
UNIVERSIDADE FEDERAL FLUMINENSE

WEMERSON PASTOR DE OLIVEIRA MARINHO

Word101 - A Compact Encoding of Words using
Character Level Information

applied to Convolutional Neural Network Text
Classification

NITERÓI

2018

UNIVERSIDADE FEDERAL FLUMINENSE

WEMERSON PASTOR DE OLIVEIRA MARINHO

Word101 - A Compact Encoding of Words using
Character Level Information

applied to Convolutional Neural Network Text
Classification

Dissertation presented to the Computing Gra-
duate Program of the Universidade Federal Flu-
minense in partial fulfilment of the require-
ments for the degree of Master of Science.
RESEARCH AREA: Systems and Information

Engineering.

Advisor:

LUIS MARTI OROSA

Co-Advisor:

NAYAT SANCHEZ-PI

NITERÓI

2018

WEMERSON PASTOR DE OLIVEIRA MARINHO

Word101 - A Compact Encoding of Words using Character-Level Information

applied to Convolutional Neural Network Text Classification

Dissertation presented to the Computing Gra-

duate Program of the Universidade Federal Flu-

minense in partial fulfilment of the require-

ments for the degree of Master of Science.

RESEARCH AREA: Systems and Information

Engineering.

Approved in July, 2018.

Ficha catalográfica automática - SDC/BEE

Bibliotecária responsável: Fabiana Menezes Santos da Silva - CRB7/5274

M337w Marinho, Wemerson Pastor de Oliveira
 Word101 - A Compact Encoding of Words using Character Level
Information applied to Convolutional Neural Network Text
Classification / Wemerson Pastor de Oliveira Marinho ; Luis
Marti Orosa, orientador ; Sanchez-Pi Nayat, coorientadora.
Niterói, 2018.
 69 f. : il.

 Dissertação (mestrado)-Universidade Federal Fluminense,
Niterói, 2018.

DOI: http://dx.doi.org/10.22409/PGC.2018.m.22111884863

 1. Classificação de dados . 2. Algoritmo computacional .
3. Rede neural . 4. Produção intelectual. I. Título II.
Orosa,Luis Marti , orientador. III. Nayat, Sanchez-Pi,
coorientadora. IV. Universidade Federal Fluminense. Escola de
Engenharia.

 CDD -

For each human being who devoted a moment of his life to teach me something.

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my wife Karla Marinho for being my unconditional

partner. Her love, patience and inspiration push me to finish this project.

I would not have completed this task without the valuable guidance and support of my

advisors, Prof. Nayat Sanchez-Pi and Prof. Luis Martí. Every time that I came to you with a

broken solution or was completely lost, I found some good ideas to try and encouragement to

continue. I appreciate specially every moment that you dedicated to make this text and the

papers that we wrote together a li�le less amateur despite the mess that were its first versions.

It was an honour and a pleasure be guided by you.

Forever shall I remain indebted to my parents João Pastor e Maria Gorete, for being my

examples of work ethic and dedication.

I would like to thank Prof. Cristina Nader Vasconcelos for introduce me to the Deep

Learning field and present me the topics of this work in her classes.

I gratefully acknowledge the support of NVIDIA Corporation with the donation of a GPU

used for this research and CAPES for the award of a research scholarship.

Resumo

Esta dissertação apresenta uma nova representação de texto em forma de tensores baseadas em
técnicas de compressão de informação que assinalam códigos mais curtos aos caracteres mais
frequentemente utilizados. Esta representação é independente de linguagem, não necessita
de pré-treinamento e produz códigos sem perda de informação. Adaptada para se aproveitar
da morfologia das palavras, é capaz de representar prefixos, conjugações e inflexões com
vetores similares, sendo capaz de representar mesmo palavras não constantes no conjunto
de textos treinamento. Por ser compacta, porém esparsa, é ideal para acelerar os tempos
de treinamento utilizando-se de bibliotecas de processamento tensorial. Como parte deste
trabalho de pesquisa, mostramos que esta técnica é especialmente eficiente se utilizada em
conjunto com Redes Neurais de Convolução (CNN) para classificação de textos no nível
do caractere. Resultados experimentais mostram que ela reduz drasticamente o número de
parâmetros a serem analisados, resultando em uma acurácia de classificação competitiva em
apenas uma fração do tempo que seria gasto em representações um por linha, possibilitando
treinamento em equipamentos mais simples.

Palavras-chave: classificação de textos, codificação de palavras, redes neurais profundas.

Abstract

This dissertation puts forward a new text to tensor representation that relies on information
compression techniques to assign shorter codes to the most frequently used characters. This
representation is language-independent with no need of pre-training and produces an encoding
with no information loss. It provides an adequate description of the morphology of text, as it can
represent prefixes, declensions, and inflections with similar vectors and are able to represent
even unseen words on the training dataset. Similarly, as it is compact yet sparse, is ideal for
speed up training times using tensor processing libraries. As part of this research, we show
that this technique is especially e�ective when coupled with convolutional neural networks
(CNNs) for text classification at character-level. Experimental results show that it drastically
reduces the number of parameters to be optimized, resulting in competitive classification
accuracy values in only a fraction of the time spent by one-hot encoding representations, thus
enabling training in commodity hardware.

Keywords: text classification, word embedding, word encoding, deep pyramidal network.

List of Figures

2.1 Schematic representation of the CBOW and Skip-Gram word embeddings. . . 13

2.2 Schematic representation of an unfolded Recurrent Neural Network. 19

2.3 Schematic representation of an unfolded Vanilla Recurrent Neural Network. . 20

2.4 Schematic representation of an unfolded LSTM. 20

2.5 Schematic representation of a GRU cell. 21

2.6 Schematic representation of a wide convolutional network. 23

3.1 Matrix encoding of sentence ‘Research is an art and a science’. 29

3.2 A cell of level n. 31

3.3 Deep pyramidal architecture. 34

3.4 Earlier a�empt Network architectures used with Word101. 35

List of Tables

2.1 Architectures of the ‘large’ and ‘small’ CNNs used by Zhang, Zhao & LeCun

(2015). 16

3.1 Example of coding using English language ranking of characters. 28

3.2 Example of coding using English language ranking of characters. 28

4.1 Training environment and parameters . 40

4.2 Test set accuracy comparison among traditional models of Zhang, Zhao &

LeCun (2015) models and our approaches . 40

4.3 Time per epoch as reported by Zhang, Zhao & LeCun (2015) and Conneau et

al. (2016) models and our approaches . 41

Abbreviations and Acronyms

BOW : Bag of Words;

CBOW : Continuous Bag of Words;

CNN : Convolutional Neural Network;

GLOVE : Global Vectors;

GPU : Graphics Processing Unit;

GRU : Gated Recurrent Unit;

LSTM : Long Short Term Memory;

SGD : Stochastic Gradient Descent;

SNAP : Stanford Network Analysis Project;

RESNET : Deep Residual Networks;

RNN : Recurrent Neural Networks;

TF-IDF : Term Frequency-Inverse Document Frequency;

WORD2VEC : Word to Vectors;

Contents

1 Introduction 1

1.1 Motivation . 3

1.2 Dissertation Outline . 9

2 Foundations 10

2.1 Preliminaries . 10

2.2 Text Representations . 11

2.2.1 Word One-hot encoding . 11

2.2.2 Word Embedding Representations . 12

2.2.3 Character One-Hot Representation . 14

2.2.4 Sub-word Representations . 17

2.3 Algorithms . 17

2.3.1 Traditional Linear Algorithms . 17

2.3.2 Recurrent Neural Networks . 19

2.3.3 Convolutional Neural Networks . 21

3 Proposal 25

3.1 Compressed Encoding for Text Representation 25

3.2 Word101-Encoding Text Representation Procedure 27

3.3 Deep Pyramid Convolutional Neural Networks 30

3.4 Earlier A�empts . 32

3.4.1 CNN1 topology . 32

Contents xii

3.4.2 CNN2 topology . 32

3.4.3 LSTM topology . 33

4 Experimental Study 36

4.1 Applying Word101 to massive texts datasets 36

4.1.1 Mixing Morphological structure and Semantic information 39

5 Conclusions 42

5.1 Final Remarks . 42

5.2 Future Directions . 44

References 45

Appendix A -- Publications 50

Chapter 1

Introduction

Document classification is one of the principal tasks addressed in the context of Natural

Language Processing (SEBASTIANI, 2002). It implies associating a document —or any text

fragment, for that ma�er— with a category or label relying on their content. The increasing

availability of texts in digital form, especially through the Internet, has called for the develop-

ment of statistical and artificial intelligence tools for automating this process. Spam detectors,

Sentiment analysis, News archiving, among many others, demand high-quality text classifiers.

There is a broad range of approaches to document classification (see, for example, (SE-

BASTIANI, 2002; AGGARWAL; ZHAI, 2012; HOTHO; NRNBERGER; PAA, 2005; KOSALA;

BLOCKEEL, 2000)). An important portion of them relies on a representation that handles

words as the atomic element of text. Consequently, those methods carry out their analysis

through statistics of words occurrence (ZHANG; ZHAO; LECUN, 2015). However, the variabil-

ity of words and structures belonging to a language hinders the viability of this method. In

this context, these models have a superior performance in specific domains and applications,

where the vocabulary is or can be restricted to a relatively small number of words, possibly

chosen by a specialist. Furthermore, such modeling becomes specific to a language, causing

the replication process in another language to be carried out from scratch (ZHANG; ZHAO;

LECUN, 2015).

In recent years, we have experienced a revolution in the machine learning with the advent

of Deep Learning methods (GOODFELLOW; BENGIO; COURVILLE, 2016). The development

of Convolutional Neural Networks (CNNs) (LeCun et al., 1998) coupled with the popularization

of parallel computing libraries spearheaded by frameworks like Theano (BERGSTRA et al.,

2010), Tensorflow (ABADI et al., 2015) and Keras (CHOLLET et al., 2015) that simplify general-

purpose computing on graphics processing units (GPU) (MITTAL; VETTER, 2015) has been

very successful in tackling image classification problem (KRIZHEVSKY; SUTSKEVER; HINTON,

1 Introduction 2

2012) and is quickly becoming the state of the art of the field.

As it could be expected, these success has prompted the interest to extend the Deep

Learning principles to the document classification domain. Some existing methods have been

updated but the clear majority are still based on the tokenization of words and the inference

of their statistics. Bag of Words (BoW) (SALTON; MCGILL, 1983) and Word2vec (MIKOLOV et

al., 2013) are some of the most popular strategies.

It can be argued that the main challenge faced when replicating the success of image

classification in the documents domain is representing text as numerical tensors. One popular

alternative relies on the one-hot encoding technique (HARRIS; HARRIS, 2012) using a Bag of

words strategy (SALTON; MCGILL, 1983). It represents the words in the text as vectors, where

the term relative position is 1 and all other 0. However, in massive dataset scenarios, using

this technique would generate a representation of thousands or even millions of coordinates,

making its use impractical in terms of memory needed to store this vector, time required to

compute its optimization and numerical issues because of the sparsity of the representation.

Another problem is that typing errors or simple declensions of words in test data could not be

codified if they are unseen on train data.

To address this issue, Zhang, Zhao & LeCun (2015) suggested a groundbreaking approach

that considers the characters as the atomic elements of a text. In particular, they represented

the text as a sequence of one-hot encoded characters. This encoding provides a robust, language-

independent representation of texts as matrices to be used as inputs to di�erent CNNs. Their

experimental results showed that this approach was able to a�ain and, in some cases, improve

the state of the art results in complex text classification problems. More recently, Xiao & Cho

(2016) improved those results by combining CNNs with Long Short-Term Memories (LSTMs)

(HOCHREITER; SCHMIDHUBER, 1997). In spite of that, the impact of this idea is hampered

by the large computational demands of the approach, since its training can take days per

epoch in relatively complex problems.

In this dissertation, building upon the work of Zhang, Zhao & LeCun (2015), we propose

an e�icient character-level encoding to represent texts using the knowledge of character

frequency imbalance, derived from the Tagged Hu�man (MOURA et al., 2000) information

compression technique. This encoding takes into account the character appearance frequency

in the texts in order to assign shorter codes to the most frequently used ones. This novel text

encoding makes the idea put forward by Zhang, Zhao & LeCun (2015) more computationally

accessible by reducing its training requirements in terms of time and memory.

The proposed encoding makes possible to represent larger portions of texts in a less sparse

1.1 Motivation 3

form, without any loss of information, while preserving the ability to encode any word, even

those not present in the training dataset ones. In order to study the impact of this encoding,

we coupled it with a deep architecture used by Johnson & Zhang (2017) on classifying texts

using word representations. The experimental studies performed showed that we managed

to achieve a superior accuracy than Zhang & LeCun (2015) and very competitive with others

models that use words representation even using only character composition of words as input.

Furthermore, we show that this strategy is more computational e�icient, comparing with

Zhang & LeCun (2015) and Conneau et al. (2016), that uses character as inputs.

Our main contribution is to show that this novel character-level text encoding produces

a reduced input matrix, leading to a substantial reduction in training times while producing

comparable or be�er results in terms of accuracy than the original approach by Zhang, Zhao

& LeCun (2015). This opens the door to more complex applications, the use of devices with

lower computational power and the exploration of other approaches that can be coupled with

this input representation.

1.1 Motivation

The initial intent of this research was applying new advances in Deep Learning to the field of

Intelligent Tutoring Systems(FREEDMAN; ALI; MCROY, 2000).

Online individualized and independent learning is an important aspect of modern Internet.

Massive online open courses (MOOCs) have shown themselves as a revolutionary learning tool.

One salient issue that hampers MOOCs is the lack of an adequate method for adapting the

learning material and teaching pace to the particular needs and characteristics of a student.

Studies carried out by BLOOM (1984) in di�erent schools and levels of schooling have shown

that the average performance of a student guided by an individual tutor is about 2 standard

deviations above the average result of a conventional class of 30 students, that is, 50% of

students under mentoring has results be�er than 98% of conventional students. However, since

the costs of a one-to-one education are high and unfeasible for mass-scale use, the search for

alternatives that approximate the performance of individual tutoring has become an area of

intense research, particularly with the use of computer systems.(PIECH et al., 2015; PAVLIK;

CEN; KOEDINGER, 2009; PANE et al., 2014)

Part of the success of individual tutoring can be a�ributed to the teacher’s ability to tailor

content to the student’s current skill level and to insist on the subject until it is perceived

that the student has mastered it. It can be stated that this is a rather intuitive process for an

1.1 Motivation 4

experienced teacher. However, simulating this competence with computational models is a

complex task. In particular, it is necessary:

1. to infer the domain of a content

2. to infer the di�iculty of that content for the general population,

3. to infer the ability of the student in that domain,

4. to seek strategies to adapt both aiming at the growth of the student’s proficiency.

The main problem is that cognitive ability is a latent property of the individual, not directly

measurable by its very nature. Throughout history, the most popular way of estimating this

property has been through the application of exams and questionnaires. One of the objectives

of the use of Intelligent Tutoring Systems is to allow the personalization of teaching, that is,

to know the level of ability of the student and adapt the content in a way that does not waste

time working already dominated contents or even frustrate the student presenting him items

to which he is not yet ready for.

Traditionally, the technique used for this task is called Knowledge Tracing, a term used

for the task of modeling the knowledge of a student using his errors and correct answers

throughout the exercises, aiming to predict the performance of this student in future interac-

tions. Such knowledge is used to individualize the training sequence of a student, especially in

Intelligent Tutoring Systems. Formally, Knowledge Tracing is a task to predict performance on

an interaction x(t + 1), given a sequence of interactions x(0), x(1), …, x(t). The interaction has

the form x(t) = (q(t), a(t)) where q(t) is the identifier of the subject evaluated and a(t) is the

result of the interaction being 0 to miss 1 and hit.

In Corbe� & Anderson (1995) pioneering approach, a Bayesian Knowledge Tracing (BKT)

algorithm is applied. It goes by aggregating the sequence of hits and misses of a student,

a random apriori chance of success and a probability of accidental errors. Relying on that

information it tries to predict in the hidden states the probability of success of a next learning

item, considering that at a value above a threshold the content is dominated.

In a recent paper, a new technique was introduced with the use of Deep Learning: Deep

Knowledge Tracing (DKT) (PIECH et al., 2015). DTK relies in on Recurrent Neural Networks

(RNN) and Long Short Term Memory (LSTM) neural networks. In the reported experiments,

DKT achieved significantly be�er results than the widely-used Bayesian Knowledge Tracing

(BKT) method. The methodology is able even to uncover the latent structure between the

concepts, which is very useful to facilitate the optimization of curricula.

1.1 Motivation 5

In the DKT, for each question, the input is the student’s performance and the identifier of

the subject of the question. The encoding of this input is performed so that the coordinate

of the vector corresponding to the question is given the value 0 or 1 and the remaining null

(one-hot encoding). The prediction error for each of the answers in all other questions is

calculated by minimizing the cross-entropy between the vectors. The algorithm iterates until

all questions and all students are presented to the network.

The underlying idea is that the neural network approach learns the dependencies between

two or more questions in a series of answers a�empts made by a set of students, correlating

subjects that are missed together and what kind of student misses which kind of question,

beyond infer the question di�iculty based on the general performance of students. It is even

possible that the generality of the neural network architecture understands that the student

has forgo�en a subject once it starts to degrade his performance on the last a�empts. Generally,

the degree of freedom of these neural networks is quite large, which makes them learn much

more complex representations than those mentioned, as long as they lead to a be�er prediction.

The main criticism of the use of DKT is that modifications in BKT would have similar

performance, maintaining some interpretability of the data, something that is impracticable

when observing the hidden layer of a neural network (KHAJAH; LINDSEY; MOZER, 2016).

