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Resumo

Consolidação de servidores e elasticidade de recursos estão entre as dois características
mais importantes do gerenciamento de recursos na computação em nuvem. O primeiro
tenta melhorar a utilização de recursos reduzindo ou minimizando o número de servidores
para uma determinada carga de trabalho. O último tem como objetivo obter ganhos de
utilização, tentando explorar as demandas variáveis no tempo dos aplicativos em nuvem
durante a execução. Uma das duas formas de elasticidade é frequentemente adotada.
Enquanto a elasticidade horizontal se preocupa com a aquisição e liberação de nós com-
putacionais de acordo com a demanda, a elasticidade vertical se concentra na distribuição
dos recursos de um nó entre suas máquinas virtuais (MVs) hospedadas ajustando a capaci-
dade dos tipos de recursos alocados a cada MV individual de acordo com necessidades
de sua respectiva aplicação. No caso da elasticidade vertical, quando recursos insufi-
cientes estão disponíveis para alocar para uma MV, o desempenho da aplicação sofrerá
degradação. Para aplicações on-line, a única alternativa é tentar migrar a MV para outro
servidor com capacidade suficiente para hospedar a MV. Por outro lado, ao executar tare-
fas em lote, a MV restrita de recursos também pode ser suspensa ou salva em disco e
revivida em qualquer outro servidor (por meio da migração de MV para outro host) ou
no mesmo host, quando os recursos se tornem disponíveis. Como a disponibilidade de
memória pode ter uma influência significativa no desempenho do aplicativo e no rendi-
mento do sistema, este trabalho investiga a integração e o impacto da migração da MV
como parte de uma estratégia de escalonamento no contexto da elasticidade vertical de
memória. Avaliamos uma versão aprimorada e estendida do MEC (Memory Elasticity
Controller) e o uso de várias instâncias do MEC sob a orientação do controlador Memory
Elasticity Management in Clouds (MEMiC) para suportar a execução de aplicações on-
line e em lote. As avaliações mostram que a combinação de várias técnicas de preempção
pode fornecer melhorias de desempenho e utilização em comparação com as abordagens
baseadas em somente migração.

Palavras-chave: Computação em nuvem, Elasticidade vertical, Memoria, Escalona-
mento de maquinas virtuais, Virtualizção.



Abstract

Server consolidation and resource elasticity are among two of the most important resource
management features in cloud computing. The former attempts to improve resource uti-
lization by reducing or minimizing the number of servers for a given workload. The latter
aims to obtain utilization gains by trying to exploit the time-varying demands of cloud
applications during execution. One of two forms of elasticity is often adopted. While
horizontal elasticity is concerned with the acquisition and release of computational nodes
in accordance with demand, vertical elasticity focuses on the distribution of a node’s
resources among its hosted virtual machines (VMs) by adjusting the capacity of the
resource types allocated to each individual VM in accordance with its respective appli-
cation’s needs. In the case of vertical elasticity, when insufficient resources are available
to allocate to a VM, its application’s performance will suffer degradation. For on-line
applications, the only alternative is to attempt to live-migrate the VM to another server
with enough capacity to host the VM. On the other hand, when running batch jobs, the
resource constrained VM could also be suspended or saved to disk and revived wherever
(through VM migration to another host) or on the same host, when resources become
available. Given that memory availability can have a significant influence on application
performance and system throughput, this work investigates the integration and impact of
VM migration as part of a scheduling strategy in the context of vertical memory elastic-
ity. We evaluate an improved and extended version of the Memory Elasticity Controller
(MEC) and the use of multiple MEC instances under the guidance of the Memory Elastic-
ity Management in Clouds (MEMiC) Controller to support the execution of both on-line
and batch applications. Evaluations show that combining multiple preemption techniques
can provide performance and utilization improvements in comparison to live migration-
only approaches.

Keywords: Cloud Computing, Vertical Elasticity, Memory, Virtual Machine Scheduling,
Virtualization.
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Chapter 1

Introduction

Cloud computing offers computational resources that are delivered over the Internet and

provided as utilities to be used on demand. Clouds aim to rapidly adjust the quantity of

resource appropriately to the customer’s needs without over- or under-provisioning, and

charge each customer for exactly what used. Thanks to these features, cloud comput-

ing has enabled small start-ups and companies to use large computational resources at a

low cost, allowing these companies to innovate using new technologies such as big data,

deep learning and others, without having to deal with the high acquisition, maintenance

and operational costs. Cloud computing is generally considered a commodity business,

meaning that the competition largely revolves around price, driving it lower continually.

According to the International Data Corporation (IDC), worldwide cloud computing rev-

enues are estimated to reach $554 billion in 2021, more than double those of 2016. As

a big business, recent years have seen many new cloud providers emerge into the market

to compete with the leaders Amazon Web Services (AWS) and Microsoft Azure, such as

the likes of IBM Bluemix, Google Cloud, Oracle and Alibaba among others like LocaWeb

and Mandic in Brazil.

Advances in virtualization technologies have made it possible to share large physical

servers with multiple cores, memory and other resources between different users in a fully

isolated manner through the use of Virtual Machines (VMs). Nevertheless, the user or

resource management systems still face the problem of having to configure or determine

the appropriate amount of resources to allocate so that the application can execute within

a previously defined time frame. Furthermore, application requirements frequently vary

during their execution and therefore to tackle this problem, cloud providers must provide

tools that exploit elasticity transparently.

Elasticity is a key feature that allows the cloud to allocate or release resources on
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demand. While the most common form is horizontal elasticity, which consists of being

able to add or remove computational nodes being used by a given application, vertical

elasticity is the ability to increase or decrease the amount of resources in each individual

node that is allocated to an application. Generally, horizontal elasticity is classified as a

coarse grained approach, where virtual resource allocations are pre-configured and remain

static, while vertical elasticity is more fine-grained, since the sizes of the virtual resource

allocations can change dynamically.

In order to avoid harming the execution of their applications, users tend to overes-

timate the amount of resources required. In fact, it is common practice to request the

amount of resources necessary to satisfy the maximum expected demand. For example,

many applications have dynamic memory requirements and, in most cases, all of the al-

located memory will not be used for at least some part of execution time. In order to

try to take advantage of this idle memory, cloud providers often oversubscribe a physi-

cal machine by allowing the instantiation of virtual machines with a total peak memory

requirement that is larger than the amount of physical memory available. This practice,

however, has been shown to impact the performance of the application negatively [22,28],

especially when applications are forced to use swap because of a lack of available memory

even for short periods during execution.

Vertical memory elasticity, if implemented efficiently, can be used as an effective

method to assign memory to VMs while allowing cloud providers to instantiate more

VMs in a physical node without the risks of over-provisioning. In previous work [29],

the Memory Elasticity Controller (MEC) is proposed as a framework to manage the

transitions of a VM’s state based on the requirements of other VMs on a single host

and to dynamically assign memory to VMs on demand based on their recent memory

consumption. MEC’s main objective is avoid the use of swap within the VM and on the

host at all costs, while allowing applications to use memory elastically. In order to achieve

this, that initial MEC version implemented two countermeasures to be used when a host

begins to run out of memory and proposed that VM migration be considered in future

work as a third action to further improve VM scheduling in this situation.

The work in this dissertation focuses on modifications to MEC to combine the use

of three pre-emption options (VM pausing, suspension and migration) in a cloud or edge

computing environment with multiple physical machines [34]. In order to identify and

take advantage of idle resources in the system, we introduce a new component in charge

of: monitoring multiple MEC instances each running on a different host; scheduling new
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job requests to them, and; coordinating VM migrations between appropriate hosts when

required. Both scheduling and migration decisions are based on resource availability and

the system’s current and short term predicted demands. This dissertation analyzes the

costs and performance impacts of the pre-emption options and different variants of VM

migration, to improve the scheduling policies of MEC. By adding this new method to

mitigate the impacts of memory shortages, the framework is able to support both on-line

and batch jobs, simultaneously.

1.1 Motivation

Cloud providers must seek to make the most efficient use of their available resources

by maximizing their utilization and minimizing power consumption while not violating

predefined service level agreements. Given that user applications rarely use all of their

resource allocation, all of the time, cloud providers often allow the same physical resource

to be shared among multiple users at the same time, while maintaining some form of

isolation (through the use of virtual machines or containers) between applications. Un-

der this scenario, however, care must be taken to avoid, when possible, any consequent

degradation to the execution times of the applications or jobs.

Cluster or resource management systems are administrative software that automat-

ically orchestrate the allocation of jobs to resources, examples include Mesos [10] and

Kubernetes [9] often used in container-based cloud platforms [24], OpenNebula for VM-

based clouds and Slurm [18] and TORQUE [32] in High Performance Computing (HPC)

environments. In the more established area of HPC, in the past, resource managers had

to focus on performance and thus allocated each job to a dedicated set of resources in

order to avoid interference, i.e. performance degradation, caused by applications com-

peting for the same resource. Since this type of allocation policy can lead to significant

sub-utilization of resources, resource managers currently tend to allow the sharing of re-

sources. Unfortunately, they often do so without fully taking in to account the possible

negative performance impacts of this decision.

Vertical memory elasticity offers more efficient resource utilization by managing the

allocation of memory according to the demand while at the same time trying to avoid

performance degradation. MEC manages the state of the VMs to prevent significant

performance losses, but when the host machine has run out of resources, negative impact

on the performance may be unavoidable, and one or more applications may have to be
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paused or suspended to prevent swap usage. This creates the need to find another host

within the environment with enough free memory so that the load can be balanced and

reduce the performance degradation caused by the memory shortage.

Live migration has been widely adopted as a method to achieve different objectives

like load balancing and server consolidation in virtualized systems thus being able to

improve performance and throughput when idle resources are available. However this

might not always be a viable option and, if existing management systems do not consider

other forms of preemption, significant performance degradation could occur.

1.2 Objectives

This work proposes a vertical elasticity based tool to provide efficient memory manage-

ment and improve the throughput and resource utilization with benefits to both cloud

providers and users. While on the cloud provider side, better server consolidation drives

lower energy consumption by requiring fewer servers to attend the same workload and in-

creases profit for the existing physical infrastructure, this also reduces the user wait times

since more resources are be available for allocation. On the user’s side, pricing is based

on the amount of requested resources, and even if not consumed completely all of the

time, users are charged for idle resources. Vertical elasticity can make a more fine grained

pricing model viable where the costumers are charged for what is actually consuming over

the execution time, meaning potentially lower costs for users.

