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RESUMO 

O resultado de uma sessão de jogo é consequência de uma série de eventos, decisões e 

interações que são realizadas pelo jogador. Compreender e extrair dados destas sessões pode 

ser importante para análise da jogabilidade, para o entendimento do perfil do jogador e até 

mesmo para otimizar o modelo de negócios aplicado no jogo. Muitas ferramentas e técnicas 

têm sido desenvolvidas pela indústria de jogos a fim de registrar e extrair dados de uma sessão 

de jogo. Um método bem-sucedido é Game Analytics, que tem como objetivo compreender 

padrões de comportamento dos jogadores para melhorar a qualidade do jogo e a experiência do 

jogador. No entanto, os métodos atuais de Game Analytics não são suficientes para capturar as 

influências de causa e efeito, muitas vezes implícitas no jogo, que levaram ao resultado 

alcançado em uma sessão, permitindo entender e identificar elementos com mais profundidade.  

Em um trabalho anterior, propusemos uma nova abordagem baseada em proveniência para 

capturar estas relações causais, fornecendo a base necessária para utilizar informações de 

proveniência em análises de jogos. Este trabalho amplia nossa abordagem original, propondo e 

implementando um framework concreto para rastrear, gerenciar e visualizar dados de 

proveniência durante o jogo. Através deste trabalho, podemos exibir os dados de proveniência 

em um grafo interativo para análises exploratórias, permitindo que desenvolvedores e analistas 

entendam os eventos e os resultados obtidos. Também propomos técnicas de sumarização 

automática para reduzir os dados de proveniência sem perder informações agrupando eventos 

sequenciais semelhantes que, por si só, não foram suficientes para gerar mudanças significativa 

no jogo. Além disso, levamos a análise de proveniência para um novo nível, permitindo a 

análise de múltiplos gráficos de proveniência simultaneamente ao gerar um grafo de 

proveniência resumido para análise. Este gráfico resumido é útil para designers de jogos, 

podendo auxiliá-los na detecção de padrões de comportamentos de jogadores, identificar 

problemas não relatados pelos testadores, confirmar hipóteses formuladas pela equipe de 

desenvolvimento e até mesmo em questões de monetização do jogo. 

 

Palavras-Chave: proveniência, grafo, jogos, métricas, telemetria, analises, sumarização, 

visualização, diff, merge.  



 

 

ABSTRACT 

The outcome of a game session is derived from a series of events, decisions, and interactions 

that are made during the game. Understanding and extracting data from these sessions is 

important to analyze the gameplay, to understanding the player's profile, and even to validate 

the business model applied in the game. Many tools and techniques have been developed by 

the game industry to track and store data from a gaming session. One successful method is game 

analytics, which aims at understanding the player behavior patterns to improve game quality 

and enhance the player experience. However, the current methods for analytics are not 

sufficient to capture the underlying cause-and-effect influences that shape the outcome of a 

game session and, therefore, allowing deeper understanding and interpretation of the game 

features. In our previous work, we proposed a novel approach based on provenance to track and 

record these causal relationships, providing the necessary groundwork to use provenance 

information in game analytics. This work extends our original approach by providing a concrete 

framework for tracking, managing and visualizing provenance data during the game. Through 

this work, we can plot the provenance data in an interactive graph for exploratory analysis, 

allowing developers and analysts to better understand the events and outcomes. We also 

propose automatic summarization techniques to reduce the provenance data without losing 

information by clustering similar sequential events that alone were not enough to generate any 

meaningful change in the game. Furthermore, we take the provenance analysis to a new level, 

allowing the analysis of multiple provenance graphs simultaneously by generating a 

summarized provenance graph. This summarized graph is useful for game designers, to aid in 

the detection of patterns in player's behaviors, to identify issues not reported by game testers, 

to confirm hypotheses formulated by the development team, and even testing monetization 

issues. 

 

Keywords: provenance, graph, games, metrics, telemetry, analytics, summarization, 

visualization, diff, merge.  
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CHAPTER 1 – INTRODUCTION 

1.1 CONTEXT 

Methods for automatic telemetry of game sessions data have become an important 

component of game design and production in the last few years (EL-NASR; DRACHEN; 

CANOSSA, 2013). The collected data can be used for different purposes, such as behavior 

understanding and analysis (DRACHEN et al., 2012), bug detection (DRACHEN; CANOSSA, 

2009a; GAGNÉ; SEIF EL-NASR; SHAW, 2012), balancing the game experience 

(PEDERSEN; TOGELIUS; YANNAKAKIS, 2010), users classification (DRACHEN et al., 

2013), understanding common behaviors (WEBER et al., 2011), and even improving the 

monetization process (EL-NASR; DRACHEN; CANOSSA, 2013). In this sense, these 

collected data may help on increasing not only the game value but also the ARM (Acquisition, 

Retention, and Monetization), a valuable aspect of the nowadays digital entertainment business 

model. More recently, Machine Learning and Neural Network approaches are showing to be 

important methods for automatic game calibration and even runtime game content creation.  

While the analysis of collected game data can be challenging due to the huge amount of 

generated information, visualization techniques (KEIM, 2002) can be used as a powerful 

solution for exploring and understanding game fluxes1. Furthermore, visualization techniques 

allow for faster exploration of the data and provide a higher confidence in findings from 

exploratory analysis of the data (KEIM, 2002). Moreover, it is also useful when the designer is 

not familiar with the gathered data or has vague analysis goals (LIU et al., 2011). Therefore, 

game log visualization methods are gaining popularity among designers for understanding 

gameplay2 gathered information in the game industry (DRACHEN; SCHUBERT, 2013; 

WALLNER, 2013).  

A common visualization method is the heat map (DRACHEN; CANOSSA, 2009b), 

which uses colors in a two-dimensional map to reflect the density of certain variables in 

particular locations of the game. Recently, BioWare Inc. used heat maps to analyze common 

bug locations in SWTOR (ZOELLER, 2010), while Valve used heat maps to analyze 

                                                 

1 Game flux is the chronological order of all executed actions, events, and causal relationships that occurs during 

a game session. 

2 Gameplay is defined as “the total experience provided by a game’s structure and mechanics” (THOMPSON; 

BERBANK-GREEN; CUSWORTH, 2007). 
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multiplayer maps in Team Fortress 2 (AMBINDER, 2009). Meanwhile, Bungie and Microsoft 

used heat maps to determine common places where players died in Halo 3 (ROMERO, 2008; 

THOMPSON, 2007). The Game Analytics tool (WULFF; HANSEN; THURAU, 2017) of the 

Unity game engine (HIGGINS, 2017) and Unreal® also allows for visualizing game data as 

heat maps directly on the scene, identifying bottlenecks and hotspots, showing underused and 

overused areas of the game. Another approach similar to heat maps was proposed by 

Nascimento (2010), which renders trail lines in the game map to represent paths taken by 

characters in the environment. However, current methods for tracking and visualizing data do 

not consider the causal relationships (i.e., cause-and-effect) between the actions and events 

during a game session and need to be inferred by the game designer. 

1.2 MOTIVATION 

The aforementioned problems and challenges can be summarized into four main categories: 

• Determining causal relationships between actions and events; 

• Storing and displaying game session data; 

• Information overload; 

• Understanding the outcome. 

The conclusion of a game session derives from a series of decisions and actions made 

throughout the game. During a game session, the player faces many challenges that require 

making decisions and actions in order to overcome them. Common practices of telemetry data 

include collecting state changes and event data; State changes lacks contextual information and 

provides only an overview of the session. Meanwhile, event data provides more detailed and 

fine-grained information about what transpired during the game session. However, neither of 

these practices used by the industry take into consideration the causal relationships that 

occurred during the session. These cause-and-effect relationships between the actions and 

events are an important factor for determining the reasons that led to a certain outcome.  

Displaying game session data is also an issue in present times. An usual method to display 

game session data includes heat maps to show the density of data distributed throughout the 

different regions of the game. Other approaches use node-link diagrams (JUSTESEN et al., 

2017; LIU et al., 2011; MAHLMANN; DRACHEN, 2016; SIFA et al., 2016; WALLNER, 

2013) to represent states or the sequence of events. However, those approaches offer only basic 

visualization features for visual exploratory analysis with static views or limited interactable 

features to display the telemetry data. 
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Depending on the usage context, the amount of generated data can reach great sizes that 

affect negatively in the capability of analyzing it. Thus, the industry is always searching for 

more sampling strategies that can minimize the impact during analysis and new visualization 

methods that can scale with big data sets. 

Succeeding or failing a game is the final consequence of a series of decisions, planning, 

and execution of a strategy to reach the final goal. Thus, an important problem is trying to 

understand the reasons that led to certain outcomes and why the user failed to achieve the final 

goal while another player managed to reach the desirable goals with a similar strategy. 

Currently, the game industry uses artisanal methods to understand the aspects that could have 

led players to fail certain goals by data crunching, using metrics or heat maps to find probable 

causes. 

1.3 PROVENANCE 

In a previous work, we introduced the use of provenance to improve the learning process 

in the context of serious games. Provenance is well understood in the context of art or digital 

libraries, where it respectively refers to the documented history of an art object, or the 

documentation of processes in a digital object's life cycle (PREMIS WORKING GROUP, 

2005). The Open Provenance Model (OPM) (MOREAU et al., 2007) was created during the 

Provenance Challenge (MILES et al., 2010), which is a collocated event of IPAW. Shortly 

after, another provenance model was developed, named PROV (MOREAU; MISSIER, 2010), 

which can be viewed as the successor of OPM. Both models aim at bringing provenance 

concepts to digital data. 

Provenance can be used for many purposes, from understanding how the data was 

collected in order to use it, to determine the object’s ownership, and to decide if the information 

is trustworthy. Mainly, it is used to show the necessary steps to reproduce something by using 

an annotated causality graph, which is a directed acyclic graph enriched with annotations and 

is also known as provenance graph. According to Moreau et al. (2007), a provenance graph is 

the "record of a past or current execution, and not a description of something that could happen 

in the future". Similarly, the PROV model defines provenance as the “information about 

entities, activities, and people involved in producing a piece of data which can be used to form 

assessments about its quality, reliability or trustworthiness” (NIES et al., 2010).  

Three different vertices in the provenance graph can represent the following provenance 

information in PROV: Agents, Activities, and Entities. Entities represent physical or digital 
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objects like a document, the Web, or material objects. Activities represent the actions taken in 

order to change or interact with entities or agents. Lastly, an agent is a person, software, 

organization, or entities that have responsibilities. Furthermore, several agents can have 

responsibilities over the same activity and a single agent can have responsibilities over several 

activities. Agents can also act on behalf of other agents, representing their interests when they 

are unavailable. These relations are some of the existing provenance relationships and are 

represented by edges in the provenance graph. Since the provenance graph captures causal 

dependencies between elements, it can be summarized by means of transitive rules. 

Figure 1 illustrates an example of a provenance graph for the process of making a cake. 

Circles represent entities, squares are activities and the pentagons are agents. The entities in the 

graph, which are represented by circles, are the ingredients and materials used in the process. 

The agent is the cooker, which is responsible for executing the required activities to make the 

cake, which are mixing the ingredients, baking the cake batter and decorating the baked batter 

to produce the cake. The edges represent the causal relationships between the activities. 

 

Figure 1: Provenance graph example for baking a cake 

1.4 GOALS 

Given the aforementioned motivation, the aim of this research is to improve the 

understanding of the game flux, providing insights on how the game session progressed and the 

influences on the outcomes. Therefore, our research hypothesis is: 
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“Does the use of provenance in the field of games make it possible to understand the 

objectives achieved during gaming sessions?” 

In order to improve understanding of the obtained results from a game session, this work 

provides the means for tracking and storing the provenance data (DAVIDSON; FREIRE, 2008; 

MOREAU et al., 2007) while remaining game independent through a low-coupling solution for 

tracking game data and generating the provenance graph. Furthermore, we propose new 

provenance visualizations and new features for interactive graph manipulation for exploratory 

analysis. We also propose techniques for provenance summarization through similarity 

clustering to simplify provenance data. Lastly, we also propose a method for debugging that 

compares multiple provenance graphs to determine divergences that led to different outcomes. 

 As such, the main contributions of this thesis, considering the goal of supporting game 

designers during the analytics process, are: 

1. PinGU3: A framework for tracking and managing provenance data, with a 

concrete implementation of a Unity based component (PinG for Unity); 

2. Prov Viewer4: A provenance graph visualization tool for exploratory analysis; 

3. Automatic provenance summarization through neighbor similarity, 

implemented in Prov Viewer; 

4. Prov-DIFF: Provenance Graph Merge and Comparison, implemented in Prov 

Viewer. 

1.5 RESEARCH METHODOLOGY 

We defined five stages in this work in order to achieve our goals. The stages are: (1) 

problem characterization, (2) the conception and implementation of the concrete framework 

PinGU, (3) the conception and implementation of Prov Viewer, which is responsible for our 

provenance visualization techniques, (4) the conception and implementation for automatic 

provenance clustering, and (5) conception and implementation of a provenance merger and 

comparison method. Here, we present an overview of these stages: 

Problem characterization: this stage started in a previous work where we detected the 

lack of tracking causal relationships in known game telemetry approaches after analyzing 

                                                 

3 http://gems-uff.github.io/ping/ 

4 http://gems-uff.github.io/prov-viewer/ 
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popular works in the game telemetry and analytics field. With this in mind, our previous work 

(KOHWALTER; CLUA; MURTA, 2012) introduced the usage of digital provenance in games 

in order to detect these cause-and-effect relationships. The main goal of that work was to 

propose a conceptual framework, named Provenance in Games (PinG), which collects 

information during a game session and maps it to provenance terms, providing the means for a 

post-game analysis. As a proof of concept, we initially applied this conceptual framework to a 

serious game named SDM (KOHWALTER; CLUA; MURTA, 2011), which focuses on 

teaching Software Engineering processes. The provenance support in SDM allowed for a 

broader range of analysis by using collected game session provenance information to generate 

a provenance graph (KOHWALTER; CLUA; MURTA, 2013). Furthermore, we demonstrated 

in another work (KOHWALTER; CLUA; MURTA, 2014) that analyzing a game session with 

provenance provides better results, while also being faster, than analyzing the game without 

access to provenance data. 

  However, our Provenance in Games approach was still limited and in its earlier stages, 

providing only the idea along with the required groundwork in order to use provenance in Game 

Analytics. Furthermore, our initial visual analysis of the provenance graph was only through 

temporal information, ignoring spatial data when rendering the graph. This type of temporal 

visualization for the graph, while informative for a game like SDM that has a restricted space 

and lack spatial movement, might not be sufficient in a more generic set of game styles. 

Moreover, our initial structure for tracking and storing provenance information during a game 

session presented problems in scenarios with some games that had multiple characters due to 

the decentralized approach to store information. Therefore, it required an additional step to 

construct the graph from all tracked data. 

We also performed an initial evaluation with volunteers to determine if the provenance 

data and its causal relationships provided a better understanding of the game events over the 

game replay. The positive results of that evaluation allowed further research and study of using 

provenance in the games domain. Chapter 2 outlines the state of the art in Game Analytics and 

other relevant work. It presents existing usages of game session analysis, ranging from 

gameplay data logging to game analysis in the game industry. Meanwhile, Chapter 3 presents 

our previous work in this field, which introduced a novel approach based on provenance 

concepts in Game Analytics to provide richer data tracking for analysis. This chapter also 

presents our earlier evaluation results that inspired in the continuation of this research field. 
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Conception and implementation of the PinG framework: the problem characterization 

stage was fundamental for the conception of our framework because we noticed a lack in the 

literature about tracking causal relationships from game sessions and the positive impact they 

can have when trying to understand events and the reasons behind outcomes. Thus, we 

conceived a framework based on our initial conceptual framework in the following steps: (1) 

create a data structure to manage and store provenance information, (2) create a method to track 

events, and (3) create a method to detect causal relationships (i.e., cause-and-effect between 

actions and events). Chapter 4 presents our proposal of a concrete framework for provenance 

tracking, which vastly improves the previous conceptual framework to a low coupling solution. 

We demonstrate our provenance tracking framework with its instantiation for the Unity game 

engine and demonstrate its integration into four different Unity games throughout the chapter. 

Conception and implementation of Prov Viewer: tracking provenance data is only the 

first step. The richness of tracked provenance data requires the need to display the provenance 

data to be able to explore its wealth of knowledge about the game session and comprehend the 

relationships between actions and events. Thus, we took existing node-link representations for 

graphs and expanded it with numerous visualization features to allow designers to interact with 

the provenance graph to better understand the underlying causes. As a result, we created the 

provenance visualization tool Prov Viewer. Chapter 5 presents our advances in provenance 

visualization, which is a fundamental step for exploratory analysis of game data. This chapter 

also describes in detail our provenance visualization tool with all the proposed advances for 

provenance graph exploration and visualization. We present three detailed visualization case 

studies from two existing games and another simple analysis related to urban data domain. 

Conception and implementation for automatic provenance clustering: provenance 

data provides a vast wealth of data. The amount of tracked data can overwhelm the developer 

with the sheer detail of the events that transpired during a game session. Thus, we began 

exploring methods to reduce the overall provenance graph without losing the richness of 

information contained in the data. As such, we developed techniques to summarize the 

provenance graph by clustering sequence of events that alone did not contribute enough to the 

story. We evaluated our approach with another popular clustering algorithm through two 

experiments to answer the following research question: RQ: Which type of similarity 

summarization is an effective method for reducing the information to be analyzed? The results 

from both experiments showed that one of our proposed algorithms was the most effective 

similarity summarization approach. Chapter 6 presents our work to deal with information 
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overload in provenance graphs. We describe our approach to summarize the provenance graph 

by clustering sequential events in the graph that alone did not contribute enough to cause a state 

change. We also provide two detailed evaluations of our approach to determine its 

effectiveness.  

Conception and implementation of a provenance debugger: up to this point we are 

only focused on analyzing a single provenance graph at a time. However, we know the need to 

be able to see how multiple players fared in the game and compare each performance to 

understand why some paths lead to failure while others succeeded in their goals. Thus, we 

developed a provenance graph merger and comparison methods that allows combining multiple 

provenance graphs together into a single unified graph for analysis. The comparison allows the 

designer to detect sections of the graph that are different from other graphs, which can be used 

to find out the dissimilarities and the reasons behind each outcome. When used outside the 

games domain, these features can be used to debug experimental trials to determine why a 

specific trial failed while another had positive results. Chapter 7 describes our approach to 

analyze and compare multiple provenance graphs. Our approach creates a unified provenance 

graph through graph merges and allows for provenance comparisons to find the divergences in 

the graphs that led to different outcomes. We also provide an evaluation to measure the accuracy 

of our comparison approach to detect the sections of the graph that might have led to negative 

outcomes.  

1.6 PUBLICATIONS 

The research developed during this thesis was published in conferences from Games and 

Software Engineering, including our initial proposal that originated during the Masters in 2014. 

We also published two journal articles. Our publications are:  

1. KOHWALTER, Troy; CLUA, Esteban; MURTA, Leonardo. Reinforcing Software 

Engineering Learning through Provenance. 2014 Brazilian Symposium on Software 

Engineering (SBES), p. 131–140, set. 2014. 

2. KOHWALTER, TROY C.; Oliveira Thiago; Freire Juliana; CLUA, ESTEBAN W. 

G.; MURTA, LEONARDO G. P. Prov Viewer: a graph-based visualization tool for 

interactive exploration of provenance data. In: International Provenance and 

Annotation Workshop (IPAW), 2016, v. 9672. p. 71-82. 

3. KOHWALTER, TROY C.; MURTA, LEONARDO G. P.; CLUA, ESTEBAN W. G. 

Capturing Game Telemetry with Provenance. In: Brazilian Symposium on Computer 
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Games and Digital Entertainment (SBGames), 2017. XVI Simpósio Brasileiro de Jogos 

e Entretenimento Digital, 2017. Best paper award in the computer track. 

4. KOHWALTER, T. C.; MURTA, LEONARDO G. P.; CLUA, ESTEBAN W. G. 

Filtering Irrelevant Sequential Data out of Game Session Telemetry though Similarity 

Collapses. Future Generation Computer Systems - The International Journal of 

eScience, 2018. 

5. KOHWALTER, T. C.; MURTA, LEONARDO G. P.; CLUA, ESTEBAN W. G. 

Understanding Game Sessions through Provenance. Entertainment Computing, 2018. 

Furthermore, there were two more collaboration works based on our Provenance in 

Games approach: 

1. JACOB, Lidson; KOHWALTER, Troy; CLUA, Esteban; DE OLIVEIRA, D.; 

MACHADO, A. A Non-intrusive Approach for 2D Platform Game Design Analysis 

Based on Provenance Data Extracted from Game Streaming. 2014 Brazilian Symposium 

on Computer Games and Digital Entertainment (SBGAMES), p. 41–50, nov. 2014. 

2. JACOB, Lidson B.; KOHWALTER, Troy; MACHADO, Alex; CLUA, Esteban W. G. 

A Game Design Analytic System Based on Data Provenance. Entertainment Computing 

– ICEC 2013, Lecture Notes in Computer Science. p. 114–119, 2013. Accessed: 5 fev. 

2015. 

In addition to these works, we presented in the ICSE 2017 Ph.D. and Young Researchers 

Warm Up Symposium a preliminary proposal for using provenance data to better understand the 

game session.  



28 

 

CHAPTER 2 – GAME ANALYTICS 

2.1 INTRODUCTION 

During the earlier stages of the game industry, game development process lacked any 

pressing need for player data gathering and monitoring to better gain knowledge about users 

behavior (HULLETT et al., 2011). However, with the increasing popularity and demand for 

quality games and an increasingly aggressive market, the industry had to turn their eyes on 

finding ways to discover how their customers (players) are reacting to their games. This 

attention is focused both in a market point of view (sales) and user experiences, which is one 

of the most important objectives for game developers and is directly related to the player 

retention rate5 (WEBER et al., 2011). Thus, the game industry began to adopt methods for 

gathering game data in order to understand better their clients. Since then, game data gathering 

gained attention during the game development stage, resulting in a widespread adoption of 

business intelligence practices for obtaining quantitative measures of user-oriented game data 

(EL-NASR; DRACHEN; CANOSSA, 2013). This change of paradigm of incorporating 

analytics has brought numerous benefits in the decision-making progress during the game 

development and became well known and accepted by the game developers. 

As such, game analytics became an emerging field that is very popular and important for 

business intelligence in the game industry. However, it lacks standardization of key aspects and 

strategies. Nevertheless, game analytics provides a wealth of information for game designers, 

including feedback about design and gameplay mechanics, player experience, production 

performance, and even market reaction. Thus, the main goal of game analytics is to support the 

decision making the process at operational, tactical, and strategic levels for game development 

and is the main source of business intelligence for the game industry (EL-NASR; DRACHEN; 

CANOSSA, 2013). 

From the many concepts that permeate game analytics, the three most common ones are 

telemetry, metrics, and data mining. The first concept is used to gather and store game data 

while the game is being played for future analysis. The second concept is used to map the raw 

telemetry data in measurable quantities for rudimentary analysis. Finally, the game data-mining 

                                                 

5 "Player retention rate" refers to the percentage of people who played the game in month 1 and are still playing at 

month 2. 
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concept is used to find the wealth of hidden information inside the stored telemetry data, 

enabling more complex types of analyses.  

Thus, this chapter presents the fundamental concepts for understanding the proposed 

method and concludes with known research approaches by the academia related to capturing 

game flux data. These related works can be classified in two categories: (1) logging strategies, 

to capture and record contextual information, and (2) visualizations strategies, for data mining 

over the logged game flux data, which represent state transitions during a game or execution of 

actions. 

This chapter is organized as follows: Section 2.2 describes the benefits brought by game 

analytics, while sections 2.3, 2.4, and 2.5 present the concepts of game telemetry, game metrics, 

and game data mining, respectively, which are integral parts of game analytics. Section 2.6 

presents popular research works that are related to game analytics and Section 2.7 provides a 

comparison between approaches. Lastly, Section 2.8 raises the final considerations of this 

chapter. 

2.2 BENEFITS OF GAME ANALYTICS 

Currently, game analytics are used for (1) understanding how the game community 

behavior with the game is, (2) improving gameplay, (3) detecting gameplay problems, and (4) 

predicting player behavior.  

Initially, game designers used statistical techniques to gather player data in order to 

understand various aspects of their customers (i.e., players). For example, DeRosa (2007) 

described how BioWare used statistics during play testing to determine where players spent 

their time and which special powers were used. Other researchers also tried to analyze 

movements during battles (HOOBLER; HUMPHREYS; AGRAWALA, 2004) and to discover 

how the players are spending their time in the game (DEROSA, 2007; DRACHEN et al., 2012; 

MOURA; EL-NASR; SHAW, 2011) and how they are playing it (DRACHEN; CANOSSA, 

2009a). Game analytics is also used to understand how much time the community spend playing 

the game (WILLIAMS et al., 2009). 

Another benefit of using game analytics is using tracked data to improve the gameplay 

aspects of the game by aiding during game validation and refinement (FULLERTON; SWAIN, 

2008) and for developing better AI-controlled opponents or changing the game to adapt to 

player behavior (MISSURA; GÄRTNER, 2009; PEDERSEN; TOGELIUS; YANNAKAKIS, 

2010; YANNAKAKIS; HALLAM, 2008). It is also useful for identifying gameplay elements 
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that are responsible for maintaining active players (WEBER et al., 2011, p. 11) and to develop 

user profiles that can be used by game developers to improve their games (DRACHEN et al., 

2013, 2016; DRACHEN; CANOSSA, 2011; DRACHEN; CANOSSA; YANNAKAKIS, 

2009).  These type of information can also be used for marketing analysis, figuring out how to 

convert nonpaying players in a free-to-play game to paying customers (KING; CHEN, 2009). 

Another usage for game analytics is detecting weak spots in the game design 

(DRACHEN; CANOSSA, 2009a; GAGNÉ; SEIF EL-NASR; SHAW, 2012; THOMPSON, 

2007). Moreover, a similar usage is to discover illicit methods used by cheaters and gold 

farmers, as well as the people that are exploiting it, in an MMORPG game (MELLON, 2009; 

THAWONMAS; KASHIFUJI; CHEN, 2008). 

Recently, game analytics also began to be used for predicting information about players, 

such as when they will stop playing the game (HADIJI et al., 2014; MAHLMANN et al., 2010; 

SIFA et al., 2016; XIE et al., 2014) and their in-game behavior and actions while playing the 

game (ESMAEILI; WOODS, 2016; WEBER; MATEAS, 2009). It is also being used for 

characterizing and predicting player behavior as the game evolves over time (MAHLMANN; 

DRACHEN, 2016; PIRKER et al., 2016; SIFA; BAUCKHAGE; DRACHEN, 2014), for 

mining behavioral data (BAUCKHAGE; DRACHEN; SIFA, 2015), and for social network 

analysis (LOSUP et al., 2014; PIRKER et al., 2018). 

2.3 GAME TELEMETRY 

Game telemetry is the automated communication process that collects data from remote 

clients (player's computer) and transmits this data to the game server (EL-NASR; DRACHEN; 

CANOSSA, 2013). This game data can be quantitative data about how players interact with the 

game. This tracked data, which is collected over the distance by game telemetry, can be related 

to game development, game research, remote monitoring and game server analysis, and player 

behavior.  

In essence, game telemetry data is raw data about how the player interacts with the game 

that was derived remotely from a game execution. In general, these data represent attributes 

from game objects (e.g., characters and items), such as the player's location in the map or 

damage values. This behavior data is normally collected by an embedded code component in 

the game that transmits the data to a specialized server for storage. However, there are other 

types of data that can be gathered by telemetry, such as data related to server load performance 

or network traffic. 
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Thus, Game telemetry is a very powerful tool to be used during game development, 

especially for tuning games, QA, testing, and finding elements in the game that need to be 

calibrated (ISBISTER; SCHAFFER, 2008). However, in order to make it useful and effective, 

it is necessary to correctly integrate it into the game and implement good strategies for data 

gathering. These strategies aim at minimizing the gathering of useless information that 

compromises the analysis process either by hindering it with too much information or by simply 

not recording unnecessary data. 

2.4 GAME METRICS 

With the advance of the game industry and its need to improve their games to better 

satisfy their customers (i.e., players), the application of game telemetry became very popular 

during the development process. However, telemetry is only responsible for gathering game 

data. In order to analyze and understand the data, it is necessary to structure and describe the 

raw data through metrics. Metrics has been around for a long time and game metrics is derived 

from other fields, such as software engineering (EL-NASR; DRACHEN; CANOSSA, 2013). 

However, the increased need for telemetry, and consequently game metrics, expanded their 

application and its interest rapidly grew in the past few years in the game industry (EL-NASR; 

DRACHEN; CANOSSA, 2013). 

Similar to other applications of metrics, game metrics are measures of data derived from 

gameplay information, such as quantitative measures of attributes from game objects. The most 

common source of game metrics comes from player behaviors, which is recorded by game 

telemetry as raw data. This raw data gathered from telemetry is transformed into measurable 

quantities, such as total playtime, death-ratio, daily active users in the game, and a number of 

kills during a game session. However, it is not limited to the player behavior in the game. Game 

metrics can also be used to measure the number of sales for a particular game, how many game 

items or units were sold on the first week, and the number of complaints made either by players 

or by employees in the last month. It can also be more related to the software development point 

of view, such as task completion rates and server or client hardware performance. These are all 

considered game metrics, even if they are related to Business Intelligent (RUD, 2009) because 

they all share a common ground: they relate to some aspect of games, including the 

development process. Currently, game metrics are categorized into three different types 

(MELLON, 2009): Player, Performance, and Process metrics.  
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The Player metrics measures what players are doing throughout the game session. This 

type of metric is responsible for collecting data related to player statistics, such as the frequency 

of items used by players, their attribute points allocation, the total time taken to finish a quest, 

and which quests they prefer to play, among many other possibilities. Overall, this metric is 

used to make the game more fun or for improving gameplay. 

While Player metrics are concerned with data related to how users play the game, the 

Performance metrics are related to technical and software infrastructure behind the game. The 

Quality Assurance (QA) teams heavily use this metric in order to monitor the game's processes 

to ensure quality, such as server stability and the frame rate on the game client. Furthermore, 

this metric is derived from traditional software engineering performance and QA techniques. 

The last type is the Process metrics, which focus on the process of developing games, 

monitoring, and managing the development process. This metric is also based on common 

strategies used outside the games domain, such as those present in software engineering. 

2.5 GAME DATA MINING 

The increasing need by the game industry for game analytics during development, and 

later for monitoring online games, has the side effect of increasing the amount of gathered game 

data, as well as data's complexity. This gathered data, which is collected during a game, 

provides a wealth of detailed information about player behavior from multiple players. 

However, this dataset increase requires efficient analysis methods that must be capable of 

scaling with the dataset size, while still providing easy and readable data results for game 

developers. This field of research is called Game Data Mining, which deals with the challenges 

of providing to developers and designers insights from game data collected via game telemetry 

(EL-NASR; DRACHEN; CANOSSA, 2013). 