Another criticism is that structured models such as BKT variations may be easier to train,

requiring less parameter tuning than DKT, and that hardware demands may become prohibitive

when tens of thousands of items are used (WILSON et al., 2016). For further information, we

did an extensive review of the literature available methods of infer student proficiency and

published the results in (MARINHO; MARTÍ, 2016).

We understand the critics of using Deep Learning to Knowledge Tracing in the approach

proposed by Piech et al. (2015) but we see on it a be�er opportunity to incorporate others meta-

data relevant to the personalization process of Intelligent Tutoring Systems. By its own ability

to deal with a variety of input data, uses of Deep Learning have demonstrated to be robust to

a diversity of tasks, some of them very complex. We believe that it deserves more studies and

could be a promising alternative to BKT or traditional strategies based on methodologies like

Item Response Theory - IRT (BAKER, 1985).

But in our view, DKT has two main deficiencies:

• DKT needs a extensive amount of human annotation to recognize a domain for

each question before we even could inference any student proficiency.

Before we apply this methodology, we need to segment each question in a list of domain

1.1 Motivation 6

or competence, relying on human labor to classification it into disjoint sets. Di�erent

questions statements in the same class or domain are treated as equal. This approach

has a disadvantage of needing huge and expensive human intervention before we could

make inferences about the student performance. Furthermore, classifying questions in

disjoint domains and treat them as equal could miss important cognitive nuances of a

question and ignore interdisciplinary questions statements, a trend in modern education.

• DKT need a massive pool of previous of a�empts to fi�ing its parameters.

As usual in approaches based in Deep Learning, Neural Networks have strong results

when they are trained in a massive amount of data, alleviating the overfi�ing problem.

This characteristic prevents it application on small classrooms with less than a hundred

students, because we will need many a�empts to optimize its parameters. However,

that is the reality of the majority of schools, making this approach suitable only for big

conglomerates of schools with many students or to MOOCs.

We think that incorporating inputs of the statement of the question could help to alleviating

both problems.

First, we believe that we do not need to restrict ourselves to a sequence of questions with

human annotation subjects. Recent advances in the use of deep neural networks in Natural

Language Processing make possible to classify texts using a supervised learning approach and

maybe infer di�iculty directly from the text of the statement of each these questions, allowing

much more generality in its applications.

Second, by having the opportunity to compare similar statements, Deep Learning methods

could extrapolate the di�iculty levels of a new question statement or relate it to the di�iculty

to a group of similar questions. This could be determinant to allow uses in smaller classrooms,

once we can train our Neural Network in massive available repositories of a�empts, like

public exams, and use its parameters to evaluate a new statement that we want to present

to the student. Using information available in public exams have many benefits over using

classroom data. The probability of cheating is reduced because usually there are some form

of oversight. Furthermore, generally the high number of of applicants and its diversity of

backgrounds represent more the population in general, giving more confidence into infer

the level of di�iculty a question. Di�erently, results obtained from a�empts generated in

advanced/deficient classrooms or that have the guidance of a teacher in its execution could

produce completely biased outputs.

To make an a�empt of a�acking this problem, collecting data was essential step to this

1.1 Motivation 7

project.

Consequently, we have organized a comprehensive dataset of di�erent examination results

from public data. We have created a database of approximately 100,000 university entrance

exam questions from several Brazilian universities annotated by area of domain. We also

obtained a 10-year dataset of the FUVEST entrance exam data, which is annotated with the

hit rate of each question by the candidates of this traditional entrance exam. Similarly, we

obtained from the Brazilian Ministry of Education the sequence of responses of each individual

evaluated in the Exame Nacional do Ensino Médio (ENEM), the national examination of high

school students that allows them to enter public universities, constituting of 19 years and

assesses from 5 to 9 million candidates/year.

The original intent was using these data and techniques of Deep Learning to train neural

networks able to predict from the text of the statement of the question its di�iculty and domain

area and use that information together with a sequence of responses of a student to related

questions, measuring their ability to respond to this new question statement. These extend

the approach of Piech et al. (2015) since the question presented to the student need not be in

our training dataset, possibly a completely new statement in classic cold start problem. The

idea is that the architecture could compare the properties of the text and infer the proficiency

of the student based on the sequence of interactions that he already has with similar question

statements or subjects in the past.

The main problem faced was extracting the relevant texts of these questions statements

and represent it into a numerical tensor, allowing the use of Deep Learning. The language where

they were wri�en is Portuguese, and there are not good word embeddings for that language

available for a Word2vec approach (MIKOLOV et al., 2013). The number of possible words

related to these texts is extensive, so we could not use a one-hot representation like Bag-of-

words (SALTON; MCGILL, 1983; JONES, 1972) without discarding many words. Furthermore,

by its own nature, many of these questions have equations and formulas since Mathematics,

Physics and Chemistry are disciplines of many of these exams and we could not discard that

information since is relevant to measure the di�iculty or recognizing the domains of subject.

We became aware of the work of Zhang, Zhao & LeCun (2015) and tried to apply it

to our database of questions. The great advantage of this approach to our problem is that

since it is character-based, so we could be�er deal with mathematical expressions, formulas

and chemical equations and do not need a good word embedding repository in Portuguese.

Furthermore, typos or even encoding errors present in our database could be deal by the

architecture seamlessly.

1.1 Motivation 8

In preliminary studies, we segmented our database of 100k questions in 62 classes, with

subjects as diverses as Polynomial Equations in Mathematics, Hydrostatics in Physics, Atomic

Theory in Chemistry, Word War II in History, Climate in Geography and Verbs in Portuguese.

Using the approach of Zhang, Zhao & LeCun (2015) we could recognize the area of domain of

a question based only on its text statement with 61.13% of accuracy. This was an encouraging

result since the random choice have a 1
62 = 1.61% chance. But the time to execute this algorithm

is painfully slow and we starting to think if there were not a be�er way to do this.

Since the dimensions of the input matrix is directly correlated with the time spent on

training, we directed our e�orts to find a smaller text representation into tensors. At first we

thought to use some kind of compressed representation to reduce the size of each character in

input to some number minor that the 69 in a one-hot encoding style used by Zhang, Zhao &

LeCun (2015) . Studying classic compress encodings available in the literature, as Hu�man

(HUFFMAN, 1952), and more modern ones like Moura et al. (2000) and Brisaboa et al. (2003),

we realized that if we could concatenate codes that were not a subset of other codes, we could

represent a complete word directly. This could allow reducing even more the dimensions of

the input matrix because documents have significantly less words then characters.

A�er many failed a�empts, we developed the encoding strategy approach of this proposal,

and to our delight, it works! We named it Word101 since it uses digits 0 to represent the signal

and digit 1 to tag the begin and end of a character-code. It presented a promising performance

in preliminary tests, good properties to be applied in repository of texts, is stable in a specific

language and similar across languages and mainly reduces substantially the size of text tensor

representations.

For being based in character composition of words, with this encoding we could take

advantage of morphological constructions of words and do not need trained embeddings.

Furthermore, by representing a complete word, we could easily use all the techniques and

architectures already developed for word embeddings and even concatenate word embeddings

if available, inserting some semantic information into the representation. It could deal with

typos, equations, formulas and words not present initially in our training dataset.

For the potential to help a wider audience of our community, we decided to concentrate

e�orts in studying its properties and comparing it with state-of-art approaches of the literature

in the time due to this dissertation and postpone the initial objective to a later moment,

being more sure of its viability. This dissertation is dedicated to report our findings regarding

Word101.

Recently, Su et al. (2018) reported a similar a�empt to our original idea of using the text of

1.2 Dissertation Outline 9

questions to enhance the performance of strategies using DKT with very encouraging results.

This reinforces the belief that we could be in the right track in our intents.

1.2 Dissertation Outline

This work is structured as follows: In Chapter 2 we review the literature of text representations

and contrast the choice of the token as characters, words and subwords representations. In

the same chapter we review algorithms applied to the task classification texts, both linear as

Deep Learning approaches. In Chapter 3 we describe our proposal of text representation and

list some of its properties. In the same chapter, we detail the Neural Network architecture

chosen to couple with this representation and earlier a�empts done until we arrive at that

particular architecture. Chapter 4 shows the results of an experimental study of our proposal

in massive texts datasets and compare it against traditional methods and state-of-art methods,

both in character as in word token parsing representation. Finally, in Chapter 5 we present

our conclusions and suggested future research directions. In Appendix A there are listed two

publications done in this period and we reproduce a paper done with details of our earlier

a�empt.

Chapter 2

Foundations

2.1 Preliminaries

Classify a document is a very basic task in Natural Language Processing (NLP) (MANNING;

SCHÜTZE, 1999; JURAFSKY; MARTIN, 2014). The main idea is to use the text contents

(words, su�ix, part-of-speech, le�ers, symbols, equations, diagrams, etc.) and its compositional

structure in an algorithm to make inferences about the implicit or explicit properties of these

texts (NORVIG, 1987) as domain recognition, authorship, language, geographic location, etc.

To model this problem, the main challenges could be split in two components:

1. How to represent text contents and what the implications of this choice in the

process?

To use the power of a computer and its algorithms, we have to represent text contents

in some numerical format. The representation choice directly influences if we could

represent the totality of the information, the speed of execution and the accuracy of our

classification.

2. Which computational approaches should we use to classify documents using

these representations?

Wri�en language is a tool that humans use to represent ideas that by its own nature,

it has a very dimensional richness. Not only the vocabulary of tokens that represent

these ideas is extensive, the particular combination of them could alter completely the

meaning of the text. The power of the algorithm to model this variability and make

inferences about it directly influence its accuracy.

In the following sections, we list a non-exhaustive list of the most usual answers to these

2.2 Text Representations 11

questions available in the literature to be�er contextualize our proposal.

2.2 Text Representations

Usually, to represent text two choices are available:

The first choice is defining what is least piece of that structure, the token. For the western

languages, the usual choice of the atomic constituent of a text is a word or a character, but we

could use ideograms as in Eastern Languages like Japanese, Chinese or even be hieroglyphs,

like in ancient Egypt. There are also choices of N-grams, which are combinations of n neighbor

characters or words. In theory, we could represent a complete phrase as a token that could

define a text. The problem with this approach is that the variability of expressions possible is

enormous. Even if we could deal with a vector that a�ributes a single dimension to a particular

expression, we will need a massive amount of data with that expression in di�erent contexts

to have some statistical pa�ern validation.

The second choice is how to represent each token of that structure as a numerical value,

or in a more formal way, how to transform a categorical variable into a distinct vector. In

the literature, the common choice is a very sparse one-hot encoding or a continuous dense

representation using some embedding strategy.

2.2.1 Word One-hot encoding

In the case of word one-hot encoding, for representing each word in a vocabulary of size N ,

a digit 1 is placed in the correspondent position of that word in a 1 × N vector, all others

positions remaining with digit 0. The problem with this approach is that the number of

words in a language is unknown, but surely is very big. The Second Edition of the 20-volume

Oxford English Dictionary (OXFORD. . . , 2012) contains full entries for 228,132 words but

these numbers exclude inflections, and words from technical and regional vocabulary, slang

and neologisms. Depending on how we define what is considered a word, a language could

easily has more than billions of words. Glove (PENNINGTON; SOCHER; MANNING, 2014), a

repository of embeddings of words using Wikipedia (Wikipedia contributors, 2004) list at least

6 billions of di�erent words.

The dimensionality of the vectors has a direct e�ect on memory requirements and process-

ing time (GOLDBERG, 2015) in many algorithms. To enable processing, usually the vocabulary

is restricted to some small set with thousands of entries, with only the main significant words

2.2 Text Representations 12

of a domain. It is common to use the help of a specialist or some form of statistical frequency

to judge which words should be on the vocabulary. This step is very important because we

could only represent words that are in our restricted vocabulary set, all others being ignored.

One very common way to reduce the dimensionality of the word vector representation is

discarding the most and the least frequent words. The idea is that very frequent words are

usually stop words or not so important words. Words that have very low frequency should

have very li�le power in classifying a document.

One problem with using word one-hot encoding is that it only can represent words that

are contained in its vocabulary, or in other terms, we are a hostage of our training dataset.

If new words appear in our dataset of interest, being them a neologism or a combination of

known words, we have not a representation for them. Another problem is that each word is

independent from one another (GOLDBERG, 2015). The word ’dog’ is as dissimilar to word

’cat’ as to word ’thinking’ (GOLDBERG, 2015)

2.2.2 Word Embedding Representations

The strategy of representing words as a dense vector was introduced by Bengio et al. (2003)

and popularized by Word2vec strategy of Mikolov et al. (2013).

The main problem of using word one-hot representation to encode words is the extreme

amount of words in a language. Even if we have enough memory to store vectors with the

same dimension of available words, some words will appear few times in our training dataset,

becoming di�icult to establish a significant statistical pa�ern recognition inference about the

presence of that word in a text. This problem is recognized as the curse of dimensionality

(BENGIO et al., 2003).

To reduce this dimensionality without discarding some word occurrence in a document

some pre-training could be used to convert that big word vector to a smaller and more

computational e�icient embedding. That strategy has two flavors: Skip-Gram and Continuous

Bag of Words (CBOW).

The idea behind skip-gram is simple: train a single layer of neurons in a neural network to

predict near words given a single word in a massive amount of text documents, then use the

weights of that training as a word representation. Usually, the strategy is performed using a

window of 5 words. The input is a central word and the network tries to predict the 2 near

words before and the 2 near words a�er. It is very common use 100, 200 or 300 weights in a

fully connected neural network, that will be used as the vector representation of that word.

2.2 Text Representations 13

x(t−n) · · · x(t−2) x(t−1) x(t+1) x(t+2) · · · x(t+n)

Wemb

x(t)

(a) Continuous bag of words (CBOW).

x(t−n) · · · x(t−2) x(t−1) x(t+1) x(t+2) · · · x(t+n)

Wemb

x(t)

(b) Skip-gram.

Figure 2.1: Schematic representation of the CBOW and Skip-Gram word embeddings as
explained in Mikolov et al. (2013).

The intuition behind this strategy is that words with similar meaning will be surrounded

by similar words, so words that appear in the same context should have similar vector repre-

sentations.

Another flavor of that strategy is doing the opposite, input in a network the context words

and try to predict the centered word. This strategy is named Continuous Bag of Words (CBOW).

In fact, the strategy is using sparse, one-hot vectors as input and them dedicating the first

layer of a network architecture to learning a dense embedding vector for each word based on

the training data (GOLDBERG, 2015). As the input is a one-hot encoding representation of

words, the same problem of dealing with words not present in the training dataset is inherited.

So neologisms, slang or words with some misspellings will not have a vector representation.

The great advantage of this strategy is that word representation are not equally dissimilar.

In the dense vectors representation, the learned vector for ‘dog’ may be similar to the learned

vector from ‘cat’, since it appears in similar contexts, allowing the model to share statistical

strength between the two words (GOLDBERG, 2015). So, the main benefit of the dense

representations are in generalization power, representing similar ideas as similar vectors,

independently of the word used to represent that idea, like in the case of ’cat’ and ’dog’ that

are related to the context of domestic pets.

Skip-Gram and CBOW strategies could be applied to the documents that we intend to

classify, but have a be�er general performance if trained in a massive amount of texts. Global

2.2 Text Representations 14

Vectors (Glove) (PENNINGTON; SOCHER; MANNING, 2014) is repository maintained by

Stanford University of words vector representations trained on Wikipedia (6 billion words) or

Twi�er (27 billion words). This alleviates the problem of not having a word representation for

words not present in the training dataset if that word is present in this repository.

On another hand, since the majority of wri�en content of the internet is in English, the

meaning of words is very biased to that language.

There is a variant of this strategy called Fas�ext (JOULIN et al., 2016) developed by Facebook

Inc. that uses all n-grams of a word as inputs to the vector embedding strategy. The main

advantage is that it could deal be�er with rare words, or smaller datasets because it can use

part of the word that is common to other words to infer some similarity. Facebook released pre-

trained word-vectors in more than 150 languages using texts available in Wikipedia (JOULIN

et al., 2016).

The repository of vector representations is a good general representation of a word in

general contexts. If your data is related to a specific context, like a technical area, some words

could have a be�er representation if were trained only on related documents. For example,

the word "Set" could be related to "adjustments", but could be defined as a collection of well

defined and distinct objects in Mathematics, a sequence of games played with alternating

service and return roles in Tennis sport or even a deity on ancient Egyptian texts.

As a starting point, it could be a good idea using pre-trained data and them fine-tune the

representation with new data, especially if there are not so many documents available at your

selected training dataset.

2.2.3 Character One-Hot Representation

Representing words as vectors using word one-hot encoding have the problem of big dimen-

sionality. Using embeddings of words pre-trained in a massive amount of texts alleviate this

problems, but the representation will be a hostage of the generality of that massive training set

that could or not produce a vector representation that favor your dataset of texts. Equations,

neologisms, slang, emoticons and other common aspects of internet texts could or not be

represented in pre-trained datasets.

These techniques work well enough when applied to a narrowly defined domain, but the

prior knowledge required is not cheap – they need to predefine a dictionary of words of interest

and the structural parser needs to handle many special variations such as word morphological

changes and ambiguous chunking. (ZHANG; ZHAO; LECUN, 2015)

2.2 Text Representations 15

These requirements make text understanding more or less specialized to a particular

language and if the language is changed, many things must be engineered from scratch

(ZHANG; LECUN, 2015). If your dataset is not in English the problem may become more

important, since the majority of words in these training texts databases are biased to that

language. In Chinese, tokens are not separated by spaces or other typese�ing conventions. For

most NLP applications, German compounds should be split. Tokens in agglutinative languages

like Turkish are di�icult to process as unanalyzed symbols (BLUNSOM et al., 2017).