VM migration is needed as a form of preemption to take advantage of idle resources in

other hosts and relieve load from stressed servers. Live is the most common form of migra-

tion used in other approaches as the only preemption mechanism, however, other forms

of migration combined with the existing preemption mechanisms (pause and suspend)

in MEC yield alternative preemption forms enabling the system to deal with situations

where live migration is not an option due to unavailability of an additional host with

enough memory, making this tool more generally applicable.

This work aims to extend and adapt a previous version of the single server Memory

Elasticity Controller (MEC), with appropriate VM migration policies, to be used within a

distributed cloud management framework in order to improve the throughput of multiple

job requests of batch and/or on-line applications. The objective is to increase resource

utilization by taking advantage of idle resources in virtualized systems with multiple

physical servers each managed by a local memory vertical elasticity controller.
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1.3 Contributions

The main contributions of this work are listed below:

• A revised memory vertical elasticity-based tool that employs the coordinated use of

multiple preemption mechanisms to improve the throughput and resource utilization

of servers in a cloud environment while avoiding significant performance degradation

due to memory shortages.

• Design and implementation of a framework that orchestrates multiple instances of

MEC to operate in a cooperative fashion in a distributed infrastructure that employs

virtualization and supports VM migration.

• Integration of multiple migration techniques with pause and suspension to avoid

performance degradation even in scenarios when there is not other suitable host

with enough memory available to carry out a live migration.

• Analysis of the costs, performance impacts and benefits of the preemption options,

and different variants of VM migration, showing scenarios where multiple preemp-

tion schemes are needed to avoid performance looses.

1.4 Structure of the dissertation

The remainder of this dissertation is structured as follows: Chapter 2 summarizes some of

the related work in this area, describing the techniques adopted to provide vertical memory

elasticity. Chapter 3 presents the architecture of the Memory Elasticity Management in

Clouds (MEMiC) framework in detail and describes the proposed modification to MEC

to support VM migration and its integration with the other preemption mechanisms.

In addition, the costs of different migration variants are analyzed within the context of

the framework. Chapter 4 then evaluates the benefits of using different combinations of

preemption schemes as part of the MEC scheduling policy, on system performance, while

Chapter 5 draws some conclusions and indicates some future work directions.



Chapter 2

Related Work

Studies like that presented by Dawoud et al. [13], among others, have motivated the use

of vertical elasticity, in particular, of vCPUs in VMs, by showing that an elastic VM

implementation performs better than using multiple VM instances each with a single

vCPU. The reason for this seems to be the fact that the latter is less resource consuming

and avoids increasing overhead costs when scaling-up vCPUs. The work of Dawoud et

al. [13], however, did not consider vertical memory elasticity which also has to tackle an-

other problem: The question of how to allocate appropriate amounts of a limited resource

between competing applications.

It has been shown that having a sufficient amount of memory is fundamental for

application performance and meeting SLA requirements, whether it be in the context

of on-line systems [15], such as web-servers, or batch jobs [28]. However, wasting such a

precious resource by statically allocating more than is actually required can lead to reduced

throughput or the provisioning of what in essence would be unnecessary additional servers

which in any case only increases costs for service providers. Therefore, there is significant

interest in efficient schemes to dynamically allocate memory to, and remove memory from,

VMs elastically.

Baruchi and Midorikawa compared two metrics for vertical memory elasticity, the

Exponential Moving Average and the number of page faults, and concluded that the latter

leads to a better performance when used as the main criteria for allocating memory [7].

The Vertical Elasticity Manager (VEM) proposed by Moltó et al. implements an

elasticity rule to maintain a user-defined percentage of free memory in the VM, called the

Memory Over-provisioning Percentage (MOP) [22]. The goal is to avoid page thrashing

(i.e., swapping pages from memory to disk) in the virtual memory subsystem by scal-
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ing up or down the VM’s memory. If the percentage of free memory is lower than 80%

or greater than 120% of the MOP value, the VM’s memory allocation is increased or

decreased accordingly. The new VM memory size is calculated based on the used (or

consumed) memory and the MOP percentage. Not only can MOP be troublesome for the

user to define, but high values lead to wasted memory while a low MOP could hurt per-

formance [28,29]. Furthermore, although the aim is to avoid swap usage, the proposal can

fail to achieve this in some scenarios and cause significant performance degradation [28].

Extending the VEM functionality, the authors in [21] proposed a vertical memory

over-subscription framework to automatically monitor VMs and dynamically adjust their

allocated memory in accordance with the memory requirements of their running on-line

applications. The authors exemplified their work, which aims to manage memory within

a cloud infrastructure, using OpenNebula [23] as a Cloud Management Platform together

with their proposed Cloud Vertical Elasticity Manager (CVEM). A central CVEM receives

information from all existing VMs in the cloud and decides whether to enlarge or shrink

their memory allocations based on their earlier concept of MOP. Perhaps the most notable

contribution has been to address one of the drawbacks of their earlier work. When a

host becomes overloaded and the memory available on host becomes scarce, the system

may decide to live migrate VMs to a lighter loaded server. However, the work fails

to discuss what action should be taken if no such host is available. It is important to

point out that CVEM uses over-subscription that needs to be tuned appropriately in

order to avoid negative impacts on performance. Furthermore, the strategy depends on

the hypervisor’s 1 memory ballooning 2 mechanism, which is independent of CVEM, to

recover free memory and is thus, subject to policies of that mechanism’s implementation.

Since these mechanisms are generally only activated when the host server is running low

on physical memory, this leads to questions related to how quickly the CVEM scheme can

react to changing demands and scheduling requirements of individual VMs.

In order to exploit both types of elasticity, Sedaghat et al. proposes a repacking

based approach, where vertical elasticity is simulated through horizontal elasticity that

configures a new set of VMs with changed configurations based in the current load of the

system [30].

A performance-oriented vertical memory controller has been proposed by Farokhi et
1Software layer that is the interface between the VM and the host OS or hardware, to allow virtual-

ization.
2Memory reclamation technique implemented in the hypervisor in order to borrow unused memory

from a VM, commonly through a driver installed inside the VM that slowly allocates pages(inflating the
balloon) according to the hypervisor requests.
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al., based on control theory, to scale up or down the amount of VM memory by consid-

ering application performance characteristics such as response time (RT) [16]. Extending

this work, Farokhi and others went on to propose a hybrid vertical memory approach

where not only was RT considered, but also the average memory utilization, i.e. both

application performance and resource capacity characteristics are taken into considera-

tion [15]. In [2], Ahmad et al. presents an control theory approach based on previous work

of Farokhi et al. [15] that is applied to both on-line web applications and batch jobs with

a hybrid controller based on capacity and performance that prioritizes the QoS of on-line

requests. Vertical elasticity is used to tackle small workload fluctuations, while horizontal

elasticity is used to handle larger workload changes. By comparing the response time to

an expected time, their strategy identifies if the currently allocated memory is enough for

the application to process the current workload.

Also focusing on web services, Sotiriadis et al. presents an inter-cloud load balancer

that is decoupled from the cloud providers, and aims to avoid downtimes due to fail-

ures [31]. Their solution exploits vertical elasticity of CPU, memory and disk resources

via instance reconfiguration. The major disadvantage of this form of resource adjustment

is that it is not carried out on-line and requires the VM to be stopped in order to commit

the changes. The vertical scaling actions are triggered when the resource usage is higher

than a pre-defined threshold.

More recently, these elasticity techniques have begun to be applied to containers [25]

and to coordinate vertical elasticity of both VMs and containers within the same cloud

environment [6]. Al-Dhuraibi et al. describe an approach to manage vertical elasticity in

containers, invoking live migration when no more resources are available on the host [4].

Many of these approaches have characteristics in common. Often the vertical re-sizing

is only triggered when reaching a predefined percentage of capacity or performance. As

these amounts or rate increase, the system effectively becomes less sensitive to changes

and less efficient. Also, the majority of proposals only consider the execution of online

applications, and when resources are scarce on a host, additional ones are always as-

sumed to be available elsewhere, so adopting live migration is the straightforward naive

solution that almost all vertical elasticity solutions adopt. As infrastructure utilizations

increase, VM migrations need to be considered as part of the scheduling process since per-

formance can be significantly affected through decisions including, for example, avoiding

unnecessary VM migrations or choosing the appropriate VM to migrate. In this con-

text, migration itself may be sufficient and should be combined with other preemption
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techniques. One can argue that the elasticity controller should be integrated into the

environment’s application scheduling system.

Our present work aims to extend and adapt a previous version of the single server

Memory Elasticity Controller (MEC) with appropriate VM migration policies to be used

within a distributed scheduling framework in order to improve the throughput of multiple

job requests of batch and on-line applications in cluster/cloud/edge computing environ-

ments. Previously, MEC focused on dynamically scheduling VMs with batch jobs to

which memory will be allocated elastically. Even before memory on the host becomes

scarce, MEC must decide how to distribute memory among the running VMs. MEC is

aware that application may ask for more memory than they actually need, so will also

attempt to recover memory dynamically. In addition, when insufficient resources are

available, scheduling policies determine if and when, VMs should be paused to minimize

performance degradation, and suspended to free memory for the remaining executing

VMs [29]. The following chapter describes MEC in more details, gives an overview of

the proposed distributed scheduling framework and discusses the integration of multiple

migration techniques in to MEC.



Chapter 3

MEMiC and VM migration

Vertical memory elasticity improves resource utilization by taking advantage of the time

varying memory consumption of applications. However, if the server becomes overloaded,

hosted applications could suffer a significant reduction in performance. Existing solutions

typically employ some type of preemption scheme (e.g. live migration [21] or VM sus-

pension [29]) in an attempt to reduce or avoid such losses. This work hypotheses that

combining multiple preemption schemes will improve the performance of previous re-

source management solutions. After analyzing and modelling different preemption costs,

this chapter describes extensions to the work of Sawamura [27–29] on his vertical Memory

Elasticity Controller (MEC), which was focused on manage a single server, in order to

support various types of VM migration. The ability to migrate VMs also implies the need

for coordinated scheduling between the local MEC instances on each host server. Thus

this chapter also introduces the MEMiC Cloud Manager framework that coordinates the

allocation of jobs among the physical servers of the environment.

3.1 MEMiC Architecture

This section briefly presents the architecture of the Memory Elasticity Management in

Cloud (MEMiC) controller that coordinates resource allocation in a distributed and shared

environment. The MEMiC manager is responsible for submitting jobs that where re-

quested and to manage the virtual execution environment, which consists of multiple

VMs running across multiple hosts. Each host managed by an instance of the Memory

Elasticity Controller that is in charge of adjusting the memory of each VM in the host ac-

cording to its demands, and manage their states in order to mitigate performance impacts

when resource becomes scarce. We evaluate existing migration schemes and incorporate
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Figure 3.1: Overview of MEMiC architecture

mechanisms into MEC’s management of VM states and transitions.

