
UNIVERSIDADE FEDERAL FLUMINENSE

Leonardo Maricato Musmanno

Randomized metaheuristic-based algorithms for the

generalized median graph problem

NITERÓI

2018

UNIVERSIDADE FEDERAL FLUMINENSE

Leonardo Maricato Musmanno

Randomized metaheuristic-based algorithms for the

generalized median graph problem

Tese de Doutorado apresentada ao Pro-
grama de Pós-Graduação em Computação
da Universidade Federal Fluminense como
requisito parcial para a obtenção do Grau de
Doutor em Computação. Área de concentra-
ção: Algoritmos e Otimização

Orientador:

Celso Carneiro Ribeiro

NITERÓI

2018

Ficha catalográfica automática - SDC/BEE

Bibliotecária responsável: Fabiana Menezes Santos da Silva - CRB7/5274

M985r Musmanno, Leonardo Maricato
 Randomized metaheuristic-based algorithms for the
generalized median graph problem / Leonardo Maricato Musmanno
; Celso Carneiro Ribeiro, orientador. Niterói, 2018.
 125 f. : il.

 Tese (doutorado)-Universidade Federal Fluminense, Niterói,
2018.

DOI: http://dx.doi.org/10.22409/PGC.2018.d.00170516300

 1. Grafo mediano generalizado. 2. Reconhecimento de padrões.
3. Produção intelectual. I. Título II. Ribeiro,Celso
Carneiro, orientador. III. Universidade Federal Fluminense.
Escola de Engenharia.

 CDD -

Leonardo Maricato Musmanno
,.

Randomized metaheuristic-based algorithms for the generalized median graph problem

Tese de Doutorado apresentada ao Programa

de Pós-Graduação em Computação da Uni-

versidade Federal Fluminense como requisito

parcial para a obtenção do Grau de Dou-

tor em Computação. Área de concentração:

Algoritmos e Otimização

Aprovada em junho de 2018.

Prof'. Luciana Salete Buriol, II-UFRGS

Prof. Rafael Augusto de Melo, IM-UFBA

Niterói

2018

Agradecimentos

Na realização do presente trabalho, contei com o apoio de várias pessoas às quais sou pro-

fundamente grato. Gostaria de deixar expresso os meus agradecimentos: ao orientador desta

tese, Professor Celso Carneiro Ribeiro, pela orientação prestada, pelo seu incentivo, disponibi-

lidade e apoio que sempre demonstrou. A convivência durante todo esse período foi decisiva

para meu desenvolvimento, e para que pudesse alcançar o almejado objetivo de concluir o dou-

torado. Que o fim desta etapa possa ser o início de novos trabalhos conjuntos.

Ao meu irmão, Rafael Maricato Musmanno, pela sua fundamental ajuda em momentos

importantes dessa caminhada. Seu inestimável apoio na arte da programação foi fundamental.

A todos os amigos e colegas que contribuíram, em especial à Philippe Leal, Tiago Santos

(in memoriam) e Julliany Brandão. O apoio e as conversas que tivemos ao longo do tempo

trouxeram mais leveza à essa jornada.

Não poderia esquecer de agradecer à minha família por todo o apoio, pela força e pelo

carinho que sempre me prestaram ao longo de toda a minha vida acadêmica. À minha esposa

por ter caminhado ao meu lado, pela sua paciência, compreensão e ajuda prestada durante a

elaboração do presente trabalho. Além disso, me deu um incentivo a mais para a conclusão do

trabalho, o nascimento do nosso Davi.

Agradeço também aos funcionários da UFF, em especial à Teresa e Hélio, pela sua impor-

tante ajuda durante todos esses anos.

Resumo

O conceito de similaridade entre objetos é fundamental na área de reconhecimento de padrões.
Na chamada "abordagem estrutural", grafos são frequentemente utilizados para representar ob-
jetos. Assim sendo, é preciso definir um meio de medir a similaridade entre dois grafos. Uma
das ferramentas mais utilizadas para realizar essa medição é a distância de edição, que consiste
em medir a distância entre dois grafos de acordo com o grau de distorção necessário para trans-
formar um grafo no outro. O grafo mediano generalizado de um conjunto de grafos S é aquele
que minimiza a soma das distâncias dos grafos de S a ele e que melhor captura as informações
desse conjunto de grafos, podendo ser considerado um representante deste conjunto. O conceito
de grafo mediano já foi aplicado com sucesso em áreas como reconhecimento de símbolos grá-
ficos, identificação biométrica e clusterização de imagens, entre outros. No entanto, computar o
grafo mediano generalizado de um conjunto de grafos é uma tarefa complexa. Por si só, a ver-
são de decisão do problema de cálculo da distância de edição entre dois grafos é NP-Completo.
Algoritmos exatos lidam apenas com grafos de tamanho relativamente pequeno, sendo de pouca
utilidade prática. Nesta tese são propostos três algoritmos aproximados para o problema, um
deles baseado em uma estratégia gulosa e os outros dois baseados nas meta-heurísticas GRASP
e BRKGA, além de dois novos resultados teóricos, um deles servindo de base para uma variação
do algoritmo BRKGA. Os resultados obtidos indicam que os algoritmos podem ser utilizados
para encontrar soluções aproximadas de boa qualidade em tempos computacionais razoáveis.

Palavras-chave: Reconhecimento de padrões, correspondência entre grafos, distância de edi-
ção, algoritmos gulosos, GRASP, BRKGA, grafo mediano.

Abstract

Structural approaches for pattern recognition frequently make use of graphs to represent ob-
jects. The concept of object similarity is of great importance in pattern recognition. Therefore,
it is necessary to define a way to measure the similarity between two graphs. One of the most
used tools to perform this similarity comparison is the graph edit distance, which consists of
measuring the distance between two graphs by the amount of distortion necessary to transform
one graph into the other. The generalized median graph of a set S of graphs is the graph that
minimizes the sum of the distances to the graphs in S and it is the graph that best captures the in-
formation contained in S, and may be regarded as a representative of this set. The median graph
concept has been succesfully applied in areas such as graphic symbol recognition, biometric
identification and image clustering, among others. However, computing the generalized median
graph of a set of graphs is a complex task. By itself, the decision version of the problem of
computing the graph edit distance between two graphs is NP-Complete. Exact algorithms deal
only with graphs of relatively small size, which makes them of not much use in practical situa-
tions. In this thesis three approximate algorithms for the generalized median graph problem are
proposed, one of them based on a greedy strategy and the other two based on the GRASP and
BRKGA metaheuristics. Also, two new theoretical results are presented, one of them serving as
the basis for a variant of the BRKGA heuristic. The results obtained indicate that the algorithms
can be used to find approximate solutions of good quality in reasonable computational times.

Keywords: Pattern recognition, graph matching, edit distance, greedy algorithms, GRASP,
BRKGA, median graph.

List of Figures

2.1 Labeled graph: nodes are identified by 1, 2, 3 and 4. 5

2.2 Graph isomorphism. 6

2.3 The following operations transform graph G into a graph that is isomorphic

to H: delete vertex 1 from G (and remove the two edges adjacent to it), then

reinsert vertex 1, next delete vertex 2 from G (and remove the edge still adjacent

to it), and finally reinsert vertex 2. Deleting and reinserting vertex 1 has cost 2.

The same applies to vertex 2. Therefore, the graph edit distance between G and

H is d(G,H) = 4. 8

2.4 Two labeled graphs G1 and G2 are displayed in (a) and (b), respectively. Their

maximum common subgraph G is shown in (c). We denote by VG1 , VG2 , and VG

the vertex sets of G1, G2, and G, respectively. A subgraph isomorphism from

G to G1 is defined by f : VG→ VG1 with f (1) = 1 and f (2) = 3. A subgraph

isomorphism from G to G2 is defined by g : VG→VG2 with g(1) = 3 and g(2) = 4. 10

2.5 Graphs G1 and G2. 12

2.6 Auxiliary graph associated with graphs G1 and G2. 12

2.7 The maximum clique in the auxiliary graph corresponds to the maximum com-

mon subgraph of G1 and G2. This maximum common subgraph is represented

in G1 by the nodes 1,2 and 4 of VG1 , as shown in (b) and by nodes 1,3 and 4 of

VG2 as shown in (c). 13

2.8 The subgraph isomorphism from MaxSub(G,H) to G is given by function f :

VMaxSub → VG such that f (1) = 3 and f (2) = 1. The subgraph isomorphism

from MaxSub(G,H) to H is given by function G such that g(1) = 1 and g(2) =

2. Any other common subgraph of G and H has less nodes than MaxSub(G,H).

Therefore, the distance between G and H is d(G,H) = 4+ 3− 2× 2 = 3, and

the same result can be obtained through the edit operations. 15

List of Figures vi

2.9 Two labeled graphs G1 and G2 are displayed in (a) and (b), respectively. Their

minimum common supergraph G is shown in (c). We denote by VG1 , VG2 , and

VG the vertex sets of G1, G2, and G, respectively. A subgraph isomorphism from

G1 to G is defined by f : VG1 → VG with f (1) = 1 and f (2) = 2. A subgraph

isomorphism from G2 to G is defined by g : VG2 →VG with g(1) = 1, g(2) = 3,

and g(3) = 4. 16

2.10 Graphs G1, G2, and G3 of set S for instance i1.20. 18

2.11 Maximum common subgraph of set S. 19

2.12 Minimum common supergraph of set S. 19

2.13 G2 and G3 as subgraphs of the minimum common supergraph. 20

3.1 Pseudo-code of the greedy adaptive algorithm. 23

3.2 Pseudo-code of the GRASP heuristic. 24

3.3 Pseudo-code of the greedy randomized adaptive algorithm used in the construc-

tion phase. 25

3.4 Pseudo-code of the local search phase. 26

3.5 Average sum of distances from the best solution to S. 33

3.6 Evolution of the best solution found along 100 GRASP iterations for instance

i05.140 with a total of 140 vertices. 33

3.7 Runtime distribution from 200 runs of 100 GRASP iterations for instance i05.140

with a total of 140 vertices and target value set at 106 (the best known value is

104). 35

3.8 Example of k-NN classification: the test object (circle) must be classified either

to the class of triangles or to the class of squares. If k = 1 (solid line circle),

then it is assigned to the class formed by triangles. If k = 3 (dashed line circle),

then it is assigned to the class formed by squares, since there are two squares

against one triangle inside that circle. 37

3.9 Classification using k-NN algorithm: query is compared with every element of

classes 1 and 2. 38

3.10 Classification using generalized median graph: query is compared only with

classes’ 1 and 2 median graphs. 38

List of Figures vii

5.1 Pseudo-code of the genetic algorithm. 53

5.2 Parameterized uniform crossover. 54

5.3 Population evolution between consecutive generations of a BRKGA 55

5.4 Pseudo-code of the biased random-key genetic algorithm. 56

5.5 BRKGA framework. 57

5.6 Minimum common supergraph of set S. The decoder will convert each chro-

mossome into an induced subgraph of this graph. 59

5.7 Chromossome with 7+1 = 8 genes. The random-keys are real numbers in the

interval [0,1). 59

5.8 First step in the decoding phase: all random-keys are transformed into integer

numbers by c[i]← bc[i]×102c. 59

5.9 Decoded chromossome. The first gene indicates the number of nodes of the

induced subgraph, and the next five positions indicate the nodes of MinSup(S)

that will be in the subgraph. The last two positions are ignored. 59

5.10 The decodification of the chromossome results in an induced subgraph of MinSup(S)

with nodes 0, 1, 3, 4 and 6. 60

5.11 Pseudo-code of Decoder-BRKGA. 61

5.12 Pseudo-code of Decoder-Bounded BRKGA. 63

5.13 Pseudo-code of local search of Bounded BRKGA + LS. 64

5.14 Pseudo-code of LS1. 65

5.15 Pseudo-code of LS2. 65

5.16 Comparing BRKGA with a random multistart heuristic on instance i3.200 . . . 73

5.17 Frequency distribution of the fitness of the chromossomes for the random heu-

ristic. 74

5.18 Frequency distribution of the fitness of the chromossomes for BRKGA. 74

5.19 Average execution times for the BRKGA heuristics. 77

5.20 Runtime distribution from 200 runs of Bounded BRKGA + LS and GRASP for

instance i6.120 with a total of 120 vertices and a target value set at 98 (best

known value is 96). For this instance, Pr(X1 ≤ X2) = 0.12. 84

List of Figures viii

5.21 Runtime distribution from 200 runs of Bounded BRKGA + LS and GRASP for

instance i5.140 with a total of 140 vertices and a target value set at 104 (best

known value is 104). For this instance, Pr(X1 ≤ X2) = 0.59. 85

5.22 Runtime distribution from 200 runs of Bounded BRKGA + LS and GRASP for

instance i9.140 with a total of 140 vertices and a target value set at 115 (best

known value is 115). For this instance, Pr(X1 ≤ X2) = 0.51. 85

5.23 Runtime distribution from 200 runs of Bounded BRKGA + LS and GRASP for

instance i5.180 with a total of 180 vertices and a target value set at 134 (best

known value is 134). For this instance, Pr(X1 ≤ X2) = 0.09. 86

5.24 Runtime distribution from 200 runs of Bounded BRKGA + LS and GRASP for

instance i8.180 with a total of 180 vertices and a target value set at 142 (best

known value is 142). For this instance, Pr(X1 ≤ X2) = 0.13. 86

A.1 Graphs in set S . 97

A.2 Possibilities in the construction of a candidate. 99

List of Tables

2.1 Distances d(Gi,G j). 17

3.1 Results for the instances with 20, 40, and 60 vertices (100 GRASP iterations). . 28

3.2 Results for the instances with 80, 100, and 120 vertices (100 GRASP iterations). 29

3.3 Results for the instances with 140, 160, and 180 vertices (100 GRASP iterations). 30

3.4 Results for the instances with 200 vertices (100 GRASP iterations). 31

3.5 Average improvement in the sum of distances of the best solution found by each

algorithm, with respect to the sum of distances from MinSup(S) and from the

median graph Ĝ to S. 32

3.6 Average improvement in percent by the local search phase. 34

3.7 Classification times in seconds using the approximate generalized median graph,

1-NN, and 3-NN. 39

3.8 Accuracy in classification using the generalized median graph, 1-NN, and 3-NN. 40

4.1 Reduction in the search interval for instances with sizes 20 and 40. 46

4.2 Reduction in the search interval for instances with sizes 60 and 80. 47

4.3 Reduction in the search interval for instances with sizes 100 and 120. 48

4.4 Reduction in the search interval for instances with sizes 140 and 160. 49

4.5 Reduction in the search interval for instances with sizes 180 and 200. 50

5.1 Recommended value for the parameters . 55

5.2 Tuning of parameter: pe = 0.2,0.5 and 0.7. Parameters pm and rhoe were fixed

at 0.1 and 0.7, respectively. 68

5.3 Summary of the criteria for tuning parameter pe. 69

5.4 Tuning of parameter: pm = 0.1,0.2 and 0.3. Parameters pe and rhoe were fixed

at 0.5 and 0.7, respectively. 70

List of Tables x

5.5 Summary of the criteria for the mutation parameter. 71

5.6 Tuning of parameter: rhoe = 0.5,0.7 and 0.9. Parameters pe and pm were fixed

at 0.5 and 0.2, respectively. 72

5.7 Summary of the criteria for tuning parameter rhoe. 73

5.8 Descriptive statistics for random heuristic and BRKGA 75

5.9 Results for the instances with 140 and 160 vertices 75

5.10 Results for the instances with 180 and 200 vertices 76

5.11 Results for the instances with 140 and 160 vertices. 78

5.12 Results for the instances with 180 and 200 vertices. 79

5.13 Results for the instances with 20, 40, and 60 vertices. 80

5.14 Results for the instances with 80, 100, and 120 vertices. 81

5.15 Results for the instances with 140, 160, and 180 vertices. 82

5.16 Results for the instances with 200 vertices. 83

5.17 Probabilities that GRASP finds a solution at least as good as the target value in

a smaller computational time than Bounded BRKGA + LS (instances with sizes

100 to 120). 88

5.18 Probabilities that GRASP finds a solution at least as good as the target value in

a smaller computational time than Bounded BRKGA + LS (instances with sizes

140 to 180). 89

B.1 Instances with number of nodes equal to 20 103

B.2 Instances with number of nodes equal to 40 103

B.3 Instances with number of nodes equal to 60 104

B.4 Instances with number of nodes equal to 80 104

B.5 Instances with number of nodes equal to 100 104

B.6 Instances with number of nodes equal to 120 105

B.7 Instances with number of nodes equal to 140 106

B.8 Instances with number of nodes equal to 160 107

B.9 Instances with number of nodes equal to 180 108

List of Tables xi

B.10 Instances with number of nodes equal to 200 109

Table of Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Goals . 3

1.3 Organization . 3

2 De�nitions and basic concepts 4

2.1 Labeled graphs . 4

2.2 Graph matching . 5

2.2.1 Exact graph matching . 6

2.2.2 Error-tolerant graph matching . 6

2.3 The generalized median graph problem . 8

2.4 Maximum common subgraph problem . 9

2.4.1 Algorithm for computing the maximum common induced subgraph . . 10

2.4.2 Graph edit distance and maximum common subgraph 14

2.5 Minimum common supergraph problem . 15

2.6 Conclusions . 20

3 GRASP heuristic 21

3.1 Greedy adaptive algorithm . 21

3.2 GRASP heuristic . 23

3.3 Experimental results . 25

3.4 Statistical evaluation: Nonparametric tests . 33

Table of Contents xiii

3.4.1 Sign test . 34

3.4.2 Wilcoxon signed-rank test . 35

3.5 Application to classification . 36

3.6 Conclusions . 40

4 Bounds on the SOD of a graph 41

4.1 Bounds on the SOD of a graph . 41

4.2 Reduction of the search space . 43

4.3 Application to the heuristics . 51

5 Biased random-key genetic algorithms 52

5.1 Genetic algorithms . 52

5.2 BRKGA for the generalized median graph problem 56

5.2.1 Decoder . 57

5.3 Bounded BRKGA . 61

5.3.1 Decoder . 62

5.4 Bounded BRKGA with local search . 63

5.5 Computational experiments . 65

5.5.1 Tuning . 66

5.5.1.1 Size of the elite population - pe 67

5.5.1.2 Fraction of the population to be replaced by mutants - pm . . 69

5.5.1.3 Probability of inheriting an allele from a parent - rhoe 71

5.5.2 Experiments . 73

5.6 Conclusions . 87

6 Concluding remarks 90

References 92

Table of Contents xiv

Appendix A -- Computing the exact generalized median graph - Special case 97

Appendix B -- Instances 103

Chapter 1

Introduction

1.1 Motivation

Two kinds of approaches are often used in pattern recognition problems. In the case of statistical

approaches, objects are represented by vectors in Rn representing a set of measures. The advan-

tages of using this type of representation come from the well defined mathematical operations

in vector spaces (such as sum, product or distance between two vectors) and the efficiency with

which it is possible to compute these operations. However, there are disadvantages in using this

vector representation. It is not possible, for example, to represent relationships between parts

of an object. Besides, objects that have different sizes and complexities must be represented by

vectors of the same size.

Structural approaches for pattern recognition frequently make use of graphs to represent

objects. They make it possible to represent relationships between different parts of the same

object or pattern. The use of graphs also allows the representation of objects with a different

number of items or parts by graphs with different numbers of vertices and edges. One possible

disadvantage of this approach is the fact that there is no standard mathematical structure in the

graph domain. For example, there is no standard way to sum or multiply two graphs.

One step towards the combination of these two approaches consists in using graphs to re-

present objects and associating attributes (labels) to their vertices and edges. Hence, instead of

using the tradidional definition of a graph as a set of vertices and edges, in pattern recognition

we work with the concept of a labeled graph, which is a quadruple G = (V,E,µ,υ), where V is

a set of vertices, E is the set of edges, µ is a function that associates labels to the vertices and υ

is a function that associates labels to the edges [15].

The concept of similarity between objects plays a fundamental role in the area of pattern re-

1.1 Motivation 2

cognition. Therefore, it is necessary to define a means of measuring similarity between graphs,

that is, we must find a way to compare graphs and calculate their degree of similarity. This

process of comparing graphs is called graph matching. Conte et al.[16] have noticed that graph

matching techniques have been successfully applied to many areas, such as biology and bio-

medicine, biometric identification, document processing, and video analysis. As an example,

in [35] a graph matching identification approach was applied for the retrieval of diatoms, a

unicellular algae found in water and other places. The retrieval is based on the matching of

labeled grid graphs (a regular, rectangular arrangement of nodes overlayed on an image) car-

rying texture information of the underlying diatom. Each node of the graph is labeled with

texture features describing a rectangular sub-region of the object. Based on the grid graph re-

presentation, the problem of diatom identification can be formulated as one of labeled graph

matching, where the goal is to find an optimal one-to-one correspondence between the nodes of

an input graph and the nodes of a graph stored in an image database. Other examples of graph

matching applications include 2D and 3D image analysis [65], document processing [64], bio-

metric identification [24, 43, 45], image databases [9, 61], and video analysis [62]; see also [36]

and [67].

The graph edit distance is one of the most well-known and used tools in graph matching.

The basic idea of the edit distance is to allocate costs to edit operations (insertion and deletion

of vertices and insertion and deletion of edges) necessary to transform one labeled graph into

another. Given a set of objects, the concept of median is often used to indicate the element

that best represents the set, that is, the one that best captures the information contained in the

elements. The median graph (also called set median graph) is a widely used concept when one

wants to find a representative of a set of graphs. Given a set S of graphs, the median graph Ĝ is

the graph that has the smallest sum of distances (SOD) to the graphs in S, i.e:

Ĝ = argminG′∈S ∑
G∈S

d(G′,G)

where d(G′,G) denotes the edit distance between G′ and G. The median graph of S is therefore

one of its members. In addition, the generalized median graph of S is defined as the graph

that has the smallest sum of distances to the graphs in S, independently of belonging to S or

not. The concept of median graph has a great potential for applications, with possible uses in

classification problems or in any other situation where one wants to find a representative to a

set of graphs [48, 49].