The success of deep learning in speech, vision and machine translation demonstrates the

potential of giving models direct access to the data as opposed to through the intermediary

of human-designed features. This last model the data as it comes in without any alteration

through manually designed features. Especially with Deep Learning models, it is possible that

the models learn their own representation of the data without the need of tokenizing the

character sequence into words (BLUNSOM et al., 2017).

If we give up the notion that a token is an opaque symbol and instead model the sequence

of characters it is made up of, then we can in principle learn all morphological regularities:

inflectional and derivational regularities as well as a wide typological range of morphologi-

cal processes such as vowel harmony, agglutination, reduplication, and nonconcatenativity

(BLUNSOM et al., 2017)

Addressing these issues, Zhang, Zhao & LeCun (2015) suggested considering the characters

as the atomic elements of a text. The problem of the dimensionality of the vector is alleviated,

because usually there are not so many of distinct characters in an alphabet of a language.

Even in languages that use ideograms, the number of them is much lower than the amount of

possible words.

This simplification of engineering could be crucial for a single system that can work for

di�erent languages, since characters always constitute a necessary construct regardless of

whether segmentation into words is possible (ZHANG; ZHAO; LECUN, 2015).

Zhang, Zhao & LeCun (2015) used only 69 characters as an alphabet to represent a

document in datasets of texts in English and romanized Chinese. Using a one-hot character

encoding with a dictionary of characters, an alphabet, at each line of the matrix representing

the document, the corresponding character position of the vector is considered 1 and all others

positions 0. The non-space characters are le�ers, numbers and punctuation.To allow processing

this approach, Zhang, Zhao & LeCun (2015) limited the number of characters in a document

to 1014. So, each document is represented in a matrix of dimension 1014× 69

2.2 Text Representations 16

Table 2.1: Architectures of the ‘large’ and ‘small’ CNNs used by Zhang, Zhao & LeCun (2015).

CONVOLUTIONS

Layer Large Feature Small Feature Kernel Poll

1 1024 256 7 3
2 1024 256 7 3
3 1024 256 3 —
4 1024 256 3 —
5 1024 256 3 —
6 1024 256 3 3

FULLY CONNECTED

Layer Large Feature Out Small Feature Out Dropout

7 2048 1014 0.5
8 2048 1014 0.5
9 Depends on the problem

The big challenge was to show that such an approach could be learned by an algorithm,

since the great amount of variability imposed by trying to understand texts from scratch. To

classify texts using this strategy, they applied a deep Convolutional Neural Network (CNN).

The model is composed of 9 layers, 6 of convolutions and 3 fully connected. Their architec-

ture is described in Table 2.1.

They used Stochastic Gradient Descent (SGD) with a mini batch of size 128, using a mo-

mentum of 0.9 and initial step size 0.01 which is halved every 3 epochs for 10 times. So, their

results were obtained in at least 30 epochs.

This encoding provides a robust, language-independent representation of texts as matrices,

that are then used as inputs of di�erent CNNs. Their experimental results showed that this

approach was able to a�ain and, in some cases, improve the state of the art results in complex

text classification problems.

The drawback of this strategy is that the training is more complex since the network has to

learn to identify some constructions belonging to certain classes of texts, requiring more epochs

to converge and have to deal with matrices of bigger dimensions, since a document have many

more characters than words. This entire process is slower than using word representations.

2.3 Algorithms 17

2.2.4 Sub-word Representations

Deriving representations of words from the representations of their characters is motivated

by the out-of-vocabulary words problem. Working on the level of characters alleviates this

problem to a large extent, as the vocabulary of possible characters is much smaller than the

vocabulary of possible words. However, working on the character level is very challenging, as

the relationship between form (characters) and function (syntax, semantics) in language is

quite loose(GOLDBERG, 2015).

Restricting oneself to stay on the character level may be an unnecessarily hard constraint.

Some researchers propose a middle-ground, in which a word is represented as a combination

of a vector for the word itself with vectors of sub-word units that comprise it(GOLDBERG,

2015).

These approaches also have the benefit of producing very small model sizes (only one

vector for each character in the alphabet together with a handful of small matrices needs

to be stored), and being able to provide an embedding vector for every word that may be

encountered. (GOLDBERG, 2015; SANTOS; ZADROZNY, 2014) model the embedding of a

word using a convolutional network over the characters and found state of art results in

part-of-speech (POS) tagging.

One of the great advantages of this strategy is that you could use word embeddings

available from Glove(PENNINGTON; SOCHER; MANNING, 2014) or Fas�ext (JOULIN et al.,

2016) to known words and use the sub-word representation to guess the meaning of similar

words. Dismissing any handcra�ed feature decision is another advantage.

On another hand, there is a need to use training stage to achieve the character-word repre-

sentation, and although it can represent out of vocabulary words, this training representation

is dependent on the dataset used. Di�erent training datasets achieve di�erent representations.

2.3 Algorithms

2.3.1 Traditional Linear Algorithms

A traditional strategy to classify text documents using one-hot word representation is Bag of

Words (SALTON; MCGILL, 1983). In this strategy, a vector composed of a sum of all word-

vectors present in the text represents a document. This approach only takes into account

the presence or not of a word, so its position in the text is ignored, the analogy is that each

2.3 Algorithms 18

document is considered a bag of mixed words.

To allow statistical relevance and be able to store word vector representation on memory,

the number of words should be restricted to thousands of words. The selection of words in a

vocabulary is determinant on the accuracy of the algorithm. Usually is applied an specialist in

this stage or applied some kind of statistical filter, where most frequent words (stop words)

and rare words are discarded.

Another variation of this strategy is weighting the importance of words in a document by

its Term Frequency-Inverse Document Frequency (TF-IDF) (JONES, 1972). In this technique, the

Term Frequency is the number of times a word is present in a certain document and the Inverse

Document Frequency is the frequency of that word in all documents. The TF-IDF of a word in a

document is the Term Frequency divided by the Inverse Document Frequency. The idea of the

technique is that words that are too much frequent will appear in many documents, so its

importance is lower than a certain type of word that usually only appear in a specific class of

documents.

To compare or classify each document, usually a Multinomial Logistic Regression or a Naive

Bayes algorithm is applied.

In the Naive Bayes algorithm approach, is assumed that words are independent from one

another and the conditional probability of a document to belonging to a particular class could

be calculated using the frequency of words on the document and frequency of the same words

in a particular class using the Bayes Theorem. (See (JURAFSKY; MARTIN, 2000))

In the Multinomial Logistic Regression (also called MaxEnt or the Maximum Entropy classi-

fier) approach, the frequency of occurrence of a set of words is compared with the frequency

of the class using an exponential normalization and using linear combinations that maximize

entropy. (See (JURAFSKY; MARTIN, 2000))

The great advantage of these linear models is that they are very fast do compute. The

number of classes should be small, ideally binary. In Bag of Words strategies, the position of a

word does not ma�er, so it works well when some set of words are characteristic of a kind

of document. It has very success in tasks like spam filters (SAHAMI et al., 1998), where few

words are very common in many junk messages.

2.3 Algorithms 19

Figure 2.2: Schematic representation of an unfolded Recurrent Neural Network. Taken
from (OLAH, 2015).

2.3.2 Recurrent Neural Networks

In language, the sequence of words in a sentence and the sequence of sentences in a document

are important in the structure of the ideas that a text is delivering.

One way to model the influences of past events in a decision using neural networks is a

Recurrent Neural Network. In this architecture, an internal hidden state takes into account

some information of what was already presented to the model and use such an event to take

decisions. We can think that this hidden state act like a primitive memory because it have not

access to what happened before, but everything that already happened modifies the behavior

on the next decision.

The architecture where the recurrence is represented by a set of hidden states is called

Vanilla RNN. A schematic representation is presented in fig. 2.2. It is very e�icient to take into

account recent events. The problem of using this kind of architecture is that sometimes, the

important event happened in a long distance of the decision. In the meantime, a bunch of

others inputs modified the model, and that critical information has its power diluted.

One solution is using more hidden states to represent more information from the past, but

this usually makes the gradient vanish and unable the training (BENGIO; SIMARD; FRASCONI,

1994). Another solution is to develop architectures that are more sophisticated and less prone

to vanishing. Some of them use as a strategy deciding which information taking into account

and what are the ones that should or not interfere in the next decision. The most popular are

Long Short Term Memory (LSTM) (HOCHREITER; SCHMIDHUBER, 1997) and Gated Recurrent

Unit (GRU) (CHO et al., 2014) networks.

The Long Short-Term Memory (LSTM) (HOCHREITER; SCHMIDHUBER, 1997) architecture

was designed to solve the vanishing gradients problem. The main idea behind the LSTM is to

introduce as part of the state representation also “memory cells” (a vector) that can preserve

gradients across time. Access to the memory cells is controlled by gating components – smooth

mathematical functions that simulate logical gates. At each input state, a gate is used to

2.3 Algorithms 20

Figure 2.3: Schematic representation of an unfolded Vanilla Recurrent Neural Network. Taken
from (OLAH, 2015).

Figure 2.4: Schematic representation of an unfolded LSTM. Taken from (OLAH, 2015).

decide how much of the new input should be wri�en to the memory cell, and how much of

the current content of the memory cell should be forgo�en (GOLDBERG, 2015).

Unlike the traditional recurrent unit which overwrites its content at each time-step, an

LSTM unit is able to decide whether to keep the existing memory via the introduced gates.

Intuitively, if the LSTM unit detects an important feature from an input sequence at an early

stage, it easily carries this information (the existence of the feature) over a long distance, hence,

capturing potential long-distance dependencies (CHUNG et al., 2014). In Figure 2.3 there is an

illustration of a simple RNN in contrast with LSTM cells in Figure 2.4. We can see the gates

indicated by
⊗

. The first one decides if the cell will or not will forget something, the second

one decides if the cell will store that information and the last one decide what the cell will

output (OLAH, 2015).

LSTMs are very powerful to model sequences but have a downside that there are too

many parameters to optimize, so it is slower to train. Some variations were proposed. Gated

Recurrent Unit proposed by Cho et al. (2014) is one of this variations.

Similarly to the LSTM unit, the GRU has gating units that modulate the flow of information

inside the unit, however, without having a separate memory cell. One feature of the LSTM unit

that is missing from the GRU is the controlled exposure of the memory content. In the LSTM

unit, the amount of the memory content that is seen, or used by other units in the network is

2.3 Algorithms 21

Figure 2.5: Schematic representation of a GRU cell. Taken from (OLAH, 2015).

controlled by the output gate. On the other hand the GRU exposes its full content without

any control (CHUNG et al., 2014)

Another di�erence is in the location of the input gate, or the corresponding reset gate. The

LSTM unit computes the new memory content without any separate control of the amount of

information flowing from the previous time step. Rather, the LSTM unit controls the amount of

the new memory content being added to the memory cell independently from the forget gate.

On another hand, the GRU controls the information flow from the previous activation when

computing the new, candidate activation, but does not independently control the amount of

the candidate activation being added (the control is tied via the update gate) (CHUNG et al.,

2014).

The gated architectures of the LSTM and the GRU help in alleviating the vanishing

gradients problem of the “vanilla” RNN, and allow these RNNs to capture dependencies that

spam long time ranges. Jozefowicz, Zaremba & Sutskever (2015) did an extensive comparison

among LSTM, GRU and some mutations of them in various tasks (language modelling, number

sequencing, music next note prediction) and found that is not clear which one is the best.

GRU outperformed LSTM on various tasks with exception of language modeling. On another

hand, LSTM with a large forget bias outperformed both LSTM and GRU an almost all tasks

(JOZEFOWICZ; ZAREMBA; SUTSKEVER, 2015).

2.3.3 Convolutional Neural Networks

Convolution Neural Networks architectures (LECUN; BENGIO, 1998) evolved in the neural

networks vision community, where they showed great success as object detectors regardless

of its position in the image (KRIZHEVSKY; SUTSKEVER; HINTON, 2012).

2.3 Algorithms 22

When applied to text, NLP we are mainly concerned with 1-d (sequence) convolutions.

Convolutional Neural Networks were introduced to the NLP community in the pioneering work

of Collobert et al. (2011) who used them for semantic-role labeling, and Kim (2014) who used

them for sentiment and question-type classification.

The main idea behind a convolution and pooling architecture for language tasks is to

apply a non-linear (learned) function over each representation of a k-word sliding window

over the sentence. This function (also called “filter”) transforms a window of k words into a

d dimensional vector that captures important properties of the words in the window (each

dimension is sometimes referred to in the literature as a “channel”). Then, a “pooling” operation

is used to combine the vectors resulting from the di�erent windows into a single d-dimensional

vector, by taking the maximum or the average value observed in each of the d channels over

the di�erent windows (GOLDBERG, 2015).

The intention is to focus on the most important “features” in the sentence, regardless of

their location. The d-dimensional vector is then fed further into a network that is used for

prediction. The gradients that are propagated back from the network’s loss during the training

process are used to tune the parameters of the filter function to highlight the aspects of the

data that are important for the task the network is trained for (GOLDBERG, 2015).

In layman terms, we can think that a convolutional compare the region of its filters with

the sequence of words that we presented one by line. When it finds a specific combination

of words in the region where the filter is looking, it activates a signal and the pooling layer

pass that information to the next layer. The next layer has combinations of combinations as

input, and if a specific group of them is found, it activates a signal and the pooling layer pass

that information to the next layer. The process is repeated for all the layers in the architecture

of the network. In the final layer, a decider take all signals coming from various available

combinations into account and make a probabilistic inference judging if that information is

relevant to be�er recognize a class. The decider does not know where the combination of

combinations was found, just that it was found.

The accuracy of the strategy greatly depends on how a sequence of layers is structured.

As a rule of thumb, the deeper is the architecture, the more powerful it is, because the decider

have information of many possible combinations and could make a be�er judgment. The

problem is that the deeper is an architecture, more di�icult is propagates its errors to the first

layers and adjust the filters weights. Another problem is that too deep architectures could

memorize our training dataset if it does not have enough variability, being a poor predictor of

new data. So, to train deep architectures we need a massive amount of samples in various

2.3 Algorithms 23

Figure 2.6: Schematic representation of a wide convolutional network. Taken from (MIKOLOV
et al., 2013).

contexts of interest.

Until now, there is not a theory on how to design good architectures, but some of them

became famous by solving hard problems and for being robust in many problems. Many of

them by achieving success in ImageNet (DENG et al., 2009) contest. AlexNet (KRIZHEVSKY;

SUTSKEVER; HINTON, 2012), VGG (SIMONYAN; ZISSERMAN, 2014), Inception (SZEGEDY et

al., 2015), ResNet (HE et al., 2015) are examples of popular very deep architectures.

Another option is instead of making a deeper architecture, make a wider one. Several

convolutional layers may be applied in parallel each one with a di�erent window size in the

range 2–5, capturing n-gram sequences of varying lengths. The result of each convolutional

layer will then be pooled, and the resulting vectors concatenated and fed to further processing

(GOLDBERG, 2015). Kim (2014) applied a convolution of this type to classify text with very

good results.

A great advantage of Convolutional Neural Networks over Recurrent Neural Networks is

that it allows computing many operations in parallel, being generally faster to train. Another

advantage is the possibility of very deep architectures, where initial layers look at local

combinations and last ones being able to construct higher-level abstractions of these earlier

combinations.

An indirect advantage of using Convolutional Neural Networks for NLP is that since the

success of Deng et al. (2009) in identifying objects in images, practitioners of deep learning

for images and video use them a lot to generate their artificial intelligence models. Many

of architectures generated by them could be reused or re-adapted to text models. Not to

2.3 Algorithms 24

mention the fact that their market of applications is bigger and problems are much more

computationally intense, so there is a lot of interest in building e�icient solutions, frameworks,

libraries and hardware able to compute it.

Chapter 3

Proposal

3.1 Compressed Encoding for Text Representation

So far, character-level approaches fall short when compared with the state of the art word-level

approaches (BLUNSOM et al., 2017) in cases where token structures can easily be exploited

(e.g., in well-edited newspaper text). However, in modern Internet sources and social networks,

there is a diversity of producers of texts. Reviewers on websites, social networks users, blogs,

twi�er, etc. produces a myriad of not curated texts constructions that need the power of a

robust method.

Human reading is robust in the sense that small perturbations on the input do not a�ect

processing negatively. Such perturbations include le�er insertions, deletions, substitutions

and transpositions and the insertion of spaces and the deletion of spaces. Such perturbations

can cause complete failure of token-based processing (BLUNSOM et al., 2017).

Orthographic blends and modifications of existing words (e.g. “staycation”, “Obamacare”),

character repetition in tweets (e. g. “coooooooooool”), the pseudo-derivational su�ix “-gate”

signifying “scandal” (e. g. “Watergate, “Irangate, “Dieselgate”), number variation (“4.12 million”

may become “4 million”) are examples where word tokenization is useless.

It can be asserted that probably at some level there exists a morpheme and then an

inflection generation on the morpheme that leads to the creation of new words (BLUNSOM et

al., 2017). A common agreement is that derivational morphology is o�en ignored in modeling,

even though around 50% of words in English are constructed through derivational processes.

Natural Language Processing must sometimes consider the internal structure of words in

order to understand or generate an unfamiliar word. Unfamiliar words are systematically

related to familiar ones due to linguistic processes such as morphology, phonology, abbreviation,

3.1 Compressed Encoding for Text Representation 26

copying error, and historical change (BLUNSOM et al., 2017).