At the top level, as seen in Figure 3.1, the MEMiC Manager is composed of a system

that collects monitoring information from each MEC instance on host servers in the

environment, gathering them in the Host States database, and the MEMiC Scheduler

that analyses this monitoring information in order to decide where to schedule new VM

requests held in the job queue or to identify a host (physical host pmj) to which an already

submitted VM could be migrated.

Preemption schemes are necessary to avoid VM performance degradations when a

given host does not have enough resources to meet demand. The MEMiC scheduler uses

job memory usage profiles to decide statically where to initially allocate the VM for the

next job. The MEMiC Scheduler can also dynamically adjust the existing allocation

by selecting a specific VM for migration to a different host. In this work, however, the

scheduler only identifies the source and destination hosts, decisions regarding which VM is

to be migrated are taken by the respective MEC instance on the source host chosen by the

MEMiC Scheduler. The reason for this is due to the asynchrony of resource availability

and the latency to realize such operations, thus the need to coordinate such actions with

alternative preemption schemes.

3.2 Local Memory Elasticity Controllers

Since reserving resources for peak VM consumption will perhaps leave some of these pre-

cious resources idle for much of a VM’s execution time, an opportunity exists for a more



3.2 Local Memory Elasticity Controllers 12

effective resource sharing approach to be employed. At the lower level of the MEMiC

architecture, on each host pmj, an instance of MEC operates to scale up or down the

amount of memory allocated to each running VM on the host. The aim is to improve the

throughput of the local VM scheduler by finding an appropriate distribution of the host’s

memory amongst the local VMs so that their demands continue to be met during execu-

tion. When resources are available, allocating memory to a VM on demand is straight

forward. On the other hand, when there is not enough memory, under-provisioning will

inevitably hurt performance. In this situation, effective management actions should be

taken by the local MEC instance at pmj defined as HostManagerj, such as: recovering

unneeded memory from VMs; pausing or suspending resource starved VMs and resuming

them when memory is again available, or; when identified by the MEMiC Manager, mi-

grate a VM to an alternate host to free up memory for the remaining VMs. Migration,

as well as pausing or suspending VMs, are effectively forms of pre-emption.

In order to support migration, the original MEC controller that only paused and

suspended VMs has been modified. A brief summary of the underlying MEC architecture

is presented next, together with the proposed adaptations that are evaluated later.

3.2.1 MEC and its VM states

At monitoring intervals of IMonitor seconds, each MEC Monitori in vmi, collects the

following information from the vmi’s guest OS: total available memory; free memory,

and; the amount of swap-in and swap-out since vmi was last initiated (booted). The

motivation for this selection of parameters is based on a detailed discussion presented

in [28], which concluded that swap usage has a severe impact on application performance

in a virtualized environment. The memory allocated to vmi in a given time t is defined

as ma(vmi, t), it is adjusted over time and is always greater than the amount of memory

in use by the vmi.

At every interval Ihost, the MEC HostManagerj considers the monitoring informa-

tion placed in the buffers and the lists of active and inactive VMs, ActiveVMsj and

VMQueuej, respectively. Based on this information, actions are then taken by the MEC

HostManagerj for each vmi allocated to pmj, depending on that VM’s current execution

state and memory usage state. Figure 3.3 presents the VM execution states considered

and possible transitions among them.

The job requests considers two parameters defined by the user to be considered for

the VM instantiation that will execute it: the initial amount of memory, which should be
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Figure 3.2: Original MEC VM states and their transitions

Figure 3.3: Proposed VM states and their transitions

only enough to initialize the operational system, and the expected maximum amount of

memory. Setting a lower amount of initial memory allows MEC to distribute the memory

among the VMs on demand.

When a VM request is first submitted to HostManagerj by the MEMiC Manager,

vmi is inserted in VMQueuej and its state is set to NEW . When resources are available

(i.e. the initial amount of required memory specified for the VM) and a decision is taken to

instantiate the chosen VM in a NEW state for execution, its will be switched to running

(RUN) and the VM moved to the ActiveVMsj queue. MEC detects memory shortages

by monitoring both the swap-in and swap-out counters associated with vmi. Depending

on the system load and available free memory in the host machine pmj, a running VM

may need to be paused (PAU) at some point during its execution, meaning that vmi

would no longer be using the CPU(s), but would still retain the memory allocated to it.

MEC primarily uses this form of preemption to prevent VMs and their applications from

being forced to use swap and suffering significant performance degradation when there is
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insufficient memory. From this state, a paused VM can shortly be returned to a running

state if enough extra memory can be found by HostManagerj to allocate to it, or may

be suspended, where the VM’s memory and context are saved to disk, so that its memory

allocation can be released for distribution to other VMs in need. Another way to release

memory would be to migrate the VM to another host with enough resources, depending

on the state of the VM the migration could be executed in different ways.

In the original MEC proposal [29], future work intended to consider migrating VMs

in a suspended state, as showed in Figure 3.2. However, some of these operations (e.g.

suspension and migration) can take non trivial amounts of time (especially if jobs execu-

tion times are a few minutes or less) and might not be particularly useful mechanisms for

use as a reactive approach to scaling. Policies are required to take in to consideration the

time required to suspend or migrate a VM. As such times may depend on characteristics

of the VMs, such policies should determine which VM should be subjected the chosen

action. Other external issues may also have to be factored in, for example, the location of

the storage where the VM state is saved. Therefore, VM migrations or suspensions should

be evaluated with care, taking into consideration not only the amount of memory to be

liberated, but also the delay before the memory to be gained from such an action becomes

available for reallocation to other VMs. Thus, the reminder of this chapter is focused on

how to aggregate these operations in to a coherent scheduling strategy to exploit vertical

memory elasticity.

Algorithm 1 HostManagerj

1: while true do
2: chfm← hfm(pmj, t);
3: manage_active_VMs(ActiveVMj, chfm);
4: commit_changes(ActiveVMj);
5: manage_inactive_VMs(VMQueuej, chfm);
6: commit_changes(VMQueuej);
7: manage_migration_request(ActiveVMj, V MQueuej)
8: send_pm_info(chfm, VMQueuej, ActiveVMj);
9: actual = get_time();
10: sleep(Ihost − (actual − t));
11: end while

The actions executed by each MEC instance in a host are shown in Algorithm 1,

firstly MEC computes the amount of free memory in the host (chfm) in line 2, and then,

based on that information, manages each queue and commits the changes (lines 3 to 6).

As part of the update to support VM migration in line 7 MEC checks if there exists a

migration request received from MEMiC, if so and it is needed, MEC chooses a VM to
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Algorithm 2 manage_inactive_vms(VMQueuej, chfm)

1: VMQueuej ordered by vstate(vm, t) and wtime(vm);
2: p← 1; // First paused VM
3: q ← |VMQueuej, vstate(vm, t) = PAU |; // Last paused VM
4: tbrm← to_be_released_mem();
5: // Manage suspended VMs:
6: while p ≤ q do
7: if chfm− sat(pmj) ≥ ms(vmp, t) then
8: ma(vmp, t)← ma(vmp, t) +ms(vmp, t);
9: chfm← chfm−ms(vmp, t);
10: action(vmp)← resume;
11: p← p+ 1;
12: else
13: if chfm+ tbrm <= 0 then
14: tbrm← tbrm+ma(vmq, t);
15: ma(vmq, t)← ma(vmq, t) +ms(vmq, t);
16: action(vmq)← suspend;
17: q ← q − 1;
18: else
19: tbrm← tbrm−ms(vmq, t);
20: end if
21: end if
22: end while
23: // Manage suspended and new VMs:
24: p← p+ 1;
25: while p ≤ |VMQueuej| do
26: if chfm− sat(pmj) ≥ ma(vmp, t) then
27: if vstate(vmp, t) == SUS then
28: action(vmp)← restore;
29: else
30: action(vmp)← activate;
31: end if
32: chfm← chfm−ma(vmp, t);
33: end if
34: p← p+ 1;
35: end while
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migrate and begins the migration process as will be explained in figure 3.4. In line 8, the

relevant information about the host state is send to MEMiC manager.

The algorithm to manage the inactive VMs invoked in line 5 (manage_inactive_vms())

originally does not considers that there exists a time delay since the moment a VM sus-

pension decision was taken until the memory is actually released. In order to improve

the managing decisions, this delay is considered in the current MEC version as showed in

Algorithm 2. This procedure is in charge of managing the inactive VMs in VMQueuej,

i.e. the VMs in states NEW , PAU or SUS. Depending on the amount of free mem-

ory and the memory demand of these VMs, the procedure decides: if new VMs will be

instantiated; which paused VMs will be resumed either to continue executing or to be

suspended (in this case, the VM’s state is saved to a file in order to release memory); and

if suspended VMs will be restored.

For a better understanding, the notation and their meaning used in Algorithm 2 are

summarized in Table 3.1.

Table 3.1: MEC notation summary

Symbol Description
ms(vmi, t) Memory Shaping: amount of memory calculated to be

added to or removed from vmi at time t
vstate(vmi, t) vmi state at time t: RUN , PAU , SUS or NEW
wtime(vmi) Waiting time of VM that is not running (i.e. vmi is either

in PAU or SUS state).
ma(vmi, t) Memory Allocated: amount of memory allocated to vmi

at time t
chfm Current host free memory: amount of memory that is

available for allocation in the host.
sat(pmj) Swap activation threshold: minimum amount of free

memory before the OS starts using swap

In line 1 of Algorithm 2, VMQueuej is sorted by the state (vstate(vmi, t)) and de-

creasing waiting time (wtime(vmi)), being the order of priority of the VM states PAU ,

SUS and NEW . In lines 2 to 3, the variable p indicates the paused VM that is in

VMQueuej with the longest waiting time, while q indicates the most recently paused

VM. In line 4, variable tbrm is set with the amount of memory to be released, computed

as the sum of the memory of all the VMs that are being saved or migrated, since chfm will

not count this memory as free at this point. From line 7 to 12, if there is enough memory

available to satisfy the demand (ms(vmp, t)) of the paused VM vmp, it will be resumed

and the required amount of memory is taken from chfm. Otherwise, as seen from line 13



3.2 Local Memory Elasticity Controllers 17

to 19, since there is no memory left, then vmq (the paused VM with the smallest waiting

time) will be suspended in order to release its allocated memory. Note that, the amount

of memory will be effectively added to chfm only when vmq is actually suspended and, to

keep track of it, is added to tbrm (differently from [27], where this amount would be added

to chfm at this point of the mechanism, representing an immediate release of memory.