1.2 Goals 3

1.2 Goals

The main goal of this work is to develop heuristics for computing an approximate generalized

median graph for a set of graphs. The few existing exact algorithms for the problem deal with

graphs with at most 20 vertices. Another goal of this work is to develop heuristics that can

deal with larger graphs in reasonable computational times, without losing the quality of the

solutions. In order to achieve these goals, three heuristics were proposed. One of them is based

on a greedy strategy and the other two are based on the GRASP and BRKGA meta-heuristics.

This work also contributes with two theoretical results, one of them serving as the basis of a

variant of the BRKGA heuristic.

1.3 Organization

In Chapter 2, the basic concepts and notations that will be used throughout the work are presen-

ted. The concepts of graph and subgraph are defined and a brief discussion of exact and inexact

graph matching is presented. The graph edit distance is also introduced. It will be used as

the main tool for computing the similarity between two graphs. Finally, the concept of median

graph is presented along with some of its properties. The chapter also contains a discussion on

the complexity of the problem. In Chapter 3, we present the greedy adaptive algorithm and the

GRASP based heuristic. These two algorithms are based on a theoretical result, also presented

in the chapter. This proposition works in two ways: it is used to speed up the computation

of the distace between two graphs and it serves as the basis for the development of a greedy

rule. The instances in which both heuristics will be tested are also presented in this chapter. A

statistical comparison between the two algorithms is performed and the chapter concludes with

an application to a classification task based on the median graph concept. Chapter 4 presents a

theoretical proposition that gives a bound to the SOD of a graph, with the bound being based

only on the number of nodes of the graph and on the number of graphs in the set. Chapter 5 pre-

sents the BRKGA based heuristics. The framework used for the implementation of the BRKGA

is described, and a variation of this heuristic, based on the theoretical proposition presented in

Chapter 4, is also presented. The results of a comparison between the variants of BRKGA and

GRASP are shown in the final part of the chapter. In Chapter 6, the conclusions and possible

future works are presented. Appendix A presents a theoretical proposition that shows how it

is possible to determine the exact generalized median graph of set of graphs in certain special

cases. In Appendix B, the instances used in this work are presented.

Chapter 2

De�nitions and basic concepts

In this chapter, the basic concepts for the definition of the generalized median graph problem

are described. In Section 2.1, we define the concept of labeled graphs. In order to understand

the origin and the importance of the problem, graph matching concepts are explained in Section

2.2. Section 2.3 gives the formal definition of the median graph and of the generalized median

graph of a set of graphs. Sections 2.4 and 2.5 explore algorithms for solving the maximum

common subgraph problem and the minimum common supergraph problem of two graphs,

which are used as the main building blocks of the heuristics proposed in the two next sections

for the generalized median graph problem.

2.1 Labeled graphs

A graph G = (V,E) is defined by a set V of nodes and a set E of edges (connecting pairs of

vertices), with edges possibly having weights associated to them. This definition is not always

adequate to represent objects from the real world. In order to make graphs to better represent

real objects, more information should be associated to its nodes and edges. With this goal in

mind, we associate labels to the nodes and edges of a graph.

Definition 1 (Labeled graph) Given a finite attribute set L , a labeled graph G = (V,E,µ,υ) is

a quadruple defined by a set V of vertices, a set E ⊆V ×V of edges, a function µ : V → L that

associates an attribute value in L to each vertex in V , and a function υ : E→ L that associates

an attribute value in L to each edge in E.

Unless otherwise stated, we refer to a labeled graph in the remainder of this text simply by

a graph. There is no restriction on the nature of set L . In most cases, L = Rn or L is formed

2.2 Graph matching 5

by a discrete set of labels. If necessary, L may also include a special label ε to indicate that

no specific label is assigned to a node or edge. If all elements of the graph are labeled with ε,

the graph is called unlabeled. A weighted graph is a special case of a labeled graph, where all

nodes are labeled with ε and each edge is labeled with a real number. In this work, only simple

graphs will be considered.

Figure 2.1: Labeled graph: nodes are identified by 1, 2, 3 and 4.

Figure 2.1 shows a labeled graph. In this case, L = {0,1,A,B,C,ε}, V = {1,2,3,4},
E = {{1,2},{1,3},{1,4}}, µ(1) = A, µ(2) = ε, µ(3) = µ(4) = C, υ({1,2}) = υ({1,4}) = 1

e υ({1,3}) = 0.

2.2 Graph matching

In many fields, like chemistry or molecular biology, there are applications in which it is ne-

cessary to process images and locate regions in these images. When this processing is done

automatically by a computer, without the help of a specialist, an efficient way to represent these

images is through the use of graphs [8].

In these applications, frequently there are two images: a model and a test image. The idea

is to compare these two images and verify the level of similarity between them, so that the test

image can be classified correctly. Therefore, it is necessary to compare the graph representation

of the model and test images. That is the main goal in graph matching: verify the similarity

between the structures of two graphs. Depending on the reason for doing this matching, it is

possible to make a distinction between exact graph matching and error-tolerant graph matching.

2.2 Graph matching 6

2.2.1 Exact graph matching

The goal in exact graph matching is to determine if two graphs, or parts of these two graphs,

are identical in terms of their structure and labels [27]. Let G1 = (V1,E1,µ1,υ1) and G2 =

(V2,E2,µ2,υ2) be two labeled graphs.

Definition 2 (Graph isomorphism) G1 and G2 are said to be isomorphic if there is a bijection

f : V1→ V2 such that: (i) µ1(u) = µ2(f (u)), ∀u ∈ V1; (ii) for each edge e1 = (u,v) ∈ E1, there

exists an edge e2 = (f (u), f (v))∈ E2 with υ1(e1) = υ2(e2); and (iii) for each edge e2 = (u,v)∈
E2, there exists an edge e1 = (f−1(u), f−1(v)) ∈ E1 with υ1(e1) = υ2(e2).

Figure 2.2 shows two labeled graphs G and H that are isomorphic. Function f : VG→ VH

defines the isomorphism such that f (1) = 2, f (2) = 1 e f (3) = 3, where VG and VH represent,

respectively, the node sets of G and H.

(a) Graph G (b) Graph H

Figure 2.2: Graph isomorphism.

Related to the graph isomorphism problem is the subgraph isomorphism problem, in which

the goal is to verify if a graph is isomorphic to a part of another graph, the maximum com-

mon subgraph and the minimum common supergraph problems. These three problems will be

formally defined and explained in Sections 2.4 and 2.5.

2.2.2 Error-tolerant graph matching

The methods used in exact graph matching have very rigorous conditions, which make them

inadequate for many real world problems. In real world applications, when an object or image

is represented by a graph, it is possible that a distortion be introduced in the representation

of the object or image (due to some error in the process of acquiring the image, for example).

Therefore, because of the possibility of the distortions, the same object may have different graph

representations. In cases like this, the isomorphism concept would indicate that the objects are

2.2 Graph matching 7

different, in spite of the great similarity between the two graphs. Therefore, the concept of

exact matching is not adequate to this type of situation. Thus, it is necessary to introduce some

error-tolerance in the graph matching process.

Error-tolerant graph matching focus on measuring the similarity between two graphs, ins-

tead of simply verifying wheter they have identical parts or not. It is necessary, then, to find a

method to measure the dissimilarity between two graphs. One of the most used ways to compute

the dissimilarity between two graphs is the graph edit distance.

The graph edit distance measures the dissimilarity between two graphs by the minimum

amount of distortion required to transform one graph into the other [27]. The edit operations

used to transform the graph are: insertion or deletion of nodes, insertion or deletion of edges

and substitutions of nodes and edges. Given a pair of graphs G1 and G2, there is a sequence of

edit operations (an edit path) p(G1;G2) = (o1;o2; . . . ;om) that transforms G1 into a graph that

is isomorphic to G2, where each oi is an edit operation, i = 1; . . . ;m. Given two graphs G1 and

G2, there might exist several edit paths that transform G1 in G2. The set composed of all these

paths will be denoted by P(G1;G2). In order to make a quantitative assessment of these paths,

it is necessary to associate costs to the edit operations, i.e, it is necessary to define a function

that associates costs to the operations of insertion, deletion and substitution of nodes and edges.

The cost of the least costly path will be the distance between the two graphs. Formally, we have:

Definition 3 Given two labeled graphs G1 = (V1;E1;µ1;υ1) and G2 = (V2;E2;µ2;υ2), the edit

distance between G1 and G2 is given by the sum of the costs of the edit operations of the least

costly path that transforms G1 in G2.

The computation of the graph edit distance between two graphs is NP-hard [68, 69] and

therefore exact algorithms to compute the edit distance can only be used for relatively small

graphs. In this work, we use the graph edit distance to measure the similarity between two

graphs, as proposed in [11] and used in [27]. Vertex insertions or deletions have a unit cost,

while edge insertions or deletions have a null cost. The substitution of a vertex by another

has a null cost if both have the same attribute, otherwise the substitution cost is assumed to be

arbitrarily large. The same applies to the substitution cost of an edge by another. In [14] it

was shown that, under this cost function, there is always an optimal path between two given

graphs that involves only vertex and edge deletions, insertions, or substitutions with identical

attributes. Figure 2.3 illustrates the computation of the graph edit distance between two labeled

graphs G and H. In [52] an example of an approximate algorithm to compute this distance is

presented.

2.3 The generalized median graph problem 8

1

2 3

A

B C

(a) Labeled graph G

1

2 3

A

B C

(b) Labeled graph H

Figure 2.3: The following operations transform graph G into a graph that is isomorphic to H:
delete vertex 1 from G (and remove the two edges adjacent to it), then reinsert vertex 1, next
delete vertex 2 from G (and remove the edge still adjacent to it), and finally reinsert vertex 2.
Deleting and reinserting vertex 1 has cost 2. The same applies to vertex 2. Therefore, the graph
edit distance between G and H is d(G,H) = 4.

2.3 The generalized median graph problem

In this section, we formally introduce the concepts of median and generalized median graphs,

followed by the formulation of the generalized median graph problem.

Definition 4 (Median graph) Given a set S = {G1, . . . ,Gn} of labeled graphs defined over an

alphabet L , its median graph is a graph Ĝ = argmin{∑n
i=1 d(G,Gi) : G ∈ S} that minimizes the

sum of its distances to all graphs in S.

The median graph Ĝ of S is necessarily one of its elements. If one seeks a representative

graph that is not restricted to belonging to S, the following definition applies:

Definition 5 (Generalized median graph) Given a set S = {G1, . . . ,Gn} of labeled graphs de-

fined over an alphabet L , its generalized median graph is any graph G= argmin{∑n
i=1 d(G,Gi) :

G∈U} that minimizes the sum of its distances to all graphs in S, where U is the set of all labeled

graphs defined over the alphabet L .

Therefore, the generalized median graph G of S is any graph that minimizes the sum of its

distances to the graphs in S, regardless of belonging to S or not.

The median graph can be computed in O(n2δ), where n is the number of graphs in S and

δ is the complexity of the computation of the distance function d(.). Since the computation of

the graph edit distance between two graphs is NP-hard [68, 69], then the median graph problem

considering the graph edit distance cannot be solved in polynomial time, unless P=NP. Finding

the median graph is NP-hard even for strings [19].

2.4 Maximum common subgraph problem 9

The computation of the generalized median graph is even more time consuming, because

it does not depend only on the complexity of the distance function d(.), but also on the size

of the search space U . State-of-the-art exact algorithms at the time of writing cannot deal

with large graphs, with their application being restricted to small problems involving sets of

graphs with no more than 25 vertices altogether. Earlier approximate approaches to find the

generalized median graph include greedy [41] and genetic [44] algorithms. In [27] and [28] an

exact approach for dealing with graphs with a total of up to 25 nodes was developed. In [29]

Ferrer et al. proposed a new genetic algorithm for the case of a special class of graphs for which

it is possible to compute the distance between any two graphs in polynomial time. This genetic

algorithm can handle problem instances with up to a total of 1000 nodes. They also proposed

exact and approximate approaches based on graph embeddings [30, 31]. Other approaches use

the relationship between common-labeling and the median graph to compute and find bounds

on the cost of the median graph [54].

The next two sections explore algorithms for solving the maximum common subgraph pro-

blem and the minimum common supergraph problem of two graphs, which are used as the main

building blocks of the two heuristics proposed later in this work for the generalized median

graph problem.

2.4 Maximum common subgraph problem

The concept of maximum common subgraph is central to this work. This section presents the

main concepts related to it.

Definition 6 (Subgraph) Let G1 = (V1,E1,µ1,υ1) and G2 = (V2,E2,µ2,υ2) be two labeled

graphs. G1 is said to be a subgraph of G2 if and only if V1 ⊆ V2, E1 ⊆ E2, µ1(u) = µ2(u),

∀u ∈V1, and υ1(e) = υ2(e), ∀e ∈ E1. In this case, we say that G1 ⊆ G2.

When E1 = E2 ∩ (V1×V1), we say that G1 is the induced subgraph of G2 by V1. Given a

labeled graph G = (V,E,µ,υ), a subset V ′ ⊆V uniquely determines an induced subgraph G′ of

G, usually represented by G′ = G(V ′). When G1 is a subgraph of G2, we say that G1 ⊆ G2.

Let G1 = (V1,E1,µ1,υ1) and G2 = (V2,E2,µ2,υ2) be two labeled graphs.

Definition 7 (Subgraph isomorphism) There exists a subgraph isomorphism from G1 to G2

if there exists an induced subgraph G ⊆ G2 and an injection f : V1 → V2 defining a graph

isomorphism from G1 to G.

2.4 Maximum common subgraph problem 10

Definition 8 (Common subgraph) A labeled graph G is a common subgraph of G1 and G2 if

and only if there is a subgraph isomorphism from G to G1 and another from G to G2.

Given a graph G = (V,E,µ,υ), the standard notation |V | is used to represent the number of

nodes of G. For ease of notation, we also use the symbol #(G) for the number of nodes of G.

Definition 9 (Maximum common induced subgraph) A common induced subgraph G of G1

and G2 is maximum if all other common subgraphs of G1 and G2 have at most #(G) vertices.

The decision version of the problem of finding a maximum common subgraph is proven to

be NP-complete [38] by a reduction from the maximum clique problem. Figure 2.4 illustrates

two labeled graphs G1 and G2 and their maximum common subgraph. The maximum common

subgraph of two graphs may be computed by a backtrack strategy [46]. Alternatively, one may

seek a maximum clique in an auxiliary graph built from G1 and G2, which is then transformed

into the maximum common subgraph [6, 22]. These three exact algorithms have the same time

complexity O((|V2|+ 1)!/(|V2| − |V1|+ 1)!). They have been compared in [13, 17], with the

numerical results indicating no clear advantage of one algorithm over the others.

1

2 3

A

C B

(a) Labeled graph G1

1

D

2 E

3 A

5 A

4 B

(b) Labeled graph G2

 1 2

A B

(c) Maximum common subgraph G

Figure 2.4: Two labeled graphs G1 and G2 are displayed in (a) and (b), respectively. Their
maximum common subgraph G is shown in (c). We denote by VG1 , VG2 , and VG the vertex
sets of G1, G2, and G, respectively. A subgraph isomorphism from G to G1 is defined by
f : VG→VG1 with f (1) = 1 and f (2) = 3. A subgraph isomorphism from G to G2 is defined by
g : VG→VG2 with g(1) = 3 and g(2) = 4.

2.4.1 Algorithm for computing the maximum common induced

subgraph

In the following, we use the algorithm of Durand-Pasari [22] to compute the maximum common

induced subgraph of two graphs G1 and G2 and we denote its output by MaxSub(G1,G2). Given

2.4 Maximum common subgraph problem 11

the two graphs G1 and G2, the first step of the Durand-Pasari algorithm is the construction of

an auxiliary (undirected) graph whose nodes correspond to pairs (n1,n2) of nodes of the two

original graphs, where n1 ∈ V1, n2 ∈ V2, and µ1(n1) = µ2(n2). Edges of the auxiliary graph

represent the compatibility between pairs of nodes: the node corresponding to the pair (n1,n2)

is connected to the node corresponding to the pair (m1,m2) if and only if edge (n1,m1) of G1

has the same label of edge (n2,m2) of G2. Each clique in the auxiliary graph corresponds to a

common subgraph of G1 and G2 and vice versa. Therefore, the maximum common subgraph of

G1 and G2 can be obtained by finding the maximum clique in the auxiliary graph. A common

(but not necessarily maximum) subgraph of a set S = {G1, . . . ,Gn} of graphs may be obtained

by the repeated pairwise application of the algorithm of Durand-Pasari to the graphs in S. In

this case, we denote by MaxSub(S) the common subgraph so obtained.

To illustrate the functioning of the Durand-Pasari algorithm, consider graphs G1 and G2

shown in Figure 2.5. Its auxiliary graph is shown in Figure 2.6. The nodes in this graph are

pairs (n1,n2), where n1 ∈V1 and n2 ∈V2 and µ1(n1) = µ2(n2). For instance, pair (1,3) is a node

of this auxiliary graph, since node 1 belongs to V1, node 3 belongs to V2 and µ1(1) = µ2(3) = A.

An edge exists between nodes (1,3) and (2,4) since edges {1,2} ∈ E1 and {3,4} ∈ E2 have the

same label. Also, the Durand-Pasari algorithm considers that all non-existing edges are labeled

with a null label ε. Therefore, in the auxiliary graph there is an edge between nodes (3,2)

and (4,1), since {3,4} /∈ E1 and {2,1} /∈ E2. Every clique in this auxiliary graph corresponds

to a common subgraph of G1 and G2, and the maximum clique corresponds to the maximum

common subgraph of G1 and G2.

The maximum clique in this auxiliary graph is composed of nodes (1,3),(2,4) and (4,1),

as shown in Figure 2.7(a). To convert this clique into the correspondent maximum common

subgraph, each node of the maximum clique of the auxiliary graph should be split in its coordi-

nates. The first coordinate of each node will represent a node from G1 and the second coordinate

indicates a node from G2. By selecting the first coordinates of each pair in the clique, we have

that the maximum common subgraph of G1 and G2 is represented in G1 by the subgraph of G1

induced by the subset of nodes {1,2,4} ∈VG1 , as shown in Figure 2.7(b). In the same way, this

maximum common subgraph is representend in G2 by the subgraph of G2 induced by the subset

of nodes {3,4,1} ∈VG2 , as presented in Figure 2.7(c).

2.4 Maximum common subgraph problem 12

1

2

4

3

A D

B

C

+2 -1

-1

(a) Labeled graph G1

1 2

4 3

C

A

D

B

5

D

-1 +4

+2

+2

(b) Labeled graph G2

Figure 2.5: Graphs G1 and G2.

(1,3) (3,5)

(2,4) (4,1)

(3,2)

Figure 2.6: Auxiliary graph associated with graphs G1 and G2.

2.4 Maximum common subgraph problem 13

(1,3) (3,5)

(2,4) (4,1)

(3,2)

(a) Maximum clique in the auxiliary graph

1

2

3

4

A

B

C

D

+2 -1

-1

(b)

1 2

4 3

C

A

D

B

5
D

-1 +4

+2

+2

(c)

Figure 2.7: The maximum clique in the auxiliary graph corresponds to the maximum common
subgraph of G1 and G2. This maximum common subgraph is represented in G1 by the nodes
1,2 and 4 of VG1 , as shown in (b) and by nodes 1,3 and 4 of VG2 as shown in (c).

2.4 Maximum common subgraph problem 14

2.4.2 Graph edit distance and maximum common subgraph

As presented in Section 2.2, as for the cost of the edit operations used in the graph edit distance,

vertex insertions or deletions have a unit cost, while edge insertions or deletions have a null cost.

The substitution of a vertex by another has a null cost if both have the same attribute, otherwise

the substitution cost is assumed to be arbitrarily large. The same applies to the substitution cost

of an edge by another. In [27] it was shown that the graph edit distance between two graphs G1

and G2 under the above operation costs can be computed as

d(G1,G2) = #(G1)+#(G2)−2 ·#(MaxSub(G1,G2)),

where #(MaxSub(G1,G2)) denotes the number of vertices in the maximum common induced

subgraph of G1 and G2 obtained by the algorithm of Durand-Pasari. This is the formula that will

be used to compute all the distances between two graphs in this work. This formula illustrates

the idea that, the more similar the graphs (the larger their maximum common induced subgraph

is), the smaller their distance will be. As an example, consider graphs G and H in Figure 2.8.

Graph G has four nodes and graph H has three nodes. The maximum common induced subgraph

between G and H is the graph formed by a node with a the label A connected to another node

with label C. Therefore, #(MaxSub(G,H)) = 2. Thus, the distance between G and H is given

by d(G;H) = 4+3−2×2 = 3. The same results can be obtained using the edit operations. The

least cost path to transform graph G into H consists of deleting nodes 2 and 4 of VG (together

with the edges that are incident to them), inserting a node with a label C and inserting an edge

connecting this new node to node 1 of VG. The total cost of these operations is 3, the same result

obtained using the formula.

2.5 Minimum common supergraph problem 15

4 2

1 3
C

A

D
B

(a) Graph G

3

2 1
C

A

C

(b) Graph H

2 1
C A

(c) Maximum common indu-

ced subgraph of G and H

Figure 2.8: The subgraph isomorphism from MaxSub(G,H) to G is given by function f :
VMaxSub→VG such that f (1)= 3 and f (2)= 1. The subgraph isomorphism from MaxSub(G,H)
to H is given by function G such that g(1) = 1 and g(2) = 2. Any other common subgraph of
G and H has less nodes than MaxSub(G,H). Therefore, the distance between G and H is
d(G,H) = 4+3−2×2 = 3, and the same result can be obtained through the edit operations.

2.5 Minimum common supergraph problem

The concept of a minimum common supergraph of two or more graphs will play a fundamental

role in this work. We start this section with the definition of a common supergraph of two

2.5 Minimum common supergraph problem 16

labeled graphs:

Definition 10 (Common supergraph) A graph G is a common supergraph of G1 and G2 if and

only if there is a subgraph isomorphism from G1 to G and another from G2 to G.