A solution to these questions is character-level models, but they are computationally more

expensive than word-level models because detecting syntactic and semantic relationships at

the character-level is more complicated (even though it is potentially more robust) than at

the word-level (BLUNSOM et al., 2017). This problem could be alleviated if we delivery to

the model text already parsed into words because the model does not have to analyze the

intersection of last le�ers of an anterior word and the beginning of the next. Furthermore, if

we could represent a word by its characters in a single vector, we could reduce the size of the

input matrix, because there are much fewer words in a text than characters, a possible key to

have a be�er performance in training.

By searching for a way to retaining the flexibility and power of character-level convolutional

to classify text while reducing its training time, we found a way to be�er encode texts. Our

approach, with competitive accuracy, achieve a significant reduction in time execution from

hours to minutes and from days to hours, by epoch compared to Zhang & LeCun (2015) and

Conneau et al. (2016).

Our approach is based on the Tagged Hu�man encoding (MOURA et al., 2000; BRISABOA

et al., 2003), where a certain number of pairs of ‘0’ digits is the signal and the digit ‘1’ is the

tags the beginning and the end of code, the only di�erence is that for our approach, we need a

shorter version to reduce the size of the input matrix, so we choose to use only one digit 0

instead of two for each character, marking the beginning and the end of each char code with a

digit 1, the same way.

As in the approach by Moura et al. (2000), the coding we employ has the following

advantages:

1. No character code is a prefix of another, that is, the match is one-to-one.

2. The coding procedure is not restricted to any size of vocabulary.

3. The representation is stable in a given language, not depending on which set of docu-

ments we are dealing.

4. We could concatenate codes for representing each word, so the ones with the same prefix

were represented by vectors near each other, responding especially well to morphological

derivations.

5. It allows a direct search, that is, to search for a word in an encoded document, just

3.2 Word101-Encoding Text Representation Procedure 27

encode the word and use traditional methods of comparing strings with the encoded

document.

6. This encoding approach is a binary compression technique, requiring less storage space,

less use of RAM and smaller data transfer latencies.

7. There is no need to decompression to perform a classification.

8. There is no need to train a representation, so di�erences of performance are directly

related to the architecture used, facilitating comparison among them.

9. This approach could be coupled with any other word embedding method, if available.

All these properties allow saving already encoded text documents permanently, thus

becoming a useful solution especially if the goal is to extract knowledge about files in a

repository to perform various classifications on di�erent dimensions with the same files in

distinct moments.

Another advantage is that it is able to respond to unseen words on training data since the

network will at least have some prefix to guess the meaning of the word, the same way we

humans do. This is especially interesting in languages where there are a lot of declensions like

Portuguese, Spanish, Italian, French, Russian, German, Arabic and Turkish, for example.

Our main contribution is to demonstrate that such an approach reduces the dimensionality

of the encoded matrix and that consequently substantially reduces training time and allows

the use of devices with lower computational power, with no harm to accuracy.

3.2 Word101-Encoding Text Representation Procedure

In our approach, we used the following procedure to encode text:

• Obtaining a character frequency rank: We read the text database and count the frequency

of each character, generating a list sorted by frequency of occurrence. Then we create a

rank with only the relative positions of the characters. For a given language, this rank is

quite stable since only the order of the rank is used. This means that if all documents

are in the same idiom, this procedure can be replaced by a list with the characters rank

of frequency for that language.

3.2 Word101-Encoding Text Representation Procedure 28

Table 3.1: Example of coding using English language ranking of characters. Characters shown
are the ones used in the subsequent examples.

CHARACTER FREQ. RANK COMPRESSED ENCODING

␣ 0 11

e 1 101

a 2 1001

t 3 10001

i 4 100001

s 5 1000001

n 7 100000001

r 8 1000000001

d 10 100000000001

h 11 1000000000001

c 12 10000000000001

g 17 1000000000000000001
...

...
...

n ′1′ + n× ′0′ + ′1′

Table 3.2: Example of coding using English language ranking of characters. Prefix common to
more than a word is underscored

TEXT ENCODED TEXT

science 10000011000000000000110000110110000000110000000000001101
scientist 10000011000000000000110000110110000000110001100001100000110001
art 1001100000000110001
artist 1001100000000110001100001100000110001
tl;dr 100011000000000110000000000000000000000000000011000000000011000000001
u2 1000000000000001100000000000000000000000000000001
ea 10110011001

• Creating a mapping from character to compress code: To encode each character, we insert

the digit 0 in the same amount of the rank position of the character, between a 1 digit to

signal the begin and another 1 digit to signal the end of the code.

Intuitively, the larger is the frequency, the smaller is the code, as we could see in Table

3.1. Based on this strategy, we named this encoding Word101. Table 3.1 has some examples of

encoded characters. To encode each word, we just concatenate the codes of each character. As

previously commented, Figure 3.1 provides an example of the result of encoding a phrase.

To encode each word, we just concatenate the codes of each character. As an example, we

provide in Table 3.2 some examples of plain text words and their corresponding encoding.

Given a document, we consider that it is composed of words, being those any set of

3.2 Word101-Encoding Text Representation Procedure 29

10000000011011000001101100110000000011000000000000110000000000010
100001100000100
100110000000100
100110000000011000100
100110000000110000000000100
1001000
10000011000000000000110000110110000000110000000000001101000000000
000

Figure 3.1: Matrix encoding of sentence ‘Research is an art and a science’. The text is encoded
one word per row. Each word is underscored for easy identification.

characters limited by the space character. This means ‘word’ could be math equations, web

addresses, LATEX code, computer programming commands, etc. In Table 3.2 we can see that

this encoding could represent words with the same prefix in vectors that have same initial

coordinates. Slangs like tl;dr : too long, did not read and u2 : you too as well mathematical

expressions like ea could be manipulated.

In a matrix of number of words×code size representing the document, each row represents

a properly encoded word, where the code is embedded with its first symbol in the first column.

Columns that were not occupied are padded with 0, larger codes are represented up to the

chosen limit. Unoccupied lines are filled with 0 and larger documents are represented only

up to a maximum number of words, ignoring the last remaining ones. As an example, we

represent a document in an 8× 65 matrix in Figure 3.1.

In this example, we used a 8× 65 matrix (520 elements) to encode the text with a certain

amount of slack. At the very least, we would need 7 × 64 (448 elements). In contrast, the

approach of Zhang, Zhao & LeCun (2015) would employ at least 32× 69 (2208) elements to

represent the same sentence.

In the datasets studied in this work, 256 rows were enough to represent 99.5% of the words.

We choose 128 as a limit of words to represent a document, encoding each text in a 128× 256

matrix.

We can see that Word101 represents a character present in a vocabulary sorted by frequency

with a correspondent number of zeros, and tags the begin and end of signal with a digit 1. It

is also possible to generate a similar encode Word01, where only the end of signal is tagged.

That last strategy is similar to concatenate one-hot encoding, discarding information a�er

the correspondent one is found. The main problem with this encoding is that some codes are

a subset of others. Maybe that is the reason why some experiments that we did with this

encoding have similar results, but Word101 have a be�er accuracy.

3.3 Deep Pyramid Convolutional Neural Networks 30

3.3 Deep Pyramid Convolutional Neural Networks

To show the possibilities of this encoding to text classification, we choose a deep and computa-

tional e�icient network architecture: Deep Pyramid Convolutional Neural Networks (JOHNSON;

ZHANG, 2017).

He et al. (2015) developed an architecture named Deep Residual Networks-RESNET, where

a series of blocks composed of convolutions and a parallel shortcut allows to produce a very

deep architecture, with a depth of up to 152 layers. Using that architecture they achieved

state of the art results in IMAGENET - image classification contest (DENG et al., 2009). In

the domain of text classification, Conneau et al. (2016) applied a similar network architecture

using a one-hot encoding suggested by Zhang & LeCun (2015) to represent text at character

level, achieving very good results.

Recently, Johnson & Zhang (2017) created a new interpretation of RESNET architecture

named Deep Pyramid Convolutional Neural Networks that they applied in text classification

with a region embedding using one-hot encoding in the word level and using the 30K more

frequent words to compound the text matrix representation. They achieved state of the art

results in datasets cited in Zhang & LeCun (2015). More importantly, the architecture created

by Johnson & Zhang (2017) has very interesting features, many of them derived by using a

pooling of 3 with a stride of 2 at the beginning of the recursive block:

• Every block reduces on half the number of parameters to be trained, forming a geometric

progression with a ratio 0.5, so the number of parameters is limited to the double of

the first iteration(JOHNSON; ZHANG, 2017), allowing to be deep but with fast training

times.

• A pool of 3 with stride 2 allow each layer double the e�ective coverage of each of the

convolution kernel (JOHNSON; ZHANG, 2017). In our implementation, each instance of

convolution kernel on the last layer has access to all information on the document.

The architecture used in this dissertation is composed of a sequence of pyramid units

that progressively reduce the dimension of the data, as shown in Figure 3.2. The network

architecture is presented in Figure 3.3. It is similar to that one introduced by Johnson & Zhang

(2017), with minors di�erences in selected parameters.

The main di�erence is that instead of embedding each word using some kind of co-

occurrence statistics, we applied word101 to encode each word and form the matrix represen-

tation of texts.

3.3 Deep Pyramid Convolutional Neural Networks 31

Py
ra

m
id

ce
ll

of
le

ve
ln

Input
[
128
2n × 256

]
Pooling 3 stride 2

Batch normalization

256 × 1-D Convolution
(stride 1, ELU)

Batch normalization

Fully connected
(leaky ReLU)

256 × 1-D
Convolution

(stride 2, ELU)

Batch normalization

Fully connected
(leaky ReLU)

+

Output
[
128
2n+1 × 256

]

G
radient

shortcut

Figure 3.2: A cell of level n.

As in Zhang, Zhao & LeCun (2015), Word101 uses the character as inputs, but that infor-

mation is used to compose words. Indirectly, we achieved a way to take the morphological

structure of word formation into account, with all advantages that the approach of Zhang,

Zhao & LeCun (2015) suggests, but with faster training times.

To make a comparison, performing the training of the architecture suggested with an

output of 4 classes make necessary to optimize 1,135,876 parameters, even with its 17 layers

(3 + 2× 7). As a comparison, in the architecture suggested by Zhang, Zhao & LeCun (2015) it

is necessary to optimize 11,337,988 parameters.

Besides being faster to optimize at each epoch, once we are dealing with word representa-

tion composed of codified characters, best accuracy is achieved sooner. We analyzed 10 epochs

3.4 Earlier A�empts 32

in our implementation, but 5 to 7 epochs its enough to converge. Zhang, Zhao & LeCun (2015)

converges in at least 30 epochs and Conneau et al. (2016) in 10 to 15 epochs.

3.4 Earlier A�empts

In the Appendix A is available a paper with results of an earlier a�empt using Word101 strategy

with 3 others neural network architectures.

The results were par with the work of Zhang, Zhao & LeCun (2015). They are good

results, but using a Deep Pyramid Convolutional Neural Network architecture is definitely

be�er. As the input representation is identical in all these experiments, we could a�ribute the

improvement of the results completely to the change of architecture. Having be�er results in

a deep architecture as Deep Pyramidal is a good indication that improvements in accuracy

classification could be achieved using others deep architectures in the future.

But the main point to cite that earlier a�empt is to demonstrate that our representation

is architecture independent and have good results as in CNN as in RNN applications. This

opens the door to more complex strategies already applied to word embeddings, like Text

Summarization (GAMBHIR; GUPTA, 2017), Answer �estions using A�ention (HERMANN et

al., 2015) and Generative Auto-encoder Networks for text (ZHANG et al., 2017).

3.4.1 CNN1 topology

At first, we choose a network architecture that we usually use to classify text using an em-

bedding created by Word2vec (MIKOLOV et al., 2013), the only di�erence is that instead of

300 features, we reduce the input size to 256. This architecture we named CNN1. It is based

on concatenation of convolutions in a shallow way, inspired by the work of Kim (2014), who

achieve state of the art results for some databases.

We trained this model for 5 epochs. The neural network architecture CNN1 is summarized

in Figure 3.4a as a diagram.

3.4.2 CNN2 topology

Prompted by the positive outcome of CNN1, we decided to investigate others possible ar-

chitectures. We created another shallow but wide convolution architecture following the

recommendations of Zhang & Wallace (2015) for choosing parameters, executing training on

3.4 Earlier A�empts 33

dataset ag_news, for being the smallest of our test datasets. This architecture is composed by:

• Convolution width filter : a combination of region sizes near the optimal single best

region size outperforms using multiple region sizes far from the optimal single region

size (ZHANG; WALLACE, 2015). We scan the width from 1 to 7 comparing accuracy

performance. In these evaluations, the convolution of width 1 was a be�er option.

• Pooling size: max pooling consistently performs be�er than alternative strategies for the

task of sentence classification (ZHANG; WALLACE, 2015).

The neural network architecture CNN2 is summarized in Figure 3.4b as a diagram

3.4.3 LSTM topology

To illustrate the possibilities of applying the proposed encoding, we did an experiment using

LSTMs (HOCHREITER; SCHMIDHUBER, 1997), similar to LSTM model described by Zhang &

LeCun (2015), the di�erence is that instead of using Word2vec embedding (MIKOLOV et al.,

2013), we used our representation. The architecture is very simple: an input layer of 128× 256,

followed by a LSTM layer of 300, a Dropout layer of 0.10 (SRIVASTAVA et al., 2014), a fully

connected layer of 128 units and a so�max layer.

We trained this model for 5 epochs. This architecture is in general, twice slower than

Word101. The neural network architecture LSTM is summarized in Figure 3.4c as a diagram.

3.4 Earlier A�empts 34

“the cat sat on the mat”

100011000000000001101000000
100000000000011001100010000
100000110011000100000000000
100000011000000010000000000
100011000000000001101000000
100000000000000001100110001

W
or

d1
01

256 × 1-D Convolution
(Stride 1, ELU)

[128× 256]

Batch normalization

Fully connected
(leaky ReLU)

256 × 1-D Convolution
(Stride 1, ELU)

[128× 256]

Pyramid cell of level 0

[128× 256]

Pyramid cell of level 1
[64× 256]

...

[32× 256]

Pyramid cell of level 6

max pooling

[1× 256]

Fully connected
(so�max)

[1× nclasses]

Figure 3.3: Deep pyramidal architecture.

3.4 Earlier A�empts 35

Input 128x256

126x256 126x256 126x256 126x256

42x256 42x256 42x256 42x256

168x256

54x256

50x256

12x256

3072

128

Dense(#Class, So�max)

Dense 128, RELU

Fla�en

4 x Conv1d (256, 3 , Relu)

Conv1d (256, 5 , Relu)

164x256

Conv1d (256, 5 , Relu)

Concatenate

MaxPoll1d (3)

MaxPoll1d (4)

MaxPoll1d (3)

(a) CNN1

Concatenate

LSTM 300

Dropout 0.25

Dense 512, ELU

4 x Conv1d (256, 1 , Relu)

Input 128x256

128x256 128x256 128x256 128x256

1x256 1x256 1x256 1x256

1x1024

1x1024

512

300

Dense(#Class, So�max)

MaxPoll1d (128)

(b) CNN2

Input 128x256

Dense 128, Sigmoid
128

300

Dense(#Class, So�max)

LSTM 300

300
DROPOUT 0.10

(c) LSTM

Figure 3.4: Earlier a�empt Network architectures used with Word101.

Chapter 4

Experimental Study

4.1 Applying Word101 to massive texts datasets

An essential part of this work is to contrast our proposal both within the context of character-

level text classification and with other state-of-the-art approaches.

The datasets used were the same as those cited in an article by Zhang, Zhao & LeCun

(2015), where there is an extensive description of them.1 A detailed analysis of these datasets

is out of the scope of this paper, instead, we will only summarize the main characteristics:

• AG’s news: categorized news articles from more than 2000 news sources. Four classes

(World, Sports, Business, SciTech).The dataset contains 120k train samples and 7.6k test

samples equally distributed (ZHANG; ZHAO; LECUN, 2015).

• Sogou news: categorized news articles originally in Chinese. Zhang, Zhao & LeCun

(2015) applied the pypinyin package combined with jieba Chinese segmentation system

to produce Pinyin, a phonetic romanization of Chinese. Five classes (sports, finance,

entertainment, automobile and technology). The dataset contains 450k train samples

and 60k test samples equally distributed (ZHANG; ZHAO; LECUN, 2015).

• DBpedia: title and abstract from Wikipedia articles available in DBpedia crowd-sourced

community (LEHMANN et al., 2015). Fourteen non-overlapping classes from DBpedia

2014. The dataset contains 560k train samples and 70k test samples equally distributed

(ZHANG; ZHAO; LECUN, 2015).

• Yelp full: sentiment analysis from the Yelp Dataset Challenge in 20152. Five classes
1For the sake of replicability we have made all the datasets available via <h�ps://drive.google.com/open?id=

1o5CNT0UHuFfHBxC-Mz4ImFpN2-Lcllmx>.
2h�ps://www.yelp.com/dataset/challenge

4.1 Applying Word101 to massive texts datasets 37

representing the number of stars a user has given.The dataset contains 560k train samples

and 38k test samples equally distributed (ZHANG; ZHAO; LECUN, 2015).

• Yelp polarity: sentiment analysis from the Yelp Dataset Challenge in 20152. The original

data is transformed into a polarity problem. Rating of 1 and 2 stars are represented as

Bad and 4 and 5 as Good. The dataset contains 560k train samples and 50k test samples

equally distributed. (ZHANG; ZHAO; LECUN, 2015).