As a consequence, some paused VM would be wrongly resumed since memory is still not

enough, leading to a performance loss). In line 14, the amount of memory that will be

released by saving vmq is added to the temporary variable tbrm. Line 13 checks the host

free memory also considering tbrm. If there is no available memory, vmq is suspended (as

seen in lines 14 to 17). Otherwise, the amount of memory required by vmq is reserved

from tbrm in future iterations of the algorithm. This step is a way to avoid unnecessary

suspensions when is expected memory yet to be freed from unfinished past operations.

Finally, by checking memory availability (line 26), either suspended or new VMs can

be restored or activated and therefore, their allocated memory must be taken from chfm

(lines 25 to 34).

Note that, MEC uses Libvirt [20] C/C++ API functions to commit the changes to the

VMs, like the changes on the amount of memory allocated and the preemption mechanisms

such as pausing, suspending and migrating.

3.2.2 Supporting VM Migration

Interacting with HostManagerj and the VM queues, the MEC Monitorj is in charge of

reporting the status of the host and the VMs allocated to pmj to the MEMiC Manager, as

seen in Figure 3.1. At the end of each scheduling interval, after the MEC HostManagerj

has updated the states of the VMs hosted on pmj, the MEC Monitorj collects the follow-

ing information: the VMs allocated to host pmj (including those VMs recently designated

by the MEMiC Scheduler) and their states; the amount of free memory available on pmj;

and VM scheduling data (such as the duration a VM has either been in a paused or

suspended state).

Another observation worth mentioning is that in MEC’s original implementation, com-

munications between the VM Monitor and MEC were carried out through UDP sockets,

and relies on the local system to update the network configuration after VM migration.

In the upgraded version of MEC presented in this work, the VM Monitor communicates

through Libvirt by using channels so that the VM can re-establish its network connection

on a new host after migration automatically and in a way that is independent of the
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network configuration, which may be different in each host.

Asynchronously, during each of its own scheduling intervals, Isched, the MEMiC sched-

uler analyses the Host States information to first determine if any of the hosts are over-

loaded (i.e. the demand for memory exceeds the host’s capacity). If so, the scheduler

currently attempts to identify another host pmi with enough free memory to receive a

VM from pmj. Future work will look to use the same technique the MEMiC scheduler uses

to statically allocate new jobs [19] in order to predict if candidate hosts will be suitable.

MEMiC Manager

Source Host Target Host

Host status

Migration

Host status
Migration 
Request

StatusVMi

Request 
Resources

Ack

Figure 3.4: Migration mechanism in MEMiC

The MEMiC Manager will determine the source and destination hosts, lets say pmj

and pmi, respectively, and notify the source pmj of the existence of a underutilized

host through a migration request, as shown in Figure 3.4. It will then be up to MEC

HostManagerj on pmj to accept or not and, if accepted, to determine which VM will

be migrated. With the growing maturity of virtualization technology, a number of forms

of migration are now available [3]. Consequently, MEC now considers any VM in a post

instantiated state (i.e. RUN , PAU or SUS) using a different forms of migraton for each

state, as will be discussed in Section 3.3. Note that, in our current implementation, the

migration of VMs is handled by LibVirt. Should a migration event fail, LibVirt will in-

form MEC so that the VM can be restored to its previous VM state prior to migration

and rescheduled according to the local policy.

When HostManagerj receives a migration request and choses a VM vmm to be mi-

grated to pmi, a request is send to pmi from pmj to notify the destination and reserve

resources, if pmi does not have enough resources the migration will be rejected, otherwise

the migration process can be initiated. First, the state of vmm is set to a new migrating

state (MIG) to inhibit any further modifications to the amount of memory allocated to

vmm. Once the migration is completed, vmm will be returned the same state it had prior
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to migration. Once in theMIG state, the migration of vmm to pmi can effectively start by

using the appropriate hypervisor function calls in accordance with the form of migration

to be carried out as explained in next section. Upon completion, HostManagerj sends a

notification message with the scheduling information for vmm ( previous state, memory

allocated, swap-in and swap-out counters, amount of requested memory, job start, cycles

since pause, count of pauses, total time paused ) to HostManageri directly, so that it can

start managing vmm accordingly. Because the VM Monitor in each VM communicates

through Libvirt via channels, this allows the VM to effectively reconnect and provide sta-

tus updates sooner after migration to the new host. The MEMiC Manager will recognize

the migration operation has completed after receiving the Host States information for pmi

with the state of vmm.

3.2.2.1 The choice of source and destination hosts at MeMiC Manager level

Algorithm 3 managing_migrations_at_MEMiCManagerl()

1: for all pm ∈ ActivePMs do
2: if (hfm(pm) < MIN_FREE_MEM or qty_paused(pm) > 0 or

qty_suspended(pm) > 0) and qty_migrating(pm) = 0 then
3: Sources = Sources ∪ {pm};
4: end if
5: end for
6: Targets← ActivePMs− Sources;
7: source← min_hfm(Sources);
8: target← max_hfm(Targets);
9: Send migration request to source PM informing who the target is

When a new host becomes available and begins to report its status to MEMiC, it

is added to the ActivePMs queue. Algorithm 3 summarizes the actions taken by the

MEMiC mangager to detect hosts with a shortage of memory and will attempt to find

another host to receive a VM from the overloaded host. Firstly, the MEMiC manager will

look for hosts in the ActivePMs queue that have a shortage of memory. Four host states

are evaluated: the amount of free memory on the host, given MIN_FREE_MEM is

the lower threshold on the amount of memory a host must have before being considered

short on memory, or if there is any VMs in paused or suspended state, which would have

been caused by a shortage of memory on the host, and if from that host a VM is not

already being migrated to avoid interference. Hosts with a memory shortage are added to

the list of candidates Sources (lines 1 to 5). The hosts that could possibly receive a VM

are identified in line 6 by subtracting the hosts in Sources from ActivePMs, and placed

in Targets list. Finally, the source is the host with the minimum amount of memory
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available in the candidates list Sources (line 7), breaking ties with the number of paused

or suspened VMs, and target is the host with the maximum amount of free memory in the

list of candidates, Targets, (line 8), these then constitute the hosts for the next migration

request which is sent to the source host who chooses the VM to be transferred to the

target host.

3.3 Integrating VM Migration into MEC

Preemptive process migration in distributed systems has long been exploited to improve

load balance [14], availability and fault recovery or to reduce energy consumption, for

example. While process migration can incur a significant overhead, this may pale in to

comparison with the cost of leaving VMs on a failing node or to compete for resources on

an overloaded one. More recently, migration of VMs is playing an important role in the

efficient resource management of cloud systems, particularly in the context of horizontal

elasticity [5].

Hypervisors implement migration by copying the memory pages of the subject VM to

the target host and are commonly helped by a shared storage like NFS or iSCSI, so that

a full copy of the VM disk image is avoided. With the growing reliance on virtualization

and improved hardware support, more and more efficient variants of the VM migration

have been developed.

In the case of Offline Migration, the state of the VM is copied only after it has been

explicitly paused. Only once the copy has completed can the VM’s execution be resumed

on the target host. The time consumed by this type of migration depends only on the size

of the memory allocated to the VM. On the other hand, Live Migration consists of moving

a guest VM from the source host to its destination without any noticeable disruption to

the execution of the migrated VM [11,12,33], using one of the following variants:

• Pre-Copy Live Migration is a simple approach, implemented in most hypervisors,

where pages of the VM memory are copied successively, starting with the least used

pages, until only dirty pages remain. At this point, the VM’s execution is paused

and these remaining pages together with the CPU and hardware device state of the

running VM are copied to allow the VM’s execution to be resumed on the target

host [8]. The time to perform this type of migration depends not only on the size

of the memory (the VM state information is usually very small in comparison), but

also on the memory access patterns of the application. If pages become dirty after
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they have been copied, they will have to be re-copied.

• With Post-Copy Live Migration, the VM’s CPU and device state along with a

minimum number of pages are copied first and the execution of the VM is started

immediately on the target host. Then, the remaining pages are then copied to

destination host in background or on demand, when page faults occurs in the running

VM. While this scheme reduces the VM downtime and avoids pages being re-dirtied,

it can lead to additional execution slowdowns of the VM application due to the

resolution of page faults (page copies) over the network to the source host [17]. Post-

copy techniques are currently only supported by recent versions of some hypervisors

like QEMU [26].

• Hybrid Post-Copy Live Migration begins with a bounded pre-copy phase, be-

fore carrying out the post-copy phase, to reduce the potential number of future

page-fault copies over the network and thus reduce some of the performance degra-

dation that would impact the application [1].

This work adopts Hybrid Post-Copy Migration as one of the pre-emption mechanisms

employed to alleviate the consequences of resource shortages on hosts under elastic mem-

ory management. Migration serves to move VMs from heavily loaded hosts to less loaded

ones. Since each MEC instance only has local information, MEC does not know when, or

to where, which one of its VMs could/should be migrated to and thus relies on MEMiC.

While memory may be scarce on one host, on another it may relatively plentiful or at

least sufficient to meet the demands of a remote VM. But, although the MEMiC Man-

ager maintains the global state of the system to able to identify such instances, migration

may not always be a viable option at a specific moment of time. Furthermore, given the

fact that VM migrations are both time and memory consuming, MEC must therefore be

prepared to take alternative actions to avoid unnecessary performance degradations when

memory becomes scarce.

During Live Migration, VM memory is being consumed on both the source and des-

tination hosts while the migration is processed. In the case of Cold or Offline Migration,

the VM must first be pre-empted, i.e. its execution is halted, before its memory and state

information can be transferred. Under MEC, a halted VM may be in paused (PAU) or

suspended (SUS) state. When in the paused state, the VM will occupy memory on both

the source and target hosts during migration and thus add to overall memory consumption

of the system. Whereas, if the VM has already been suspended, then the VM’s memory

will have been save to disk and no longer be occupying memory on the source host. Thus,
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migration of a VM in this state only involves a file copy. Memory will be allocated to the

suspended VM on the destination host only when the VM returns to the RUN state.

Based on the performance analysis in [28], MEC pauses VMs that are about to be

forced to use swap (due to the lack of available memory) in an attempt to avoid what

might be a greater performance degradation should they continue to execute. Other VMs

will continue to execute and when they terminate, their memory can quickly be reallocated

to the paused VMs. However, if there is a continued demand for additional memory, this

needs to be met by removing VMs from memory either by migration to another host or

through suspension. All three pre-emption techniques impact the application performance

of the VMs and the throughput of the system to varying degrees. Choosing what action

should be applied to which VM depends not only on aspects related to the VM’s additional

memory requirements or remaining execution time, but also, the action’s latency, which

is related to the total memory footprint and the current state of the VM.

