170 2097682.3 2.75 -3.17
rat99 57986⇤ 57986 57986.0 5.30 57986 57986.0 5.02 -5.28
kroA100 983128 983128 983128.0 4.21 983128 983128.0 3.58 -14.96
kroB100 986008 986008 986008.0 4.13 986008 986008.0 4.01 -2.91
kroC100 961324 961324 961324.0 3.95 961324 961324.0 3.62 -8.35
kroD100 976965 976965 976965.0 4.06 976965 976965.0 3.47 -14.53
kroE100 971266 971266 971266.0 4.00 971266 971266.0 3.69 -7.75
rd100 340047 340047 340047.0 4.15 340047 340047.0 3.99 -3.86
eil101 27513⇤ 27513 27513.0 5.79 27513 27519.8 5.00 -13.64
lin105 603910 603910 603910.0 3.57 603910 603910.0 3.44 -3.64
pr107 2026626 2026626 2026626.0 4.33 2026626 2026626.0 4.01 -7.39
Average - - - - - - - -5.06
Better - 23 23 6 23 21 23 -
⇤ - Optimality is not proven

Table 5.1: Results for instances selected from TSPLib in [1, 2]

5.3 Experiments for Hamiltonian Path

For the MLP variant, which considers Hamiltonian paths as solutions, we used 150 in-
stances, divided into: a set of 10 instances varying between 70 and 532 customers selected
from TSPLib, introduced in [39], and seven groups of 20 generated instances each with
dimensions of 10, 20, 50, 100, 200, 500, and 1000 customers by the author of [39].

In Table 5.3, which reports for the group of instances that ranges from 70 to 532 cus-
tomers, the computational time was reduced in all instances, achieving a general average
of 12.87% faster than the original strategy. In terms of solution quality, DM-GILS-RVND
only improved the average of att532 instance, the hardest instance of this set. No statis-
tical significance was observed in this group.
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GILS-RVND DM-GILS-RVND

Instance Best
Solution

Average
Solution

Average
Time (s)

Best
Solution

Average
Solution

Average
Time (s)

GAP(%)
Time

gr120 363454 363569.5 9.54 363454 363584.8 8.24 -13.63
pr124 3154346 3154346.0 5.39 3154346 3154346.0 5.14 -4.64
bier127 4545005 4546378.8 9.25 4545005 4545005.0 7.80 -15.68
ch130 349874 349891.7 9.23 349874 349903.5 8.46 -8.34
pr136 6199268 6199805.4 17.30 6199268 6200032.6 14.11 -18.44
gr137 4061498 4061498.0 8.11 4061498 4061498.0 7.10 -12.45
pr144 3846137 3846137.0 9.11 3846137 3846137.0 9.06 -0.55
ch150 444424 444424.0 13.06 444424 444424.0 10.80 -17.30
kroA150 1825769 1825769.0 19.84 1825769 1825769.0 15.51 -21.82
kroB150 1786546 1786546.0 16.27 1786546 1786546.0 14.68 -9.77
pr152 5064566 5064566.0 11.23 5064566 5064566.0 10.45 -6.95
u159 2972030 2972204.2 14.21 2972030 2972291.3 12.88 -9.36
si175 1808532 1808532.0 19.14 1808532 1808532.0 14.92 -22.05
brg180 174750 174750.0 16.79 174750 174750.0 16.00 -4.71
rat195 218632 218763.2 44.69 218632 218760.6 37.06 -17.07
d198 1186049 1186098.6 38.28 1186049 1186086.2 31.55 -17.58
kroA200 2672437 2672444.2 42.23 2672437 2672437.0 33.70 -20.20
kroB200 2669515 2674486.0 42.00 2669515 2675761.6 36.48 -13.14
gr202 2909247 2914644.2 35.95 2909247 2912564.8 31.62 -12.04
ts225 13240046 13240046.0 26.60 13240046 13240533.0 27.28 2.56
tsp225 402783 403080.2 53.89 402783 402970.5 43.67 -18.96
pr226 7196869 7196869.0 34.29 7196869 7196869.0 28.86 -15.84
gr229 10725914 10729883.8 53.66 10725914 10729943.9 43.78 -18.41
gil262 285060 285527.1 96.12 285043 285343.5 76.34 -20.58
pr264 5471615 5471615.0 47.02 5471615 5471615.0 38.74 -17.61
a280 346989 347125.9 107.18 346989 347009.6 83.61 -21.99
pr299 6556628 6557983.4 104.92 6556628 6558164.9 78.64 -25.05
lin318 5619810 5629995.9 117.98 5619810 5630556.9 100.63 -14.71
rd400 2768830 2776672.7 350.84 2767608 2775101.2 278.61 -20.59
fl417 1874242 1874242.8 382.64 1874242 1874242.0 263.61 -31.11
gr431 21159702 21239150.9 336.98 21143311 21210280.6 264.24 -21.59
pr439 17829541 17887107.0 285.56 17829541 17876876.9 199.04 -30.30
pcb442 10301705 10323539.7 413.41 10290913 10321804.2 313.07 -24.27
d493 6684190 6691057.1 608.47 6680997 6688669.0 410.33 -32.56
att532 5613010 5632753.5 988.04 5622905 5630730.4 744.64 -24.63
ali535 31870389 31904676.6 880.76 31870389 31902870.9 587.16 -33.33
si535 12247211 12250679.7 498.76 12246397 12252151.6 340.83 -31.66
pa561 658870 661211.6 1155.32 660249 662216.9 918.00 -20.54
u574 9314596 9344178.4 1234.19 9313459 9350198.1 893.26 -27.62
rat575 1848869 1859221.1 1739.46 1847411 1856382.8 1345.04 -22.67
p654 7827273 7827639.2 1755.28 7827273 7827919.4 1263.97 -27.99
d657 14159477 14220133.3 2615.66 14125530 14188813.5 1868.86 -28.55
gr666 63571693 63731966.5 2296.23 63546987 63663647.1 1699.61 -25.98
u724 13506660 13558605.3 4651.76 13491605 13546178.5 3505.29 -24.65
rat783 3282794 3296069.6 7044.52 3272226 3290521.7 4740.52 -32.71
dsj1000 7646018508 7685887300.0 18068.70 7640607124 7671314634.0 12612.84 -30.20
dsj1000ceil 7646519008 7683329486.0 18543.76 7644298506 7680652520.0 12885.48 -30.51
pr1002 115550770 116178260.2 11963.29 115507699 115975798.5 8817.55 -26.29
si1032 46896355 46897662.4 2402.72 46896355 46896783.6 1975.55 -17.78
u1060 102508056 102759766.0 15680.50 102558414 102821622.2 10471.80 -33.22
vm1084 94760440 95053081.2 13894.43 94705227 94982553.5 9673.12 -30.38
pcb1173 30926325 31032128.8 20508.89 30891188 30972619.2 13903.73 -32.21
d1291 29383346 29477239.4 12171.21 29392621 29511969.3 8189.00 -32.72
rl1304 144886001 145596878.7 18617.53 144803181 145558912.3 12967.80 -30.35
rl1323 155697857 156360364.3 22758.06 155749119 156332300.1 15938.27 -29.97
nrw1379 35360407 35519379.7 49624.72 35327900 35475906.4 34547.99 -30.38
Average - - - - - - -21.09
Better 37 25 1 51 43 55 -

Table 5.2: Results on the 56-instances set selected from TSPLib
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GILS-RVND DM-GILS-RVND

Instance BKS Best
Solution

Average
Solution

Average
Time (s)

Best
Solution

Average
Solution

Average
Time (s)

GAP(%)
Time

st70 19215 19215 19215.0 0.94 19215 19215.0 0.91 -3.19
rat99 54984 54984 54984.0 5.81 54984 54984.0 5.22 -10.15
kroD100 949594 949594 949594.0 4.21 949594 949594.0 3.75 -10.93
lin105 585823 585823 585823.0 3.79 585823 585823.0 3.63 -4.22
pr107 1980767 1980767 1980767.0 4.96 1980767 1980767.0 4.50 -9.27
rat195 210191 210191 210335.9 44.99 210191 210385.6 37.84 -15.89
pr226 7100308 7100308 7100308.0 34.35 7100308 7100308.0 30.10 -12.37
lin318 5560679 5560679 5569819.5 124.15 5560679 5570488.8 97.39 -21.55
pr439 17688561 17688561 17734922.0 275.12 17702120 17735797.8 225.26 -18.12
att532 5577965 5581240 5597866.8 923.03 5581240 5596611.1 710.32 -23.04
Average - - - - - - - -12.87
Better - 10 9 0 9 7 10 -

Table 5.3: Results for TSPLib instances selected in [39]

Table 5.4 reports the results for instance sets with 10, 20 and 50 customers at once. In
these sets, both DM-GILS-RVND and GILS-RVND behaved similarly, achieving the opti-
mal values of each instance within an average of 0.01, 0.02 and 0.05 seconds, respectively,
for the sets of 10, 20 and 50 customers. Furthermore, for simplification, only average
solutions are shown, since they match with their respective best solution.

GILS-RVND DM-GILS-RVND
Instance S10 S20 S50 S10 S20 S50
TRP-Sn-R1 1303 3175 12198 1303 3175 12198
TRP-Sn-R2 1517 3248 11621 1517 3248 11621
TRP-Sn-R3 1233 3570 12139 1233 3570 12139
TRP-Sn-R4 1386 2983 13071 1386 2983 13071
TRP-Sn-R5 978 3248 12126 978 3248 12126
TRP-Sn-R6 1477 3328 12684 1477 3328 12684
TRP-Sn-R7 1163 2809 11176 1163 2809 11176
TRP-Sn-R8 1234 3461 12910 1234 3461 12910
TRP-Sn-R9 1402 3475 13149 1402 3475 13149
TRP-Sn-R10 1388 3359 12892 1388 3359 12892
TRP-Sn-R11 1405 2916 12103 1405 2916 12103
TRP-Sn-R12 1150 3314 10633 1150 3314 10633
TRP-Sn-R13 1531 3412 12115 1531 3412 12115
TRP-Sn-R14 1219 3297 13117 1219 3297 13117
TRP-Sn-R15 1087 2862 11986 1087 2862 11986
TRP-Sn-R16 1264 3433 12138 1264 3433 12138
TRP-Sn-R17 1058 2913 12176 1058 2913 12176
TRP-Sn-R18 1083 3124 13357 1083 3124 13357
TRP-Sn-R19 1394 3299 11430 1394 3299 11430
TRP-Sn-R20 951 2796 11935 951 2796 11935
Better 20 20 20 20 20 20

Table 5.4: Results for instances generated in [39] considering 10, 20 and 50 customers
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For the 100-customers set results, shown in Table 5.5, DM-GILS-RVND outperformed,
in terms of computational time, the original strategy in all situations, with a general
average of 10.54% less computational time. Considering solution quality, the heuristic
based on DM and the original strategy matched all BKS, however, four average solutions
of DM-GILS-RVND did not reach or improve their respective results by GILS-RVND.
Although DM-GILS-RVND lost in these four situations, no instance was statistically
significant in this set.

GILS-RVND DM-GILS-RVND

Instance BKS Best
Solution

Average
Solution

Average
Time (s)

Best
Solution

Average
Solution

Average
Time (s)

GAP(%)
Time

TRP-S100-R1 32779 32779 32779.0 4.33 32779 32779.0 3.75 -13.39
TRP-S100-R2 33435 33435 33435.0 4.61 33435 33435.0 4.20 -8.89
TRP-S100-R3 32390 32390 32390.0 4.33 32390 32390.0 4.03 -6.93
TRP-S100-R4 34733 34733 34733.0 4.45 34733 34733.0 3.89 -12.58
TRP-S100-R5 32598 32598 32598.0 5.43 32598 32598.0 4.48 -17.50
TRP-S100-R6 34159 34159 34159.0 4.83 34159 34159.0 4.31 -10.77
TRP-S100-R7 33375 33375 33375.0 5.34 33375 33375.0 4.31 -19.29
TRP-S100-R8 31780 31780 31780.0 4.29 31780 31780.0 3.57 -16.78
TRP-S100-R9 34167 34167 34167.0 4.56 34167 34167.5 4.18 -8.33
TRP-S100-R10 31605 31605 31605.0 4.13 31605 31605.0 3.67 -11.14
TRP-S100-R11 34188 34188 34198.5 4.72 34188 34219.5 4.48 -5.08
TRP-S100-R12 32146 32146 32146.0 4.38 32146 32146.0 4.03 -7.99
TRP-S100-R13 32604 32604 32604.0 4.75 32604 32604.0 4.41 -7.16
TRP-S100-R14 32433 32433 32433.0 3.89 32433 32433.5 3.54 -9.00
TRP-S100-R15 32574 32574 32574.0 4.36 32574 32574.0 3.90 -10.55
TRP-S100-R16 33566 33566 33566.0 4.87 33566 33566.0 4.39 -9.86
TRP-S100-R17 34198 34198 34198.0 5.65 34198 34198.0 5.41 -4.25
TRP-S100-R18 31929 31929 31929.0 4.34 31929 31929.0 3.95 -8.99
TRP-S100-R19 33463 33463 33463.0 4.91 33463 33463.0 4.35 -11.41
TRP-S100-R20 33632 33632 33632.2 5.35 33632 33632.4 4.77 -10.84
Average - - - - - - - -10.54
Better - 20 20 0 20 16 20 -

Table 5.5: Results on the 100-customers instances generated in [39]

Considering Table 5.6, which reports the results on the 200-customers set, the total re-
ducement of effort by DM-GILS-RVND achieved an average of 18.19% less computational
time. In terms of solution quality, no strategy behaviored with a superior performance:
both achieved all BKS, and DM-GILS-RVND improved nine average solutions, drawing
in one instance, and losing in 10 instances. When SSTs were applied onto these heuristics,
only one instance, where DM-GILS-RVND was better than GILS-RVND, was statistically
significant.

For the set of 500 customers, Table 5.7 shows that DM-GILS-RVND outperformed the
original strategy in aspects of best solution, average solution and computational time. In
terms of best solution, DM-GILS-RVND improved 15 instance results achieved by GILS-
RVND, matched four results and lost in only one situation. For average solution, the DM
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GILS-RVND DM-GILS-RVND

Instance BKS Best
Solution

Average
Solution

Average
Time (s)

Best
Solution

Average
Solution

Average
Time (s)

GAP(%)
Time

TRP-S200-R1 88787 88787 88794.6 44.08 88787 88812.1 33.10 -24.91
TRP-S200-R2 91977 91977 92013.1 41.02 91977 92009.8 35.24 -14.09
TRP-S200-R3 92568 92568 92631.2 40.50 92568 92612.1 32.60 -19.51
TRP-S200-R4 93174 93174 93192.3 43.48 93174 93180.4 34.91 -19.71
TRP-S200-R5 88737 88737 88841.2 42.65 88737 88861.9 36.31 -14.87
TRP-S200-R6 91589 91589 91601.9 42.43 91589 91596.3 34.61 -18.43
TRP-S200-R7 92754 92754 92763.2 43.75 92754 92777.6 34.91 -20.21
TRP-S200-R8 89048 89048 89049.0 45.13 89048 89051.0 39.14 -13.27
TRP-S200-R9 86326 86326 86326.0 39.51 86326 86326.0 32.44 -17.89
TRP-S200-R10 91552 91552 91596.5 44.63 91552 91602.6 35.84 -19.70
TRP-S200-R11 92655 92655 92700.6 43.90 92655 92702.5 39.15 -10.82
TRP-S200-R12 91457 91457 91504.1 46.08 91457 91521.7 38.64 -16.15
TRP-S200-R13 86155 86155 86181.4 43.88 86155 86184.7 35.59 -18.89
TRP-S200-R14 91882 91882 91929.1 42.60 91882 91892.7 35.74 -16.10
TRP-S200-R15 88912 88912 88912.4 42.28 88912 88912.0 36.58 -13.48
TRP-S200-R16 89311 89311 89364.7 47.08 89311 89316.6 36.46 -22.56
TRP-S200-R17 89089 89089 89118.3 42.92 89089 89097.2 35.54 -17.19
TRP-S200-R18 93619 93619 93676.6 46.36 93619 93641.5 37.09 -20.00
TRP-S200-R19 93369 93369 93401.6 42.75 93369 93504.1 34.48 -19.35
TRP-S200-R20 86292 86292 86292.0 42.42 86292 86296.9 31.14 -26.59
Average - - - - - - - -18.19
Better - 20 11 0 20 10 20 -

Table 5.6: Results on the 200-customers instances generated in [39]

strategy improved 15 average solutions and lost in five cases. Computational times from
GILS-RVND were reduced by DM-GILS-RVND in average of 25.55%. Moreover, four
instances were statistically significant for the Student’s t-test, where DM-GILS-RVND
performed better than the original heuristic.