• Yahoo! answers: questions and their answers from Yahoo! Answers. Ten classes

(Society & Culture, Science & Mathematics, Health, Education & Reference, Computers

& Internet, Sports, Business & Finance, Entertainment & Music, Family & Relationships,

Politics & Government). Each sample contains question title, question content and best

answer.The dataset contains 1,400k train samples and 60k test samples (ZHANG; ZHAO;

LECUN, 2015).

• Amazon full: sentiment analysis from Amazon reviews dataset from the Stanford Net-

work Analysis Project (SNAP) (MCAULEY; LESKOVEC, 2013). Five classes representing

the number of stars a user has given. The dataset contains 3,000k train samples and

650k test samples (ZHANG; ZHAO; LECUN, 2015).

• Amazon polarity: sentiment analysis from Amazon reviews dataset from the Stanford

Network Analysis Project (SNAP) (MCAULEY; LESKOVEC, 2013). Two classes, rating of

1 and 2 stars are represented as Bad and 4 and 5 as Good. The dataset contains 3,600k

train samples and 400k test samples equally distributed (ZHANG; ZHAO; LECUN, 2015).

The baseline comparison models are the same as Zhang, Zhao & LeCun (2015). We

just reproduce their results, the only di�erence is that they report loss error and for be�er

comprehension, we translated it to accuracy. In Zhang, Zhao & LeCun (2015) there is an

extensive description of them. In this paper, we just summarize the main information:

• Bag of Words (BoW) and its term-frequency inverse-document-frequency (BoW

TFIDF): For each dataset, they selected 50,000 most frequent words from the training

subset. For the normal bag-of-words, they used the counts of each word as the features

and for the TF-IDF they used the counts as the term-frequency (ZHANG; ZHAO; LECUN,

2015).

• Bag-of-ngrams (Ngrams) and its TFIDF (Ngrams TFIDF): The bag-of-ngrams mod-

els were constructed by selecting the 500,000 most frequent n-grams (up to 5-grams)

4.1 Applying Word101 to massive texts datasets 38

from the training subset for each dataset. The feature values were computed the same

way as in the bag-of-words model (ZHANG; ZHAO; LECUN, 2015).

• Long Short Term Memory (LSTM): The LSTM (HOCHREITER; SCHMIDHUBER,

1997) model used is word-based, using pretrained word2vec (MIKOLOV et al., 2013)

embedding of size 300. The model is formed by taking a mean of the outputs of all LSTM

cells to form a feature vector, and then using multinomial logistic regression on this

feature vector. The output dimension is 512 (ZHANG; ZHAO; LECUN, 2015).

For all the experiments, we used the environment and parameters se�ings listed in Table

4.1. Besides the encoding procedure, we do not use any preprocessing strategy except the use

of lowercase le�ers. We treated as a word any set of characters delimited with blank spaces and

treat each punctuation (!"#$%&\’()*+,-./:;<=>?@[\]^_‘{|}~) as a separated

word to compose text codified matrix. No data enhancement technique was employed.

As one of our concerns was to make our proposal as usable as possible on commodity

hardware, we focused our studies in that hardware configuration. The major bo�leneck for

analyzing this large amount of matrix-encoded text is the need for intensive use of RAM. Our

approach generates a 128× 256 matrix, smaller than the 1014× 69 generated by Zhang and

Lecun Zhang, Zhao & LeCun (2015). In spite of that, a large set of them quickly occupies

the available RAM on a ‘regular’ personal computer. On the machine we used, there were

16 GB available, which is not uncommon in modern personal computers. Therefore, the use

of generators to control the number of matrices generated and sent to GPU is an important

detail in the implementation of this optimization algorithm. If your computer has only 8 GB

of RAM or less, maybe it will operate at the limit of necessary memory.

A comparison of accuracy with traditional models and the approaches of Zhang, Zhao

& LeCun (2015), Xiao & Cho (2016), Conneau et al. (2016), Joulin et al. (2016), Johnson &

Zhang (2017) and Johnson & Zhang (2016) is shown in Table 4.2. A time per epoch comparison

among Word101 and the works of Zhang, Zhao & LeCun (2015) and Conneau et al. (2016) is

available in Table 4.3, which are models that also use character informations as inputs. Since

time were evaluated in di�erent machines, we could use this information only as a reference.

The main point that we could highlight is that our implementation could be as fast as any

implementation of word embeddings, since we are using the same strategy of one word by

row.

Results show that accuracy of Word101 is very competitive with character-based methods,

but is at least one order of magnitude faster to compute.

4.1 Applying Word101 to massive texts datasets 39

4.1.1 Mixing Morphological structure and Semantic information

The main power of character level approaches is being able to have be�er responses in sets

of texts in languages where there is not available a word embedding or this embedding do

not address typos errors, slangs, neologisms, equations, etc. Since a word is a sequence of

characters, any one of them will have a Word101 representation, even if unseen on training

data. The main premise is that the network is using the morphological construction of the

word to guess the meaning of that word, or at least some subset of it, in case of declensions or

typos errors, to compare to a known word present in training data.

But if we know in which language is the set of data of interest and have an embedding

available, this could allow taking some semantic information into account. Even in degraded

text constructions, many words could be correct and use an embedding pre-trained in a

massive amount of texts could help in identify meaning. Since both information are more or

less orthogonal, we could expect a be�er accuracy than just using one of them isolatedly.

As the majority of datasets studied in this paper use the English language, to illustrate this

idea in a second experiment, we concatenated to the 256 code-word generated with Word101

the pre-trained vector embedding of Glove (PENNINGTON; SOCHER; MANNING, 2014) using

100 dimensions, if available. In case that the correspondent word is not represented in Glove100,

we just pad the last 100 dimensions of the vector with zeros.

The results in Table 4.2, Word101+Glove100 show that there is a significant improvement in

all datasets, except Sogou news. It is expected since this dataset is a romanization of Chinese

Ideograms and there is not a representation available for its "words".

Once the input matrix became 128x356 instead of 128x256, the training time is in average

1.5 times slower.

4.1 Applying Word101 to massive texts datasets 40

Table 4.1: Training environment and parameters

DESCRIPTION PARAMETERS OBSERVATIONS

Neural Net Lib. Keras 2.0.5
Tensor Backend Theano 1.0.1
GPU Interface Cuda 8 with cuBLAS Patch Update
CNN optimizer Cudnn 5.1
Program. Lang. Python 3.6 using Anaconda 4.4.0
Minibatch 128 Batch to update the network weights
Optimizer ADAM (ZEILER, 2012) lr = 10−3, β1 = 0.9, β2 = 0.999, ε = 10−8

Epochs 10
Op. System Ubuntu 16.04 LTS
GPU GeForce 1080ti
RAM Memory 16 GB

Table 4.2: Test set accuracy comparison among traditional models of Zhang, Zhao & LeCun
(2015) models ‘large’ and ‘small’ and our approaches when applied to the AG’s news (AG),
Sogou news (SOGOU), DBpedia (DBP), Yelp polarity (YLP-P), Yelp full (YLP), Yahoo! answers
(YAH), Amazon full (AMZ) and Amazon polarity (AMZ-P) datasets.

MODEL AG SOGOU DBP YLP-P YLP YAH AMZ AMZ-P

Tradicional Methods (ZHANG; ZHAO; LECUN, 2015)

BoW 88.81 92.85 96.61 92.24 57.99 68.89 54.64 90.40
BoW TFIDF 89.64 93.45 97.37 93.66 59.86 71.04 55.26 91.00
Ngrams 92.04 97.08 98.63 95.64 56.26 68.47 54.27 92.02
Ngrams TFIDF 92.36 97.19 98.69 95.44 54.80 68.51 52.44 91.54
LSTM 86.06 95.18 98.55 94.74 58.17 70.84 59.43 93.90

Word-based Methods

Johnson & Zhang (2017) 93.13 98.16 99.12 97.36 69.42 76.10 65.19 96.68
Johnson & Zhang (2016) 93.43 98.11 99.16 97.10 67.61 75.15 63.76 96.21
Joulin et al. (2016) 92.50 96.80 98.60 95.70 63.90 72.30 60.20 94.60

Character-based Methods

Conneau et al. (2016)
17 depth 91.12 96.46 98.60 95.50 63.93 72.49 62.61 95.59
29 depth 91.27 96.64 98.71 95.72 64.26 73.43 63.00 95.69

Xiao & Cho (2016) 91.36 95.17 98.57 94.49 61.82 71.74 59.23 94.13

Zhang & LeCun (2015)
Large 87.18 95.12 98.27 94.11 60.38 70.45 58.69 94.49
Small 84.35 91.35 98.02 93.47 59.16 70.16 59.47 94.50

Our Proposal

Word101 91.34 95.72 98.68 93.56 61.14 73.58 61.61 95.21
Word101 + Glove100d 93.41 95.76 98.97 94.13 62.13 75.15 62.50 95.66

Earlier a�empts using Our Proposal

Word101 CNN1 87.67 95.16 97.93 92.04 58.00 68.10 58.09 93.69
Word101 CNN2 91.43 93.96 98.03 91.53 57.03 70.24 55.72 91.23
Word101 LSTM 88.38 94.52 98.34 93.18 59.71 70.27 59.79 94.35

4.1 Applying Word101 to massive texts datasets 41

Table 4.3: Time per epoch as reported by Zhang, Zhao & LeCun (2015) and Conneau et al.
(2016) models implemented in Torch 7 on a single NVidia K40 GPU and Word101 on an NVidia
GeForce 1080ti GPU using the setup on Table 4.1. AG’s news (AG), Sogou news (SOGOU),
DBpedia (DBP), Yelp polarity (YLP-P), Yelp full (YLP), Yahoo! answers (YAH), Amazon full
(AMZ) and Amazon polarity (AMZ-P) datasets.

DATASET TRAIN/TEST Zhang, Zhao & LeCun (2015) Conneau et al. (2016) Word101
SIZE Small Large depth 17 depth 29 depth 17

AG 120 k / 7.6 k 1 h 3 h 37 min 51 min 4 min
SOGOU 450 k / 60 k N/A N/A 41 min 56 min 26 min
DBP 560 k / 70 k 2 h 5 h 44 min 1 h 19 min
YLP-P 560 k / 38 k N/A N/A 43 min 1 h 09 min 23 min
YLP 650 k / 50 k N/A N/A 45 min 1 h 12 min 28 min
YAH 1,400 k / 60 k 8 h 1 days 1 h 33 min 2ḣ 50 min
AMZ 3,000 k / 650 k 2 days 5 days 4 h 20 min 7 h 2 h 12 min
AMZ-P 3,600 k / 400 k 2 days 5 days 4h 25 min 7 h 2 h 13 min

Chapter 5

Conclusions

5.1 Final Remarks

In this dissertation is proposed an e�icient encoding to represent text. That encoding is friendly

to tensorial word representations using its character-level composition, especially in Deep

Learning applications for tasks of Natural Language Processing. Since it makes use of a digit 1

to mark the begin and the end of a signal represented by some amount of 0 digits, we named

it Word101.

This encoding is derived from the Tagged Hu�man (MOURA et al., 2000) information

compression method and inherited many of its advantages for applications in repositories

of texts. The main idea behind this encoding is representing very frequent characters with

shorter codes and leave longer codes to rare characters. It associates each character of a

text to a binary representation, there is no information loss, but more importantly, no code

representation is a subset of another, so concatenated codes could represent uniquely each

word or any amount of text. Specifically, it allows a direct search or edition of an arbitrary

section in a compressed document without the need of decompression. Since it only uses rank

frequency of characters, Word101 is quite stable in a given language and is not restricted to

any vocabulary or alphabet size.

We have shown that concatenating codes using the proposed encoding is a convenient

possibility to represent words, especially due to three great advantages:

First, it solves the "out-of-vocabulary problem", assigning one representation for any word

occurring in our dataset of interest. This is particularly important as encoding text using

characters can be relevant when dealing with less curated texts datasets, as it is robust to

spelling errors, typos, slang, language variations, and others usual characteristics of Internet

5.1 Final Remarks 43

texts. Equations, chemical formulas, emoticons, ideograms and etc, could be represented and

evaluated by this technique.

Second, similar characters sequences are represented by the same numerical sequence,

so similar words are represented by vectors near each other. We argue that this procedure

could take advantage of morphological constructions of words the same way we humans

do. Natural Language Processing (NLP) is robust in the sense that small perturbations of

the input do not a�ect processing negatively. Such perturbations include le�er insertions,

deletions, substitutions and transpositions and the insertion of spaces and the deletion of

spaces. Unfamiliar words are systematically related to familiar ones due to linguistic processes

such as morphology, phonology, abbreviation, copying error, and historical change (BLUNSOM

et al., 2017). Furthermore, this morphological information could be concatenated with others

word embeddings, like Glove (PENNINGTON; SOCHER; MANNING, 2014), allowing the model

to take into account pre-trained semantic information. Since both information are more or

less orthogonal, we could expect a be�er accuracy than just using one of them isolatedly.

Third, using a binary representation is possible to reduce the amount of storage space and

RAM needed for applications reducing data transfer latencies and enabling use in commodity

hardware. It allows to permanently store codified texts in a repository and accomplish classifi-

cations or other NLP tasks without the need of decompression. Furthermore, this encoding

is useful for reducing the dimensions of tensorial representations and being these the main

responsible for the number of operations needed in Deep Learning optimization algorithms, it

allows an expressive reduction in training time.

In order to study the impact of this encoding, we coupled it with a deep architecture

developed by Johnson & Zhang (2017) for classifying texts using word representations, a

Deep Pyramid Convolutional Neural Networks architecture. These experiments showed that

we managed to achieve a performance superior to base traditional methods and the one

achieved by Zhang, Zhao & LeCun (2015) and Xiao & Cho (2016) and competitive results with

Conneau et al. (2016), which uses only character inputs. By concatenating pre-trained word

representations available in Glove (PENNINGTON; SOCHER; MANNING, 2014), we could

achieve competitive results even with models that use word inputs as Joulin et al. (2016) and in

some datasets, similar even with Johnson & Zhang (2016, 2017) that are the state of art today.

Furthermore, we show that this strategy is more computational e�icient, comparing with

Zhang & LeCun (2015) and Conneau et al. (2016), that uses characters as inputs. Using a

simpler setup, we could do a classification on the same repository of texts in at least half of

training time.

5.2 Future Directions 44

5.2 Future Directions

The word-based approach of Johnson & Zhang (2017) consistently have be�er results that

our character-based approach. They use a region embedding to represent words as vectors

using a one-hot encoding strategy in an unsupervised way. In the near future, we will focus

on devising a similar strategy using Word101 to generate region embeddings that may further

improve the results.

It must be outlined the fact that this compact numeric representation of text is not limited

to the domain of CNN or neural networks, for that ma�er. Earlier a�empts using more shallow

architectures demonstrate that our representation is architecture independent and have good

results as in CNN as in RNN applications. This opens the door to other information-theoretic-

based methods for text representation and uses in more complex strategies already applied to

word embeddings, like Text Summarization (GAMBHIR; GUPTA, 2017), Answer �estions using

A�ention (HERMANN et al., 2015) and Text Generative Auto-encoder Networks (ZHANG et al.,

2017).

It could be interesting to assess its impact on text representation for others natural

languages tasks.

References

ABADI, M. et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. 2015.
So�ware available from tensorflow.org. Disponível em: <h�ps://www.tensorflow.org/>.

AGGARWAL, C. C.; ZHAI, C. X. A survey of text classification algorithms. In: AGGARWAL,
C. C.; ZHAI, C. X. (Ed.). Mining Text Data. [S.l.]: Springer US, 2012. p. 163–222. ISBN
978-1-4614-3222-7.

BAKER, F. B. The Basics of Item Response Theory. [S.l.]: Heinemann, 1985. ISBN 0435080040.

BENGIO, Y. et al. A neural probabilistic language model. Journal of Machine Learning
Reseach, JMLR.org, v. 3, p. 1137–1155, 3 2003. ISSN 1532-4435. Disponível em:
<h�p://dl.acm.org/citation.cfm?id=944919.944966>.

BENGIO, Y.; SIMARD, P.; FRASCONI, P. Learning long-term dependencies with gradient
descent is di�icult. Trans. Neur. Netw., IEEE Press, Piscataway, NJ, USA, v. 5, n. 2, p. 157–166, 3
1994. ISSN 1045-9227. Disponível em: <h�p://dx.doi.org/10.1109/72.279181>.

BERGSTRA, J. et al. Theano: A CPU and GPU math expression compiler. In: Proceedings of the
Python for Scientific Computing Conference (SciPy). [S.l.: s.n.], 2010.

BLOOM, B. S. The 2 sigma problem: The search for methods of group instruction as e�ective
as one-to-one tutoring. Educational Researcher, v. 13, n. 6, p. 4–16, 1984. Disponível em:
<h�ps://doi.org/10.3102/0013189X013006004>.

BLUNSOM, P. et al. From characters to understanding natural language (C2NLU): Robust
end-to-end deep learning for NLP (Dagstuhl Seminar 17042). Dagstuhl Reports, Schloss
Dagstuhl – Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, v. 7, n. 1, p. 129–157, 2017.
ISSN 2192-5283. Disponível em: <h�p://drops.dagstuhl.de/opus/volltexte/2017/7248>.

BRISABOA, N. et al. An e�icient compression code for text databases. Advances in Information
Retrieval, Springer, p. 78–78, 2003.

CHO, K. et al. Learning phrase representations using rnn encoder–decoder for statistical
machine translation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP). Doha, Qatar: Association for Computational Linguistics, 2014.
p. 1724–1734. Disponível em: <h�p://www.aclweb.org/anthology/D14-1179>.

CHOLLET, F. et al. Keras. [S.l.]: GitHub, 2015. H�ps://github.com/fchollet/keras.