Given the VM states adopted by MEC, it is straightforward to identify the corre-

sponding implementations to permit a VM in each state to be migrated.

• Migrate a Running VM (MRVM), i.e. a VM that is in the RUN state, MEC

uses live migration (the hybrid post-copy approach). This is the only migration

option available for VMs running online applications;

• Migrate a Paused VM (MPVM), i.e. a VM that is in the PAU state, MEC in-

vokes offline migration, with the VM eventually being resumed by the MEC instance

on the target host;

• Migrate a Suspended VM (MSVM), the image of the VM in SUS state will

have already been saved, either to a local disk or remote shared storage. For migra-

tion, locally stored data will either have to be accessible remotely or copied to the

destination.

3.4 Preemption mechanisms evaluation

In order to understand the impact of each preemption option, it is important to analyze

the costs associated with these operations on the different aspects of the VM scheduling

problem. To exemplify the relative costs of these operations, a first set of experiments was

executed with two servers, each with two Intel(R) Xeon(R) X5650 6 core CPUs@2.67GHz



3.4 Preemption mechanisms evaluation 23

and 24 GB of RAM, running CentOS 7 with Linux kernel version 4.13.4, and inter-

connected by a dedicated Gigabit Ethernet network. The hypervisor adopted was the

Kernel-based Virtual Machine (KVM) - QEMU version 2.9.0 and Libvirt version 3.2.0

was used as an API to manage the virtual infrastructure.

The experiments throughout this work use a couple of the synthetic memory intensive

jobs (J1 and J2), proposed in [28,29] because they exemplify the need for elasticity con-

trollers to be able differentiate between an application’s memory demands and its actual

requirements. By requirements, this means the minimum amount memory required to ex-

ecute the job without suffering performance degradation. These jobs have been designed

to access a vector of a predetermined size sequentially, and repeatedly, a fixed number of

times. While J1 accesses its entire vector of size M sequentially, and repeatedly, for a

fixed number of iterations, J2 accesses its vector (with the same size M) in blocks of size

w (where w = M/4), for the same number of iterations. Both jobs have the same memory

demands, but because of their distinct memory access patterns, their requirements differ

over time. This allows us to also investigate how data locality and types of swap usage

impact memory elasticity and VM scheduling.

In order to measure the cost of each type of preemption operation, this first experiment

was performed using a single VM with enough memory to execute instances of job J1,

with a vector of size 0.5, 1 2, 4, 6 and 8 GiB, respectively. Note that MEMiC Manager

was not required in this experiment.

Table 3.2: Average Pre-emption operation costs in seconds in relation to the amount of
memory allocated to a VM

Mem.
Size pVM rsVM sVM

Local
rtVM
Local

sVM
NFS

rtVM
NFS mVM

0.5 0.01 0.01 7.4 1.5 15.5 7.1 7.7
1 0.01 0.01 12 1.8 22.6 12.8 12.8
2 0.01 0.01 21.5 2.7 39.6 26.3 21.7
4 0.01 0.01 37.7 3.5 61.1 46.7 39.3
6 0.01 0.01 54 5.9 86.3 69.4 58.3
8 0.01 0.01 70.2 8.5 119.8 90.7 76.3

The times shown in Table 3.2 are the average of 10 executions for different sized

instances of job J1 and preemption operations, where: pVM refers to the time to pause

the VM and, rsVM, the time to resume the VM on the same host; sVM is the time to

suspend a paused VM either to local disk (sVM Local) or to remote storage via NFS

(sVM NFS); rtVM Local and rtVM NFS are the times to restore a VM from local disk or

remote storage via NFS, respectively, and; mVM, the VM migration time, is the overall
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elapsed time from the initiation of the migration operation until the moment that the

corresponding resources on the source host were released.

While the migration time is proportional to the amount of memory allocated to the

VM, the times to perform a live migration, offline migration or copy an image file of the

memory from one host to another were found to be very similar. Given we are interested

in the relative times of the different operations, only one column of times (mVM) is shown

for the different migration types in Table 3.2.

In practical terms, the time to pause and resume a VM is very small and does not

depend on the amount of memory allocated to the VM. Also, the time to migrate a

running VM (MRVM) is therefore basically the same as the time to migrate a paused

one (MPVM) and both approaches are significantly quicker than the time to MSVM. The

times for MRVM and MPVM are relevant as they represent the response times to free

memory on the host. MEC itself, however, can free up memory by suspending a VM.

Suspension causes a VM’s memory to be saved to disk, doing so locally has virtually the

same cost as migrating a running or paused VM. From Table 3.2 and for the experimental

setup used, saving the memory image to local disk is quicker than doing so over the

network and the same is true for restoring VMs. So if the intent is to restore the VM on

the same host it will be better to save the VM’s memory locally. If the plan would be to

eventually migrate the VM, it seems better to still save locally, then copy the memory to

the destination when known and restore locally than to save the memory to the remote

shared storage and later restore this remotely on the destination host (sVM Local + mVM

+ rtVM Local < sVM NFS + rtVM NFS), for example in this experimental setup.

What Table 3.2 does not show is impact of live migration on the job’s own execution

time. Figure 3.5 presents the average additional time a migrated job (MRVM) requires

over one that was not migrated (No MIG). While the migration delay mVM is propor-

tional to the VM memory size, the results in the figure show that MRVM only delays

the job’s execution by an almost constant but relatively small amount and, basically, this

cost could be considered to be independent of VM memory size. In the post-copy live

migration adopted, the delay is due to the need to copy pages remotely over the net-

work, on demand. While these results appear to be line with expectations, note that this

experiment was carried in an underloaded dedicated environment.

The next question that arises is which preemption operations are actually required in

the context of memory elasticity management and how should they be incorporated into

the MEC scheduling policy. Having taken into account these preliminary observations,



3.4 Preemption mechanisms evaluation 25

J1-1 J1-2 J1-4 J2-1 J2-2 J2-4
400

410

420

430

440

450

460

470

480

Se
co

nd
s

Time of execution by workload
No MIG
MRVM

Figure 3.5: Impact of live migration on the average execution times of J1 and J2 with 1,
2 and 4 GiB, respectively.

the following section aims to analyze experimentally the impact of each migration variant

on the execution of the batch jobs under MEMiC management with more than one server,

when memory become scarce.



Chapter 4

Experimental Evaluation

Extensive work exists on the development of VM migration schemes and many of these

have been incorporated widely into systems that exploit vertical elasticity. Resource

elasticity management focuses on improving utilization and thus increasing throughput

for a given workload. This chapter presents a set of experiments that aim to highlight the

importance of using more than one form of preemption as part of a scheduling strategy to

harness shared computing environments. While the effect of preemption may appear to

(perhaps) sacrifice the performance of a particular job, the goal is to benefit the workload

as a whole. Many existing resource management solutions rely solely on the live migration

of VMs as a technique to avoid the penalties of over-provisioning [21]. While migration

can improve performance by taking advantage of idle resources, such a resource may not

always be available when needed. This chapter evaluates the impact on the makespans

of workloads and the benefits of three distinct preemption mechanisms, which have been

combined in MEC, under different scheduling scenarios.

4.1 The Test Environment and Synthetic Test Jobs

The experiments presented in this chapter were executed across three servers with the

same configuration as that of the experiment described in Section 3.3, i.e., each server

with two Intel(R) Xeon(R) X5650 6 core CPUs@2.67GHz and 24 GiB of RAM, running

CentOS 7 with Linux kernel version 4.13.4, and interconnected by a dedicated Gigabit

Ethernet network. The used hypervisor was the Kernel-based Virtual Machine (KVM) -

QEMU version 2.9.0 and Libvirt version 3.2.0 was used as an API to manage the virtual

infrastructure. Two of the servers are dedicated to running VMs exclusively under MEC

management in a virtual environment and are collectively managed by MEMiC running
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on the third server. Each host has 22GiB of RAM memory available for use by the VMs

that execute one of the two job types also used in the experiments of Section 3.3. The

results presented here are based on the average of 10 executions.

The jobs used in this set of experiments are in fact same synthetic application, but

which adopt two distinct memory access patterns. These job types J1, J2 have been

adopted from previous work [28], where this synthetic application was designed to high-

light a subtle aspect of how the memory is used, impacts performance. While J1 accesses

its entire vector of size M sequentially, and repeatedly, for a fixed number of iterations,

J2 accesses its vector (with the same size M) in blocks of size M/4), for the same number

of iterations and, when sufficient memory is available, the two jobs will have identical

execution times. The motivation to use J1 and J2 is toa analyze the impact of different

memory localities on job execution times under memory restrictions and, consequently,

identify their effective memory demands and swap usage over time.
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Figure 4.1: Memory-Performance Profile of job J1 and J2 describes how a job’s execution
times varies with the amount of available VM memory.

The job execution times for J1 and J2 for a vector M of size 4 GiB in VMs with

different amounts of allocated memory is presented in Figure 4.1. The ideal amount of

memory required by the VM is 4.5 GiB (4GiB for the vector plus around 500 MiB for the

guest OS) with which each job will execute in a little under 450 seconds. As the amount

of available memory in the VM is decreased, the job execution times increase, but at
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different rates for each type of job. In the case of J1, a 22% (i.e. 1 GiB) reduction in

memory availability caused a 77,78% increase in the execution time. With one third of the

required memory, the execution time is almost three times longer. This is not the same in

the case of J2, where the performance degradation is only 22% when 1.5 GiB of memory is

available. Because of the better memory access locality of J2, the memory page working

set is 1/4 of the vector size and the effective total memory demand of the J2 VM is in fact

only around 1.5 GiB. While with less than this amount, the performance of J2 degrades

drastically and is equivalent to the swap bound J1. On the other hand, with slightly

more memory, i.e. 2 GiB, the degradation is half of the previous value (11%). In all cases,

these overheads are caused by having to use swap to exchange memory pages to varying

degrees. While both jobs request the same amount of memory, in previous work [27],

MEC was designed to recognize this difference by analyzing simultaneous swap-in and

swap-out (SISO) operations instead of using a page fault counter, adopted in most other

approaches, so that it can distributed the host’s available memory more effectively [29].

4.2 VM Migration Policy Evaluation

Before analyzing the impact of the different migration operations on the total workload

execution times, this subsection presents a brief evaluation of which specific VM should

be chosen for migration. Traditionally, as is the case in the CVEM system [21], the VM

that is not soliciting additional memory and has the smallest amount of allocated memory

from the set of running VMs is the one chosen for live migration. From the investigation

in Section 3.3, this decision seems to be motivated by the fact that this choice incurs the

shortest migration times. The following experiment aims to confirm if this continues to

be a good choice in the context of scheduling VMs with MEC and its preemption schemes

to minimize the total execution time of a workload. Under MEC, a VM in any one of the

three VM states (i.e. RUN, PAU, SUS ) can be chosen for migration (using the respective

migration technique, as described in Chapter 3) according to the migration policy being

employed.