Table 5.8 reports the computational results for the set of 1000 customers. Regarding
the best solution aspect, DM-GILS-RVND improved 18 instance results of GILS-RVND,
while, for average solution, the DM strategy outperformed 15 instance results. Compu-
tational times were improved by DM-GILS-RVND with average of 31.23% less compu-
tational time than GILS-RVND. Interestingly, the best general improvement – both in
terms of solution quality and computational time – was attained by DM-GILS-RVND over
GILS-RVND in this set, which is the hardest one for this MLP variant. For SSTs, seven
instances for the Student’s t-test and two instances for the Wilcoxon test were statistically
significant, where DM-GILS-RVND performed better than GILS-RVND.

As also seen in Section 5.2, DM-GILS-RVND had outstanding performances against
GILS-RVND when the instance size gets larger, i.e., the problem gets harder, chiefly
for instances above 500 customers. The following section presents different comparative
analysis between these two heuristics.
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GILS-RVND DM-GILS-RVND

Instance BKS Best
Solution

Average
Solution

Average
Time (s)

Best
Solution

Average
Solution

Average
Time (s)

GAP(%)
Time

TRP-S500-R1 1841386 1841386 1856018.7 830.85 1841386 1852238.0 620.18 -25.36
TRP-S500-R2 1815664† 1816568 1823196.9 724.17 1817288 1821667.9 502.99 -30.54
TRP-S500-R3 1826855† 1833044 1839254.2 761.86 1831357 1838557.2 580.34 -23.83
TRP-S500-R4 1804894† 1809266 1815876.4 810.63 1808563 1816765.0 589.33 -27.3
TRP-S500-R5 1821250† 1823975 1834031.7 734.32 1823135 1831575.2 565.36 -23.01
TRP-S500-R6 1782731† 1786620 1790912.4 796.28 1785217 1789675.6 596.65 -25.07
TRP-S500-R7 1847999 1847999 1857926.6 781.01 1847089 1854324.8 609.98 -21.9
TRP-S500-R8 1819636 1820846 1829257.3 769.33 1820639 1829831.8 580.50 -24.54
TRP-S500-R9 1733819 1733819 1737024.9 693.82 1730561 1736278.3 545.16 -21.43
TRP-S500-R10 1761174† 1762741 1767366.3 784.64 1762197 1767912.7 587.06 -25.18
TRP-S500-R11 1797881 1797881 1801467.9 741.50 1797881 1802957.9 536.77 -27.61
TRP-S500-R12 1774452 1774452 1783847.1 766.23 1774452 1781588.2 564.99 -26.26
TRP-S500-R13 1863905† 1873699 1878049.4 797.54 1867803 1875973.1 556.95 -30.17
TRP-S500-R14 1799171 1799171 1805732.9 835.86 1798130 1803379.2 585.61 -29.94
TRP-S500-R15 1785263† 1791145 1797532.9 800.69 1790524 1795858.3 587.39 -26.64
TRP-S500-R16 1804392† 1810188 1816484.0 761.93 1808183 1814941.6 590.35 -22.52
TRP-S500-R17 1825748 1825748 1834443.2 738.57 1824674 1832635.8 533.61 -27.75
TRP-S500-R18 1825615† 1826263 1833323.7 780.31 1826263 1831998.5 636.26 -18.46
TRP-S500-R19 1776855† 1779248 1782763.9 773.39 1774846 1785575.3 553.04 -28.49
TRP-S500-R20 1820813 1820813 1830483.3 726.50 1820713 1829740.0 544.20 -25.09
Average - - - - - - - -25.55
Better - 5 5 0 15 19 20 -

† cost values from [37]

Table 5.7: Results on the 500-customers instances generated in [39]

5.4 Complementary Analyses

This section presents three distinct complementary assessments that consider different
viewpoints of analyses to better understand the behaviors of GILS-RVND and DM-GILS-
RVND. The first one, presented in Subsection 5.4.1, illustrates the impact of the usage
of patterns into initial solutions compared to initial solutions built by the constructive
method of GILS-RVND. In the next analysis, Subsection 5.4.2 shows experiments of time
convergence of GILS-RVND and DM-GILS-RVND to targets (cost values of solutions).
Subsection 5.4.3 presents fair comparisons between DM-GILS-RVND and GILS-RVND,
where the same amount of time is given to both heuristics as stopping criterion instead
of the number of multi-start iterations, as done in Sections 5.2 and 5.3.

5.4.1 Impact of the Usage of Mined Patterns

In this subsection, an execution using the TRP-S1000-R1 instance and another one with
TRP-S1000-R7 instance were selected to demonstrate the impact of the usage of mined
patterns into initial solutions. For each experimented instance, two figures show the
results of each heuristic phase: the constructive phase and the local search phase, where
the multi-start iterations were arranged at the abscissa axis and cost values of solutions
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GILS-RVND DM-GILS-RVND

Instance BKS Best
Solution

Average
Solution

Average
Time (s)

Best
Solution

Average
Solution

Average
Time (s)

GAP(%)
Time

TRP-S1000-R1 5107395 5107395 5133698.3 19889.15 5099593 5122436.1 14123.42 -28.99
TRP-S1000-R2 5106161 5106161 5127449.4 19218.18 5084762 5112406.6 13532.12 -29.59
TRP-S1000-R3 5096977 5096977 5113302.9 18798.18 5089701 5111390.5 12553.89 -33.22
TRP-S1000-R4 5112465† 5118006 5141392.6 18493.11 5110184 5142219.9 12404.32 -32.92
TRP-S1000-R5 5097991† 5103894 5122660.7 18906.29 5085136 5116167.7 13124.07 -30.58
TRP-S1000-R6 5109946† 5115816 5143087.1 19143.87 5102671 5132201.1 13862.07 -27.59
TRP-S1000-R7 4995703† 5021383 5032722.0 17681.02 4984950 5014796.3 13154.44 -25.60
TRP-S1000-R8 5109325 5109325 5132722.6 18065.24 5109325 5129942.9 12781.96 -29.25
TRP-S1000-R9 5046566† 5052599 5073245.3 17979.62 5045262 5070469.7 11758.44 -34.60
TRP-S1000-R10 5060019† 5078191 5093592.6 17596.33 5070109 5089275.6 12274.40 -30.24
TRP-S1000-R11 5031455† 5041913 5066161.5 18307.69 5052459 5066612.8 11826.31 -35.40
TRP-S1000-R12 5029792 5029792 5051235.2 19149.54 5030837 5043866.1 12940.67 -32.42
TRP-S1000-R13 5102520 5102520 5131437.5 19604.19 5098034 5123032.4 13895.03 -29.12
TRP-S1000-R14 5092861† 5099433 5118980.6 18974.58 5089565 5116989.7 13171.29 -30.58
TRP-S1000-R15 5131013† 5142470 5174493.2 18889.53 5123240 5166046.9 13687.70 -27.54
TRP-S1000-R16 5064094† 5073972 5090280.5 18206.27 5070422 5091420.9 11962.50 -34.29
TRP-S1000-R17 5052283† 5071485 5084450.4 18571.62 5065952 5082717.2 11847.47 -36.21
TRP-S1000-R18 5005789† 5017589 5037094.0 19745.37 5003047 5038269.6 12966.44 -34.33
TRP-S1000-R19 5064873† 5076800 5097167.6 19790.69 5065743 5087261.2 13365.27 -32.47
TRP-S1000-R20 4977262 4977262 5002920.6 18715.65 4970735 5003599.3 13150.60 -29.73
Average - - - - - - - -31.23
Better - 2 5 0 18 15 20 -

† cost values from [37]

Table 5.8: Results on the 1000-customers instances generated in [39]

at the ordinate axis. For simplification, as DM-GILS-RVND and GILS-RVND have the
same behavior in the first half of the multi-start iterations, one line is used to represent
both heuristics.

To picture the analyses of the TRP-S1000-R1 instance, Figure 5.1(a) demonstrates
that the obtained cost values from the data mining heuristics drop dramatically due to
the usage of a mined pattern, whereas the cost values from GILS-RVND roughly remain
at the same baseline. Being specific at this point, the used pattern contained 940 arcs,
which was directly employed in the construction of the initial solution. For the local
search phase, displayed in Figure 5.1(b), from the DM process onwards, the DM-GILS-
RVND always presented better cost values compared to their respective values obtained
by GILS-RVND. We believe that better constructed solutions from patterns allowed the
local search to be more effective. Considering both figures, the best global solution was
found in the local search phase of DM-GILS-RVND at the tenth iteration.

In the second scenario, which regards the TRP-S1000-R7 instance, the usage of a
mined pattern was again significant in generating high-quality initial solutions. As shown
in Figure 5.2(a), four out of five initial solutions based on patterns had better cost values
that those constructed by the original constructive method. For the local search phase,
Figure 5.2(b) demonstrates that again DM-GILS-RVND achieved better cost values com-



5.4 Complementary Analyses 31

5x106

2x107

4x107

 1e+07

 1  2  3  4  5 DM  6  7  8  9  10

Co
st

 V
al

ue

Iterations

All(Constructive)
GILS-RVND(Constructive)

DM-GILS-RVND(Constructive)

(a) Constructive phase

5099593

5119593

5139593

5159593

5179593

 1  2  3  4  5 DM  6  7  8  9  10
Iterations

All(Local Search)
GILS-RVND(Local Search)

DM-GILS-RVND(Local Search)

(b) Local search phase

Figure 5.1: Cost values per iteration - TRP-S1000-R1 instance

pared to their respective values in GILS-RVND, achieving its best global at the tenth
iteration.
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Figure 5.2: Cost values per iteration - TRP-S1000-R7 instance

5.4.2 Analyses of Time Convergence

In order to evaluate algorithms with random components, Time-to-target (TTT) plots
are used to analyse their behaviors [5]. Particularly, a TTT plot displays the probability
(ordinate axis) of an algorithm achieve a solution at least as good as a given target within
a running time (abscissa axis).

For the TTT experiments reported in this subsection, two targets were chosen for
the kroA200 instance, and other two targets for the pr299 instance, regarding the MLP
version of Hamiltonian circuits. The first target 2672445 for the kroA200 instance was
chosen based on the average solution obtained by GILS-RVND, as reported in Table 5.2,
and the second target 2677290 stands for the worst solution cost value reached by GILS-
RVND. The targets for the pr299 instance were chosen based on the average solution
(6557983) achieved by GILS-RVND and the average solution (6558164) reached by DM-
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GILS-RVND, both reported in Table 5.2. For each tested target, 100 executions using
distinct seeds of pseudo-random numbers were used in the experiments.

Figure 5.3 illustrates the results for the kroA200 instance. Having all points for the
easy target (2677290) plotted in Figure 5.3(a), we can observe that the behaviors of DM-
GILS-RVND and GILS-RVND were very similar. On the other hand, the plot used to rep-
resent the TTT plot for the hard target (2672445), shown in Figure 5.3(b), demonstrated
distinct performances between the heuristics. For example, the GILS-RVND presented a
probability around 65% to reach the given target in 25 seconds, while DM-GILS-RVND
presented a probability near 90% to reach the target within the same time.
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Figure 5.3: TTT plots for kroA200 instance

Figure 5.4 presents the TTT plots for the pr299 instance. Considering the easy tar-
get (6558165), illustrated in Figure 5.4(a), both heuristics virtually performed the same.
Looking at the TTT plot for the hard target (6557983), shown in Figure 5.4(b), again
we can observe a better performance of DM-GILS-RVND. For example, the GILS-RVND
strategy presented a probability around 80% to reach the given target in 200 seconds,
whereas the probability of DM-GILS-RVND reaching the target within the same time is
about 92%.

Considering the TTT plots showed in this subsection, DM-GILS-RVND demonstrated
to converge faster than GILS-RVND when hard targets are given as input, whilst, for easy
targets, both heuristics remained with similar performances.

5.4.3 Complementary Experiments

Shown in Sections 5.2 and 5.3, the stopping criterion defined for the heuristics was de-
fined as the number of multi-start iterations, specifically, when the tenth iteration ends.
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Figure 5.4: TTT plots for pr299 instance

However, as both heuristics performed in different amounts of time, this section presents
a fair comparison between DM-GILS-RVND and GILS-RVND involving the same com-
putational time as stopping criterion.

In order to verify the stopping criteria based on running time, two checkpoints were
inserted into DM-GILS-RVND. These checkpoints were placed after the hybrid construc-
tive method and after any complete neighborhood evaluation on the RVND method. Once
the running time is reached, the best global solution found is forced to return and the
algorithm stops.

Preliminary experiments showed the overheads of these checkpoints are worthless,
even for large instances, being accurate enough for the purpose established in this analysis.
Besides that, all instance sets previously used to compare GILS-RVND and DM-GILS-
RVND, in Sections 5.2 and 5.3, have been tested in this complementary evaluation, where
their computational results are fully reported in Appendix A. In this subsection, we will
only show their summaries in tables.

The reported Tables 5.9 to 5.15 summarize the results in an A-B-C format, where
A means the number of results that the heuristic on the row improved the heuristic on
the column, B represents a tie, and C stands for the number of results that the heuristic
on the column improved the results of the heuristic on the row. For SST (Statistical
Significance Tests) results, a D-E format was adopted, where D indicates the number of
instances for which the heuristic on the row had a better performance over the heuristic on
the column with statistical significance, while E represents the occurrences of statistical
significance for the heuristic on the column when performed better than the heuristic
on the row. To complement these tables, their respective results from Sections 5.2 and
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5.3, which demonstrates direct comparisons between DM-GILS-RVND and GILS-RVND
results, are also shown in order to verify the progress of using this equal-time comparison.

The next two subsections show, respectively, the experiments for Hamiltonian circuits
and Hamiltonian paths.

5.4.3.1 Experiments for Hamiltonian Circuit

For the experiments considering the Hamiltonian circuit version of MLP, both sets of
instances seen in Section 5.2, which are a 23-instance set selected in [39] and a 56-instance
set selected from TSPLib, were submitted to these extended experiments.

Table 5.9, which summarizes Table A.1 in Appendix A, represents the results on the
23-instance set for this problem version. Since 21 instances have no further improvement
due to the obtained average solutions matched their respective optimal values, only two
instances were tested in this subsection. Considering these two remaining ones, DM-
GILS-RVND improved the original average solutions previously obtained, so, matching
all results found by GILS-RVND in the same computational time.

Summary from Table A.1
DM-GILS-RVND

Best Average SST
GILS-RVND 0-2-0 0-2-0 0-0

Summary from Table 5.1
DM-GILS-RVND

Best Average SST
GILS-RVND 0-2-0 2-0-0 0-0

Table 5.9: Results for TSPLib instances selected in [1, 2]

Submitted to this equal-time comparison, the results for the 56-instances set, sum-
marized in Table 5.10 (fully reported in Table A.2), presented an overall improvement
compared to the results reported in Table 5.2. In these new experiments, the DM strat-
egy outperformed even more the results of GILS-RVND, where, for the best solution
aspect, DM-GILS-RVND improved 20 instance results, tied in 32 occasions, and lost in
four situations. For average solutions, the DM strategy improved 35 instances, tied in
10 instance results, and lost in eleven instances. Considering the SSTs, the depth of en-
hancement is verified by the number of results statistically significant, which raised from
7 to 13 instances in favor of DM-GILS-RVND. Moreover, a statistically significant result
in favor of GILS-RVND, which is reported in Table 5.2, was lost due to an improvement
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made by DM-GILS-RVND.