CHUNG, J. et al. Empirical evaluation of gated recurrent neural networks on sequence
modeling. CoRR, abs/1412.3555, 2014. Disponível em: <h�p://arxiv.org/abs/1412.3555>.

COLLOBERT, R. et al. Natural language processing (almost) from scratch. Journal of Machine
Learning Research, v. 12, p. 2493–2537, 2011.

References 46

CONNEAU, A. et al. Very deep convolutional networks for natural language processing. CoRR,
abs/1606.01781, 2016. Disponível em: <h�p://arxiv.org/abs/1606.01781>.

CORBETT, A. T.; ANDERSON, J. R. Knowledge tracing: Modelling the acquisition of procedural
knowledge. User Model. User-Adapt. Interact., v. 4, n. 4, p. 253–278, 1995. Disponível em:
<h�p://dblp.uni-trier.de/db/journals/umuai/umuai4.html\#Corbe�A95>.

DENG, J. et al. ImageNet: A large-scale hierarchical image database. In: CVPR09. [S.l.: s.n.],
2009.

FREEDMAN, R.; ALI, S. S.; MCROY, S. Links: What is an intelligent tutoring system?
Intelligence, ACM, New York, NY, USA, v. 11, n. 3, p. 15–16, set. 2000. ISSN 1523-8822.
Disponível em: <h�p://doi.acm.org/10.1145/350752.350756>.

GAMBHIR, M.; GUPTA, V. Recent automatic text summarization techniques: A survey. Artif.
Intell. Rev., Kluwer Academic Publishers, Norwell, MA, USA, v. 47, n. 1, p. 1–66, jan. 2017. ISSN
0269-2821. Disponível em: <h�ps://doi.org/10.1007/s10462-016-9475-9>.

GOLDBERG, Y. A primer on neural network models for natural language processing. CoRR,
abs/1510.00726, 2015. Disponível em: <h�p://arxiv.org/abs/1510.00726>.

GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A. Deep Learning. Cambridge, MA: MIT Press,
2016. H�p://www.deeplearningbook.org.

HARRIS, D.; HARRIS, S. Digital design and computer architecture. 2nd. ed. San Francisco, CA,
USA: Morgan Kaufmann, 2012.

HE, K. et al. Deep residual learning for image recognition. CoRR, abs/1512.03385, 2015.
Disponível em: <h�p://arxiv.org/abs/1512.03385>.

HERMANN, K. M. et al. Teaching machines to read and comprehend. CoRR, abs/1506.03340,
2015. Disponível em: <h�p://arxiv.org/abs/1506.03340>.

HOCHREITER, S.; SCHMIDHUBER, J. Long short-term memory. Neural computation, MIT
Press, v. 9, n. 8, p. 1735–1780, 1997.

HOTHO, A.; NRNBERGER, A.; PAA, G. A brief survey of text mining. LDV Forum - GLDV
Journal for Computational Linguistics and Language Technology, v. 20, n. 1, p. 19–62, maio
2005. ISSN 0175-1336. Disponível em: <h�p://www.kde.cs.uni-kassel.de/hotho/pub/2005/
hotho05TextMining.pdf>.

HUFFMAN, D. A. A method for the construction of minimum-redundancy codes. Proceedings
of the Institute of Radio Engineers, v. 40, n. 9, p. 1098–1101, September 1952.

JOHNSON, R.; ZHANG, T. Convolutional neural networks for text categorization:
Shallow word-level vs. deep character-level. CoRR, abs/1609.00718, 2016. Disponível em:
<h�p://arxiv.org/abs/1609.00718>.

JOHNSON, R.; ZHANG, T. Deep pyramid convolutional neural networks for text categorization.
In: BARZILAY, R.; KAN, M. (Ed.). Proceedings of the 55th Annual Meeting of the Association
for Computational Linguistics, ACL 2017, Vancouver, Canada, July 30 - August 4, Volume 1:
Long Papers. Association for Computational Linguistics, 2017. p. 562–570. Disponível em:
<h�ps://doi.org/10.18653/v1/P17-1052>.

References 47

JONES, K. S. A statistical interpretation of term specificity and its application in retrieval.
Journal of Documentation, v. 28, p. 11–21, 1972.

JOULIN, A. et al. Bag of tricks for e�icient text classification. CoRR, abs/1607.01759, 2016.
Disponível em: <h�p://arxiv.org/abs/1607.01759>.

JOZEFOWICZ, R.; ZAREMBA, W.; SUTSKEVER, I. An empirical exploration of recurrent
network architectures. In: Proceedings of the 32Nd International Conference on International
Conference on Machine Learning - Volume 37. JMLR.org, 2015. (ICML’15), p. 2342–2350.
Disponível em: <h�p://dl.acm.org/citation.cfm?id=3045118.3045367>.

JURAFSKY, D.; MARTIN, J. H. Speech and Language Processing: An Introduction to Natural
Language Processing, Computational Linguistics, and Speech Recognition. 1st. ed. Upper Saddle
River, NJ, USA: Prentice Hall PTR, 2000. ISBN 0130950696.

JURAFSKY, D.; MARTIN, J. H. Speech and language processing. London: Pearson, 2014. v. 3.

KHAJAH, M.; LINDSEY, R. V.; MOZER, M. C. How deep is knowledge tracing? CoRR,
abs/1604.02416, 2016. Disponível em: <h�p://arxiv.org/abs/1604.02416>.

KIM, Y. Convolutional neural networks for sentence classification. CoRR, abs/1408.5882, 2014.
Disponível em: <h�p://arxiv.org/abs/1408.5882>.

KOSALA, R.; BLOCKEEL, H. Web mining research: a survey. SIGKDD Explor. Newsl.,
ACM Press, New York, NY, USA, v. 2, n. 1, p. 1–15, June 2000. Disponível em:
<h�p://dx.doi.org/10.1145/360402.360406>.

KRIZHEVSKY, A.; SUTSKEVER, I.; HINTON, G. E. Imagenet classification with deep
convolutional neural networks. In: Advances in Neural Information Processing Systems (NIPS).
[S.l.: s.n.], 2012. p. 1097–1105.

LECUN, Y.; BENGIO, Y. The handbook of brain theory and neural networks. In: ARBIB,
M. A. (Ed.). Cambridge, MA, USA: MIT Press, 1998. cap. Convolutional Networks
for Images, Speech, and Time Series, p. 255–258. ISBN 0-262-51102-9. Disponível em:
<h�p://dl.acm.org/citation.cfm?id=303568.303704>.

LeCun, Y. et al. Gradient-based learning applied to document recognition. In: Proceedings of
the IEEE. [S.l.: s.n.], 1998. p. 2278–2324.

LEHMANN, J. et al. DBpedia - A large-scale, multilingual knowledge base extracted from
wikipedia. Semantic Web Journal, v. 6, n. 2, p. 167–195, 2015.

MANNING, C. D.; SCHÜTZE, H. Foundations of statistical natural language processing. Boston,
MA: MIT press, 1999.

MARINHO, W.; MARTÍ, L. Review of student proficiency modeling techniques for
use in intelligent tutoring systems. In: Workshop de Pesquisa e Desenvolvimento em
Inteligêcia Artificial, Inteligêcia Collectiva e Ciêcia de Dados. [s.n.], 2016. Disponível em:
<h�p://www.addlabs.u�.br/workpedia2016/anais-do-workpedia-2016/>.

MCAULEY, J.; LESKOVEC, J. Hidden factors and hidden topics: Understanding rating
dimensions with review text. In: Proceedings of the 7th ACM Conference on Recommender
Systems. New York, NY, USA: ACM, 2013. (RecSys ’13), p. 165–172. ISBN 978-1-4503-2409-0.
Disponível em: <h�p://doi.acm.org/10.1145/2507157.2507163>.

References 48

MIKOLOV, T. et al. Distributed representations of words and phrases and their
compositionality. In: Advances in Neural Information Processing Systems (NIPS). [S.l.: s.n.], 2013.
p. 3111–3119.

MITTAL, S.; VETTER, J. S. A survey of CPU-GPU heterogeneous computing techniques.
ACM Computing Surveys, ACM, New York, NY, USA, v. 47, n. 4, p. 69:1–69:35, jul. 2015. ISSN
0360-0300. Disponível em: <h�p://doi.acm.org/10.1145/2788396>.

MOURA, E. Silva de et al. Fast and flexible word searching on compressed text. ACM Trans. Inf.
Syst., ACM, New York, NY, USA, v. 18, n. 2, p. 113–139, abr. 2000. ISSN 1046-8188. Disponível
em: <h�p://doi.acm.org/10.1145/348751.348754>.

NORVIG, P. Inference in text understanding. In: Proceedings of the Sixth National Conference on
Artificial Intelligence - Volume 2. AAAI Press, 1987. (AAAI’87), p. 561–565. ISBN 0-934613-42-7.
Disponível em: <h�p://dl.acm.org/citation.cfm?id=1863766.1863797>.

OLAH, C. Understanding LSTM Networks. 2015. [Online; posted 27-August-2015]. Disponível
em: <h�p://colah.github.io/posts/2015-08-Understanding-LSTMs/>.

OXFORD English Dictionary. [S.l.]: Oxford University Press, 2012.

PANE, J. F. et al. E�ectiveness of cognitive tutor algebra i at scale. Educational
Evaluation and Policy Analysis, v. 36, n. 2, p. 127–144, 2014. Disponível em: <h�ps:
//doi.org/10.3102/0162373713507480>.

PAVLIK, P. I.; CEN, H.; KOEDINGER, K. R. Performance factors analysis –a new alternative
to knowledge tracing. In: Proceedings of the 2009 Conference on Artificial Intelligence in
Education: Building Learning Systems That Care: From Knowledge Representation to A�ective
Modelling. Amsterdam, The Netherlands, The Netherlands: IOS Press, 2009. p. 531–538. ISBN
978-1-60750-028-5. Disponível em: <h�p://dl.acm.org/citation.cfm?id=1659450.1659529>.

PENNINGTON, J.; SOCHER, R.; MANNING, C. D. Glove: Global vectors for word
representation. In: 2014 Empirical Methods in Natural Language Processing Conference (EMNLP
2014). [s.n.], 2014. p. 1532–1543. Disponível em: <h�p://www.aclweb.org/anthology/D14-1162>.

PIECH, C. et al. Deep knowledge tracing. In: CORTES, C. et al. (Ed.). Advances in Neural
Information Processing Systems 28. Curran Associates, Inc., 2015. p. 505–513. Disponível em:
<h�p://papers.nips.cc/paper/5654-deep-knowledge-tracing.pdf>.

SAHAMI, M. et al. A Bayesian Approach to Filtering Junk E-Mail. 1998.

SALTON, G.; MCGILL, M. Introduction to Modern Information Retrieval. New York, NY, USA:
McGraw-Hill, 1983.

SANTOS, C. D.; ZADROZNY, B. Learning character-level representations for part-of-speech
tagging. In: XING, E. P.; JEBARA, T. (Ed.). Proceedings of the 31st International Conference on
Machine Learning. Bejing, China: PMLR, 2014. (Proceedings of Machine Learning Research,
v. 32), p. 1818–1826. Disponível em: <h�p://proceedings.mlr.press/v32/santos14.html>.

SEBASTIANI, F. Machine learning in automated text categorization. ACM Computing Surveys,
ACM, New York, NY, USA, v. 34, n. 1, p. 1–47, 3 2002. ISSN 0360-0300. Disponível em:
<h�p://doi.acm.org/10.1145/505282.505283>.

References 49

SIMONYAN, K.; ZISSERMAN, A. Very deep convolutional networks for large-scale image
recognition. CoRR, abs/1409.1556, 2014. Disponível em: <h�p://arxiv.org/abs/1409.1556>.

SRIVASTAVA, N. et al. Dropout: A simple way to prevent neural networks from
overfi�ing. Journal of Machine Learning Research, v. 15, p. 1929–1958, 2014. Disponível em:
<h�p://jmlr.org/papers/v15/srivastava14a.html>.

SU, Y. et al. Exercise-enhanced sequential modeling for student performance prediction. In:
AAAI. [S.l.]: AAAI Press, 2018.

SZEGEDY, C. et al. Going deeper with convolutions. In: Computer Vision and Pa�ern
Recognition (CVPR). [s.n.], 2015. Disponível em: <h�p://arxiv.org/abs/1409.4842>.

Wikipedia contributors. Wikipedia, The Free Encyclopedia. 2004. Disponível em:
<h�ps://en.wikipedia.org>.

WILSON, K. H. et al. Back to the basics: Bayesian extensions of IRT outperform
neural networks for proficiency estimation. CoRR, abs/1604.02336, 2016. Disponível em:
<h�p://arxiv.org/abs/1604.02336>.

XIAO, Y.; CHO, K. E�icient character-level document classification by combining
convolution and recurrent layers. CoRR, abs/1602.00367, 2016. Disponível em: <h�p:
//arxiv.org/abs/1602.00367>.

ZEILER, M. D. ADADELTA: An adaptive learning rate method. CoRR, abs/1212.5701, 2012.

ZHANG, X.; LECUN, Y. Text understanding from scratch. arXiv preprint arXiv:1502.01710, 2015.

ZHANG, X.; ZHAO, J.; LECUN, Y. Character-level convolutional networks for text classification.
In: Advances in neural information processing systems. [S.l.: s.n.], 2015. p. 649–657.

ZHANG, Y. et al. Adversarial feature matching for text generation. In: PRECUP, D.; TEH,
Y. W. (Ed.). Proceedings of the 34th International Conference on Machine Learning. International
Convention Centre, Sydney, Australia: PMLR, 2017. (Proceedings of Machine Learning
Research, v. 70), p. 4006–4015. Disponível em: <h�p://proceedings.mlr.press/v70/zhang17b.
html>.

ZHANG, Y.; WALLACE, B. C. A sensitivity analysis of (and practitioners’ guide to)
convolutional neural networks for sentence classification. CoRR, abs/1510.03820, 2015.
Disponível em: <h�p://arxiv.org/abs/1510.03820>.

50

APPENDIX A -- Publications

Following a list of publications in the Machine Learning area that have been accepted.

MARINHO, W., MARTÍ, L. and SANCHEZ-PI N. (2018, July). A Compact Encoding for

E�icient Character-level Deep Text Classification. In A. Editor, B. Editor, & C. Editor. Title of

Published Proceedings. Paper presented at International Joint Conference on Neural Networks

(IJCNN), Rio de Janeiro. New Jersey: IEEE Press. �alis A1

MARINHO, W.; MARTÍ, L. Review of Student Proficiency Modeling Techniques for use in

Intelligent Tutoring Systems. In: Workshop de Pesquisa e Desenvolvimento em Inteligência

Artificial, Inteligência Coletiva e Ciência de Dados. [s.n.], 2016. Disponível em: <h�p://

www.addlabs.u�.br/workpedia2016/anais-do-workpedia-2016/>.

A Compact Encoding for Efficient
Character-level Deep Text Classification

Wemerson Marinho
Institute of Computing

Universidade Federal Fluminense
Niteroi, Brazil

wmarinho@ic.uff.br

Luis Martı́
Institute of Computing

Universidade Federal Fluminense
Niteroi, Brazil
lmarti@ic.uff.br

Nayat Sanchez-Pi
Institute of Mathematics and Statistics

Universidade do Estado do Rio de Janeiro
Rio de Janeiro, Brazil

nayat@ime.uerj.br

Abstract—This paper puts forward a new text to tensor
representation that relies on information compression techniques
to assign shorter codes to the most frequently used characters.
This representation is language-independent with no need of
pretraining and produces an encoding with no information loss.
It provides an adequate description of the morphology of text, as
it is able to represent prefixes, declensions, and inflections with
similar vectors and are able to represent even unseen words
on the training dataset. Similarly, as it is compact yet sparse,
is ideal for speed up training times using tensor processing
libraries. As part of this paper, we show that this technique
is especially effective when coupled with convolutional neural
networks (CNNs) for text classification at character-level. We
apply two variants of CNN coupled with it. Experimental results
show that it drastically reduces the number of parameters to
be optimized, resulting in competitive classification accuracy
values in only a fraction of the time spent by one-hot encoding
representations, thus enabling training in commodity hardware.

Index Terms—text classification, character level convolutional
neural networks, encoding of words

I. INTRODUCTION

Document classification is one of the principal tasks ad-
dressed in the context of natural language processing [1].
It implies associating a document —or any text fragment,
for that matter— with a category or label relying on their
content. The increasing availability of texts in digital form,
especially through the Internet, has called for the development
of statistical and artificial intelligence tools for automating this
process. Spam detectors, sentiment analysis, news archiving,
among many others, demand high-quality text classifiers.

There is a broad range of approaches to document clas-
sification (see [1]–[4]). An important portion of them relies
on a representation that handles words as the atomic element
of text. Consequently, those methods carry out their analy-
sis through statistics of words occurrence [5]. However, the
variability of words and structures belonging to a language
hinders the viability of this method. Because of this, these
models have a superior performance in specific domains and
applications, where the vocabulary is or can be restricted to
a relatively small number of words, possibly chosen by a
specialist. Furthermore, such modeling becomes specific to a
language, causing the replication process in another language
to be carried out from scratch [5].

In recent years, we have experienced a revolution in the
machine learning with the advent of deep learning methods [6].
The development of convolutional neural networks (CNNs)
[7] coupled with the popularization of parallel computing
libraries (e. g. Theano [8], Tensorflow [9], Keras [10], etc.) that
simplify general-purpose computing on graphics processing
units (GPGPU) [11] has been successful in tackling image
classification problem [12] quickly becoming the state of the
art of the field.