The wealth of hidden information in the game telemetry is enormous. However, they can 

be difficult to discover without proper data mining, an expert professional analysis for the game, 

or adequate data visualization. This led to tracking the majority of game data by game telemetry 

and only logging and storing it, waiting for proper analysis methods (EL-NASR; DRACHEN; 

CANOSSA, 2013). Thus the challenge the game industry faces when analyzing telemetry data 

can be associated with the general challenge of working with Big Data (EL-NASR; 

DRACHEN; CANOSSA, 2013). Simply gathering information and populating databases is not 

enough to help game developers in their decision-making process. 
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Therefore, deciding how to employ the game telemetry in a game is not a trivial task 

(KIM et al., 2008b) since it is necessary to decide which data to record, how it can be used for 

analysis, and how it will be transformed from its original raw form to actual knowledge that is 

useful for the developers. Recently, new methods have been proposed to assist the game data 

analysts and decision makers to find hidden gems inside the logged game data (BAUCKHAGE; 

DRACHEN; SIFA, 2015), predicting player retention rate (SIFA et al., 2016) and outcomes 

(MAHLMANN; DRACHEN, 2016), supporting making better decisions and fine-tuning their 

games (EL-NASR; DRACHEN; CANOSSA, 2013), and monetization aspects (SIFA et al., 

2015). Furthermore, the neural networks, deep learning, and machine learning in general are a 

recent tendency in games for analysis (PARK et al., 2017), knowledge discovery (BROWN et 

al., 2017), and to imitate humans (JUSTESEN et al., 2017). These methods are based on Visual 

Data Mining and have become a promising solution for exploring and understanding game 

fluxes. The following subsection explains the concept of Visual Data Mining, followed by 

known approaches that use this type of analysis. 

2.5.1 VISUAL DATA MINING 

Visual Data Mining presents the tracked game data in some form of visual 

representation to allow developers and designers to quickly scan through a huge amount of 

tracked data visually in order to extract knowledge, gain insights, draw conclusions, and directly 

interact with the data. Visual Data Mining is also useful when the designer is not familiar with 

the gathered data or has vague analysis goals (LIU et al., 2011). This type of analysis is based 

on the premise that a person can recognize patterns better than a computer algorithm in 

graphical data. Therefore, Visual Data Mining is usually used for exploratory analysis of the 

data. It can be seen as a hypothesis generation process and is gaining popularity among 

designers for understanding gameplay data (WALLNER, 2013). 

Figure 2 illustrates a common example of Visual Data Mining through heat maps in the 

Unreal Engine to show the locations on the map with kill events by using a specific weapon. 

This visualization gives the idea of map coverage by using colors in the heat map that range 

from purple (almost no activity) to red (highest activity), allowing designers to quickly identify 

the "hot spots" in their game. The following subsection details more types of analytics that are 

based on spatial information and uses the Visual Data Mining approach. 
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2.5.2 SPATIAL DATA ANALYSIS 

Spatial data analysis is based on the Visual Data Mining approach. It aims at discovering 

knowledge by extracting patterns through visual representations of the tracked data, taking into 

consideration spatial and temporal information. This type of analytics is important because 

temporal aspects of player behavior are vital for game progression analysis (DRACHEN; 

CANOSSA; YANNAKAKIS, 2009). However, detecting patterns considering spatial and 

temporal data is often more complex, requiring specialized methods to explicitly consider 

spatial and temporal information in addition to others more commonly information, such as 

player attributes. Due to its increasing importance in game analytics, Drachen and Schubert 

(2013) presented a survey of relevant works on spatial analysis, classifying them in four groups: 

univariate and bivariate analysis, multivariate analysis, trajectory analysis, and behavioral 

analysis. 

The first group, which is univariate and bivariate visualizations, represents the most 

common techniques used by the game industry and academia (DEMERS, 2008; DRACHEN; 

 

Figure 2: A heat map representing shotgun kills on Gears of Wars 2. Source: Schoenblum (2010) 
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CANOSSA, 2011; HOOBLER; HUMPHREYS; AGRAWALA, 2004; KIM et al., 2008b). 

These types of visualizations are based on the evaluation of one or two variables from the 

telemetry data, providing an easy to read and intuitive interpretation of the data distribution. 

Examples of this type of spatial analysis include the aforementioned heat map and resource 

distribution in a game map. Developers internally use this type of information to evaluate 

designs. However, the player community can also use them for guidance. 

The second group, defined as multivariate, enables developers to evaluate how multiple 

attributes or variables interact in the game (DRACHEN; CANOSSA, 2011). This analysis can 

also be achieved by combining two or more visualizations of the first group. The main goal of 

this type of analysis is to visualize the relationship between multiple features in the same region 

of the game. For example, analyzing locations where players died combined with weapons kills, 

filtering these locations by a specific weapon. Another example is combining the player 

orientation with death events, revealing where the player was facing when he was killed. 

 The third group is the trajectory analysis, which describes the movements of game 

objects during a specific period of time (BAUCKHAGE et al., 2014; MILLER; CROWCROFT, 

2009; PAO; CHEN; CHANG, 2010), such as the player navigation process through a game 

level. This type of analysis is useful for understanding the player's actual game experience, 

examining group behavior, studying tactics adopted by players, and locating illegal actions or 

behaviors, such as using a program to automate player actions in online games.  

The fourth group is the behavioral analysis, which represents various methods used to 

identify behavior patterns or to classify players into groups or profiles. This type of analysis 

tries to identify patterns by examining the successive sequence of actions that are executed in 

order to achieve a certain goal. More importantly, this analysis also considers the context when 

these actions were executed because different situations can lead to different types of behavior. 

For example, a wounded player that has low health will try to get a health restoration item while 

another player with full health will tend to skip it and save for a later moment when he might 

need.  

2.6 STRUCTURED LOGGING AND ANALYSIS TECHNIQUES 

This section describes in more detail some well-known approaches proposed by the 

academia and the game industry that are related to game session analysis, outlining techniques 

for game telemetry and data visualizations. The criterion used for selecting the approaches is 

similar to snowballing sample (GOODMAN, 1961). The sampling procedure starts with a finite 
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individual population as seed. Each seed in the sample is asked to name different individuals in 

the population. These newly named individuals, who form the second stage, are asked to name 

more individuals, forming the third stage. This process runs recursively until no new individual 

is named.  

For the seed, we used Play-Graph (WALLNER, 2013), a recent research that displays 

gameplay data by using graphs. From the seed, we obtained another graph based visualization 

(WALLNER; KRIGLSTEIN, 2012) and an approach that combines behavioral and contextual 

data visualization (KIM et al., 2008b). From these, we selected another approach for 

understanding player behavior (DIXIT; YOUNGBLOOD, 2008), however we do not describe 

it in this chapter because it focuses only on visual representations of movement behavior (e.g., 

walking, jumping, and pirouettes) to overcome obstacles in the environment and ignores 

interactions and all other types of game data, which is the opposite of what we want. 

Nevertheless, from that approach, we selected the last one, which proposes a framework for 

gameplay data logging (JOSLIN; BROWN; DRENNAN, 2007). 

2.6.1 GAMEPLAY VISUALIZATION MANIFESTO 

Joslin (2007) proposed the Gameplay Visualization Manifesto (GVM), which is a 

framework for gameplay data logging that uncovers gameplay events by attaching logging 

methods in game objects responsible for generating relevant events during the game. The 

logging method gathers information according to an event model, describing which attributes 

and information are logged for each event type. For example, interaction events log information 

related to the identification of the objects in the interaction. 

The event model is the basis for a game data logging framework. It encapsulates the 

information that is desired by users and classifies the events into three groups: immersion, quest, 

and social. The immersion group represents events related to increasing the player’s sensation 

of being involved in the game flux. The quest group represents events related to quest creation, 

execution, and analysis. Lastly, the social group represents events related to social factors in 

the game, such as group meeting or interaction with other characters.  

Aside from classifying events in groups, they are also categorized into three different 

types: time events, interaction events, and emergent events. The time type represents events 

that are logged at predefined time intervals. Interaction type represents events related to 

interactions with other game objects and is parameterized by frequency, such as logging the 

attack event every third strike. The emergent type represents events that occur from internal 
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state changes, such as dying from loss of health. With this event classification, the information 

to be logged can be customized for each group and type. Figure 3 illustrates GVM's framework 

for logging data, showing the specification system, which configures the data to be captured, 

and the gameplay data viewer, which allows designers to analyze the game log data collected 

during gameplay. 

The data logging framework has four different log specification interfaces: In-situ, 

Aggregate, Programmer, and Player. The in-situ interface is an in-game interface to display the 

event log, allowing designers to log events via the game interface as they occur. The aggregate 

interface summaries logged information by using graphics to facilitate the tracking of data-

streams. The programmer interface allows the programmer to specify data logging from the 

source code inside the programming IDE. The programmer interface is mainly used to log game 

data for debugging purposes. Lastly, the player interface allows for players to provide feedback 

on various aspects of the game by reporting their experience. This interface is integrated with 

the game and periodically asks questions to the testers about their impressions on several 

aspects of the game, adding subjective impressions of fun experienced by the player in the log 

for future analysis. 

 

Figure 3: GVM logging architecture. Source: Joslin et al. (2007). 
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This data-logging framework was mainly designed for online games in order to increase 

efficiency in gameplay verification process, reduce testing expenses, and improve quality 

assurance. The framework logs game data by using event models designed for logging, while 

also providing some basic data-stream visualization.  

However, the main application is for collecting game metrics, such as player deaths, 

position, time spent in available certain actions (e.g., crafting and fighting), item usage (e.g., 

equipment), actions performed, and player enjoyment. Therefore, GVM does not track cause-

and-effect relationships. It tracks only the executed actions along with their timestamp and 

location, in addition to character attributes and equipment.  

Even though it tracks spatial information (i.e., coordinates), it is only used to filter data 

by regions or localized sectors in the game (e.g., show executed actions in the forest region of 

the map). There is no graphical representation of tracked data in the actual game scene. Thus, 

designers do not have an overview of the entire scene and are required to query specific sections 

to verify if there is some useful information. Furthermore, their log visualization is similar to 

spreadsheets with lines representing actions executed by each player, respecting their 

chronological order of execution. However, this approach does not combine these "lines" in 

order to create a unified visualization to extract patterns or offer an overview of the general 

behavior of players. Moreover, GVM has no technique to aid in the visualization and analysis 

of tracked data, especially when dealing with huge amounts of data. Due to these problems, 

GVM appears to be designed for a small-scale deployment, such as during the play testing phase 

of development. 

2.6.2 T.R.U.E. 

The Tracking Real-Time User Experience (TRUE) approach (KIM et al., 2008b) is 

another logging approach that combines human-computer interaction (HCI) instrumentation, 

which collects user initiated events6 (UIEs) and logs file analysis techniques in order to 

automatically record user interactions with games. While the focus of HCI instrumentation is 

to collect the frequency count of events, TRUE logs the sequences of events along with their 

timestamps. These sequences of events are important in order to understand user behavior. 

While typical HCI instrumentation logs how many times the user accessed the Help function 

                                                 

6 According to KIM (2008b), UIEs are “events that occurred when the user interacted with the system”. 
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from the game, TRUE logs the previous sequence of events that led the user to use the Help 

function for each occasion. 

Another key aspect of the TRUE approach is the type of collected information. Instead 

of recording generic low-level events, such as mouse coordinates and function calls, TRUE 

collects event sets containing both the event as well as contextual information from the event. 

For example, in a game where the player died, TRUE records the player’s death, the equipment 

the player was using, the game’s difficulty setting set by the player, the enemy that killed the 

player (if that was the case), and other useful elements that might determine the cause of the 

player’s death. 

TRUE architecture is illustrated in Figure 4. The data capture occurs at runtime, while 

the user is playing the game. The data capture collects events and their contextual information, 

along with timestamps indicating when they occurred. At the same time, TRUE captures digital 

videos of user’s screen, which show her interaction with the game. The video is automatically 

synchronized with the event’s timestamps and indexed, allowing jumping to particular events, 

relevant to the analysis. This link between event and video was stated by Kim (2008b) to be an 

effective approach for understanding the users’ behaviors and how they interact with the game. 

The last data capture from TRUE is in the form of a survey available to the user after finishing 

her interaction with the game. The survey is aimed at capturing information that might have 

been missed by the tracked UIEs. 

 

Figure 4: The TRUE architecture. Source: KIM et al. (2008b). 

For example, when testing a game using the TRUE approach, a brief survey is displayed 

to the player asking whether she enjoyed the game and how difficult it was. This type of survey 

is used to avoid making wrong inferences about the game. For example, failing in a game 
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session may sometimes be a motivating part of the fun, while winning at the first attempt might 

indicate the game was too easy for the player.  

The captured data is available to the analyst for analysis using visual representations in 

order to be easier to spot points of interest. The data visualization varies with the type of 

analysis. Figure 5 shows different examples of data visualization, customized by designers for 

the application. In the figure, there is a graph showing the average times of player death for 

each mission in a game (a) and which race players selected the most across time (b). Another 

possible visualization is by using an in-game map to display death locations in a Real Time 

Strategy game (c).  

The TRUE approach is focused on the videogame industry and is designed to detect 

issues and understand the causes in the same way a usability test does. It also incorporates 

attitudinal behavior by using surveys to aid in the understanding of the player’s emotional 

experience. Most of the tracked data is displayed by metrics (e.g., death rates, item usage) 

through statistical graphics and representations.  

 

Figure 5: Data visualization from TRUE. Source: KIM et al. (2008b). 
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The TRUE approach has another type of data visualization, which is based on its ability 

to tracks precise coordinates in the game world when an action or event occurs. However, the 

visual representation of the data, which is based on the tracked spatial information, is through 

points on the map. This visualization is very similar to a heat map but without grouping the 

information by density. In fact, TRUE does not offer any type of information clustering when 

dealing with big data sets besides the aforementioned statistical information. Furthermore, the 

spatial visualization illustrates only facts, without showing any additional information related 

to what caused these reported facts. For example, it displays death locations on a map but does 

not inform who or what killed the person in the same visualization. 

Even though TRUE also track contextual information along with the event or action, the 

designer still needs to infer the reasons behind that led to an outcome. This occurs because this 

contextual information is nothing more than extra attributes that were tracked during the 

execution of the action (e.g., equipment used) and not actual relationships between events. In 

fact, this inference mostly occurs due to the video recorded in the game session. Thus, when 

the designers find indicators that represent issues, he digs through the tracked data and watches 

the video to try to understand the issue and form recommendations to solve the problem. 

2.6.3 PLAYTRACER 

Playtracer (ANDERSEN et al., 2010; LIU et al., 2011) is a visual tool designed to 

illustrate how groups of players move through the game space. Playtracer can be used for 

behavior analysis in games with the concept of state transitions. The transitions in the game are 

represented as different states by applying Classical Multidimensional Scaling (CMDS) (COX; 

COX, 2010) to project the game space in two dimensions. Thus, Playtracer aids the designer 

by showing common pathways and alternatives that players used to succeed or fail in their tasks, 

identifying pitfalls and anomalies in the scene. It also tracks how players progressed through 

the levels of the game. 

In this system, a play trace is a path that each player took in the game, scaled to two 

dimensions by using CMDS. The transformation places similar states close to each other while 

dissimilar states are placed apart. Thus, CMDS allows for easy similarity identification between 

states that were visited by players. The distance between states is calculated by following 

specific metrics that are customized by the game. Distance metrics are also used to analyze 

different features of the game. For example, a distance metric with a component to compare 

how many steps are necessary to reach a goal state will cluster goal states while placing states 
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that are difficult to reach the goal far away. Thus, the designer can identify players that are not 

making progress in their goals and possibly investigate the issue. 

The input for Playtracer is a list of all states that the players visited during the game and 

a distance metric to calculate the distance between states. The output is an oriented graph where 

the vertices represent the game states and the directed edges are the movements the player did 

to change from one state to another. Furthermore, the size of the vertex is proportional to the 

number of players that reached that state. Thus, the size of the vertex can be used to identify 

which states were more visited by players.  

Moreover, the graph utilizes color to distinguish displayed information. A yellow state 

is the game’s initial state and a green state represents the goal. Blue edges represent movements 

made by players who won the game and red edges are for those who lost. The shades between 

red and blue represent the probability for the player who reached the state to successfully 

complete the game. Lastly, cycles in the graph represent failed attempts from the players, where 

they made a move that returned to a previous state. 

As can be observed in Figure 6 most players moved from the initial state in yellow, at 

the center of the figure, to a purple state where most of the difficulties began, leading to 

movements to several different states further away from their goals. The figure also shows that 

the goal state, in green, could only be accessed by two different game states. 

 

Figure 6: Playtracer state visualization. Source: LIU et al. (2011). 

The main focus of the Playtracer is to display aggregated user behavior in a graph in 

order to aid in understanding common strategies adopted by players and to identify points of 
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confusion. To solve problems related to the game with many states, Playtracer uses features to 

aggressively cluster states together to make a cleaner visualization. Another feature is to make 

equivalent states to be represented by the same state, reducing the number of states displayed 

on the screen. Lastly, it is possible to filter the graph (e.g., winners from losers) to visually 

compare their respective behaviors in order to identify similarities.  

A drawback is that Playtracer does not take into consideration temporal information, 

thus they cluster similar states despite the fact that they could have occurred at very different 

moments of the game. The temporal information would allow stating the order of events in the 

game, shedding more light on the player’s behavior. For example, Playtracer does not say when 

each state was visited by each player or the order they were visited, but only that they visited it 

while playing the game. Moreover, Playtracer does not use spatial information for analysis, 

disregarding the graph visualization in an actual map or a visual representation of the game. 

Thus, game designers need to guess or interpret the information in order to infer where it 

actually happed in the scene. Furthermore, Playtracer only states the facts (i.e., game states) 

that occurred in the game sessions without providing information that might have caused the 

change of state besides the player's movement. 

2.6.4 PLAY-GRAPH 

Another graph-based approach is the Play-Graph (WALLNER, 2013; WALLNER; 

KRIGLSTEIN, 2012), which is a recent concept to formally describe and visualize gameplay 

data by using different graph visualizations to illustrate multiple variables and their 

interrelations along with the temporal progression of players. The gameplay analysis of Play-

Graph illustrates the sequence of states visited by players based on their actions over the course 

of the game. In the Play-Graph context, a game state describes a certain configuration of the 

game or an entity, while actions consist on player interactions within the game, such as 

shooting, jumping, or using an object. These actions are responsible for changing the current 

game state due to influences generated in the current state.   

In this concept, a game is viewed as a finite state machine with a finite number of states 

and transitions between them. Thus, the state machine can be represented by an oriented graph 

with each vertex representing a state from the game and edges representing actions. States are 

composed of a set of attributes from the game. Actions are triggered by players at a specific 

point in the game and can be of different types or have a specific duration. For example, possible 

types of actions are: running, walking, jumping, and interacting with an object. Furthermore, 
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actions (edges) linked to states (vertices) can have labels to provide additional information to 

differentiate from other states and actions. 

The Play-Graph visualization is composed of node-link diagrams. Nodes, or vertices, 

in the graph represent game states. The size of each node is directly related to the number of 

players that visited that state at any time during the game. Moreover, multiple edges from the 

same source to the same target are merged together to create a meta-edge. The thickness of each 

meta-edge is proportional to the number of edges that composes the meta-edge. It is possible to 

have two meta-edges between two nodes due to the nature of the directed graph, where each 

meta-edge represents a different direction. Furthermore, each node and edge type in the graph 

is distinguishable by colors. The colors are chosen by the user in order to adapt the visualization 

to the user’s needs. Lastly, icons in the graph represent players in the game. The icon color is 

directly related to specific attributes of the player (gender, age, character class). 

Figure 7 illustrates the basic representations from the graph, showing player transitions 

from one state to another. Basic elements from the graph include nodes (a), which represent 

states, directed edges (b) representing player’s actions, meta-edges (c), and the player icon (d), 

representing the time-dependent location of individual players. The red meta-edge near the 

center of the graph is composed of two edges, “mirror” (blue edge) and “rotate” (red edge), as 

can be seen by the window with the blue and red bars. This window also details the meta-edge 

 

Figure 7: Basic elements from the Play-Graph. Source: WALLNER (2013). 
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composition ratio: 28.25% of the meta-edge’s thickness is due to the number of “mirror” edges 

in it and 71.15% is from the edge “rotate”. Meanwhile, Figure 8 illustrates another graph 

visualization from Play-Graph that uses spatial information to position state nodes in a game 

map. 

 

Figure 8: Play-Graph spatial visualization. Source: WALLNER (2013). 

Viewing gameplay data by graphs allows the usage of graph theory concepts to study and 

understand player behaviors. The displayed graph from Play-Graph illustrates the player’s 

progression in the game, showing actions the player made that change states. Unlike Playtracer, 

this approach uses temporal information to distinguish states, allowing for observations related 

to time-dependable events. However, temporal information is only used for player icons and 

not the nodes representing states. Play-Graph also allows comparing two different graphs from 

the game context, such as two versions of the same game, one before and after adding new 

features. This comparison support highlight areas where the player activity has increased or 

decreased with the new features. Furthermore, Play-Graph can also use spatial information to 

render the graph over the game scene and cluster nearby nodes to form a single node that 

provides statistical information in the scene's region (e.g., player race distribution at that 

location), as illustrated by the colored nodes in Figure 8. However, the clustering algorithm 

disregards temporal information, since this information is not in the node (only in player icons), 

and indiscriminately clusters similar states that are spatially close. The many colors in the node 

from Figure 8 represent the percentage distribution of each node type that forms the cluster. 
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This node clustering, as well as edge clustering (represented by the edge thickness), is aimed at 

reducing the amount of information displayed in the graph, besides providing a statistical 

distribution view.  

Moreover, due to the nature of how the graph is structured in Play-Graph (i.e., limiting 

vertices as states and edges as actions), the understanding of player behavior is guided by the 

player progression in the game (e.g., killed a boss), and not by how the player interacted with 

the world (e.g., combat rounds from the battle against the boss). From the available 

documentation, there is no way to determine interactions or influences. Only the changes from 

one state to another, caused by an action executed by the player, can be identified. However, 

influences in the player’s action, such as an influence from another character that affected the 

transition of one state to another, are not present in the graph (there are no edges linking edges). 

Besides, this visualization was not designed to closely track individual progression, but to track 

the player population flow. 

2.7 COMPARISON BETWEEN APPROACHES 

This section compares the described approaches from Section 2.6 by outlining their 

features according to the following characteristics: 

• Graph: Indicates if the approach explicitly uses a graph to represent 

information. 

• Graphics: Indicates if the approach explicitly uses graphical charts to represent 

information. 

• Event Context: Indicates if the approach gathers contextual information from 

events and actions that can be used to improve the understanding of the 

event/action. 

• Actions: Indicates if the approach collects details about the actions performed 

in the game, instead of only collecting the action’s outcomes. 

• Statistical data analysis: Indicates if the information gathered and/or displayed 

by the approach is used for statistical analysis (gameplay metrics). 

• Cause-and-Effect: Indicates if the approach gathers information about factors 

that affected the outcome. 

• Temporal Information: Indicates if the approach has any form of temporal 

analysis of the tracked data. 
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• Spatial Information: Indicates if the approach has any form of spatial analysis 

of the tracked data. 

• Information Overload Mitigation: Indicates if the approach has any strategy 

to minimize information overload when providing the data for analysis. 

• Multi-session analysis: Indicates if the approach has any built-in method for 

analyzing multiple sessions or data from different players at the same time. 

Table 1 provides a comparison chart for the presented approaches. Fields filled with “” 

indicate the approach supports the specified characteristic. Fields with “⸋” indicate the approach 

generates sufficient information that can be used for the specified characteristic. However, they 

do not explicitly use or treat the information. Fields filled with "x" indicate that the approach 

does not support, does not have the feature, or has no available documentation about the feature. 

Table 1: Comparative chart of approaches 
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Graph x x   

Graphic   x x 

Event Context x  x x 

Actions x  x  

Statistical Data Analysis   ⸋ ⸋ 

Cause-Effect x x x x 

Temporal Information   x  

Spatial Information x  x  

Information Overload x x   

Multi-session analysis x x   

The approaches presented in this Chapter are aimed at analyzing player behavior, game 

balancing, and game testing by identifying gameplay issues. Furthermore, they use graphs or 

graphics to illustrate the general population behavior, which is used by designers to improve 

the game. However, the approaches that track temporal and spatial information provide limited 

visualizations (if any), making game designers guess where and when the events happened in 
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the game by digging through tracked data. Furthermore, the clustering techniques used to deal 

with large amounts of data compromises, even more, these visualizations by losing the sequence 

of events due to the aggressive information compression. Moreover, they do not capture cause 

and effect information. They only capture the executed action, losing the causal relationships 

and factors that have had influenced during the execution of an action. Even TRUE, which 

captures contextual information, is not able to track factors that originated from the execution 

of other actions. It only tracks additional information from the character that executed it (e.g., 

equipment used). Thus, they provide limited analysis possibilities, requiring more complex 

methods to extract knowledge from telemetry data. In other words, they still demand a 

considerable effort from the game designer to infer the possible reasons that led to an outcome. 

2.8 FINAL CONSIDERATIONS 

This chapter presented the field of game analytics, describing existing approaches from 

the game industry and the research community for game telemetry, metrics, and data mining. 

Furthermore, we presented related work that focuses on logging methods (telemetry) and 

gameplay analysis (data mining).  However, there are other works outside the games domain 

that are related to our proposed approach. These will be discussed in their respective chapters. 

Therefore, in the next chapter, we describe the basis of our proposal, which is the 

Provenance in Games concept, developed in a previous work to address those main problems. 

The chapter presents the initial conceptual framework and prototypes used to support this 

research, including early methods for tracking telemetry data and basic visualizations. It also 

presents initial results that motivated us to continue investing this research branch. 
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CHAPTER 3 – PROVENANCE IN GAMES 

3.1 INTRODUCTION 

As previously presented in Chapter 2, many games use game analytics to support the 

decision-making process at an operational, tactical, and strategic levels for game development. 

The tracked telemetry game data is crucial for game designers, allowing them to perform 

various types of analysis in order to better support their decisions. However, the tracked data 

provides a limited understanding of how events unfolded during the game and the way they 

affected the outcome. This is due to the fact that existing telemetry techniques do not gather 

causal relationships among actions and events.  

Therefore, in our previous research (KOHWALTER; CLUA; MURTA, 2013), we 

developed a conceptual framework named PinG for tracking and managing provenance data. 

The original PinG conceptual framework provides the means to track provenance information 

during game sessions for rich post-game analysis based on cause-and-effect relationships. The 

provenance analysis is done by tracking gameplay data and generating a provenance graph, 

which relates the actions and events that occurred during the game session. The generated 

provenance graph is a visual representation of the tracked provenance data, allowing game 

designers to visually analyze and understand cause-and-effect relationships between events that 

occurred during a game session. Thus, they can identify critical actions that influenced the game 

outcome. We decided to use PinG as the basis of our proposal and extend it in order to reach 

all our aforementioned goals due to this ability to track cause-and-effect relationships. 

This chapter briefly explains the core concepts of the previously developed conceptual 

framework named PinG (Provenance in Games) that records the game provenance, which was 

used as a basis for our current proposal. The game provenance is defined as the record of all 

the decisions, interactions and events executed throughout the game session, as well as their 

relationships and impacts over the course of the game. Furthermore, we describe the initial 

prototypes and findings from an earlier evaluation (KOHWALTER; CLUA; MURTA, 2014) 

that supports the usage of the conceptual framework for better understanding a game session. 

These promising results prompted us to further investigate this novel research branch of using 

provenance telemetry data in games. Everything discussed in this chapter was done during the 

master’s program, while everything after this chapter is novel and accomplished during the 

Ph.D. 
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This chapter is organized as follows: Section 3.2 describes the conceptual framework 

previously developed in an earlier work. Section 3.3 presents the first usage of PinG in an 

existing serious game and the first prototypes for provenance tracking and visualization based 

on the conceptual framework. Section 3.4 provides the results of a previous evaluation of the 

prototypes, providing the motivation for this research. Finally, Section 3.5 provides the final 

considerations of this chapter. 

3.2 CONCEPTUAL FRAMEWORK: PING 

The Provenance in Games (PinG) conceptual framework (KOHWALTER; CLUA; 

MURTA, 2012) was developed to map provenance concepts to the context of games. PinG is 

based on the PROV model (GIL; MILES, 2010), which provides the basis for specifying 

information that was involved in creating or influencing a particular object. Thus, in order to 

use PROV, PinG provides a mapping of elements from the provenance domain to their 

corresponding elements in a game domain, relating each type of vertex of the provenance graph 

into typical elements found in games. It is important to note that the edges' orientation in the 

provenance graph goes from the present to the past, instead of the common orientation used in 

graphs, which are from the past to the future. Therefore, it is first necessary to define the 

provenance's counterparts in the game context in order to use the provenance graph to represent 

a game session. 

A typical digital game architecture is mainly composed of game objects and the game 

loop. All objects present in a game, from environment objects to characters, are inherently 

defined as game objects. Game objects by themselves do not add characteristics to the game. 

Instead, they are containers that hold components that implement actual functionality, such as 

scripts (i.e., artificial intelligence, player controller, etc.), meshes (the object structure or 

“body”), physics, textures, animations, and audio. Meanwhile, the game loop is responsible for 

the sequence of events that occur in a game, allowing the game to keep running regardless of 

the user’s input. The game loop keeps the game alive, updating game object states and executing 

their actions and behaviors. Each script in a game object has a function update, which is called 

by the game loop in order to execute the specific game object functionalities. Every time the 

game loop is ticked, it executes the update function of the scripts that belong to the game objects 

present in the scene. 

The PinG conceptual framework provides the mapping of elements from the provenance 

domain to their corresponding elements in a game domain, mapping each type of vertex from 
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the PROV model into elements that can be represented in games. In the context of provenance, 

entities are defined as physical or digital objects. Trivially, in the PinG approach, they are 

mapped into game objects without autonomous behavior, such as elements from the scenario.  

In provenance, an agent corresponds to a person, an organization, or anything with 

responsibilities. In the game context, agents are mapped into characters present in the game or 

game objects with autonomous behavior, such as event controllers, plot triggers, or the game’s 

artificial intelligence overseer that manages the plot. Therefore, agents represent elements 

capable of making decisions or that have responsibilities in the game, while entities represent 

objects with no autonomous behavior. Lastly, activities are defined as actions taken by agents 

or interactions with entities. In the game context, activities are defined as actions or events 

executed throughout the game, such as attacking, dodging, and jumping. Figure 9 illustrates 

this mapping. 