Summary from Table A.2
DM-GILS-RVND

Best Average SST
GILS-RVND 4-32-20 11-10-35 0-13

Summary from Table 5.2
DM-GILS-RVND

Best Average SST
GILS-RVND 5-32-19 14-12-30 1-7

Table 5.10: Results on the 56-instances set selected from TSPLib

5.4.3.2 Experiments for Hamiltonian Path

Regarding the MLP version for Hamiltonian paths, all instance sets assessed in Section 5.3
were submitted to the comparison proposed in this subsection, except for the sets of 10,
20, and 50 customers. For these sets, all average solutions were equal to their respective
best solutions, which are also optimal values for the tested instance as shown in Table
5.4.

Presented in Table 5.11, a summary of Table A.3, the results for the heterogeneous set
of instances varying from 70 to 532 customers showed a notable enhancement of DM-GILS-
RVND performance when the same computational time was given. In this comparison,
the DM heuristic improved three average solutions of GILS-RVND, while lost in only one
instance and tied in the six remaining ones.

Summary from Table A.3
DM-GILS-RVND

Best Average SST
GILS-RVND 1-9-0 1-6-3 0-0

Summary from Table 5.3
DM-GILS-RVND

Best Average SST
GILS-RVND 1-9-0 3-6-1 0-0

Table 5.11: Results for TSPLib instances selected in [39]

Compared to the results on the 100-customers set, displayed in Table 5.12 (a summary
of the results reported in Table A.4), the DM strategy as the original strategy matched
all BKS considering the aspect of best solution. In terms of average solution, one instance
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result from Table 5.5 was improved by DM-GILS-RVND, resulting in 17 ties and three
winnings for GILS-RVND.

Summary from Table A.4
DM-GILS-RVND

Best Average SST
GILS-RVND 0-20-0 3-17-0 0-0

Summary from Table 5.5
DM-GILS-RVND

Best Average SST
GILS-RVND 0-20-0 4-16-0 0-0

Table 5.12: Results on the 100-customers instances generated in [39]

For the 200-customers set, Table 5.13 reports the summarized results from Table A.5.
For the best solution aspect, DM-GILS-RVND and GILS-RVND also reached all BKSs,
as seen in the direct comparison (reported in Table 5.6). However, DM-GILS-RVND
improved its performance against GILS-RVND regarding average solutions, obtaining 14
out of the 20 best average solutions, tying in three instances and losing in other three
instances. The extended computational experiments for this instance set demonstated
that giving the same computational time for both heuristics, the DM strategy has been
superior than GILS-RVND.

Summary from Table A.5
DM-GILS-RVND

Best Average SST
GILS-RVND 0-20-0 3-3-14 0-1

Summary from Table 5.6
DM-GILS-RVND

Best Average SST
GILS-RVND 0-20-0 10-1-9 0-1

Table 5.13: Results on the 200-customers instances generated in [39]

Considering the set of instances with 500 customers, Table 5.14 reports its results,
which is a summary from Table A.6. In terms of average solution, the DM heuristic
showed a predominant behavior compared to GILS-RVND, where 15 best average solutions
reported in Table 5.7 were increased to 18 in these extended experiments. In this same
aspect, no tie and two winnings for GILS-RVND were observed. For the best solution
column, the numbers remained the same, where 15 winnings for DM-GILS-RVND, 4 ties
and one winning for GILS-RVND were obtained.
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The results for the set of the largest and hardest instances of this MLP variant are
reported in Table 5.15, which summarizes Table A.7. In these experiments, considering
best solution and average solution aspects, the DM strategy outperformed GILS-RVND
in all 20 instances of this set, presenting a better performance than the original strategy.
Moreover, in terms of statistical significance tests, the number of results statistically
significant rose from 7 to 14, where DM-GILS-RVND performed better than GILS-RVND
using the Students t-test.

Summary from Table A.6
DM-GILS-RVND

Best Average SST
GILS-RVND 1-4-15 2-0-18 0-4

Summary from Table 5.7
DM-GILS-RVND

Best Average SST
GILS-RVND 1-4-15 5-0-15 0-4

Table 5.14: Results on the 500-customers instances generated in [39]

Summary from Table A.7
DM-GILS-RVND

Best Average SST
GILS-RVND 0-0-20 0-0-20 0-14

Summary from Table 5.8
DM-GILS-RVND

Best Average SST
GILS-RVND 2-0-18 5-0-15 0-7

Table 5.15: Results on the 1000-customers instances generated in [39]



Chapter 6

MDM-GILS-RVND: the Second Proposal

Unlike DM-GRASP (Data Mining GRASP) [35, 36], where the mining process is executed
once and after a fixed number of multi-start iterations, the MDM-GRASP strategy (Multi
Data Mining GRASP), firstly approached in [8], has its mining process executed whenever
the elite set becomes stable – which refers to a number of iterations without any changes
in the elite set. The idea of MDM-GRASP is to execute the mining process: (a) as soon
as the elite set becomes stable and (b) whenever the elite set has been changed and again
become stable. Thereby, in practical terms, the elite set quality is progressively enhanced,
yielding, at each mining process, more refined patterns.

The second proposal of this work, named as MDM-GILS-RVND, is a hybrid version of
GILS-RVND employing the idea of multi data mining. In this hybrid proposal, the data
mining procedure has to be executed several times throughout the algorithm execution
based on the stability of the elite set. However, this idea proposed so far cannot be
directly applied into GILS-RVND, since only 10 multi-start iterations were defined for it
in [42], which is an insufficient number of iterations to let the elite set becomes stable.
It is worth saying that, on previous works, the MDM-GRASP was applied in heuristics
that required 200, 500 and 1000 iterations, respectively reported in [8, 18, 32], showing
promissing results when compared with DM-GRASP.

Different from the classic MDM-GRASP, the proposed MDM-GILS-RVND has its
mining points at: (a) after the first half of multi-start iterations, and (b) whenever the elite
set is updated. As DM-GILS-RVND, MDM-GILS-RVND is also an algorithm composed
of two main phases, a phase before the first data mining execution and a phase after this
mining execution.

The details of MDM-GILS-RVND are displayed in Algorithm 6. Its first phase remains
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the same as the first phase of DM-GILS-RVND (lines 1-19). Next, a boolean flag Updated

is initialized and assigned to TRUE to enforce that the data mining process will be
executed before the first multi-start iteration of the second phase (line 20). In the second
phase itself (lines 20-45), if D (elite set) has been changed on the very last iteration, i.e., it
was updated (Updated is TRUE ), then, the mining process is performed again, and after
that Updated is set to FALSE (lines 22-25). After, the hybrid constructive procedure is
called, which is the constructive method described in Algorithm 5 (line 26). In the inner
loop (lines 29-41), likewise the local search from the first phase of this algorithm, D can
again be updated. If it happens, the mining process will be executed before the next
multi-start iteration (Updated is assigned to TRUE, line 33), generating a list of patterns
sorted in decreasing order by the number of mined arcs (line 23). Next, right after the
local search phase, the best global solution s⇤ may be updated (lines 42-44). When all
multi-start iterations are executed, the algorithm stops and s⇤ is returned (line 46).
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Algorithm 6 MDM-GILS-RVND(I
Max

, I
ILS

, R,D, d, Sup,MaxP )

1: f(s⇤) 1;
2: for i = 1, . . . , I

Max

/2 do
3: s ConstructiveProcedure(↵ 2 R);
4: s0  s;
5: iterILS  0;
6: while iterILS < I

ILS

do
7: s RV ND(s);
8: UpdateEliteSet(D, d, s);
9: if f(s) < f(s0) then

10: s0  s;
11: iterILS  0;
12: end if
13: s Perturb(s0);
14: iterILS  iterILS + 1;
15: end while
16: if f(s0) < f(s⇤) then
17: s⇤  s0;
18: end if
19: end for
20: Updated TRUE ;
21: for i = 1, . . . , I

Max

/2 do
22: if Updated then
23: P  MinePatterns(D, d, Sup,MaxP );
24: Updated FALSE ;
25: end if
26: s HybridConstructiveProc(↵ 2 R, p 2 P );
27: s0  s;
28: iterILS  0;
29: while iterILS < I

ILS

do
30: s RV ND(s);
31: UpdateEliteSet(D, d, s);
32: if D was updated then
33: Updated TRUE ;
34: end if
35: if f(s) < f(s0) then
36: s0  s;
37: iterILS  0;
38: end if
39: s Perturb(s0);
40: iterILS  iterILS + 1;
41: end while
42: if f(s0) < f(s⇤) then
43: s⇤  s0;
44: end if
45: end for
46: return s⇤;



Chapter 7

Computational Evaluation for

MDM-GILS-RVND

This chapter reports the computational experiments involving MDM-GILS-RVND along
with DM-GILS-RVND and GILS-RVND results. Firstly, the methodology applied to
carry out these experiments is shown in Section 7.1. Next, Sections 7.2 and 7.3 present
the computational evaluation among MDM-GILS-RVND, DM-GILS-RVND and GILS-
RVND considering the two MLP variants tackled in this work. At last, Section 7.4 covers
extra analysis regarding these heuristics.

7.1 Comparison Methodology

The comparison methodology used for DM-GILS-RVND and GILS-RVND experiments,
defined in Section 5.1, was also applied to MDM-GILS-RVND, including the same set
of parameters, instances, used hardware and statistical significance tests (SSTs). It is
noteworthy that MDM-GILS-RVND does not require any new parameter.

In Sections 7.2 and 7.3, we report the computational experiments in three tables:
a table for solution quality, another one exclusively for computational time and a third
one for summarizing the former two tables. Considering the first two tables, the same
format used to compare the heuristics, specified in Section 5.1, was adopted. On the other
hand, the third table reports all possible comparisons among MDM-GILS-RVND, DM-
GILS-RVND and GILS-RVND, using the A-B-C format to arrange the results, defined in
Subsection 5.4.3.
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7.2 Experiments for Hamiltonian Circuit

For the MLP variant that considers Hamiltonian circuits as solutions, the two already
introduced sets for this version were tested on MDM-GILS-RVND: a set of 23 instances
selected in [1, 2] and a new set of 56 instances selected for this work. All instances of
these sets are found in TSPLib.

Tables 7.1, 7.2, and 7.3 show the results on the 23-instance set selected in [1, 2] from
TSPLib. For the tables of this chapter, since more than two algorithms are evaluated, the
count Better refers to the number of best results that the respective strategy achieved.
The obtained results regarding the best solution showed MDM-GILS-RNVD found the
optimal solutions for all instances along with the other heuristics. Regarding average
solution, GILS-RVND, DM-GILS-RVND and MDM-GILS-RVND obtained, respectively,
23, 21 and 20 best results. Considering computational time, the MDM-GILS-RVND and
DM-GILS-RVND obtained in average, respectively, 5.48% and 5.06% of less computational
time compared to GILS-RVND. Therefore, being MDM-GILS-RVND the fastest heuristic
for this group.

Tables 7.4, 7.5 and 7.6 report the results on the 56-instances set. These results
demonstrated MDM-GILS-RVND had the best performance among the heuristics in this
group, achieving 36 best average solutions against 24 and 22, respectively, for DM-GILS-
RVND and GILS-RVND. Regarding best solution, MDM-GILS-RVND also performed
better than the other heuristics with 43 best results, while DM-GILS-RVND and GILS-
RVND achieved, respectively, 39 and 36. In terms of running time, the MDM heuristic was
better, attaining 43 best running times against 12 and 1, respectively, for DM-GILS-RVND
and GILS-RVND. The general average of running time obtained by MDM-GILS-RVND
was reduced in 23.36% compared to GILS-RVND, against 21.09% obtained by DM-GILS-
RVND compared to GILS-RVND. In SST terms, ten instances, being eight instances
using Student’s t-test and two instances using Wilcoxon test, were statistically significant,
where MDM-GILS-RVND was better than GILS-RVND. One instance was statistically
significant when GILS-RVND was better than MDM-GILS-RVND in the Student’s t-test.
Additionally, where MDM-GILS-RVND was better than DM-GILS-RVND, two instances
for Student’s t-test and one instance for Wilcoxon test were statistically significant.



7.3 Experiments for Hamiltonian Path 43

GILS-RVND DM-GILS-RVND MDM-GILS-RVND

Instance OPT/
BKS

Best
Solution

Average
Solution

Best
Solution

Average
Solution

Best
Solution

Average
Solution

dantzig42 12528 12528 12528.0 12528 12528.0 12528 12528.0
swiss42 22327 22327 22327.0 22327 22327.0 22327 22327.0
att48 209320 209320 209320.0 209320 209320.0 209320 209320.0
gr48 102378 102378 102378.0 102378 102378.0 102378 102378.0
hk48 247926 247926 247926.0 247926 247926.0 247926 247926.0
eil51 10178 10178 10178.0 10178 10178.0 10178 10184.3

berlin52 143721 143721 143721.0 143721 143721.0 143721 143721.0
brazil58 512361 512361 512361.0 512361 512361.0 512361 512361.0

st70 20557 20557 20557.0 20557 20557.0 20557 20557.0
eil76 17976 17976 17976.0 17976 17976.0 17976 17976.0
pr76 3445242 3445242 3445242.0 3455242 3455242.0 3455242 3455242.0
pr76r 345427 345427 345427.0 345427 345427.0 345427 345427.0
gr96 2097170 2097170 2097170.0 2097170 2097682.3 2097170 2097682.3
rat99 57986⇤ 57986 57986.0 57986 57986.0 57986 57986.0

kroA100 983128 983128 983128.0 983128 983128.0 983128 983128.0
kroB100 986008 986008 986008.0 986008 986008.0 986008 986008.0
kroC100 961324 961324 961324.0 961324 961324.0 961324 961324.0
kroD100 976965 976965 976965.0 976965 976965.0 976965 976965.0
kroE100 971266 971266 971266.0 971266 971266.0 971266 971266.0
rd100 340047 340047 340047.0 340047 340047.0 340047 340047.0
eil101 27513⇤ 27513 27513.0 27513 27519.8 27513 27519.8
lin105 603910 603910 603910.0 603910 603910.0 603910 603910.0
pr107 2026626 2026626 2026626.0 2026626 2026626.0 2026626 2026626.0
Better - 23 23 23 21 23 20
⇤ - Optimality is not proven

Table 7.1: Results on the instances selected from TSPLib in [1, 2]

7.3 Experiments for Hamiltonian Path

All 150 instances used in the experiments reported in Section 5.3 were also submitted to
MDM-GILS-RVND heuristic, and their results are placed as follows.

Tables 7.7, 7.8 and 7.9 report the results on the 10-instances set selected by the
authors of [39]. For this set, as seen in Table 7.9, both MDM-GILS-RVND and DM-GILS-
RVND outperfomed, in terms of computational time, GILS-RVND, whereas comparing
DM and MDM heuristics to each other, they obtained nearly the same number of winnings.
Furthermore, MDM-GILS-RVND had the best average computational time in this set
requiring 14.47% less computational time than GILS-RVND. In terms of best solution,
MDM-GILS-RVND and GILS-RVND found all 10 best results, while DM-GILS-RVND
found 9. Considering average solution, MDM-GILS-RVND and GILS-RVND achieved 8
best results, whereas DM-GILS-RVND reached 6 best results.

For sets of 10-customers, 20-customers and 50-customers, their computational results
are gathered in Table 7.10, which reports only best solutions, since all obtained average
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GILS-RVND DM-GILS-RVND MDM-GILS-RVND

Instance Average
Time (s)

Average
Time (s)

Gap(%)
Time

Average
Time (s)

Gap(%)
Time

dantzig42 0.17 0.17 0.00 0.17 0.00
swiss42 0.16 0.16 0.00 0.16 0.00
att48 0.29 0.29 0.00 0.28 -3.45
gr48 0.31 0.29 -6.45 0.31 0.00
hk48 0.28 0.28 0.00 0.27 -3.57
eil51 0.40 0.40 0.00 0.39 -2.50
berlin52 0.39 0.39 0.00 0.39 0.00
brazil58 0.55 0.52 -5.45 0.52 -5.45
st70 0.99 0.94 -5.05 0.96 -3.03
eil76 1.52 1.44 -5.26 1.44 -5.26
pr76 1.35 1.33 -1.48 1.33 -1.48
pr76r 1.38 1.28 -7.24 1.30 -5.80
gr96 2.84 2.75 -3.17 2.79 -1.76
rat99 5.30 5.02 -5.28 4.87 -8.11
kroA100 4.21 3.58 -14.96 3.51 -16.63
kroB100 4.13 4.01 -2.91 3.77 -8.72
kroC100 3.95 3.62 -8.36 3.61 -8.61
kroD100 4.06 3.47 -14.53 3.57 -12.07
kroE100 4.00 3.69 -7.75 3.51 -12.25
rd100 4.15 3.99 -3.86 3.96 -4.58
eil101 5.79 5.00 -13.64 4.88 -15.72
lin105 3.57 3.44 -3.64 3.51 -1.68
pr107 4.33 4.01 -7.39 4.10 -5.31
Average - - -5.06 - -5.48
Better 3 13 - 16 -

Table 7.2: Computational time for TSPLib instances selected in [1, 2]

solutions were equal to their respective best solution. The results showed that all optimal
values were found by the three heuristics in all executions with different seeds. The
three strategies achieved the best solutions an average of 0.01, 0.02 and 0.05 seconds,
respectively, for the sets of 10, 20 and 50 customers.