As it could be expected, the success of deep learning
and CNNs in the image classification domain has prompted
the interest to extend the deep learning principles to the
document classification domain. Some existing methods have
been updated but the clear majority are still based on the
tokenization of words and the inference of their statistics. Bag
of Words (BoW) [13] and Word2vec [14] are some of the most
popular strategies.

It can be argued that the replication of image classification
success in the documents domain faces as main challenge the
difficulty of representing text as numerical tensors.

To address this issue, [5] suggested a groundbreaking ap-
proach that considers the characters as the atomic elements of
a text. In particular, they represented the text as a sequence of
one-hot encoded characters. This encoding provides a robust,
language-independent representation of texts as matrices, that
are then used as inputs of different CNNs. Their experimental
results showed that this approach was able to attain and, in
some cases, improve the state of the art results in complex
text classification problems. More recently, reference [15]
improved those results by combining CNNs with Long Short-
Term Memories (LSTMs) [16]. In spite of that, the impact
of this idea is hampered by the large computational demands
of the approach, since its training can take days per epoch in
relatively complex problems.

Character-level representations have the potential of being
more robust than word-level ones. On the other hand, they
are computationally more expensive because detecting syntac-
tic and semantic relationships at the character-level is more
expensive [17]. One possible solution could be a word repre-
sentation that incorporates the character-level information.

In this paper, we propose an efficient character-level encod-
ing of word to represent texts derived from the Tagged Huff-

man [18] information compression technique. This encoding
takes into account the character appearance frequency in the
texts in order to assign shorter codes to the most frequently
used ones. This novel text encoding makes the idea put
forward by [5] more computationally accessible by reducing
its training requirements in terms of time and memory.

The proposed encoding makes possible to represent larger
portions of texts in a less sparse form, without any loss of
information, while preserving the ability to encode any word,
even those not present in the training dataset ones. In order to
study the impact of this encoding, we coupled it with two CNN
architectures. The experimental studies performed showed that
we managed to achieve a performance similar or in some cases
better than the state of the art at a fraction of the training time
even if we employed a simpler hardware setup.

Our main contribution is to show that this novel character-
level text encoding produces a reduced input matrix, leading
to a substantial reduction in training times while producing
comparable or better results in terms of accuracy than the
original approach by [5]. This opens the door to more complex
applications, the use of devices with lower computational
power and the exploration of other approaches that can be
coupled with input representation.

The rest of the paper is structured as follows. In the next sec-
tion, we deal with the theoretical foundations and motivation
that are required for the ensuing discussions. There we also
analyze the alternatives to character-level text compression that
were taken into account for producing our proposal. After
that, in Section III, we describe the encoding procedure and
the neural network architectures that will take part of the
experiments. Subsequently, in Section IV, we replicate the
experiments of [5] in order to contrast our proposal with
theirs under comparable conditions. Finally, in Section V, we
provide some final remarks, conclusive comments and outline
our future work directions.

The algorithms and test problems implementations sup-
porting the findings of this paper are available on https:
//github.com/rio-group/compact-character-level-rep.

II. PRELIMINARIES

The success in using Convolutional Neural Networks
(CNNs) [7] in image classification [12] flourish with the
development of many libraries [8], [10], [19], techniques and
hardware. The effort to use CNNs for text classification tasks
is justified by the possibility of appropriating these tools for
obtaining better results and more robust algorithms, facilitating
the use of the same approach for several applications.

There are two usual approaches to use CNNs for handling
textual information: the (i) bag of words (BoW) [13] and (ii)
Word2vec [14] approaches.

In the case of BoW and some of its variants, for representing
each word in a vocabulary of size N , a digit 1 is placed in
the correspondent position of that word in a 1 × N vector,
all others positions remaining with digit 0. Since natural
languages usually have a large vocabulary, a limited subset of
the vocabulary must be used in order to make viable to perform

the necessary computations in terms of memory requirements.
The chosen subset of the vocabulary must be representative
of the texts. Therefore, in practical problems, a great deal of
attention is devoted to this matter. In particular, it is common
to involve an application domain specialist or use some kind
of word frequency statistic or relevance metric, where the most
frequent and rare words are excluded.

In the word2vec approach, each word is projected via a
metric embedding of fixed size, representing its co-occurrence
in a large corpus of text in the same language of the texts of
interest. It is possible to use pretrained vectors or readjust the
representation with new words. The main problem with both
strategies is that it does not allows to represent words that are
not in the training dataset. Typos, spelling errors, mixed up
letters and text written in languages with a complex structure
(declensions, conjugations, etc.) are completely ignored.

Establishing the character as the basic unit of text formation
provides a better opportunity to be robust to typos, acceptance
of neologisms, and other textual forms as equations and
chemical formulas, abbreviations and idiosyncrasies of written
language on the internet, such as emoticons, slang and dialects
of the online world, etc. Assuming the word as a base item,
much of this ability is lost, especially when models assume
that text producers use a formal language.

Reference [5] put forward an important innovation in this
regard. They represent text as a sequence of characters, not
words. Consequently, they are capable of reducing the vocabu-
lary of symbols to the size of the alphabet (69 in the case of the
paper) and thus allowing the use of one-hot encoding [20]. In
this paper, they represented a text as a matrix of size 1014×69
where each row corresponds to a position in the text sequence
and columns with the presence or not of a given character.
Therefore, a row with a 1 in a given column indicates that
the presence of the corresponding character in that point of
the text. With this representation on hand, they applied a
CNN and obtained results competitive with other techniques,
and in some cases improving the state of the art at their
release. However, the main drawback is a large computational
requirement, that in some cases called for days per training
epoch.

The results obtained by them suggest that language, and
therefore, text, can be treated as a sequence of signals, like
any other [5]. However, the training times and the dimension
of the matrices to be computed are still obstacles to the most
effective use of the method. That is why a better encoding of
text could be a right path towards a substantial improvement
of this issue.

III. COMPRESSED ENCODING FOR CNN-BASED TEXT
CLASSIFICATION

Searching for a way to reduce these training time while
retaining the flexibility and power of character-level convolu-
tional to classify text, we found a way to better encode texts.
Our approach, with competitive accuracy, achieve a significant
reduction in time execution from hours to minutes and from
days to hours, by epoch.

To achieve better performance in execution, at first we
though of using some form of encoding each character, and
use the same approach of [5] but we realize that using a
variable length encoding for each word could be more efficient.
To do this we need a way to encode each char, generating
distinct concatenated code for representing each word and that
words with the same prefix were near each other, especially
to respond well to declensions.

A. Compressed Representations

Although the Huffman encoding [21] yields shortest encod-
ing possible, it does not generate unique representations once
we concatenate encoded characters to form a word. We inves-
tigated encoding of [22] and found promising alternatives.

Our approach is based on the Tagged Huffman encoding
[18], where a pair of ‘0’ digits is the signal and the digit ‘1’
is the tag of beginning and end code, the only difference is
that for our approach, we need a shorter version to reduce the
size of input matrix, so we choose to use only one digit 0
instead of two for each char, marking the beginning and the
end of each char code with a digit 1, the same way.

As in the approach by [18], the coding we employ has the
following advantages [22]:

1) No character code is a prefix of another, that is, the
match is one-to-one.

2) It allows a direct search, that is, to search for a word
in an encoded document, just encode the word and
use traditional methods of comparing strings with the
encoded document.

3) This encoding approach is a compression technique, so it
also allows saving already encoded text documents per-
manently using a binary system, requiring less storage
space.

These advantages become attractive especially if the goal
is to extract knowledge about files in a repository to perform
various classifications on different dimensions with the same
files.

A possible advantage of this encoding over others strategies
that use a word as an atomic representation of text is better
respond to unseen words on training data, once that the
network at least have some prefix to guess the meaning of
the word, the same way we humans do. This is especially
interesting in languages where there are a lot of declensions
like Portuguese, Spanish, Italian, French, Russian, German,
Arabic and Turkish, for example.

The coding procedure is not restricted to any size of vo-
cabulary, the only problem is that less frequent characters will
generate bigger codes, consequently, bigger encoding matrix.
If your database has a lot of them, you could use a higher
word code size.

B. Encoding Procedure

In all of our experiments, we used the following procedure
to encode words:

• Obtaining a character frequency rank: We read the text
database and count the frequency of each character,

TABLE I: Example of coding using English language ranking
of characters. Characters shown are the ones used in the
subsequent examples.

CHARACTER FREQ. RANK COMPRESSED ENCODING

0 11
e 1 101
a 2 1001
t 3 10001
i 4 100001
s 5 1000001
n 7 100000001
r 8 1000000001
d 10 100000000001
h 11 1000000000001
c 12 10000000000001
g 17 1000000000000000001

...
...

...
n ′1′ + n× ′0′ + ′1′

TABLE II: Example of coding using English language ranking
of characters. Prefix common to more than one word are
underscored
TEXT ENCODED TEXT

science 10000011000000000000110000110110000000110000000000001101
scientist 10000011000000000000110000110110000000110001100001100000110001
art 1001100000000110001
artist 1001100000000110001100001100000110001
u2 1000000000000001100000000000000000000000000000001

generating a list sorted by frequency of occurrence. Then
we create a rank with only the relative positions of the
characters. For a given language, this rank is quite stable
since only the order of the rank is used. This means that
if all documents are in the same idiom, this procedure can
be replaced by a list with the characters rank of frequency
for that language.

• Creating a mapping from character to compress code: To
encode each character, we insert the digit 0 in the same
amount of the rank position of the character, between a 1
digit to signal the begin and another 1 digit to signal the
end of the code. Table I have some examples of encoded
characters.

To encode each word, we just concatenate the codes of each
character. As an example, we provide in Table II some exam-
ples of plain text words and their corresponding encoding.

Given a document, we consider that it is composed of words,
being those any set of characters limited by the space character.
This means ‘word’ could be math equations, web addresses,
LATEX code, computer programming commands, etc. In Table
II we can see that this encoding could represent words with
the same prefix in vectors that have same initial coordinates.
Slangs like tl;dr : too long, did not read and u2 : you too as
well mathematical expressions like ea could be manipulated.

In a matrix of number of words× code size representing
the document, each row represents a properly encoded word,
where the code is embedded with its first symbol in the
first column. Columns that were not occupied are padded
with 0, larger codes are represented up to the chosen limit.

10000000011011000001101100110000000011000000000000110000000000010
100001100000100
100110000000100
100110000000011000100
100110000000110000000000100
1001000
10000011000000000000110000110110000000110000000000001101000000000
000

Fig. 1: Matrix encoding of sentence ‘Research is an art and a
science’. The text is encoded one word per row. Each word is
underscored for easy identification.

TABLE III: Architectures of the ‘large’ and ‘small’ CNNs
used by [5].

CONVOLUTIONS

Layer Large Feature Small Feature Kernel Poll

1 1024 256 7 3
2 1024 256 7 3
3 1024 256 3 —
4 1024 256 3 —
5 1024 256 3 —
6 1024 256 3 3

FULLY CONNECTED

Layer Large Feature Out Small Feature Out Dropout

7 2048 1014 0.5
8 2048 1014 0.5
9 Depends on the problem

Unoccupied lines are filled with 0 and larger documents are
represented only up to the chosen maximum number of words,
ignoring the last remaining ones. As an example, we represent
a document in an 8× 65 matrix in Figure 1.

In the example in Figure 1 we used a 8 × 65 matrix (520
elements) to encode the text with a certain amount of slack.
At the very least, we would need 7 × 64 (448 elements). In
contrast, the approach of [5] would employ at least 32 × 69
(2208) elements to represent the same sentence.

In our experiments, 256 coordinates were enough to repre-
sent 99.5% of the words from one of the databases studied.
In all datasets studied in this paper, we choose 128 as a limit
of words to represent a document, encoding each text in a
128× 256 matrix.

1) Convolutional Network Model: As mentioned before,
this work was prompted by the results of [5]. In their original
approach, they encode each character using one-hot encoding
in a vocabulary of 69 elements. The non-space characters
are letters, numbers and punctuation. The model is composed
of 9 layers, 6 of convolutions and 3 fully connected. Their
architecture is described in Table III.

They used stochastic gradient descent (SGD) with a mini-
batch of size 128, using momentum 0.9 and initial step size
0.01 which is halved every 3 epochs for 10 times. So, their
results were obtained in at least 30 epochs.

Input 128x256

126x256 126x256 126x256 126x256

42x256 42x256 42x256 42x256

168x256

54x256

50x256

12x256

3072

128

Dense(#Class, So�max)

Dense 128, RELU

Fla�en

4 x Conv1d (256, 3 , Relu)

Conv1d (256, 5 , Relu)

164x256

Conv1d (256, 5 , Relu)

Concatenate

MaxPoll1d (3)

MaxPoll1d (4)

MaxPoll1d (3)

(a) CNN1

Concatenate

LSTM 300

Dropout 0.25

Dense 512, ELU

4 x Conv1d (256, 1 , Relu)

Input 128x256

128x256 128x256 128x256 128x256

1x256 1x256 1x256 1x256

1x1024

1x1024

512

300

Dense(#Class, So�max)

MaxPoll1d (128)

(b) CNN2

Input 128x256

Dense 128, Sigmoid
128

300

Dense(#Class, So�max)

LSTM 300

300
DROPOUT 0.10

(c) LSTM

Fig. 2: Network architectures used coupled with the com-
pressed encoding.

C. Neural Network Architectures

To verify the efficiency of the encoding procedure, we
realized 3 experiments, named CNN1 , CNN2 and LSTM:

D. CNN1 topology

At first, we choose a network architecture that we usually
use to classify text using an embedding created by word2vec
[14], the only difference is that instead of 300 features, we
reduce the input size to 256. This architecture we named
CNN1. It is based on concatenation of convolutions in a
shallow way, inspired by work of [23], who achieve state of
the art results for some databases.

We trained this model for 5 epochs. The neural network
architecture CNN1 is summarized in Figure 2a as a diagram.

E. CNN2 topology

Prompted by the positive outcome of CNN1, we decided
to investigate others possible architectures. We created an-
other shallow but wide convolution architecture following the
recommendations of [24] for choosing parameters, executing
training on dataset ag news, for being the smallest of our test
datasets. This architecture is composed by:

• Convolution width filter: a combination of region sizes
near the optimal single best region size outperforms using
multiple region sizes far from the optimal single region
size [24]. We scan the width from 1 to 7 comparing ac-
curacy performance. In these evaluations, the convolution
of width 1 was a better option.

• Pooling size: max pooling consistently performs better
than alternative strategies for the task of sentence classi-
fication [24].

The neural network architecture CNN2 is summarized in
Figure 2b as a diagram

F. LSTM topology

To illustrate the possibilities of applying the proposed
encoding, we did an experiment using LSTMs [16], similar
to LSTM model described by [25], the difference is that
instead of using word2vec embedding [14], we used our
representation. The architecture is very simple: an input layer
of 128 × 256, followed by a LSTM layer of 300, a Dropout
layer of .10 [26], a fully connected layer of 128 units and a
softmax layer.

We trained this model for 5 epochs. This architecture is
in general, twice slower than CNN1. The neural network
architecture LSTM is summarized in Figure 2c as a diagram.

IV. EXPERIMENTAL STUDY

An essential part of this work is to contrast our proposal
both within the context of character-level text classification
and with other state-of-the-art approaches.

The databases used were the same as those cited in an
article by [5], where there is an extensive description of
them.1 A detailed analysis of these datasets is out of the
scope of this paper, instead, we will only summarize the main
characteristics:

• AG’s news: categorized news articles from more than
2000 news sources. Four classes (World, Sports, Busi-
ness, SciTech).The dataset contains 120k train samples
and 7.6k test samples equally distributed [5].

• Sogou news: categorized news articles originally in Chi-
nese. [5] applied the pypinyin package combined with
jieba Chinese segmentation system to produce Pinyin ,
a phonetic romanization of Chinese. Five classes (sports,
finance, entertainment, automobile and technology). The

1For the sake of replicability we have made all the
datasets available via https://drive.google.com/open?id=
1o5CNT0UHuFfHBxC-Mz4ImFpN2-Lcllmx.

dataset contains 450k train samples and 60k test samples
equally distributed [5].

• DBpedia: title and abstract from Wikipedia articles avail-
able in DBpedia crowd-sourced community [27]. Four-
teen non-overlapping classes from DBpedia 2014. The
dataset contains 560k train samples and 70k test samples
equally distributed [5].

• Yelp full: sentiment analysis from the Yelp Dataset
Challenge in 20152. Five classes representing the number
of stars a user has given. The dataset contains 560k train
samples and 38k test samples equally distributed. [5].

• Yelp polarity: sentiment analysis from the Yelp Dataset
Challenge in 20152. The original data is transformed into
a polarity problem. Rating of 1 and 2 stars are represented
as Bad and 4 and 5 as Good. The dataset contains 560k
train samples and 50k test samples equally distributed.
[5].

• Yahoo! answers: questions and their answers from Ya-
hoo! Answers. Ten classes (Society & Culture, Science &
Mathematics, Health, Education & Reference, Computers
& Internet, Sports, Business & Finance, Entertainment &
Music, Family & Relationships, Politics & Government).
Each sample contains question title, question content and
best answer. The dataset contains 1,400k train samples
and 60k test samples [5].

• Amazon full: sentiment analysis from Amazon reviews
dataset from the Stanford Network Analysis Project
(SNAP) [28]. Five classes representing the number of
stars a user has given. The dataset contains 3,000k train
samples and 650k test samples. [5].

• Amazon polarity: sentiment analysis from Amazon re-
views dataset from the Stanford Network Analysis Project
(SNAP) [28]. Two classes, rating of 1 and 2 stars are
represented as Bad and 4 and 5 as Good. The dataset
contains 3,600k train samples and 400k test samples
equally distributed. [5].