Given an overloaded physical machine pmj, MEMiC indicates to HostManagerj

that there is another physical machine pmk with fmk free memory available. MEC

HostManagerj can then select one VM to migrate in accordance with one of the fol-

lowing two migration policies:

Min: selects the VM in pmj with the least amount of memory allocated, while;
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Max Fit: selects the VM with the largest amount of memory that fits in pmk, i.e. the VM

vmi on pmj with the largest amount of currently allocated memory that is less

than fmk.

Table 4.1: Workload configurations.

Workload # of VMs Total
Number

Memory
(GiB)

Total
Memory4 GiB 2 GiB 1 GiB

A 4 3 1 8 23 27
B 4 4 2 10 26 31
C 4 4 4 12 28 34
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Figure 4.2: Comparison of migration policies with heterogeneous workloads.

In order to compare the Min and Max Fit migration policies, the following experiment

was carried out with the workloads described in Table 4.1. For each workload A , B and

C, the # of VMs specifies the number of VMs each running a job of type J1 or J2

that requires a vector of size 4, 2 and 1 GiB, respectively; Total Number is the total

number of VMs/jobs in the workload; Memory is the total amount of memory required

by the jobs of the workload; and finally, Total Memory is ideal amount of memory that
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will have to be allocated for all of the VMs taking into account the additional memory

overheads related to the guest OS (0.5GiB per VM).

Figure 4.2 presents the execution times for workloads composed exclusively of jobs

of type J1 or J2 or an equal combination of both, as indicated by J-C for just workload

C. All seven workloads will overload the memory of the single server to which they were

scheduled initially (although sufficient CPU cores are available). However, the second,

initially idle, server will provide sufficient memory to help the system meet the memory

demands of the three workloads. Note that workloads of jobs J2 execute faster than those

workloads composed of J1 jobs because, as seen in previously in Figure 4.1, J2 jobs can

execute with less memory meaning that those workloads suffer less memory starvation and

will require fewer migrations. On the other hand, migration will improve the distribution

of the work and can reduce the total execution time should the host actually be overloaded.

With insufficient memory on the server, as the demand for memory increases further

(A < B < C), the evaluation shows that their respective execution times for each workload

also increases since it is affected by the migration overhead. On the whole, it appears

that the traditional Min policy does provide slightly better performance for both types of

jobs considered in this work, although this is not too clear cut or conclusive. While Min

frees up a smaller amount of memory on the source host, this is countered by its speedier

availability for reallocation to other VMs by MEC on the overload host. Although, the

Max-Fit policy does carries out fewer migrations, they do effectively take longer and thus

the system under this policy appears to be slightly less reactive. Nevertheless, in various

cases, the differences are rather small and thus indicates that further investigation is

merited. We leave this investigation for future work and in the remaining experiments,

MEC uses the Min policy for a common means of comparison.

4.3 A Comparison of the Preemption Strategies

This section aims to compare the performance gains of using and combining different

preeemption schemes including VM pausing, suspension and the VM migration operations

MRVM, MPVM and MSVM, described previously in Chapter 3, when a given number

of jobs are initially submitted to the same MEC host. In order to over-commit the host’s

memory to varying degrees, the following set of experiments were executed, separately: k

jobs of type J1 requiring 4 GiB of memory each, were submitted at intervals of 20 seconds.

For each job i, MEC HostManager1 starts a VM vmi with 1 GiB of initial memory. In
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total, each vmi consumes 4 GiB + GOSmem, where GOSmem is the memory used by

the guest operating system, which is around 500 MiB. A similar experiment is also carried

out with k jobs of type J2 in VMs with the same characteristics.

The experiments were carried out for values of k between 4 and 7, in an attempt to

analyze the performance impact of increasing VM memory demands on a MEC managed

server. The execution times for each workload of k jobs of type J1 and J2 are shown in

Figure 4.3 as Jn-k, n = 1, 2 and k = 4, ..., 7. For each workload, the figure shows the

average execution times or makespans under six different scenarios:

No Preemp: represents a conventional execution scenario where jobs are statically allo-

cated and then executed concurrently without the possibility of being preempted

including migration as no alternative resource with sufficient capacity is consid-

ered to be available;

NO MIG: is an execution managed by an original version of MEC that only permits the

pausing and suspension of VMs. The scheme also describes the situation when

VM migration is not possible when no alternative resource with sufficient ca-

pacity is available;

MRVM: only allows MEC to migrate a VM that is in a RUN state;

MPVM: MEC can only migrate a VM that is in a PAU state;

MSVM: MEC can only migrate a VM that is in a SUS state;

MECv2: is the combination these individual schemes where MEC must choose when and

how to apply the preemption methods including the migration of a VM in any

of the three states mentioned above.

The average makespans include the times to launch, manage, and terminate all the k

VMs while they each execute their jobs, measured from the start of the first submitted

job until the end of the last job to finish (which may not be the last submitted one).

Note that MRVM cannot pause or suspend VMs and MPVM cannot suspend VMs. This

means that the MRVM scenario is in fact representative of traditional vertical elasticity

controllers that only employ live migration, such as the CVEM system [21].

To help understand the results shown in Figure 4.3, Tables 4.2 and 4.3 register the

number of times that a VM was paused, suspended or migrated, for each job type J1

and J2, and k, respectively. Note that these event counts correspond to only one specific
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Figure 4.3: Average workload execution times for 4 to 7 jobs of type J1 and J2, without
(No Preemp) and with MEMiC. Each remaining color represents different preemption
schemes: no migration (No MIG), MRVM, MPVM, MSVM, and MECv2.

execution: the one with the execution time closest to the average of the 10 executions in

each experiment. In the case of k = 4, where the server has sufficient capacity, there is

no need to pause, suspend or migrate any VM and so the counts were omitted from the

table.

Although both J1 and J2 require the same amount of memory (both read and write

4 GiB) during their respective executions, J2 has a smaller working set and can execute

with less memory than J1 without the same significant loss in performance, due to its

locality oriented memory access pattern [28]. It is important for any scheduling proposal

to discern the difference between such characteristics of jobs so that scarce resources such

as memory can be allocated to those VMs that would have their performances degraded

the most and perhaps thus avoid unnecessary VM migrations and the use of additional

servers.

For k = 4, performances for all of the approaches were similar for both job types.

An observation in relation to the migration strategies is that the average execution times
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Table 4.2: The number of VMs running J1 job that were paused (PA), suspended (SU)
and migrated (MI) and the respective execution time (T) of k VMs in one sample (the
one with median execution time)

Scenario
k = 5 k = 6 k = 7

PA SU MI T PA SU MI T PA SU MI T
No Preemp 0 0 0 580.0 0 0 0 2776.7 0 0 0 4830.8
No MIG 1 0 0 626.7 3 2 0 1181.5 10 4 0 1430.3
MRVM 0 0 1 559.4 0 0 2 615.1 0 0 3 720.1
MPVM 2 0 1 588.8 4 0 2 704.0 10 0 3 908.8
MSVM 1 1 1 661.9 4 2 2 870.9 10 4 3 1188.3
MECv2 1 0 1 548.9 1 0 2 621.6 1 0 3 697.6

have the following relationship: MRVM < MPVM < MSVM. Recall that MSVM must

first pause and then suspend a VM before the image can be copied to the target server.

From Table 3.2, one can see that with migration and suspension costs being effectively

the same, MSVM is unable to release its memory sooner than MRVM.

In the case of J1 jobs, when k = 5, the host server is slightly short of enough memory

for some of the VMs and this causes their performances to degrade a little. Migrating one

VM is only slightly better than leaving the VMs to execute concurrently (No Preemp).

Since No MIG cannot migrate a VM, it pauses a VM, adding a delay to the execution

time. For higher values of k, the shortage of memory becomes increasingly acute for the

concurrently executing J1 jobs which induces significant performance degradation due to

swap usage, as seen in the case of No Preemp. Note that the average execution times

obtained by MRVM would be the same as those of No Preemp should VM migration not

be possible. Through pausing and suspending VMs, MEC without VM migration (No

MIG) is able to reduce this degradation for both types of jobs. As expected, migration

can improve performance further by taking advantage of the additional memory on the

second server. However, note that MECv2 is able to pause VMs in conjunction with

migration to provide slightly better performance than MRVM.

These observations can be corroborated by looking at Tables 4.2 and 4.3 that count

the number of pause, suspension and migration events during an execution of J1 and

J2 jobs, respectively. One can notice an increasing number of VM pause and suspension

events due to performance damaging swap usage in the No MIG version as k increases.

Some of the paused VMs are suspended in order to release memory. In the case of MRVM,

a smaller number of VMs are paused and no VM is suspended, since memory is released

due to the migration of running VMs. In MPVM, VMs are obviously paused, but no VMs

are suspended, since the necessary memory is released via offline migration.
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Table 4.3: The number of VMs running J2 job that were paused (PA), suspended (SU)
and migrated (MI) and the respective execution time (T) of k VMs in one sample (the
one with median execution time)

Scenario
k = 5 k = 6 k = 7

PA SU MI T PA SU MI T PA SU MI T
No Preemp 0 0 0 525.6 0 0 0 668.9 0 0 0 866.0
No MIG 0 0 0 519.7 0 0 0 646.8 2 1 0 821.8
MRVM 0 0 1 532.0 0 0 2 539.1 0 0 2 565.5
MPVM 0 0 0 547.3 2 0 1 585.7 4 0 1 661.5
MSVM 0 0 0 542.7 6 1 1 664.0 2 2 1 727.1
MECv2 0 0 1 531.6 0 0 2 550.2 1 0 3 574.2

Where VMs are running J2 jobs, the results show a similar trend, although execution

times were significantly quicker. While the number of VMs were the same for both J1

and J2 experiments (k = 5, 6, 7), in the case of J2, the memory requirements at each

scheduling cycle were smaller than in the case of J1. Therefore, the server suffers less

memory pressure and, as seen in Tables 4.2 and 4.3, the number of pause, suspension

and migration events is much smaller than the corresponding J1 executions (e.g. see No

MIG).