For the 100-customers set, Tables 7.11, 7.12 and 7.13 report its computational results.
Regarding best solution, all heuristics found the BKSs of this set. On the other hand,
for average solution, GILS-RVND achieved 20 best results, while DM-GILS-RVND and
MDM-GILS-RVND achieved 16 best results each. In terms of computational time, DM-
GILS-RVND became the best heuristic for this group, achieving 11 best results, while
the MDM heuristic reached 9 best results, and, for GILS-RVND, no best result. Also in
relation to computational time, DM-GILS-RVND achieved the best average for this set,
requiring 10.54% less computational time when compared to GILS-RVND, whereas, for
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DM-GILS-RVND MDM-GILS-RVND
Best Average Time SST Best Average Time SST

GILS-RVND 0-23-0 2-21-0 0-6-17 0-0 0-23-0 3-20-0 0-4-19 0-0
DM-GILS-RVND - - - - 0-23-0 1-22-0 7-6-10 0-0

Table 7.3: Summary for Tables 7.1 and 7.2

GILS-RVND DM-GILS-RVND MDM-GILS-RVND

Instance

Best

Solution

Average

Solution

Best

Solution

Average

Solution

Best

Solution

Average

Solution

gr120 363454 363569.5 363454 363584.8 363454 363454.0
pr124 3154346 3154346.0 3154346 3154346.0 3154346 3154346.0
bier127 4545005 4546378.8 4545005 4545005.0 4545005 4545691.9

ch130 349874 349891.7 349874 349903.5 349874 349903.5

pr136 6199268 6199805.4 6199268 6200032.6 6199268 6200041.6

gr137 4061498 4061498.0 4061498 4061498.0 4061498 4061498.0
pr144 3846137 3846137.0 3846137 3846137.0 3846137 3846137.0
ch150 444424 444424.0 444424 444424.0 444424 444424.0
kroA150 1825769 1825769.0 1825769 1825769.0 1825769 1825769.0
kroB150 1786546 1786546.0 1786546 1786546.0 1786546 1786546.0
pr152 5064566 5064566.0 5064566 5064566.0 5064566 5064566.0
u159 2972030 2972204.2 2972030 2972291.3 2972030 2972204.2
si175 1808532 1808532.0 1808532 1808532.0 1808532 1808532.0
brg180 174750 174750.0 174750 174750.0 174750 174750.0
rat195 218632 218763.2 218632 218760.6 218632 218736.6

d198 1186049 1186098.6 1186049 1186086.2 1186049 1186273.3

kroA200 2672437 2672444.2 2672437 2672437.0 2672437 2672444.2

kroB200 2669515 2674486.0 2669515 2675761.6 2669515 2675993.6

gr202 2909247 2914644.2 2909247 2912564.8 2909247 2913368.4

ts225 13240046 13240046.0 13240046 13240533 13240046 13240046.0
tsp225 402783 403080.2 402783 402970.5 402783 402933.3
pr226 7196869 7196869.0 7196869 7196869.0 7196869 7196869.0
gr229 10725914 10729883.8 10725914 10729943.9 10725914 10731249.9

gil262 285060 285527.1 285043 285343.5 285060 285312.6
pr264 5471615 5471615.0 5471615 5471615.0 5471615 5471615.0
a280 346989 347125.9 346989 347009.6 346989 347106.9

pr299 6556628 6557983.4 6556628 6558164.9 6556628 6559030.8

lin318 5619810 5629995.9 5619810 5630556.9 5619810 5630590.5

rd400 2768830 2776672.7 2767608 2775101.2 2762532 2775707.0

fl417 1874242 1874242.8 1874242 1874242.0 1874242 1874242.0
gr431 21159702 21239150.9 21143311 21210280.6 21180562 21214270.9

pr439 17829541 17887107 17829541 17876876.9 17829541 17868632.7
pcb442 10301705 10323539.7 10290913 10321804.2 10301705 10321465.7
d493 6684190 6691057.1 6680997 6688669.0 6677458 6687268.2
att532 5613010 5632753.5 5622905 5630730.4 5617783 5628346.4
ali535 31870389 31904676.6 31870389 31902870.9 31860679 31910477.9

si535 12247211 12250679.7 12246397 12252151.6 12248066 12251841.0
pa561 658870 661211.6 660249 662216.9 660590 661790.6

u574 9314596 9344178.4 9313459 9350198.1 9308820 9333295.3
rat575 1848869 1859221.1 1847411 1856382.8 1847272 1856335.1
p654 7827273 7827639.2 7827273 7827919.4 7827273 7827867.8

d657 14159477 14220133.3 14125530 14188813.5 14112540 14195797.6

gr666 63571693 63731966.5 63546987 63663647.1 63500984 63612943.5
u724 13506660 13558605.3 13491605 13546178.5 13504408 13537514.7
rat783 3282794 3296069.6 3272226 3290521.7 3275858 3293606.1

dsj1000 7646018508 7685887300.0 7640607124 7671314634.0 7642715113 7664531851.0
dsj1000ceil 7646519008 7683329486.0 7644298506 7680652520.0 7646395679 7676973751.0
pr1002 115550770 116178260.2 115507699 115975798.5 115420846 115874237.0
si1032 46896355 46897662.4 46896355 46896783.6 46896355 46896783.6
u1060 102508056 102759766.0 102558414 102821622.2 102539819 102759493.6
vm1084 94760440 95053081.2 94705227 94982553.5 94670122 94960603.3
pcb1173 30926325 31032128.8 30891188 30972619.2 30890385 30957008.7
d1291 29383346 29477239.4 29392621 29511969.3 29389729 29515210.4

rl1304 144886001 145596878.7 144803181 145558912.3 144592447 145398549.2
rl1323 155697857 156360364.3 155749119 156332300.1 155719283 156273365.5
nrw1379 35360407 35519379.7 35327900 35475906.4 35291795 35456093.0
Better 36 22 39 24 43 36

Table 7.4: Results on the 56-instances set selected from TSPLib
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GILS-RVND DM-GILS-RVND MDM-GILS-RVND

Instance

Average

Time (s)

Average

Time (s)

Gap(%)

Time

Average

Time (s)

Gap(%)

Time

gr120 9.54 8.24 -13.63 8.10 -15.09

pr124 5.39 5.14 -4.64 5.15 -4.45

bier127 9.25 7.80 -15.68 7.73 -16.43

ch130 9.23 8.46 -8.34 8.88 -3.79

pr136 17.3 14.11 -18.44 14.82 -14.34

gr137 8.11 7.10 -12.45 7.16 -11.71

pr144 9.11 9.06 -0.55 8.80 -3.40

ch150 13.06 10.80 -17.30 10.67 -18.3

kroA150 19.84 15.51 -21.82 15.68 -20.97

kroB150 16.27 14.68 -9.77 14.49 -10.94

pr152 11.23 10.45 -6.95 10.20 -9.17

u159 14.21 12.88 -9.36 12.92 -9.08

si175 19.14 14.92 -22.05 14.85 -22.41

brg180 16.79 16.00 -4.71 16.18 -3.63

rat195 44.69 37.06 -17.07 35.57 -20.41

d198 38.28 31.55 -17.58 31.95 -16.54

kroA200 42.23 33.70 -20.20 33.73 -20.13

kroB200 42.00 36.48 -13.14 36.17 -13.88

gr202 35.95 31.62 -12.04 29.68 -17.44

ts225 26.60 27.28 2.56 27.10 1.88

tsp225 53.89 43.67 -18.96 43.43 -19.41

pr226 34.29 28.86 -15.84 28.85 -15.86

gr229 53.66 43.78 -18.41 41.12 -23.37

gil262 96.12 76.34 -20.58 74.72 -22.26

pr264 47.02 38.74 -17.61 38.68 -17.74

a280 107.18 83.61 -21.99 79.05 -26.25

pr299 104.92 78.64 -25.05 75.93 -27.63

lin318 117.98 100.63 -14.71 90.74 -23.09

rd400 350.84 278.61 -20.59 247.61 -29.42

fl417 382.64 263.61 -31.11 250.61 -34.51

gr431 336.98 264.24 -21.59 245.10 -27.27

pr439 285.56 199.04 -30.30 200.02 -29.96

pcb442 413.41 313.07 -24.27 291.64 -29.46

d493 608.47 410.33 -32.56 390.16 -35.88

att532 988.04 744.64 -24.63 760.49 -23.03

ali535 880.76 587.16 -33.33 570.79 -35.19

si535 498.76 340.83 -31.66 319.01 -36.04

pa561 1155.32 918.00 -20.54 873.20 -24.42

u574 1234.19 893.26 -27.62 854.63 -30.75

rat575 1739.46 1345.04 -22.67 1234.05 -29.06

p654 1755.28 1263.97 -27.99 1239.21 -29.40

d657 2615.66 1868.86 -28.55 1779.16 -31.98

gr666 2296.23 1699.61 -25.98 1609.15 -29.92

u724 4651.76 3505.29 -24.65 3132.70 -32.66

rat783 7044.52 4740.52 -32.71 4475.85 -36.46

dsj1000 18068.70 12612.84 -30.20 12233.54 -32.29

dsj1000ceil 18543.76 12885.48 -30.51 11929.94 -35.67

pr1002 11963.29 8817.55 -26.29 8029.58 -32.88

si1032 2402.72 1975.55 -17.78 1926.99 -19.80

u1060 15680.50 10471.80 -33.22 9910.02 -36.80

vm1084 13894.43 9673.12 -30.38 9468.85 -31.85

pcb1173 20508.89 13903.73 -32.21 14037.76 -31.55

d1291 12171.21 8189.00 -32.72 8072.84 -33.67

rl1304 18617.53 12967.80 -30.35 12407.04 -33.36

rl1323 22758.06 15938.27 -29.97 15115.63 -33.58

nrw1379 49624.72 34547.99 -30.38 32038.65 -35.44

Average - - -21.09 - -23.36

Better 1 12 - 43 -

Table 7.5: Computational time for the 56-instances set selected from TSPLib

DM-GILS-RVND MDM-GILS-RVND
Best Average Time SST Best Average Time SST

GILS-RVND 5-32-19 15-11-30 1-0-55 1-5 7-33-16 12-14-30 1-0-55 1-10
DM-GILS-RVND - - - - 9-31-16 16-26-14 12-0-44 0-3

Table 7.6: Summary for Tables 7.4 and 7.5
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GILS-RVND DM-GILS-RVND MDM-GILS-RVND

Instance BKS Best
Solution

Average
Solution

Best
Solution

Average
Solution

Best
Solution

Average
Solution

st70 19215 19215 19215.0 19215 19215.0 19215 19215.0
rat99 54984 54984 54984.0 54984 54984.0 54984 54984.0
kroD100 949594 949594 949594.0 949594 949594.0 949594 949594.0
lin105 585823 585823 585823.0 585823 585823.0 585823 585823.0
pr107 1980767 1980767 1980767.0 1980767 1980767.0 1980767 1980767.0
rat195 210191 210191 210335.9 210191 210385.6 210191 210388.2
pr226 7100308 7100308 7100308.0 7100308 7100308.0 7100308 7100308.0
lin318 5560679 5560679 5569819.5 5560679 5570488.8 5560679 5568258.8
pr439 17688561 17688561 17734922.0 17702120 17735797.8 17688561 17737442.9
att532 5577965 5581240 5597866.8 5581240 5596611.1 5581240 5594679.7
Better - 10 8 9 6 10 8

Table 7.7: Results for TSPLib instances selected in [39]

GILS-RVND DM-GILS-RVND MDM-GILS-RVND

Instance Average
Time (s)

Average
Time (s)

Gap(%)
Time

Average
Time (s)

Gap(%)
Time

st70 0.94 0.91 -3.19 0.91 -3.19
rat99 5.81 5.22 -10.15 5.17 -11.02
kroD100 4.21 3.75 -10.93 3.74 -11.16
lin105 3.79 3.63 -4.22 3.72 -1.85
pr107 4.96 4.50 -9.27 4.54 -8.47
rat195 44.99 37.84 -15.89 33.78 -24.92
pr226 34.35 30.10 -12.37 30.45 -11.35
lin318 124.15 97.39 -21.55 101.50 -18.24
pr439 275.12 225.26 -18.12 201.54 -26.74
att532 923.03 710.32 -23.04 667.12 -27.72
Average - - -12.87 - -14.47
Better 0 5 - 6 -

Table 7.8: Computational time for TSPLib instances selected in [39]

DM-GILS-RVND MDM-GILS-RVND
Best Average Time SST Best Average Time SST

GILS-RVND 1-9-0 3-6-1 0-0-10 0-0 0-10-0 2-6-2 0-0-10 0-0
DM-GILS-RVND - - - - 0-9-1 2-6-2 4-1-5 0-0

Table 7.9: Summary for Tables 7.7 and 7.8

MDM-GILS-RVND, the reduction was 10.41%.

Tables 7.14, 7.15 and 7.16 report the results on the 200-customers set. Regarding
the results of best solutions shown in Table 7.14, all heuristics found the BKSs of this
set. Considering average solutions, GILS-RVND, DM-GILS-RVND, and MDM-GILS-
RVND achieved, respectively, 9, 8 and 7 best results, which, in this case, they presented
similar behaviors. In relation to computational time, MDM-GILS-RVND attained 18
best running times, against 2 best running times obtained by DM-GILS-RVND. MDM-
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GILS-RVND DM-GILS-RVND MDM-GILS-RVND

Instance S10 S20 S50 S10 S20 S50 S10 S20 S50

TRP-Sn-R1 1303 3175 12198 1303 3175 12198 1303 3175 12198
TRP-Sn-R2 1517 3248 11621 1517 3248 11621 1517 3248 11621
TRP-Sn-R3 1233 3570 12139 1233 3570 12139 1233 3570 12139
TRP-Sn-R4 1386 2983 13071 1386 2983 13071 1386 2983 13071
TRP-Sn-R5 978 3248 12126 978 3248 12126 978 3248 12126
TRP-Sn-R6 1477 3328 12684 1477 3328 12684 1477 3328 12684
TRP-Sn-R7 1163 2809 11176 1163 2809 11176 1163 2809 11176
TRP-Sn-R8 1234 3461 12910 1234 3461 12910 1234 3461 12910
TRP-Sn-R9 1402 3475 13149 1402 3475 13149 1402 3475 13149
TRP-Sn-R10 1388 3359 12892 1388 3359 12892 1388 3359 12892
TRP-Sn-R11 1405 2916 12103 1405 2916 12103 1405 2916 12103
TRP-Sn-R12 1150 3314 10633 1150 3314 10633 1150 3314 10633
TRP-Sn-R13 1531 3412 12115 1531 3412 12115 1531 3412 12115
TRP-Sn-R14 1219 3297 13117 1219 3297 13117 1219 3297 13117
TRP-Sn-R15 1087 2862 11986 1087 2862 11986 1087 2862 11986
TRP-Sn-R16 1264 3433 12138 1264 3433 12138 1264 3433 12138
TRP-Sn-R17 1058 2913 12176 1058 2913 12176 1058 2913 12176
TRP-Sn-R18 1083 3124 13357 1083 3124 13357 1083 3124 13357
TRP-Sn-R19 1394 3299 11430 1394 3299 11430 1394 3299 11430
TRP-Sn-R20 951 2796 11935 951 2796 11935 951 2796 11935
Better 20 20 20 20 20 20 20 20 20

Table 7.10: Results for instances generated in [39] considering 10, 20 and 50 customers