The baseline comparison models are the same of [5] where
there is an extensive description of them, we just reproduce
their results, the only difference is that they report loss error
and for better comprehension, we translated it to accuracy. In
[5] there is an extensive description of them. In this paper, we
just summarize the main information:

• Bag of Words (BoW) and its term-frequency inverse-
document-frequency (BoW TFIDF): For each dataset,
they selected 50,000 most frequent words from the train-
ing subset. For the normal bag-of-words, they used the
counts of each word as the features and for the TFIDF
they used the counts as the term-frequency [5].

• Bag-of-ngrams (Ngrams) and its TFIDF (Ngrams
TFIDF): The bag-of-ngrams models were constructed by
selecting the 500,000 most frequent n-grams (up to 5-
grams) from the training subset for each dataset. The
feature values were computed the same way as in the
bag-of-words model [5].

2https://www.yelp.com/dataset/challenge

TABLE IV: Training environment and parameters
DESCRIPTION PARAMETERS OBSERVATIONS

Neural Net Lib. Keras 2.0
Tensor Backend Theano 0.9
GPU Interface Cuda 8 with cuBLAS Patch Update
CNN optimizer Cudnn 5.1
Program. Lang. Python 3.6 using Anaconda 4.4.0
Superbatch 10000 Number of matrixes sent to gpu each time
Minibatch 32 Batch to update the network weights
Optimizer ADAM [29] lr = 10−3, β1 = 0.9, β2 = 0.999, ε = 10−8

Epochs 5 , 12
Op. System Windows 10
GPU GeForce 1080ti
RAM Memory 16 GB

• Bag-of-means on word embedding: an experimental
model that uses k-means on word2vec [14] learned from
the training subset of each dataset, and then used these
learned means as representatives of the clustered words.
Took into consideration all the words that appeared more
than 5 times in the training subset. The dimension of
the embedding is 300. The bag-of-means features are
computed the same way as in the bag-of-words model.
The number of means is 5000 [5].

• Long Short Term Memory (LSTM): The LSTM [16]
model used is word-based, using pretrained word2vec
[14] embedding of size 300. The model is formed by
taking a mean of the outputs of all LSTM cells to form
a feature vector, and then using multinominal logistic
regression on this feature vector. The output dimension
is 512 [5].

For all the experiments, we used the environment and
parameters settings listed in Table IV. Besides the encoding
procedure, we do not use any preprocessing strategy except
the use of lowercase letters. No data enhancement technique
was employed.

All the results and comparison with traditional models and
the approaches of [5] is shown in Table V.

As tabular data are hard to grasp, we have decided to go
for a graphical representation of the results. In particular, from
the previous results, we have selected the large and small
architectures of [5] and our CNN1, CNN2 and LSTM. Those
values of accuracy were then scaled to the interval [0, 1] for
every dataset, being 0 the worst and 1 the best performance
among all models, including traditional models . The outcome
of this process is represented on Figure 3. On Table VI, we
did a running time comparison, based on reports available by
[5].

The main objective of this research was to evaluate the
possibility of using a coding approach that contemplated the
construction of words using characters as basic tokens. Our
main contribution is demonstrate that such approach allows
reducing the dimensionality of the encoding matrix, thus
allowing substantially shorter optimization times and the use
of devices with lower computational power. Some datasets
of text have peculiarities that were not addressed by word
frequency methods (i.e. BoW and word2vec), like declensions
and new vocabulary. The article of [5] was a great innovation
in this regard. However, the training times are still obstacles

Fig. 3: Performance re-scaled in the range between best
and worst model comparing [5] and our approaches when
applied to the AG’s news (AG), Sogou news (SOGOU),
DBpedia (DBP), Yelp polarity (YLP-P), Yelp full (YLP),
Yahoo! answers (YAH), Amazon full (AMZ) and Amazon
polarity (AMZ-P) datasets.

to the most effective use of the technique. We thought of a
better representation should be a solution.

To make a comparison, perform the training of architecture
CNN1 with an output of 4 classes make necessary to optimize
1,837,188 parameters. As a comparison, in the architecture
suggested by [5] it is necessary to optimize 11,337,988 pa-
rameters [5].

As one of our concerns was to make our proposal as
usable as possible on commodity hardware, we focused our
studies in that hardware configuration. The major bottleneck
for analyzing this large amount of matrix-encoded text is the
need for intensive use of RAM. Our approach generates a
128 × 256 matrix, smaller than the 1014 × 69 generated by
[5]. In spite of that, a large set of them quickly occupies
the available RAM on a ‘regular’ personal computer. On the
machine we used, there were 16 GB available, which is not
uncommon in modern personal computers. Therefore, the use
of generators to control the number of matrices generated and
sent to GPU is an important detail in the implementation of
this optimization algorithm. If your computer has only 8 GB
of RAM or less, it will be necessary to reduce the number of
superbatchs to fit the memory.

The results obtained strongly indicate that the use of this
coding is a possibility. We emphasize that we used is a fairly
simple network, enough to demonstrate the feasibility of the
encoding approach with the time and computational resources
that we have.

The results are very competitive with the approach o [5]
and traditional techniques. We see even that we could find
parameters that achieve excellent performance on AG’s news
dataset, following the suggestions of [24]. One of advantage
of a faster algorithm is that if your dataset is not so big, you
could scan the feature width to find a solution that optimizes
accuracy. Another advantage is the possibility to realize k-
folds validation, to have a better perspective on how well it
will perform for your specific dataset on real life.

TABLE V: Test set accuracy comparison among traditional models the [5] models ‘large’ and ‘small’ and our approaches
when applied to the AG’s news (AG), Sogou news (SOGOU), DBpedia (DBP), Yelp polarity (YLP-P), Yelp full (YLP),
Yahoo! answers (YAH), Amazon full (AMZ) and Amazon polarity (AMZ-P) datasets.

Model AG SOGOU DBP YLP-P YLP YAH AMZ AMZ-P

BoW 88.81 92.85 96.61 92.24 57.99 68.89 54.64 90.40
BoW TFIDF 89.64 93.45 97.37 93.66 59.86 71.04 55.26 91.00
Ngrams 92.04 97.08 98.63 95.64 56.26 68.47 54.27 92.02
Ngrams TFIDF 92.36 97.19 98.69 95.44 54.80 68.51 52.44 91.54
Bag-of-Means 83.09 89.21 90.45 87.33 52.54 60.55 44.13 81.61
LSTM 86.06 95.18 98.55 94.74 58.17 70.84 59.43 93.90

Zhang et al. 2015 Large 87.18 95.12 98.27 94.11 60.38 70.45 58.69 94.49
Small 84.35 91.35 98.02 93.47 59.16 70.16 59.47 94.50

Ours
CNN1 87.67 95.16 97.93 92.04 58.00 68.10 58.09 93.69
CNN2 91.43 93.96 98.03 91.53 57.03 70.24 55.72 91.23
LSTM 88.38 94.52 98.34 93.18 59.71 70.27 59.79 94.35

TABLE VI: Time per epoch as reported by [5] models and the ones used by CNN1 and CNN2 on an NVidia GeForce 1080ti
GPU. AG’s news (AG), Sogou news (SOGOU), DBpedia (DBP), Yelp polarity (YLP-P), Yelp full (YLP), Yahoo! answers
(YAH), Amazon full (AMZ) and Amazon polarity (AMZ-P) datasets.

Dataset Train/Test sizes Zhang et al, 2015 [5] Ours

SIZE LARGE SMALL CNN1 CNN2 LSTM

AG 120 k / 7.6 k 1 h 3 h 3 min 4 min 7 min
SOGOU 450 k / 60 k N/A N/A 23 min 27 min 42 min
DBP 560 k / 70 k 2 h 5 h 18 min 20 min 36 min
YLP-P 560 k / 38 k N/A N/A 21 min 31 min 47 min
YLP 650k / 50 k N/A N/A 27 min 46 min 48 min
YAH 1,400 k / 60 k 8 h 1 days 47 min 55 min 1 h 37 min
AMZ 3,000 k / 650 k 2 days 5 days 2 h 2 h 30 min 3 h 53 min
AMZ-P 3,600 k / 400 k 2 days 5 days 2h 13 min 2 h 31 min 4 h 18 min

Another interesting point is that using a LSTM layer with
the proposed encoding, we achieved similar, sometimes better
results than using an embedding using word2vec [14] as
proposed by [5]. Our approach by its own nature take into
account morphological aspects of text while word2vec uses
pre-trained vectors representing co-occurrence of words on a
big corpus of text. Being able to take into account character
information even in recurrent networks, we show that this
representation is not limited to the domain of CNN or neural
networks, for that matter.

Although our LSTM architecture is twice slower than our
CNN1 and CNN2 topologies, it consistently outperform them.
This indicates that temporal dependence among of words
are important, so, potentially other architectures can generate
better results taking this information to account and this is
a direction that should be explored. In addition to that, the
dimensionality reduction achieved by our encoding enables
several other architectures and methods to be verified in a
reasonable timeframe.

We are certain that our algorithm implementation could be
even faster. For instance, when using a GPU Geforce 1080ti
and a CNN1 architecture, each of the superbatch of 10,000
arrays have its weights updated in 30 seconds. Only 6 seconds
is consumed by GPU, another 24 seconds is spent in encoding
all the matrix and delivery it on the GPU. Using a multithread
strategy could help in this regard.

V. FINAL REMARKS

In this paper, we have proposed an efficient character-
level encoding for text derived from the Tagged Huffman
[18] information compression method and applied it as input
preprocessing step for character-level CNN text classification.

We have shown that using this compression technique is
a convenient possibility to represent text in a convolutional
deep learning setup for text classification. This is particularly
important as encoding text using characters can be relevant
when dealing with less curated texts datasets, as it is robust to
spelling errors, typos, slang, language variations, and others
usual characteristics of Internet texts.

This novel text encoding allow to represent larger portions
of texts in a compact form while preserving the ability to
encode any word, even those not present in the training dataset
ones. Furthermore, for being compact yet sparse, this approach
dramatically reduces the time required for training CNNs and,
therefore, makes the application of this novel approach more
accessible. This opens the door to more complex applications,
the use of devices with lower computational power and the
exploration of other approaches that can be coupled with this
input representation.

The experimental studies carried out coupled the encoding
with two convolutional neural networks architectures and a
recurrent LSTM architecture. These experiments showed that
we managed to achieve a performance similar to the one

achieved by [5] in a fraction of the training time even if we
employed a simpler hardware setup. Furthermore, with our
results, we endorse [5] conclusions, which state that language
can be treated as a signal, no different from any other.

It should be noted that the main objective of the paper
was to show the viability of the text encoding, not producing
better results per se. Consequently, we have focused our efforts
on the comparative study. Probably, custom neural network
architectures should be devised to this new encoding with that
purpose. Our results indicate that combining it with LSTMs
is a promising direction in order to overcome the fixed matrix
size limitation. In the near future, we will focus on devising
these new architectures that may further improve the results.

This study also opens a door to other information-theoretic-
based methods for information representation to be used to
create a numerical representation of texts. It must be outlined
the fact that this compact numeric representation of text is
not limited to the domain of CNN or neural networks, for
that matter. It could be interesting to assess its impact as a
preprocessing step, perhaps with a minor modification, for
other classification algorithms.

ACKNOWLEDGMENTS

This work was supported in part by FAPERJ APQ1 Project
211.500/2015, FAPERJ APQ1 Project 211.451/2015, CNPq
Universal 430082/2016-9, FAPERJ JCNE E-26/203.287/2017,
Project Prociência 2017-038625-0, CNPq PQ 312792/2017-4
and the NVIDIA Corporation GPU Grant Program. W. M. is
grateful to CAPES for the award of a research scholarship.

REFERENCES

[1] F. Sebastiani, “Machine learning in automated text categorization,”
ACM Computing Surveys, vol. 34, no. 1, pp. 1–47, Mar. 2002. [Online].
Available: http://doi.acm.org/10.1145/505282.505283

[2] C. C. Aggarwal and C. X. Zhai, “A survey of text classification
algorithms,” in Mining Text Data, C. C. Aggarwal and C. X.
Zhai, Eds. Springer US, 2012, pp. 163–222. [Online]. Available:
http://dx.doi.org/10.1007/978-1-4614-3223-4 6

[3] A. Hotho, A. Nrnberger, and G. Paa, “A brief survey of text
mining,” LDV Forum - GLDV Journal for Computational Linguistics
and Language Technology, vol. 20, no. 1, pp. 19–62, May 2005.
[Online]. Available: http://www.kde.cs.uni-kassel.de/hotho/pub/2005/
hotho05TextMining.pdf

[4] R. Kosala and H. Blockeel, “Web mining research: a survey,” SIGKDD
Explor. Newsl., vol. 2, no. 1, pp. 1–15, June 2000. [Online]. Available:
http://dx.doi.org/10.1145/360402.360406

[5] X. Zhang, J. Zhao, and Y. LeCun, “Character-level convolutional
networks for text classification,” in Advances in neural information
processing systems, 2015, pp. 649–657.

[6] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[7] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” in Proceedings of the IEEE, 1998, pp.
2278–2324.

[8] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Des-
jardins, J. Turian, D. Warde-Farley, and Y. Bengio, “Theano: a CPU
and GPU math expression compiler,” in Proceedings of the Python for
Scientific Computing Conference (SciPy), Jun. 2010, oral Presentation.

[9] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,

P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous systems,”
2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

[10] F. Chollet et al., “Keras,” https://github.com/fchollet/keras, 2015.
[11] S. Mittal and J. S. Vetter, “A survey of CPU-GPU heterogeneous

computing techniques,” ACM Computing Surveys, vol. 47, no. 4, pp.
69:1–69:35, Jul. 2015. [Online]. Available: http://doi.acm.org/10.1145/
2788396

[12] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural Infor-
mation Processing Systems (NIPS), 2012, pp. 1097–1105.

[13] G. Salton and M. McGill, Introduction to Modern Information Retrieval.
New York, NY, USA: McGraw-Hill, 1983.

[14] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composition-
ality,” in Advances in Neural Information Processing Systems (NIPS),
2013, pp. 3111–3119.

[15] Y. Xiao and K. Cho, “Efficient character-level document
classification by combining convolution and recurrent layers,”
CoRR, vol. abs/1602.00367, 2016. [Online]. Available: http:
//arxiv.org/abs/1602.00367

[16] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[17] P. Blunsom, K. Cho, C. Dyer, and H. Schütze, “From characters
to understanding natural language (C2NLU): Robust end-to-end
deep learning for NLP (Dagstuhl Seminar 17042),” Dagstuhl
Reports, vol. 7, no. 1, pp. 129–157, 2017. [Online]. Available:
http://drops.dagstuhl.de/opus/volltexte/2017/7248

[18] E. Silva de Moura, G. Navarro, N. Ziviani, and R. Baeza-Yates, “Fast
and flexible word searching on compressed text,” ACM Trans. Inf.
Syst., vol. 18, no. 2, pp. 113–139, Apr. 2000. [Online]. Available:
http://doi.acm.org/10.1145/348751.348754

[19] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran,
B. Catanzaro, and E. Shelhamer, “cudnn: Efficient primitives for
deep learning,” CoRR, vol. abs/1410.0759, 2014. [Online]. Available:
http://arxiv.org/abs/1410.0759

[20] D. Harris and S. Harris, Digital design and computer architecture,
2nd ed. San Francisco, CA, USA: Morgan Kaufmann, 2012.

[21] D. A. Huffman, “A method for the construction of minimum-redundancy
codes,” Proceedings of the Institute of Radio Engineers, vol. 40, no. 9,
pp. 1098–1101, September 1952.

[22] N. Brisaboa, E. Iglesias, G. Navarro, and J. Paramá, “An efficient
compression code for text databases,” Advances in Information Retrieval,
pp. 78–78, 2003.

[23] Y. Kim, “Convolutional neural networks for sentence classification,”
CoRR, vol. abs/1408.5882, 2014. [Online]. Available: http://arxiv.org/
abs/1408.5882

[24] Y. Zhang and B. C. Wallace, “A sensitivity analysis of (and
practitioners’ guide to) convolutional neural networks for sentence
classification,” CoRR, vol. abs/1510.03820, 2015. [Online]. Available:
http://arxiv.org/abs/1510.03820

[25] X. Zhang and Y. LeCun, “Text understanding from scratch,” arXiv
preprint arXiv:1502.01710, 2015.

[26] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural
networks from overfitting,” Journal of Machine Learning
Research, vol. 15, pp. 1929–1958, 2014. [Online]. Available:
http://jmlr.org/papers/v15/srivastava14a.html

[27] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N.
Mendes, S. Hellmann, M. Morsey, P. van Kleef, S. Auer, and C. Bizer,
“DBpedia - a large-scale, multilingual knowledge base extracted from
wikipedia,” Semantic Web Journal, vol. 6, no. 2, pp. 167–195, 2015.
[Online]. Available: http://jens-lehmann.org/files/2015/swj dbpedia.pdf

[28] J. McAuley and J. Leskovec, “Hidden factors and hidden topics:
Understanding rating dimensions with review text,” in Proceedings of
the 7th ACM Conference on Recommender Systems, ser. RecSys ’13.
New York, NY, USA: ACM, 2013, pp. 165–172. [Online]. Available:
http://doi.acm.org/10.1145/2507157.2507163

[29] M. D. Zeiler, “ADADELTA: An adaptive learning rate method,” CoRR,
vol. abs/1212.5701, 2012. [Online]. Available: http://dblp.uni-trier.de/
db/journals/corr/corr1212.html#abs-1212-5701