Definition 11 (Minimum common supergraph) A common supergraph G of G1 and G2 is

minimum if all other common supergraphs of G1 and G2 have at least #(G) vertices.

In [14] an exact algorithm to compute the minimum common supergraph of two graphs G1

and G2 was proposed. In the following, we denote the output of this algorithm by MinSup(G1,G2).

In fact, in [14] it was shown that the minimum common supergraph problem can be solved by

maximum common subgraph computations. Figure 2.9 illustrates two labeled graphs G1 and

G2 and their minimum common supergraph. A common (but not necessarily minimum) super-

graph of a set S = {G1, . . . ,Gn} of graphs may be obtained by the pairwise repeated application

of the algorithm of Bunke [14] to the graphs in S. In this case, we denote by MinSup(S) the

common supergraph so obtained. For more details on the computation of the minimum common

supergraph, see [50].

1 2

A B

(a) Labeled graph G1

1 2

3

A

E

D

(b) Labeled graph G2

1 2 3

4

A D

E

B

(c) Minimum common supergraph

Figure 2.9: Two labeled graphs G1 and G2 are displayed in (a) and (b), respectively. Their
minimum common supergraph G is shown in (c). We denote by VG1 , VG2 , and VG the vertex
sets of G1, G2, and G, respectively. A subgraph isomorphism from G1 to G is defined by
f : VG1 →VG with f (1) = 1 and f (2) = 2. A subgraph isomorphism from G2 to G is defined by
g : VG2 →VG with g(1) = 1, g(2) = 3, and g(3) = 4.

Let S = {G1, . . . ,Gn} be a set of labeled graphs defined over an alphabet L . The sum of

distances from a graph G to S is given by

SOD(G,S) =
n

∑
i=1

d(G,Gi),

2.5 Minimum common supergraph problem 17

where d(G,Gi) is the graph edit distance between G and Gi, for i = 1, . . . ,n. Therefore, a gene-

ralized median graph of S is given by

G = argmin{SOD(G,S) : G ∈U},

where U is the set of all labeled graphs defined over the alphabet L . The generalized median

graph G of S satisfies

#(MaxSub(S))≤ #(G)≤ #(MinSup(S)).

Furthermore, let G′ be the graph induced in MinSup(S) by a subset V ′ of its vertices.

Let G′′ be any subgraph of G′ with the same vertex set V ′. In [27] it was demonstrated that

SOD(G′,S) ≤ SOD(G′′,S). This result naturally suggests to consider the search space for the

generalized median graph of S to be formed by all subgraphs that can be induced in MinSup(S)

having no fewer vertices than MaxSub(S). Both the adaptive greedy algorithm and the GRASP

heuristic proposed in the next sections will begin by computing MinSup(S) as their initial so-

lution, followed by the evaluation of candidate solutions that will be subgraphs that can be

induced in MinSup(S).

We illustrate the above definitions with one of the instances that will be used in the com-

putational experiments that will be reported in Chapter 3. Instance i1.20 is composed of three

graphs illustrated in Figure 2.10, i.e., S = {G1,G2,G3}. Graph G1 corresponds to the graph

2128 in the IAM Graph Database Repository [12, 55], G2 corresponds to graph 6497, and G3

to graph 13072. The total number of nodes in this instance is ∑
3
i=1 #(Gi) = 20.

Table 2.1 shows the distances between all pairs of graphs in S, as well as the sum of dis-

tances SOD(Gi,S) from each graph Gi to S, for i = 1,2,3. Graph G3 is the median graph of S,

since it presents the smallest sum of distances to all other graphs in S.

Table 2.1: Distances d(Gi,G j).

Graphs G1 G2 G3 ∑
3
j=1 d(Gi,G j)

G1 0 9 8 17
G2 9 0 7 16
G3 8 7 0 15

Figure 2.11 shows the maximum common subgraph MaxSub(S) of set S. It is a subgraph

of G1, G2, and G3, and there is no other common subgraph of them with a higher number of

nodes.

2.5 Minimum common supergraph problem 18

O

S

3
7

9

O

C

C

C

C

C

C

+1

+1

+1
+1

+1

+1

+2

+2

+2

4

8

1 6

5

2

(a) Graph G1

S

C

+2

1

2
+1

3

4

5

+1

O

N +1

6

C

+1

+1

C

(b) Graph G2

C

C

+1

1

2

3

4 5

+1

+2
+2

C
O

O

(c) Graph G3

Figure 2.10: Graphs G1, G2, and G3 of set S for instance i1.20.

2.5 Minimum common supergraph problem 19

C C
+1

21

Figure 2.11: Maximum common subgraph of set S.

Figure 2.12 shows the minimum common supergraph MinSup(S). We observe that the size

of the minimum common supergraph grows quickly with the number of nodes of the graphs in

S.

O

S

3
7

9

O

C

C

C

C

C

C

+1

+1

+1
+1

+1

+1

+2

+2

+2

4

8

1 6

5

2

10
O

+1

+1

13

+2

O

14

C

+2

+1

+2

S

12

11

+1

+1
N

Figure 2.12: Minimum common supergraph of set S.

Since this graph is a supergraph of all three graphs in S, G1, G2 and G3 are subgraphs of

this graph. Figure 2.13 shows in blue the edges of graph G2 as they appear in the minimum

common supergraph and, in red, the edges of graph G3.

2.6 Conclusions 20

O

S

7
O

C

C

C

C

C

C

+1

+1

+1
+1

+1

+1

+2

+2

+2

4

8

1 6

5

2

10
O

+1

+1

13

+2

O

14

C

+2

+1

+2

S

12

11

+1

+1
N

3

9

Figure 2.13: G2 and G3 as subgraphs of the minimum common supergraph.

The concepts presented in this chapter, especially the maximum common induced subgraph

of two graphs and the minimum common supegraph of a set of graphs will have a fundamental

role in the proposed heuristics.

2.6 Conclusions

In this chapter, the main concepts related to the median graph problem were presented. The

formula that computes the distance between two graphs, obtained by assigning particular costs

to edit operations, was also presented. The following chapter presents the first heuristics deve-

loped for the computation of approximate generalized median graphs.

Chapter 3

GRASP heuristic

In this chapter, we present two of the heuristics developed for finding an approximate generali-

zed median graph of a set of graphs. An adaptive greedy algorithm is presented in Section 3.1,

while a GRASP heuristic is described in Section 3.2. Computational experiments reporting

experimental results indicating that the proposed heuristics can be used to obtain good appro-

ximate solutions for the generalized median graph problem in reasonable computation times

are presented in Section 3.3. These results show that good approximations to the generalized

median graph can be effectively computed by the heuristics proposed in this chapter, making

it a better representation than the median graph to be used in a number of relevant pattern re-

cognition applications. Section 3.4 evaluates the statistical significance of the results obtained

by the heuristics. Section 3.5 illustrates an application of the generalized median graph related

to a classification problem, whose numerical results support the conclusion that the generalized

median graph is a good representative of graph sets for some pattern recognition or machine

learning problems.

3.1 Greedy adaptive algorithm

The computation of the graph edit distance

d(G,H) = #(G)+#(H)−2 ·#(MaxSub(G,H))

between two graphs G and H is expensive, since it depends on the computation of their maxi-

mum common subgraph. Therefore, in the computation of the generalized median graph one is

interested in avoiding maximum common subgraph computations whenever possible.

For the sake of explaining the evaluation of neighbors in the heuristics to be presented, we

3.1 Greedy adaptive algorithm 22

assume that the distance d(G,H) between G and H has been already computed. Let G(−v) be

the graph obtained from G by removing any of its vertices v. Musmanno [50] has shown that if

v is not a vertex of MaxSub(G,H), then d(G(−v),H) = d(G,H)−1. Otherwise, d(G(−v),H) =

d(G,H)± 1. In the last case, d(G(−v),H) = d(G,H)− 1 if and only if G and H have another

maximum common subgraph with the same number of vertices of MaxSub(G,H) that does not

contain v.

Let MinSup(S) be the minimum common supergraph of the set of graphs S = {G1, . . . ,Gn}.
Since MinSup(S) is a supergraph of each Gi, then

MaxSub(MinSup(S),Gi) = Gi

for each i = 1, . . . ,n. Furthermore,

SOD(MinSup(S),S) =
n

∑
i=1

d(MinSup(S),Gi).

Let MinSup(S)(−v) be the graph obtained by removing vertex v from MinSup(S) and Lv =

{i = 1, . . . ,n : v ∈MaxSub(Gi,MinSup(S))}. Assuming that the removal of vertex v increases

the edit distance by 1 for each Gi : i∈Lv, we obtain the following estimate for SOD(MinSup(S)(−v),S):

SOD(MinSup(S)(−v),S) =

= SOD(MinSup(S),S)− (n−|Lv|)+ |Lv|=

= SOD(MinSup(S),S)−n+2 · |Lv|.

A greedy algorithm for the generalized median graph problem is obtained by removing the

vertices v of MinSup(S) one by one in the decreasing order of the estimates SOD(MinSup(S)(−v),S).

The best solution is updated whenever the removal of a vertex improves the incumbent.

A greedy adaptive algorithm can be derived from this greedy algorithm. In this case, every

time a vertex is removed from the current solution, all estimates are recomputed from the new

solution and the next vertex to be removed will be the one with the smallest updated estimate.

The algorithm stops when all candidate vertices have been considered and examined for elimi-

nation. The pseudo-code for this algorithm is presented in Figure 3.1. In line 1, the minimum

common supergraph of S is set as the CurrentSolution, and its SOD is set as the CurrentSOD in

line 2. In line 3 the set Candidates is composed of all the nodes in CurrentSolution. Then, in

line 4, for each vertex v in MinSup(S), the estimate of the reduction on the SOD of MinSup(S)

when vertex v is removed, SOD(MinSup(S)(−v),S), is computed. In lines 5 through 14, the

3.2 GRASP heuristic 23

begin GREEDY-ADAPTIVE
1 Set CurrentSolution←MinSup(S);
2 Set CurrentSOD← SOD(MinSup(S),S);
3 Let Candidates be the vertex set of CurrentSolution;
4 Compute the estimate SOD(MinSup(S)(−v),S) for each vertex v of MinSup(S);
5 while Candidates 6= /0 do;
6 u← argmin{SOD(CurrentSolution(−v),S) : v ∈ Candidates};
7 Let Solution be the graph obtained by removing vertex u from CurrentSolution;
8 if SOD(Solution,S)< SOD(CurrentSolution,S) then
9 CurrentSOD← SOD(Solution,S);
10 CurrentSolution← Solution;
11 end-if;
12 Candidates← Candidates\{u};
13 Update SOD(CurrentSolution(−v),S) for each vertex v of CurrentSolution;
14 end-while;
15 return CurrentSolution;
end GREEDY-ADAPTIVE.

Figure 3.1: Pseudo-code of the greedy adaptive algorithm.

algorithm executes the loop that tentatively removes all nodes from Candidates. In line 6, the

node that minimizes the estimate SOD(MinSup(S)(−v),S) is selected and stored in u. In line 7,

Solution is the graph obtained by removing node u from CurrentSolution. In lines 8-11, Cur-

rentSolution is updated to Solution if Solution has a better SOD than CurrentSolution. The set

Candidates is updated with the removal of node u in line 12, and for each node in CurrentSolu-

tion the estimates SOD(CurrentSolution(−v),S) are computed in line 13. Finally, in line 15 the

CurrentSolution is returned.

3.2 GRASP heuristic

GRASP (Greedy Randomized Adaptive Search Procedure) [25, 26] is a multi-start metaheuris-

tic, in which each iteration consists of two phases: construction and local search. The construc-

tion phase builds a solution. We assume that if this solution is not feasible, then either a repair

procedure is applied to achieve feasibility or a new attempt to build a feasible solution is made.

Once a feasible solution is obtained, its neighborhood is investigated until a local minimum is

found during the local search phase. The best overall solution is kept as the result. Literature

surveys are presented in [33, 56, 57, 58, 59]. Extensive accounts of successful applications of

GRASP are reported by Festa and Resende [32, 34], see also Nguyen et al.[53]. In some cases,

GRASP can be combined with other metaheuristics or mixed integer programming approaches

3.2 GRASP heuristic 24

begin GRASP(MaxIterations,Seed)
1 BestSOD← ∞;
2 for k = 1, . . . ,MaxIterations do;
3 Solution← GREEDY-RANDOMIZED-ADAPTIVE(Seed);
4 Solution← LOCAL-SEARCH(Solution);
5 if SOD(Solution,S)< BestSOD then
6 BestSOD← SOD(Solution,S);
7 BestSolution← Solution;
8 end-if;
9 end-for;
10 return BestSolution;
end GRASP.

Figure 3.2: Pseudo-code of the GRASP heuristic.

(see e.g. [4], where GRASP is used together with ILS and simulated annealing to solve a vehi-

cle routing problem). The pseudo-code in Figure 3.2 illustrates the main blocks of a GRASP

procedure for minimization, in which MaxIterations iterations are performed and Seed is used

as the initial seed for the pseudo-random number generator.

GRASP is an appropriate approach for tackling the generalized median graph problem be-

cause the greedy adaptive algorithm proposed in Section 3.1 can be straightforwardly randomi-

zed.

Figure 3.3 illustrates the pseudo-code of the greedy randomized adaptive algorithm used

in the construction phase of the GRASP heuristic. Basically, this algorithm is an extension of

the greedy adaptive algorithm in Figure 3.1, in which the node selected for elimination at each

iteration is randomly chosen among those with the best SOD estimates, but not necessarily the

best one. Let RCL be a restricted candidate list formed by all vertices v in the current solution

for which SOD(CurrentSolution(−v),S) ∈ [Smin,Smin +α · (Smax−Smin)], where Smin = min

{SOD(CurrentSolution(−v),S) : v ∈ Candidates}, Smax = max{SOD(CurrentSolution(−v),S) :

v ∈ Candidates}, and α ∈ [0,1] is a threshold parameter that controls the amounts of greediness

and randomness in the algorithm. The case α = 0 corresponds to a pure greedy algorithm, while

α = 1 is equivalent to a random construction. Experiments for tuning parameter α consisted of

executing GRASP over 40 small to medium sized instances, using different values α = 0.05,

0.1, 0.2, 0.3, 0.4, and 0.5. Since no significant difference was observed in the numerical results,

in the next section we report numerical experiments performed with α = 0.1.

The solutions generated by a greedy randomized construction are not necessarily optimal,

even with respect to simple neighborhoods. A local search algorithm works iteratively by suc-

3.3 Experimental results 25

begin GREEDY-RANDOMIZED-ADAPTIVE
1 Set CurrentSolution←MinSup(S);
2 Set CurrentSOD← SOD(MinSup(S),S);
3 Let Candidates be the vertex set of CurrentSolution;
4 Compute the estimate SOD(MinSup(S)(−v),S) for each vertex v of MinSup(S);
5 while Candidates 6= /0 do;
6 RCL←{v ∈ Candidates : Smin ≤ SOD(CurrentSolution(−v),S)≤ Smin+

+α · (Smax−Smin)};
7 Randomly select a vertex u ∈ RCL;
8 Let Solution be the graph obtained by removing vertex u from CurrentSolution;
9 if SOD(Solution,S)< SOD(CurrentSolution,S) then
10 CurrentSOD← SOD(Solution,S);
11 CurrentSolution← Solution;
12 end-if;
13 Candidates← Candidates\{u};
14 Update SOD(CurrentSolution(−v),S) for each vertex v of CurrentSolution;
15 end-while;
16 return CurrentSolution;
end GREEDY-RANDOMIZED-ADAPTIVE.

Figure 3.3: Pseudo-code of the greedy randomized adaptive algorithm used in the construction
phase.

cessively replacing the current solution by a better solution in its neighborhood. It terminates

when no better solution is found in the neighborhood. Figure 3.4 illustrates the pseudo-code

of a local search procedure. Each node belonging to MinSup(S), but not to the solution cons-

tructed in the first phase, is considered for insertion in the current solution. If the insertion of a

new node improves the current solution, then it is inserted and the current solution is modified.

Otherwise, another node is tested for insertion.

3.3 Experimental results

All algorithms described in the previous sections have been implemented in C++ and compiled

with the compiler gcc (TDM-2 mingw31) 4.1.1. All computational experiments have been

carried out on an Intel i5 2.8 GHz quadcore processor with 4 GB of RAM memory running

under Windows 7 Home.

Test problems have been extracted from the AIDS group of graphs from the IAM Graph

Database Repository [12]. The algorithms were tested on 100 randomly chosen instances, di-

vided into ten test sets. Each test set contains ten instances of the same size, where the size of

3.3 Experimental results 26

begin LOCAL-SEARCH(Solution)
1 Set CurrentSolution← Solution;
2 Set CurrentSOD← SOD(Solution,S);
3 Let V ′←VMinSup(S)−VCurrentSolution, where VG denotes the vertex set of a graph G;
4 for each v ∈ V ′ do;
5 if SOD(CurrentSolution(+v),S)< CurrentSOD then
6 CurrentSOD← SOD(CurrentSolution(+v),S);
7 CurrentSolution← CurrentSolution(+v);
8 V ′←VMinSup(S)−VCurrentSolution;
9 end-if;
10 end for-each;
11 return CurrentSolution;
end LOCAL-SEARCH.

Figure 3.4: Pseudo-code of the local search phase.

an instance is characterized by the total number of vertices in the graphs within its input graph

set S. We considered test sizes of 20, 40, 60, 80, 100, 120, 140, 160, 180 and 200 vertices

altogether.

The numerical results obtained are illustrated in Tables 3.1 to 3.4. For each instance, we

display its total number of vertices, the number of vertices #(MinSup(S)) in MinSup(S), the

sum of distances SOD(MinSup(S),S) from MinSup(S) to S, the sum of distances SOD(Ĝ,S)

from the median graph Ĝ to S, the sum of distances from the generalized median graph G

obtained by the adaptive greedy algorithm to S and the corresponding computation time in

seconds, the sum of distances from the best generalized median graph obtained by the GRASP

heuristic, the time taken by the GRASP heuristic to find the best solution and the iteration

in which it was obtained, and, finally, the total computation time in seconds. The number of

vertices in MinSup(S) gives an upper bound to the number of vertices in the best solution (it also

provides an upper bound to the number of estimates of the sum of distances that will have to be

computed at each iteration of the adaptive greedy algorithm). Furthermore, SOD(MinSup(S),S)

and SOD(Ĝ,S) give upper bounds to the sum of distances from the minimum cost generalized

median graph to S.

The GRASP heuristic was run for 100 iterations for all instances. The solutions obtained

by GRASP were at least as good as those found by the adaptive greedy algorithm for all test

problems. Furthermore, GRASP found strictly better solutions than the adaptive greedy algo-

rithm for 57 instances over all 100 test problems. The advantage of GRASP in terms of solution

quality increases with the problem size: GRASP found strictly better solutions than the adaptive

greedy algorithm for 35 out of the largest 50 instances with 120 to 200 vertices.

3.3 Experimental results 27

Table 3.5 displays, for each test set (formed by ten instances each, all of them with the

same total number of vertices in the graphs within its input graph set S), the average reductions

between the solution values SOD(G,S) obtained by the adaptive greedy algorithm and by the

GRASP heuristic with respect to the sum of distances SOD(MinSup(S),S) from MinSup(S) to

S and to the sum of distances SOD(Ĝ,S) from the median graph Ĝ to S, showing by how much

the proposed heuristics are able to improve, respectively, the initial solution and the upper bound

given by the median graph.

3.3 Experimental results 28

Ta
bl

e
3.

1:
R

es
ul

ts
fo

rt
he

in
st

an
ce

s
w

ith
20

,4
0,

an
d

60
ve

rt
ic

es
(1

00
G

R
A

SP
ite

ra
tio

ns
).

A
da

pt
iv

e
gr

ee
dy

G
R

A
SP

In
st

an
ce

V
er

tic
es

#(
M

in
Su

p(
S)
)

SO
D
(M

in
Su

p(
S)
,S
)

SO
D
(Ĝ

,S
)

SO
D
(G

,S
)

Ti
m

e
(s

)
B

es
tS

O
D

Ti
m

e
to

be
st

(s
)

It
er

at
io

n
to

be
st

Ti
m

e
(s

)
i0

1
20

14
22

15
12

0.
24

12
0.

30
1

40
.4

9
i0

2
20

15
40

22
20

0.
15

20
0.

20
1

31
.8

3
i0

3
20

18
52

22
20

0.
26

20
0.

36
1

34
.3

6
i0

4
20

13
32

14
14

0.
17

14
0.

20
1

31
.4

1
i0

5
20

11
24

10
10

0.
18

10
0.

21
1

33
.7

7
i0

6
20

14
36

18
18

0.
15

18
0.

20
1

34
.0

3
i0

7
20

11
24

16
16

0.
16

16
0.

20
1

22
.4

3
i0

8
20

16
60

23
20

0.
12

20
0.

16
1

11
.9

4
i0

9
20

16
60

24
20

0.
12

20
0.

15
1

12
.5

4
i1

0
20

14
50

22
19

0.
14

19
0.

19
1

16
.1

9
i0

1
40

22
92

38
36

0.
81

34
5.

56
4

13
2.

10
i0

2
40

23
98

38
32

0.
57

30
1.

50
1

12
3.

72
i0

3
40

23
98

40
38

0.
78

38
0.

89
1

12
9.

37
i0

4
40

22
92

36
32

0.
51

30
4.

27
4

10
4.

81
i0

5
40

22
92

36
32

0.
49

30
2.

15
2

10
0.

24
i0

6
40

21
10

7
39

33
0.

40
33

0.
52

1
89

.2
9

i0
7

40
19

93
38

34
0.

35
34

0.
48

1
74

.7
5

i0
8

40
18

86
34

31
0.

57
31

0.
79

1
10

7.
23

i0
9

40
24

15
2

50
40

0.
40

40
0.