The PROV model defines relationships that can be used to express the context, such as 

the association relationship between activities and agents (wasAssociatedWith) or the influence 

an activity had on another activity (wasInfluencedBy). Furthermore, it also provides rules to 

extend these relationships or to create new ones. For instance, it is possible to create 

relationships to express that one character was spawned (created) by another character 

(wasSpawnedBy), such as a boss spawning minion. In addition, the PROV model deals well 

with the time flow due to represent the data in a causality graph in a timeline fashion, which 

can be heavily explored in games. Thus, these edges in the provenance graph, which represent 

causal relationships, should also express the type (i.e., semantics) of the relationship between 

vertices. 

 

Figure 9: PinG data model diagram. Gray classes represent generic provenance classes. 
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Each character in the game should have an explicit model about its behavior in order to 

generate and control its actions. With this explicit model, a behavior controller can register 

information about the action when it is executed. These executed actions can be represented by 

a series of attributes that provide a description and context of the action, allowing the creation 

of a provenance graph. As illustrated by Figure 9, every action needs a set of information: a 

reason for its existence, why the action was performed, what triggered it (if applicable), and 

who performed the action. In addition, the time of its occurrence can be important depending 

on the reason of using provenance. The main reason of using provenance is to produce a graph 

containing details that can be tracked to determine why something occurred the way it did. 

Therefore, with this assumption, the time of the action, the agent who did it, and the effects of 

the action need to be recorded for future analysis.  

Events also work in a similar way as actions, with the difference in who or what triggered 

them, since events are not necessary tied to characters. For objects, its name, type, location, 

importance, and the events that are generated by it can also be stored to aid in the construction 

of the graph. Lastly, agents can have their names, attributes, goals, and current location 

recorded. The provenance information collected during the game is used for the generation of 

the provenance graph, which can be used as a visualization tool for exploratory analysis. In 

other words, all the information collected throughout the game session is organized in the form 

of a directed graph. Thus, all relevant data should be registered, preferentially at a fine grain. 

The way of measuring relevance varies from game to game, but ideally, it is any information 

deemed relevant by the game designer that can be used to aid the analysis process. 

3.3 PING CASE STUDY 

In various games, some facts might not be clear or transparent enough for the player to 

understand why something went wrong. In some traditional games this can be solved with a 

new game session. However, sometimes the player or even developers want to have the 

opportunity to understand what the causes in an analytical way were. Thus, in a previous work 

(KOHWALTER; CLUA; MURTA, 2012), we proposed a novel approach using provenance in 

the game field.  

The provenance analysis infrastructure, which uses the framework presented in 

(KOHWALTER; CLUA; MURTA, 2012), was instantiated in a software engineering 

educational game named SDM (Software Development Manager) (KOHWALTER; CLUA; 

MURTA, 2011). The goal of SDM is to allow for undergraduate students to understand the 
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existing cause-effect relationships in the software development process. Thus, the adoption of 

provenance has the potential to better support knowledge acquisition, allowing tracking 

mistakes made during a game session or identifying concepts that are not well understood by 

the students.  

In SDM the player manages a team of employees that develop software according to 

contracts made with customers. The gameplay and game mechanics are modeled presenting 

possibilities to the player to decide strategies for development and define the roles and tasks for 

each staff member. As in any contract, the software has requirements that must be followed 

during development. From a gameplay point of view, these requirements help to balance the 

mechanics and rules. When the software is completed and delivered to the customer, there is a 

quality assessment of the software that modifies the project completion payment. Since SDM 

focuses on people management, the main elements of the game are the employees, which 

represent the player’s labor force. Employees can perform different roles (analyst, architect, 

manager, marketing, programmer, and tester), which use the employees’ human attributes to 

calculate their performance depending on the respective roles. Another attribute present in the 

game is specialization, which is used to define the employee working competence. With the 

specialization system, it is possible for employees to undergo training to learn new sets of skills. 

Also, the concepts of working hours, morale, and stamina are used to modify the employee’s 

productivity.  

Figure 10 illustrates the mapping of provenance concepts into the game context, outlining 

important information of each element type to be collected during game execution for 

provenance analysis. Yellow classes belong to the game domain, showed in Figure 9. 

Furthermore, these previously mentioned characteristics are illustrated in Figure 10 by the blue 

classes, which shows a simplified version of SDM’s class diagram focusing on the employee. 

Each employee is defined by his human attributes (adaptability, auto didacticism, human 

relations, logical reasoning, meticulousness, negotiation, objectivity, organization, and 

patience), can have specializations categorized in three different types (with a total of 14 

different specializations), and can be allocated for training in order to acquire new 

specializations.  
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Figure 10: Mapping of the SDM game 

Each employee can have up to two different roles at the same time, among six possible 

roles available. Each role has a different set of tasks, which are administered by decisions trees 

(MORET, 1982) that considers internal influences (attributes, morale, and stamina) and 

external influences (player or staff) to determine how these tasks are executed. Tasks can 

influence and be influenced by other tasks from another employee and can also generate 

artifacts, which can represent prototypes, used to validate software requirements or test cases 

(unit, integration, system, and user acceptance). Lastly, employees belong to the player’s staff 

and develop the software for a customer, respecting the customer’s requirements and deadlines. 

3.3.1 PROVENANCE TRACKING PROTOTYPE 

The data structure used in SDM to collect provenance information was adapted and 

mapped to be suitable for the proposed conceptual framework presented in (KOHWALTER; 

CLUA; MURTA, 2012), which is as follows: each project contains a list of employees involved 

in its development. In turn, each employee has a list of his actions executed throughout the 

development. If any action had an external influence during its execution, then the action also 

has a pointer to the action that influenced it. Throughout the game, the information about actions 

that are executed or triggered is collected at runtime and stored for later usage. Executed actions 

go to their respective employee lists. When new employees are added to the project, they 

receive their own list of actions and are added to the project’s employee list. Each day of the 

game universe stores the state of the software development at the end of that day. 
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Since the information collected is used for the generation of the provenance graph, its 

context needs to be applied to one of the three possible types of provenance vertex: activities, 

agents, or entities. From the data model explained in (KOHWALTER; CLUA; MURTA, 2012) 

and previously mentioned at the beginning of this section: activities represent actions or events, 

entities represent static game objects (prototypes, test cases, software development state), and 

agents represent dynamic game objects (employees and clients). 

The majority of the provenance gathering, which is related to activities, is administrated 

by decisions trees and occurs at leaf nodes of the tree, where actions are executed. The 

information gathered varies according to the element type, as can be seen in Figure 11. 

Activities’ provenance information (c) is taken directly from the decision tree, getting the 

execution information and retracing the tree path from the leaf to the root. Agents’ information 

(b) is gathered when they first interact in the game. Entities’ information gathering varies 

according to the entity type. For example, the project as a whole (a) has its information gathered 

on a daily basis, recording the current state of development. On the other hand, prototypes and 

test cases entities have their provenance collected when they are created.  

Moreover, the causal relationship between elements is also gathered. This occurs, for 

instance, when an activity is influenced by another activity or generates an influence on an 

entity. Examples of influences include an employee aiding another employee or when a task 

changes the state of the software under development. 

 

Figure 11: Provenance information regarding the project as a whole (a), an employee (b), and an action 

(c). 
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3.3.2 PROVENANCE VISUALIZATION PROTOTYPE 

With the adaptations for provenance gathering made in the original SDM 

(KOHWALTER; CLUA; MURTA, 2012), it became possible to use the collected provenance 

data to generate a provenance graph for analysis. The collected game data is exported to Prov 

Viewer (KOHWALTER; CLUA; MURTA, 2013), which was a prototype tool for provenance 

graph visualization made specifically for SDM. In Prov Viewer, the game provenance data is 

processed and automatically used to generate an interactive provenance graph of the game 

session to aid the analysis process. 

Figure 12 illustrates the graphical user interface (GUI) of Prov Viewer and the displayed 

provenance graph from a gameplay session generated by SDM. Using the visual notations 

defined in (MOREAU et al., 2007), a square vertex represents an activity, while circle 

represents an entity and an octagon represents an agent. The provenance graph is displayed at 

the center of the screen but only part of it is visible due to the graph size. However, it is possible 

to zoom in or out and navigate through the graph. The graph layout is set to be similar to a 

spreadsheet, where each “line” represents the activities of each agent and each “column” 

represents a day in the game. The filters, specifically defined for SDM, are located in the lower 

region of the interface. The “Collapse Agent” button collapses all the agent’s vertices into the 

agent itself. It is useful to detect if an agent had any influence throughout the game, instead of 

looking vertex by vertex. The “Collapse” button allows the user to collapse selected vertices, 

creating a meta-vertex that summarizes edges (influences) by type. The “Extend” button 

removes the last collapse made to generate the selected meta-vertex.  

The “Display Edge” is an important aspect of analysis, allowing for the identification of 

types of influences in the graph, filtering the graph edges that are not relevant for the desired 

analysis. The displayed graph only shows the selected edges types, omitting unselected types. 

For example, in Figure 12 the edge types “Neutral” and “Aid” are selected, thus showing all 

positive (green) and negative (red) influences of the “Aid” type and all “Neutral” (dotted-black) 

type edges, which in this case are association edges. 
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Figure 12: Prov Viewer’s GUI instantiated for SDM. 

 

Figure 13: Analyzing the analyst’s productivity. 

Another usage of the display edge is to help to detect the reasons for drastic changes 

during the game. For example, detecting a major variation in the analyst’s performance as 

shown in Figure 13, which dropped from 342 to 34 “requirement validation”. The left picture 

has the “Val” edge display on, while the right picture has the “Aid” edge display on. The 

employees’ roles in the figure are a manager (upper tasks), marketing (Middle), and analyst 

(bottom). The change in performance was detected by activating the “Val” edge filter and 

comparing the values (342 versus 34). The reason for this sudden drop can be traced to the 
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manager and marketing employees by changing the filter to “Aid”, which is a possible type of 

influence. By analyzing the displayed edges, the manager employee provided an aid of 298% 

in day 10 and a penalty of 248% at day 11 to the analyst due to wrong decision making. 

Moreover, the marketing employee provided a bonus of 227% and 136%, respectively for days 

10 and 11. By combining these factors, at day 10 the analyst received a bonus of 525% in his 

task, while at day 11 he had, in total, a penalty of 112% for the execution of his task. The analyst 

productivity without any bonus was 65 at day 10 and 53 at day 11, which is within his 

productivity margin. 

The “Attribute Status” changes the vertex color according to their values from the 

selected attribute. In SDM they can be Morale, Stamina, Hours (short for Working Hours), 

Weekend (highlighting “Saturday” and “Sunday” vertices), Credits, and Role. The vertex color 

does not change if it does not have the selected attribute. The default mode shows common 

activities with a shade of gray and uncommon activities with different colors. Common 

activities in SDM are normal tasks executed by employees during their roles, while uncommon 

activities are activities that do not happen frequently. The color difference amongst vertices is 

useful to quickly identity non-ordinary events. For example, by looking at the graph shown in 

Figure 12 it is possible to quickly identify that an employee was trained (purple vertices) during 

some days and was idle (red vertices) for a couple of days after the training was complete. This 

type of visualization, based on the evaluation of attributes, is useful to quickly identify 

particular sections in the graph.  

With the available features, users can decide which type of edges and color schemes will 

be displayed on the provenance graph. Furthermore, the user can navigate in detail through the 

graph, exploring different sections of the game session or zoom out for a broader view. It is 

also possible to collapse sections of the graph to reduce its size and thus omitting vertices that 

might not be relevant for the current analysis. All graph manipulations can be reverted, and no 

information is lost during this process. 

3.4 INITIAL FINDINGS 

In our previous work (KOHWALTER; CLUA; MURTA, 2014) we wanted to investigate 

whether PinG was indeed a promising approach for game analysis, and to do so, we responded 

to these research questions: 

1. Does provenance analysis help to understand events that emerged during the game? 

2. Is provenance analysis more accurate than only watching a replay of the game session? 
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3. Is provenance analysis faster than only watching a replay of the game session? 

We generated a replay of a game session and compared it with provenance analysis using 

a provenance graph to assess the possibility of using provenance analysis for improving 

understanding. This comparison was conducted through a questionnaire containing specific 

questions about events that occurred during the game session. Thirty-seven volunteers were 

divided into two groups: with and without provenance. Both groups watched the replay of the 

game session. The group with provenance also had access to the provenance graph. At the end, 

both groups answered the same questionnaire, which contained two questions related to the 

experiment execution (i.e., starting time and group) and seven questions related to the events 

that occurred during the game, such as the motives that led an employee to quit during 

development or the main reason that allowed to complete the project in time. Our goal was to 

verify if the usage of provenance is beneficial and if it aids in the understanding of the events 

by giving access to provenance data from the game session. 

We used two metrics to compare the results obtained by both groups: precision and time. 

The precision metric showed the correctness of the answers provided by both groups, which is 

related to understanding the factors that influenced the results. The time metric showed how 

long each volunteer took to answer all questions, thus allowing us to know if using or not 

provenance is faster. Furthermore, we performed statistical analysis over the results by means 

of hypothesis test to determine if the findings had any statistical meaning.  

 

Figure 14: Brief summary of the results from (KOHWALTER; CLUA; MURTA, 2014). 

Figure 14 presents a brief summary of the results of this experiment in the form of box 

plots. These results indicate, after running the statistical analysis, that in at least one case 

analyzing the game session with provenance is beneficial and provides equal or more correct 

answers than analyzing the game without access to provenance data, while also aiding in 

understanding the underlying influences between events and their effects. The other cases were 

not statistically different with the current sample size even when their mean values were greater 



60 

 

when analyzing the game session with provenance. However, that was sufficient to answer 

research questions one and two. Meanwhile, for research question three, the results clearly 

showed that analyzing the game flux with provenance was faster than analyzing without having 

access to provenance data, even when using the visualization tool for the first time and being 

unfamiliar with provenance concepts. These positive results opened a new door for exploring 

the usage of provenance concepts in the games domain, allowing richer and more abstract 

analysis of the tracked data. 

3.5 FINAL CONSIDERATIONS 

This chapter introduced perspectives on the game session comprehension process, 

showing that provenance data can induce deeper analysis and discussions regarding the game 

session. The previous findings showed that this knowledge can be used to help on (1) 

confirming the hypotheses formulated by developers, (2) extracting behavior patterns from 

individual sessions or groups of sessions, (3) understand the outcomes and (4) the causal 

relationships between events and actions.  

The provenance graph also aids in the understanding of the events in the game by making 

explicit the cause-and-effect relationships between entities and actions. The provenance 

visualization allows the discovery of issues that contributed to specific game fluxes and results 

achieved throughout the game session. Thus, this type of analysis can be used to improve 

understanding of the game flux by identifying actions that influenced the outcome (WERNER 

et al., 2010), aiding the user to understand why they happened the way they did. However, the 

PinG approach provides only an abstract framework to act as guidelines for extracting 

provenance data and is necessary to adapt it for each game. Thus, it is necessary to manually 

create all the management and storage components, as well the tracking and gathering 

mechanism, and incorporate inside the game. 

The initial findings from our previous work, presented in this chapter, gave us the 

necessary support and motivation to continue researching and advancing the usage of 

provenance in games to further improve understanding of the underlaying concepts and 

dynamics of a game session. All the concepts presented in this chapter were prototypes 

generated in our earlier work specifically for the SDM game and it would be necessary to 

generalize them so that they could be used in other games. These prototypes were used to verify 

the feasibility of this new field since it was the first time that provenance was being studied in 

this manner and being applied in games. 
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In the following chapter, we describe our proposal for providing a concrete framework to 

track causal relationships through provenance, which is based on the initial version of the 

conceptual framework presented in this chapter. This concrete framework is also game-

independent, allowing it to be used in different genres. However, tracking provenance data is 

only the first step of the analysis process. As we discovered in our previous work, the visual 

representation of the data is also an important element to allow for designers to conduct 

exploratory analysis over tracked data and extract knowledge of what happened in the game 

session. Thus, we also present further advances made in our provenance visualization tool in 

the following chapter of this thesis. 
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CHAPTER 4 – GATHERING PROVENANCE FROM GAME SESSIONS 

4.1 INTRODUCTION 

Tracking game telemetry data and making it understandable is challenging due to the 

complexity of the games, leading to huge amounts of information. Moreover, deciding which 

information should be tracked and recorded is another challenge. One of the most common 

types of telemetry data is collected though states changes (LIU et al., 2011; WALLNER, 2013), 

(EL-NASR; NGUYEN, 2015). Even though state data is easier to examine, they lack contextual 

information and provides only a high-level view of what transpired in the game. In contrast, 

telemetry data that captures events (JOSLIN; BROWN; DRENNAN, 2007; KIM et al., 2008b) 

can provide more low-level and fine-grained information, capturing and describing player’s 

activity and relating it more closely to the game session. Furthermore, since the data is collected 

at fine-grain, developers can use aggregating techniques to summarize the data by giving an 

overview of the game sessions and only digging through the fine-grained data when necessary.   

However, no known approach used by the game industry for game analytics take into 

consideration the cause-and-effect relationships between events during a game session, which 

may be an important factor for determining the reasons that led to a certain outcome. In the 

previous chapter, we presented an earlier work (KOHWALTER; CLUA; MURTA, 2012) that 

introduced the usage of digital provenance in games in order to detect these cause-and-effect 

relationships. This novel approach resulted in another work (JACOB et al., 2014) that extracts 

provenance information using a non-intrusive technique through image processing 

mechanisms. Also in the previous chapter, we demonstrated an earlier evaluation 

(KOHWALTER; CLUA; MURTA, 2014) that brought some initial evidence of the benefits of 

using the PinG approach during game analysis of serious games, helping students to understand 

the underlying reasons for an outcome. 

However, the PinG Conceptual Framework described in Chapter 3, requires a data 

infrastructure to store tracked data for the provenance visualization stage. It uses a list of actions 

for each character in the game. For example, each agent had a list that contained all actions 

executed by her. Furthermore, actions were connected to each action that influenced them. That 

data structure was simplistic, clean, and easy to understand. However, we noticed that it 

presented some problems with more dynamic games with multiple characters. By using that 

data structure, which stores the action list on the character itself, we needed to preserve the 

game object that contained the action list even after it ceased to exist in the game (e.g., the 
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character died or left the scene). Furthermore, by the end of the session, there would be as many 

lists as characters that appeared in the scene. This becomes even more difficult when exporting 

the provenance data from the game to a dataset for analysis, requiring merging all lists in the 

same file or exporting multiple files, one for each character.  

Moreover, the relationships between actions brought another problem: the conceptual 

frameworks do not define a storing and managing structure to deal with causal relationships. 

Thus, it is necessary an extra step to derive the relationships from the PROV provenance model 

(default provenance relationships) and the cause-and-effect relationships, which were stored on 

the affected action to inform which action affected it and how it was affected. Lastly, PinG 

provides a conceptual framework. Therefore, it is necessary to manually instantiate the 

approach and adapt it to the specific context of the game. 

The main goal of this chapter is to propose major improvements over PinG and create a 

novel concrete framework, named PinGU, for capturing the provenance data and automatically 

generate the provenance graph for analysis. Unlike its predecessor, which was just an idea to 

capture provenance through a few guidelines, the now concrete framework PinGU offers 

support for capturing provenance data through automatic management and storage of 

provenance data. We implemented our provenance capture concrete framework in the Unity 

game engine, making the adoption of the PinG conceptual framework by existing games 

simpler. PinGU(KOHWALTER; MURTA; CLUA, 2017) is a low coupling solution that allows 

an easier integration of the idea behind PinG in existing games. We present our PinGU concrete 

framework in action by applying it to four different games, showing that we are able to gather 

provenance data and seemingly generate its graph. 

The remaining of the chapter is organized as follows: Section 4.2 presents our proposed 

framework and improvements based on the conceptual framework. Section 4.3 shows four case 

studies over different games. Section 4.4 presents the related work. Lastly, Section 4.5 provides 

the final considerations for this chapter. 

4.2 PING FOR UNITY 

In the following subsections, we present our proposal for a new provenance tracking and 

managing framework, along with the new provenance gathering process. This concrete 

framework aims to provide a low-coupling solution for tracking provenance data, unlike the 

original conceptual framework from PinG. Furthermore, we describe our strategies for tracking 

cause-and-effect relationships using our concrete framework.  
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4.2.1 PING FOR UNITY MODEL 

The PinG concrete framework for Unity (PinGU) is composed of classes written in 

UnityScript (a version of JavaScript used by Unity3D) that provides easier provenance 

extraction, requiring minimal coding in the game's existing components. PinGU has three 

different types of classes: eight Core classes, one Interface class, and five Auxiliary classes. 

Figure 15 illustrates a simplified class diagram for our concrete framework, named 

PinGU (PinG for Unity). Core classes are in yellow, Interface classes are in light blue, and 

Auxiliary classes are in orange. The Core classes represent the infrastructure of PinG and are 

responsible for provenance information management, making everything transparent to the 

game designer. Analogously, it can be referenced as the provenance "server". Our concrete 

framework had been decoupled from the game, but for now it remains coupled with the engine 

itself (i.e., Unity). 

 

Figure 15: PinG for Unity class diagram  

The concrete framework has only one class (Provenance Controller) responsible for 

storing all the provenance data, centralizing it in one list instead of having a list for each 

character. Furthermore, it uses two structures for storing provenance data: one list for storing 

actions, events, characters, and objects, which are the vertices of a provenance graph, and 

another list for relationships that appear as edges in a provenance graph. These two data 

structures (Vertex and Edge) store the provenance data in the format used by the graph and thus 

eliminates any extra steps when exporting the data. Meanwhile, the Influence Controller class 

manages the cause-and-effect relationships (influence edges), dealing with possible influences 

and passing it to the Provenance Controller class when they actually happen in the game. The 
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Provenance Container class is responsible for exporting the provenance data from the game to 

an XML file. 

The Interface class (Provenance Extractor) is the gateway between the game and the 

Core classes. While the Core classes can be seen as the server, the Interface class can be seen 

as the client application and is responsible for tracking all provenance information and passing 

it to the Provenance Controller for storage.  

Lastly, the Auxiliary classes contain domain-specific functions customized for a specific 

behavior or games and are responsible for gathering domain-data. These classes represent the 

provenance tracking functions that are used during provenance gathering and are required to be 

inserted in the existing game classes to capture telemetry data. Nevertheless, the existing 

templates can be used as a guiding example in cases that the desired action is not already 

implemented. These classes are PBMProv, PlayerProv, EnemyProv, and EnviromentProv, and 

each is customized for the particular genre of the game they represent (Car-related movements, 

Player, Enemy, and Environment). The ProvCamera class is related to capturing the game map, 

which is explained in more details in Section 4.2.5.  

4.2.2 PROVENANCE GATHERING 

The PinG for Unity approach is responsible for gathering all provenance data through 

its Provenance Extractor class and passing them to the Provenance Controller when the data 

is ready to be stored. Thus, instead of each character having a list of actions, now the character 

only needs to notify the Provenance Extractor class the action executed together with any 

additional desired information (i.e., attributes), as illustrated by Figure 16. After receiving the 

notification, the Provenance Extractor class packs the details of the execution, creates the 

corresponding vertex (Activity, Agent, or Entity), and sends it to Provenance Controller, which 

in turn stores the new vertex in the list for vertices. Default provenance relationships are 

automatically generated by the Provenance Controller, which are the relationships between 

activities and the agents that executed them, along with the correct chronological order of events 

between actions. In other words, these are all relationships that are not related to influence (i.e., 

cause-and-effect). Capturing influences in a game require a more complex procedure, which is 

explained in the following subsection. 
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4.2.3 TRACKING INFLUENCES 

The procedure to track cause-and-effect relationships, or influences, is similar to the one 

for storing the execution of an action, which notifies the Provenance Extractor class. When an 

action is executed and notified to Provenance Extractor, the game should also notify if the 

action generated any possible influences. If it does, then an influence is generated and the 

Provenance Extractor passes the information to Influence Controller, which is the class 

responsible for managing all influences in the game. After receiving the notification, Influence 

Controller creates a special Influence Edge and stores it in a pending influence list until it is 

used. Furthermore, Influence Controller registers the point of origin (an action that generated 

the influence) and the trigger (when this influenced is used) for the influence. If the influence 

has any expiration time (e.g., turns) or a limited number of usages (e.g., for the next five 

attacks), then the Influence Controller also manages these limitations, removing the influence 

from the pending influence list when it expires. Therefore, it is necessary to notify possible 

influences that the action generated after notifying the action execution in order to track 

influences. Figure 16 also illustrates the necessary steps taken in order to track influences in the 

provenance graph. Each lane represents a different class from our framework, with the 

exception of the "Game Object" that is the object in the game (e.g., player) that executed the 

action. 

 

Figure 16: PinG for Unity tracking provenance data 
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Unfortunately, information related to influences needs to be present in the game design, 

explicitly saying if an action can affect other actions, such as an effect of a spell that will affect 

the player that used it. A trivial example is when a character causes and takes damage during 

the game. For instance, an attack action can generate a damage value if the attack hits the target. 

Thus, when the attack action is executed and notified to Provenance Extractor, it is also 

required to notify the possible damage influence. The damage influence only takes effect when 

the target is hit. At that moment, it is necessary to query for possible influences, which in this 

case is damage. This query is done through Provenance Extractor by asking if there are any 

pending influences that satisfy the criteria or trigger (in this case, take damage), which in turn 

asks the Influence Controller to verify it. If the Influence Controller finds a pending influence 

that satisfies the criteria, then it updates the influence (decrease counter or remove it from the 

list) and passes the information to Provenance Controller to create the corresponding edge in 

the graph. Then Provenance Controller links the influence on the current action and the action 

that generated the influence, which is known by Influence Controller, along with any other 

details about the influence. If there are no pending influences that satisfy the criteria, then 

nothing is passed to Provenance Controller and no influence edge is created. 

4.2.4 TRACKING LOST INFLUENCES 

In order to record influences that were missed during the game, such as when the player 

did not take an item or allowed an enemy to escape, it is required also to inform the desired 

target of this influence (e.g., player). Otherwise, the Influence Controller would not know the 

target of the "missed" influence. For example, consider a situation where there is an item in the 

scene and we want to know if the player took it or not. This can be accomplished simply by 

verifying if the player took the item or not during the game. However, we want to clearly show 

to the designer that the player did not take it, without the need to infer it from the lack of data. 

This is important because it could affect an analysis of the player performance in the level, or 

discovering the reason behind her death (e.g., she missed a health item). Thus, when the item 

is placed or spawned in the scene, it notifies its existence to Provenance Extractor (to create 

the entity vertex for the item) and the possible influence of restoring health when taken by the 

player. Moreover, it also needs to inform to the Influence Controller the need to consider the 

influence when the player misses the item. In this case, the desired target for this influence is 

the player. With this extra information, when the player skips the item, Influence Controller 

can create an influence stating that the player did not interact with the item. If the player took 

the item, then it creates the regular influence (which in this case is healing the player).  
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4.2.5 CAPTURING GAME MAP 

We also implemented a specialized camera class in order to simplify the process of 

capturing the game map to use it in combination with the provenance graph. This camera is 

orthographic, which preserves the dimensions and does not change coordinates to accommodate 

the perspective of the viewer. Thus, the camera needs to be positioned either directly above the 

game scene or laterally (for platform games), allowing it to capture the entire map. This class 

automatically captures the screenshot of the scene and the necessary data required to align the 

provenance graph, which uses world space coordinates, with the captured map, which uses pixel 

position, not requiring manual compositions. The screenshot resolution can also be adjusted in 

the class. This class allows to easily superpose the provenance graph over the map of the game 

to improve the analysis process by linking events to game locations. 

The camera class captures the camera's world position (cameraPosition) and the 

camera's upper left corner coordinates in the world position (leftCorner). The camera's position 

is used to translate the game map in order to align it with the graph and is easily obtained by 

getting the position of the camera in the world space. The second information is used to scale 

the graph to match the picture and is captured by converting the camera position from viewport 

space to world space, which is the upper left corner.  

In order to align the graph with the map, it is necessary to find a scale factor, that can 

be trivially calculated by Equation 1. The equation uses half the screenshot’s picture width to 

determine the distance between the center, which is the position in the picture where the camera 

is when the screenshot was taken, to the left edge to properly scale the graph. 

Equation 1: Scale Factor to align the graph with the game map 

𝑠𝑐𝑎𝑙𝑒𝐹𝑎𝑐𝑡𝑜𝑟 =  
0.5 ×  𝑝𝑖𝑐𝑡𝑢𝑟𝑒𝑊𝑖𝑑𝑡ℎ

𝑙𝑒𝑓𝑡𝐶𝑜𝑟𝑛𝑒𝑟. 𝑥 −  𝑐𝑎𝑚𝑒𝑟𝑎𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛. 𝑥
                               

The scaleFactor is used to transform the world coordinates used in the provenance data 

to pixel coordinates used in the screenshot of the game map. Therefore, the game designer only 

needs to position the orthographic camera in the game scene and add the camera class in order 

to capture the entire map and the necessary data. After that, the designer can use the coordinates 

captured by the class and the screenshot in a visualization tool. 
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4.3 INTEGRATING PINGU INTO EXISTING GAMES 

A game developer can use PinGU, which is available at GitHub7, to capture provenance 

data from a game by following four stages described in this section: (1) adding the provenance 

controllers in the scene, (2) analyzing the game design document to understand what knowledge 

for the provenance tracking will be extracted, (3) attaching the provenance extractors in each 

agent, and (4) creating and attaching the provenance tracking functions. 

The following sub-sections present three open-source game samples (2D Platformer 

Tutorial8, Car Tutorial, and Angry Bots9) that we integrated PinGU into the game to track 

provenance data, for validation purpose. We also show an in-house game where the adoption 

of PinGU was done by a third party. The games were not modified in any way nor added new 

features besides coupling with PinGU, which is only responsible for tracking provenance data. 

In this section, we only show the PinGU integration steps for each game. The next chapter, 

which is responsible for provenance visualization, provides some analysis examples of these 

games using the provenance data generated with PinGU. 

4.3.1 2D PLATFORMER TUTORIAL 

We use the game 2D Platformer Tutorial from Unity as our first running example of the 

PinGU integration. Figure 17 shows a screenshot of the game where the player has to kill aliens 

to gain score points. The game has two different types of enemies and the player can collect 

two different types of items to aid in his fight (health and ammunition items). 

The first stage of usage consists of creating a game object in the scene to act as a 

centralizing server for the provenance information. This game object will have two attached 

classes, ProvenanceController and InfluenceController, which are illustrated in Figure 18. As 

said earlier, both classes are used to manage all provenance information and graph generation, 

thus, only one instance of each are necessary per game scene. If the game is comprised of 

multiple scenes, then each scene will have its own provenance graph. These two classes use the 

other Core classes, which act as libraries and must not to be placed in the scene. 

                                                 

7 http://gems-uff.github.io/ping/ 

8 https://www.assetstore.unity3d.com/en/#!/content/11228 

9 https://www.assetstore.unity3d.com/en/#!/content/12175 
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Figure 17: 2D Platformer game. 

 

Figure 18: 1st stage for PinGU instantiation, showing the Provenance game object and its scripts. 