The scenario in this experiment assumes that there is a spare idle server available im-

mediately should overloading occur and thus clearly favors migration capable schemes by

harnessing additional resources to reduce the makespan. Traditional schemes like MRVM

will obviously fair very well, especially if one assumes a classic Cloud infrastructure with

near "infinite" resources. But, if one were to consider an Edge Computing infrastructure,

where resources are limited and resource sharing is more prominent, should this addi-

tional resource not be available, MRVM would have the same behavior as No Preemp as

it does not have the option of pausing or suspending VMs. By integrating preemption

schemes into its scheduling policies, MECv2 is more flexible in its decisions while still

being competitive in situations amenable to migration.

In more realistic scenarios where additional resources may not be available immedi-

ately, it is possible to show that the performance benefits of MECv2 will lie between those

obtained with MECv2 in relation to No Preemp and MECv2 in relation with MRVM. Our

objective is not to show that one scheme is better than another but rather to motivate

the need to consider alternatives to solely live migration based solutions, e.g. the adop-

tion of other preemption schemes in conjunction with various forms of migration, which

can be combined to be used cooperatively in an integrated fashion as part of a resource

manager’s scheduling strategy.
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4.3.1 Not all swap usage is that bad!
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Figure 4.4: Execution time line for two concurrent J2 jobs under MEC.
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Figure 4.5: Execution time line for two concurrent J2 jobs with VM migration at time
360 seconds.
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The experiments in the following two subsections only use jobs of type J1, in order

to exemplify scenarios with fewer competing VMs. But first, in order to help justify:

the behavior of MEC with respect to swap utilization, and; the performance difference

between J1 and J2 jobs, as shown in Figures 4.1 and 4.3, some time lines of memory

consumption are presented for the execution of two J2 jobs running under MEC’s vertical

elasticity management on a host server with 7 GiB of free memory, initially. These

execution time lines also indicate the state of the VM and its swap consumption over

time. As shown in Figure 4.4, the jobs are submitted with an interval of 60 seconds

between them and consume memory in phases. There should appear four phases in all,

but due to the memory limitation of 7 GiB, each job eventually has around 1 GiB less

than its ideal allocation. Therefore, for the final phase, at around 360s for J2.1 and 60s

later for J2.2, the jobs need to use swap. Note that, while the swap consumption is

greater for J2.2 since it has less memory (in fact, J2.2 required a small amount of swap

earlier to complete the third phase), the execution times of the two jobs were identical.

As discussed in Section 4.1, this swap usage ( no longer required memory pages are in fact

only being swapped out to disk) has a relatively small impact on the job execution times.

In comparison, Figure 4.5 presents the same execution of the two J2 jobs but now with

the migration of the VM with the smaller memory allocation occurring at time 360s, the

exact moment that the other job begins to use swap. Notice that although job J2.2 can

now obtain the ideal quantity of memory, its effective execution time has been increased

(but discounting the duration of the preemption, it would have had executed near its

ideal time of around 450s). Furthermore, while this migration frees up memory on the

original host, J2.1 no longer had any need for it at that moment (its execution time of

470s is in line with that indicated in Figure 4.1 for an execution with 3.5 GiB of memory).

In this scenario, the solution with VM migration was more costly in terms of the total

execution time. The main take away point is that while an increase in swap usage does

have impact on performance, it is the way that swap is being used that is important in

terms of execution times [28]. In the case of J2 jobs, the impact is an increase of 5%, or

10% with concurrent VM executions, in job execution times, whereas for J1, the same

quantity of swap usage can lead to almost 80% increase due to the exchanging of pages

between memory and swap (SISO). With this in mind, MEC has been designed to consider

the performance impact of swap out as acceptable and of SISO to be avoided [28].
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4.3.2 Preemption scheduling with some resource starved jobs

This subsection and the next highlight scenarios where combining preemption techniques

can be more beneficial than only relying on live migration. Different from Section 4.3, the

experiments in these subsections focus on the concurrent execution of J1 jobs in a more

realistic scenario where an additional resource may not be available immediately.

In this subsection, the experiments model the scenario where some jobs have their

ideal quantity of memory and other do not. To exemplify and make it easier to illustrate

the outcomes, only two J1 jobs are used and are submitted to a server with 7 GiB of free

memory, to be executed under a MRMV or MECv2 preemption strategy. While the first

job is submitted alone, the second job arrives 120 seconds after the first, at which point

the first J1 instance will have received its required memory (4.5 GiB). With not enough

memory left, the second job will be forced to use swap. Under this scenario, by time 180s,

all of the host’s 7 GiB of memory will have been allocated, with the second J1 instance

having received exactly half of its ideal memory requirement.

210 240 270 300 330 360 390 420
0

200

400

600

800

1000

S
e
co

n
d
s

Time of execution by workload

MRVM

MECv2

Figure 4.6: Comparison between MRVM and MECv2 managed execution times for two
J1 jobs, with the second starting 120s after the first, and different values of th.

In this experiment, the moment th that the MEMiC cloud controller notifies MEC

that an additional idle server is available is varied from time th = 210, . . . , 420, in steps of

30 seconds. The total execution times for the two schemes are shown in Figure 4.6. For



4.3 A Comparison of the Preemption Strategies 38

th = 210, 240, 270, the MRVM approach appears to have a slightly better performance

than MECv2 as it is able to migrate the VM almost immediately when required. However,

when the additional host is only available later (th > 300), MECv2 manages to reduce the

impact. For values of th closer to the execution time of the first job (th > 420s) , it will

be best not to migrate the second job since the first J1 instance will release its memory

around 450s and the migration overhead of around 30s can be avoided.
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Figure 4.7: Execution time line under MRVM with th = 360 seconds.

Figures 4.7 and 4.8 present an execution time line of the job instances for th = 360,

including the state of the VMs and the amount of memory allocated to each, the amount

memory actually being used by each VM as well as the VM’s respective swap consumption,

over time, under the MRVM and MECv2 policies. In both scenarios, as the first instance

of J1 has enough memory, it will complete its execution unaffected by the other job around

450s. As stated earlier, job J1.2 takes around 60s to consume the remaining host memory

and then is forced to swap out pages to make room for its remaining data (from time

180s to 240s). Note that there is no apparent slowdown as the memory consumption rate

during this period is the same as that between 120s and 180s and the same as job J1.1.

While in Figure 4.7, MRVM must let J1.2 continue to swap in and out pages between

memory and disk from time 240s onwards until it can migrate the VM to another host,

MECv2 is able to prevent further performance degradation by pausing the VM until there
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Figure 4.8: Execution time line under MECv2 with th = 360 seconds.

is enough memory. Since there is no other VM needing memory, J1.2 does not need to

be suspended. At time 360s, MEMiC notifies MEC of the availability of a suitable server

and both schemes migrates the second job. While MRVM employs live migration, MECv2

having paused the VM will use cold migration and then resume the execution of the VM

on the target host. Both migrations operations take approximately the same amount of

time. However, the fact that MECv2 paused the VM before the job started simultaneously

swapping in and out pages meant it was able to make use of the free memory quicker.

The reason for the relative slowness to copy pages from swap to memory (from 400s to

780s in Figure 4.7) is not all that clear and will be investigated in greater depth in future

work. Two possible causes come to mind. First note that pages in swap are stored on

disk and, in the case of virtualization, in order to support fast migrations, VM images

are usually held on a remote server whose file system is visible to the host servers so the

physical time consuming copying of VM disk images can be avoided. The overhead may

also be impacted by the storage technology used to share the virtual disks between the

hosts as well as its location in the environment. The second reason may be related to

MEC’s own behaviour when using pages in swap. Although, it appears that sufficient

memory is being allocated to the VM, it may be that the job doesn’t actually "ask for

memory" when recovering pages from swap in the same way as it allocates memory at

the beginning of its execution since its data has already been allocated. In any case, this
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scenario shows that relying solely on live migration (MRVM version) may not always the

best solution.
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Figure 4.9: Execution time line under MEC management without migration (No MIG)

The motive for MEC to instinctively pause a VM when it begins to exhibit a particular

swap usage characteristic comes from the dramatic performance degradation that occurs

when there is a shortage of memory, e.g. see the Memory-Performance Profiles of J1 and

J2 in Figure 4.1. Pausing a VM is a temporary preemptive action taken while the system

looks for memory to satisfy the job’s memory requirements. The next experiment follows

the same setup described earlier in this experiment, but this time with th > 450 so that

migration would not be beneficial since the additional server will only be available after

the first job completes. Figure 4.9 presents the execution time line of the same two job

workload, where, as expected, MEC chooses to pause the VM until J1.1 completes.

Now compare this to the execution time line presented in Figure 4.10, which is from a

modified version of MEC where the preemption mechanisms were disabled (equivalent to

the scheme No Preemp). As can be seen, this execution is around 77 seconds faster than No

MIG, even though J1.2 was left to execute using swap. In Figure 4.9 , MEC detected SISO

and paused J1.2 for 200s, while in this figure, J1.1 executed for 210 seconds thrashing

memory pages. Nevertheless, the job made some non-insignificant progress and, albeit

running at a slower rate, it can be estimated to be about 36% of its regular speed based
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Figure 4.10: Execution time line under MEC management without any preemption mech-
anism (No Preemp)

on the profile shown in Figure 4.1, i.e. approximately 76 seconds of progress. What

these results show is that preemption decisions should also be taken in the context of job

scheduling. The previous experiment showed that if you don’t have to wait for a spare

resource, migrate directly, but if not, it is better to pause the VM first. However, in this

experiment, it is better to not even pause the VM. All in all, the correct decision depends

a series of scheduling details, e.g. job execution times, job start times, memory and host

availability, etc.

For simplicity, the current MEC architecture is reactive, iteratively using recent his-

tory to predict the near future requirements of each job without any information regarding

the jobs being managed. When manipulating multiple preemption options, the complex-

ity of the scheduling problem grows. Recent approaches, like the one presented in [19],

focus on the global scheduling of jobs using memory profiles to enable MEMiC to choose

job allocations that avoid unnecessary preemption events. Future work will investigate

what information should be forwarded by MEMiC when submitting a job to MEC.

Nevertheless, while it appears that MEC made an incorrect scheduling decision in

choosing to migrate a VM, note that this subsection has focused on the scenario where

only one job (or a subset of jobs) was starved of sufficient memory. By the time the second
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job started, the first already had been allocated a sufficient amount of memory to execute

normally. The next subsection presents a scenario where both jobs start at almost the

same time and therefore will have to compete for the available memory between them.

4.3.3 Preemption scheduling with competing jobs
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Figure 4.11: Comparison of the MRVM and MEC policies for two J1 job instances started
concurrently, with different values of th

Given the performances presented in Figure 4.1, another issue related to VM schedul-

ing is deciding how much memory should be allocated to each job, especially when

resources are scarce. The setup of this experiment consists of executing two J1 jobs,

launched concurrently, on a server without enough memory to execute both jobs simulta-

neously, so the 5GiB of free memory it does have will have to be shared between them.