GILS-RVND DM-GILS-RVND MDM-GILS-RVND

Instance BKS Best
Solution

Average
Solution

Best
Solution

Average
Solution

Best
Solution

Average
Solution

TRP-S100-R1 32779 32779 32779.0 32779 32779.0 32779 32779.0
TRP-S100-R2 33435 33435 33435.0 33435 33435.0 33435 33435.0
TRP-S100-R3 32390 32390 32390.0 32390 32390.0 32390 32390.0
TRP-S100-R4 34733 34733 34733.0 34733 34733.0 34733 34733.0
TRP-S100-R5 32598 32598 32598.0 32598 32598.0 32598 32598.0
TRP-S100-R6 34159 34159 34159.0 34159 34159.0 34159 34159.0
TRP-S100-R7 33375 33375 33375.0 33375 33375.0 33375 33375.0
TRP-S100-R8 31780 31780 31780.0 31780 31780.0 31780 31780.0
TRP-S100-R9 34167 34167 34167.0 34167 34167.5 34167 34167.5
TRP-S100-R10 31605 31605 31605.0 31605 31605.0 31605 31605.0
TRP-S100-R11 34188 34188 34198.5 34188 34219.5 34188 34230.0
TRP-S100-R12 32146 32146 32146.0 32146 32146.0 32146 32146.0
TRP-S100-R13 32604 32604 32604.0 32604 32604.0 32604 32604.0
TRP-S100-R14 32433 32433 32433.0 32433 32433.5 32433 32433.5
TRP-S100-R15 32574 32574 32574.0 32574 32574.0 32574 32574.0
TRP-S100-R16 33566 33566 33566.0 33566 33566.0 33566 33566.0
TRP-S100-R17 34198 34198 34198.0 34198 34198.0 34198 34198.0
TRP-S100-R18 31929 31929 31929.0 31929 31929.0 31929 31929.0
TRP-S100-R19 33463 33463 33463.0 33463 33463.0 33463 33463.0
TRP-S100-R20 33632 33632 33632.2 33632 33632.4 33632 33632.5
Better 20 20 20 16 20 16

Table 7.11: Results on the 100-customers set generated in [39]
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GILS-RVND DM-GILS-RVND MDM-GILS-RVND

Instance Average
Time (s)

Average
Time (s)

Gap(%)
Time

Average
Time (s)

Gap(%)
Time

TRP-S100-R1 4.33 3.75 -13.39 3.80 -12.24
TRP-S100-R2 4.61 4.20 -8.89 4.17 -9.54
TRP-S100-R3 4.33 4.03 -6.93 4.02 -7.16
TRP-S100-R4 4.45 3.89 -12.58 3.75 -15.73
TRP-S100-R5 5.43 4.48 -17.50 4.50 -17.13
TRP-S100-R6 4.83 4.31 -10.77 4.22 -12.63
TRP-S100-R7 5.34 4.31 -19.29 4.34 -18.73
TRP-S100-R8 4.29 3.57 -16.78 3.64 -15.15
TRP-S100-R9 4.56 4.18 -8.33 4.27 -6.36
TRP-S100-R10 4.13 3.67 -11.14 3.69 -10.65
TRP-S100-R11 4.72 4.48 -5.08 4.41 -6.57
TRP-S100-R12 4.38 4.03 -7.99 4.15 -5.25
TRP-S100-R13 4.75 4.41 -7.16 4.31 -9.26
TRP-S100-R14 3.89 3.54 -9.00 3.70 -4.88
TRP-S100-R15 4.36 3.90 -10.55 3.91 -10.32
TRP-S100-R16 4.87 4.39 -9.86 4.50 -7.60
TRP-S100-R17 5.65 5.41 -4.25 5.25 -7.08
TRP-S100-R18 4.34 3.95 -8.99 3.94 -9.22
TRP-S100-R19 4.91 4.35 -11.41 4.39 -10.59
TRP-S100-R20 5.35 4.77 -10.84 4.70 -12.15
Average - - -10.54 - -10.41
Better 0 11 - 9 -

Table 7.12: Computational time for the 100-customers set generated in [39]

DM-GILS-RVND MDM-GILS-RVND
Best Average Time SST Best Average Time SST

GILS-RVND 0-20-0 3-17-0 0-0-20 0-0 0-20-0 3-17-0 0-0-20 0-0
DM-GILS-RVND - - - - 0-20-0 1-19-0 11-0-9 0-0

Table 7.13: Summary for Tables 7.11 and 7.12
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GILS-RVND DM-GILS-RVND MDM-GILS-RVND

Instance BKS Best
Solution

Average
Solution

Best
Solution

Average
Solution

Best
Solution

Average
Solution

TRP-S200-R1 88787 88787 88794.6 88787 88812.1 88787 88798.4
TRP-S200-R2 91977 91977 92013.1 91977 92009.8 91977 92042.7
TRP-S200-R3 92568 92568 92631.2 92568 92612.1 92568 92648.8
TRP-S200-R4 93174 93174 93192.3 93174 93180.4 93174 93186.8
TRP-S200-R5 88737 88737 88841.2 88737 88861.9 88737 88836.8
TRP-S200-R6 91589 91589 91601.9 91589 91596.3 91589 91596.3
TRP-S200-R7 92754 92754 92763.2 92754 92777.6 92754 92763.0
TRP-S200-R8 89048 89048 89049.0 89048 89051.0 89048 89051.0
TRP-S200-R9 86326 86326 86326.0 86326 86326.0 86326 86326.0
TRP-S200-R10 91552 91552 91596.5 91552 91602.6 91552 91627.5
TRP-S200-R11 92655 92655 92700.6 92655 92702.5 92655 92706.8
TRP-S200-R12 91457 91457 91504.1 91457 91521.7 91457 91507.0
TRP-S200-R13 86155 86155 86181.4 86155 86184.7 86155 86188.6
TRP-S200-R14 91882 91882 91929.1 91882 91892.7 91882 91903.4
TRP-S200-R15 88912 88912 88912.4 88912 88912.0 88912 88912.0
TRP-S200-R16 89311 89311 89364.7 89311 89316.6 89311 89311.0
TRP-S200-R17 89089 89089 89118.3 89089 89097.2 89089 89092.0
TRP-S200-R18 93619 93619 93676.6 93619 93641.5 93619 93650.9
TRP-S200-R19 93369 93369 93401.6 93369 93504.1 93369 93441.0
TRP-S200-R20 86292 86292 86292.0 86292 86296.9 86292 86296.9
Better - 20 9 20 8 20 7

Table 7.14: Results for the 200-customers set generated in [39]

GILS-RVND reduced in 21.18% the average of computational time when compared to
GILS-RVND. For DM-GILS-RVND, the reduction was 18.19%. Furthermore, only one
instance, where MDM-GILS-RVND performed better than GILS-RVND, was statistically
significant using Wilcoxon test.

The computational results on the 500-customers set are reported in Tables 7.17, 7.18
and 7.19. Regarding best solution, MDM-GILS-RVND obtained the utmost performance
in this set with 16 best results, while, for GILS-RVND and DM-GILS-RVND, respectively,
5 and 8 best results were attained. In terms of average solution, the MDM heuristic also
obtained the best results of this set, since it achieved 13 best results, while, GILS-RVND
and DM-GILS-RVND got 1 and 6 best results, respectively. Furthermore, MDM-GILS-
RVND achieved the best results in terms of computational time for this set, since it
achieved 15 best results, while DM-GILS-RVND and GILS-RVND, respectively, reached
5 and 0 best results. The average of running time obtained by MDM-GILS-RVND was re-
duced in 27.74% compared to GILS-RVND, whereas, for DM-GILS-RVND, the reduction
was 25.55%. Five instances, where MDM-GILS-RVND was better than GILS-RVND,
were statistically significant for Student’s t-test. Another five instances, where MDM-
GILS-RVND was better than DM-GILS-RVND, were also statistically significant, being
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GILS-RVND DM-GILS-RVND MDM-GILS-RVND

Instance Average
Time (s)

Average
Time (s)

Gap(%)
Time

Average
Time (s)

Gap(%)
Time

TRP-S200-R1 44.08 33.10 -24.91 31.78 -27.90
TRP-S200-R2 41.02 35.24 -14.09 34.07 -16.94
TRP-S200-R3 40.50 32.60 -19.51 31.71 -21.70
TRP-S200-R4 43.48 34.91 -19.71 32.48 -25.30
TRP-S200-R5 42.65 36.31 -14.87 35.83 -15.99
TRP-S200-R6 42.43 34.61 -18.43 33.57 -20.88
TRP-S200-R7 43.75 34.91 -20.21 33.08 -24.39
TRP-S200-R8 45.13 39.14 -13.27 36.04 -20.14
TRP-S200-R9 39.51 32.44 -17.89 30.56 -22.65
TRP-S200-R10 44.63 35.84 -19.70 32.97 -26.13
TRP-S200-R11 43.90 39.15 -10.82 37.76 -13.99
TRP-S200-R12 46.08 38.64 -16.15 36.87 -19.99
TRP-S200-R13 43.88 35.59 -18.89 36.03 -17.89
TRP-S200-R14 42.60 35.74 -16.10 34.01 -20.16
TRP-S200-R15 42.28 36.58 -13.48 35.23 -16.67
TRP-S200-R16 47.08 36.46 -22.56 36.19 -23.13
TRP-S200-R17 42.92 35.54 -17.19 32.90 -23.35
TRP-S200-R18 46.36 37.09 -20.00 37.04 -20.10
TRP-S200-R19 42.75 34.48 -19.35 34.98 -18.18
TRP-S200-R20 42.42 31.14 -26.59 30.53 -28.03
Average - - -18.19 - -21.18
Better 0 2 - 18 -

Table 7.15: Computational time for the 200-customers set generated in [39]

DM-GILS-RVND MDM-GILS-RVND
Best Average Time SST Best Average Time SST

GILS-RVND 0-20-0 10-1-9 0-0-20 0-1 0-20-0 10-1-9 0-0-20 0-1
DM-GILS-RVND - - - - 0-20-0 8-4-8 2-0-18 0-0

Table 7.16: Summary for Tables 7.14 and 7.15

four instances for Student’s t-test and one for Wilcoxon test.

Tables 7.20, 7.21 and 7.22 present the results on the 1000-customers set, the hard-
est instance set of this group. Regarding best solution, MDM-GILS-RVND obtained 15
best results for this set, while, DM-GILS-RVND and GILS-RVND reached 4 and 1 best
results, respectively. For average solution, MDM-GILS-RVND presented the best perfor-
mance for this set, since it achieved 19 out of 20 best results, while DM-GILS-RVND
and GILS-RVND, respectively, attained only 1 and 0 best result. Shown in Table 7.21,
the computational times achieved by MDM-GILS-RVND improved 17 results, while DM-
GILS-RVND and GILS-RVND, respectively, achieved 3 and 0 best results. Considering
the average of computational time, MDM-GILS-RVND again reached the best reduction
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GILS-RVND DM-GILS-RVND MDM-GILS-RVND

Instance BKS Best
Solution

Average
Solution

Best
Solution

Average
Solution

Best
Solution

Average
Solution

TRP-S500-R1 1841386 1841386 1856018.7 1841386 1852238.0 1841386 1850046.4
TRP-S500-R2 1815664† 1816568 1823196.9 1817288 1821667.9 1817057 1822540.1
TRP-S500-R3 1826855† 1833044 1839254.2 1831357 1838557.2 1827550 1837315.8
TRP-S500-R4 1804894† 1809266 1815876.4 1808563 1816765.0 1804005 1813295.1
TRP-S500-R5 1821250† 1823975 1834031.7 1823135 1831575.2 1823135 1832073.0
TRP-S500-R6 1782731† 1786620 1790912.4 1785217 1789675.6 1784189 1789923.1
TRP-S500-R7 1847999 1847999 1857926.6 1847089 1854324.8 1846753 1853596.3
TRP-S500-R8 1819636† 1820846 1829257.3 1820639 1829831.8 1820421 1828768.2
TRP-S500-R9 1733819 1733819 1737024.9 1730561 1736278.3 1731594 1736149.5
TRP-S500-R10 1761174† 1762741 1767366.3 1762197 1767912.7 1761824 1766078.2
TRP-S500-R11 1797881 1797881 1801467.9 1797881 1802957.9 1797881 1802827.0
TRP-S500-R12 1774452 1774452 1783847.1 1774452 1781588.2 1774452 1783638.0
TRP-S500-R13 1863905† 1873699 1878049.4 1867803 1875973.1 1867156 1875908.3
TRP-S500-R14 1799171 1799171 1805732.9 1798130 1803379.2 1796425 1802431.8
TRP-S500-R15 1785263† 1791145 1797532.9 1790524 1795858.3 1785155 1793916.3
TRP-S500-R16 1804392† 1810188 1816484.0 1808183 1814941.6 1808775 1817049.6
TRP-S500-R17 1825748 1825748 1834443.2 1824674 1832635.8 1821971 1830454.8
TRP-S500-R18 1825615† 1826263 1833323.7 1826263 1831998.5 1826263 1831295.2
TRP-S500-R19 1776855† 1779248 1782763.9 1774846 1785575.3 1775023 1781604.6
TRP-S500-R20 1820813 1820813 1830483.3 1820713 1829740.0 1820168 1830222.6
Better - 5 1 8 6 16 13

† cost values from [37]

Table 7.17: Results for the 500-customers set generated in [39]

of computational time in the set, requiring 32.92% less computational time compared
to GILS-RVND, while the reduction for DM-GILS-RVND was 31.23%. Regarding SSTs,
twelve instances, where MDM-GILS-RVND was better than GILS-RVND, were statisti-
cally significant for the Student’s t-test. Five instances, where MDM-GILS-RVND was
better than DM-GILS-RVND, were also statistically significant, being four instances for
Student’s t-test and one for Wilcoxon test.

Considering all computational experiments reported in Sections 7.2 and 7.3, MDM-
GILS-RVND and DM-GILS-RVND outperformed GILS-RVND not only in terms of com-
putational time, but also in relation to solution quality, mainly in challenging instances,
usually with 500 customers or more. We also observe in Tables 7.19 and 7.22 that MDM-
GILS-RVND surpassed DM-GILS-RVND, respectively, in instances of 500 customers and
1000 customers, reinforcing that mining the elite set more than once increased the quality
of the results.