The second stage is to identify the actions and their interactions with other actions in 

the game design document. In the running example, we identify the existing classes that contain 

the actions that we want to track, which are illustrated in Figure 19. The same figure also shows 

a summary of each selected class and their responsibility in the game, grouped by the identified 

agents (i.e., Enemy, PlayerControl, PickupSpawner). The classes for the agents also contain 

additional actions, such as spawning item and movement. 

The third stage is to attach the ProvenanceExtractor class in each character or entity in 

the game (i.e., NPCs, player, interactive objects, prefabs) and link it to the object created in the 

first stage. This class is responsible for creating all the provenance vertices for the game entity 

that is attached to and then passing these vertices to the ProvenanceController to insert it in the 

graph. Figure 20 illustrates an example of adding the class to the Hero game object, which is 

the player’s avatar from the 2D Platformer game. 
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The fourth stage is creating the domain-specific provenance tracking functions and 

attaching them to each entity in the game that has the ProvenanceExtractor class. Each existing 

class should have a provenance function for each possible action that the entity can perform 

and that we are interested in tracking. It is also important to create the agent vertex for each 

entity that has the ProvenanceExtractor class, which is easily accomplished by adding the 

“newAgentVertex” function inside the “MonoBehaviour.Awake” area. 

 

Figure 19: the 2nd stage for PinGU integration, showing the 2D Platformer classes and Game Design. 

 

Figure 20: the 3rd stage for PinGU integration, showing the insertion of the provenance tracking class in 

existing agents and entities. 
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Unfortunately, it is necessary to create these provenance functions due to domain 

contextual information. However, all these provenance functions are small and simple, 

following the same four-step recipe and changing only the context information used during each 

step:  

1. Add game-related attributes (e.g., health points, experience points, etc.);  

2. Create the appropriate vertex (Activity, Agent, or Entity);  

3. Check for influences (if applicable);  

4. Generate influence (if applicable).  

Step A is used to configure the desired information to be extracted during the execution 

of each action or event. They will appear at the graph's vertices as attributes. Unity already 

provides default attributes, such as location, tag, and object name. However, game-sensitive 

attributes such as health points, magic points, and player score must be manually added by the 

AddAttribute(<name>, <value>) function of ProvenanceExtractor class. After adding the 

desired attributes, the step B creates the provenance vertex and places it in the graph. This 

vertex can be any of the three provenance types and must be specified by the user by calling 

the NewActivityVertex, NewAgentVertex, or NewEntityVertex functions. 

Steps C and D are related to influence. The third step is used to verify if there is any 

influence that can affect the current action. If so, they are automatically inserted in the graph as 

an edge connecting the respective vertices. This verification can be made by a tag 

(HasInfluence(<tag>)), which is used to group a collection of influences that has something in 

common, or by an influence ID (HasInfluence_ID(<ID>)). Both steps can have multiple 

instances of each. For example, one action can generate three different influences and be 

affected by two. 

Step D is responsible for creating influences (GenerateInfluence), so they can be used 

by step C. Influences can be created with some restrictions: They can expire when a certain 

time passes (e.g., spell duration), leading to the E (expire) suffix at the function (i.e., 

GenerateInfluenceE), or after a number of times used (e.g., spell that block the next X attacks) 

leading to the C (consumable) suffix (i.e., GenerateInfluenceC), or both 

(GenerateInfluenceCE). Lastly, the missed influences can be combined with the restrictions 

above, which represents something that was expected to happen but for some reason, it did not. 

For those, the function has the suffix M (“missed”) (i.e., GenerateInfluenceMC, 

GenerateInfluenceMCE). 
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Code 1 shows an example of a provenance function for our running example of one of 

the possible actions that can be executed by an enemy. The calls used in the Prov_Attack 

function are implemented in the ProvenanceExtractor (NewActivityVertex, HasInfluence, 

GenerateInfluenceCE) class, with the exception of Prov_GetEnemyAttributes, which is domain 

related and the developer need to specify the desired attributes for tracking, besides the default 

attributes from Unity (i.e., Tag, object name, object coordinates). This is accomplished by 

creating a function (e.g., Prov_GetEnemyAttributes from the auxiliary classes) that invokes the 

function AddAttribute from ProvenanceExtractor by passing the attribute name and value for 

each attribute, as also illustrated by Code 1. 

 

Code 1: PinGU code for tracking game data. Orange text in the code is domain-related. 

After creating the necessary provenance functions for their respective game objects, the 

next step is to incorporate the function calls in existing game classes in order to register the 

provenance information. All this process becomes trivial if the developers have a detailed game 

design document stating all the possible actions that can be executed in the game along with 

their purpose. The action list shows the actions that are desired to be tracked and the necessary 

provenance functions that need to be made. Meanwhile, the action’s purpose gives us insights 

on the influences that they can generate during or after executing the action.  

Code 2 shows an example of code insertion in an existing game class responsible for 

controlling the artificial intelligence (AI) of enemy characters in the game. The 

“damageAmout” is a configurable variable from the original class that states the damage the 

attack will cause. We inserted a call to the Prov_Attack function, whose code appears in Code 

1, in the function responsible to make the enemy AI fire at the player. 



74 

 

 

Code 2: Provenance function call insertion into existing classes. 

 

Code 3: Provenance function for the player’s death action. 

 

Code 4: Fragment of the original Remover class: Added the provenance function in the player’s death.  
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The last step is to add a provenance export function to an event, so it can save the current 

provenance graph to an external XML file when the designated event is executed (e.g., player’s 

death, completing the level, etc.). Code 3 illustrates the provenance functions for our running 

example responsible for exporting the tracked data, which is linked to the player’s death, and 

Code 4 shows the insertion of the provenance functions to track the information. 

The PinGU integration is explained in more detail in the tutorial available at the concrete 

framework GitHub page, showing all provenance functions and their insertion in the identified 

classes. Figure 21 shows an example of the generated provenance graph from the tracked 

actions executed during a game session. We can see in this graph the player’s and each enemies’ 

actions and how they interacted with each other by looking at the vertical colored edges. 

However, this type of visualization will be discussed in detail in the next chapter. 

 

Figure 21: Example of the generated graph for the 2D Platformer. 

4.3.2 CAR TUTORIAL 

The second case study is the Car Tutorial from Unity asset store. This tutorial has only 

one racetrack and focuses on the arcade style racing game. In addition, there is no implemented 

AI for opponent cars. Incorporating the framework in the game results in PinGU tracking events 

and actions executed by the player’s car during the game session, along with their effects on 

other events, to compose the provenance graph (e.g., crashing the car, pressing the car's brake, 

etc.). This is an interesting and complementary case study because the game is from a 

completely different genre from the previous one. 
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Figure 22: Screenshot of the Car Tutorial from Unity 

Incorporating PinGU in this game is trivial because it only has a single agent, which is 

the player. Following the stablished steps in the previous section, we start by importing PinGU 

into the project’s Plugins folder in the first stage. Then, we create an empty game object in the 

scene with the name Provenance so we can add both provenance controllers in it, as shown in 

Figure 23. 

 

Figure 23: Car Tutorial’s stage 1 for incorporating PinGU 

 Stage two is responsible for analyzing the game design document to find out the 

elements involved in the game, possible actions and events, as well as the impact each one can 

have during the game. Unfortunately, there is no game design document for this game, since it 

is a tutorial to demonstrate how to assemble a very basic racing game. Nevertheless, we 



77 

 

identified the agent and all possible actions by looking at the code, guided by the tutorial 

manual. 

Stage three is very short in this game since there is only the player’s car. Thus, we 

added the Provenance Extractor script in the “Car” game object. Stage four is the most 

complex and work-demanding stage for incorporating PinGU. In this stage, we created all the 

provenance tracking functions related to this game. For simplicity, we concentrated all the 

functions into a single script and attached it to the “Car” game object. First, we create the agent 

vertex for the “Car”. This is easily accomplished by adding the “newAgentVertex” method 

inside the “MonoBehavour.Awake” function of the “Car”. Thus, the player’s agent vertex will 

be automatically created whenever his car spawns in the game. The agent vertex is important 

because it links all the player’s actions in the provenance graph.  

Still, during the fourth stage, the next step is to add the function calls inside each 

function related to action execution or event that can happen, which are concentrated into only 

two scripts in this project: “Car” and “Crash Control”. The later only have one function which 

identifies when a car crash into an object. We identified eight possible actions in this game, 

which we added their respective provenance tracking calls: (1) Hand Brake, (2), “Release Hand 

Break”, (3) “Flip”, (4) “Landing”, (5) “Flying”, (6) “Change Gear”, (7) “Braking”, and (8) 

“Crash”. Some of these actions had their own functions, while others were implicit in the code 

while updating the game state (i.e., landing, flying, braking). Each function basically follows 

the four previous stablished steps. Some of them required extra minor coding to make additional 

logic checks to avoid modifying the game’s existing scripts besides insertion calls. These 

functions are available at the “PMBprov” class.  

Figure 24 illustrates the Car’s game object after stages three and four, showing the 

provenance tracker (Provenance Extractor) and provenance domain functions script 

(PMBProv) and Code 5 shows an example of existing function in the game (Flip) and its 

respective provenance domain function (Prov_Flip) that tracks that information. Note that 

Prov_Flip can be affected by two different types of influences: “Player” and “Flip”. The first 

will check if there are any previous actions that generated any general influence that affects this 

agent, independently of the currently executed action, and the second checks if there is any 

influence related to this particular action. One example that generates the second type of 

influence is when the car crashes in an obstacle, which sometimes can result in a flip and 

activate the Flip function. Thus, the flip happened only because the agent crashed the car and 

that causal relationship is captured. 
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Figure 24: Car Tutorial's stage 3 and 4 for incorporating PinGU 

 

Code 5: Car Tutorial's provenance call example 

Lastly, we added an empty game object to export the provenance data when the player 

completes a lap. We also added the screenshot camera to capture the entire track to link the 

provenance data to the game regions. 

4.3.3 ANGRY BOTS 

We conducted a third case study using a very different style of game, called Angry Bots, 

also from the Unity asset store. Angry Bots belongs to the hack-and-slash genre, being a top-

down action shooter. In the available scenario, the player must face enemy robots and interact 

with the environment in order to complete the level.  Figure 25 illustrates a typical screen of 

the game. 
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Figure 25: Screenshot of the Angry Bots game from Unity 

This game is much more complex than the previous Car Tutorial, providing a full game 

level with multiple enemies and objects to interact with. Nevertheless, the PinGU incorporation 

follows the same four stages after importing it into the project. In the first stage, we create the 

Provenance game object and attach the provenance managing scripts, in exactly the same way 

we previously did. 

In the second stage, we analyze the game document to determine all the agents and 

actions available in this game. Once again, as this was a tutorial game, there was no formal 

game design documentation. Nevertheless, we looked at the tutorial manual for this game and 

the available scripts to piece together all the necessary information for successfully tracking 

provenance data. 

The third stage, despite being a more complex game than the previous one, is also 

trivial. During the second stage, we identified all agents: four different types of enemies (Spider, 

Buzzer, Mech, ConfusedMech), the player, and the environment, which controls computers that 

unlock doors. We then added the provenance tracker (ProvenanceExtractor class) in each 

agent’s prefab10. 

The fourth stage requires to insert tracking calls in each action of the game, as well as 

create their corresponding provenance tracking function following the same recipe. First, we 

                                                 

10 A prefab asset in unity acts like a template to create new instances of an object in the scene. 
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need to create the agent vertex for each agent that we identified at the third stage. Once again, 

this is accomplished by adding the corresponding function inside the “MonoBehaviour.Awake” 

function. 

Continuing in the fourth stage, we identified nine different actions in the game: (1) 

Hacking, (2) Death, (3) Respawn, (4) Attack, (5) Take Damage, (6) Explode, (7) Regenerate, 

(8) Spot Player, and (9) Lost Track (of player). We then proceeded to create their respective 

provenance functions following the same previously presented four-steps recipe. All these 

domain-specific provenance functions are available at the three domain-specific classes that 

appear as examples in Figure 15: PlayerProv, EnemyProv, and EnviromentProv. Lastly, we 

added these provenance functions in their respective functions that execute the respective 

action. 

Unlike the previous case, this game has interactive game objects in the form of computer 

terminal and doors. These interactive game objects appear in the provenance graph in the form 

of Entity vertices. Thus, each interactive object needs to have an Entity vertex, which can be 

easily done similarly to creating vertices for agents by adding the “newEntityVertex” function 

whenever the object spawns. Thus, the provenance tracker will be able to record the action of 

interacting with the object and link it to the interacted object when the player interacts with an 

object. For example, when the player interacts with a computer terminal, then the tracker 

created the “Hacking” action, linking this action to the computer terminal through a causal 

relationship edge. The hacking action makes the computer terminal to unlock a door in the scene 

after the hack. This unlocking is also recorded in the form of a causal relationship between the 

computer terminal and the door it unlocked when it was hacked by the player’s action of 

“Hacking”. Consequently, following the transitive closure of these links, we can infer that the 

player was responsible for unlocking the door. 

4.3.4 MORHWING 

The MorphWing game was developed in-house by students using the Unity3D game 

engine and integrated with our PinGU concrete framework. It's a simple 2D game where the 

main objective is to get the highest score by destroying enemies. Items are spawned throughout 

the game session, which can positively or negatively affect the player. This case study differs 

from the others since its conceptual development took into consideration the inclusion of 

provenance in its earlier stages. A screenshot of the game is presented in Figure 26. 
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Figure 26: Screenshot of the MorphWing game 

The PinGU incorporation follows the same four stages after importing it into the project. 

In the first stage, they created the Provenance game object and attach the provenance managing 

scripts, in exactly the same way we previously did. 

In the second stage, they analyzed the game document to determine all the agents, 

actions, and possible causal relationships in the game. From the document, they could see that 

in MorphWing the player loses health points while colliding with the enemy or being hit by 

enemy projectiles. In both cases, the player becomes invincible for a very short moment, 

nullifying all damage in this period, in order to give a chance for the player to recover. 

MorphWing presents four different enemy types with a maximum of four enemies at the same 

time. This value was chosen as it presented a good balancing challenge in the initial 

development tests. The characteristics and behavior of each type of enemy are as follow:  

1. Straight: moves in a straight direction until it reaches the other side of the screen, 

disappearing afterwards.  

2. Chaser: chases the player for colliding, causing damage, until gets destroyed.  

3. Boomerang: after appearing in a random corner of the screen, moves straight for a 

moment, stops, shoots a bullet on the player's direction, and moves back towards its 

spawn point, disappearing afterwards.  
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4. Round Shooter: after appearing in a random corner of the screen, moves straight for a 

moment, stops, then shoots bullets clockwise in eight directions on a circular pattern, 

starting by the top. 

Items are spawned and remain visible for four seconds and are removed if not collected by 

the player. In total, up to three items can be on the screen simultaneously. Each item has a 

different icon as well as a color, with green or red tinted for positive and negative effects, 

respectively. The following items are available in the game:  

• Healing: recover a portion of the player's health.  

• Control Reverser: temporarily inverts the player's movement directions (up becomes 

down and vice-versa) and left becomes right and vice-versa).  

• Damage Up: temporarily increases the player's damage output.  

• Speed Up: temporarily increases the player's movement speed.  

• Speed Down: temporarily decreases the player's movement speed.  

The third stage involves adding the provenance tracker class (ProvenanceExtractor) in 

each agent’s prefab, which includes each enemy type, the player, and the agent responsible for 

spawning items. The fourth stage involves adding the functions to create the agent vertices for 

each identified agent in the third stage. Then, we insert tracking calls in each action of the game, 

as well as create their corresponding provenance tracking function as previously explained. We 

identified six different actions in the game aside from spawning each agent: (1) Spawn Item, 

(2) Death, (3) Attack, (4) Take Damage, (5) Heal, and (6) Power Up. The “Spawn Item” is the 

action that the Item Spawner’s agent does when it creates a new item in the game. This is an 

activity-type action that generates another entity-type object. We then proceeded to create their 

respective provenance functions following the same four-steps recipe previously presented and 

inserting their calls in their respective sections.  

4.4 RELATED WORK 

The literature adopts different terms for tracked game data, such as gameplay data, 

logged data, play traces, and telemetry data. Moreover, the process of analyzing such data, 

referenced here as game analytics, is also named in different ways, such as gameplay 

visualization, visual data mining, and game session analysis. In this section, we kept the original 

terms of each work, as they are usually reflected in the approaches’ names. 
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Joslin (2007) proposed the Gameplay Visualization Manifesto (GVM), which is a 

framework for gameplay data logging that uncovers gameplay events by attaching logging 

methods in game objects responsible for generating relevant events during the game. The event 

model is the basis for the game data logging framework. It encapsulates the information that is 

desired by users and classifies the events into three groups: immersion, quest, and social. The 

immersion group represents events related to increasing the player’s sensation of being involved 

in the game flux. The quest group represents events related to quest creation, execution, and 

analysis. Lastly, the social group represents events related to social factors in the game, such as 

group meeting or interaction with other characters.  

The main application of GVM is for collecting game metrics, such as player deaths, 

position, time spent in available features (e.g., crafting and fighting), item usage (e.g., 

equipment), actions performed, and player enjoyment. Therefore, GVM does not track cause-

and-effect relationships, only the executed actions along with their timestamp and location, in 

addition to character attributes and equipment. 

  Kim et al. (KIM et al., 2008b) proposed the Tracking Real-Time User Experience 

(TRUE) approach that combines human-computer interaction (HCI) instrumentation, which 

collects user initiated events (UIEs) and logs file analysis techniques in order to automatically 

record user interactions with games. Thus, TRUE can capture behavioral data and the attitudinal 

information behind the decisions made by the player in order to obtain a better understanding 

of the context of each captured behavior.  

Nevertheless, the designer still needs to infer the reasons behind the elements that led to 

an outcome. This occurs because the contextual information is only extra attributes that were 

tracked during the execution of the action and not actual relationships between events, and thus 

it does not capture the cause-and-effect relationships, that must be inferred by the designer when 

analyzing the logged data. Moreover, TRUE was designed for the industry and is not easily 

available for indie companies. Even though we did not explore attitudinal data with PinG, it can 

be trivially incorporated in our approach as attributes for the player’s actions or by creating 

specific activity vertices only for the attitudinal data when they are captured. 

Playtracer (LIU et al., 2011), which is a visual tool designed to illustrate how groups of 

players move through the game space, aids the designer by tracking game states and showing 

common pathways and alternatives that players used to succeed or fail in their tasks, identifying 

pitfalls and anomalies in the scene. Nonetheless, Playtracer does not consider temporal 

information and does not preserve the order of the states visited by players when he/she revisits 
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the same state. Moreover, incorporating Playtracer in the game design is challenging because 

it requires designers to define a state distance metric and identify relevant states.  

Play-Graph (WALLNER, 2013) captures and illustrates the sequence of states and the 

actions that caused the state change in the players over the course of the game. In the Play-

Graph context, a game state describes a certain configuration of the game or an entity, while 

actions consist on the player interactions with the game, such as shooting, jumping, or using an 

object. In this concept, a game is viewed as a finite state machine with a finite number of states 

and transitions between them. The states are composed of a set of attributes from the game and 

players trigger actions at some specific points in the game. However, due to the nature of how 

the data is structured in Play-Graph, the understanding of player behavior is guided by the 

player progression in the game (e.g., killed a boss), and not by how he/she interacted with the 

world (e.g., combat rounds from the battle against the boss). From the available documentation, 

there is no way to determine interactions or influences. Only the changes from one state to 

another, caused by an action executed by the player, can be identified. Conversely, influences 

in the player’s action, such as an influence from another character that affected the transition of 

one state to another, are not present in the graph (there are no edges linking edges). 

More recently, Loh and Sheng (2015) proposed a method to measure performance for 

serious games by inserting Event Listeners and Event Tracers inside the game to track 

behavioral telemetry data. The Event Tracers collect data when the player triggers the Event 

Listeners throughout the game, capturing information related to timestamps, world position, 

and other game variables. However, this approach only gathers data when the player’s avatar 

triggers an Event Listener when exploring the map. These Listeners need to be manually placed 

by designers in the game map and can be viewed as sampling since it only gathers data when 

they are triggered, losing all possible data executed between Listeners. 

Another recent work developed by Kang et al. (2017) gathers gameplay data from player 

interactions to analyze behavioral patterns. That work focuses on the learning aspect of the 

player by comparing interaction data with the various game objects to solve puzzles. However, 

the gameplay data gathering is restricted to only capturing interactions with certain objects and 

is not broad enough for performing other types of analysis besides the one proposed by the 

authors. 
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4.5 FINAL CONSIDERATIONS 

This chapter presented the concretization of PinG, a conceptual framework for game 

telemetry that tracks the actions and events alongside with their cause-and-effect relationships, 

through our concrete framework in Unity (PinGU). Our framework facilitates the process of 

tracking and storing provenance for data exploration and analysis. This provenance can aid the 

detection of gameplay issues, support developers for a better gameplay design, aid identifying 

game sections where players had issues and the reasons behind these issues. It can also be used 

for mining behavioral patterns from individual sessions or groups of sessions. We also showed 

the integration of PinGU in four different games with completely different styles to enable 

provenance tracking. 

Our novel concrete framework, which in contrast to the original PinG, is no longer a 

conceptual framework and actually provides implementations to track provenance data through 

PinGU. All the data management and graph generation are done automatically and without user 

interference. Designers need to import PinGU inside the project, attach the provenance classes 

in the respective objects, and create domain-specific tracking methods in the desired events. 

The more complex process is related to influences, which designers need to know a priori the 

possible causal relationships in order to correctly track them. 

However, tracking provenance data is only the first step in the analysis process. In the next 

chapter, we present our advances in the provenance visualization field through our visualization 

tool named Prov Viewer. Prov Viewer allows designers to perform exploratory analysis over 

the tracked provenance data through its interactive graph rendering. Our tool is fully compatible 

with PinGU and also with provenance data that is based on the PROV Model. 
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CHAPTER 5 – PROVENANCE VISUALIZATION 

5.1 INTRODUCTION 

Displaying game data is an issue in present times, bringing problems related to scalability 

when dealing with long game sessions or by having too many actors/players. Using provenance 

as a method of gathering game data only escalates this issue due to the richness and highly 

detailed data, generating huge quantities of data as a consequence. Although there are some 

tools in the literature for graph analysis (BASTIAN; HEYMANN; JACOMY, 2009; ELLSON 

et al., 2004; RIO; SILVA, 2007; SELTZER; MACKO, 2011), they are based on these simple 

node-link diagrams with only basic visualization features, such as labels and colors to 

distinguish edges and vertices, neighbor detection, and size for different intensities. However, 

using these simple node-link diagrams to represent provenance data can also harden the graph 

understanding when dealing with the wealth of information that can be contained in a single 

provenance node, even when using the different shapes to distinguish the information. 

Aside from graph visualization tools, there are also some scientific workflow systems 

that provide proprietary methods of displaying provenance data as well as standalone tools. 

Nevertheless, workflow management systems normally lack graph manipulation features for 

viewing provenance graphs and offers basic static views for the provenance data. On the other 

hand, the standalone tools offer limited interactive features but they were built for specific 

domains. 

Thus, we initially experimented with new methods to visualize provenance in the context 

of games (KOHWALTER; CLUA; MURTA, 2013). We developed an initial prototype for 

provenance visualization and used it on the SDM (KOHWALTER; CLUA; MURTA, 2011) 

game to assess whether provenance data visualization can be helpful in the understanding of 

game events (KOHWALTER; CLUA; MURTA, 2014). This prototype was also used in another 

application that extracts game provenance through image processing mechanisms (JACOB et 

al., 2014). Along the road, we decoupled our prototype from the SDM game and generalized it, 

thus allowing its use for general provenance visualization. 

In this chapter, we introduce Prov Viewer, a graph-based visualization tool that we 

developed for interactive exploration of provenance data that is compatible with the PROV 
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model. Prov Viewer11 processes the collected provenance data to generate an interactive 

provenance graph to provide advanced visualization features for identifying steps and 

contributors to a given result. 

The tool we present in this chapter is the result of several extensions and new techniques 

we developed to address issues encountered in different scenarios. We have designed new 

visual representations and interaction mechanisms that address many of the aforementioned 

challenges: (1) domain configuration, customizing the visualization for specific needs; (2) 

interoperability, supporting PROV-N for importing provenance data; (3) shapes, sizes, and 

colors, supporting a clear distinction of information types; (4) collapsing, highlighting the 

relevant information in the graph; (5) filtering, removing information that is not relevant for a 

given analysis; (6) graph merge, integrating the analysis of multiple trials, and (7) specialized 

layouts, organizing the graph in a more understandable way and using the game map as a 

background. 

 This chapter is organized as follows: Section 5.2 details our provenance visualization 

tool, Prov Viewer. Section 5.3 presents three different case studies using our tool. Section 5.4 

presents some of the related work in the area of provenance visualization. Lastly, Section 5.5 

provides the final considerations for this chapter. 

5.2 PROV VIEWER 

In this section, we describe our visualization tool for displaying provenance graphs: Prov 

Viewer (Provenance Viewer). Our tool is compatible with the PROV-N notation, allowing its 

adoption in different domains and applications. The provenance data, which contains the 

provenance information among entities and their relationships, is processed to generate a 

provenance graph. This graph is a visual representation of the provenance data and supports 

user interaction, which is a key feature for understanding how each action influenced in the 

outcome and how they influenced each other. It is also possible to manipulate the graph by 

omitting facts and collapsing chains of actions for a better understanding and visualization 

experience. No information is lost in this process so that the user can undo any changes made 

during analysis. 

                                                 

11 Prov Viewer is available at https://github.com/gems-uff/prov-viewer 
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Prov Viewer uses the PROV notation, where square vertices represent activities, circles 

represent entities, and pentagons represent agents. Furthermore, each vertex is composed of 

multiple attributes that describe the vertex. Each attribute contains a label and a value that is 

associated with it (e.g., startTime: 2012-05-25T11:15:00, endTime: 2012-05-25T12:00:00). 

The edges in the provenance graph represent the relationships between vertices. As such, 

activity vertices may be positively or negatively influenced by other vertices and have 

relationships with entities and agents.  

Before using Prov Viewer, it is necessary to configure it to understand the domain 

peculiarities and customize the visualization features. This is accomplished by creating a 

config.xml file based on the configuration schema of Prov Viewer. This configuration file 

allows the user to customize the graph visualization. Prov Viewer also has a feature for 

automatic detection and configuration for each edge type and color scheme, which represents 

most of the configuration effort of the tool, according to the graph being used. Note that the 

user needs to manually input specific parameters in the configuration XML file in order to use 

some of our tool layouts. However, this task is done only once for a new domain. 

Figure 27 shows the high-level architecture of our tool, illustrating some of its features that 

allow users to interact with the provenance data and identify relevant actions that impacted the 

results. The following sub-sections describe the most relevant features, including shapes and 

colors to distinguish information, manual collapses, graph merges, layouts, and automatic 

collapse.  

 

Figure 27: Prov Viewer's high-level architecture 
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5.2.1 DATA FORMAT 

Aside from the configuration XML file, Prov Viewer expects the gathered provenance 

data extracted from an application to be formatted using a simple XML Schema (input.xsd12). 

Prov Viewer is also compatible with the PROV-N format but it loses some of its features due 

to format restrictions and limitations when exporting the graph after manipulating it inside our 

tool. We describe Prov Viewer’s XML format for provenance data since PROV-N is already 

documented at the PROV website. The input XML contains the list of vertices and edges that 

represent the provenance data. An example using the input schema is illustrated by Code 6. 

                                                 

12 https://raw.github.com/gems-uff/prov-viewer/master/src/main/resources/Graph/input.xsd 

<vertices> 

 <vertex> 

  <id>ag01</id> 

  <type>Agent</type> 

  <label>Joao</label> 

  <date>0</date> 

  <attributes> 

   <attribute> 

    <name>Job</name> 

    <value>Senior</value> 

   </attribute> 

   <attribute> 

    <name>Level</name> 

    <value>1</value> 

   </attribute> 

  </attributes> 

 </vertex> 

 <vertex> 

  <id>ac01</id> 

  <type>Activity</type> 

  <label>Action</label> 

  <date>1</date> 

  <attributes> 

   <attribute> 

    <name>Role</name> 

    <value>Manager</value> 

   </attribute> 

   <attribute> 

    <name>Task</name> 

    <value>Aid</value> 

   </attribute> 

  </attributes> 

 </vertex> 

</vertices> 

<edges> 

 <edge> 

  <id>e01</id> 

  <type>Neutral</type> 

  <label>wasAssociatedWith</label> 

  <value>0</value> 

  <sourceid>ac01</sourceid> 

  <targetid>ag01</targetid> 

 </edge> 

</edges> 

Code 6: Vertex and Edge lists 
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For both vertex and edge, the “id” is a unique identification name and “type” represents 

the vertex’s category (activity, entity, or agent) and for edges, it represents the name of the 

relationship. The “label” is a human-readable representation that can also be used for sub-

typing. The “date” is related to temporal information and “attribute” is used to register vertex 

attributes aside from label and date that are accessed by color schemes. For the edge, “value” 

represents a numerical value associated with the relationship and is used to determine the edge’s 

color and thickness. Lastly, “sourceid” and “targetid” represent the relationship members. As 

the name implies, these vertices correspond to the source of the edge and its target. Prov Viewer 

uses this information to generate the graph’s vertices and edges. 

As previously mentioned, the graph vertices represent provenance concepts which are 

classified in Prov Viewer as agents, activities, and entities. Although PROV allows sub-typing, 

Prov Viewer always treats provenance concepts via their respective super classes. However, 

Prov Viewer allows vertices of the same type to contain different characteristics (in terms of 

extra attributes) without generating conflicts in the graph. Each vertex type has established 

characteristics, as described earlier, such as color and shape, which are defined by their type. 

However, their extra attributes can be different even when they belong to the same type, with 

the exception of the only two fixed attributes that all vertices have: label and date. 

5.2.2 SHAPE AND COLORS 

Prov Viewer builds its visualization strategy based on shapes and colors, for both 

vertices and edges. Shapes are used to map semantic concepts from the provenance and colors 

are used to map scalar values, such as intensity or orientation. The vertex shape is directly 

related to provenance semantics (i.e., agent, activity, entity), while the vertex color is used for 

mapping scalar values through the usage of a color scheme. When selecting the desired 

attribute, all vertices with the specified status have their colors changed according to their 

respective values. We adopt the traffic light scale (DIEHL, 2007), which indicates the status of 

the variable using gradients from three colors: red, yellow, and green. The resulting color is 

automatically inferred from the minimum and maximum values for that attribute or using 

boundaries manually specified by the user in the configuration XML file. Enabling this type of 

feature allows the user to easily identify situations where the desired attribute value fluctuates 

throughout the data. 