53
1

85
.6

7
i1

0
40

22
13

6
38

36
0.

50
36

0.
65

1
91

.2
9

i0
1

60
30

15
0

64
49

2.
85

48
8.

98
2

38
9.

06
i0

2
60

26
12

2
50

39
2.

15
39

2.
66

1
30

3.
98

i0
3

60
28

16
4

48
48

2.
34

44
10

.9
1

3
34

2.
56

i0
4

60
29

17
2

54
48

1.
38

46
5.

07
2

22
9.

10
i0

5
60

20
20

0
46

45
0.

63
45

0.
83

1
17

1.
80

i0
6

60
27

18
3

58
51

0.
79

51
1.

03
1

16
7.

93
i0

7
60

24
18

0
52

48
1.

13
48

1.
44

1
20

3.
97

i0
8

60
23

19
3

52
47

0.
74

45
9.

29
5

18
2.

83
i0

9
60

22
18

2
50

48
0.

73
47

1.
87

1
17

2.
52

i1
0

60
32

32
4

76
60

0.
63

60
0.

85
1

97
.0

1

3.3 Experimental results 29

Ta
bl

e
3.

2:
R

es
ul

ts
fo

rt
he

in
st

an
ce

s
w

ith
80

,1
00

,a
nd

12
0

ve
rt

ic
es

(1
00

G
R

A
SP

ite
ra

tio
ns

).

A
da

pt
iv

e
gr

ee
dy

G
R

A
SP

In
st

an
ce

V
er

tic
es

#(
M

in
Su

p(
S)
)

SO
D
(M

in
Su

p(
S)
,S
)

SO
D
(Ĝ

,S
)

SO
D
(G

,S
)

Ti
m

e
(s

)
B

es
tS

O
D

Ti
m

e
to

be
st

(s
)

It
er

at
io

n
to

be
st

Ti
m

e
(s

)
i0

1
80

33
21

7
65

59
3.

86
56

7.
61

1
56

6.
81

i0
2

80
32

24
0

70
58

2.
79

58
3.

50
1

39
6.

11
i0

3
80

33
28

3
71

65
3.

16
62

5.
91

1
45

4.
75

i0
4

80
32

27
2

63
55

2.
26

55
2.

88
1

36
9.

62
i0

5
80

32
27

2
75

63
1.

85
62

4.
40

1
35

1.
64

i0
6

80
35

30
5

78
65

3.
77

63
13

.9
1

2
64

1.
80

i0
7

80
33

28
3

74
69

3.
85

66
17

.6
6

3
56

9.
72

i0
8

80
33

28
3

74
64

2.
46

60
4.

90
1

44
7.

64
i0

9
80

36
31

6
72

67
2.

29
67

3.
01

1
39

9.
36

i1
0

80
35

30
5

72
68

2.
52

67
4.

85
1

41
5.

14
i0

1
10

0
40

34
0

89
76

6.
44

72
47

.1
4

5
90

3.
78

i0
2

10
0

38
35

6
86

78
3.

97
72

14
.1

1
2

63
9.

07
i0

3
10

0
38

39
4

10
1

82
2.

94
82

3.
65

1
48

8.
04

i0
4

10
0

38
39

4
96

85
6.

10
83

57
.9

6
7

81
2.

46
i0

5
10

0
36

36
8

86
72

4.
30

70
13

.7
3

2
63

5.
20

i0
6

10
0

38
39

4
80

70
2.

98
70

3.
99

1
53

1.
55

i0
7

10
0

34
34

2
81

75
3.

88
73

69
.4

6
12

57
1.

66
i0

8
10

0
37

41
8

88
76

3.
44

74
18

.7
2

3
57

5.
84

i0
9

10
0

37
41

8
10

0
82

3.
49

82
4.

51
1

52
8.

46
i1

0
10

0
38

43
2

10
0

86
5.

16
86

6.
70

1
65

4.
59

i0
1

12
0

42
42

6
11

3
92

11
.4

5
92

15
.0

8
1

15
52

.7
0

i0
2

12
0

41
49

5
10

5
93

7.
90

93
9.

92
1

11
32

.3
9

i0
3

12
0

45
55

5
12

6
10

1
6.

08
10

0
60

.8
2

7
81

8.
14

i0
4

12
0

41
49

5
10

2
95

7.
89

94
12

.0
3

1
96

8.
01

i0
5

12
0

40
48

0
10

6
94

5.
22

94
6.

75
1

79
7.

30
i0

6
12

0
41

53
6

12
4

10
0

4.
14

96
39

0.
59

58
67

4.
28

i0
7

12
0

40
52

0
11

2
10

6
4.

71
10

2
14

.6
0

2
68

5.
63

i0
8

12
0

37
47

2
10

2
90

4.
30

86
9.

32
1

72
2.

92
i0

9
12

0
42

55
2

10
6

98
5.

60
98

6.
93

1
81

2.
20

i1
0

12
0

35
44

0
98

86
4.

54
84

16
.4

4
2

71
4.

82

3.3 Experimental results 30

Ta
bl

e
3.

3:
R

es
ul

ts
fo

rt
he

in
st

an
ce

s
w

ith
14

0,
16

0,
an

d
18

0
ve

rt
ic

es
(1

00
G

R
A

SP
ite

ra
tio

ns
).

A
da

pt
iv

e
gr

ee
dy

G
R

A
SP

In
st

an
ce

V
er

tic
es

#(
M

in
Su

p(
S)
)

SO
D
(M

in
Su

p(
S)
,S
)

SO
D
(Ĝ

,S
)

SO
D
(G

,S
)

Ti
m

e
(s

)
B

es
tS

O
D

Ti
m

e
to

be
st

(s
)

It
er

at
io

n
to

be
st

Ti
m

e
(s

)
i0

1
14

0
50

71
0

13
0

11
7

12
.1

5
11

0
22

.9
3

1
16

09
.0

2
i0

2
14

0
44

65
2

12
2

11
0

9.
75

10
4

31
.5

0
2

14
02

.5
1

i0
3

14
0

43
67

7
13

2
12

4
4.

92
11

4
20

.0
1

2
85

9.
21

i0
4

14
0

44
69

6
11

9
10

1
5.

13
10

1
6.

55
1

88
9.

63
i0

5
14

0
38

58
2

11
2

10
8

4.
25

10
4

49
9.

43
62

80
6.

95
i0

6
14

0
45

76
0

12
4

11
0

6.
24

11
0

7.
96

1
98

1.
74

i0
7

14
0

49
88

9
15

1
12

4
4.

91
12

4
6.

65
1

84
9.

57
i0

8
14

0
48

86
8

14
8

11
7

5.
00

11
7

6.
45

1
87

1.
62

i0
9

14
0

47
84

7
13

5
11

8
5.

88
11

5
11

.5
4

1
98

7.
45

i1
0

14
0

42
74

2
13

0
11

7
6.

66
11

7
8.

78
1

10
51

.9
3

i0
1

16
0

53
74

1
13

9
11

8
19

.9
6

11
6

32
.3

3
1

28
41

.2
5

i0
2

16
0

54
81

2
17

0
13

0
15

.1
0

12
8

26
.7

1
1

20
37

.3
9

i0
3

16
0

50
74

0
14

0
13

0
14

.6
9

12
4

81
.7

0
4

19
19

.1
5

i0
4

16
0

49
77

1
14

5
12

3
16

.8
0

12
3

22
.6

7
1

21
53

.5
2

i0
5

16
0

49
77

1
15

6
13

3
16

.7
8

13
0

47
.0

1
2

21
64

.3
0

i0
6

16
0

55
88

5
15

1
12

9
22

.7
3

12
9

29
.5

8
1

26
20

.9
9

i0
7

16
0

47
73

3
14

3
12

2
13

.0
2

11
9

56
.6

0
3

17
40

.3
4

i0
8

16
0

47
73

3
14

0
12

7
11

.3
2

12
4

23
.7

4
1

18
52

.8
0

i0
9

16
0

39
58

1
12

8
11

5
6.

34
11

4
11

.8
7

1
11

02
.1

3
i1

0
16

0
47

73
3

13
4

11
4

27
.5

1
11

3
11

9.
35

4
27

42
.6

3
i0

1
18

0
56

99
6

16
9

15
0

17
.6

4
14

9
51

.9
7

2
22

31
.3

3
i0

2
18

0
47

80
7

15
2

12
3

13
.9

1
12

3
18

.7
6

1
18

99
.1

5
i0

3
18

0
50

87
0

15
3

12
4

24
.8

6
12

4
31

.8
2

1
28

11
.3

0
i0

4
18

0
47

80
7

16
4

14
7

19
.7

8
13

8
10

8.
66

4
26

37
.0

1
i0

5
18

0
54

10
08

16
2

13
8

19
.2

0
13

4
24

78
.8

8
97

25
49

.6
5

i0
6

18
0

61
11

62
17

4
15

2
13

.7
9

15
0

25
.8

2
1

18
27

.1
7

i0
7

18
0

56
10

52
16

6
14

4
20

.6
7

13
8

34
.7

8
1

28
92

.2
8

i0
8

18
0

51
94

2
16

0
15

0
18

.0
1

14
2

31
9.

07
13

23
98

.3
3

i0
9

18
0

50
92

0
14

8
12

4
51

.0
9

12
4

64
.1

1
1

48
25

.2
7

i1
0

18
0

51
94

2
15

8
14

4
15

.5
2

13
6

28
.0

4
1

22
00

.9
0

3.3 Experimental results 31

Ta
bl

e
3.

4:
R

es
ul

ts
fo

rt
he

in
st

an
ce

s
w

ith
20

0
ve

rt
ic

es
(1

00
G

R
A

SP
ite

ra
tio

ns
).

A
da

pt
iv

e
gr

ee
dy

G
R

A
SP

In
st

an
ce

V
er

tic
es

#(
M

in
Su

p(
S)
)

SO
D
(M

in
Su

p(
S)
,S
)

SO
D
(Ĝ

,S
)

SO
D
(G

,S
)

Ti
m

e
(s

)
B

es
tS

O
D

Ti
m

e
to

be
st

(s
)

It
er

at
io

n
to

be
st

Ti
m

e
(s

)
i0

1
20

0
57

99
7

18
2

14
8

37
.1

1
14

5
55

.6
9

1
41

87
.8

9
i0

2
20

0
52

94
4

16
4

14
8

30
.3

5
14

2
83

0.
33

23
35

94
.4

2
i0

3
20

0
55

10
10

16
6

14
4

29
.1

8
14

0
48

.4
0

1
37

32
.0

3
i0

4
20

0
59

11
57

19
6

16
4

20
.5

9
15

2
11

5.
85

4
27

22
.8

0
i0

5
20

0
53

10
19

17
2

15
0

19
.3

6
14

2
34

.2
8

1
26

38
.6

7
i0

6
20

0
55

10
65

18
0

15
7

20
.8

4
14

8
93

.0
9

3
27

62
.9

7
i0

7
20

0
52

99
6

17
6

14
4

18
.6

1
14

1
31

.5
3

1
25

23
.9

9
i0

8
20

0
49

92
7

17
1

14
1

18
.8

7
14

1
24

.8
4

1
25

03
.3

0
i0

9
20

0
53

10
19

18
3

14
8

18
.1

7
14

7
31

.5
8

1
26

97
.0

0
i1

0
20

0
54

10
42

19
0

16
1

20
.2

9
15

4
60

.2
4

2
26

31
.7

7

3.3 Experimental results 32

Table 3.5: Average improvement in the sum of distances of the best solution found by each
algorithm, with respect to the sum of distances from MinSup(S) and from the median graph Ĝ
to S.

Adaptive greedy GRASP
Vertices SOD(G,S)/ SOD(G,S)/ SOD(G,S)/ SOD(G,S)/
(total) SOD(MinSup(S),S) SOD(Ĝ,S) SOD(MinSup(S),S) SOD(Ĝ,S)

(%) (%) (%) (%)
20 55.02 8.15 55.02 8.15
40 66.39 10.82 67.22 12.99
60 73.18 11.31 73.77 13.25
80 77.04 11.29 78.48 13.65
100 79.63 13.60 80.13 15.66
120 80.71 12.43 81.03 13.88
140 84.36 11.73 84.80 14.09
160 83.24 13.93 83.62 15.39
180 85.20 13.16 85.61 15.50
200 85.19 15.36 85.70 18.31

Average 77.00 12.18 77.54 14.09

Figure 3.5 displays the increase in the average sum of distances from the best solution to S

found by each algorithm, with respect to the total number of vertices in each instance. It shows

that GRASP becomes progressively better than the adaptive greedy algorithm as the problem

size increases.

Figure 3.6 depicts the evolution of the best solution found along 100 GRASP iterations for

instance i05.140 with a total of 140 vertices. It shows that solution quality improves with the

number of iterations, i.e., with the running time. The larger is the number of iterations given to

the GRASP heuristic, the better is the solution found. It also illustrates by how much the local

search is able to improve the solution built by the greedy adaptive algorithm in the GRASP

construction phase at each iteration. Considering all 100 instances, on average the local search

phase was able to improve by approximately 1.2% the solutions built at the construction phase.

Table 3.6 shows that the average relative improvement obtained by local search increases with

the problem size.

We have also assessed the behavior of GRASP using the methodology proposed by [2]

and the software distributed by the authors [3]. Two hundred independent runs of the heuristic

have been performed for each algorithm. Each run was terminated when a solution with value

less than or equal to a given target was found. Numerical results are illustrated for instance

i05.140 with a total of 140 vertices, with the target value set at 106. The empirical probability

distribution of the time observed to find a solution value less than or equal to the target is plotted

3.4 Statistical evaluation: Nonparametric tests 33

 0

 20

 40

 60

 80

 100

 120

 140

 160

 20 40 60 80 100 120 140 160 180 200

A
v
e
ra

g
e
 S

O
D

Number of vertices

Adaptive greedy
GRASP

Figure 3.5: Average sum of distances from the best solution to S.

 102

 104

 106

 108

 110

 112

 114

 116

 0 10 20 30 40 50 60 70 80 90 100

S
O

D

Iterations

Construction

Local search

Best

Figure 3.6: Evolution of the best solution found along 100 GRASP iterations for instance
i05.140 with a total of 140 vertices.

in Figure 3.7. To plot the empirical distribution for each algorithm, we associate a probability

pi = (i− 1
2)/200 with the i-th smallest running time ti and we plot the points zi = (ti, pi), for

i = 1, . . . ,200. It can be observed that the running times fit an exponential distribution.

3.4 Statistical evaluation: Nonparametric tests

Most statistical tests are based on the assumption that the random samples are taken from a

population with a normal distribution. Traditionally, these procedures are called parametric

methods, because they are based on a particular parametric family of distributions [47]. Non-

parametric tests, also known as distribution-free methods, make no assumptions about the dis-

3.4 Statistical evaluation: Nonparametric tests 34

Table 3.6: Average improvement in percent by the local search phase.

Vertices Improvement (%)
20 0.00
40 0.39
60 1.07
80 1.43
100 1.04
120 1.04
140 1.70
160 1.74
180 1.76
200 1.82

Average 1.20

tribution of the underlying population. In this section, we compare the results found by the two

proposed heuristics using two non-parametric tests: the sign test and the Wilcoxon test.

3.4.1 Sign test

Let Xi and Yi be, respectively, the solution values found by GRASP and by the greedy adaptive

heuristic for each test problem numbered i = 1, . . . ,100. Since there are two populations to

be compared, the sign test for paired samples will be used. Let Di = Xi−Yi be the paired

differences, for i = 1, . . . ,100. Testing if both populations have the same median can be done

by testing if the median of their differences is null, i.e., if µ̃D = 0. A “+” sign is assigned to

each positive difference, a “-” sign to each negative difference, and all ties are discarded. All

paired differences are nonpositive, with 57 “-” signs, no “+” sign, and 43 ties. Since the ties are

disconsidered, the sample consists of the 57 results and we test

H0 : µ̃D = 0 and H1 : µ̃D < 0.

Since n = 57 > 10 and p = 0.5, the binomial distribution can be approximated by the normal

distribution. The test statistic is given by min(57,0) = 0. The null hypothesis H0 can be rejected

with a level of significance of 5% because

Z0 =
0− (57

2)√
57
2

∼=−7.4

is less than the critical value -1.64.Therefore, we may say that the GRASP heuristic performs

better with a level of significance of 5%.

3.4 Statistical evaluation: Nonparametric tests 35

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

c
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

time to target solution

i5140

empirical
theoretical

Figure 3.7: Runtime distribution from 200 runs of 100 GRASP iterations for instance i05.140
with a total of 140 vertices and target value set at 106 (the best known value is 104).

3.4.2 Wilcoxon signed-rank test

The previous test makes use only of the signs of the differences between pairs of observations.

It does not take into account the magnitude of these differences. The Wilcoxon signed-rank test

considers both the sign and the magnitude of these differences and also applies to the case of

symmetric distributions.

As before, let Xi, Yi, and Di = Xi−Yi be, respectively, the solution value found by GRASP,

the solution value found by the greedy adaptive heuristic, and the paired difference for each

test problem numbered i = 1, . . . ,100. The null hypothesis is H0 : µX = µY , which is equivalent

to H0 : µD = 0. We initially consider the two-sided alternative H1 : µX 6= µY (or, equivalently,

H1 : µD 6= 0). To use the Wilcoxon signed-rank test, the differences are first ranked in ascending

order of their absolute values, and then the ranks are given the signs of the differences. Ties are

assigned average ranks. Let W+ be the sum of the positive ranks and W− be the absolute value

of the sum of the negative ranks, and set W = min(W+,W−). If the observed value for this

statistic is less than or equal to w∗α, then the null hypothesis is rejected, where w∗α is a critical

value defined accordingly to the significance level α chosen for the experiment. For one-sided

tests, if the alternative is H1 : µD > 0 (resp. H1 : µD < 0) then reject H0 if w− ≤ w∗α (resp.

w+ ≤ w∗α).

3.5 Application to classification 36

In this case, the sum of the ranks corresponding to positive differences is W+ = 0 and the

sum of the ranks corresponding to negative differences is W− = 5.5×10+18×15+30×9+

39×9+46×5+49.5×2+52×3+54.5×2+56+57 = 1653. Then, we test:

H0 : µ̃D = 0 and H1 : µ̃D < 0.

The test statistic is W+, since we expect that GRASP performs better than the greedy adap-

tive heuristic. Since the size of the sample is large, a normal approximation can be used for this

statistic [47]. Assuming H0 is true, the normal approximation for W+ has

µW+ =
n(n+1)

4
,σW+ =

√
n(n+1)(2n+1)

24
and Z0 =

W+− n(n+1)
4√

n(n+1)(2n+1)
24

.

For n = 57, µW+ = 826.5 and σW+ = 125.86. Since

Z0 =
0−826.5

125.86
∼=−6.58 <−1.64,

once again there is enough evidence to discard H0 and we may say that the GRASP heuristic

performs better with a level of significance of 5%.

3.5 Application to classi�cation

The classification problem in machine learning consists in appointing the class that best fits to

an input object, given a set of possible classes. Classification problems appear, e.g., in face

detection (finding faces in images), spam filters (identifying email messages as spam or not-

spam), medical diagnosis (diagnosing whether a patient suffers or not of some disease), weather

prediction and others [5].

We have noticed before that the generalized median graph is the graph that best represents

and summarizes the information provided by a set of graphs. Therefore, given a classification

task where the objects are represented by graphs and divided in classes, it is reasonable to as-

sume that each class can be represented by its generalized median graph. The goal of this section

is to provide an experimental evaluation of this assumption and to illustrate that the algorithms

proposed in this work may be appropriately used to solve some classification problems.

There are several approaches for solving classification problems, such as neural networks,

Bayes classifiers, and decision trees, among others [21]. In the context of graph problems,

nearest-neighbor classifiers are often used, mostly because of their simplicity, since they only

require a way to measure dissimilarity between objects. Nearest-neighbor classifiers are super-

3.5 Application to classification 37

vised learning tasks based on a training set of patterns. In this training set, every pattern has

a category label assigned to it. Given a test set composed of all patterns to be classified, each

of its patterns is compared to all elements of the training set. The 1-nearest-neighbor classifier

(1-NN) is defined by assigning a test pattern to the class of its most similar training pattern. The

1-NN classifier can be extended to consider not only the most similar pattern in the training set

but, instead, the k closest patterns: in a k-NN classifier, the test pattern is assigned to the class

that occurs most frequently among its k nearest or closest training patterns [27, 37]. Figure 3.8

shows an example of the application of a k-NN classifier.

Figure 3.8: Example of k-NN classification: the test object (circle) must be classified either to
the class of triangles or to the class of squares. If k = 1 (solid line circle), then it is assigned
to the class formed by triangles. If k = 3 (dashed line circle), then it is assigned to the class
formed by squares, since there are two squares against one triangle inside that circle.

The classification experiments reported next consisted of classifying some queries using

two approaches: the k-NN classifier and generalized median graphs. The median graph appro-

ach amounts to computing an approximate generalized median graph of each class and compa-

ring each query to these approximate generalized median graphs. The median graph approach

presents the advantage that the number of comparisons is greatly reduced, since each query is

compared only to a small number of graphs, while with k-NN the query is compared with every

element of all classes. Figures 3.9 and 3.10 illustrate the two approaches in the case where the

objects have to be classified in two classes (binary classification).

The instances used in this experiment were taken from the IAM Graph Database Reposi-

tory [55]. This database consists of ten groups of graphs. Graphs in group AIDS used in this

work represent molecules and are divided in two classes: active molecules and inactive mole-

cules, depending on its relation with the AIDS virus. There are 2000 graphs in this database,

divided in three sets: training set (250 graphs), test set (1500 graphs), and validation set (250

3.5 Application to classification 38

query

Class 1 Class 2

Figure 3.9: Classification using k-NN algorithm: query is compared with every element of
classes 1 and 2.

query

Class 2Class 1

Approximate

generalized median

graph of class 1

Approximate

generalized median

graph of class 2

Figure 3.10: Classification using generalized median graph: query is compared only with clas-
ses’ 1 and 2 median graphs.

graphs).