7.4 Complementary Analyses

In order to better understand the behavior of MDM-GILS-RVND, this section presents
three distinct complementary assessments. The first one, presented in Subsection 7.4.1,
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GILS-RVND DM-GILS-RVND MDM-GILS-RVND

Instance Average
Time (s)

Average
Time (s)

Gap(%)
Time

Average
Time (s)

Gap(%)
Time

TRP-S500-R1 830.85 620.18 -25.36 623.37 -24.97
TRP-S500-R2 724.17 502.99 -30.54 485.98 -32.89
TRP-S500-R3 761.86 580.34 -23.83 571.46 -24.99
TRP-S500-R4 810.63 589.33 -27.30 579.34 -28.53
TRP-S500-R5 734.32 565.36 -23.01 512.22 -30.25
TRP-S500-R6 796.28 596.65 -25.07 612.53 -23.08
TRP-S500-R7 781.01 609.98 -21.90 620.16 -20.60
TRP-S500-R8 769.33 580.50 -24.54 574.23 -25.36
TRP-S500-R9 693.82 545.16 -21.43 530.72 -23.51
TRP-S500-R10 784.64 587.06 -25.18 564.93 -28.00
TRP-S500-R11 741.50 536.77 -27.61 513.56 -30.74
TRP-S500-R12 766.23 564.99 -26.26 523.90 -31.63
TRP-S500-R13 797.54 556.95 -30.17 540.20 -32.27
TRP-S500-R14 835.86 585.61 -29.94 565.17 -32.38
TRP-S500-R15 800.69 587.39 -26.64 556.92 -30.44
TRP-S500-R16 761.93 590.35 -22.52 555.91 -27.04
TRP-S500-R17 738.57 533.61 -27.75 548.44 -25.74
TRP-S500-R18 780.31 636.26 -18.46 581.67 -25.46
TRP-S500-R19 773.39 553.04 -28.49 559.35 -27.68
TRP-S500-R20 726.50 544.20 -25.09 514.63 -29.16
Average - - -25.55 - -27.74
Better 0 5 - 15 -

Table 7.18: Computational time for the 500-customers set generated in [39]

DM-GILS-RVND MDM-GILS-RVND
Best Average Time SST Best Average Time SST

GILS-RVND 3-2-15 5-0-15 0-0-20 0-4 1-4-15 2-0-18 0-0-20 0-5
DM-GILS-RVND - - - - 3-4-13 6-0-14 5-0-15 0-5

Table 7.19: Summary for Tables 7.17 and 7.18
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GILS-RVND DM-GILS-RVND MDM-GILS-RVND

Instance BKS Best
Solution

Average
Solution

Best
Solution

Average
Solution

Best
Solution

Average
Solution

TRP-S1000-R1 5107395 5107395 5133698.3 5099593 5122436.1 5097334 5117118.1
TRP-S1000-R2 5106161 5106161 5127449.4 5084762 5112406.6 5083772 5106199.8
TRP-S1000-R3 5096977 5096977 5113302.9 5089701 5111390.5 5087014 5108822.4
TRP-S1000-R4 5112465† 5118006 5141392.6 5110184 5142219.9 5110766 5137965.2
TRP-S1000-R5 5097991† 5103894 5122660.7 5085136 5116167.7 5088230 5112437.5
TRP-S1000-R6 5109946† 5115816 5143087.1 5102671 5132201.1 5098630 5124817.1
TRP-S1000-R7 4995703† 5021383 5032722.0 4984950 5014796.3 4982461 5019363.8
TRP-S1000-R8 5109325 5109325 5132722.6 5109325 5129942.9 5104125 5127143.8
TRP-S1000-R9 5046566† 5052599 5073245.3 5045262 5070469.7 5044687 5069371.7
TRP-S1000-R10 5060019† 5078191 5093592.6 5070109 5089275.6 5062172 5079835.2
TRP-S1000-R11 5031455† 5041913 5066161.5 5052459 5066612.8 5051685 5061519.8
TRP-S1000-R12 5029792 5029792 5051235.2 5030837 5043866.1 5023000 5038120.8
TRP-S1000-R13 5102520 5102520 5131437.5 5098034 5123032.4 5085356 5114870.4
TRP-S1000-R14 5092861† 5099433 5118980.6 5089565 5116989.7 5087794 5111368.4
TRP-S1000-R15 5131013† 5142470 5174493.2 5123240 5166046.9 5134114 5165423.3
TRP-S1000-R16 5064094† 5073972 5090280.5 5070422 5091420.9 5047856 5088822.7
TRP-S1000-R17 5052283† 5071485 5084450.4 5065952 5082717.2 5063904 5078517.9
TRP-S1000-R18 5005789† 5017589 5037094.0 5003047 5038269.6 4998254 5033070.8
TRP-S1000-R19 5064873† 5076800 5097167.6 5065743 5087261.2 5065623 5086618.9
TRP-S1000-R20 4977262 4977262 5002920.6 4970735 5003599.3 4976158 5000650.3
Better - 1 0 4 1 15 19

† cost values from [37]

Table 7.20: Results on the 1000-customers set generated in [39]

GILS-RVND DM-GILS-RVND MDM-GILS-RVND

Instance

Average

Time (s)

Average

Time (s)

Gap(%)

Time

Average

Time (s)

Gap(%)

Time

TRP-S1000-R1 19889.15 14123.42 -28.99 13747.69 -30.88

TRP-S1000-R2 19218.18 13532.12 -29.59 13626.35 -29.10

TRP-S1000-R3 18798.18 12553.89 -33.22 11772.82 -37.37

TRP-S1000-R4 18493.11 12404.32 -32.92 12985.91 -29.78

TRP-S1000-R5 19143.87 13862.07 -27.59 13663.97 -28.62

TRP-S1000-R7 17681.02 13154.44 -25.60 11873.02 -32.85

TRP-S1000-R8 18065.24 12781.96 -29.25 12152.55 -32.73

TRP-S1000-R9 17979.62 11758.44 -34.60 11744.68 -34.68

TRP-S1000-R10 17596.33 12274.40 -30.24 12641.17 -28.16

TRP-S1000-R11 18307.69 11826.31 -35.40 11665.22 -36.28

TRP-S1000-R12 19149.54 12940.67 -32.42 12801.08 -33.15

TRP-S1000-R13 19604.19 13895.03 -29.12 13484.77 -31.21

TRP-S1000-R14 18974.58 13171.29 -30.58 12877.75 -32.13

TRP-S1000-R15 18889.53 13687.70 -27.54 12423.75 -34.23

TRP-S1000-R16 18206.27 11962.50 -34.29 11437.22 -37.18

TRP-S1000-R17 18571.62 11847.47 -36.21 11728.89 -36.85

TRP-S1000-R18 19745.37 12966.44 -34.33 12914.31 -34.60

TRP-S1000-R19 19790.69 13365.27 -32.47 12793.33 -35.36

TRP-S1000-R20 18715.65 13150.60 -29.73 13099.58 -30.01

Average - - -31.23 - -32.92

Better 0 3 - 17 -

Table 7.21: Computational time for the 1000-customers set generated in [39]
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DM-GILS-RVND MDM-GILS-RVND
Best Average Time SST Best Average Time SST

GILS-RVND 3-2-15 5-0-15 0-0-20 0-9 1-4-15 2-0-18 0-0-20 0-12
DM-GILS-RVND - - - - 3-4-13 6-0-14 5-0-15 0-5

Table 7.22: Summary for Tables 7.20 and 7.21

illustrates the impact of the usage of patterns into initial solutions compared to initial
solutions built by the constructive method of GILS-RVND. In the next analysis, Sub-
section 7.4.2 shows experiments of time convergence of GILS-RVND, DM-GILS-RVND
and MDM-GILS-RVND to targets (cost values of solutions). Subsection 7.4.3 presents
fair comparisons among MDM-GILS-RVND, DM-GILS-RVND and GILS-RVND, where
the same amount of time is given to both heuristics as stopping criterion instead of the
number of multi-start iterations, as done in Sections 7.2 and 7.3.

7.4.1 Impact of the Usage of Mined Patterns

In this subsection, an execution using the TRP-S1000-R1 instance and another one with
TRP-S1000-R7 instance were selected to demonstrate the impact of the usage of mined
patterns into initial solutions, as done in Subsection 5.4.1. For each experimented instance,
two figures show the results of each heuristic phase: the constructive phase and the local
search phase, where the multi-start iterations were arranged at the abscissa axis and cost
values of solutions at the ordinate axis. For simplification, as MDM-GILS-RVND, DM-
GILS-RVND and GILS-RVND have the same behavior in the first half of the multi-start
iterations, one line is used to represent these heuristics.

Shown in Figure 7.1, the first experiment considers the TRP-S1000-R1 instance. As
can be observed after the DM process, the constructive and local search phases show
close lines for the two data mining strategies, demonstrating, in this way, very similar
behaviors. On the other hand, these two data mining heuristics present better cost values
of solutions when compared to those obtained by GILS-RVND, indicating that the data
mining heuristics were able to explore more efficiently the search space of the problem.
The second data mining execution by MDM-GILS-RVND is showed as DM* in both
graphs. At last, the better cost value obtained among the evaluated heuristics was found
by MDM-GILS-RVND at the 10th multi-start iteration.

Figure 7.2 displays the behaviors of the heuristics on TRP-S1000-R7 instance. The
data mining heuristics presented better cost values throughout the algorithm execution
when compared to GILS-RVND. This figure shows that the best solution found was ob-
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tained by MDM-GILS-RVND after the second mining process, which happens again after
the 9th multi-start iteration.
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Figure 7.1: Cost values versus Iteration - TRP-S1000-R1 instance
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Figure 7.2: Cost values versus Iteration - TRP-S1000-R7 instance

7.4.2 Analyses of Time Convergence

Following the time convergence analysis stated in Subsection 5.4.2, which used kroA200
and pr299 instances, the current subsection aims at to present new plots including the
computational results of MDM-GILS-RVND.

Figure 7.3 considers the results of TTT plots on the kroA200 instance. Taking the easy
target (2677290) into account, shown in Figure 7.3(a), all heuristics present very similar
behaviors, which are indicated by using the overlapped points. On the other hand, the
plot used to illustrate the hard target (2672445), shown in Figure 7.3(b), demonstrated
distinct performances among the data mining heuristics and the original approach. For
example, both MDM-GILS-RVND and DM-GILS-RVND presented a probability of near
90% to reach the given target in 25 seconds, while, within the same computational time,
GILS-RVND presents a probability of around 65% to reach the same target.
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Figure 7.3: TTT plots for kroA200 instance
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Figure 7.4: TTT plots for pr299 instance

TTT plots defined for pr299 instance are displayed in Figure 7.4. Specifically for
Figure 7.4(a), which represents the easy target (6558165), the three evaluated heuristics
present marginally different behaviors among each other. For example, to reach the given
target within about 160 seconds, GILS-RVND, DM-GILS-RVND, and MDM-GILS-RVND
obtained, respectively, probabilities of near 80%, 81%, and 85%. Alternatively, Figure
7.4(b) present the behaviors obtained by the heuristics for the hard target (6557983). For
example, GILS-RVND, DM-GILS-RVND, and MDM-GILS-RVND have probabilities of,
respectively, 72%, 89%, and 92% to achieve the target solution within 150 seconds.

7.4.3 Complementary Experiments

This subsection reports the computational experiments that involves MDM-GILS-RVND
using running time as stopping criterion. The reported results of this subsection in-
cludes MDM-GILS-RVND results along with the results reported in Subsection 5.4.3. All
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instance sets follow the A-B-C format, firstly presented in Subsection 5.4.3, and are di-
vided into Subsections 7.4.3.1 and 7.4.3.2, showing, respectively, the results for the MLP
versions of Hamiltonian circuits and Hamiltonian paths. Finally, since this subsection
presents the last computational experiments of this work, the number of new BKSs found
in each instance set is also reported, whereas the details of each new BKS are reported in
Table A.3 (see Appendix A).

7.4.3.1 Experiments for Hamiltonian Circuit

This subsection considers the Hamiltonian circuit version of MLP, where a set of 23
instances selected in [39] and a set of 56 instances selected from TSPLib were submitted
to the proposed MDM-GILS-RVND extended experiments, which are reported as follows.

Table 7.23 (union of Tables A.1 and 7.3) reports the results on the 23-instances set,
which regards only the instances that do not have their optimal values proven, specifi-
cally rat99 and eil101 instances. Considering equal-time comparisons, MDM-GILS-RVND
achieved the average solutions found by GILS-RVND, which held the best average solu-
tions of this set. Therefore, giving the same running time to the data mining heuristics,
they could match all best computational results of this set.

Summary from Table A.1
DM-GILS-RVND MDM-GILS-RVND

Best Average SST Best Average SST
GILS-RVND 0-2-0 0-2-0 0-0 0-2-0 0-2-0 0-0
DM-GILS-RVND - - - 0-2-0 0-2-0 0-0

Summary from Table 7.3
DM-GILS-RVND MDM-GILS-RVND

Best Average SST Best Average SST
GILS-RVND 0-2-0 2-0-0 0-0 0-2-0 2-0-0 0-0
DM-GILS-RVND - - - 0-2-0 0-2-0 0-0

Table 7.23: Results for instances selected from TSPLib in [1, 2]

The results on the 56-instances set displayed in Table 7.24 indicates that MDM-GILS-
RVND obtained substantial improvements when compared to the results of GILS-RVND
and DM-GILS-RVND from Table 7.6. Indeed, the number of winnings in favor of the
MDM heuristic raised in all anaylized elements, including in SST terms. Confronting the
DM and MDM heuristics to each other, the MDM version outperformed the DM version
when their general behaviors are considered, since in average solution aspect, MDM-
GILS-RVND achieved 35 winnings, 15 ties and 6 losses compared to DM-GILS-RVND.
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For the SSTs, the enhancement of results provided by MDM-GILS-RVND is verified by
the growth of the number of instances statistically significant. Indeed, 16 instance results
for the Student’s t-test and 4 instance results for the Wilcoxon test were statistically
significant when MDM-GILS-RVND performed better than GILS-RVND. Besides that,
13 instance results for the Student’s t-test and 2 instance results for the Wilcoxon test
were statistically significant, where MDM-GILS-RVND was better than DM-GILS-RVND.
Finally, as this instance set is a new one for the MLP literature, all 56 best solutions
obtained by the algorithms are regarded as new BKS, which are detailed in Table A.8.

Summary from Table A.2
DM-GILS-RVND MDM-GILS-RVND

Best Average SST Best Average SST
GILS-RVND 4-32-20 11-10-35 0-13 4-33-19 5-12-39 0-20
DM-GILS-RVND - - - 4-33-19 6-15-35 0-15

Summary from Table 7.6
DM-GILS-RVND MDM-GILS-RVND

Best Average SST Best Average SST
GILS-RVND 5-32-19 15-11-30 1-7 7-33-16 12-14-30 1-10
DM-GILS-RVND - - - 9-31-16 16-26-14 0-3

Table 7.24: Results on the 56-instances set selected from TSPLib

7.4.3.2 Experiments for Hamiltonian Path

For MLP version of Hamiltonian paths, all instance sets for this problem were submitted
to the comparison proposed in this subsection, except for the sets of 10, 20, and 50
customers, since these sets have their average solutions matching their respective optimal
values.

Table 7.25 diplays the results on the heterogeneous set of instances that varies from 70
to 532 customers. Analyzing this table, we observed that the number of average solutions
achieved by both DM heuristics was equal, with 3 winnings, 6 ties and 1 loss when com-
pared to GILS-RVND. Another key point for this set is the improvement of the BKS for
the att532 instance, which was achieved by MDM-GILS-RVND. A statistical significance
result was found for the Student’s t-test when MDM-GILS-RVND outperformed GILS-
RVND and DM-GILS-RVND. One instance had its BKS improved by MDM-GILS-RVND,
which is pointed in Table A.9.

Regarding the results obtained about best solution on the 100-customers set, displayed
in Table 7.26, the two DM strategies matched all BKS. In terms of average solution, both
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DM heuristics improved a instance compared to their results in direct comparison, shown
in Table 7.13, which resulted in 17 ties and 3 winnings for GILS-RVND.

Summary from Table A.3
DM-GILS-RVND MDM-GILS-RVND

Best Average SST Best Average SST
GILS-RVND 1-9-0 1-6-3 0-0 0-9-1 1-6-3 0-1
DM-GILS-RVND - - - 0-8-2 0-6-4 0-1

Summary from Table 7.9
DM-GILS-RVND MDM-GILS-RVND

Best Average SST Best Average SST
GILS-RVND 1-9-0 3-6-1 0-0 0-10-0 2-6-2 0-0
DM-GILS-RVND - - - 0-9-1 2-6-2 0-0

Table 7.25: Results for TSPLib instances selected in [39]

Summary from Table A.4
DM-GILS-RVND MDM-GILS-RVND

Best Average SST Best Average SST
GILS-RVND 0-20-0 3-17-0 0-0 0-20-0 3-17-0 0-0
DM-GILS-RVND - - - 0-20-0 0-19-1 0-0

Summary from Table 7.13
DM-GILS-RVND MDM-GILS-RVND

Best Average SST Best Average SST
GILS-RVND 0-20-0 4-16-0 0-0 0-20-0 4-16-0 0-0
DM-GILS-RVND - - - 0-20-0 1-19-0 0-0

Table 7.26: Results on the 100-customers set generated in [39]

Table 7.27 reports the summarized results on the 200-customers set. Considering
average solutions, the overall best performance of this set was obtained by DM-GILS-
RVND, with 14 winnings, 3 ties and 3 losses against GILS-RVND. For the comparison
between the DM heuristics, this statement is also valid, since DM-GILS-RVND obtained
9 winnings, 5 ties and 6 losses against MDM-GILS-RVND. An instance result was sta-
tistically significant, where DM-GILS-RVND outperformed MDM-GILS-RVND for the
Wilcoxon test.