Both the edge shape (i.e., thickness) and its color are used to show the intensity of the 

relationship. The intensity is the value associated with the edge, if any, and is more common 
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on influences (i.e., wasInfluencedBy). A thin edge with a darker color represents a low influence 

relationship (i.e., the assigned value to the edge is low). On the other hand, thicker and brighter 

edges represent a strong or intense relationship. Figure 28.a shows an example of edges with 

different colors and thickness and Figure 28.b shows the vertex color based on their time values 

(also represented by columns). This feature can be used to quickly identify strong influences in 

the graph just by looking at the edge’s thickness and brightness. The edge’s color is also used 

to represent any additional numeric information contained in the relationship (e.g., influences 

that has numeric data), which can be any of these three types: positive, which is represented as 

green and indicates an increase in the numeric value (i.e., when the edge has an associated 

positive value); negative, which is represented as red and indicates a decrease; and neutral, 

which is represented as blue and indicates no numeric chances. 

 

Figure 28: (a) Original graph; (b) graph with a color schema; (c) collapse of two activities; (d) collapsing 

of the agent's activities; (e) graph c after another collapse, and (f) temporal filter 

5.2.3 COLLAPSE AND FILTERS 

Our tool provides a vertex collapse feature to aid in the analysis of the graph and allows 

for a manual collapse of selected vertices in order to compact the graph size, grouping the 

selected vertices together in a single summarized vertex. No information is lost in this process 

and it can be reverted by the user. Figure 28.c shows an example of collapsing activity vertices. 

The grey markings represent vertices before the collapse and the grey arrow represents where 

they were collapsed to. Another usage of the collapse feature is to group activities related to the 

same agent, allowing the user to see all the influences and changes that the agent did throughout 

his tasks. Figure 28.d illustrates this example. The size of the collapsed vertex is bigger than 

the rest due to the number of vertices in the collapse group (and is proportional to the number 
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of vertices). Furthermore, the shape is the same as that of an agent vertex because there is an 

agent vertex in the collapse group. 

The summarized information is displayed as follows: For String values, it shows all 

different values separated by a comma (e.g., String_Value1, String_Value2, String_Value3). 

For attributes with numeric values in a collapse group composed of two vertices, the tool shows 

the average value for that attribute followed by the minimum and maximum values. Otherwise 

(collapse group containing more than two vertices), the tool displays the average value followed 

by the five-number summary (minimum value, 1st quartile, median, 3rd quartile, maximum 

value).  

Similar edges (i.e., same type) that have the same target and type are also grouped 

together when collapsing vertices. The collapsed edge’s information (i.e., color, thickness, and 

value) is computed by summing or averaging the values of the participating edges, depending 

on their type. For example, Prov Viewer can use the sum function for edges representing 

expenses and the average function for edges representing a percentage. However, the user needs 

to parameterize each edge. Otherwise, the tool will always use the default sum function.  Figure 

28.e shows an example of collapsing edges that occurred when collapsing another group of 

vertices after collapsing the vertices in Figure 28.c. Note that the colors for each edge changed 

after the collapse due to the new maximum value (from the sum of the collapsed edges). 

The tool also offers another way to filter vertices based on temporal information. The 

user defines the desired temporal range (e.g., start time and end time) for visualization and the 

tool hides all vertices that are outside the selected range. Figure 28.f shows an example of the 

temporal filter, hiding vertices from Figure 28.a with time (which can be seen by the rows) 

greater than four and less than two. Prov Viewer also has an edge filter, which filters edges by 

context (i.e., label) or by the type of relationship. 

5.2.4 GRAPH MERGE 

Our provenance visualization tool also proposes a feature based on Koop et al (2013) to 

merge two provenance graphs in order to generate a single unified provenance graph. The 

merge process combines the currently displayed graph with another graph, chosen by the user, 

to generate a single unified graph for visualization and storage. The merge process is composed 

of four steps: (1) vertex matching, which selects pairs of vertices from the graphs; (2) similarity 

verification between vertices, which receives two vertices from the first step and informs if they 

are similar. Vertices are considered similar if they belong to the same vertex type and have the 
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same properties with similar numeric values within a configurable margin of error; (3) merge 

of vertices that were considered similar in the previous step; and (4) creation of the unified 

graph for visualization, which only occurs after the matching process is over. The resulting 

graph can be exported using the PROV-N notation for future usage. 

Figure 29 illustrates the graph merge of two distinct graphs from the same domain. Red 

vertices in the merged graph (Figure 29.c) belong exclusively to the first graph (Figure 29.a), 

while grey vertices represent common vertices (i.e., merged vertices) from both graphs, and 

green vertices belong exclusively to the second graph (Figure 29.b). This graph merge feature 

is useful when analyzing multiple sessions or trials by detecting common sections. Merged 

vertices from this feature also provide similar summarized information using the five-number 

summary. 

 

Figure 29: Two graphs (a and b) merged into a single graph (c) and with a temporal layout (d) 

5.2.5 GRAPH LAYOUTS 

Our visualization tool allows the user to interactively change the graph layout to better 

visualize the result. We created two provenance graph visualization layouts: temporal and 

spatial.  

The temporal layout organizes the graph in a chronological order similar to a timeline 

(or spreadsheet) for each agent. Thus, each timeline (or line) of the graph groups activities of 

the same agent and each column in the graph represents the passage of time. This makes easier 

to know the entity or agent responsible for executing each activity by just looking at the agent 

responsible for that line. Thus, the graph positions the vertices in the x axis according to the 

chosen scale. Figure 29.d illustrates an example of our temporal layout, displaying the graph 

similarly to a spreadsheet and organizing the vertices in their chronological order. Note that 

now it is much easier to identify the agent responsible for each activity as the leftmost nodes 

and their chronological order by looking at the activity's placement in the graph. The horizontal 

position represents the time axis (passage of time) and the vertical position represents the agent 

axis (the responsible for the activity). 
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The spatial layout organizes the vertices in the graph by their spatial coordinates and can 

be used for spatial or georeference the data. This is particularly useful for corresponding 

elements with other graphical representations, such as a map of a city or a game scenario. When 

using the spatial layout in conjunction with a background image, the user sees where each event 

occurred just by looking at the graph's placement in the image. This layout also supports the 

usage of an orthographic image or maps taken from Google Maps and OpenStreetMaps as 

background for the graph. When dealing with real world maps, Prov Viewer automatically 

transforms the latitude and longitude to pixel coordinates. 

5.3 CASE STUDIES 

Prov Viewer was initially designed for the digital games domain. In the game domain, 

our visualization tool was used for the analysis of game sessions of five different games (SDM, 

Super Mario World, Unity's Tower Defense, Unity's Angry Bots, and Unity's Car Tutorial). We 

will cover only two of these five case studies of our visualization tool. However, since we 

decided to generalize our visualization tool, we also present an additional case study in another 

domain just to demonstrate that Prov Viewer is generic enough for general provenance viewing. 

This last case study is from the urban data domain, which we used our tool to analyze bus traffic 

data from the city of Rio de Janeiro. In the following sub-sections, we present all these four 

case studies of our visualization tool.  

5.3.1 CAR TUTORIAL 

The first case study is the Car Tutorial from Unity asset store, previously discussed in 

Chapter 4. We can use the car's coordinates on the track to plot the graph so that it is possible 

to visualize where the player was when the action was executed. This visualization also allows 

the designer to quickly identify which sections of the track the player had trouble. Thus, we can 

take advantage of spatial-referencing the data during the provenance visualization. We used a 

screenshot of the game map taken by our camera module with resolution of 1070x802.  

Figure 30 shows the provenance graph of one game session, using the car's coordinates 

and the track's picture as background. This graph is composed of 169 vertices and 867 edges 

extracted from a 107-second game session, which represents one complete lap in the track. The 

vertices are colored according to the car's speed (gradient from white when close to zero and 

green for high values) and the visible edges are the speed delta between vertices.  
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Figure 30: Spatial referencing provenance data using a vertex-coloring schema according to the car speed. 

We can quickly identify sections of the track that the player may have had issues, either 

by reducing the speed too much or by crashing, by just looking at the plotted graph in the race 

track. As an example, Figure 31 shows a zoomed section of the graph to better illustrate the 

reasons behind a car crash. The zoomed section of the graph has a different vertex-coloring 

scheme to differentiate events. By analyzing it, we can see that the car crash (red vertex) was 

influenced by two factors. The first one was on the previous curve, where the car lost contact 

with the ground (purple vertex with a blue edge linking the crash) after passing through the 

rumble strips at the end of the maneuver, thus preventing the player to prepare for the following 

turn. The second reason was that the player was too fast, as indicated by the red edge from the 

blue vertex, which is a reduction of the car's turn rate due to high speed. 

 

Figure 31: Influences behind a car crash showed using a different coloring schema to differentiate events. 
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Using the provenance from other laps of the race, we can begin to detect patterns during 

the game session or even compare the player's performance between laps. This analysis can 

also be extended to different game sessions by comparing the generated provenance graphs. 

Figure 32 illustrates an example of the generated provenance graph when gathering data from 

multiple laps during a single play session, enabling the designer to detect behavioral patterns 

and locations where the players are struggling the most. For example, Figure 33 shows a section 

of the track that is characterized by having multiple curves in the track. We can see the player's 

performance during each lap of the race, where each lap is represented by a different edge color. 

The first, second, and third laps are presented by red, green, and blue edges, respectively. 

Moreover, the first and last vertices of each lap are marked with circles of the same color as the 

edge and the timestamps are represented by the yellow numbers beside the vertex. As we can 

see, the player had approximately the same speed in all laps due to the same shade of green 

when entering this section of the track. However, the player took 15 seconds to pass through 

this section of the track on the first lap (52 - 37), 17 seconds during the second lap (131 – 114), 

and 10 seconds on the third lap (200 – 190).  

 

Figure 32: Provenance graph from multiple laps. 
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Figure 33: Zoomed section from yellow rectangle on Figure 32. 

By analyzing Figure 33, we can see a purple edge connecting vertices 47 to 49 that 

represented the reason behind the crash in the first lap (marked by the purple circle). This purple 

edge represents a cause-and-effect relationship, showing that the crash happened because the 

player passed through rumble strips (brown circle) and, as a result, lost car stability, could not 

complete the turn. Furthermore, notice the steep angles the player had to make due to his 

positioning in each curve. During the second lap (green edges), the player tried to avoid the 

crash by reducing speed. However, the player reduced too much speed to enter the second curve 

(white-green vertices). During the third lap (blue edges), the player managed to improve his 

performance and avoid any crashes by better positioning the car before each curve and thus 

reducing the necessary angle to make the turn while maintaining a nearly constant speed. 

5.3.2 ANGRY BOTS 

We conducted a second case study using a very different style of game, called Angry 

Bots, also from the Unity asset store, as presented in Chapter 4. In the available scenario, the 

player must face enemy robots and interact with the environment in order to complete the level. 

Figure 34 illustrates one of the possible visualizations of the provenance data gathered from an 

Angry Bots session, showing the vertex visualization scheme for the player's health attribute 

value (vertex color using a traffic light scheme) and the edges that influence on it (green and 

red edges) as the game progresses. Blue vertices represent other characters in the game 

(enemies), blue edges represent the chronological order of events, and green edges represent 

player’s health generation due to his passive regeneration ability. By analyzing Figure 34, we 
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can see the chronology of events, regions visited by the player, sections where more action 

happened, places where the player engaged in battle, and when the player suffered heavy health 

loss. 

 

Figure 34: Picture of the entire graph. Vertex coloring based on player’s Health attribute. 

Considering that the player recovers health periodically, it is possible to infer that the 

cause of some deaths was the rush through the level without waiting to recover health or because 

of a tough enemy. Figure 35 illustrates the first case, where the player tried to rush through the 

game without waiting to regenerate the player’s health, lost from previous battles. The dashed 

blue arrows were added to the figure to highlight the player's general movement and do not 

belong to the provenance data. 
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Figure 35: Player's health when trying to rush the game. 

 

 

Figure 36: Sequence of events of the player exploring a section of the map and confronting an enemy. 

After the player engaged an enemy in a major battle, which the player didn't leave 

unscathed by looking at the orange vertices, the player continued advancing through the level. 
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Then, on the player’s third major engagement, where the player was still wounded by looking 

at the orange vertices, the player lost most of the remaining health, as illustrated by the 

following red vertices. Even though the player was low on health, he managed to dispatch his 

enemies on the forth battle without losing a single health point (no red edges). However, the 

player continued pressing on without resting, which would allow for him to gradually restore 

the lost health points before the next engagement, until dying on the next battle when the player 

got hit by the enemy (Battle #5).  

Figure 37, Figure 38, and Figure 39 illustrates the second case, showing the sequence 

of events that led the player to a tough engagement (Figure 39). By analyzing the picture, we 

can see that the player started these events with good health (green vertices in Figure 36), 

leaving the first battle slightly injured (yellow vertex). A few moments later he encountered 

another enemy in a side room (Figure 37), where once again he overcame the enemy with only 

minor wounds (the vertex is still yellow). However, just when he left the room, the player was 

ambushed by another enemy that was patrolling the corridor (the new blue vertices in the 

corridor from Figure 38). This enemy was a mech, which is much tougher than a regular enemy 

(notice the high number of dark red edges that represent player doing damage to the enemy). 

This battle resulted in the player’s death after getting hit by two rockets (Figure 39) followed 

by his resurrection shortly after (green vertex in the bottom of Figure 38 that is linking the green 

edge to a red vertex). 

Figure 40 illustrates the moments when the player died, which are marked by red 

circles. Meanwhile, the orange circles illustrate the player "refreshed" state after resurrecting, 

 

Figure 37: Continuation of the sequence of events from Figure 36 with the second engagement inside a 

room. 
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as well as the resurrected location. Both situations have a green edge linking the player’s death 

to the resurrection, which shows that his health went from zero (red vertex) to maximum (green 

vertex) after resurrecting. Notice that the player died three times trying to beat the mech enemy 

from Figure 38 before finally defeating it. 

 

Figure 38: Continuation of the events from Figure 37 that led the player to a tough confrontation that 

resulted in his death. 

 

Figure 39: A zoomed section from Figure 38 showing both the moments the player was hit by the enemy’s 

rockets. Filtered to show only the edges that affected the player’s Health. 

 

Figure 40: A filtered graph showing the moments the Player died and was resurrected. 
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5.3.3 BUS TRAFFIC 

The third case study is based on bus traffic data analysis in the city of Rio de Janeiro, 

which we use to show that Prov Viewer is able to handle provenance outside the gaming 

domain. The data used in this research, which includes geographic location tracked from the 

buses' GPS, are obtained from public JSON files at DataRio13. Prov Viewer was used in this 

context to render the data for analysis, allowing the research team to understand the wealth of 

tracked information. Our tool allows for filtering the data to focus on specific buses or relate 

the bus delays with ongoing events in the city through their geographic location, speed in the 

region, and timestamp.  

 

Figure 41: Provenance Graph rendered on Prov Viewer from collected bus traffic data over a partial map 

of Rio de Janeiro city from Google Maps. 

Figure 41 illustrates one of the possible visualizations of the provenance data using Prov 

Viewer. The graph contains 601 vertices and 600 edges. The displayed graph uses a color 

schema based on the bus speed. Therefore, the vertices, which represent on-line GPS 

information tracked from buses at every minute interval, are colored from red to green 

according to their instantaneous speed, while the blue edges link these vertices in a 

chronological order. Note that the displayed graph is showing bus data from nine different buses 

from the same route within a period of two hours.  

                                                 

13 DataRio: http://data.rio/dataset 
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In the graph from Figure 41, we can see the buses routes through the city and their 

respective speeds along the way. Furthermore, we can see that the traffic is better in the region 

near "Botafogo" due to the high concentration of green vertices than "Urca" and "Copacabana". 

This type of graph visualization allows the user to quickly identify the streets where the buses 

moved slower due to traffic by finding regions in the graph with reddish vertices. Moreover, it 

is also possible to better understand the extension of the traffic jam and the affected areas by 

crossing the displayed graph with a graph from another route (e.g., merging the graphs) that 

also use segments of the same street. Furthermore, it is possible to analyze each bus separately 

and their progression in the map by using the visualization features presented in this chapter 

and previously shown in the other case studies. 

5.4 RELATED WORK 

The related work can be grouped into two categories: workflow management systems that 

have built-in provenance visualizations and standalone provenance visualization tools. The 

workflow management systems that have built-in provenance visualizations (ALTINTAS et al., 

2004; CALLAHAN et al., 2006; HULL et al., 2006) allow for easy integration between 

provenance collection and analysis. However, they have a shortcoming of not supporting 

provenance data generated by other workflow management systems or standalone provenance 

gathering tools, even when they are compatible with well-known provenance models. 

Furthermore, workflow management systems normally lack graph manipulation features for 

viewing provenance graphs. 

On the other hand, standalone provenance visualization tools are closely related to our 

work. Provenance Explorer (CHEUNG; HUNTER, 2006) takes RDF-based provenance outputs 

from gathering systems and dynamically generates customized views of provenance trail. 

However, it focuses on provenance data and inference rules associated with processing events 

in a laboratory or manufacturing plant, lacking the support for data processing activities in the 

digital domain. Furthermore, their collapse feature only supports one expansion level, instead 

of multiple levels of detail. 

The ZOOM (BITON et al., 2008) prototype provide users with an interface to query 

provenance information generated by a workflow system through SQL queries. An interesting 

aspect is that it allows the user to dynamically modify the graph by hiding irrelevant 

information, updating the provenance graph for the new view.  
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PROV Toolbox is another existing approach, which converts W3C PROV data model 

representations. However, it lacks a built-in visualization and requires the use of a generic graph 

tool (Graphviz) to visualize the provenance data.  

Another similar tool is PROV Translator, which validates PROV representations and 

translates them to other representations. It also provides graph visualizations based on their 

previous work (EBDEN et al., 2012), which displays a provenance graph using PROV's vertex 

shape and color to identity the vertex type.  

The PROV-O-Viz (HOEKSTRA; GROTH, 2014) tool is a web-based visualization tool 

for provenance based on PROV that uses Sankey Diagrams for visualization. Sankey Diagrams 

are used to visualize flow magnitude between nodes in a network and in PROV-O-Viz the 

activity or entity width is based on the information flow. 

Some related work is limited to specific domains (i.e., Provenance Explorer), require 

additional knowledge (i.e., ZOOM, PROV-O-VIZ), or are not compatible with provenance data 

from other tools (i.e., Kepler, VisTrails, Taverna). Nevertheless, they individually provide some 

interesting features, such as interactive graphs, level of detail, summary nodes, merges, and 

filters. However, these approaches do not provide these features in an integrated way, hindering 

the analysis due to visualization and manipulation restrictions, which sometimes require 

additional external procedures. Moreover, they lack any means of overlaying provenance 

information onto a spatial structure for analysis. 

5.5 FINAL CONSIDERATIONS 

Graph visualization strategies bring problems related to scalability when dealing with 

provenance datasets beyond a few hundred nodes, which is common in games. Traditional 

node-link diagrams to represent game sessions can easily become too visually cluttered when 

dealing with huge quantities of data, limiting the user’s ability to thoroughly analyze and 

explore the data. To deal with this problem, Prov Viewer offers collapse options that can 

generate different levels of detail and graph layouts to sort the data and reduce node clustering. 

Prov Viewer also has some basic automatic collapses based on vertex similarity and graph 

merges, allowing users to omit data and combine different graphs for analysis. Other 

contributions include the merging of PROV-N data from different files and georeferencing 

capabilities for provenance information. 

Our tool can be configured and used by different provenance applications as a general-

purpose provenance visualization tool since it supports graphs that use the PROV-N notation. 
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Prov Viewer also supports pre-processing steps, which can be done outside the tool, as long as 

the final data format is compatible with PROV-N or the tool’s unique notation. We showed four 

case studies from different domains: three analysis of digital game sessions and one analysis of 

bus traffic data. 

Game sessions can generate huge graphs depending on the number of actions executed or 

how long it lasted. This huge quantity of data can provide visualization challenges due to the 

overwhelming size of information, impacting in the ability to understand and analyze the 

contents of the graph. Thus, in the next chapter, we present three different summarization 

techniques based on clustering that can reduce the provenance graph by hiding unimportant 

data. We also provide two detailed evaluation of our summarization algorithms. 
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CHAPTER 6 – PROVENANCE SUMMARIZATION 

6.1 INTRODUCTION 

Depending on the usage context, the amount of tracked game data can reach huge sizes, 

affecting negatively the capability of analyzing game data and often requires processing the 

collected game session data. Depending on the game style, a single game session might take 

several hours to be completed. This results in an overwhelming quantity of displayed data, 

making the analysis difficult for the developer due to the large volume of tracked information. 

The existing approaches for game telemetry use information clustering as a reducing 

technique to deal with visualizations of large quantities of tracked game data. Common 

clustering techniques involve density clustering (SANDER et al., 1998), which create clusters 

based on the information distribution in a region, and hierarchy clustering (SIBSON, 1973), 

which uses the notion of proximity through a distance metric and a distance function. However, 

both methods consider spatial information for clustering, ignoring temporal relationships when 

summarizing data. Thus, the sequence of events is lost in the process, favoring the perspective 

of information distribution in the game scene.  

Therefore, in this chapter we propose three collapse algorithms based on DBSCAN 

(ESTER et al., 1996), a popular density clustering algorithm, to summarize tracked telemetry 

data that considers the sequence of events instead of their spatial information. This helps to 

manage the volume of data and lets the users focus on events that may be more important than 

others. These collapses reduce the volume of displayed information by hiding part of the data 

that were not significant enough to produce a meaningful impact on the game and did not offer 

any useful information for analysis. As the proposed collapses preserve the sequence of events 

and consider temporal information instead of using spatial information to group nearby vertices, 

designers can still track the player's progress in the game and easily identify noteworthy regions 

that had a meaningful impact in the game. While our approach (KOHWALTER; MURTA; 

CLUA, 2018) focuses on game analysis, we believe that our solution may be useful to many 

other systems that collect big data and relationships among them. 

The overall goal of this chapter is to answer the following research question in relation 

to the three proposed algorithms and the existing DBSCAN algorithm:  

RQ: Which type of similarity summarization is an effective method for reducing the 

information to be analyzed? 
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We implemented our approach in the open-source tool Prov Viewer (KOHWALTER; 

CLUA; MURTA, 2013), which displays game telemetry data collected with the PinG 

(KOHWALTER; CLUA; MURTA, 2012) framework. Prov Viewer shows the collected 

telemetry data as a provenance graph (MOREAU; MISSIER, 2010), where vertices represent 

the events and edges represent the chronological order in which these events were executed. 

We evaluated our algorithms within two experiments: (1) an automatic experiment to obtain 

quantitative results and (2) a manual experiment involving human judges to obtain qualitative 

results.  

The rest of the chapter is organized as follows. Section 6.2 presents our approaches for 

hiding irrelevant information through collapses. Section 6.3 describes our evaluation 

methodology. Section 6.4 presents our automated evaluation, while Section 6.5 presents an 

evaluation using experts in the field. Section 6.6 presents the related work in the area of game 

session analysis, along with their clustering techniques. Finally, Section 6.7 provides final 

considerations of this chapter. 

6.2 SIMILARITY COLLAPSE 

As previously discussed, game sessions may generate large quantities of data, making it 

difficult for designers to visually explore their telemetry results. However, as multiple 

consecutive telemetry data actually represent subtle variations of the game state, they can be 

collapsed, keeping only the most relevant data. These remaining telemetry data actually 

represent relevant variations in the game state according to specified game attribute. 

Our approach aims at reducing the volume of displayed information by summarizing 

the tracked data. In order to accomplish the summarization and to respect the sequence of 

events, the raw data must be structured as a graph, with vertices representing the events and 

edges representing the chronological order in which these events were executed. 

Figure 42 illustrates an example from Angry Bots where the player experienced two 

distinct battles against different enemies, with each battle being represented by a yellow box. 

The blue edges represent the chronological order of events, while the red edges represent 

moments when an enemy hit the player. Vertex positioning also represents the timeframe (from 

left to right) and vertices within the same column mean that they occurred at the same time slice 

(e.g., within the same 1-second window when using seconds as the time scale for visualization). 

Each vertex in the graph represents the execution of an action. The vertex color is proportional 

to health value, which ranges from green (high health) to red (low health). In the first battle, 
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there are zero red edges connecting the player's vertices. Therefore, the player managed to 

dispatch the enemies without taking any hit. However, in the second battle, the player struggled 

to overcome his enemy and lost a large amount of health, which is reflected by the vertices 

colors.  

 

Figure 42: Two battle examples, each marked by a yellow box 

If we are interested in analyzing the player’s challenges, then we should focus on 

sections where the player struggled to overcome or had significant changes in the game state. 

As such, all instances that the player's hit points did not change or barely fluctuated are not 

relevant to the analysis, which happens to be the case of the player's first battle. Therefore, we 

can omit all vertices in the graph that have similar values with their neighbors by doing a 

collapse based on similarity. In the example illustrated at Figure 42, it would mean collapsing 

the first fight entirely and grouping some of the vertices from the second fight that shares the 

same color, resulting in a graph similar to the one illustrated by Figure 43. 

 

Figure 43: Graph from Figure 42 after the similarity collapse. 
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In order to achieve the graph from Figure 43, it is necessary to compare each vertex with 

its neighbor, which is connected by an edge, to omit similar states. If the vertices’ values are 

similar for the specific game attribute being analyzed, they can be collapsed into a single vertex. 

Since the objective is to omit all similar states, it is necessary to go beyond the vertex first 

neighbor. If any of the vertices in the collapse group have an edge to a vertex outside of the 

collapse group and that vertex has a similar attribute value to those in the group, then it is added 

to the collapse group. Thus, the collapse group will keep growing until a significant change of 

state is detected.  

We initially considered using Dimension Reduction algorithms (FISHER, 1936; F.R.S, 

1901) to achieve this type of information reduction. However, Dimension Reduction works by 

removing the data and can lead to information loss if not handled with care, which results in a 

loss of flexibility when manipulating and examining the game data during visual exploratory 

analyses. Thereby, we decided to use density clustering algorithms to achieve this information 

reduction while at the same time maintaining the flexibility to manipulate and handle the data 

since the information is only clustered and not removed. Thus, the analyst can easily expand a 

cluster to explore the collapsed data. Furthermore, clustering algorithms can be used to create 

different levels of detail through successive clustering of the game data, enabling different 

overviews of the tracked data. 

Similarly, we also considered using spatio-temporal clustering algorithms as a basis of 

our heuristics. However, there is no significant difference between density-clustering 

algorithms to spatio-temporal clustering algorithms since the spatial and temporal variables can 

be easily inserted in the distance function. This is basically what the ST-DBSCAN (BIRANT; 

KUT, 2007) and other similar spatio-temporal algorithms do.  

We propose the usage of DBSCAN clustering algorithm as a basis to achieve this type 

of collapse, using the distance function to determine the similarity between vertices. Since 

provenance graphs are commonly composed of vertices with two or three neighbors, we had to 

discard the density parameter in order to use this type of clustering algorithm. In the DBSCAN 

algorithm, the similarity between values is then defined by the epsilon (ε) parameter, which is 

used by the distance function (e.g., Euclidian distance). This epsilon must be related to the 

attribute (or attributes) being used for analysis and be an absolute value. Furthermore, the 

DBSCAN algorithm decides if neighboring vertices should belong to the same collapse group 

by comparing their distances (e.g., values) with the epsilon. Note that a vertex is only a neighbor 

of the collapse group if it has an edge connecting it to the group. As such, the collapse group 
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only expands through the edges that connect the vertices in the graph and, therefore, the 

temporal sequence of events is always preserved because a collapse group can never be a 

disconnected sub-graph. 

When taking out the density parameter from DBSCAN, the clustering algorithm could 

face situations where it would collapse the entire graph in a single node when vertices had small 

and gradual variations in their values (e.g., crescent graphs, monotonic graphs). To mitigate this 

problem, we propose an adaption for the DBSCAN, named as IC (inter-cluster verification), 

to extend the heuristic that defines the collapse groups. Instead of comparing only with the 

closest neighbor (in the case of graphs, the direct neighbor), the comparison would also be made 

with the entire group due to small variations that each vertex can have in its value without 

causing a change of state. Thus, the epsilon must be checked against the group’s minimum and 

maximum values before adding new vertices. If adding new neighbor results in a difference 

between values greater than the epsilon, then it is marked as a change of state and the vertex is 

not added to the group, possibly implying in the creation of a new group with this new vertex 

and the similar ones. This modification limits the cluster growth through a distance restriction, 

imposing a variance limitation on the range of possible values by always comparing with the 

farthest member of the cluster instead of only the direct neighbor. Therefore, this heuristic 

avoids creating a single cluster when the data contains monotonic behavior. 

To better formalize this process, consider G = (V,E) as a directed graph where V = {v1, 

v2, ..., vn} | vi, 1  i  n, represents an event related to an element of the game (e.g., player or 

enemy) and E = {e1, e2, ..., em} | ej = (u, v), 1 ≤ 𝑗 ≤ 𝑚, u  V, and v  V, represents the influence 

of an event into another, which indirectly indicates the chronological order of events in the 

game. Furthermore, consider that A = {a1, a2, ..., ak} | al, 1 ≤ 𝑙 ≤ 𝑘, represents a numeric 

attribute used for analysis of each vertex. Moreover, consider S to be a similarity collapse set 

of connected vertices for a specific attribute and min(S, a) and max(S, a) as the minimum and 

maximum values for the attribute a  A considering all vertices in the collapse group S. A new 

vertex x  V is added to a collapse group S if and only if abs(max(S  {x}, a) – min(S  {x}, 

a)) < ε. This change is made only in the distance function inside the neighborhood query, which 

is responsible for returning all reachable points within the epsilon restriction, according to the 

DBSCAN algorithm. Thus, instead of comparing the distance with only the direct neighbor, the 

IC variant of the DBSCAN algorithm considers all the vertices already in the collapse group. 

For example, consider G = (V,E) where V = {v1, v2, v3, v4, v5} and E = {(v5, v4), (v4, v3), 

(v3, v2), (v2, v1)}. All vertices have only one attribute with the same value, but v3 that has the 
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double of the value of the other vertices. Let us define the epsilon to be one standard deviation 

of the vi values. By running the IC variant, it would return three disjoint sets: S1 = {v1, v2}, S2 = 

{v3}, and S3 = {v4, v5}. The reasoning for this is: first, it adds v1 then v2 to S1. When trying to 

add v3 to S1, the difference between values is greater than the established threshold. Thus, v3 is 

not added to S1. Since v2 has no incoming neighbor beside v3, no other vertex is added to S1. 

The same happens when evaluating v3 against v4 and thus only v3 belongs to S2. When starting 

with v4, the algorithm inserts v4 in S3 and evaluates v5. Since the difference between v5 and v4 is 

lesser than the epsilon, v5 is added to S3. Because v5 has no other neighbor, the algorithm ends 

and returns S1, S2, and S3. By using the proposed modification, nearby vertices in the graph that 

have similar values are collapsed into a single vertex, reducing the graph’s overall size by 

creating clusters of similar information.  