In order to evaluate the performance of the approximate generalized median graph for clas-

sifying objects, the following experiments were performed:

• Experiment A: 60 graphs (30 active molecules and 30 inactive molecules) were selected

from the training set. Both classes had their approximate generalized median graphs com-

puted by the GRASP heuristic. 190 graphs were selected from the test set and classified

by algorithms 1-NN and 3-NN. Next, the same 190 queries have been classified using the

approximate generalized median graph of each of the two classes (the distance between

each query and the approximate generalized median graphs have been computed and the

query was assigned to the class which showed the smallest distance).

• Experiment B: same as above, with the training set formed by 80 graphs (40 active mole-

cules and 40 inactive molecules).

3.5 Application to classification 39

• Experiment C: same as above, with the training set formed by 100 graphs (50 active

molecules and 50 inactive molecules).

The same 190 queries have been used in all experiments. The performance of the two

approaches is addressed in terms of accuracy and computational time. The approximate gene-

ralized median graphs for each class have been computed from five randomly chosen graphs

of each class. The process of randomly selecting five graphs from each class and computing

their distances to the queries was repeated five times with different choices. The results in the

forthcoming tables and figures refer to the average time and accuracy obtained over the five

different choices.

It was observed in the experiments that the computational times of the k-NN algorithm grow

quickly as the number of nodes increase. Table 3.7 displays the time consumed in computing

the approximate generalized median graph of both classes in each experiment and the time

performance of the k-NN algorithm for each experiment. It shows that classifying a query using

the approximate generalized median graph requires smaller computation times, since only two

distance computations have to be performed, between the query and the generalized median

graph of each class. Table 3.8 shows the accuracy obtained by the methods in the experiments.

The results in accuracy show that the generalized median graph approach is able to obtain an

average level of accuracy of 97.33% in classificating the graphs. This result may indicate that

the median graph can be effectively used when one wants to find a representative of a set of

graphs.

Table 3.7: Classification times in seconds using the approximate generalized median graph,
1-NN, and 3-NN.

Approximate generalized median graph 1-NN 3-NN
Experiment Computation (s) Classification (s) Total (s) (s) (s)

A 687.49 4.43 691.92 415.18 420.09
B 820.52 6.08 826.60 1743.72 1744.51
C 1181.44 6.56 1188.00 8892.50 8894.72

These classification experiments comparing the use of the generalized median graph and

the k-NN classifier have shown that the first is competitive with the latter and was even able

to outperform it in terms of solution accuracy. In addition, the approach based on the use

of the generalized median graph spends significantly smaller computation times, in particular

when the size of the training set increases. Therefore, we may conclude that the generalized

median graphs provided by the algorithms proposed in this Chapter provide useful information

for classification problems.

3.6 Conclusions 40

Table 3.8: Accuracy in classification using the generalized median graph, 1-NN, and 3-NN.

Approximate generalized 1-NN 3-NN
median graph

Experiment Accuracy Accuracy Accuracy
A 185.60/190 (97.68%) 183/190 (96,31%) 190/190 (100%)
B 189.60/190 (99.78%) 189/190 (99,47%) 190/190 (100%)
C 179.60/190 (94.52%) 182/190 (95,78%) 190/190 (100%)

3.6 Conclusions

We proposed two heuristics for computing generalized median graphs: an adaptive greedy al-

gorithm and its extension to a GRASP heuristic. The GRASP heuristic obtained generalized

median graphs that significantly improved the initial solutions and those provided by the me-

dian graphs. On average, the GRASP heuristic improved the sum of distances from the mini-

mum common supergraph by 77.54 percent and the sum of distances from the median graph by

14.09 percent. The proposed adaptive greedy algorithm and GRASP heuristic made it possible

to solve significantly larger problems than those solved in the literature to date. These results

lead to the main conclusion of this Chapter. Good approximations to the generalized median

graph can be effectively computed by the heuristics proposed in this chapter, making it a better

representation than the median graph to be used in a number of relevant pattern recognition

or machine learning applications, as illustrated by the experiments involving the graph based

classification and the 1-NN classifier. The contributions and results in this chapter have already

been published as reference [51].

Chapter 4

Bounds on the SOD of a graph

Section 4.1 presents the main theoretical result in this work, which gives a bound to the value

of the SOD of a graph, based only on the number of nodes of the graph and on the number of

graphs in the set. A consequence of this proposition, related to the reduction of the search space

for the generalized median graph problem, is explored in Section 4.2. Section 4.3 shows how

algorithms for the generalized median graph problem can benefit from this theoretical result.

4.1 Bounds on the SOD of a graph

In the search to find approximate generalized median graphs for a set S, the candidate solutions

are always induced subgraphs of the minimum common supergraph of S. If #(MinSup(S)) = k,

then the number of possible induced subgraphs is 2k. Thus, it would be interesting to find a

criterion to discard some of these candidate subgraphs, and focus only on the most promising

ones.

Proposition 1 determines a bound to the SOD of a candidate graph, depending only on its

number of nodes and on the number of graphs in the set. All labeled graphs are taken from a

universe set U , where U consists of all graphs that can be constructed from an alphabet L of

labels.

Proposition 1 Let S = {G1, . . . ,Gn} ⊂U be a set of labeled graphs. Let Cand ∈U. Then:

SOD(Cand,S)≥ |
n

∑
i=1

#(Gi)−n×#(Cand)|.

Proof: Let S = {G1, . . . ,Gn} be a set of labeled graphs and let Cand ∈U . By definition,

4.1 Bounds on the SOD of a graph 42

MaxSub(Gi,Cand) ⊆ Cand and MaxSub(Gi,Cand) ⊆ Gi, for 1 ≤ i ≤ n. Therefore, we have

that:

#(MaxSub(Gi,Cand))≤ #(Cand),1≤ i≤ n, (4.1)

#(MaxSub(Gi,Cand))≤ #(Gi),1≤ i≤ n. (4.2)

Computing the distance between Cand and the graphs in S we have:

d(G1,Cand) = #(G1)+#(Cand)−2×#(MaxSub(G1,Cand))

d(G2,Cand) = #(G2)+#(Cand)−2×#(MaxSub(G2,Cand))
...

d(Gn,Cand) = #(Gn)+#(Cand)−2×#(MaxSub(Gn,Cand))

Therefore:

SOD(Cand,S) =
n

∑
i=1

d(Gi,Cand) =
n

∑
i=1

#(Gi)+n×#(Cand)−2×
n

∑
i=1

#(MaxSub(Gi,Cand))

Using inequality (4.1) in SOD(Cand,S),

SOD(Cand,S)≥
n

∑
i=1

#(Gi)+n×#(Cand)−2×n×#(Cand)

and, therefore,

SOD(Cand,S)≥
n

∑
i=1

#(Gi)−n×#(Cand). (4.3)

Using inequality (4.2) in SOD(Cand,S),

SOD(Cand,S)≥
n

∑
i=1

#(Gi)+n×#(Cand)−2×
n

∑
i=1

#(Gi)

and,

SOD(Cand,S)≥ n×#(Cand)−
n

∑
i=1

#(Gi). (4.4)

4.2 Reduction of the search space 43

Finally, from (4.3) and (4.4),

SOD(Cand,S)≥ |∑n
i=1 #(Gi)−n×#(Cand)|. �

4.2 Reduction of the search space

The heuristics already implemented (adaptive greedy and GRASP) have the goal of computing

an approximate generalized median graph of a set of labeled graphs S, i.e, find a graph with

a small SOD to the graphs of S. Given a candidate graph Cand ∈U , the previous proposition

gives a bound to SOD(Cand,S) based only on its number #(Cand) of nodes.

It is possible to use Proposition 1 to reduce the search space for the generalized median

graph of a set of graphs. In order to understand how this reduction works, consider instance

i5.20, which consists of graphs 153, 718, 4901 and 14734 from the IAM GraphDatabase Re-

pository (in this case, n = 4 and ∑
4
i=1 #(Gi) = 20). The best candidate found by the adaptive

greedy heuristic was a graph G such that SOD(G,S) = 10. When executing any of the heuris-

tics, if we are interested only in graphs whose SOD is less than or equal to SOD(G,S), it is not

necessary to evaluate any graphs Cand such that #(Cand) = 0,1 or 2, because:

• If #(Cand) = 0, then SOD(Cand)≥ |20−4×0|= 20.

• If #(Cand) = 1, then SOD(Cand)≥ |20−4×1|= 16.

• If #(Cand) = 2, then SOD(Cand)≥ |20−4×2|= 12.

Therefore, it is not necessary to examine any graphs such that #(Cand) = 0,1 or 2, since its

SOD will be necessarily greater than that result found by the adaptive greedy heuristic. In the

same way, graphs that have 8 or more nodes need not be evaluated, since:

• If #(Cand) = 8, then SOD(Cand,S)≥ |20−4×8|= 12.

• If #(Cand) = 9, then SOD(Cand,S)≥ |20−4×9|= 16, and so on.

As mentioned earlier, all candidates to be a generalized median graph are induced subgraphs

of the minimum common supergraph(MinSup(S)). If #(MinSup(S)) = k, then the number of

induced subgraphs of MinSup(S) is 2k. In the case of instance i5.20, the minimum common

4.2 Reduction of the search space 44

supergraph is a graph with 11 nodes. Therefore, the original search space consisted of all

induced subgraphs of MinSup(S) with a number of nodes less than or equal to 11. Hence, there

were 211 = 2048 induced subgraphs of the minimum common supergraph that could be tested as

approximate generalized median graphs for the instance. Using this proposition and the bound

given by the adaptive greedy heuristic, we were able to reduce the search space to induced

subgraphs with the number of nodes ranging in the interval [3,7]. The induced subgraphs of

MinSup(S) with 0, 1, 2, 8, 9, 10 and 11 nodes can be excluded from the search space. The

number of these subgraphs is given by:(
11
0

)
+

(
11
1

)
+

(
11
2

)
+

(
11
8

)
+

(
11
9

)
+

(
11
10

)
+

(
11
11

)
= 299

where
(n

k

)
= n!

k!(n−k)! is the binomial coefficient. Therefore, for instance i5.20 the reduction in

the number of candidates, i.e, the reduction in the search space was of 299
2048 = 14.59%.

The same reasoning applied to instance i5.20 can be used in the general case: let S =

{G1, . . . ,Gn} be a set of labeled graphs for which we want to find a generalized median graph.

Suppose that we have already obtained a graph G such that SOD(G) = L > 0. By Proposition 1,

we know that for any graph Cand, SOD(Cand,S) is |∑n
i=1 #(Gi)−n×#(Cand)| at best. If we

are only interested in graphs Cand such that SOD(Cand,S)≤ L then we can exclude any graph

Cand such that:

|
n

∑
i=1

#(Gi)−n×#(Cand)|> L.

We have:

|∑n
i=1 #(Gi)−n×#(Cand)|> L⇔



∑
n
i=1 #(Gi)−n×#(Cand)> L(∗)

or

∑
n
i=1 #(Gi)−n×#(Cand)<−L(∗∗)

Solving inequalities (∗) and (∗∗) we have:

4.2 Reduction of the search space 45

|∑n
i=1 #(Gi)−n×#(Cand)|> L⇔



#(Cand)<
∑

n
i=1 #(Gi)−L

n

or

#(Cand)>
∑

n
i=1 #(Gi)+L

n

Therefore, if #(Cand) <
∑

n
i=1 #(Gi)−L

n
or #(Cand) >

∑
n
i=1 #(Gi)+L

n
then we know for

sure that SOD(Cand,S)> L and there is no need to evaluate this graph. Thus, we are only inte-

rested in graphs that have a number of nodes in the interval
[

∑
n
i=1 #(Gi)−L

n
,
∑

n
i=1 #(Gi)+L

n

]
.

Since the number of nodes is a natural number, we should actually consider only the interval:[⌈
∑

n
i=1 #(Gi)−L

n

⌉
,

⌊
∑

n
i=1 #(Gi)+L

n

⌋]
.

Also, we cannot have a negative number of nodes and we are not interested in graphs larger

than MinSup(S). Thus, more precisely, the only subgraphs that should be considered are the

ones that have their number of nodes ranging in the interval:[
max

{
0,
⌈

∑
n
i=1 #(Gi)−L

n

⌉}
,min

{
#(MinSup(S)),

⌊
∑

n
i=1 #(Gi)+L

n

⌋}]
.

Tables 4.1 to 4.5 show the reduction in the search space that can be obtained using Proposi-

tion 1 for all 100 instances executed by the heuristics. For each instance, the limits
∑

n
i=1 #(Gi)−L

n

and
∑

n
i=1 #(Gi)+L

n
are shown, where L is the SOD of the approximate generalized median

graph found by the adaptive greedy heuristic. The original search interval [0,#(MinSup(S))]

and the reduced search interval
[⌈

∑
n
i=1 #(Gi)−L

n

⌉
,

⌊
∑

n
i=1 #(Gi)+L

n

⌋]
are also shown. The

last column indicates by how much the search space decreased in percent.

4.2 Reduction of the search space 46

Ta
bl

e
4.

1:
R

ed
uc

tio
n

in
th

e
se

ar
ch

in
te

rv
al

fo
ri

ns
ta

nc
es

w
ith

si
ze

s
20

an
d

40
.

In
st

an
ce

∑
#(

G
i)
−

L
n

∑
#(

G
i)
+

L
n

O
ri

gi
na

ls
ea

rc
h

in
te

rv
al

R
ed

uc
ed

se
ar

ch
in

te
rv

al
R

ed
uc

tio
n(

%
)

i1
.2

0
2.

67
10

.6
7

[0
,1

4]
[3

,1
0]

3.
51

i2
.2

0
0.

00
10

.0
0

[0
,1

5]
[0

,1
0]

5.
92

i3
.2

0
0.

00
10

.0
0

[0
,1

8]
[0

,1
0]

24
.0

3
i4

.2
0

1.
50

8.
50

[0
,1

3]
[2

,8
]

13
.5

1
i5

.2
0

2.
50

7.
50

[0
,1

1]
[3

,7
]

14
.5

9
i6

.2
0

0.
50

9.
50

[0
,1

4]
[1

,9
]

8.
98

i7
.2

0
1.

00
9.

00
[0

,1
1]

[1
,9

]
0.

63
i8

.2
0

0.
00

8.
00

[0
,1

6]
[0

,8
]

40
.1

8
i9

.2
0

0.
00

8.
00

[0
,1

6]
[0

,8
]

40
.1

8
i1

0.
20

0.
20

7.
80

[0
,1

4]
[1

,7
]

39
.5

3
i1

.4
0

0.
67

12
.6

7
[0

,2
2]

[1
,1

2]
26

.1
7

i2
.4

0
1.

33
12

.0
0

[0
,2

3]
[2

,1
2]

33
.8

8
i3

.4
0

0.
33

13
.0

0
[0

,2
3]

[0
,1

3]
20

.2
4

i4
.4

0
1.

33
12

.0
0

[0
,2

2]
[2

,1
2]

26
.1

7
i5

.4
0

1.
33

12
.0

0
[0

,2
2]

[2
,1

2]
26

.1
7

i6
.4

0
1.

00
10

.4
3

[0
,2

1]
[1

,1
0]

50
.0

0
i7

.4
0

0.
86

10
.5

7
[0

,1
9]

[1
,1

0]
32

.3
8

i8
.4

0
1.

29
10

.1
4

[0
,1

8]
[2

,1
0]

24
.0

4
i9

.4
0

0.
00

10
.0

0
[0

,2
4]

[0
,1

0]
72

.9
3

i1
0.

40
0.

50
9.

50
[0

,2
2]

[1
,9

]
73

.8
2

4.2 Reduction of the search space 47

Ta
bl

e
4.

2:
R

ed
uc

tio
n

in
th

e
se

ar
ch

in
te

rv
al

fo
ri

ns
ta

nc
es

w
ith

si
ze

s
60

an
d

80
.

In
st

an
ce

∑
#(

G
i)
−

L
n

∑
#(

G
i)
+

L
n

O
ri

gi
na

ls
ea

rc
h

in
te

rv
al

R
ed

uc
ed

se
ar

ch
in

te
rv

al
R

ed
uc

tio
n(

%
)

i1
.6

0
1.

57
15

.5
7

[0
,3

0]
[2

,1
5]

42
.7

7
i2

.6
0

3.
00

14
.1

4
[0

,2
6]

[3
,1

4]
27

.8
6

i3
.6

0
1.

50
13

.5
0

[0
,2

8]
[2

,1
3]

57
.4

7
i4

.6
0

1.
50

13
.5

0
[0

,2
9]

[2
,1

3]
64

.4
4

i5
.6

0
1.

15
8.

08
[0

,2
0]

[2
,8

]
74

.8
2

i6
.6

0
1.

00
12

.3
3

[0
,2

7]
[1

,1
2]

64
.9

4
i7

.6
0

1.
20

10
.8

0
[0

,2
4]

[2
,1

0]
72

.9
3

i8
.6

0
1.

18
9.

73
[0

,2
3]

[2
,9

]
79

.7
5

i9
.6

0
1.

09
9.

82
[0

,2
2]

[2
,9

]
73

.8
2

i1
0.

60
0.

00
10

.0
0

[0
,3

2]
[0

,1
0]

97
.4

9
i1

.8
0

2.
33

15
.4

4
[0

,3
3]

[3
,1

5]
63

.5
8

i2
.8

0
2.

20
13

.8
0

[0
,3

2]
[3

,1
3]

81
.1

4
i3

.8
0

1.
36

13
.1

8
[0

,3
3]

[2
,1

3]
85

.1
8

i4
.8

0
2.

27
12

.2
7

[0
,3

2]
[3

,1
2]

89
.2

3
i5

.8
0

1.
55

13
.0

0
[0

,3
2]

[2
,1

3]
81

.1
4

i6
.8

0
1.

36
13

.1
8

[0
,3

5]
[2

,1
3]

91
.2

2
i7

.8
0

1.
00

13
.5

5
[0

,3
3]

[1
,1

3]
85

.1
8

i8
.8

0
1.

45
13

.0
9

[0
,3

3]
[2

,1
3]

85
.1

8
i9

.8
0

1.
18

13
.3

6
[0

,3
6]

[2
,1

3]
93

.3
7

i1
0.

80
1.

09
13

.4
5

[0
,3

5]
[2

,1
3]

91
.2

2

4.2 Reduction of the search space 48

Ta
bl

e
4.

3:
R

ed
uc

tio
n

in
th

e
se

ar
ch

in
te

rv
al

fo
ri

ns
ta

nc
es

w
ith

si
ze

s
10

0
an

d
12

0.

In
st

an
ce

∑
#(

G
i)
−

L
n

∑
#(

G
i)
+

L
n

O
ri

gi
na

ls
ea

rc
h

in
te

rv
al

R
ed

uc
ed

se
ar

ch
in

te
rv

al
R

ed
uc

tio
n(

%
)

i1
.1

00
2.

18
16

.0
0

[0
,4

0]
[3

,1
6]

86
.5

9
i2

.1
00

1.
83

14
.8

3
[0

,3
8]

[2
,1

4]
92

.8
3

i3
.1

00
1.

38
14

.0
0

[0
,3

8]
[2

,1
4]

92
.8

3
i4

.1
00

1.
15

14
.2

3
[0

,3
8]

[2
,1

4]
92

.8
3

i5
.1

00
2.

15
13

.2
3

[0
,3

6]
[3

,1
3]

93
.3

7
i6

.1
00

2.
31

13
.0

8
[0

,3
8]

[3
,1

3]
96

.3
5

i7
.1

00
1.

92
13

.4
6

[0
,3

4]
[2

,1
3]

88
.5

2
i8

.1
00

1.
71

12
.5

7
[0

,3
7]

[2
,1

2]
97

.6
4

i9
.1

00
1.

29
13

.0
0

[0
,3

7]
[2

,1
3]

95
.0

5
i1

0.
10

0
1.

00
13

.2
9

[0
,3

8]
[1

,1
3]

96
.3

5
i1

.1
20

2.
15

16
.3

1
[0

,4
2]

[3
,1

6]
91

.7
9

i2
.1

20
1.

80
14

.2
0

[0
,4

1]
[2

,1
4]

97
.0

2
i3

.1
20

1.
27

14
.7

3
[0

,4
5]

[2
,1

4]
99

.1
9

i4
.1

20
1.

67
14

.3
3

[0
,4

1]
[2

,1
4]

97
.0

2
i5

.1
20

1.
73

14
.2

7
[0

,4
0]

[2
,1

4]
95

.9
6

i6
.1

20
1.

25
13

.7
5

[0
,4

1]
[2

,1
3]

98
.6

2
i7

.1
20

0.
88

14
.1

2
[0

,4
0]

[1
,1

4]
95

.9
6

i8
.1

20
1.

88
13

.1
2

[0
,3

7]
[2

,1
3]

95
.0

5
i9

.1
20

1.
38

13
.6

2
[0

,4
2]

[2
,1

3]
99

.0
2

i1
0.

12
0

2.
12

12
.8

8
[0

,3
5]

[3
,1

2]
95

.5
2

4.2 Reduction of the search space 49

Ta
bl

e
4.

4:
R

ed
uc

tio
n

in
th

e
se

ar
ch

in
te

rv
al

fo
ri

ns
ta

nc
es

w
ith

si
ze

s
14

0
an

d
16

0.

In
st

an
ce

∑
#(

G
i)
−

L
n

∑
#(

G
i)
+

L
n

O
ri

gi
na

ls
ea

rc
h

in
te

rv
al

R
ed

uc
ed

se
ar

ch
in

te
rv

al
R

ed
uc

tio
n(

%
)

i1
.1

40
1.

35
15

.1
2

[0
,5

0]
[2

,1
5]

99
.6

6
i2

.1
40

1.
67

13
.8

9
[0

,4
4]

[2
,1

3]
99

.5
2

i3
.1

40
0.

84
13

.8
9

[0
,4

3]
[1

,1
3]

99
.3

1
i4

.1
40

2.
05

12
.6

8
[0

,4
4]

[3
,1

2]
99

.8
1

i5
.1

40
1.