The computational results on the 500-instances set, shown in Table 7.28, demonstrates
considerable improvements of DM-GILS-RVND and MDM-GILS-RVND over GILS-RVND
results. Regarding the average solution aspect, MDM-GILS-RVND and DM-GILS-RVND
obtained, respectively, 18 out of 20 and 15 out of 20 winnings in instance results when
compared with GILS-RVND using the traditional comparison, as reported in Table 7.19.
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Summary from Table A.5
DM-GILS-RVND MDM-GILS-RVND

Best Average SST Best Average SST
GILS-RVND 0-20-0 3-3-14 0-1 0-20-0 5-2-13 0-1
DM-GILS-RVND - - - 0-20-0 9-5-6 1-0

Summary from Table 7.16
DM-GILS-RVND MDM-GILS-RVND

Best Average SST Best Average SST
GILS-RVND 0-20-0 10-1-9 0-0 0-20-0 10-1-9 0-1
DM-GILS-RVND - - - 0-20-0 8-4-8 0-0

Table 7.27: Results on the 200-customers set generated in [39]

For the scenario using equal-time comparisons, MDM-GILS-RVND and DM-GILS-RVND
achieved, respectively, 19 out of 20 and 18 out of 20 winnings in instance results com-
pared with GILS-RVND, displayed in Table A.6. Thus, showing that the data mining
heuristics presented better behaviors when compared to the original strategy. Regard-
ing only DM-GILS-RVND and MDM-GILS-RVND results, the multi data mining version
achieved the best performance of them, since this version obtained 14 out of 20 best av-
erage solutions compared to DM-GILS-RVND. For the SST results of Table A.6, where
DM-GILS-RVND performed better than GILS-RVND, 4 instances using Student’s t-test
were statistically significant. When MDM-GILS-RVND had a greater performance than
GILS-RVND, 11 instances using Student’s t-test were statistically significant. At last,
5 instances were statistically significant when MDM-GILS-RVND performed better than
DM-GILS-RVND for the Student’s t-test. Finally, as shown Table A.9, 11 new BKS were
obtained by DM-GILS-RVND and MDM-GILS-RVND.

Summary from Table A.6
DM-GILS-RVND MDM-GILS-RVND

Best Average SST Best Average SST
GILS-RVND 1-4-15 2-0-18 0-4 1-1-18 1-0-19 0-11
DM-GILS-RVND - - - 1-3-16 4-0-16 0-5

Summary from Table 7.19
DM-GILS-RVND MDM-GILS-RVND

Best Average SST Best Average SST
GILS-RVND 3-2-15 5-0-15 0-4 1-4-15 2-0-18 0-5
DM-GILS-RVND - - - 3-4-13 6-0-14 0-5

Table 7.28: Results on the 500-customers set generated in [39]

Table 7.29 reports the results on the 1000-customers set, which is the hardest one for
this MLP variant. Observing the progress from the traditional comparison (Table 7.22)
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to the equal-time comparison (Table A.7), the data mining heuristics demonstrated their
greatest performance for this MLP variant, where these heuristics won in all instances
against GILS-RVND. Comparing DM-GILS-RVND and MDM-GILS-RVND to each other,
the multi data mining heuristic have been dominant against DM-GILS-RVND, outper-
forming all average solutions of DM-GILS-RVND. Regarding SST results, 14 instance
results were statistically significant, where DM-GILS-RVND performed better than GILS-
RVND, using the Student’s t-test. Additionally, all 20 instance results using Student’s
t-test were statistically significant when MDM-GILS-RVND outperformed GILS-RVND.
Moreover, 15 instance results using Student’s t-test and 3 instance results using Wilcoxon
test were statistically significant when MDM-GILS-RVND surpassed DM-GILS-RVND.
Finally, 20 best solutions obtained by DM-GILS-RVND and MDM-GILS-RVND improved
the BKSs of this instance set, described in Table A.9.

Summary from Table A.7
DM-GILS-RVND MDM-GILS-RVND

Best Average SST Best Average SST
GILS-RVND 0-0-20 0-0-20 0-14 0-0-20 0-0-20 0-20
DM-GILS-RVND - - - 3-0-17 0-0-20 0-18

Summary from Table 7.22
DM-GILS-RVND MDM-GILS-RVND

Best Average SST Best Average SST
GILS-RVND 3-2-15 5-0-15 0-9 1-4-15 2-0-18 0-12
DM-GILS-RVND - - - 3-4-13 6-0-14 0-5

Table 7.29: Results on the 1000-customers set generated in [39]



Chapter 8

Conclusion and Future Works

In this work, two hybrid heuristics using data mining techniques were conceived in the
basis of a state-of-the-art heuristic (GILS-RVND) for two Minimum Latency Problem
(MLP) variants.

The first proposed hybrid heuristic, named DM-GILS-RVND, was developed using
DM-GRASP concepts, where, the data mining process is executed once and after the
first half of multi-start iterations. Next, the second hybrid heuristic, named MDM-GILS-
RVND, consists in an adapted version of the classic MDM-GRASP (Multi DM-GRASP)
that performs the data mining process whenever the elite set gets updated.

In order to provide a fair and strict evaluation of the computational experiments, all
experiments reported in [42] were entirely reproduced in this work. Additionally, a set
of 56 instances selected from TSPLib was introduced into the experiments of the MLP
version of Hamiltonian circuits, since the results of the initial 23-instances set of this
MLP variant presented similar performances among the evaluated heuristics. In total,
229 instances were tested in this work, being 79 and 150 instances, respectively, for the
MLP version of Hamiltonian circuits and Hamiltonian paths.

Moreover, analyses of time convergence (TTT plots), impact of mined patterns into
initial solutions, and statistical significance tests were done to support the evaluation of
the heuristics. Computational experiments using running time as stopping criterion were
also carried out in this work.

Computational results reported in this work demonstrated that as the problem gets
harder (i.e., the number of customers increases), the more efficient the data mining heuris-
tics perform. Considering the results obtained from the reproduced experiments, DM-
GILS-RVND and MDM-GILS-RVND proved to perform better than GILS-RVND in terms
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of solution quality and computational time simultaneously. For example, in hard instances
for both MLP variants – in this work, regarded as instances with 500 customers or more –,
we observe that the improvements of solution quality made by the data mining heuris-
tics were significant, since their numbers of wins over GILS-RVND were predominant.
Regarding the experiments using equal-time comparisons, the data mining heuristics im-
proved even more their results from the reproduced experiments over GILS-RVND, since
the running time for the hybrid heuristics were increased, allowing them to further explore
the search space of the problem.

It is important to highlight that MDM-GILS-RVND outperformed DM-GILS-RVND
in terms of computational time and solution quality. For computational time, MDM-
GILS-RVND obtained, in general, better average of running times than DM-GILS-RVND,
when both heuristics are compared to GILS-RVND. Regarding these averages, MDM-
GILS-RVND surpassed DM-GILS-RVND in all instance sets, except for the 100-customers
set. In terms of solution quality, MDM-GILS-RVND started to have distinguishable
results over DM-GILS-RVND as the instance size gets larger, as can be observed, for
instance, in the results of the 56-instances set (a tested set from the MLP version of
Hamiltonian circuits).

Finally, 56 new BKSs for the MLP version of Hamiltonian circuits and 32 new BKSs
for the MLP version of Hamiltonian paths obtained in this work are, respectively, reported
in Tables A.8 and A.9 of Appendix A.

A future improvement to be further investigated consists in the application of mined
patterns to reduce the problem’s size, successfully developed in [25] for two Vehicle Rout-
ing Problem variants. Another challenging point that can also be explored regards using
MDM-GILS-RVND concepts into other heuristics that require very few multi-start itera-
tions, as GILS-RVND.
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APPENDIX A -- COMPLEMENTARY
EXPERIMENTS

This appendix presents the computational results of the complementary experiments re-
ported in Subsections 5.4.3 and 7.4.3. These results were divided according to the tested
MLP version: Section A.1 for Hamiltonian circuits and Section A.2 for Hamiltonian paths.
In these sections, each table follows the same table format described in Section 5.1, ex-
cept for the last column, where the average of the input running time for each execution
is shown. Also in these tables, underlined results indicate new cost values of solutions
achieved for the literature, and the Better counter stands for the number of best results
encountered on the respective column. Finally, presented in Section A.3, all new Best
Known Solutions (BKSs) for the MLP literature are compiled in Tables A.8 and A.9,
regarding, respectively, BKSs for Hamiltonian circuits and Hamiltonian paths.

A.1 Experiments for Hamiltonian Circuit

GILS-RVND DM-GILS-RVND MDM-GILS-RVND

Instance BKS Best
Solution

Average
Solution

Best
Solution

Average
Solution

Best
Solution

Average
Solution

Average
Time (s)

rat99 57986 57986 57986.0 57986 57986.0 57986 57986.0 5.30
eil101 27513 27513 27513.0 27513 27513.0 27513 27513.0 5.79
Better 2 2 2 2 2 2

Table A.1: Results for instances selected from TSPLib in [1, 2]
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GILS-RVND DM-GILS-RVND MDM-GILS-RVND

Instance Best
Solution

Average
Solution

Best
Solution

Average
Solution

Best
Solution

Average
Solution

Average
Time (s)

gr120 363454 363569.5 363454 363584.8 363454 363454.0 9.54
pr124 3154346 3154346.0 3154346 3154346.0 3154346 3154346.0 5.39
bier127 4545005 4546378.8 4545005 4545005.0 4545005 4545691.9 9.25
ch130 349874 349891.7 349874 349903.5 349874 349903.5 9.23
pr136 6199268 6199805.4 6199268 6200032.6 6199268 6200023.6 17.30
gr137 4061498 4061498.9 4061498 4061498.0 4061498 4061498.0 8.11
pr144 3846137 3846137.0 3846137 3846137.0 3846137 3846137.0 9.11
ch150 444424 444424.0 444424 444424.0 444424 444424.0 13.06
kroA150 1825769 1825769.0 1825769 1825769.0 1825769 1825769.0 19.84
kroB150 1786546 1786546.0 1786546 1786546.0 1786546 1786546.0 16.27
pr152 5064566 5064566.0 5064566 5064566.0 5064566 5064566.0 11.23
u159 2972030 2972204.2 2972030 2972291.3 2972030 2972204.2 14.21
si175 1808532 1808532.0 1808532 1808532.0 1808532 1808532.0 19.14
brg180 174750 174750.0 174750 174750.0 174750 174750.0 16.79
rat195 218632 218763.2 218632 218758.9 218632 218716.7 44.69
d198 1186049 1186098.6 1186049 1186061.4 1186049 1186049.0 38.28
kroA200 2672437 2672444.2 2672437 2672437.0 2672437 2672437.0 42.23
kroB200 2669515 2674486.0 2669515 2675761.6 2669515 2675993.6 42.00
gr202 2909247 2914644.2 2909247 2912564.8 2909247 2913251.2 35.95
ts225 13240046 13240046.0 13240046 13241020.0 13240046 13240046.0 26.60
tsp225 402783 403080.2 402783 402899.3 402783 402854.2 53.89
pr226 7196869 7196869.0 7196869 7196869.0 7196869 7196869.0 34.29
gr229 10725914 10729883.8 10725914 10728571.1 10725914 10730345.7 53.66
gil262 285060 285527.1 285043 285333.6 285060 285295.0 96.12
pr264 5471615 5471615.0 5471615 5471615.0 5471615 5471615.0 47.02
a280 346989 347125.9 346989 347000.1 346989 347106.5 107.18
pr299 6556628 6557983.4 6556628 6557893.5 6556628 6557788.6 104.92
lin318 5619810 5629995.9 5619810 5630371.5 5619810 5629823.8 117.98
rd400 2768830 2776672.7 2767608 2773810.9 2762336 2774472.8 354.00
fl417 1874242 1874242.8 1874242 1874242.0 1874242 1874242.0 382.64
gr431 21159702 21239150.9 21143311 21204699.7 21143311 21200881.7 336.98
pr439 17829541 17887107.0 17829541 17863294.5 17829541 17853186.3 285.56
pcb442 10301705 10323539.7 10290913 10319528.9 10301705 10319181.5 413.41
d493 6684190 6691057.1 6678021 6686588.4 6676086 6684218.8 608.47
att532 5613010 5632753.5 5621535 5628449.1 5613732 5623751.9 988.04
ali535 31870389 31904676.6 31870389 31894236.5 31860679 31880980.8 880.76
si535 12247211 12250679.7 12246397 12251565.8 12248003 12249794.2 498.76
pa561 658870 661211.6 659739 661800.0 659720 661022.3 1155.32
u574 9314596 9344178.4 9282414 9339267.3 9272607 9322872.8 1234.19
rat575 1848869 1859221.1 1846650 1855531.0 1845687 1853671.5 1739.46
p654 7827273 7827639.2 7827273 7827807.0 7827273 7827560.6 1755.28
d657 14159477 14220133.3 14112540 14183994.3 14111377 14169719.1 2615.66
gr666 63571693 63731966.5 63508352 63652863.2 63437941 63571619.5 2296.23
u724 13506660 13558605.3 13488521 13535072.2 13490438 13525798.1 4651.76
rat783 3282794 3296069.6 3268938 3286472.1 3266917 3282799.2 7044.52
dsj1000 7646018508 7685887300.0 7639381013 7668905895.3 7636325493 7659087450.1 18068.70
dsj1000ceil 7646519008 7683329486.0 7644298506 7679255707.2 7638241766 7658254573.7 18543.76
pr1002 115550770 116178260.2 115507699 115835876.6 115139627 115535663.8 11963.29
si1032 46896355 46897662.4 46896355 46896355.0 46896355 46896355.0 2402.72
u1060 102508056 102759766.0 102380219 102687446.4 102286639 102508247.6 15680.50
vm1084 94760440 95053081.2 94679736 94950688.9 94665088 94890532.8 13894.43
pcb1173 30926325 31032128.8 30861765 30946242.0 30772276 30896137.6 20508.89
d1291 29383346 29477239.4 29389729 29488806.8 29389729 29480929.9 12171.21
rl1304 144886001 145596878.7 144442951 145392224.6 144340259 145281356.8 18617.53
rl1323 155697857 156360364.3 155749119 156147959.5 155524088 155891209.6 22758.06
nrw1379 35360407 35519379.7 35309003 35421034.4 35185689 35322915.2 49624.72
Better 34 16 36 20 49 46 -

Table A.2: Results on the 56-instances set selected from TSPLib



A.2 Experiments for Hamiltonian Path 71

A.2 Experiments for Hamiltonian Path

GILS-RVND DM-GILS-RVND MDM-GILS-RVND

Instance BKS Best
Solution

Average
Solution

Best
Solution

Average
Solution

Best
Solution

Average
Solution

Average
Time (s)

st70 19215 19215 19215.0 19215 19215.0 19215 19215.0 0.94
rat99 54984 54984 54984.0 54984 54984.0 54984 54984.0 5.81
kroD100 949594 949594 949594.0 949594 949594.0 949594 949594.0 4.21
lin105 585823 585823 585823.0 585823 585823.0 585823 585823.0 3.79
pr107 1980767 1980767 1980767.0 1980767 1980767.0 1980767 1980767.0 4.96
rat195 210191 210191 210335.9 210191 210376.7 210191 210354.2 44.99
pr226 7100308 7100308 7100308 7100308 7100308.0 7100308 7100308.0 34.35
lin318 5560679 5560679 5569819.5 5560679 5569376.4 5560679 5568258.8 124.15
pr439 17688561 17688561 17734922.0 17702120 17730470.6 17688561 17723943.9 275.12
att532 5577965 5581240 5597866.8 5581240 5594946.4 5572131 5586649.3 923.03
Better - 9 7 8 6 10 9 -

Table A.3: Results for TSPLib instances selected in [39]

GILS-RVND DM-GILS-RVND MDM-GILS-RVND

Instance BKS Best
Solution

Average
Solution

Best
Solution

Average
Solution

Best
Solution

Average
Solution

Average
Time (s)