However, the IC variant might not be useful when the data distribution is more erratic 

but controlled in some sort, containing sections of very close vertices (e.g., 1.01, 1.0095, 1.015, 

1.02) and others that are more distant from each other but still orbit around some value (e.g., 

20, 24, 19, 22). Thus, we also propose the VE (Variable Epsilon) adaptation to be incorporated 

in the DBSCAN: instead of using a single universal epsilon to define the collapse sets, each set 

defines its own epsilon and then adapt it as the set grows in size. Thus, each set initially uses 

the universal epsilon until it reaches a certain size. After reaching the size threshold, each set 

computes its own epsilon based on the current members of the set. This set epsilon is then used 

for further insertions in its respective set and each set have their own epsilon based on their 

members. If a new element is inserted in the set, then that set’s epsilon is recalculated based on 

its members, including the newest one. This allows for each set to only have members that orbit 

around the cluster’s defined epsilon and allow each cluster to have its own defining 

characteristic that can be completely different from another cluster. However, since the epsilon 

can change as the set grows, then in a way it would be adapting accordingly to its surroundings, 

providing a controlled variation of its own epsilon. For the first prototype, we based the epsilon 

on standards deviations of the values from all members of the collapse set, including the new 

additions, which will provoke slight variations in the epsilon. However, the bigger the set, the 

lesser impact the new additions will have in the set’s epsilon. 

These two new variants described above (IC and VE) can also be incorporated together 

in the DBSCAN, generating three different variants: (1) inter-cluster verification with a fixed 

epsilon (IC), (2) no inter-cluster verification with a variable epsilon (VE), and the combination 

of both, resulting in (3) inter-cluster verification with a variable epsilon (ICVE). The ICVE 
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(Inter-Cluster verification with a Variable Epsilon) adaptation provides, even more, cluster 

growth control since new members need to be within epsilon distance of the farthest member 

of the cluster. However, it also allows for each cluster to have its own characteristic, creating a 

more knit group of likeness. Furthermore, we defined the initial epsilon to be based on the 

standard deviation of the attribute values from the graph being analyzed. Similarly, the 

algorithms with variable epsilon also updated their epsilon values based on the standard 

deviation of the cluster. Figure 44 shows a simple example of the different clusters generated 

over a linear graph by each of the presented variants (i.e., IC, VE, ICVE). 

 

Figure 44: Example of the three clustering variants in action. 

6.3 EVALUATION METHODOLOGY 

In this section, we assess the proposed clustering algorithms for provenance graphs and 

determine which is the most appropriate algorithm to meet our goals. The algorithms try to 

detect similar sequences and summarize them into a single collapse, shrinking the graph to 

show only vertices that are semantically different from each other. Each adaptation proposed in 

this chapter accomplish this feat in different ways.  

We elaborated two distinct experiments in order to answer our research question (RQ: 

Which type of similarity summarization is an effective method for reducing the information to 

be analyzed?): (1) an automated experiment and (2) an experiment with human judges. The 

experiment with human judges uses graphs from the automatic experiment and real provenance 

data from a single game session. These two experiments assess the usage of the DBSCAN 

algorithm and its three variations to summarize provenance data. In both experiments, we are 

evaluating the effectiveness of all three clustering algorithms in terms of graph reduction and 

semantic preservation using the DBSCAN algorithm as a baseline. We used a synthetic oracle 

in the first experiment to automatically evaluate each algorithm through precision, recall, and 

F-measure (RIJSBERGEN, 1979) metrics. The F-measure is the harmonic mean of the 

precision and recall metrics. A synthetic oracle is an artificially created oracle for generic graph 

https://en.wikipedia.org/wiki/Harmonic_mean


113 

 

clustering. This allows us to measure the effectiveness of each algorithm in a broader aspect, 

using thousands of graphs for the evaluation.  

However, due to the synthetic nature of the experiment and the very individual nature 

of the definition of “what is the best summarization”, we also devised a second experiment that 

uses a smaller set of graphs to evaluate the four algorithms. Unlike the first experiment, which 

uses a synthetic oracle, the second experiment uses human judges to decide which algorithm is 

the most appropriate for each situation. However, we need to use a smaller set of graphs due to 

time constraints and to avoid burnout of the judges. Nonetheless, in both experiments, we 

evaluated different types of provenance graphs and two different numeric behaviors: (1) random 

noise and (2) monotonic noise. 

In a brief study, we narrowed down the types of graphs that provenance information can 

be produced based on different game genres into three categories: (1) Directed Acyclic Graphs 

(DAG), (2) Tree Graphs, and (3) Linear Graphs. DAG is the most common form of provenance 

graph. Role-playing games, action, racing, sports games, and any other game with multiple 

actors will generate a DAG graph. However, provenance graphs can also result in a tree-graph 

under special occasions. For example, a provenance graph can be a tree when the information 

is still being gathered or when analyzing the provenance data from multiple sessions at the same 

time to know how and where each player experience diverged. Lastly, the provenance graph 

can be a linear-graph when only one agent/actor is involved and past actions have no influence 

on the current action, besides the most recent one. Games that might generate a linear-graph are 

puzzle games. Linear graphs can also be generated when there are multiple agents but they do 

not interact with other agents. When this occurs, the resulting graph will contain multiple 

disconnected linear graphs. Lastly, analyzing game data strictly from a single actor might 

generate a linear graph. 

Each graph category was based on a template (a graph of the clustering result) and 

different graphs were generated through the addition of noises in order to verify if the algorithm 

would correctly omit these added elements through collapses. These templates were based on 

already known graphs for each category being evaluated in this experiment and represent the 

most common graph structures that can be achieved from real tracked provenance data from 

games. The template vertex values were randomized, following a uniform distribution with 

integer values ranging from negative to positive values, thus simplifying mathematical 

calculations and minimizing numerical precision errors. Moreover, each template vertex also 

represents a collapse resulting from the ideal clustering and its value may be seen as the median 
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of the cluster. The inserted noise vertex act as a reverse engineering of the collapse, where each 

inserted noise would represent an element that belonged to the same collapse as the template 

vertex. Figure 45 provides an overview of our experiment. 

 

Figure 45: Overview of our experiment plan for graph summarization 

The noise insertion in the graph is made through insertions of new vertices (and edges 

connecting these vertices) with values between two existing vertices of the template graph. This 

type of insertion preserves the original graph layout since new vertices will always be between 

two existing vertices. Considering that each template vertex is used as the oracle for the 

summarization and represent a collapse group, then the added noise is required to have a 

compatible value to belong to the collapse group. Otherwise, the original premise that each 

template vertex represents a collapse of similar vertices would be invalid. 

As mentioned before, we divided the experiment graphs to include two different 

numeric behaviors for the graphs. For the random noise values, the insertion of new noise vertex 

in the graph was accomplished by five steps: (1) define n, which is the number vertex to be 

added as noise; (2) for each noise vertex to be added, randomly pick a template vertex; (3) 

calculate the minimum distance to the closest template vertex neighbor from the selected 

template vertex and define this distance as three-sigma; (4) generate the random value for the 

noise vertex using a Gaussian distribution, where the median is the selected template vertex 

value and three-sigma is the minimum distance; and (5) create the noise vertex with the 

generated value and randomly insert it between the selected template vertex and one of its 

neighbors, inserting new edges accordingly. 

We choose the Gaussian distribution because it allows generating values that are 

considered similar to the template vertex due to the probabilistic nature of the distribution. The 

minimal distance from the template vertex to another template vertex is the limiter in the 

Gaussian distribution (or the three-sigma), ensuring that 99.7% of the generated values will 

orbit around the median (template vertex value) with the maximum distance of three-sigma, 

according to the 3-sigma rule. Figure 46 illustrates the value distribution according to the 3-

sigma rule. Moreover, there is a 6-sigma rule (HARRY; MOTOROLA UNIVERSITY PRESS, 

1997) stating that 99.99966% of the values will be within the maximum distance of six-sigma.  

Furthermore, the minimal distance also ensures that the initial premise is valid, which has a 

sequence of similar values. If we use a value higher than the minimum distance, then its value 
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would be closer to another template vertex neighbor than the selected template vertex. This 

would either result in a splitting point or encapsulate the other template vertex inside the same 

collapse group if there are many more noise vertices with values higher than the minimum 

distance. We can impose this restriction because we are simulating an expansion of a collapsed 

group to try to reverse engineer the original members that led to that collapsed (template) vertex. 

Nonetheless, outliers are possible to be generated, since the 3-sigma rule only guarantees 99.7% 

of the generated values to be lower than the minimum distance. However, they will be few in 

numbers and sparse in the graph, which basically describes the meaning of an outlier. 

 

Figure 46: 3-sigma rule distribution of values. Source: Wikipedia14. 

The monotonic noise behavior is slightly different and was accomplished by only four 

steps: (1) randomly select a template vertex; (2) randomly select an edge that connects the 

selected template vertex; (3) generate a random value that is between the vertices’ values from 

the edge; and (4) insert the noise vertex with the generated value between the vertices that 

belongs to the selected edge, replacing the edge with new edges to correctly connect the three 

vertices. The generated noise values will always follow the original behavior of the two original 

template vertices: if the second template vertex value is higher than the first, then all noise 

values between those two template vertices will follow an increasing function, otherwise, they 

will follow a decreasing function. The resulting graphs have smoother value transitions due to 

the monotonic nature of the noise value generation. 

The last stage of each the experiment was the result analysis. We performed a statistical 

analysis over the results by means of hypothesis test in order to compare the obtained results of 

                                                 

14 Source: https://en.wikipedia.org/wiki/68%E2%80%9395%E2%80%9399.7_rule 
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each collapse algorithm. An important factor for the design of the experiment concerns the 

definition of the significance level used during statistical analysis. We used a confidence 

interval (CI) of 95%, which translates to α = 0.05, where α is the probability of rejecting the 

null hypothesis given that it is true (Type I error) (NORMAN; STREINER, 2012).  

6.4 AUTOMATIC EXPERIMENT EVALUATION 

In order to answer the proposed research question, we must analyze the reduction of the 

graph size after applying the automatic collapse of the graph and verify if the non-collapsed 

vertices represent events that have had great variations in the state. This analysis is done through 

the precision, recall, and F-measure metrics to evaluate the effectiveness of automatic collapse 

by comparing with the synthetic oracle that was used to generate the graphs. 

6.4.1 MATERIALS AND METHOD 

This experiment was executed through the use of synthetically generated provenance 

graphs as described in the previous section. We evaluated the three different categories of 

graphs to know which situations the proposed algorithms were more effective, considering that 

different domains can lead to graphs of different types. With this experiment, we can map which 

domains are most appropriate for each heuristic. Thus, we calculated the dependent variables 

(precision, recall, and F-measure) when applying the algorithm in each graph category (Direct 

Acyclic Graph, tree, and linear). Moreover, we also analyzed the results with two different 

numeric behaviors for the noise insertion (random and monotonic). This results in six different 

categories to be analyzed: (1) randomized DAG; (2) randomized tree; (3) randomized linear; 

(4) monotonic DAG; (5) monotonic tree; and (6) monotonic linear. In this experiment, we 

compare the collapse suggested by each algorithm with the template graph (i.e., the synthetic 

oracle, which is an artificially created oracle), which represents the collapse baseline. We 

measured the dependent variables (precision, recall, F-measure) for each of the six different 

categories. The precision metric tells us how many of the generated collapse groups were 

correct in relation to the Oracle. The recall metric tells us how many of the correct collapse 

groups were generated by the algorithm. Finally, the F-measure tells us the overall performance 

of the algorithm based on the compromise of precision and recall metrics. 

We defined a cluster to be correct based on the oracle if the proposed collapse group 

had only one oracle (i.e., template) vertex in it. For example, if we used a template graph with 

four template vertices to generate the noise graph and the algorithm collapsed all vertices from 

the noise graph into a single group, then there will be a 0% precision since it had zero correct 
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collapse groups out of four, and its recall would also be 0%. Figure 47 illustrates some examples 

of the precision and recall computations for our experiment. 

We first trained each algorithm through parameter tuning to find the best configuration 

using a smaller and separate training dataset. Then, we ran seven different iterations for each 

one of the six categories. Each iteration had forty template graphs that each spawned five noise 

graphs, totaling in 200 noise graphs to be analyzed for each iteration. The size of the noise 

graph grew by a factor of two with an initial size of ten times the number of vertices in the 

template graph (i.e., 10x, 20x, 40x, 80x, 160x, 320x, 640x the size of the template graph). All 

four algorithms analyzed the same graph, in parallel, before generating the next graph of the 

experiment. This allows us to better measure their effectiveness since all algorithm result was 

based on the same graph used by the other three algorithms. 

The experiment execution plan was divided into three stages: (1) Train the algorithms 

through parameter tuning in order to find the optimal configurable parameter values for each 

category, (2) execute the experiment using the resulting parameter values from stage 1, and (3) 

analyze the results. We trained all algorithms for each category in order to find the best values 

for their configurable parameters to maximize their F-measure result. Each training session used 

a smaller sample of randomized graphs. Nevertheless, the training session also used multiple 

template graphs to spawn different noise graphs during each iteration. The number of iterations 

was also reduced, removing some of the intermediate iterations for the training session. 

During the second stage, we analyzed 200 different noise graphs in each one of the seven 

iterations, generating a total of 1,400 graphs for each category. Thus, for the randomized 

behavior, we analyzed the results from all four algorithms from 4,200 different graphs (i.e., 

1,400 DAG, 1,400 trees, 1,400 linear). Analogously, we also analyzed other 4,200 different 

 

Figure 47: Examples of calculating the precision and recall for the experiment 
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graphs for the partially monotonic behavior, using the same structure of seven iterations, where 

each iteration had forty different template graphs and five noise graphs spawned from each 

template graph. Table 2 describes the graph size used during each one of the seven iterations of 

the experiment for both randomized and partially monotonic behaviors. The results of each 

algorithm were compared with the synthetic oracle, which is the template graph used to generate 

the noise graph that was given to the algorithms, to calculate their precision, recall, and F-

measure values. We then used F-measure to define the most qualified algorithm for each 

analyzed situation. 

Table 2: Graph size for each iteration of the automatic experiment. 

 

Graph Size (vertices) 

Random Noise Monotonic Noise 

DAG Tree Linear DAG Tree Linear 

It
e

ra
ti

o
n

 

1 50 90 100 50 90 100 

2 100 180 200 100 180 200 

3 200 360 400 200 360 400 

4 400 720 800 400 720 800 

5 800 1,440 1,600 800 1,440 1,600 

6 1,600 2,880 3,200 1,600 2,880 3,200 

7 3,200 5,760 6,400 3,200 5,760 6,400 

6.4.2 RESULTS AND DISCUSSION 

First, we ran a normality test to verify if the data followed a normal distribution. 

According to the results of the Shapiro-Wilk test (SHAPIRO; WILK, 1965), the normality 

assumption was violated for all obtained results from the experiment since each dataset had a 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 2.2 ∗ 10−16. Therefore, non-parametric tests were adopted for statistical analysis. 

The non-parametric test used to compare the means was Wilcoxon Matched-Pairs Signed-Rank 

test (WILCOXON, 1945). Although there are other non-parametric tests, such as Chi-2 and 

Kruskal-Wallis, Wilcoxon Matched-Pairs Signed-Rank was chosen because it compares two 

means from two different samples against the same alternative hypothesis over the same 

(paired) observation (i.e., graph), which fits our experiment design.  

Considering we have four different algorithms to compare and we decided to use 

Wilcoxon test, it is necessary to run six analyses: (1) DBSCAN vs IC; (2) DBSCAN vs VE; (3) 

DBSCAN vs ICVE; (4) IC vs VE; (5) IC vs ICVE; and (6) VE vs ICVE.  We decided to use 
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the Bonferroni correction (DUNN, 1959) in the alpha-value to compensate, which translates to 

α = 0.00833 since we have six comparisons. We adopted the following format for the hypothesis 

in our tests, naming alg1 as the first algorithm used in the comparison and alg2 the second 

algorithm used in the comparison: 

𝐻0: 𝜇𝑎𝑙𝑔1 = 𝜇𝑎𝑙𝑔2

𝐻1: 𝜇𝑎𝑙𝑔1 ≠ 𝜇𝑎𝑙𝑔2
 

It is possible to assert that there is a difference in mean if the null hypothesis is rejected. 

The null hypothesis is not rejected if the p-value is greater than the significance level α. In other 

words, there would not be enough evidence to assert a difference between results. When the 

null hypothesis is rejected (p-value < α), we can use the box plots to determine the superior 

method. All tests in this section were made using R, which is an open-source tool commonly 

used for statistical analysis. 

The box plots of Figure 48 summarize the distributions of all four approaches for the 

8,400 analyzed graphs. In these graphics, the boxes represent part of the central distribution, 

which contains 50% of data. Thus, the data scattering is proportional to the box’s height. A 

black line inside the box represents the median. This way, 25% of the data is between the box’s 

edges and the median. The median location indicates if the distributions are symmetrical in the 

experiments. Lastly, circles indicate outliers. The box plots for each algorithm measures the 

precision, recall, and F-measure of the algorithms. 

 

Figure 48: Box plot of the automatic results for each algorithm 

The box plots show the VE algorithm having the lowest median (0.288) and IC with the 

highest median (0.414) for F-measure. However, all algorithms have high F-measure 

Table 3: F-measure results from Wilcoxon test and Cliff’s Delta effect size for the automatic experiment. 

The sign between parentheses represents if the CI is positive or negative when comparing the algorithms. 

F-measure DBSCAN vs IC DBSCAN vs VE DBSCAN vs ICVE IC vs VE IC vs ICVE VE vs ICVE 

p-value 2.2 x 10-16 (-) 1.291 x 10-16 (+) 2.2 x 10-16 (-) 2.2 x 10-16 (+) 2.2 x 10-16 (+) 2.2 x 10-16 (-) 

Effect Size -0.2587116 

(small) 

0.08436762 

(negligible) 

-0.1062623 

(negligible) 

0.3150409 

(small) 

0.1450793 

(negligible) 

-0.1806847 

(small) 
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amplitudes. Looking at the precision box plot, we can see that IC has the highest median as 

well. However, IC has the lowest recall, while VE and ICVE have the highest recall of all 

algorithms, with ICVE winning due to his higher median at the maximum value. By analyzing 

the p-values from Table 3, the IC algorithm provided higher F-measure results than the other 

three algorithms (p-value < α), even after applying the Bonferroni correction. This is also 

supported by the effect size calculated using Cliff’s Delta method, where IC has a small 

difference from DBSCAN and VE.  

Considering the high amplitude of all algorithms, we decided to split the analysis into 

two groups: one considering only random noise graphs and another for using the monotonic 

noise graphs. Figure 49 illustrates the box plots of both groups for each algorithm. The box plots 

show that each algorithm had considerable different results for each group, especially the 

DBSCAN algorithm, showing worst results when using random noise and a much better result 

when dealing with monotonic noise. These observations can be confirmed by looking at Table 

4, showing that DBSCAN indeed had worse results with random noise graphs and better results 

than VE and ICVE algorithms with monotonic noise. However, the ICVE algorithm proved to 

be better with random noise due to its higher recall and above average precision, while the IC 

algorithm proved to be better with monotonic noise since it got a higher precision in comparison 

with the rest. This is supported by the effect size between the algorithms shown in Table 4. The 

high amplitude of the algorithms, even after dividing into two groups (random and monotonic 

 

 

Figure 49: Divided box plots of the automatic experiment for the random and monotonic noise. 
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noise) is due to the seven iterations used in the experiment, which increases the graph sizes by 

doubling the graph’s size from the previous iteration. 

These results indicate that the IC and ICVE algorithms provide overall better collapses 

than the other algorithms, including the DBSCAN, in both random and monotonic noise graphs, 

independently of the graph size. Thus, we can conclude that the inter-cluster verification does 

indeed provide better clusters when considering DAG, Linear, or Tree graphs due to its nature 

– it better adapts to the neighborhood by shaping the cluster through distance checks to the 

farthest existing member already inside the cluster instead of checking only the direct nearest 

member of the candidate neighbor. This results in a behavior that creates close-knit clusters and 

consequently avoids overgrowing the cluster to encompass the majority of the graph when 

nodes have small and progressive variations in relation to neighbors.  

Meanwhile, the DBSCAN compares the candidate neighbor only with the nearest 

member of a cluster and therefore tries to compensate this deficiency by reducing the distance 

threshold in order to create correct clusters according to the oracle. This results in an increased 

recall at the cost of precision since it will create many clusters and only a few of these are 

equivalent to the ones in the oracle. On the other hand, the ICVE stayed behind the IC algorithm 

because it refined too much in the cluster construction, resulting in more close-knit clusters than 

necessary and, consequentially, farther from the oracle than IC. This is even more apparent in 

the monotonic noise graphs by looking at the effect size metric, where the IC algorithm 

provided the best results in comparison to all the other algorithms, with a good margin. 

However, the variable epsilon approach (VE), when used alone, proved to be detrimental and 

achieved only better results than the DBSCAN when dealing with monotonic noise, which 

would correlate to a graph with smooth value transitions. 

Figure 50 and Table 5 demonstrate the results when we break down the results for each 

graph type instead of noise types. These results indicate that the IC and ICVE algorithms 

provide overall better collapses than the other algorithms for all three graph types, 

Table 4: F-measure results from Wilcoxon test and Cliff’s Delta effect size for the automatic experiment 

divided into two groups: Random and Monotonic noise 

F-measure  DBSCAN vs IC DBSCAN vs VE DBSCAN vs ICVE IC vs VE IC vs ICVE VE vs ICVE 

Random 

Noise 

p-value 2.2 x 10-16 (-) 2.2 x 10-16 (-) 2.2 x 10-16 (-) 2.2 x 10-16 (+) 2.2 x 10-16 (-) 2.2 x 10-16 (-) 

Effect 

Size 

-0.3997387 

(medium) 

-0.1289706 

(negligible) 

-0.4000328 

(medium) 

0.2138566 

(small) 

-0.08052234 

(negligible) 

-0.2605855 

(small) 

Monotonic 

Noise 

p-value 2.2 x 10-16 (-) 2.2 x 10-16 (+) 2.2 x 10-16 (+) 2.2 x 10-16 (+) 2.2 x 10-16 (+) 2.2 x 10-16 (-) 

Effect 

Size 

-0.3449252 

(medium) 

0.2465062 

(small) 

0.1366312 

(negligible) 

0.5193248 

(large) 

0.4567062 

(medium) 

-0.1076311 

(negligible) 
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independently of the graph size. However, despite these results, the difference between 

DBSCAN and ICVE algorithms is negligible. 

 

Figure 50: Divided box plots of the automatic experiment for each graph type 

Table 5: F-measure results from Wilcoxon test and Cliff’s Delta effect size for graph types 

F-measure DBSCAN vs IC DBSCAN vs VE DBSCAN vs ICVE IC vs VE IC vs ICVE VE vs ICVE 

Linear 

p-value 2.2 x 10-16 (-) 6.101 x 10-2 (+) 2.2 x 10-16 (-) 2.2 x 10-16 (+) 1.313 x 10-14 (+) 2.2 x 10-16 (-) 

Effect 

Size 

-0.2539269 

(small) 

0.07150306 

(negligible) 

-0.1352889 

(negligible) 

0.3000265 

(small) 

0.1064872 

(negligible) 

-0.2057124 

(small) 

DAG 

p-value 2.2 x 10-16 (-) 1.324 x 10-7 (+) 1.557 x 10-7 (-) 2.2 x 10-16 (+) 2.2 x 10-16 (+) 2.2 x 10-16 (-) 

Effect 

Size 

-0.2711593 

(small) 

0.1190957 

(negligible) 

-0.05111339 

(negligible) 

0.3476515 

(medium) 

0.2082344 

(small) 

-0.156294 

(small) 

Tree 

p-value 2.2 x 10-16 (-) 3.53 x 10-2 (+) 2.2 x 10-16 (-) 2.2 x 10-16 (+) 2.2 x 10-16 (+) 2.2 x 10-16 (-) 

Effect 

Size 

-0.2553388 

(small) 

0.06183724 

(negligible) 

-0.1349087 

(negligible) 

0.296004 

(small) 

0.1208685 

(negligible) 

-0.1890452 

(small) 
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6.4.3 THREATS TO VALIDITY 

We identified internal and external factors that may influence the results. In relation to 

internal validity, the graph generation algorithm and noise insertion can affect the results 

because they are all synthetic in nature. Another threat is related to the automatic evaluation of 

the generated clusters from each algorithm with the template graph. We are not aware of other 

work that proposed such method of automatic analysis, which synthetically expand graphs with 

noise insertion and then use clustering algorithms in order to omit the noise vertex, trying to 

return to the original graph, using precision, recall, and F-measure to evaluate each algorithm 

in order to determine the best solution.  

Lastly, another threat is related to the training sessions of the algorithms. All algorithms 

were trained for each category with varying graph sizes, selecting the best overall parameters 

values for it depending on the graph type and noise insertion (i.e., random or monotonic). We 

did not split the training sessions to find the best configurations for each different graph sizes 

used by the iterations of each category. This can change the results of the algorithms when the 

graph size differs too much between iterations, especially when comparing the initial iterations 

with the two last iterations, where the graphs have thousands of more vertices than the previous 

iterations. Thus, the training session selected the parameters that provided the best overall 

quality for clustering the graph independently of its size, which could have clusters differing 

from a few dozen vertices in small graphs to hundreds of vertices in larger graphs since only 

the noise varied in each iteration, while the number of correct clusters in the Oracle maintained 

the same independently of the graph size. This behavior is reflected in the high amplitude in all 

algorithms and resulted in having similar precision and recall in all algorithms, even after 

splitting the experiment results between the two noise groups (random and monotonic). 

However, it might be possible to achieve better tuning for each algorithm by changing some of 

the factors used during the training session. For example, we aimed at maximizing the overall 

F-Measure for each algorithm and graph type, independently of the graph size. Furthermore, 

since training is an exhaustive and time-consuming operation, we also limited the training 

sample size to only 5 iterations, with 20 oracle graphs in each iteration and each oracle graph 

generating only three noise graphs to be used for training. It might be possible to achieve better 

tuning by increasing the training sample size and specializing each training session to a specific 

graph size category. 

Regarding external validity, we mitigated sample bias by randomly generating multiple 

different template graphs for each iteration of the experiment. Each template graph was also 
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used to spawn multiple noise graphs, where each one was used by all four clustering algorithms, 

mitigating any bias in the algorithm evaluation since all four algorithms were using the same 

noise graphs during each step of the experiment. 

6.5 EXPERTS EXPERIMENT EVALUATION 

Our research question aims at identifying the most effective similarity summarization 

algorithm for reducing the information to be analyzed, while still preserving the graph 

semantics. To do so, we also executed qualitative experiments with human judges to evaluate 

each one of the four algorithms in order to select the most appropriate, based on their opinion, 

for each category of the graph. 

6.5.1 MATERIALS AND METHOD 

In this experiment, due to the nature of using human beings as an oracle, we had to use 

a smaller set of graphs with hundreds of vertices instead of thousands of graphs with thousands 

of vertices like in the previous experiment. We used the same types of graphs from the 

automatic experiment: three graph types (DAG, tree, linear) and two graph characteristics 

(random and monotonic noise). The combination results in six different categories to be 

analyzed by each subject: (1) randomized DAG; (2) randomized tree; (3) randomized linear; 

(4) monotonic DAG; (5) monotonic tree; and (6) monotonic linear. Furthermore, we used the 

same graph generation technique described in the previous section to generate all synthetic 

graphs, with only one numeric attribute for the vertex value. Thus, the similarity between 

neighbor vertices would be based only on this numeric value. 

We decided to use two different samples for each one of the six categories to reduce 

bias, resulting in having the judge to look and analyze 48 graphs in total, since each sample 

consists of the original graph and other four collapsed graphs, one for each algorithm. However, 

at the same time, we could not increase this number to three samples since each new sample 

would result in an additional 24 graphs to be analyzed by the judge. Then, the subject selects 

one of the four collapsed graphs that represents, in his opinion, a good collapse for that specific 

case.  

In order to reduce the length of the experiment, we previously trained all algorithms 

using the same principle from the automatic experiment since we were also using synthetic 

graphs and also considering the graph sizes that were going to be used in this experiment. Thus, 

the judge does not need to fine-tune each algorithm for each graph and only need to select the 
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algorithm that generated the best result according to his opinion. We also used gradient colors 

instead of numbers to represent the vertex's value in the graph, in order to make easier for the 

subjects, resembling what a tool such as Prov Viewer would show. Red gradient represents 

negative values, green gradient represents positive values, and white gradient represent values 

close to zero. 

We presented all the provenance graphs in a comprised way, with the original graph at 

the top left. Figure 51 illustrates the format used in the experiment, where the top left graph 

(mostly using only green, red, and white gradients) is the original graph and the other four 

colored graphs are the summarization results from each algorithm. Note that each output section 

of the sheet has two graphs: a graph with colored borders, showing the composition of each 

collapse group, and a summarized graph, which is the result after following the proposed 

collapses. Sequential vertices that had the same border color belong to the same collapse group. 

For example, in the output “C” from Figure 51, we can see a chain of blue-colored vertices near 

the middle of the graph. All these blue-colored vertices belong to the same collapse group since 

they all share the same border color. Thus, each colored chain of vertices represents a different 

collapse group. Vertices with colored borders that appear in the smaller summarized graph 

 

Figure 51: Example of a sheet given to the judge for his analysis of the algorithms. 
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represent outliers, which are collapse groups comprised of only a single vertex. Moreover, the 

size of the vertex in the summarized graph is proportional to the number of vertices in the 

collapse group that generated it. Thus, we can see in the same example that the blue chain of 

vertices from letter “C” generated a big green vertex in the summarized graph due to the high 

quantity of vertices in the chain and their predominant color in the original graph is a bright 

green. We decided to use these printed versions of the graph to expedite the analysis process, 

allowing the judge to compare side-by-side the different outputs. 

For this experiment, we decided to use a simple vote process: each subject should point 

which category represents the most appropriate algorithm in his opinion. Thus, the experiment 

execution was divided into two stages: (1) a pilot experiment to detect any issues that needed 

to be addressed and (2) the experiment itself. During the pilot, volunteers were required to 

analyze each graph and select one of the four algorithms, picking the one that proposed the 

most appropriate collapse groups in his/her opinion. The pilot experiment was applied to three 

volunteers from the university. 

In order to avoid biased answers, we randomized the algorithms order, forcing the 

subject to analyze all the four algorithms' output. We also adopted a speak-aloud approach in 

order to identify how each volunteer reached their final decision. Their recorded decision-

making process can also be used to fine-tune the algorithms in the future. We incorporated this 

approach because the volunteers were not giving any feedback to back up their selection during 

the pilot.  

Considering that all twelve graphs were synthetic, we decided to add two new graphs in 

the experiment. These graphs were real provenance graphs generated from a gameplay session 

of a racing game using the PinG approach. Both provenance graphs belonged to the same game 

session, and thus had the same vertices. They differentiated only in the displayed graph layout. 