68
13

.0
5

[0
,3

8]
[2

,1
3]

96
.3

5
i6

.1
40

1.
50

12
.5

0
[0

,4
5]

[2
,1

2]
99

.8
7

i7
.1

40
0.

76
12

.5
7

[0
,4

9]
[1

,1
2]

99
.9

7
i8

.1
40

1.
10

12
.2

4
[0

,4
8]

[2
,1

2]
99

.9
6

i9
.1

40
1.

05
12

.2
9

[0
,4

7]
[2

,1
2]

99
.9

4
i1

0.
14

0
1.

10
12

.2
4

[0
,4

2]
[2

,1
2]

99
.6

0
i1

.1
60

2.
47

16
.3

5
[0

,5
3]

[3
,1

6]
99

.7
2

i2
.1

60
1.

67
16

.1
1

[0
,5

4]
[2

,1
6]

99
.8

0
i3

.1
60

1.
67

16
.1

1
[0

,5
0]

[2
,1

6]
99

.2
3

i4
.1

60
1.

95
14

.8
9

[0
,4

9]
[2

,1
4]

99
.8

0
i5

.1
60

1.
42

15
.4

2
[0

,4
9]

[2
,1

5]
99

.5
3

i6
.1

60
1.

63
15

.2
1

[0
,5

5]
[2

,1
5]

99
.9

4
i7

.1
60

2.
00

14
.8

4
[0

,4
7]

[2
,1

4]
99

.6
0

i8
.1

60
1.

74
15

.1
1

[0
,4

7]
[2

,1
5]

99
.0

6
i9

.1
60

2.
37

14
.4

7
[0

,3
9]

[3
,1

4]
94

.5
9

i1
0.

16
0

2.
42

14
.4

2
[0

,4
7]

[3
,1

4]
99

.6
0

4.2 Reduction of the search space 50

Ta
bl

e
4.

5:
R

ed
uc

tio
n

in
th

e
se

ar
ch

in
te

rv
al

fo
ri

ns
ta

nc
es

w
ith

si
ze

s
18

0
an

d
20

0.

In
st

an
ce

∑
#(

G
i)
−

L
n

∑
#(

G
i)
+

L
n

O
ri

gi
na

ls
ea

rc
h

in
te

rv
al

R
ed

uc
ed

se
ar

ch
in

te
rv

al
R

ed
uc

tio
n(

%
)

i1
.1

80
1.

43
15

.7
1

[0
,5

6]
[2

,1
5]

99
.9

6
i2

.1
80

2.
71

14
.4

3
[0

,4
7]

[3
,1

4]
99

.6
0

i3
.1

80
2.

67
14

.4
8

[0
,5

0]
[3

,1
4]

99
.8

6
i4

.1
80

1.
57

15
.5

7
[0

,4
7]

[2
,1

5]
99

.0
6

i5
.1

80
1.

91
14

.4
5

[0
,5

4]
[2

,1
4]

99
.9

7
i6

.1
80

1.
27

15
.0

9
[0

,6
1]

[2
,1

5]
99

.9
9

i7
.1

80
1.

64
14

.7
3

[0
,5

6]
[2

,1
4]

99
.9

8
i8

.1
80

1.
36

15
.0

0
[0

,5
1]

[2
,1

5]
99

.7
6

i9
.1

80
2.

55
13

.8
2

[0
,5

0]
[3

,1
3]

99
.9

5
i1

0.
18

0
1.

64
14

.7
3

[0
,5

1]
[2

,1
4]

99
.9

1
i1

.2
00

2.
48

16
.5

7
[0

,5
7]

[3
,1

6]
99

.9
3

i2
.2

00
2.

36
15

.8
2

[0
,5

2]
[3

,1
5]

99
.8

4
i3

.2
00

2.
55

15
.6

4
[0

,5
5]

[3
,1

5]
99

.9
4

i4
.2

00
1.

57
15

.8
3

[0
,5

9]
[2

,1
5]

99
.9

8
i5

.2
00

2.
17

15
.2

2
[0

,5
3]

[3
,1

5]
99

.8
9

i6
.2

00
1.

87
15

.5
2

[0
,5

5]
[2

,1
5]

99
.9

4
i7

.2
00

2.
43

14
.9

6
[0

,5
2]

[3
,1

4]
99

.9
4

i8
.2

00
2.

57
14

.8
3

[0
,4

9]
[3

,1
4]

99
.8

0
i9

.2
00

2.
26

15
.1

3
[0

,5
3]

[3
,1

5]
99

.8
9

i1
0.

20
0

1.
70

15
.7

0
[0

,5
4]

[2
,1

5]
99

.9
2

4.3 Application to the heuristics 51

The results shown in the previous tables indicate a significant reduction in the search in-

tervals, and consequently, in the search space. This reduction mostly eliminates the subgraphs

with larger sizes, and it becomes more relevant if we consider how difficult it is to compute the

distance between two graphs as they become larger.

4.3 Application to the heuristics

The results presented in this chapter can be used to improve heuristics designed to compute an

approximate generalized median graph of a set of graphs. More specifically, the result presented

in Section 4.2 can be used to reduce the number of graphs to be evaluated, since it allows the

heuristic to discard graphs that have a SOD larger than a bound L.

An implementation of the GRASP heuristic using these results was tested, but no changes

in the results were observed. One possible explanation for this is in the characteristics of the

implemented GRASP heuristic. In each iteration, the constructive phase of GRASP uses a

greedy strategy to tentatively remove nodes from the solution. This phase mainly determines

the number of nodes of the solution, with the local search phase contributing with small changes

on the number of nodes of the solution. Demanding that the number of nodes of the solutions

fall in a pre-determined range, as Proposition 1 does, does not seem to work well, since the

phases of the algorithm already efficiently compute the appropriate number of nodes of the

solutions.

In Chapter 5, a BRKGA algorithm will be presented. In a BRKGA algorithm the initial

population is chosen completely at random. In this case, this heuristic is likely to benefit from

a reduction in the search space, since this reduction will probably allow for a better initial

population (and for better mutant individuals). A variant of the BRKGA algorithm, based on

the results presented in this chapter, will also be presented in Chapter 5.

Other metaheuristic-based algorithms may also utilize the results of this chapter. For ins-

tance, in a Tabu Search or in a Simulated Annealing heuristic, the reduced search interval can

be used to restrict the number of nodes of the initial solution of the heuristic. In the case of

a matheuristic algorithm, the reduced search interval can be incorporated in the mathematical

model through a constraint on the number of nodes in the solution.

Chapter 5

Biased random-key genetic algorithms

In this chapter, BRKGA-based heuristics for the generalized median graph problem are pre-

sented. Section 5.1 shows the basic definitions of genetic algorithms. Section 5.2 presents the

BRKGA heuristic and in Sections 5.3 and 5.4 two variants of the BRKGA heuristic are presen-

ted. Section 5.5 shows the numerical results and a comparison between the BRKGA heuristics

and GRASP.

5.1 Genetic algorithms

Genetic algorithms were first proposed in 1975 by Holland [42], based on Darwin’s theory

of evolution. In the basic terminology of genetic algorithms, an individual c is an array of n

components. Each component ci, for i = 1, ...,n is called a gene and its value is called an allele.

The individuals are associated with possible solutions of a problem. An evaluation function is

applied for each individual and returns the fitness value, i.e, the capacity that this individual has

to solve the problem.

A genetic algorithm (GA) evolves a set of individuals that compose a population P through

a certain number of generations. At every generation a new population is created, using the

genetic operators of crossover and mutation. In a crossover, individuals of the current popu-

lation are combined to produce new individuals to the next generation. The mutation operator

randomly modifies one or more genes of a certain number of individuals. The algorithm is re-

peated until some stopping criterion is reached. The pseudo-code of a typical GA is presented

in Figure 5.1. In line 1 population P is initialized, and its evolution happens in lines 2 through

8. The fitness of all individuals of the population are computed in line 3. In line 4, the parents

of that generation are selected and the crossover operator is applied on them. The mutant indi-

5.1 Genetic algorithms 53

begin Genetic algorithm
1 Initialize initial population P;
2 while stopping criterion not reached ;
3 Compute the fitness value of every individual of P;
4 Select parents and apply crossover operator;
5 Select mutants and apply mutation operator;
6 Update population;
7 end-while;
8 return best individual in the population;
end Genetic algorithm.

Figure 5.1: Pseudo-code of the genetic algorithm.

viduals are selected in line 5 and the operation of mutation is applied on them. This procedure

is executed until some stopping criterion is reached. Finally, line 8 returns the best individual

in the population.

Genetic algorithms with random keys, or random-key genetic algorithms (denoted by RKGA),

were first introduced by Bean [7] for combinatorial optimization problems whose solutions may

be represented by permutation vectors. In a RKGA, the individuals are represented by an array

of real numbers in the interval [0,1). Each element of the array is called a key and is randomly

generated in the initial population.The population is partioned in two subsets, one composed by

the most fit individuals of the population, called the elite set, and the other one composed by

the remaining individuals, called the non-elite set. A deterministic algorithm called the decoder

maps each array of random-keys in a solution to the optimization problem. The cost of this

solution is used as the fitness value.

RKGA uses the parameterized uniform crossover of Spears and Dejong [63] to combine

two randomly selected individuals of the population. Let n be the number of genes in the

individuals. Given two individuals c1 and c2, randomly selected in the population, pa is the

probability that a descendent individual cnew inherits an allele from c1. This descendent cnew is

generated in the following manner: for i = 1, . . . ,n, the ith allele cnew(i) inherits the ith allele of

c1 with a probability pa or from individual c2 with a probability 1− pa.

Figure 5.2 illustrates this crossover process of two individuals with four genes each. In

this example, we have pa = 0.7. A real number is randomly generated in the interval [0,1).

If the number generated is less than 0.7, then the descendant inherits the allele from the first

individual, otherwise it inherits the allele from the second individual. In this example, the

descendant inherited the first, third and fourth genes from the first individual, making it more

similar to it than to the second individual.

5.1 Genetic algorithms 54

Individual c
1

0.30 0.75 0.51 0.91

Individual c
2

0.23 0.15 0.91 0.44

Random numbers in [0,1) 0.57 0.95 0.60 0.15

Greater or less than 0.7 ? < > < <

Descendant 0.30 0.15 0.51 0.91

Crossover

Figure 5.2: Parameterized uniform crossover.

Biased random-key genetic algorithms - BRKGA - first appeared in 2002 [23], and the

main difference from RKGA is in the way that the individuals are selected for the crossover

operation. In a BRKGA, in the crossover operation one individual is randomly selected from

the elite-set and the other is selected from the non-elite set. In the RKGA, as mentioned earlier,

the two individuals are randomly selected from the population. This improvement is sufficient

to make BRKGA outperform RKGA. In both algorithms, the individuals can be selected more

than once for mating in the same generation.

A BRKGA heuristic basically evolves a population of random-key vectors through a num-

ber of generations. Figure 5.3 illustrates the transition between two BRKGA generations. The

left side of the figure represents the current population, partitioned in two subsets: TOP and

REST, where TOP refers to elite individuals and REST refers to the remaining individuals. The

size of the population is |TOP|+ |REST |. The individuals are sorted by their fitness values. The

set TOP contains the fittest individuals of the population. The set REST is formed by two sub-

sets: MID and BOT, the subset BOT being formed by the worst individuals of the population.

The population of the new generation is created in the following manner: the individuals from

the set TOP are copied without modifications to the next generation. A number of |BOT | mu-

tant individuals are randomly generated and |MID| = |REST| - |BOT| individuals are created by

crossover between a randomly selected individual from TOP and another from REST. Observe

that an elite individual of the previous generation may not belong to the elite set in the current

generation.

BRKGAs also use the uniform parameterized crossover of Spears and DeJong [63]. Table

5.1 shows the intervals for the values of the BRKGA parameters, as recommended in [39].

Other parameters are problem-specific: representing a solution of the problem, decodifying a

chromossome, and stopping criterion.

5.1 Genetic algorithms 55

TO

P

MID
REST

BOT

TOP TOP
most fit

least fit

Select one

parent

from TOP

Select one

parent

from REST

Crossover

Randomly

generated

solutions

Copy best

solutions

X

Figure 5.3: Population evolution between consecutive generations of a BRKGA

Table 5.1: Recommended value for the parameters

Parameter Description Recommended value

P Population size
|P|= a ·n, where a≥ 1 is
a constant and n is
the size of the individual

|TOP| Size of elite population 0.10 · |P| ≤ |TOP| ≤ 0.25 · |P|
|BOT | Size of mutant population 0.05 · |P| ≤ |BOT | ≤ 0.30 · |P|
pa Probability of inheriting an elite allele 0.5≤ pa ≤ 0.8

The pseudo-code of a BRKGA is presented in Figure 5.4. In line 1 the population is initiali-

zed. The evolution of this population occurs in lines 2-9. In line 3 all the individuals are decoded

and their fitness values are computed. In line 4 the population is sorted in non-decreasing or-

der with respect to the fitness values. Population P is then partioned in two subsets: TOP and

REST . Subset TOP contains the fittest individuals of the population, while subset REST is

composed by the remaining individuals. In line 6 the next population is initialized with the

individuals from the TOP set of the current population. In line 7, |BOT | mutant individuals are

randomly generated for the next population. In line 8, |P|− |TOP|− |BOT | individuals are cre-

ated by a parameterized uniform crossover for the next population, where one of the individuals

is selected from the TOP set and the other one from the REST set. This procedure is executed

until a stopping criterion is reached. This criterion may be, for example, the number of evolved

populations, and the quality of the best found solution, among others. Finally, in line 10 the

best solution is returned.

5.2 BRKGA for the generalized median graph problem 56

begin Biased random key genetic algorithm
1 Initialize initial population P;
2 while stopping criterion not reached ;
3 Compute the fitness value of every individual of P;
4 Sort population P in non-decreasing order of the fitness values;
5 Partition P in two subsets: TOP and REST ;
6 Copy individuals from set TOP of the current population to the next population;
7 Randomly generate |BOT | mutant individuals for the next population;
8 Generate |P|− |TOP|− |BOT | individuals by uniform parameterized crossover for the next
population, selecting one individual from TOP and the other one from REST ;
9 end-while;
10 return best individual in the population;
end Biased random key genetic algorithm.

Figure 5.4: Pseudo-code of the biased random-key genetic algorithm.

BRKGA heuristics have been succesfully applied to many optimization problems. For

example, BRKGA was compared in [40] with six standard genetic algorithms for job-shop

scheduling (GA [18], GLS1 and GLS2 [1], P-GA, SBGA(40), SBGA(60) [20]). On the 12 test

instances where BRKGA was compared with GA, an average reduction in cost of 2.02% was

observed. On the 37 and 35 test instances where it was compared, respectively, with GLS1 and

GLS2, average reductions of 3.79% and 0.58% were observed. In the comparison with P-GA,

on 20 test instances, the reduction in the cost of the solutions was of 0.48%. In the compari-

son with SBGA(40) and SBGA(60) on 42 test instances, the respective average solution cost

reductions were of 1.27% and 1.01% [39]. In [10], BRKGA was applied to an unconstrained

multi-round divisible load scheduling problem, with the computational experiments showing

that the makespans obtained by the proposed heuristic improved upon those obtained by the

best algorithm in the literature by 11.68%, on average.

5.2 BRKGA for the generalized median graph problem

The implementation of biased random-key genetic algorithms for the generalized median graph

problem made use of the C++ library brkgaAPI developed by Toso and Resende [66], which

is a framework for the development of biased random-key genetic algorithms. It can also be

used in parallel architectures running OpenMP. The instantiation of the framework shown in

Figure 5.5 to some specific optimization problem requires exclusively the development of a

class implementing the decoder for this problem. This is the only problem-dependent part of

the tool. The decoding process used for the generalized median graph problem is explained in

5.2 BRKGA for the generalized median graph problem 57

details in subsection 5.2.1. According to Gonçalves et al. [39], the BRKGA framework requires

the following parameters: (a) the population size (p = |TOP|+ |REST |); (b) the fraction pe

of the population corresponding to the elite set TOP; (c) the fraction pm of the population

corresponding to the mutant set BOT TOM ; (d) the probability rhoe that the offspring inherits

each of its keys from the best fit of the two parents; and (e) the number k of generations without

improvement in the best solution until a restart is performed. Whenever a restart occurs, the full

population is randomly generated from scratch as for the first generation. The tuning of these

parameters is explained in Section 5.5.

Figure 5.5: BRKGA framework.

5.2.1 Decoder

In a BRKGA, chromossomes represent solutions to the problem in hand. Each chromossome

is composed of random-keys (real numbers in the range [0,1)) and is decoded by an algorithm

(the decoder) that receives the keys and builds a solution to the problem. In our implementation

of the BRKGA for the generalized median graph problem, the chromossomes will have size

#(MinSup(S))+1, where S is the set for which we want to compute an approximate generalized

median graph. Our decoder transforms each chromossome into an induced subgraph of the

minimum common supergraph MinSup(S) of set S.

The decoding process that transforms each chromossome into an induced subgraph of

MinSup(S) is applied in two steps: in the first step, each random-key of a chromossome c

is transformed into an integer number. In the second step, the chromossome obtained in the first

step is transformed into an induced subgraph of MinSup(S) (this is accomplished by transfor-

ming each gene of the chromossome in a node of MinSup(S)).

5.2 BRKGA for the generalized median graph problem 58

In the first step of the decodification, for each gene c[i], i = 0, . . . ,#(MinSup(S)), we set:

c[i]← bc[i]×10tc

.

Since, originally, each c[i]∈ [0,1), the new value of c[i] is an integer in the interval [0,10t−
1]. As mentioned, in the second step of the decoder each gene c[i] will represent a node from

MinSup(S). Therefore, determining the appropriate value for t depends on #(MinSup(S)). In all

test instances considered in this work, #(MinSup(S)) < 70. Therefore, the computed integers

need to be at least in the range [0,99], since this allows for the representation of up to 100

nodes of the minimum common supergraph of any instance. Thus, in our implementation, it is

sufficient to use t = 2. We observe that larger values of t might be needed for larger instances

where the minimum common supergraph has a larger number of nodes.

In the second step of the decoding phase, the chromossome (now composed of integer

values) will be transformed into an induced subgraph of MinSup(S). The decodification of the

integer in the first position of c, c[0], will indicate the number of nodes in that solution. It is

necessary that this number of nodes be between 0 and #(MinSup(S)), since this chromossome

represents an induced subgraph of MinSup(S). In order to find a number that falls in that

range, the remainder of the division of c[0] by #(MinSup(S))+1 is computed. This remainder

indicates how many positions of the chromossome will be considered for decodification.

From the second position on, the decoding process consists of computing the remainder

of the division of the integer stored in this position, c[i], by #(MinSup(S)). Observe that this

value is an integer from 0 to #(MinSup(S))− 1. The nodes from MinSup(S) are also labelled

from 0 to #(MinSup(S))−1. The node from MinSup(S) with the same label as the remainder

is present in the subgraph. In case there is a collision, i.e, when a node previously selected is

selected again, the decoder searchs for the next node of MinSup(S) still unselected.

As an example, consider S such that #(MinSup(S)) = 7, as in Figure 5.6. Figure 5.7 shows

a chromossome with its random-keys, and Figure 5.8 shows the chromossome after the first step

of the decodification process, which transforms each random-key in an integer by multiplying

it by 102 and taking the floor of this value. Figure 5.9 shows the chromossome after the second

step of the decodification. The size of the chromossome consists of 7+1 =8 genes (as mentioned,

the extra gene is needed since it will represent the number of nodes in the chromossome).

5.2 BRKGA for the generalized median graph problem 59

6 2

5

0

4

1

3

A

A

A

B
C

C

D

Figure 5.6: Minimum common supergraph of set S. The decoder will convert each chromos-
some into an induced subgraph of this graph.

0.1345... 0.0823... 0.1034... 0.0612... 0.5327... 0.4211... 0.0268... 0.2589...

Figure 5.7: Chromossome with 7+1 = 8 genes. The random-keys are real numbers in the interval
[0,1).

13 8 10 6 53 42 2 25

Figure 5.8: First step in the decoding phase: all random-keys are transformed into integer
numbers by c[i]← bc[i]×102c.

5 1 3 6 4 0 2 25

Figure 5.9: Decoded chromossome. The first gene indicates the number of nodes of the indu-
ced subgraph, and the next five positions indicate the nodes of MinSup(S) that will be in the
subgraph. The last two positions are ignored.

The decodification of the first gene is made by dividing its value, 13, by #(MinSup(S))+

1 = 7+1 = 8 and computing the remainder of the division. Since 13 = 8×1+5, the remainder

of this division is 5. The decodification of this first gene is 5, and this chromossome will

represent an induced subgraph of MinSup(S) with five nodes. These five nodes will be obtained

5.2 BRKGA for the generalized median graph problem 60

by the decodification of the next five positions of the chromossome (positions 2 to 6 of the

chromossome).

The decodification of the genes in positions 2 to 6 is done by computing the remainder of

the division of the integer stored in the gene by #(MinSup(S)) = 7. Then:

• Position 2: 8 = 7×1+1→ node 1 from MinSup(S) belongs to subgraph.

• Position 3: 10 = 7×1+3→ node 3 from MinSup(S) belongs to subgraph.

• Position 4: 6 = 7×0+6→ node 6 from MinSup(S) belongs to subgraph.

• Position 5: 53 = 7×7+4→ node 4 from MinSup(S) belongs to subgraph.

• Position 6: 42 = 7×6+0→ node 0 from MinSup(S) belongs to subgraph.

Positions 7 and 8 of the chromossome are ignored (because the first gene indicates that the

subgraph is composed of only five nodes). Therefore, the decodification of this chromossome

corresponds to the subgraph of MinSup(S) with nodes 0, 1, 3, 4 and 6, as represented in Fi-

gure 5.10. To obtain the fitness of this solution, the distance between this graph and all the

graphs from set S are computed.