TRP-S100-R1 32779 32779 32779.0 32779 32779.0 32779 32779.0 4.33
TRP-S100-R2 33435 33435 33435.0 33435 33435.0 33435 33435.0 4.61
TRP-S100-R3 32390 32390 32390.0 32390 32390.0 32390 32390.0 4.33
TRP-S100-R4 34733 34733 34733.0 34733 34733.0 34733 34733.0 4.45
TRP-S100-R5 32598 32598 32598.0 32598 32598.0 32598 32598.0 5.43
TRP-S100-R6 34159 34159 34159.0 34159 34159.0 34159 34159.0 4.83
TRP-S100-R7 33375 33375 33375.0 33375 33375.0 33375 33375.0 5.34
TRP-S100-R8 31780 31780 31780.0 31780 31780.0 31780 31780.0 4.29
TRP-S100-R9 34167 34167 34167.0 34167 34167.0 34167 34167.0 4.56
TRP-S100-R10 31605 31605 31605.0 31605 31605.0 31605 31605.0 4.13
TRP-S100-R11 34188 34188 34198.5 34188 34210.6 34188 34209.0 4.72
TRP-S100-R12 32146 32146 32146.0 32146 32146.0 32146 32146.0 4.38
TRP-S100-R13 32604 32604 32604.0 32604 32604.0 32604 32604.0 4.75
TRP-S100-R14 32433 32433 32433.0 32433 32433.5 32433 32433.5 3.89
TRP-S100-R15 32574 32574 32574.0 32574 32574.0 32574 32574.0 4.36
TRP-S100-R16 33566 33566 33566.0 33566 33566.0 33566 33566.0 4.87
TRP-S100-R17 34198 34198 34198.0 34198 34198.0 34198 34198.0 5.65
TRP-S100-R18 31929 31929 31929.0 31929 31929.0 31929 31929.0 4.34
TRP-S100-R19 33463 33463 33463.0 33463 33463.0 33463 33463.0 4.91
TRP-S100-R20 33632 33632 33632.2 33632 33632.4 33632 33632.4 5.35
Better - 20 20 20 17 20 17 -

Table A.4: Results on the 100-customers set generated in [39]



A.2 Experiments for Hamiltonian Path 72

GILS-RVND DM-GILS-RVND MDM-GILS-RVND

Instance BKS Best
Solution

Average
Solution

Best
Solution

Average
Solution

Best
Solution

Average
Solution

Average
Time (s)

TRP-S200-R1 88787 88787 88794.6 88787 88794.6 88787 88792.7 44.08
TRP-S200-R2 91977 91977 92013.1 91977 92009.8 91977 92003.5 41.02
TRP-S200-R3 92568 92568 92631.2 92568 92612.1 92568 92613.6 40.50
TRP-S200-R4 93174 93174 93192.3 93174 93180.4 93174 93186.8 43.48
TRP-S200-R5 88737 88737 88841.2 88737 88811.6 88737 88836.8 42.65
TRP-S200-R6 91589 91589 91601.9 91589 91589.0 91589 91596.3 42.43
TRP-S200-R7 92754 92754 92763.2 92754 92754.4 92754 92763.0 43.75
TRP-S200-R8 89048 89048 89049.0 89048 89051.0 89048 89051.0 45.13
TRP-S200-R9 86326 86326 86326.0 86326 86326.0 86326 86326.0 39.51
TRP-S200-R10 91552 91552 91596.5 91552 91598.1 91552 91627.5 44.63
TRP-S200-R11 92655 92655 92700.6 92655 92691.2 92655 92709.1 43.90
TRP-S200-R12 91457 91457 91504.1 91457 91492.3 91457 91483.5 46.08
TRP-S200-R13 86155 86155 86181.4 86155 86178.9 86155 86189.2 43.88
TRP-S200-R14 91882 91882 91929.1 91882 91892.7 91882 91892.7 42.60
TRP-S200-R15 88912 88912 88912.4 88912 88912.0 88912 88912.0 42.28
TRP-S200-R16 89311 89311 89364.7 89311 89316.6 89311 89311.0 47.08
TRP-S200-R17 89089 89089 89118.3 89089 89095.4 89089 89092.0 42.92
TRP-S200-R18 93619 93619 93676.6 93619 93641.5 93619 93648.4 46.36
TRP-S200-R19 93369 93369 93401.6 93369 93474.2 93369 93424.7 42.75
TRP-S200-R20 86292 86292 86292.0 86292 86292.0 86292 86292.0 42.42
Better - 20 5 20 12 20 9 -

Table A.5: Results on the 200-customers set generated in [39]

GILS-RVND DM-GILS-RVND MDM-GILS-RVND

Instance BKS Best
Solution

Average
Solution

Best
Solution

Average
Solution

Best
Solution

Average
Solution

Average
Time (s)

TRP-S500-R1 1841386 1841386 1856018.7 1841386 1848689.6 1841210 1848699.1 830.85
TRP-S500-R2 †1815664 1816568 1823196.9 1817229 1821512.9 1817057 1821520.3 724.17
TRP-S500-R3 †1826855 1833044 1839254.2 1831357 1837144.8 1826738 1836040.8 761.86
TRP-S500-R4 †1804894 1809266 1815876.4 1806571 1815525.6 1802921 1811446.1 810.63
TRP-S500-R5 †1821250 1823975 1834031.7 1823135 1831959.2 1823135 1829834.0 734.32
TRP-S500-R6 †1782731 1786620 1790912.4 1785217 1789239.8 1783493 1789068.7 796.28
TRP-S500-R7 1847999 1847999 1857926.6 1845736 1853770.2 1846251 1852613.5 781.01
TRP-S500-R8 †1819636 1820846 1829257.3 1820639 1828861.3 1820421 1827758.7 769.33
TRP-S500-R9 1733819 1733819 1737024.9 1730561 1735771.4 1729796 1734877.4 693.82
TRP-S500-R10 †1761174 1762741 1767366.3 1762197 1767099.4 1761181 1764831.2 784.64
TRP-S500-R11 1797881 1797881 1801467.9 1797881 1802343.8 1797771 1801564.4 741.50
TRP-S500-R12 1774452 1774452 1783847.1 1774452 1780293.1 1774452 1780411.4 766.23
TRP-S500-R13 †1863905 1873699 1878049.4 1867803 1875001.2 1866173 1872955.3 797.54
TRP-S500-R14 1799171 1799171 1805732.9 1797687 1802117.3 1796129 1801236.7 835.86
TRP-S500-R15 †1785263 1791145 1797532.9 1788797 1794667.7 1784919 1791932.7 800.69
TRP-S500-R16 †1804392 1810188 1816484.0 1808183 1814428.6 1807758 1814935.8 761.93
TRP-S500-R17 1825748 1825748 1834443.2 1824674 1831266.9 1819909 1829864.6 738.57
TRP-S500-R18 †1825615 1826263 1833323.7 1826263 1831974.3 1826190 1830939.5 780.31
TRP-S500-R19 †1776855 1779248 1782763.9 1774846 1784623.6 1774846 1781150.0 773.39
TRP-S500-R20 1820813 1820813 1830483.3 1820713 1828928.2 1820168 1827538.5 726.50
Better - 2 1 4 4 18 15 -

† cost values from [37]

Table A.6: Results on the 500-customers set generated in [39]
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GILS-RVND DM-GILS-RVND MDM-GILS-RVND

Instance BKS Best
Solution

Average
Solution

Best
Solution

Average
Solution

Best
Solution

Average
Solution

Average
Time (s)

TRP-S1000-R1 5107395 5107395 5133698.3 5099593 5119372.4 5097334 5111463.4 19889.15
TRP-S1000-R2 5106161 5106161 5127449.4 5084762 5109703.2 5082922 5095563.3 19218.18
TRP-S1000-R3 5096977 5096977 5113302.9 5089701 5107248.7 5080369 5096720.7 18798.18
TRP-S1000-R4 †5112465 5118006 5141392.6 5103527 5132953.5 5092276 5126208.5 18493.11
TRP-S1000-R5 †5097991 5103894 5122660.7 5085136 5111351.7 5085412 5104769.0 18906.29
TRP-S1000-R6 †5109946 5115816 5143087.1 5098364 5128407.7 5087134 5114959.6 19143.87
TRP-S1000-R7 †4995703 5021383 5032722.0 4984950 5013911.2 4980214 5005857.5 17681.02
TRP-S1000-R8 5109325 5109325 5132722.6 5093854 5126224.1 5096892 5114194.5 18065.24
TRP-S1000-R9 †5046566 5052599 5073245.3 5042296 5066052.5 5022622 5054773.5 17979.62
TRP-S1000-R10 †5060019 5078191 5093592.6 5061767 5081279.2 5053780 5068111.1 17596.33
TRP-S1000-R11 †5031455 5041913 5066161.5 5050689 5060465.6 5022026 5046756.0 18307.69
TRP-S1000-R12 5029792 5029792 5051235.2 5016822 5035312.4 5004216 5023893.7 19149.54
TRP-S1000-R13 5102520 5102520 5131437.5 5085029 5117785.7 5083179 5106627.2 19604.19
TRP-S1000-R14 †5092861 5099433 5118980.6 5089565 5111582.3 5076253 5099226.9 18974.58
TRP-S1000-R15 †5131013 5142470 5174493.2 5118229 5163524.7 5121456 5149904.2 18889.53
TRP-S1000-R16 †5064094 5073972 5090280.5 5063177 5086418.2 5041659 5076827.7 18206.27
TRP-S1000-R17 †5052283 5071485 5084450.4 5064257 5075264.3 5045873 5063241.1 18571.62
TRP-S1000-R18 †5005789 5017589 5037094.0 5001170 5028868.0 4984408 5022960.1 19745.37
TRP-S1000-R19 †5064873 5076800 5097167.6 5063691 5083769.6 5058047 5074667.8 19790.69
TRP-S1000-R20 4977262 4977262 5002920.6 4967954 5000000.7 4964371 4987995.2 18715.65
Better - 0 0 3 0 17 20 -

† cost values from [37]

Table A.7: Results on the 1000-customers set generated in [39]

A.3 New Best Known Solutions for the
Minimum Latency Problem
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Instance Heuristic New BKS
gr120 GILS-RVND, DM-GILS-RVND and MDM-GILS-RVND 363454
pr124 GILS-RVND, DM-GILS-RVND and MDM-GILS-RVND 3154346
bier127 GILS-RVND, DM-GILS-RVND and MDM-GILS-RVND 4545005
ch130 GILS-RVND, DM-GILS-RVND and MDM-GILS-RVND 349874
pr136 GILS-RVND, DM-GILS-RVND and MDM-GILS-RVND 6199268
gr137 GILS-RVND, DM-GILS-RVND and MDM-GILS-RVND 4061498
pr144 GILS-RVND, DM-GILS-RVND and MDM-GILS-RVND 3846137
ch150 GILS-RVND, DM-GILS-RVND and MDM-GILS-RVND 444424
kroA150 GILS-RVND, DM-GILS-RVND and MDM-GILS-RVND 1825769
kroB150 GILS-RVND, DM-GILS-RVND and MDM-GILS-RVND 1786546
pr152 GILS-RVND, DM-GILS-RVND and MDM-GILS-RVND 5064566
u159 GILS-RVND, DM-GILS-RVND and MDM-GILS-RVND 2972030
si175 GILS-RVND, DM-GILS-RVND and MDM-GILS-RVND 1808532
brg180 GILS-RVND, DM-GILS-RVND and MDM-GILS-RVND 174750
rat195 GILS-RVND, DM-GILS-RVND and MDM-GILS-RVND 218632
d198 GILS-RVND, DM-GILS-RVND and MDM-GILS-RVND 1186049
kroA200 GILS-RVND, DM-GILS-RVND and MDM-GILS-RVND 2672437
kroB200 GILS-RVND, DM-GILS-RVND and MDM-GILS-RVND 2669515
gr202 GILS-RVND, DM-GILS-RVND and MDM-GILS-RVND 2909247
ts225 GILS-RVND, DM-GILS-RVND and MDM-GILS-RVND 13240046
tsp225 GILS-RVND, DM-GILS-RVND and MDM-GILS-RVND 402783
pr226 GILS-RVND, DM-GILS-RVND and MDM-GILS-RVND 7196869
gr229 GILS-RVND, DM-GILS-RVND and MDM-GILS-RVND 10725914
gil262 DM-GILS-RVND 285043
pr264 GILS-RVND, DM-GILS-RVND and MDM-GILS-RVND 5471615
a280 GILS-RVND, DM-GILS-RVND and MDM-GILS-RVND 346989
pr299 GILS-RVND, DM-GILS-RVND and MDM-GILS-RVND 6556628
lin318 GILS-RVND, DM-GILS-RVND and MDM-GILS-RVND 5619810
rd400 MDM-GILS-RVND 2762336
fl417 GILS-RVND, DM-GILS-RVND and MDM-GILS-RVND 1874242
gr431 DM-GILS-RVND and MDM-GILS-RVND 21143311
pr439 GILS-RVND, DM-GILS-RVND and MDM-GILS-RVND 17829541
pcb442 DM-GILS-RVND 10290913
d493 MDM-GILS-RVND 6676086
att532 GILS-RVND 5613010
ali535 MDM-GILS-RVND 31860679
si535 DM-GILS-RVND 12246397
pa561 GILS-RVND 658870
u574 MDM-GILS-RVND 9272607
rat575 MDM-GILS-RVND 1845687
p654 GILS-RVND, DM-GILS-RVND and MDM-GILS-RVND 7827273
d657 MDM-GILS-RVND 14111377
gr666 MDM-GILS-RVND 63437941
u724 DM-GILS-RVND 13488521
rat783 MDM-GILS-RVND 3266917
dsj1000 MDM-GILS-RVND 7636325493
dsj1000ceil MDM-GILS-RVND 7638241766
pr1002 MDM-GILS-RVND 115139627
si1032 GILS-RVND, DM-GILS-RVND and MDM-GILS-RVND 46896355
u1060 MDM-GILS-RVND 102286639
vm1084 MDM-GILS-RVND 94665088
pcb1173 MDM-GILS-RVND 30772276
d1291 GILS-RVND 29383346
rl1304 MDM-GILS-RVND 144340259
rl1323 MDM-GILS-RVND 155524088
nrw1379 MDM-GILS-RVND 35185689

Table A.8: New cost values for the MLP version of Hamiltonian circuits
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Instance Heuristic Current BKS New BKS
att532 MDM-GILS-RVND 5577965 5572131
TRP-S500-R1 MDM-GILS-RVND 1841386 1841210
TRP-S500-R3 DM-GILS-RVND 1826855 1826738
TRP-S500-R4 MDM-GILS-RVND 1804894 1802921
TRP-S500-R7 DM-GILS-RVND 1847999 1845736
TRP-S500-R9 MDM-GILS-RVND 1733819 1729796
TRP-S500-R11 MDM-GILS-RVND 1797881 1797771
TRP-S500-R14 MDM-GILS-RVND 1799171 1796129
TRP-S500-R15 MDM-GILS-RVND 1785263 1784919
TRP-S500-R17 MDM-GILS-RVND 1825748 1819909
TRP-S500-R19 DM-GILS-RVND and MDM-GILS-RVND 1776855 1774846
TRP-S500-R20 MDM-GILS-RVND 1820813 1820168
TRP-S1000-R1 MDM-GILS-RVND 5107395 5097334
TRP-S1000-R2 MDM-GILS-RVND 5106161 5082922
TRP-S1000-R3 MDM-GILS-RVND 5096977 5080369
TRP-S1000-R4 MDM-GILS-RVND 5112465 5092276
TRP-S1000-R5 DM-GILS-RVND 5097991 5085136
TRP-S1000-R6 MDM-GILS-RVND 5109946 5087134
TRP-S1000-R7 MDM-GILS-RVND 4995703 4980214
TRP-S1000-R8 DM-GILS-RVND 5109325 5093854
TRP-S1000-R9 MDM-GILS-RVND 5046566 5022622
TRP-S1000-R10 MDM-GILS-RVND 5060019 5053780
TRP-S1000-R11 MDM-GILS-RVND 5031455 5022026
TRP-S1000-R12 MDM-GILS-RVND 5019792 5004216
TRP-S1000-R13 MDM-GILS-RVND 5102520 5083179
TRP-S1000-R14 MDM-GILS-RVND 5092861 5076253
TRP-S1000-R15 DM-GILS-RVND 5131013 5118229
TRP-S1000-R16 MDM-GILS-RVND 5064094 5041659
TRP-S1000-R17 MDM-GILS-RVND 5052283 5045873
TRP-S1000-R18 MDM-GILS-RVND 5005789 4984408
TRP-S1000-R19 MDM-GILS-RVND 5064873 5058047
TRP-S1000-R20 MDM-GILS-RVND 4977262 4964371

Table A.9: New cost values for the MLP version of Hamiltonian paths