The first graph used a simple graph layout (the same used for all the previous graphs) where 

we omit all the domain information, displaying it as another synthetic domain-less graph, with 

each vertex having a single numeric value without any semantics. The second graph used a 

spatio-reference layout, placing all vertices in their spatial location when the action represented 

by the vertex was executed. Moreover, we explained to the volunteer the semantics of this 

graph, as well as the domain it belongs. By asking the volunteer to analyze the same provenance 

graph twice, but having a different perception from each, we were able to discern if the graph 

domain and the spatio-referencing of the data generated a significant impact in the 

summarization process.  
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Lastly, we made a final change in the experiment by introducing a post-experiment 

questionnaire15, designed to be answered at the end of the session and allowing us to gather 

additional feedback and further insights from the subject that were not captured by the talk-

aloud strategy. This questionnaire included two questions related to the final two real 

provenance graphs, allowing us to verify if the domain information had any impact on the 

analysis: (1) The positioning of the vertices according to the spatial information from where 

they were executed helped in its decision process? (2) After knowing the meaning of the colors 

and the context of the data, did it influence the decision process? 

After changing the original experiment structure used during the pilot, the resulting 

experiment plan was divided into three stages: (1) Generating the graphs, (2) running the 

experiment with judges, and (3) analyzing the results. We executed the first stage before 

running the experiment. In this stage, we trained all the algorithms for each category. Then, we 

generated two graphs for each category and ran the algorithms for each graph, creating their 

corresponding paper sheets with the original graph and the four different outputs. 

The next stage was the experiment execution with the judges. We applied the experiment 

with fifteen volunteers closely related to computer science. Figure 52 illustrates the 

characterization of the judges by their degree. It is important to note that three of the Ph.D. 

volunteers were considered specialists in graphs. As we can see by looking at this figure, 47% 

of the volunteers had a Ph.D. degree and were professors in the university. The remaining 

volunteers were divided in 33% having the Master’s Degree and currently working on their 

Ph.D. degree and the remaining 20% being students under the master’s program. Table 6 shows 

in more detail the characterization of each volunteer. 

 

Figure 52: Volunteers’ characterization chart 

                                                 

15 All questionnaires are available at: https://github.com/gems-uff/prov-viewer/tree/master/Documents 
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Table 6: Volunteers’ characterization table 

Subject Academic Education Conclusion Year Graph Knowledge 

P1 Master's Program 2017 No formal knowledge 

P2 PhD 2010 Studied 

P3 Master's Degree 2017 No formal knowledge 

P4 PhD 2012 Studied 

P5 Master's Degree 2019 Studied 

P6 PhD 2011 Studied 

P7 Master's Degree 2016 Studied 

P8 PhD 1998 Expert 

P9 Master's Program 2017 Studied 

P10 PhD 2014 Expert 

P11 Master's Degree 2017 Read About 

P12 PhD 2003 Read About 

P13 PhD 1998 Expert 

P14 Master's Degree 2017 Studied 

P15 Master's Program 2017 Read About 

Each experiment had an average duration of one hour and a half and was conducted 

individually due to the talk-aloud strategy. The volunteers analyzed 14 paper sheets, where each 

contained one of the fourteen graphs and the resulting outputs from each algorithm (as 

illustrated in Figure 51), marking their answers in a spreadsheet. The post-experiment 

questionnaire was handed to the volunteers after they finished analyzing all the 14 sheets.  

6.5.2 RESULTS AND DISCUSSION 

Figure 53 summarizes the results of the experiment for all four algorithms considering 

all twelve synthetic graphs analyzed by the fifteen judges. By analyzing the box plot, we can 

visually see that the IC algorithm had better results than any of the other three algorithms, 

confirming the results of the automatic experiment. From the box plot, we can see that the graph 

 

Figure 53: Box plot of the judge’s results for each algorithm 
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in which IC received fewer votes had votes from five volunteers. On the other hand, there is at 

least one graph that IC received all the votes from volunteers. The DBSCAN algorithm was 

ranked in the second position with some situations almost reaching the median of IC. However, 

it is only possible to assert this assumption by running statistical tests. 

Similar to the automatic experiment, we ran a normality test using Shapiro-Wilk test 

(SHAPIRO; WILK, 1965) and noticed that the collected data does not follow a normal 

distribution. Therefore, once again we used the Wilcoxon Matched-Pairs Signed-Rank test 

because it compares two means from two different samples over the same observation (e.g., 

graph), which fits our experiment design. 

Again, we ran six analyses to compare the algorithms: (1) DBSCAN vs IC; (2) 

DBSCAN vs VE; (3) DBSCAN vs ICVE; (4) IC vs VE; (5) IC vs ICVE; and (6) VE vs ICVE.  

Considering that we are using six comparisons, we also decided to use the Bonferroni correction 

in this experiment, which translates to α = 0.00833. We adopted the same format from the 

automatic experiment for the hypothesis in our tests, naming alg1 as the first algorithm used in 

the comparison and alg2 the second algorithm used in the comparison: 

𝐻0: 𝜇𝑎𝑙𝑔1 = 𝜇𝑎𝑙𝑔2

𝐻1: 𝜇𝑎𝑙𝑔1 ≠ 𝜇𝑎𝑙𝑔2
 

By analyzing the p-values, CI, and the effect size from Table 7, we can see that the IC 

algorithm provided better results, even when applying the Bonferroni correction. Therefore, the 

null hypothesis was rejected in all comparisons involving the IC algorithm. However, there is 

not enough evidence (p-value > α) to assert the difference between results when comparing the 

other algorithms to provide a ranking, only enough to know which of all four is the best. This 

finding matches with our initial visual analysis of the box plot from this experiment (Figure 

53), where we could clearly see that algorithm IC had better results than all other analyzed 

algorithms. Furthermore, this result also coincides with the initial findings from the automatic 

experiment, where the IC algorithm was also the one that had a highest F-measure. Thus, the 

initial findings from both experiments are in tune. 

Table 7: Results from Wilcoxon test for the judge experiment. The sign between brackets represents if the 

CI is positive or negative when comparing the algorithms. 

F-measure DBSCAN vs IC DBSCAN vs VE DBSCAN vs ICVE IC vs VE IC vs ICVE VE vs ICVE 

p-value 0.008062 (-) 0.6741(-) 0.1434 (-) 0.004673 (+) 0.002328 (+) 0.4568 (+) 

Effect Size -0.8611111 

(large) 

0.1666667 

(small) 

0.2291667 

(small) 

0.9236111 

(large) 

1 

(large) 

0.05555556 

(negligible) 
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However, if we examine the box plot closely, we can see that the DBSCAN amplitude 

almost reaches the IC median. This might mean that in some cases the DBSCAN can be at least 

equal to IC. If we break down to the results for each category, as illustrated by Figure 54, we 

can see a large difference between random and monotonic noise results. We did not use box 

plots this time because there are only two graph samples for each category, which would make 

statistical analysis unfeasible. The IC algorithm dominates in monotonic noise graphs and is 

adequate in random graphs, thus making it an ideal general-purpose algorithm for summarizing 

provenance graphs. Meanwhile, the ICVE algorithm appears to be always inappropriate. The 

judges did not like this algorithm because in most cases, as the majority of the judges 

summarized, it is “too sensitive to changes and creates too many different clusters, not 

summarizing much the data” (P8).  

 

Figure 54: Experiment results from each one of the categories in the experiment 

Considering the random categories, the DBSCAN appears to be only inappropriate 

when dealing with linear graphs. This occurred because it overextended the reach of a cluster, 

grouping almost half of the graph in a single cluster because it failed to detect the slope 

variations (both increasing and decreasing), stopping only when encountered an extremely 

sharp slope. As one of the experts said (P13): “by identifying this entire region, I remove it from 

the dispute” when he/she was referring to half the graph that the algorithm failed to divide that 

was composed of a light green segment followed by a dark green, then another light green 

segment, and ending with a whitish red segment. Despite VE showing to be inappropriate with 

tree-graphs, the resulting clusters were very similar to those from DBSCAN, showing small 

differences that led them to not be chosen when being in doubt between DBSCAN and VE.   

Table 8 illustrates the statistical analysis of the Random Noise graphs used in this 

experiment. We ommited the analysis of the Monotonic Noise since the IC algorithm dominated 

in this situation. The results show that the IC algorithm is indeed better than VE and ICVE 

algorithms. However, there is not enough statistical evidence to make claims with the DBSCAN 



131 

 

since the null hypothesis was not rejected (p-value = 0.0855 > 0.00833). Overall, this finding 

also matches with the ones from the previous experiment, where IC algorithm proved to be 

better in both monotonic and random noise. 

Table 8: F-measure results from Wilcoxon test and Cliff’s Delta effect size for the random noise of the 

expert experiment. Used Bonferroni Correction (0.00833). 

F-measure DBSCAN vs IC DBSCAN vs VE DBSCAN vs ICVE IC vs VE IC vs ICVE VE vs ICVE 

Random 

Noise 

p-value 8.55 x 10-2 (-) 1.721 x 10-2 (+) 9.764 x 10-4 (+) 2.351 x 10-3 (+) 1.529 x 10-6 (+) 4.288 x 10-2 (+) 

Effect 

Size 

-0.1555556 

(small) 

0.1 

(negligible) 

0.2111111 

(small) 

0.2555556 

(small) 

0.3666667 

(medium) 

0.1111111 

(negligible) 

Figure 55 illustrates the results only from the experts’ point of view and Figure 56 

provides a summary of these results in the form of box plots. None of the expert judges selected 

the ICVE algorithm in any of the categories, corroborating that it is the least favorable algorithm 

among the judges. This figure also shows that IC is generally the most appropriate algorithm, 

with the exception when dealing with the random tree category, where the DBSCAN showed 

better results. Nonetheless, these results are similar to those presented in Figure 54, where the 

random tree was the only case when IC lost to another algorithm, which was also the DBSCAN. 

However, despite these observations for the random graphs, there are not enough statistical data 

to determine the most appropriate algorithm for each type of graph since each category only 

had two graph samples and 15 human judges, resulting in only 30 samples and the ideal is to 

have at least 50 samples. 

 

Figure 55: Expert’s results 

 

Figure 56: Box plot of only the three experts for each algorithm 
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As mentioned before, all those 12 graphs were synthetic in nature, although based on 

structures frequently found on provenance generated from games. However, in the same 

experiment, we had one real provenance graph with two different visualizations, which was 

based on a car game. We added this graph to have an initial analysis of how the algorithms 

would behave in a real scenario. The first time it appeared in the experiment, the judges treated 

it like any of the other synthetic graphs since the real game data looked exactly like any other 

of the artificially generated graphs from the templates and no additional information was given 

to them regarding the origin of the graph. However, unlike the previous graphs, the car’s 

provenance graph only contained green colored vertices due to the nature of the game since the 

value represented the car’s speed. Furthermore, since only the player was present, the resulting 

provenance graph was from the linear type. Figure 57 illustrates the results before and after 

revealing the details about the graph, where “Linear-Car” represents the judges’ first interaction 

with the graph, thinking it was a synthetic graph, and “Geo-Car” represents their second 

interaction, where they had domain information and the graph’s vertices were displayed over 

the race track map, showing their exact locations.  

 

Figure 57: Results from the real provenance graph 

Surprisingly, almost half of the judges picked the ICVE algorithm on the “Linear-Car” 

graph. However, all of them reported difficulties when analyzing the graph due to the higher 

number of vertices and also because all vertices were green-colored. After knowing the graph 

origins and what it represented, thirteen of the judges selected another algorithm when 

analyzing the “Geo-Car” graph, with the majority choosing the IC algorithm. As the majority 

of the judges said, knowing additional data information, such as domain, changed their 

perception because “the contexts made me (judge P2) think about the causes of variation”. 

Moreover, the judges also agreed that, in this specific case, geo-referencing the data helped 

them in their decision-making process because “the relative position of the vertices in relation 

to their neighbors helps” (P8) when they were trying to see the speed difference between 

vertices due to their distance. Moreover, some judges were also in agreement that “the context 
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of the game shows that position matters to analyze the number of curves (from the race track), 

which impacts in the performance analysis (of the player)” (P1). However, one of the experts 

(P10) said that he “abstracted the application” and “the additional information didn’t impact 

in my (his) analysis”. Nevertheless, that same specialist selected the IC algorithm in both graphs 

(Linear-Car and Geo-Car). Figure 58 shows the “linear-car” graph superimposed on the race 

track, which was shown to the judges when explaining the graph’s domain, and Figure 59 show 

both graphs presented to the judges for their evaluation. Notice that we removed the background 

from Geo-Car after presenting it to the judges, so they could easily detect and contrast the 

vertices to select one of the four collapses. However, they could consult the original Geo-Car 

graph (with the race track background) anytime. 

 

Figure 58: Provenance Graph from the racing game used in the experiment.  Figure (a) illustrates the 

“linear-car” graph superimposed in the race track, generating the “Geo-Car” visualization and (b) 

illustrates an example of one of the outputs from the IC algorithms. Vertices color represent the car’s 

speed. 

 

Figure 59: Linear-Car and Geo-Car graphs presented to the judges. Both graphs are the same as the only 

difference being in the vertex positioning. 
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These results point out that the IC algorithm provides overall better collapses than the 

other algorithms in both random and, in particular, monotonic noise graphs. However, when 

considering only Random Noise graphs, the DBSCAN tied with the IC algorithm and there 

were not enough data to determine which is the best solution. These results match with the ones 

from the automatic experiment, where the IC algorithm also proved to be the better algorithm. 

Therefore, with the findings from both the experiments, we can assume that the IC algorithm is 

more adequate than the other algorithms for clustering DAG, Tree, and Linear graphs. 

Furthermore, since the results from the automatic experiment matched with the one using 

human judges, we can also conclude that this automatic validation is also a viable method for 

measuring clustering effectiveness of the algorithms. 

6.5.3 THREATS TO VALIDITY 

Despite the care in reducing the threats to the validity of the experiment, there are factors 

that can influence the results. In relation to internal validity, the selection of participants can 

affect the results because of the natural variation in human preference in picking the answers, 

since there are no right or wrong answers in this experiment. Furthermore, the experiment was 

executed with volunteers since they generally are more motivated for executing tasks. Any 

volunteer could choose to be dismissed from the experiment and be released earlier. One 

possible threat is related to each individual perception of different colors and their shades in the 

graph. To minimize this problem, we also printed different versions of the material for color-

blind individuals. Nonetheless, one of the experts in Visual Computing correctly remarked that 

the different shades used (i.e., red, green, and white) could also be a threat due to their different 

chromatic distance when analyzing the graphs.  

Another threat is related to graph sizes used. Unlike the automatic experiment, we used 

graphs that could be considered small, with around a hundred vertices, in order to not confuse 

the volunteer during the analysis. 

6.6 RELATED WORK 

Our related works were selected from those used by the game industry for clustering and 

summarizing gameplay telemetry data and other graph-based research for visualization of 

gameplay data that uses some kind of clustering technique to group graph nodes. We are only 

interested in this moment in using summarization for noise reduction and aiding the visual 

exploration of the graph. 



135 

 

Play-Graph (WALLNER, 2013), and its follow-up system PLATO (WALLNER; 

KRIGLSTEIN, 2014), is a graph-based approach to formally describe and visualize game 

session data by using a graph visualization. It has multiple variables and their interrelations 

along with the temporal progression of players. It uses spatial information to render the graph 

in a game scene and cluster nearby nodes to form a single node that provides statistical 

information in the scene's region (e.g., player race distribution at that location). However, its 

clustering method disregards temporal information and indiscriminately cluster similar states 

that are spatially close, losing the real sequence of events. 

Another approach is Playtracer (LIU et al., 2011), which is a visual tool designed to 

illustrate how groups of players move through the game space. Thus, Playtracer aids the 

designer by showing common pathways and alternatives that players used to succeed or fail in 

their tasks, identifying pitfalls and anomalies in the scene. However, Playtracer does not take 

into consideration temporal information or the actual game map. The temporal information 

would allow stating the order of events in the game, shedding more light in the player’s 

behavior, while the map of the scene would show exactly where these pathways, pitfalls, and 

game anomalies were in the game. Moreover, in order to solve problems related to the number 

of visible states, Playtracer uses an aggressive technique to cluster nearby states together to 

make a cleaner visualization, disregarding sequence of events and thus forming cycles in the 

graph. 

Both Play-graph and Playtracer approaches are focused on state-changes analysis and 

therefore deal with a different type of game data, which is much coarser grained than event-

based approaches. Furthermore, due to the different type of telemetry tracking (i.e., states 

instead of events), the tracked data possess much less variance since the tracking is limited to 

visited states instead of tracking the sequence of executed actions. Nevertheless, those 

approaches use Quality Threshold clustering technique, which is very similar to the DBSCAN 

clustering algorithm that we used to compare our algorithms. 

Other related works include common approaches adopted by the game industry and game 

research, such as heat maps (DRACHEN; CANOSSA, 2009b) or trajectory analysis 

(BAUCKHAGE et al., 2014; MILLER; CROWCROFT, 2009; PAO; CHEN; CHANG, 2010), 

which display paths in a map. These approaches use visualizations based on the evaluation of 

one or two variables from the game data, providing an easy to read and intuitive interpretation 

of the data distribution. However, heat maps only aggregate variables that follow specified 

restrictions (i.e., death locations) to show density distribution over the scene. Similarly, 
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trajectory maps also aggregate equivalent paths. Nevertheless, they do not provide any insight 

on the executed actions, hindering influences between events. However, we did not compare 

them with our proposed algorithms because they are used for a different type of data analysis. 

The heat map is commonly used to aggregate data within the same 2D spatial region to analyze 

the most visited sections of the map by players or can also be used for specific occurrences such 

as places where players died the most. Similarly, trajectory analysis is used to map the player’s 

navigation in the game scenario. 

Clustering behavioral data is a recent interest in the field (BAUCKHAGE; DRACHEN; 

SIFA, 2015) due to game analytics still being a relative new idea. Therefore, there are almost 

no study or new techniques for clustering behavioral data. Furthermore, most of the studies are 

focused on player profiling. There is a recent study (SAAS; GUITART; PERIÁÑEZ, 2016) that 

uses the Ward’s minimum variance method (JR, 1963). However, the clustering is used to 

classify player profiles based on a few variables such as the amount of time spent in the game, 

number of sessions, total number of actions performed, and the number of in-game app 

purchases. 

6.7 FINAL CONSIDERATIONS 

This chapter proposed new graph algorithms based on the DBSCAN that take into 

consideration the temporal sequence of information of a provenance graph to summarize 

tracked data to a more manageable size through the usage of collapses strategies. None of the 

existing approaches considered also using temporal information in their collapse strategies. 

These collapses intend to reduce the overall graph size by hiding sections in the graph that alone 

were not significant enough to produce a meaningful impact on the game and did not offer any 

useful information for analysis.  

Our proposal enhances the identification of sections or vertices that are different from its 

neighbors or the expected behavior. In a game context, vertices that were not collapsed 

represent drastic changes in the game state and are worth for displaying at the analysis, while 

all collapsed ones fluctuate around the same state for a given attribute. Therefore, the resulting 

collapsed graph is useful to confirm the initial hypothesis of sections that the player had 

difficulties in the game by identifying sections with multiple nearby vertices because each 

vertex in the collapsed graph represents a major variation in the game state. 

The experimental results show that the inter-cluster verification variant (IC) provides 

better results than the DBSCAN for collapsing similar segments in the graph. The statistical 
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analysis of both experiments shows that this is true for almost all the studied cases, including 

random and monotonic behavior and different graph types. The variable epsilon variant (VE), 

which is responsible for generating a customized epsilon for each cluster, is inferior to the IC 

variant when used alone. However, in the automatic experiments, the combination of both 

variants, resulting in the ICVE algorithm, provided better results when dealing with more 

randomized values. Unfortunately, the judges disliked the algorithm due to its sensitivity and 

thus it requires more refining before being used. Answering our research question, the IC 

algorithm showed to be the most effective algorithm for reducing the information while also 

preserving its overall semantics in all instances according to the judges and the automatic 

experiments. As a consequence, it has become the default option in Prov Viewer. However, all 

other algorithms are also available at the tool. 

In the next chapter, we propose our last contribution for game provenance: an approach 

that merges multiple provenance graphs to allow the game designer to understand the causes 

that led a player to fail and another to succeed in the challenges presented by the game. 

Furthermore, our proposed approach can also be used as a debugging procedure to determine 

the reasons specific scientific trials failed to achieve the expected result while other succeeded.  
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CHAPTER 7 – FAULT LOCATION AND CORRECTION THROUGH 

PROVENANCE DIFF 

7.1 INTRODUCTION 

The wealth of provenance data collected during a game session is fundamental for 

understanding the mistakes made as well as reproducing the same results at a later moment. 

However, provenance data can be highly detailed and, depending on the game, can result in a 

huge quantity of tracked information leading to provenance graphs in the order of thousands of 

vertices. This wealth, but the huge quantity of data, can overwhelm the developer ability to 

analyze and understand the data, making more complex and tedious the process of identifying 

the reasons that may have caused a particular player to fail when compared with the results 

from other players.  

In this chapter, we propose a provenance graph comparison approach for game analytics 

that identifies possible reasons and discrepancies that might have led the player to fail to reach 

the goal by contrasting with the performance of other players. We integrated our solution in our 

provenance visualization tool Prov Viewer and provide experimental studies using a projectile 

motion game simulation. The experiment shows that the proposed method is capable of 

identifying all the causes that could have led to a failure to reach the goals as well as proposing 

changes to make it work in the next execution. 

The rest of the chapter is organized as follows: The Section 7.2 presents our approach 

and Section 7.3 presents the evaluation. Section 7.4 presents the related work in this area. 

Finally, Section 7.5 provides final considerations of this chapter. 

7.2 PROV-DIFF 

In this section, we discuss our approach for comparing provenance graphs, generated by 

different game sessions. Our approach uses a unified provenance graph to infer the probable 

causes that led to failure through graph differences. However, the process of creating a unified 

graph requires three elements: (1) a matching heuristic to match vertices from different graphs, 

(2) the definition of vertex similarity, and (3) a graph merging algorithm. Note that the merge 

process is done by merging two graphs at a time and, consequently, the matching heuristic uses 

only two graphs at a time as well. 
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In the following subsections, we discuss all these requirements to generate a unified 

graph. We also discuss our approach for comparing provenance graphs to determine the 

probable causes that led to the failure of a particular game session. 

7.2.1 MATCHING HEURISTIC 

A matching heuristic for vertex selection is used in order to restrict the search space for 

vertex matching and avoid making a Cartesian product between vertices from both graphs. 

Furthermore, the heuristic decides how the comparison between vertices from different graphs 

is made. It always chooses two vertices (one from each graph) to pass them to the Vertex 

Similarity algorithm for comparison.  

 The matching heuristic can simply restrict the search by neighborhood (e.g., vertices 

from same agent type), or by specific vertex attributes (e.g., time, coordinates), or both. For 

example, selecting vertices from one graph and vertices from the other graph that are temporally 

close and/or spatially nearby. Another example would be a heuristic that considers 

neighborhood, restricting the vertex selection to match only those that belong to the same type 

of agents, such as the player, non-playable characters, or a specific enemy type. 

Currently, we use a simple heuristic that uses temporal information to compare vertices 

from provenance graphs generated from the same game (e.g., different players playing the game 

or multiple game sessions from the same player). The heuristic sorts all vertices from each 

graph by their temporal information and then proceeds to compare the first vertex from one 

graph with all the vertices from the second graph in an ascending order. If there is a match 

based on the vertex similarity algorithm, then the search ends and the matched vertices are 

merged. Both vertices are also added to a list of visited vertices to avoid matching them again. 

The heuristic then continues to the next vertex from the first graph and compare with the 

vertices from the second graph that does not belong to the list of visited vertices in an ascending 

order. 

7.2.2 VERTEX SIMILARITY 

The Vertex Similarity algorithm, also known as the distance metric function, always 

compares two vertices (e.g., v1 and v2) for the (similarity) evaluation to establish the similarity 

among them. The similarity value between two vertices ranges from 0 to 1, where 0 represents 

total mismatch (0%) and 1 represents a total match (100%). consider G1 = (V,E) as a directed 

graph where V = {v1, v2, ..., vn} | vi, 1  i  n and consider G2 = (V,E) as a directed graph where 
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V = {v1, v2, ..., vm} | vi, 1  i  m. The comparison algorithm always compares vertices vx and vy 

at a time, where vx ∈ G1 and vy ∈ G2 and G1 <> G2. This process is divided into four steps: (1) 

distance metric configuration, (2) vertex type verification, (3) attribute evaluation, and (4) 

similarity evaluation. Furthermore, the comparison algorithm uses a configuration file where 

it contains a list of elements and each element contains an attribute name, a value that represents 

the acceptable error margin for that specific attribute, and the weight of that attribute for the 

similarity calculation. Figure 60 illustrates the overview of this entire process. 

 

Figure 60: Overview of the Vertex Similarity process 

The first step is the distance metric configuration. This step uses a configuration file, 

which is consulted during the third step (attribute evaluation) to determine if the attributes 

values from vx and vy can be considered similar when their difference is below the accepted 

error margin. Moreover, the algorithm uses a value that represents the similarity threshold, 

which must be informed by the user inside the configuration file. This similarity threshold is 

used by the last step (similarity evaluation) to determine when two vertices should be 

considered similar.  

For example, [(Timestamp, 0.2, 5), (HealthPoints 5, 2)] would be an attribute list in the 

configuration file which says that the Timestamp attribute has a weight of 5 with an acceptable 

error margin of 0.2. Meanwhile, the HealthPoints attribute has a weight of 2 with an acceptable 

error margin of 5. Thus, specific attributes can have more impact on the similarity calculation, 

such as attributes that have Time and HealthPoints information could weight n times more than 

other attributes when determining the similarity factor.  If the user does not provide this 

configuration file, then the error margin uses a default pre-defined value and all attributes will 

have the same weight.  

 Similarly, the user can also provide a vocabulary inside the configuration file, which 

lists all accepted "similar" string values. The vocabulary is a dictionary that is constructed 

through multiple lists of strings, such as "House, Cabin, Cottage" and "House, Apartment". It 

breaks each list into separate strings and adds them in the dictionary, using the string's name as 
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the key in the dictionary and the list as a value, which represents the accepted strings for the 

current string. Thus, using the example of "House, Cabin, Cottage", the vocabulary will have 

3 entries in the dictionary (one for each string) as follows: {“House”: [“Cabin”, “Cottage"], 

“Cabin”: ["House”, “Cottage"], “Cottage”: ["House”, “Cabin”]}. However, if we add a new 

list in the vocabulary with "House, Apartment", then the vocabulary will update the House value 

to be [“Cabin”, “Cottage”, “Apartment"] (added Apartment in the accepted strings for House) 

and insert a new entry in the dictionary with “Apartment”: ["House”]. If the user does not inform 

any list to the vocabulary, then the vocabulary will be empty and strings will only be considered 

similar if they are equal. 

  The second step from the Vertex Similarity algorithm is the vertex type verification. 

This step receives two vertices (vx and vy) from the matching heuristic and checks the type of 

vx and vy to verify if they match. If they belong to the same vertex type (i.e., Agent, Activity, or 

Entity) then it proceeds to the third step (attribute evaluation), which evaluates the attributes 

from both vertices. In the case where the types are mismatched, then the vertices are not 

considered similar and the comparison is halted, setting a similarity factor of 0%, skipping the 

third step, and going directly to the fourth step. 

 The third step of the algorithm, which is the attribute evaluation, tries to match each 

attribute from one vertex (vx) with an attribute from the other vertex (vy), comparing their values. 

Thus, the algorithm goes through all attributes from vx and tries to find the same attributes in vy 

using the attribute's name. If vy has an attribute with the same name as vx's attribute, then it 

compares their values to determine whether both vertices have similar values. This comparison 

also searches the configuration file to verify the acceptable error margin for the attribute when 

dealing with numeric values. Thus, if the difference between the numeric values is lower than 

the accepted error margin, then they are considered to be similar values. For strings, the 

algorithm searches the vocabulary using the string value from vx to determine if the string value 

from vy is similar. If the string from vx is in the vocabulary and it contains vy's value as accepted 

strings, then they can be considered similar. If vy has an attribute that was not matched with vx, 

then this attribute from vy is added to the similarity evaluation as a zero match because vy has 

attributes that vx does not have, thus they can never be considered as a total match. The process 

is analogous if vx has an attribute that was not matched with vy. 

For example, consider that the attribute being evaluated is Time and vx's is equal to 5 

and vy's is equal to 5.1. If we use the [(Timestamp, 0.2, 5), (HealthPoints, 5, 2)] attribute list, 
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then the difference between vx and vy (5 - 5.1 = 0.1) is below the accepted variance (0.2 for 

Timestamp).  

The fourth step, which is the similarity evaluation, determines if vx and vy can be 

considered similar and thus suitable for combining into a single vertex in the unified graph. The 

similarity factor, which is used for the evaluation, is calculated from the number of attributes 

that were considered similar in both vertices during the second step. This number of matched 

attributes is then divided by the total number of distinct attributes from both vertices, generating 

a value ranging from 0 to 1, where 0 represents a total mismatch (not a single attribute could be 

matched either by name or by value) and 1 represents a total match (all attributes from vx are in 

vy with similar values and vy has no attribute that vx do not have and vice versa). The resulting 

number from this division is the similarity factor. The similarity factor is then compared with 

the similarity threshold. If the similarity factor is below the accepted similarity threshold, then 

vx and vy are not considered similar. However, if the similarity factor is equal or greater than 

the similarity threshold, then both vertices can be considered similar vertices. Note that these 

two vertices are the ones received from a matching heuristic during the step two. Furthermore, 

this entire process is only to inform if these two received vertices can be considered similar. 

For example, if the similarity threshold is 1, then vertices will only be considered similar 

if all their attributes and respective values match, which would result in a similarity value 

between vx and vy of 1. Since the similarity value equals 1 and the similarity threshold is set to 

1, then these two vertices can be considered similar (similarity value is equal or greater than the 

similarity threshold). However, if we use a similarity threshold of 0.75 (which translates as 75% 

match) then vx and vy would be considered similar if at least three-quarters of all their attributes 

match (considered equals or similar). 

7.2.3 GRAPH MERGE 

After establishing that two vertices are similar, then the next step is to merge them to 

create a new vertex that represents the two original vertices. This newly created vertex will 

belong to the unified graph, while the original vertices will not be a part of it. The merge process 

creates a new vertex of the same type of the original vertices (i.e., agent, activity, or entity) and 

has all attributes from both vertices and their respective values plus a new attribute showing the 

graph it originally belonged. For numerical attribute values, it shows the average for that 

attribute and the minimum and maximum values in the following notation: 

average_value(minimum_value ~ maximum_value). For String values, it shows all different 
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values separated by a comma (e.g., String_Value1, String_Value2, String_Value3). A new 

vertex ID is created to represent the merged vertex.  Figure 61 shows an example of displayed 

data from a merged vertex. The merged vertex was generated from the vertices shown in Figure 

62 (even though they have the same ID, they belong to different graphs). We use the five-

number summary (minimum, 1st quartile, median, 3rd quartile, maximum) when there are more 

than two vertices merged together into a single summarized vertex. This only occurs when 

merging multiple graphs. 