6

0

4

1

3

A

A

B

C

D

Figure 5.10: The decodification of the chromossome results in an induced subgraph of
MinSup(S) with nodes 0, 1, 3, 4 and 6.

Figure 5.11 shows the pseudo-code of the decoder of the BRKGA algorithm. It takes as

input the minimum common supergraph of set S, a random-key chromossome c[0, . . . ,n], and a

5.3 Bounded BRKGA 61

natural number t. The decoded chromossome is represented by d[0, . . . ,n]. In line 1, the size

of the minimum common supergraph is stored in n. In lines 2-4, the random-key chromossome

is transformed in a chromossome with integer values. The remainder of the division of the first

gene, c[0], by n+ 1 is stored in m, in line 5, and this value m is stored in the first position of

the decoded chromosomme, d[0], in line 6. In lines 7-9 occurs the decodification of the other

positions of the chromossome. In line 8, the remainder of the division of c[i] by n is stored in

d[i], for i = 1, . . . ,m. In line 10, graph G is set as empty. In lines 11-15, the induced subgraph

defined by the decoded chromossome is assembled and stored in G (the insertion of node v and

its adjacent edges in G is indicated by G∪{v}, as shown line in 14). In line 16, G is returned.

begin Decoder-BRKGA (MinSup(S), c[0 . . .n], t)

1 n← #(MinSup(S));

2 for i = 0, . . . ,n

3 c[i]← bc[i]×10tc;
4 end-for;

5 m← remainder of the division of c[0] by n+1;

6 d[0]← m;

7 for i = 1, . . . ,m

8 d[i]← remainder of the division of c[i] by n;

9 end-for

10 G← /0;

11 for i = 1, . . . ,m

12 v← d[i];

13 select node v from MinSup(S);

14 G← G∪{v};
15 end-for;

16 return G;

end Decoder-BRKGA.

Figure 5.11: Pseudo-code of Decoder-BRKGA.

5.3 Bounded BRKGA

In this section we describe the Bounded BRKGA variant of the BRKGA heuristic.

The Bounded BRKGA heuristic uses Proposition 1 from Chapter 4 to reduce the search

5.3 Bounded BRKGA 62

space and to speed up the execution of the heuristic. In comparison to the BRKGA heuristic,

Bounded BRKGA has one additional parameter: the bound L, which can be obtained by any

heuristic previously executed. Bounded BRKGA will only consider candidate graphs G such

that SOD(G,S)≤ L.

5.3.1 Decoder

The decoder of the Bounded BRKGA is a slight modification of the BRKGA decoder. Chro-

mossomes still have size #(MinSup(S))+1 and the decodification of all genes is not modified,

except for the first one. The first gene of the chromossome represents the number of nodes of

the subgraph, while in BRKGA’s decoder it could assume any value between 0 and #(MinSup).

In Bounded BRKGA, the bound L reduces the search space and the chromossomes can only

be decoded into subgraphs that have a number of nodes in the interval [min_node,max_node].

In order to find a number of nodes that falls in this range, the decodification of the first gene

consists in computing the remainder of the division of the first random-key (after it has been

transformed into an integer) by (max_node−min_node+ 1) and to add min_node to this re-

mainder. This guarantees that the subgraph obtained after decodification has a number of nodes

in the interval [min_node,max_node].

Figure 5.12 shows the pseudo-code of the decoder of Bounded BRKGA. It takes as input

the minimum common supergraph of set S, a random-key chromossome c[0, . . . ,n] and two

positive numbers L and t. The decoded chromossome is represented by d[0, . . . ,n]. In line

1 the size of the minimum common supergraph is stored in n. In lines 2-4, the random-key

chromossome is transformed in a chromossome with integer values. In lines 5 and 6, the bound

L is used to find the minimum and maximum number of nodes of the graphs in the populations,

which are stored in min_node and max_node, respectively. In line 7, the remainder of the

division of c[0] by (max_node−min_node+1) is stored in m. In line 8, the first position of the

decoded chromossome, d[0], receives the value m+min_node, which represents the number

of nodes in the subgraph (observe that the value stored in d[0] is an integer in the interval

[min_node,max_node]). In line 10, the remainder of the division of c[i] by n is stored in d[i],

for i = 1, . . . ,m + min_node. In lines 12-16, the induced subgraph defined by the decoded

chromossome is assembled and stored in G. Finally, in line 17, the graph G is returned.

5.4 Bounded BRKGA with local search 63

begin Decoder-Bounded BRKGA (MinSup(S), c[0 . . .n], L, t)

1 n← #(MinSup(S));

2 for i = 0, . . . ,n

3 c[i]← bc[i]×10tc;
4 end-for;

5 min_node←
⌈

∑
n
i=1 #(Gi)−L

n

⌉
;

6 max_node←
⌊

∑
n
i=1 #(Gi)+L

n

⌋
;

7 m← remainder of the division of c[0] by (max_node−min_node+1);

8 d[0]← m+min_node;

9 for i = 1, . . . ,m+min_node

10 d[i]← remainder of the division of c[i] by n;

11 end-for

12 for i = 1, . . . ,m+min_node

13 v← d[i];

14 select node v from MinSup(S);

15 G← G∪{v};
16 end-for;

17 return G;

end Decoder-Bounded BRKGA.

Figure 5.12: Pseudo-code of Decoder-Bounded BRKGA.

5.4 Bounded BRKGA with local search

A bounded BRKGA with a local search phase (denoted Bounded BRKGA + LS) was also

implemented. At each generation, the k best solutions of the population are selected and local

search phase is applied to each of them. This local search phase consists of two heuristics,

denoted by LS1 and LS2, executed sequentially, each being a local search itself. In LS1, the

neighbours of the incumbent solution are all the graphs that can be obtained by the insertion

of one node to the incumbent. The local optimum found in this first phase will serve as the

incumbent for the second phase of the local search. In LS2, the neighbours of the incumbent

solution are all the graphs that can be obtained by removing one node from the incumbent. The

graph returned in this second phase is the solution of the local search phase. The original k best

solutions in generation i are substituted by the k graphs found in the local search.

5.4 Bounded BRKGA with local search 64

Figure 5.13 shows the pseudo-code of the local search. It takes as input an array composed

of the k best chromossomes (c1,c2, . . . ,ck) of a population. Lines 1-4 execute the loop that will

replace the decodification of chromossomes (c1,c2, . . . ,ck) for the graphs (G1,G2, . . . ,Gk) in the

next population. In line 2, Incumb receives the graph obtained by the decodification of ci. This

graph is used as input for LS1, and the result of the local search is stored in graph G, as indicated

in line 3. In line 4, graph G is used as input for LS2, and the result of this local search is stored

in Gi. In line 6, the array of graphs Gi is returned.

Figure 5.14 shows the pseudo-code for LS1. This algorithm executes while it finds a neigh-

bour of G that improves upon the fitness of G. The boolean variable improve_fitness is used to

control this condition, as it is set to true in line 1. The while loop in lines 2-13 is executed while

improve_fitness is true. In line 3, the set Neighbor(G) is formed by the induced subgraphs that

can be obtained by inserting in G a node that is not currently in G. In line 4, improve_fitness is

set to false. The loop in lines 5-12 that searches for a neighbor that improves upon the incum-

bent is executed while the neighborhood of the incumbent is not empty and improve_fitness is

false, as indicated in line 5. In line 6, a neighbour G′ is selected and if its fitness is better than

that of G, then G is updated to G′, improve_fitness is set to true and the loop breaks, as shown

in lines 7-10. In line 11, graph G′ is removed from the neighborhood of G. Finally, in line 14

graph G is returned. Observe that the variable improve_fitness is set to false at the end of the

loop in lines 5-12 only if no neighbours of an incumbent solution improve upon the incumbent.

This guarantees that the solution returned by the algorithm is a local optimum with respect to

this neighbourhood.

Figure 5.15 shows the pseudo-code for LS2, where the neighbours of a graph G are the

graphs obtained by removing one node from G, as indicated in line 3. Except for this, LS2

functions exactly like LS1.

begin Local search (c1,c2, . . . ,ck)
1 for i = 1 . . .k
2 Incumb← Decoder-Bounded BRKGA(MinSup(S), ci, L, t);
3 G← LS1(Incumb);
4 Gi← LS2(G);
5 end-for;
6 return (G1,G2, . . . ,Gk);
end Local search.

Figure 5.13: Pseudo-code of local search of Bounded BRKGA + LS.

5.5 Computational experiments 65

begin LS1(G)
1 improve_fitness← true;
2 while(improve_fitness)
3 Neighbor(G)←{G∪{v}|v ∈VMinSup(S)−VG};
4 improve_fitness← f alse;
5 while (Neighbor(G) 6= /0 and !(improve_fitness))
6 select G′ ∈ Neighbor(G);
7 if(fitness(G′) < fitness(G))
8 G← G′;
9 improve_fitness← true;
10 end-if;
11 Neighbor(G)← Neighbor(G)−{G′};
12 end-while;
13 end-while;
14 return G;
end LS1.

Figure 5.14: Pseudo-code of LS1.

begin LS2(G)
1 improve_fitness← true;
2 while(improve_fitness)
3 Neighbor(G)←{G−{v}|v ∈VG};
4 improve_fitness← f alse;
5 while (Neighbor(G) 6= /0 and !(improve_fitness))
6 select G′ ∈ Neighbor(G);
7 if(fitness(G′) < fitness(G))
8 G← G′;
9 improve_fitness← true;
10 end-if;
11 Neighbor(G)← Neighbor(G)−{G′};
12 end-while;
13 end-while;
14 return G;
end LS2.

Figure 5.15: Pseudo-code of LS2.

5.5 Computational experiments

In this section, we address the effectiveness of the heuristics based on biased random-key ge-

netic algorithms. We compare the results obtained with the proposed BRKGA heuristics with

those obtained by the GRASP heuristic. All BRKGA heuristics used the restart strategy if 50

generations had gone by without improvement of the best value found. The BRKGA heuristics

5.5 Computational experiments 66

were implemented in C++ with the GNU GCC compiler. The experiments have been performed

on a Dell Studio i3-3240M with a 3.40GHz CPU with 4 GB of RAM under the operating system

Windows Home 7 Basic.

5.5.1 Tuning

The BRKGA heuristics have three main parameteres: pe, the size of the elite population to be

copied to the next generation, pm, the size of the population to be replaced by mutants, and

rhoe, the probability that the offspring inherits an allele from the elite parent.

In order to extract the most of these heuristics, it is necessary to find the best combination

of these three parameters. In the following sections, these three parameters will be analysed so

that a good combination of them can be found. The method for tuning these parameters was to

choose one of the parameters at a time and assign different values to this parameter, while the

other two are fixed. Once the best value was found for this parameter, it will be subsequently

used in the tuning of the other two.

For this tuning, 20 instances were chosen, with sizes ranging from 80 to 100 vertices in

total. Ten runs of each instance were performed for each value of the parameter in test, each

with a different seed, resulting in a total of 10×20 = 200 executions of the BRKGA heuristic.

In all tuning experiments, the BRKGA heuristic was run for 50 generations.

In order to compare the perfomance of the different parameterizations of BRKGA, the

following criteria were used:

• #Best: This criterion indicates how many times each parameterization found the best

solution.

• Total average time to best: This criterion gives the average time each parameterization

took to find the best value.

• Total average deviation: For each instance and parameterization, Average deviation

indicates the average relative deviation from the best solution found (considering the ten

runs of all parameterizations), in percent. The Total average deviation is the average

value of the Average deviation over all instances.

• Score: Given an instance and a parametrization, NScore gives the number of parameteri-

zations that found better solutions than that parameterization. In case of ties, all parame-

terizations which have tied receive the same score, equal to the number of parameterizati-

ons strictly better than all of them. The computation of NScore was performed using the

5.5 Computational experiments 67

average SOD of the ten runs of each parameterization. Score is the sum of the NScore

values over all instances in the experiment, for each parametrization. Thus, lower values

of Score correspond to better parameterizations.

5.5.1.1 Size of the elite population - pe

Three values were tested for the pe parameter: 0.2, 0.5 and 0.7. The other two parameters, pm

and rhoe were fixed at 0.1 and 0.7, respectively. Table 5.2 shows the ten runs of BRKGA for

instances i1.80 and i2.80. Table 5.3 shows a summary of the results for the BRKGA heuristic

for these three values of parameter pe. From Table 5.3 it is possible to see that the best values for

parameter pe are 0.5 and 0.7. Since the value 0.5 allows for more diversity in the populations,

it is preferred in detriment to the value 0.7.

The best values for the other two parameters are obtained analogously.

5.5 Computational experiments 68

p e
=

0.
2

p e
=

0.
5

p e
=

0.
7

i1
.8

0
B

es
tS

O
D

Ti
m

e
(s

)
Ti

m
e

to
B

es
t(

s)
B

es
tS

O
D

Ti
m

e
(s

)
Ti

m
e

to
B

es
t(

s)
B

es
tS

O
D

Ti
m

e
(s

)
Ti

m
e

to
B

es
t(

s)
ex

.1
57

76
.5

13
.3

59
61

.5
56

.0
57

50
.9

24
.6

ex
.2

57
76

.4
7.

2
57

54
.7

23
.4

57
44

.4
23

.1
ex

.3
57

77
.0

19
.0

57
58

.7
6.

9
57

46
.5

20
.6

ex
.4

57
77

.0
48

.9
58

60
.7

17
.6

57
44

.0
38

.4
ex

.5
57

81
.7

81
.4

57
56

.1
9.

2
57

45
.3

18
.1

ex
.6

57
75

.3
9.

0
57

58
.4

8.
8

57
47

.3
19

.3
ex

.7
57

76
.7

11
.6

57
54

.3
28

.7
57

42
.6

40
.0

ex
.8

57
78

.2
7.

6
56

61
.6

60
.9

57
45

.9
19

.0
ex

.9
57

77
.0

8.
3

57
59

.0
3.

8
57

42
.9

10
.5

ex
.1

0
57

78
.0

8.
2

57
54

.8
9.

3
57

44
.0

25
.3

A
ve

ra
ge

SO
D

57
.0

77
.3

8
21

.4
5

57
.2

57
.9

8
22

.4
6

57
.0

45
.3

8
23

.8
9

A
ve

ra
ge

de
vi

at
io

n
1.

8
2.

1
1.

8
i2

.8
0

B
es

tS
O

D
Ti

m
e

(s
)

Ti
m

e
to

B
es

t(
s)

B
es

tS
O

D
Ti

m
e

(s
)

Ti
m

e
to

B
es

t(
s)

B
es

tS
O

D
Ti

m
e

(s
)

Ti
m

e
to

B
es

t(
s)

ex
.1

58
67

.0
6.

4
58

46
.8

5.
0

58
33

.1
15

.4
ex

.2
58

67
.8

6.
6

58
46

.8
8.

8
58

33
.5

10
.9

ex
.3

58
65

.0
6.

8
58

45
.5

10
.7

58
33

.3
9.

9
ex

.4
58

65
.5

5.
1

58
45

.8
9.

5
58

33
.2

15
.2

ex
.5

58
68

.4
4.

8
58

46
.4

3.
7

58
32

.3
15

.1
ex

.6
58

65
.1

5.
3

58
45

.4
7.

2
58

32
.6

14
.6

ex
.7

58
66

.0
6.

0
58

46
.2

8.
9

58
31

.9
10

.7
ex

.8
58

65
.5

4.
5

58
45

.7
6.

0
58

34
.3

10
.1

ex
.9

58
68

.2
3.

5
58

45
.2

9.
0

58
32

.6
12

.5
ex

.1
0

58
65

.9
4.

8
58

44
.6

8.
4

58
33

.6
6.

0
A

ve
ra

ge
SO

D
58

.0
66

.4
4

5.
38

58
.0

45
.8

4
7.

72
58

.0
33

.0
4

12
.0

4
A

ve
ra

ge
de

vi
at

io
n

0.
0

0.
0

0.
0

Ta
bl

e
5.

2:
Tu

ni
ng

of
pa

ra
m

et
er

:
p e

=
0.

2,
0.

5
an

d
0.

7.
Pa

ra
m

et
er

s
p m

an
d

rh
oe

w
er

e
fix

ed
at

0.
1

an
d

0.
7,

re
sp

ec
tiv

el
y.

5.5 Computational experiments 69

pe = 0.2 pe = 0.5 pe = 0.7
#Best 126 134 139

Total Average time to best 12.9 12.7 14.1
Total average deviation 16.3 15.1 15.6

Score 17 14 13

Table 5.3: Summary of the criteria for tuning parameter pe.

5.5.1.2 Fraction of the population to be replaced by mutants - pm

Three values were considered for the analysis of this parameter: 0.1, 0.2 and 0.3. Since the

results in the previous section indicated that the value pe = 0.5 found the best results, it was

fixed in the tuning of the other parameters. Parameter rhoe remained at its previous value of

0.7.

Table 5.4 shows the ten runs of BRKGA for instances i1.80 and i2.80. Table 5.5 shows a

summary of the results for the BRKGA heuristic for the three values of parameter pm. From

Table 5.5 it is possible to see that the best value for parameter pm is 0.2.

5.5 Computational experiments 70

p m
=

0.
1

p m
=

0.
2

p m
=

0.
3

i1
.8

0
B

es
tS

O
D

Ti
m

e
(s

)
Ti

m
e

to
B

es
t(

s)
B

es
tS

O
D

Ti
m

e
(s

)
Ti

m
e

to
B

es
t(

s)
B

es
tS

O
D

Ti
m

e
(s

)
Ti

m
e

to
B

es
t(

s)
ex

.1
59

59
.5

54
.4

57
74

.8
29

.2
57

93
.7

68
.0

ex
.2

57
54

.9
23

.4
57

73
.6

12
.8

57
85

.6
37

.0
ex

.3
57

58
.8

6.
9

57
74

.0
8.

8
57

87
.7

14
.0

ex
.4

58
60

.8
17

.7
57

78
.7

15
.9

57
89

.7
40

.8
ex

.5
57

56
.4

9.
3

57
74

.0
35

.2
57

88
.8

19
.1

ex
.6

57
58

.7
8.

8
57

74
.2

11
.8

57
84

.9
18

.0
ex

.7
57

54
.6

28
.8

57
71

.5
23

.8
57

84
.9

12
.9

ex
.8

56
61

.0
60

.3
57

77
.3

21
.0

57
93

.1
29

.1
ex

.9
57

59
.4

3.
9

57
77

.4
3.

9
57

86
.5

3.
9

ex
.1

0
57

55
.0

9.
4

57
73

.6
6.

2
57

88
.7

30
.8

A
ve

ra
ge

SO
D

57
.2

57
.9

1
22

.2
9

57
.0

74
.9

1
16

.8
6

57
.0

88
.3

6
27

.3
6

A
ve

ra
ge

de
vi

at
io

n
2.

1
1.

8
1.

8
i2

.8
0

B
es

tS
O

D
Ti

m
e

(s
)

Ti
m

e
to

B
es

t(
s)

B
es

tS
O

D
Ti

m
e

(s
)

Ti
m

e
to

B
es

t(
s)

B
es

tS
O

D
Ti

m
e

(s
)

Ti
m

e
to

B
es

t(
s)

ex
.1

58
47

.0
5.

0
58

54
.6

5.
5

58
61

.5
6.

6
ex

.2
58

49
.6

8.
5

58
54

.8
8.

9
58

62
.6

13
.4

ex
.3

58
49

.5
12

.7
58

53
.0

7.
5

58
61

.8
11

.5
ex

.4
58

46
.2

9.
7

58
54

.7
5.

6
58

61
.5

9.
0

ex
.5

58
47

.1
3.

7
58

56
.0

9.
7

58
62

.4
15

.0
ex

.6
58

46
.4

7.
4

58
55

.5
15

.1
58

61
.1

13
.0

ex
.7

58
49

.5
9.

8
58

53
.4

6.
2

58
61

.9
13

.5
ex

.8
58

48
.8

6.
1

58
55

.1
7.

5
58

61
.9

6.
6

ex
.9

58
49

.2
10

.4
58

57
.1

11
.4

58
61

.5
5.

9
ex

.1
0

58
45

.0
8.

5
58

55
.3

8.
0

58
61

.4
7.

1
A

ve
ra

ge
SO

D
58

.0
47

.8
3

8.
18

58
.0

54
.9

5
8.

54
58

.0
61

.7
6

10
.1

6
A

ve
ra

ge
de

vi
at

io
n

0.
0

0.
0

0.
0

Ta
bl

e
5.

4:
Tu

ni
ng

of
pa

ra
m

et
er

:
p m

=
0.

1,
0.

2
an

d
0.

3.
Pa

ra
m

et
er

s
p e

an
d

rh
oe

w
er

e
fix

ed
at

0.
5

an
d

0.
7,

re
sp

ec
tiv

el
y.

5.5 Computational experiments 71

pm = 0.1 pm = 0.2 pm = 0.3
#Best 134 142 140

Total average time to best 12.8 17.1 20.9
Total average deviation 15.1 12.3 13.7

Score 15 9 9

Table 5.5: Summary of the criteria for the mutation parameter.

5.5.1.3 Probability of inheriting an allele from a parent - rhoe

For the analysis of parameter rhoe, the values of the other two parameters have already been

determined to be pe = 0.5 and pm = 0.2. To evaluate the best value for rhoe, three values will

be considered for this parameter: 0.5, 0.7 and 0.9. Table 5.6 shows the ten runs of BRKGA for

instances i1.80 and i2.80. Table 5.7 shows a summary of the results for the BRKGA heuristic

for these three values of parameter rhoe. From Table 5.7 it is possible to see that the best value

for parameter rhoe is 0.5.

Therefore, according with these tuning experiments, the best configuration of these para-

meters is: pe = 0.5, pm = 0.2 and rhoe = 0.5. also executed and compared to the previously

found combination.

5.5 Computational experiments 72

rh
oe

=
0.

5
rh

oe
=

0.
7

rh
oe

=
0.