Figure 4.11 shows the execution times with values of th = 60, . . . , 310 in steps of 30 sec-

onds. In all cases, executions with MEC obtain better performance. These results are

also quite close to the ideal makespan (apart from the swap usage) given that the first job

executed alone on the first host and the second job executed in the second host as soon

as it became available.

Figures 4.12 and 4.13 compare time lines with th = 60 seconds under MRVM and

MEC respectively. Due to the hypervisor, the VMs are launched sequentially, the second

trailing the initialization of the first by around 10s. In both scenarios, the two jobs each



4.3 A Comparison of the Preemption Strategies 43

TL
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

568.0s

J1.1

0 100 200 300 400 500 600 700 800 900 1000
Time (s)

TL
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

606.3s

J1.2M
em

or
y 

(G
iB

)

Mem. Host 0
Allocated
In use
swap

Mem. Host 1
Allocated
In use
swap

States
Running
Paused
Suspended
Migrated

Figure 4.12: Execution time line under MRVM, th = 60.
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Figure 4.13: Execution time line under MEC, th = 60.

manage to consume around half the available memory and swap usage begins at around

time 70s. While MRVM migrates the second VM immediately, MEC first pauses both
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Figure 4.14: Execution time line under MRVM, th = 160.
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Figure 4.15: Execution time line under MEC, th = 160.

VMs and then migrates one of them, resuming it after the migration is completed. Pausing

the VMs prevents further swap consumption by the VMs (less than 1.5 GiB compared to
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2 GiB) which benefits their performances later on when more memory is available.

For values of th higher than 120s, MEC will suspend a paused VM to free up it’s

memory for the other VM. This also means that MEC will not only have to be able to

migrate VMs in a running or paused state, but also VMs in suspended state, i.e. MEC

supports three different forms of migration, as described in Section 3.3. This is quite

effective, as shown in Figure 4.15, for th = 160s, where the first VM, after being paused

and then suspended, is migrated off line to the other server at time 170s. The VM arrives

at the new host in a suspended state and has to be restored to an executing state. While

the first VM is suspended, J1.2 remains paused until J1.1’s memory has been returned

to the host for reallocation at time 140s. MRVM, in comparison to Figure 4.14, behaves

similarly to the execution with th = 60s, except that the migration can now only occur at

time 170s. In the meantime, the two jobs continue to execute and consume more swap.

So even when one of the VMs is later migrated, the job execution times under MRVM

are longer than those under MEC management even though the MEC jobs were paused

and suspended, effectively stalled, for over 150s against only 20s for MRVM’s jobs.

TL
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

535.0s

J1.1

0 100 200 300 400 500 600 700 800 900 1000
Time (s)

TL
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

932.2s

J1.2M
em

or
y 

(G
iB

)

Mem. Host 0
Allocated
In use
swap

States
Running
Paused
Suspended
Migrated

Figure 4.16: Execution time line under MEC management with th > 1000s, the equivalent
of No MIG.

Time lines for the job executions under the policies of NO MIG (with MEC) and No

Preemp, when no additional servers are available, are shown in Figures 4.16 and 4.17

respectively. For NO MIG, as seen previously, both jobs consume the available memory
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Figure 4.17: Execution time line with memory elasticity but without any preemption
mechanisms (the equivalent to No Preemp).

and begin to use swap at around time 70s. At this point, MEC pauses the VM with

least memory and after 10 seconds suspends and saves it to disk while the other VM

is paused until the suspension process terminates. When the freed memory is available,

MEC resumes the paused VM. Then, once J1.1 finishes its execution, the suspended VM

is restored. The importance of MEC is highlighted by the comparison with time line for

traditional migration schemes shown in Figure 4.17. Without any preemption mechanism

and an additional host server being available , the two jobs will execute using swap with a

significant degradation in performance. The execution time is 80% slower than MEC with

non-migration preemption and can be as much as three times slower than migration-based

preemption.

4.4 Summary

This chapter aimed to compare different preemption and migration schemes and motivate

the need to consider more than one option in order to efficiently exploit vertical memory

elasticity. The experiments in Section 4.3 consider scenarios where the job’s increasing

memory demands cannot eventually be met by their host server and different schemes that

combine migration and other preemption mechanisms are evaluated. The first experiment
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showed that when a spare host (or another host with sufficient spare capacity) is available

when a host becomes overloaded, traditional live migration presents good results but those

produced by MEC by combining VM pausing and migration (including cold migration)

is equally competitive. Having a second host available immediately may not always be

possible in real practical situations. The last two sets of experiments again consider

similar conditions but this time focus on analyzing how the performance (execution time

of the jobs and the workload as a whole) is affected by the time at which, if at all,

a second host becomes available. The results showed that scenarios exist where it is

better to not even use any form of preemption, even live migration. Furthermore, when

multiple jobs have insufficient memory, combining preemption techniques including VM

suspension to redistribute allocated memory can be significantly better than migration-

only management approaches.



Chapter 5

Conclusions and future work

Maximizing resource utilization is a frequent goal of service providers in cloud and edge

computing. Server consolidation and resource elasticity are two common features of re-

source management. The former attempts to improve resource utilization by reducing or

minimizing the number of servers for a given workload. The latter aims to obtain utiliza-

tion gains by trying to exploit the time-varying demands of applications during execution.

Vertical memory elasticity can be used as a effective method to assign sufficient memory

to VMs dynamically while allowing cloud providers to instantiate more VMs on a physical

node without the risks of over-provisioning. However, when host memory becomes scarce,

proactive resource management is required to avoid severe performance degradation.

Traditionally, VM migration has been used extensively as a mean to improve perfor-

mance, and in the context of cloud computing, is a fundamental tool to support elasticity.

This work presents the MEMiC framework and extend the original Memory Elasticity

Controller (MEC) that was minded for single server memory management and provided

the memory vertical elasticity by adjusting the amount memory allocated to each VM

according to its demand and only two VM preemption schemes (pause and suspension),

aiming to avoid performance loss from over-provisioning while improving utilization. The

modified version of MEC developed in this work combines the use of three preemption

schemes – VM pausing, suspension and migration – into a coordinated local scheduling

policy for a more effective management of VMs with memory elasticity as part of a mul-

tiple server hierarchical framework. This dissertation discussed some of the design issues

and evaluated the approach against alternatives within this common framework. The

proposal is at least competitive with traditional live migration-only-based approaches,

being significantly better in some scenarios.

Process migration has been used in various systems as a mean to improve perfor-
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mance in spite of the known overheads. The main goal of this work has been to carefully

incorporate VM migration in to the management of the execution of multiple VMs in a

shared environment that supports vertical and horizontal elasticity with the aim of reduc-

ing the negative effects of overloaded resources on the overall execution time. For both

VM migration or suspension experimental analysis guided us towards choosing the VM

with the smallest amount of allocated memory. While, on one hand, this decision results

in a smaller amount of memory being released per operation, on the other hand, it incurs

a lower overhead in terms of latency and throughput by releasing memory on the host

sooner. Different migration mechanisms were analyzed and while live migration has the

least impact on the running VM, giving MEC the opportunity to also consider migrating

either paused or suspended VMs can lead to better results.

VM scheduling with vertical memory elasticity, VM pausing, suspension and live

migration could become a key tool as cloud service providers continue to strive to improve

resource utilization for an ever diverse range of applications. Future work aims to refine

the MEC scheduling policies and decisions in relation to multiple preemption options as

well as study the multi-level scheduling problem where the predictive MEMiC Scheduler

must interact with multiple reactive MEC controllers.

5.1 Future work

The outcomings of this work can be used to include energy-aware scheduling policies that

can help to reduce energy consumption by improving server consolidation in virtualized

data centers. Furthermore, in order to take advantage of idle resources when online jobs

have low demand, online jobs and batch jobs can be distinguished and, depending on

the load, dynamically re-prioritized to improve utilization. Supporting both online and

batch jobs on the same infrastructure is particular useful in in fog and edge computing

environments where resource capacities are general limited.

In the context of vertical memory elasticity, the global scheduling problem being ad-

dress in this work is more complex than the problem where jobs are executed on dedicated

resources. As such, many of the MEC scheduling decisions have yet to be studied fully,

such as which VM should be chosen for a particular action, e.g. migration or suspension,

or at what frequency actions should be taken, e.g. recover memory from running VMs.

In the same manner that the VM migration policy was briefly analyzed in this work, a

refinement of the policy to suspend paused VMs might also be merited. Would suspending
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the paused VM(s) with smallest quantity memory be a better approach, since it would

release the memory in a shorter period of time, than to suspend a single VM of sufficient

size? These are just some of the pending issues related to MEC scheduling algorithm.

Note also, however, that preemption techniques can be costly and should be employed

with care. In order to reduce the number of such events but still avoid overloading the

host, it is important to find an effective initial VM allocation that takes into consideration

the behavior of each job. To achieve this, any global scheduler must work in unison with

the local host elasticity controllers to reduce interference (performance degradation). Ex-

isting approaches address the problems of elasticity and allocation separately. But recent

work carried in parallel to the work of this dissertation has focused on the elaboration of

the MEMiC (Memory Elasticity Management in Clouds) framework into a two-tier VM

scheduler for batch jobs [19]. The global scheduler of the cloud manager attempts to

predict the impact caused by competition for the memory of physical servers in shared

Cloud-like environments in order to better harness VM allocation, suspension and mi-

gration. Future work should focus in refining the interaction between the schedulers in

this two level hierarchy. One factor that could have a significant impact on local schedul-

ing might the use of job specific information such as its ideal execution time. Given

that MEMiC scheduler uses job profile information and simulations to predict interfer-

ence when allocation jobs to servers, it should be possible to pass on job information to

individual MEC controllers to help improve local decision making.

Although this work has focused on VM scheduling, the concepts presented here can

equally be applied to container-based systems. Despite such systems have inbuilt mech-

anisms to handle the elastic allocation of resources, scheduling decisions still have to be

made as to where containers should be allocated and how much of the limited resources

should be allocated to a given container at a given time.

Another practical issue that affects performance, but was not treated in this work,

is the choice of storage technology used to share the VM virtual disks. As disk files are

located on a remote storage server to facilitate migration, the swap IO carried out over

network may be subject to external interference. The computational environment used for

the experimental analysis in this work was NFS, however, there exists other technologies

like glusterfs that might be able to reduce the impact. This impact is more noticeable

when a VM that was using swap is then given memory, the rate to recover swap to memory

is significantly slower than writing to either memory or swap.
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