 

Figure 61: Fragment of a Merged Vertex 

 

Figure 62: Original vertices from Figure 61 

 After inserting the vertices in the unified graph, it is also necessary to update all edges 

that used any of the old vertices for generating the merged vertex. This update changes the 

edge's source or target that points to either vertex that was used for the merge to point to the 

new generated (merged) vertex. Otherwise, the edge would point to an invalid vertex since the 

original vertices are not in the unified graph. Furthermore, when an edge had its source and 

target vertices updated, then it is necessary to check if there is another similar edge with the 

same type that also had its source and target updated (possibly from the other graph). When 

two or more edges have the same type, source, and target vertex, then they can be merged into 

a single edge. The merged edge's value will be the weighted average value from all edges used 

in the merge and have its weight increased (the default weight is one) to reflect the number of 

edges used in the merge. Therefore, if we merge two edges with values 2 and 4, the resulting 
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merged edge would have a weight of 2 and a value of 3 (since they had the same weight). 

However, if later we merge this new edge with a third edge that has a value 6, then the new 

merged edge would have a weight of 3 (two from the first merge and one from the third edge) 

and a value 4 due to the different weights. If we merge this new edge (value 4, weight 3) with 

another merged edge (value 14, weight 2), then the resulting edge would have a value of 8 

((4 × 3 + 14 × 2) (3 + 2)⁄ ) and weight of 5. 

 Below we present an example of a unified graph generated from two graphs. These 

graphs were generated from the Angry Bots game and were rendered with our tool Prov Viewer. 

Figure 63 shows the first graph used for the summarization process, while Figure 64 shows the 

second graph. Figure 65 shows the game session by showing the player's initial location, the 

locations of the enemies, and the sequence of sections explored in the map. The player (red 

circle) starts at the bottom of the map and then explores the map passing through the first area 

(orange rectangle). Then, the player goes to the second area (yellow rectangle) and finishes at 

the last area (blue rectangle). There are two enemies in the second area (pink circles). Green 

vertices represent the player actions, while pink vertices represent the enemy actions. 

 

Figure 63: Original Graph #1 used for the summarization 
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Figure 64: Original Graph #2 used for the summarization 

 

Figure 65: Game layout (based on the graph from Figure 63). 

 We can see that both graphs (Figure 63 and Figure 64) have some variations, including 

enemy engagement (in graph #1 the player only engaged 1 enemy, while in graph 2 the player 

engaged both) and actions (vertex) location, which is based on specific attributes of the vertex. 

In this case, we are referring to enemy engagement a situation when vertices from different 

agents (the player's green vertices and the enemy's pink vertices) have some kind of 
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relationship. Figure 66 illustrates an engagement example. Figure 67 shows the unified graph 

generated based on graphs from Figure 63 and Figure 64. This summarization example is based 

on temporal and spatial information (coordinates) to determine vertex similarity. By analyzing 

carefully, the merged vertices (grey) have slightly different positions from the original vertices 

because these vertices use the average values for the spatial coordinates of the merged vertices 

(e.g., Figure 61). However, we are planning to extend this feature (vertex position) to allow the 

user to choose between different functions to determine the final spatial coordinate, such as 

choosing the minimum value, the maximum value, the average, mode, or the median value from 

the summarized vertex. 

 

Figure 66: Enlarged section of the graph illustrating an enemy engagement.  Note the red edges that link a 

pink vertex (enemy) with a green vertex (player). These red edges (previously hidden to not overwhelm 

the graph presentation) represent damage taken. 

 

Figure 67: Unified graph using a matching heuristic with a threshold of 0.9 and having only margins of 

error for spatial and temporal information. Merged vertices had their color altered to have blue color for 

an easier identification in the default visualization scheme. 

 The presented merge approach does not trivially support an inverse operation since the 

original vertices and edges are discarded/updated and a newly merged vertex is created in their 
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place. However, Prov Viewer also supports another type of graph merge that allows the user to 

undo the merge. This second type of graph merges actually preserves all the vertices and edges 

from both graphs by creating a cluster with the vertices (one from each graph) that were 

considered similar. Thus, the user can undo the merge by simply expanding the cluster. The 

downside of this approach is the fact that it preserves all the original data (vertices and edges) 

inside the cluster-vertex and needs to create new data to represent the cluster-vertex and new 

edges that connect the newly formed cluster-vertex while preserving the old edges for the undo 

operation. This new information grows linearly when merging multiple graphs since the merge 

process is done by merging two graphs at a time. Thus, a cluster-vertex can have a cluster-

vertex inside it and another cluster-vertex inside the cluster-vertex and so on. Every time the 

user expands a cluster-vertex from the merge operation, then it is undoing the last merge that 

affected that particular vertex that is being expanded. 

7.2.4 DETECTING GRAPH DIFFERENCES 

Comparing the differences between two or more graphs becomes trivial after generating 

the unified graph since each vertex contains information related to their origins. Thus, we can 

see all vertices from a specific graph and know how it differentiates from the other graphs inside 

the unified graph by comparing each vertex’s origin. Furthermore, the original attributes values 

and their source are preserved when merging similar vertices. The graph diff can be done within 

the Prov Viewer by selecting a vertex color scheme that is based on the created attribute that 

states the origins of the vertex.  

This visualization from Prov Viewer, when using for differentiating graphs in the unified 

graph, paints all the vertices that belong only to the selected graph in green, all vertices that do 

not belong to the desired graph in red, and all vertices that belong to more than one graph 

(including the desired graph) in grey. This allows for quick identification of segments that 

differentiates a particular graph from the others. Figure 68 shows the colored vertices from the 

unified graph that belongs to the first graph (from Figure 63) and Figure 69 shows a comparison 

between graphs in a zoomed section from the game. 
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Figure 68: Unified graph from Figure 67 showing all vertices that belong only in Graph #1 (green vertices), 

vertices that belong only in Graph #2 (red vertices), and vertices that belong in more than one graph, 

including Graph #1 (grey vertices) 

 

Figure 69: Comparison between graphs: Graph #1, Graph #2, and Unified Graph. 

7.2.5 COMPARING GAME SESSIONS THROUGH DIFFS 

The comparison process uses the unified graph to detect the causes of a problem and to 

infer possible solutions through graph diffs. The comparison algorithm compares the current 

graph (CG) that had negative results or failed to achieve the goal with all other graphs that had 

positive results in order to find the discrepancies that could have led to the failure. It searches 

the unified graph for the shortest diff distance to a positive result graph (SDDPG) and uses it 

as a baseline to determine the causes that led to the negative results through a vertex-by-vertex 

comparison. The vertices that only belongs to CG represent the causes that might have led to 

the failure. Meanwhile, the vertices that appear only in the SDDPG is the suggested patch 

operation that contains the changes that need to be made in order to reach the goal.  
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The CG might be able to reach the desired goal if it replaces the vertices that belong only 

to it by the ones that belong only to the SDDPG. As a consequence, this has potential to make 

the CG identical to the SDDPG, which is known to be able to reach the desired goal. However, 

the CG will only be a clone of the SDDPG if the unified graph used a similarity function that 

only considers vertices to be similar if they are 100% equals in attributes and values, possibly 

leading to an extremely large patch operation. In other cases, the CG will have vertices that 

were considered similar to vertices in the SDDPG but do not necessarily have the same content. 

Figure 70 illustrates an example of our comparison algorithm inside Prov Viewer. Grey 

vertices represent the vertices that belong to both CG and SDDPG. These vertices were 

considered “correct” by the comparison algorithm because they appear in both graphs. Red 

vertices represent vertices that appeared in CG but not in SDDPG. These are the vertices that 

might be the reason for not reaching the goal. Green vertices represent vertices that appear in 

SDDPG but does not appear in CG. These vertices are the suggested patch operation to make 

CG reach the goal.  

 

Figure 70: Comparison visualization using the unified graph inside Prov Viewer 

Our comparison algorithm, when used outside the games domain, can be seen as a 

provenance-based debugger to debug experimental trials. In this scenario, it can determine why 

a specific trial failed while another had positive results by using the same process and logic 

described in this section. Our approach would detect the differences between trials, the possible 

causes that led the trial to fail (vertices only belonging to CG) and the proposed fix (patch 

operation) to make the trial reach the desired goal. 
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7.3 EVALUATION 

In this section, we assess the proposed comparison algorithm for provenance graphs by 

determining the dependent variables accuracy, retention, and harmonic mean of our 

comparison algorithm. The accuracy metric tells us how many times our algorithm correctly 

predicted the probable causes that led to failing the goal. This is measured by applying the 

patch operation on the CG and verifying if the injected changes were effective to reach the 

goal. If the changes proved to be successful, then our algorithm correctly predicted the causes 

that led to the failure. The higher the accuracy, the better. 

The retention metric tells us how many vertices remained unaffected by the patch 

operation. This metric measure how much of the CG was preserved and allow us to compare 

the algorithm accuracy based on the number of changes in the patch operation. The higher the 

retention, the better. Finally, the harmonic mean tells us the overall performance of the 

algorithm based on the compromise of accuracy and retention metrics. 

7.3.1 MATERIALS AND METHOD 

This experiment was executed using a shooting competition game simulation that uses 

projectile motion physics with the goal of hitting a target. We evaluated the accuracy of our 

comparison algorithm in detecting the probable causes that led to missing the target. 

The simulation has nine configurable parameters: (1) bullet mass, (2) air density based 

on temperature, (3) air density based on altitude, (4) air drag, (5) initial X position, (6) initial Y 

position, (7) bullet speed on X-axis, (8) bullet speed on Y axis, and (9) target position. 

Moreover, it has one constant: gravity. The physics behind this simulation is described in 

Equation 2, where ρ is the air density, Cd is the drag coefficient, and A is the cross-sectional 

area of the projectile. The simulation goal is for the shooter to hit the target. 

Equation 2: Projectile motion equations 

𝑥̈ =  −𝛽𝑥̇√𝑥̇2 +  𝑦̇2̇
 

𝑦̈ =  −𝑔 − 𝛽𝑦̇√𝑥̇2 +  𝑦̇2̇
 

𝛽 =  
𝛼

𝑚
 

𝛼 =  
𝜌𝐶𝑑𝐴

2
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We simulated a shooting competition with 15 participants. The competition is 

comprised of 20 rounds, wherein each round all participants have one shot to hit the target. The 

target position changes after each round. Each shot taken generates a provenance graph with 

the parameters used in the projectile motion simulation. Figure 71 shows an example of the 

generated provenance graph for this type of simulation, where entities in the graph represent 

the input parameters and activities represent the bullet position over time. The input parameters 

were generated randomly using a Gaussian distribution to simulate different players 

participating in the competition. We consulted real data values to select the mean for the 

Gaussian function and generate the sigma for the Gaussian distribution. As a result, all input 

variables were continuous. 

 

Figure 71: Example of provenance graph for the projectile simulation 

For this experiment, we only consider the input variables as the probable cause of 

determining if the goal was reached or not, since the bullet final position is directly related to 

the nine input values described earlier. Thus, for comparison purposes, only the entities in the 

graph that represent input variables are taken into consideration by our algorithm, since all other 

vertices from the graph do not influence the final result.  

Lastly, the results from our comparison algorithm are directly related to the unified 

graph, which requires a similarity distance metric to determine if two graphs are similar and 

calculate the DIFFs. All variables in this experiment belong to the continuous space, meaning 

that there will never be two equal values in the entire dataset. Moreover, the similarity distance 

metric is directly related to the retention metric because a value from CG can be considered 

similar to its counterpart from SDDPG even though they are not exactly equal and, thus, 

preserving the CG vertex. Thus, the patch operation will not change the vertex since it is 

equivalent to the one from SDDPG. 

As such, the experiment execution plan was divided into five stages: (1) generate the 

dataset, (2) create different similarity coefficients, (3) generate the unified graph for each 

similarity function from stage 2, (4) execute the experiment using the unified graphs from stage 

3, and (5) analyze the results. The entire simulation resulted in 300 graphs since it had 15 

participants and 20 rounds, totaling 300 shots. From these 300 generated graphs, only 16 graphs 
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managed to hit the target, which is equivalent to 5.33% of the shots reaching the goal of the 

simulation (hit the target). Our comparison algorithm requires at least one graph to have reached 

the goal and this restriction was satisfied in the generated dataset.  

The second stage is responsible for generating the similarity distance metric for the 

experiment. We created 10 different metrics. Each similarity distance metric uses the same 

factor of standard deviation (sigma) to define the similarity threshold for each input variable. 

The difference between the similarity distance metrics is the factor used for the thresholds. The 

generated similarity distance metrics are: (1) 0-Sigma, (2) 0.25-Sigma, (3) 0.5-Sigma, (4) 0.75-

Sigma, (5) 1.0-Sigma, (6) 1.25-Sigma, (7) 1.5-Sigma, (8) 1.75-Sigma, (9) 2.0-Sigma, (10) 3.0-

Sigma. Thus, the first metric (0-Sigma) will only consider two vertices to be similar if their 

attributes’ values are within zero standard deviations apart, or in other words, if their numeric 

values are the same. We did not add more points between 2.0-Sigma and 3.0-Sigma due to the 

rule “68-95-99.7”, which states that, for a normal distribution, 68% of the values fall between 

one Sigma around the mean, 95% fall between two Sigma around the mean, and 99.7% fall 

between three Sigma around the mean. Thus, the difference between 2-Sigma and 3-Sigma is 

only 4.7%, which is too small to generate any significant impact on the result. Nevertheless, we 

kept 2-Sigma and 3-Sigma in the experiment to show that the difference when using these 

metrics is not significant. 

The third stage is responsible for creating the unified graphs using the similarity distance 

metrics from the second stage and the 300 graphs from stage 1. Thus, at the end of this stage, 

we had 10 different unified graphs that represent different similarity distance metrics when 

applied in the same 300 graphs. 

Finally, we executed the experiment using the unified graphs from stage 3. We 

calculated the accuracy, retention, and harmonic mean metrics for each unified graph. This 

process is done by applying the patch operation in each graph that had not reached the goal 

(284 graphs from 300) for each one of the unified graphs. We re-ran the projectile motion 

simulation in each patched graph to determine if the modifications were sufficient to allow the 

shot to hit the target. 

7.3.2 RESULTS AND DISCUSSION 

The graphic from Figure 72 shows the obtained results from our evaluation for each one 

of the similarity distance metric used to generate the unified graph. The retention rate was 

calculated for all graphs, independently whether the patch worked or not.  
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These results show that our comparison algorithm can achieve a 100% accuracy rate. 

However, this only occurred when using the 0-sigma similarity, which has the lowest retention 

rate of 5%. This means that the algorithm basically discarded the failed graph and replaced it 

by a clone from a graph that reached the goal. This was done in order to make the failed graph 

work since all vertices are considered to be different due to the zero tolerance for similarity in 

a continuous domain. Considering that the SDDPG reached the goal, then it is reasonable that 

its clone will also reach it. 

 

 

Figure 72: Evaluation results showing Accuracy, Retention, and harmonic mean metrics for each similarity 

coefficient used. 

The results from other similarity distance metrics show that the accuracy and retention 

metrics are inversely proportional: accuracy decreases as retention rate increases. This also 

sounds natural since if we preserve the failed graph, then the goal will not be reached. 

Furthermore, the more elements we preserve from the failed graph, the lower the chances are 

of identifying the reasons and fixing it since the problem can be bigger than what it is allowed 

to be changed by the algorithm. Nevertheless, this allows the user to choose the desired 

retention rate of the analyzed graph at the cost of losing accuracy of the prediction based on 

the patch size.  

Thus, it is up to the user to define whether the accuracy or retention is more important. 

However, by looking at the obtained results, it is not recommended to have retention rate greater 

than 55% because otherwise, the average accuracy rate drops from 40% to 20%. The Harmonic 

mean metric can be used in cases where the user is after the overall performance of the algorithm 

based on the compromise of accuracy and retention metrics. In this case, the optimal similarity 

distance metric is 0.5-Sigma, resulting in 55% accuracy and 40% retention rate. 
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The retention rate changes to the values illustrated in Figure 73 if we consider only the 

graphs that were able to reach the goal after the patch operation. These results are similar to 

those presented in Figure 72. However, the average retention rate is a little lower when 

considering only these graphs. Nevertheless, the difference is minimal and does not change nor 

heavily impact in the overall results. 

 

Figure 73: Evaluation results using retention rate of graphs that were correctly debugged. 

7.3.3 THREATS TO VALIDITY 

We identified internal and external factors that may influence the results. In relation to 

internal validity, we compute the algorithm’s accuracy from the result of the patch operation 

by verifying if the modified graph is able to reach the goal. Regarding external validity, we 

mitigated sample bias by randomly generating 300 different graphs using Gaussian distribution 

and having a set with more than one graph that reached the goal. 

7.4 RELATED WORK 

Related works were selected from those related to provenance reproducibility since the 

majority of comparison approaches for games rely solely on artisanal methods of exploratory 

analysis on tracked data to try to understand what went wrong. However, workflow 

management systems (AFGAN et al., 2016; ALTINTAS et al., 2004; CALLAHAN et al., 2006; 

DAVISON, 2012; HIDEN et al., 2013; HULL et al., 2006; KIM et al., 2008a) are able to keep 

track of provenance traces and their evolution through version control. Unfortunately, simply 

comparing through hash-code, code, labels, or file names is not enough since different data can 

have similar metadata, causing false-positives when computing the diff between provenance 

traces. 
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The PDiffView approach (BAO et al., 2009) detects the difference between workflow 

executions, focusing on finding the edit distance between two valid workflow runs that have 

the same specification. However, this approach only considers the workflow structure and 

ignores details that are used during scientific analysis of the workflow. 

The SGProv approach (EL-JAICK; MATTOSO; LIMA, 2014) creates a summarized 

provenance graph to reduce redundancy by avoid duplication of similar nodes when merging 

different graphs. However, this process is not generic and only considers activities that belong 

to the type of “program”. Furthermore, the summarization process only compares the type and 

name of the “program” node (vertex) and ignore the metadata contained within the vertex. 

Another recent approach is why-diff (THAVASIMANI; CAŁA; MISSIER, 2017), which 

is capable of explaining the differences between two workflow runs by looking at the execution 

provenance associated with the workflow. This approach can find the divergence points to trace 

the causes that can explain the output differences and provide evidence that the detected 

changes had impacted the output. The main advantage of this approach is that it is the only 

approach that looks at the metadata within a vertex. The metadata used is the configuration 

property of the activity nodes captured by eScience Central, which contains a relation of files 

and libraries used by the activity. This can be similarly compared to attributes within an activity 

vertex. However, the why-diff approach has no method of determining similarity context besides 

perfect matching and only detect the differences in file names in the properties. Moreover, the 

authors only consider isomorphic provenance graphs and do not appear to work when 

comparing graphs with slightly different structures due to a lack of a matching heuristic. 

7.5 FINAL CONSIDERATIONS 

This chapter proposed a novel approach for comparison of provenance graphs. Currently, 

only one existing approach considers vertex metadata during the diff operation. However, that 

approach only considers perfect matching of the metadata information and only work on 

isomorphic graphs. Meanwhile, our proposal provides a similarity algorithm to determine if 

two distinct metadata can be considered similar, even when having minor divergences and also 

having a matching heuristic to compare graphs that are not isomorphic.  

Our experimental results show that our comparison approach is capable of accurately 

detecting underlying issues that could have led to failure by comparing the provenance graph 

with another provenance graph that was known to reach the goal. Moreover, the results show 

that our algorithm can work with a flexible definition of similarity. However, this flexibility for 
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similarity definition directly impacts in our algorithm’s accuracy. This, in a logical point of 

view, makes sense since we are broadening the definition of similar values and, as a result, 

increasing the acceptable error margins in the interpretation of what is considered similar 

objects, which can lead to errors when saying that two objects are similar even when they are 

actually completely different. 

This chapter provided the last contribution to our work. Thus, in the next chapter, we 

conclude this thesis, listing our contributions, limitations of our approach and future work in 

the new fields of the study presented throughout this work. 
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CHAPTER 8 – CONCLUSION 

8.1 CONTRIBUTIONS 

In this thesis we presented a novel approach for tracking and displaying the game 

provenance data, opening a new research area for Game Analytics for tracking telemetry data 

and extracting knowledge from it. The richness and completeness of the provenance data allows 

for more abstract analysis over tracked game data, broadening the possibilities for different 

types of analysis and applications for tracked data. The game provenance data is a structured 

and directed acyclic graph, also known as a provenance graph, that represents the entirety of 

the game session. This graph can be used for data mining techniques to extract knowledge or 

used for exploratory analysis by generating a visual representation of the data through a 

dynamic and interactive node-link diagram. The proposed approach also supports the analysis 

of multiple game sessions by merging different provenance data to generate a summarized 

provenance graph that can be used to understand the reasons that led to different outcomes by 

detecting the differences between game sessions and displaying the probable causes. 

The advances presented in this thesis can be divided in four major contributions: (1) The 

PinG for Unity (PinGU) framework, for tracking provenance data, (2) Prov Viewer, for 

interactive display and visualization of provenance graphs, (3) three distinct summarization 

techniques, for reducing the overall provenance graph size with minimal information loss, and 

(4) a comparison technique for provenance graphs, to discover underlying issues that might 

have affected the result. 

In a previous work, we observed the positive impacts that provenance data have on 

understanding the events in a game session by using a conceptual framework with tracking and 

visualization prototypes. Thus, we created the PinGU, a framework for collecting provenance 

data from a game session. Our component facilitates the process of tracking and storing 

provenance for data exploration and analysis and unlike its predecessor, it is no longer a 

conceptual framework; it actually provides implementations for tracking and automatic 

management of provenance data. Designers only need to import and incorporate PinGU in their 

projects and create domain-specific tracking methods in the desired actions and events. The 

generated provenance graph from PinGU allows for post-game analysis to discover issues that 

contributed to specific results in the game session. This analysis can be used to improve the 

understanding of the game session and to identify actions that influenced the outcome. The 
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graph can also be used to analyze the game story development, how it was generated, and which 

events affected it. 

Using provenances graphs to represent a game session brings the challenge of displaying 

this provenance data to the game designers and analysts. Thus, we also proposed a visualization 

solution focused on displaying and interacting with provenance graphs, allowing designers to 

perform exploratory visual analysis over the collected game session data. Our solution was 

implemented as a provenance visualization tool named Prov Viewer, which uses graphics and 

interactive features to distinguish information for comprehending the events. These features 

affect the displayed graph by transforming vertices and edges, changing their shapes and color 

according to the information type. Another important feature is information filter, which omits 

displayed information that is not relevant to the analysis. This filtering is important for analysis 

because it reduces the amount of displayed information to those that are the focus of interest of 

the user. Prov Viewer also has other graph manipulation features, including but not limited to, 

manual and automatic collapses, graph merge, and graph comparison techniques. 

Although our visualization tool offers many features to interact with the provenance 

graph, there was still a problem when visualizing provenance graphs from long game sessions. 

Thus, we proposed three automatic data filtering techniques for provenance graphs, based on 

DBSCAN, an existing density clustering algorithm. Our algorithms take into consideration the 

temporal sequence of information of a provenance graph to summarize tracked data to a more 

manageable size through the usage of collapse strategies. In the game domain, vertices that 

were not collapsed tend to represent drastic changes in the game state and might be worth 

displaying during the analysis, while all collapsed vertices tend to represent minor variances 

around the state. We evaluated our approach for collapsing provenance graphs through two 

different experiments using automatic evaluation techniques and experts. The experimental 

results showed that at least one of our algorithms (IC variant) provided better results than the 

DBSCAN algorithm for collapsing similar segments in the provenance graph. From the 

automatic experiments, the IC variant proved to be better than DBSCAN in all cases, while in 

the expert experiments it had a minimum of 11 votes in all cases. Our IC variant was only 

surpassed by DBSCAN in one case (R-Tree), which DBSCAN had 15 votes against 11 votes 

from IC. 

Lastly, a key usage of provenance is to understand how an outcome was reached. As a 

final contribution, we proposed a provenance graph merge and comparison approach. Our 

proposed approach can identify possible reasons and discrepancies in a provenance graph that 
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might have led a player to fail to reach the goal. To do so, we contrast the provenance of the 

game session that failed with the combined provenance of all successful game sessions. We 

integrated our solution in our provenance visualization tool Prov Viewer and provided an 

experimental study using a projectile motion simulation. Our experimental results showed that 

our comparison approach is capable of detecting underlying issues that could have led to failure 

by comparing with another provenance graph that was known to reach the goal. Furthermore, 

the results showed that using the optimal similarity distance metric results in 55% accuracy and 

40% retention rate but can reach as far as 100% accuracy when having a retention rate close to 

5%. 

While the main application of provenance in this work is for games, we believe that the 

concepts discussed throughout this thesis are applicable to other domains and might be useful 

to support advanced forms of analysis. The proposed concepts could be applied in scientific 

experiments to visualize experiment provenance data, to debug the experiment in order to 

identify issues and better understand the obtained results. 

Lastly, Table 9 extends the comparative chart among approaches in the games domain 

from Section 2.7 of Chapter 2. This table adds our proposed approach, which is our PinG for 

Unity framework and Prov Viewer. The table compares our approach with the previously 

discussed approaches from that chapter. 

As can be seen in the table, our approach stands out from the rest by tracking richer 

game data, including contextual information from actions and events. Our approach also offers 

methods to mitigate information overload from huge game sessions and allow to compare 

multiple sessions for analysis to determine possible causes that led to certain outcomes. Lastly, 

our approach is the only approach that records the causal relationships (cause-effect) from the 

events in a game session. 

8.2 LIMITATIONS 

Although we invested the effort to conceive and build a useful and functional provenance 

infrastructure for games, our work has some limitations. Our provenance gathering framework 

requires manual instantiation of existing functions to inform, for each action, all possible causal 

relationships that can happen during the game. This information is usually available in the game 

design document. However, some unforeseen relationships could happen in a game due to the 

interaction of different complex mechanics or features. In the event that this occurs, our 

gathering framework would not be able to detect and capture these unforeseen causal 
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relationships and would need to be inferred by the game designers when analyzing the 

provenance data. 

A limitation of Prov Viewer is related to scalability, regarding processing performance. 

Algorithms in Prov Viewer are not fully optimized for manipulating graphs with multiple 

thousands of vertices and edges, although we developed a level of detail method. Thus, its 

performance may degrade when dealing with huge graph sizes. Another limitation is based on 

input data. Prov Viewer can interpret PROV-N. However, PROV-N can only be used as an 

input and not output when exporting the graph. All operations done within the tool are lost when 

exporting to the PROV-N format due to format restrictions, resulting in exporting the original 

graph without any collapses or merge data. Nevertheless, the tool’s own XML format support 

all the features it uses. 

Regarding our similarity algorithm to filter sequential data, they require parameter tuning 

similar to any other clustering technique. A way to avoid meticulous parameter tuning is by 

Table 9: Comparative chart of approaches 

Features 

G
V

M
 (

J
O

S
L

IN
; 

B
R

O
W

N
; 

D
R

E
N

N
A

N
, 

2
0

0
7

) 

T
R

U
E

 (
K

IM
 e

t 
a

l.
, 
2

0
0

8
b

) 

P
la

y
tr

a
ce

r 
(A

N
D

E
R

S
E

N
 e

t 
a

l.
, 
2

0
1
0

) 

P
la

y
-G

ra
p

h
 (

W
A

L
L

N
E

R
, 

2
0

1
3

) 

P
in

G
 f

ra
m

ew
o

rk
 +

 P
ro

v
 V

ie
w

er
  

Graph x x    

Graphic   x x x 

Event Context x  x x  

Actions x  x   

Statistical Data Analysis   ⸋ ⸋ ⸋ 

Cause-Effect x x x x  

Temporal Information   x   

Spatial Information x  x   

Information Overload Mitigation x x    

Multi-session analysis x x    



161 

 

using factors of standard deviations as the threshold value. Moreover, since they were based on 

the DBSCAN algorithm, they inherited the non-deterministic nature. 

Lastly, a limitation of our comparison approach is that it requires at least one graph that 

reached the goal, otherwise it would not work. Furthermore, the effectiveness of the algorithm 

is directly linked to the unified graph and the definition of similarity distance metric. 

8.3 FUTURE WORK 

There are some opportunities for future work to improve any of the proposals in this thesis 

or even expand with new studies due to the richness of provenance data. Our PinG concrete 

framework can be improved to automate even further the data tracking, especially for 

influences, which is the most complex aspect of the provenance tracking. Our component could 

also be extended to include other game engines, such as Unreal® Engine, due to their recent 

business change for indie developers.  

Moreover, due to the quantity of the data extracted by PinG, we recommend studying 

other techniques to improve even further the visual analysis process. These studies involve, but 

are not limited to, automatic graph inferences, data mining, graph reduction, multiple graph 

analysis to compare multiple game sessions or even cycles during a game (e.g., laps in a racing 

game), enabling better strategies of provenance gathering that take advantage of the game’s 

genre.  

Other possible future work, related to information visualization, include more elaborate 

algorithms to analyze the provenance data and suggest which information can be omitted to 

reduce the graph to acceptable sizes; more types of graph visualization techniques; and more 

graph layouts, including a support for dynamically loading new layouts in the tool at run-time, 

even handcrafted ones.  

In addition, we also recommend future work related to provenance graph summarization 

in the aspects of further refinement of the heuristics and resulting algorithm, especially the VE 

heuristic. Other possible future work is to further refine our strategy to run the automatic 

experiment for evaluating graph summarization. Our initial result from both experiments 

(automatic and experts) shows an alignment of algorithm selection, which can be an indication 

of its possible effectiveness when dealing with graphs that have similar behavior of those we 

used, which can be very common across multiple domains. 
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There are other possible future works in relation to comparing provenance graphs. Our 

comparison only considers the closest graph that reached the goal of determining the causes 

that could have led to failure and proposing a new solution. A possible future work is related to 

finding good patterns from graphs that reached their goals to improve the chances of reaching 

the same goal in future iterations. Similarly, another approach could detect bad patterns that 

should be avoided. Another work could use statistical analysis from previous executions to infer 

future outcomes based on an ongoing session or hypothetical situations. Similarly, another 

approach could merge game sessions that failed to reach the goal in order to detect the most 

common causes that led to failure.  

Finally, our provenance tracking framework is already being used in other studies that 

include dynamic content balancing, machine learning, deep learning, and multi-agent systems. 

There is also an ongoing study to use GPU for graph visualization to improve performance 

when visualizing huge provenance graphs. However, the usage of provenance data can be 

explored in many other research fields related to games due to its richness and capacity for more 

abstract analysis. Examples include, but are not limited to, dynamic storytelling generation, 

automatic content generation and adaptation, content customization based on the player’s 

profile or progress, and improved artificial intelligence by developing characters that react 

differently based on the player’s past events 
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