9
i1

.8
0

B
es

tS
O

D
Ti

m
e

(s
)

Ti
m

e
to

B
es

t(
s)

B
es

tS
O

D
Ti

m
e

(s
)

Ti
m

e
to

B
es

t(
s)

B
es

tS
O

D
Ti

m
e

(s
)

Ti
m

e
to

B
es

t(
s)

ex
.1

57
84

.6
51

.8
57

74
.5

28
.9

59
74

.7
28

.7
ex

.2
57

82
.9

36
.5

57
73

.5
12

.8
57

77
.6

22
.8

ex
.3

57
80

.1
9.

2
57

73
.9

8.
8

57
74

.6
8.

8
ex

.4
57

86
.3

28
.5

57
78

.4
15

.9
56

84
.0

32
.1

ex
.5

57
82

.0
5.

6
57

73
.6

34
.9

57
80

.3
15

.5
ex

.6
57

79
.4

46
.2

57
73

.7
11

.7
57

77
.5

27
.0

ex
.7

57
78

.7
22

.1
57

71
.4

23
.8

57
77

.1
25

.7
ex

.8
57

85
.8

36
.5

57
77

.0
20

.9
57

80
.5

19
.8

ex
.9

57
82

.9
19

.8
57

77
.3

3.
9

57
78

.2
13

.2
ex

.1
0

57
80

.0
26

.5
57

73
.4

6.
2

57
82

.2
15

.0
A

ve
ra

ge
SO

D
57

.0
82

.2
7

28
.2

7
57

.0
74

.6
7

16
.7

8
57

.1
78

.6
7

20
.8

6
A

ve
ra

ge
de

vi
at

io
n

1.
8

1.
8

2.
0

i2
.8

0
B

es
tS

O
D

Ti
m

e
(s

)
Ti

m
e

to
B

es
t(

s)
B

es
tS

O
D

Ti
m

e
(s

)
Ti

m
e

to
B

es
t(

s)
B

es
tS

O
D

Ti
m

e
(s

)
Ti

m
e

to
B

es
t(

s)
ex

.1
58

57
.4

14
.6

58
54

.4
5.

4
58

71
.3

8.
5

ex
.2

58
59

.2
5.

6
58

54
.6

8.
9

58
66

.1
7.

7
ex

.3
58

56
.8

8.
3

58
52

.8
7.

5
58

60
.5

6.
8

ex
.4

58
57

.8
18

.2
58

54
.4

5.
5

58
67

.8
11

.3
ex

.5
58

58
.7

4.
6

58
55

.7
9.

7
58

66
.5

15
.8

ex
.6

58
57

.7
14

.1
58

55
.4

14
.9

58
64

.8
20

.0
ex

.7
58

56
.4

9.
0

58
53

.2
6.

1
58

65
.7

9.
9

ex
.8

58
58

.8
15

.9
58

54
.6

7.
4

58
60

.3
9.

4
ex

.9
58

60
.4

24
.6

58
56

.9
11

.4
58

65
.3

10
.9

ex
.1

0
58

58
.0

12
.1

58
54

.9
8.

0
58

59
.6

8.
7

A
ve

ra
ge

SO
D

58
.0

58
.1

2
12

.7
58

.0
54

.6
9

8.
48

58
.0

64
.7

9
10

.9
A

ve
ra

ge
de

vi
at

io
n

0.
0

0.
0

0.
0

Ta
bl

e
5.

6:
Tu

ni
ng

of
pa

ra
m

et
er

:r
ho

e
=

0.
5,

0.
7

an
d

0.
9.

Pa
ra

m
et

er
s

p e
an

d
p m

w
er

e
fix

ed
at

0.
5

an
d

0.
2,

re
sp

ec
tiv

el
y.

5.5 Computational experiments 73

rhoe = 0.5 rhoe = 0.7 rhoe = 0.9
Best 150 142 110

Total average time to best 21.2 17.0 15.7
Total average deviation 11.1 12.3 21.3

Score 3 8 30

Table 5.7: Summary of the criteria for tuning parameter rhoe.

5.5.2 Experiments

The main idea in a BRKGA heuristic is to start with completely random chromossomes, and

make these chromossomes improve as the generations pass. In our first experiment, we test if

BRKGA is effectivelly learning along the execution of the generations. This is done by compa-

ring a BRKGA against a purely random algorithm. Figure 5.16 shows the distributions of the

objective function values of the 100-element population of a BRKGA and the repeated genera-

tion of sets of 100 random solutions for instance i3.200. The random solutions are generated

with the same code using the BRKGA parameters p = 101, pe = 1, and pm = 100. This way,

the mutants are the random solutions, the best solution is saved in the elite set, and no cros-

sover is ever done. This figure shows not only that BRKGA executes faster than the random

heuristic, but also finds an overall better solution. The frequency distributions of the fitness of

the chromossomes and the descriptive statistics for both heuristics are shown, respectively, on

Figures 5.17 and 5.18 and on Table 5.8. It is possible to see that the random heuristic has a

much worse performance, both in terms of fitness and time.

	100

	200

	300

	400

	500

	600

	700

	800

	900

	1000

	1100

	0 	500 	1000 	1500 	2000 	2500

Fi
tn
es
s

Time(s)

Random	chromossomes
BRKGA	chromossomes

Figure 5.16: Comparing BRKGA with a random multistart heuristic on instance i3.200

5.5 Computational experiments 74

Fitness

N
um

be
r

of
 o

cc
ur

re
nc

es

0 200 400 600 800 1000 1200

0
50

0
10

00
15

00

Figure 5.17: Frequency distribution of the fitness of the chromossomes for the random heuristic.

Fitness

N
um

be
r

of
 o

cc
ur

re
nc

es

0 200 400 600 800 1000 1200

0
10

00
20

00
30

00
40

00
50

00
60

00

Figure 5.18: Frequency distribution of the fitness of the chromossomes for BRKGA.

5.5 Computational experiments 75

Statistic Random heuristic BRKGA
Mean 485.74 248.41
Mode 200 144
Median 461 146
Best fitness 144 140

Table 5.8: Descriptive statistics for random heuristic and BRKGA

Table 5.9: Results for the instances with 140 and 160 vertices

BRKGA Bounded BRKGA Bounded BRKGA + LS
Instance Time Best SOD Time Best SOD Time Best SOD
i1.140 815.023 110 238.602 110 579.104 110
i2.140 633.346 104 249.023 104 504.723 104
i3.140 422.745 114 217.511 114 440.404 114
i4.140 442.931 101 256.324 101 478.874 101
i5.140 391.795 104 264.686 104 477.126 104
i6.140 498.64 110 243.298 110 453.478 110
i7.140 431.715 124 175.625 124 365.353 124
i8.140 459.514 117 218.759 117 432.043 117
i9.140 500.339 115 234.765 115 452.463 115

i10.140 513.943 120 240.49 117 436.894 117
i1.160 1587.787 117 286.603 117 657.4 116
i2.160 850.373 128 262.938 128 531.384 128
i3.160 1084.233 124 285.465 124 561.757 124
i4.160 1214.509 123 283.078 123 605.858 123
i5.160 1375.658 130 270.848 130 516.564 130
i6.160 1540.472 129 266.994 129 531.399 129
i7.160 895.036 120 293.218 120 570.135 119
i8.160 784.619 124 268.086 125 560.321 124
i9.160 510.932 114 297.633 114 559.479 114

i10.160 2293.001 113 301.579 113 581.288 113

In the second experiment we compare the three BRKGA heuristics: BRKGA, Bounded

BRKGA and Bounded BRKGA with local search. The parameters for Bounded BRKGA and

Bounded BRKGA + LS were set to the same values as in BRKGA, i.e, pe = 0.5, pm = 0.2,

and rhoe = 0.5. All three heuristics were executed for 100 generations, with 200 individuals

per generations and restarts after 50 generations without improvement. Bounded BRKGA and

Bounded BRKGA + LS used the best value found by the adaptive greedy heuristic to limit the

size of the subgraphs in the populations. For Bounded BRKGA + LS, the best two individuals

were selected for local search in each generation. Tables 5.9 and 5.10 show the running times

and the best values found by each heuristic for instances with sizes 140 to 200 vertices.

These tables show that BRKGA finds the best value in 94 of the 100 instances, Bounded

BRKGA finds the best value in 90 and Bounded BRKGA + LS finds the best values in all 100

5.5 Computational experiments 76

Table 5.10: Results for the instances with 180 and 200 vertices

BRKGA Bounded BRKGA Bounded BRKGA + LS
Instance Time Best SOD Time Best SOD Time Best SOD
i1.180 971.257 149 293.951 149 589.665 149
i2.180 959.043 123 329.971 123 629.82 123
i3.180 1730.199 124 346.539 124 703.468 124
i4.180 1387.326 139 343.715 139 680.239 138
i5.180 1293.367 134 316.571 134 675.216 134
i6.180 945.455 150 276.401 150 627.995 150
i7.180 1202.06 142 286.37 142 746.009 138
i8.180 1202.887 142 305.651 142 618.619 142
i9.180 3566.01 124 353.029 124 700.161 124

i10.180 1030.319 136 313.686 136 671.363 136
i1.200 1806.514 144 396.162 145 891.682 144
i2.200 1744.723 142 379.892 142 833.821 142
i3.200 1492.782 140 393.292 140 882.603 140
i4.200 1036.575 152 324.745 155 789.736 152
i5.200 1219.813 142 358.317 143 863.696 142
i6.200 1181.312 148 341.796 148 739.269 148
i7.200 1088.227 141 355.805 141 807.956 141
i8.200 1483.859 141 367.459 141 723.592 141
i9.200 1186.226 147 357.599 147 778.488 147

i10.200 1166.336 154 340.627 154 693.25 154

instances. Figure 5.19 shows the average execution times for the three heuristics. The bounded

versions have a much smaller average execution times, when compared to BRKGA, because of

the reduction in the search space. The local phase in the BRKGA with local search heuristic

makes its average execution time larger than the Bounded BRKGA.

In the next experiment, BRKGA, Bounded BRKGA and Bounded BRKGA + LS were exe-

cuted for a fixed execution time equal to the time taken by BRKGA to perform 100 generations.

Tables 5.11 and 5.12 show the results for the instances with sizes 140 to 200. It was observed

in this experiment that BRKGA finds the best result in 94 out of the 100 instances, Bounded

BRKGA finds the best value in 93 and Bounded BRKGA + LS finds the best values in all 100

instances.

Tables 5.13 to 5.16 compare the results of the Bounded BRKGA + LS with the GRASP

heuristic, presented in Chapter 3. Both heuristics were executed for the same 100 instances

previously mentioned. Each instance was executed three times, for a fixed execution time equal

to the time taken by GRASP to perform 100 iterations. These tables show that there were 98

ties out of the 100 instances, GRASP found a better solution than Bounded BRKGA + LS in

one instance and the Bounded BRKGA + LS found a better solution in one instance.

5.5 Computational experiments 77

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 ti
m

e
(s

)

Size of instances

BRKGA
BoundedBRKGA

BoundedBRKGA+LS

Figure 5.19: Average execution times for the BRKGA heuristics.

5.5 Computational experiments 78

Table 5.11: Results for the instances with 140 and 160 vertices.

BRKGA Bounded BRKGA Bounded BRKGA + LS
Instance Execution time Best SOD Best SOD Best SOD
i1.140 815.023 110 110 110
i2.140 633.346 104 104 104
i3.140 422.745 114 114 114
i4.140 442.931 101 101 101
i5.140 391.795 104 104 104
i6.140 498.64 110 110 110
i7.140 431.715 124 124 124
i8.140 459.514 117 117 117
i9.140 500.339 115 115 115

i10.140 513.943 120 117 117
i1.160 1587.787 117 116 116
i2.160 850.373 128 128 128
i3.160 1084.233 124 124 124
i4.160 1214.509 123 123 123
i5.160 1375.658 130 130 130
i6.160 1540.472 129 129 129
i7.160 895.036 120 120 119
i8.160 784.619 124 125 124
i9.160 510.932 114 114 114

i10.160 2293.001 113 113 113

5.5 Computational experiments 79

Table 5.12: Results for the instances with 180 and 200 vertices.

BRKGA Bounded BRKGA Bounded BRKGA + LS
Instance Execution time Best SOD Best SOD Best SOD
i1.180 971.257 149 149 149
i2.180 959.043 123 123 123
i3.180 1730.199 124 124 124
i4.180 1387.326 139 139 138
i5.180 1293.367 134 134 134
i6.180 945.455 150 150 150
i7.180 1202.06 142 142 138
i8.180 1202.887 142 142 142
i9.180 3566.01 124 124 124

i10.180 1030.319 136 136 136
i1.200 1806.514 144 145 144
i2.200 1744.723 142 142 142
i3.200 1492.782 140 140 140
i4.200 1036.575 152 152 152
i5.200 1219.813 142 142 142
i6.200 1181.312 148 148 148
i7.200 1088.227 141 141 141
i8.200 1483.859 141 141 141
i9.200 1186.226 147 147 147

i10.200 1166.336 154 154 154

5.5 Computational experiments 80

Ta
bl

e
5.

13
:R

es
ul

ts
fo

rt
he

in
st

an
ce

s
w

ith
20

,4
0,

an
d

60
ve

rt
ic

es
.

G
R

A
SP

B
ou

nd
ed

B
R

K
G

A
+

L
S

In
st

an
ce

V
er

tic
es

#(
M

in
Su

p(
S)
)

SO
D
(M

in
Su

p(
S)
,S
)

SO
D
(Ĝ

,S
)

E
xe

cu
tio

n
tim

e
(s

)
A

ve
ra

ge
SO

D
A

ve
ra

ge
SO

D
i0

1
20

14
22

15
27

.0
0

12
12

i0
2

20
15

40
22

21
.0

2
20

20
i0

3
20

18
52

22
20

.2
4

20
20

i0
4

20
13

32
14

18
.7

9
14

14
i0

5
20

11
24

10
20

.2
1

10
10

i0
6

20
14

36
18

20
.5

1
18

18
i0

7
20

11
24

16
13

.6
3

16
16

i0
8

20
16

60
23

7.
25

20
20

i0
9

20
16

60
24

7.
59

20
20

i1
0

20
14

50
22

9.
67

19
19

i0
1

40
22

92
38

73
.5

7
34

34
i0

2
40

23
98

38
73

.1
0

30
30

i0
3

40
23

98
40

74
.8

8
38

38
i0

4
40

22
92

36
63

.5
2

30
30

i0
5

40
22

92
36

59
.8

4
30

30
i0

6
40

21
10

7
39

53
.8

3
33

33
i0

7
40

19
93

38
44

.4
2

34
34

i0
8

40
18

86
34

62
.9

0
31

31
i0

9
40

24
15

2
50

50
.3

8
40

40
i1

0
40

22
13

6
38

52
.4

1
36

36
i0

1
60

30
15

0
64

21
0.

33
48

48
i0

2
60

26
12

2
50

16
6.

98
39

39
i0

3
60

28
16

4
48

18
6.

79
44

44
i0

4
60

29
17

2
54

13
2.

08
46

46
i0

5
60

20
20

0
46

10
2.

91
45

45
i0

6
60

27
18

3
58

99
.3

8
51

51
i0

7
60

24
18

0
52

11
7.

31
48

48
i0

8
60

23
19

3
52

10
9.

85
45

45
i0

9
60

22
18

2
50

10
1.

33
47

47
i1

0
60

32
32

4
76

58
.6

8
60

60

5.5 Computational experiments 81

Ta
bl

e
5.

14
:R

es
ul

ts
fo

rt
he

in
st

an
ce

s
w

ith
80

,1
00

,a
nd

12
0

ve
rt

ic
es

.

G
R

A
SP

B
ou

nd
ed

B
R

K
G

A
+

L
S

In
st

an
ce

V
er

tic
es

#(
M

in
Su

p(
S)
)

SO
D
(M

in
Su

p(
S)
,S
)

SO
D
(Ĝ

,S
)

E
xe

cu
tio

n
tim

e
(s

)
A

ve
ra

ge
SO

D
A

ve
ra

ge
SO

D
i0

1
80

33
21

7
65

33
9.

51
56

56
i0

2
80

32
24

0
70

24
8.

15
58

58
i0

3
80

33
28

3
71

29
1.

28
62

62
i0

4
80

32
27

2
63

23
4.

25
55

55
i0

5
80

32
27

2
75

23
1.

82
62

62
i0

6
80

35
30

5
78

44
2.

27
63

63
i0

7
80

33
28

3
74

32
7.

90
66

66
i0

8
80

33
28

3
74

25
8.

60
60

60
i0

9
80

36
31

6
72

21
8.

75
67

67
i1

0
80

35
30

5
72

23
1.

91
67

67
i0

1
10

0
40

34
0

89
49

1.
72

72
72

i0
2

10
0

38
35

6
86

35
3.

41
72

72
i0

3
10

0
38

39
4

10
1

28
0.

22
82

82
i0

4
10

0
38

39
4

96
42

9.
17

83
83

i0
5

10
0

36
36

8
86

35
2.

09
70

70
i0

6
10

0
38

39
4

80
30

1.
72

70
70

i0
7

10
0

34
34

2
81

31
0.

02
73

73
i0

8
10

0
37

41
8

88
31

8.
86

74
74

i0
9

10
0

37
41

8
10

0
29

0.
95

82
82

i1
0

10
0

38
43

2
10

0
34

7.
50

86
86

i0
1

12
0

42
42

6
11

3
79

2.
77

92
92

i0
2

12
0

41
49

5
10

5
60

6.
06

93
93

i0
3

12
0

45
55

5
12

6
45

8.
67

10
0

10
0

i0
4

12
0

41
49

5
10

2
51

8.
70

94
94

i0
5

12
0

40
48

0
10

6
43

7.
78

94
94

i0
6

12
0

41
53

6
12

4
37

7.
31

98
96

i0
7

12
0

40
52

0
11

2
38

2.
51

10
2

10
2

i0
8

12
0

37
47

2
10

2
40

3.
83

86
86

i0
9

12
0

42
55

2
10

6
44

2.
24

98
98

i1
0

12
0

35
44

0
98

39
7.

72
84

84

5.5 Computational experiments 82

Ta
bl

e
5.

15
:R

es
ul

ts
fo

rt
he

in
st

an
ce

s
w

ith
14

0,
16

0,
an

d
18

0
ve

rt
ic

es
.

G
R

A
SP

B
ou

nd
ed

B
R

K
G

A
+

L
S

In
st

an
ce

V
er

tic
es

#(
M

in
Su

p(
S)
)

SO
D
(M

in
Su

p(
S)
,S
)

SO
D
(Ĝ

,S
)

E
xe

cu
tio

n
tim

e
(s

)
A

ve
ra

ge
SO

D
A

ve
ra

ge
SO

D
i0

1
14

0
50

71
0

13
0

86
2.

80
11

0
11

0
i0

2
14

0
44

65
2

12
2

77
5.

08
10

4
10

4
i0

3
14

0
43

67
7

13
2

47
9.

07
11

4
11

4
i0

4
14

0
44

69
6

11
9

50
0.

63
10

1
10

1
i0

5
14

0
38

58
2

11
2

45
5.

70
10

4
10

4
i0

6
14

0
45

76
0

12
4

54
0.

36
11

0
11

0
i0

7
14

0
49

88
9

15
1

46
5.

92
12

4
12

4
i0

8
14

0
48

86
8

14
8

49
1.

49
11

7
11

7
i0

9
14

0
47

84
7

13
5

54
1.

22
11

5
11

5
i1

0
14

0
42

74
2

13
0

57
2.

49
11

7
11

7
i0

1
16

0
53

74
1

13
9

18
86

.5
2

11
6

11
6

i0
2

16
0

54
81

2
17

0
10

63
.2

3
12

8
12

8
i0

3
16

0
50

74
0

14
0

10
43

.8
4

12
4

12
4

i0
4

16
0

49
77

1
14

5
12

30
.1

0
12

3
12

3
i0

5
16

0
49

77
1

15
6

11
86

.7
2

13
0

13
0

i0
6

16
0

55
88

5
15

1
14

24
.6

4
12

9
12

9
i0

7
16

0
47

73
3

14
3

90
1.

65
1

11
9

11
9

i0
8

16
0

47
73

3
14

0
11

01
.4

9
12

4
12

4
i0

9
16

0
39

58
1

12
8

73
3.

72
8

11
4

11
4

i1
0

16
0

47
73

3
13

4
15

90
.2

9
11

3
11

3
i0

1
18

0
56

99
6

16
9

11
59

.9
9

14
9

14
9

i0
2

18
0

47
80

7
15

2
10

48
.7

3
12

3
12

3
i0

3
18

0
50

87
0

15
3

14
65

.4
0

12
4

12
4

i0
4

18
0

47
80

7
16

4
13

43
.2

7
13

8
13

8.
3

i0
5

18
0

54
10

08
16

2
13

31
.7

6
13

4
13

4
i0

6
18

0
61

11
62

17
4

99
5.

87
15

0
15

0
i0

7
18

0
56

10
52

16
6

14
58

.7
9

13
8

13
8

i0
8

18
0

51
94

2
16

0
12

72
.0

6
14

2
14

2
i0

9
18

0
50

92
0

14
8

31
21

.1
5

12
4

12
4

i1
0

18
0

51
94

2
15

8
11

51
.4

4
13

6
13

6

5.5 Computational experiments 83

Ta
bl

e
5.

16
:R

es
ul

ts
fo

rt
he

in
st

an
ce

s
w

ith
20

0
ve

rt
ic

es
.

G
R

A
SP

B
ou

nd
ed

B
R

K
G

A
+

L
S

In
st

an
ce

V
er

tic
es

#(
M

in
Su

p(
S)
)

SO
D
(M

in
Su

p(
S)
,S
)

SO
D
(Ĝ

,S
)

E
xe

cu
tio

n
tim

e
(s

)
A

ve
ra

ge
SO

D
A

ve
ra

ge
SO

D
i0

1
20

0
57

99
7

18
2

21
43

.0
7

14
4.

3
14

4.
3

i0
2

20
0

52
94

4
16

4
18

75
.6

4
14

2
14

2
i0

3
20

0
55

10
10

16
6

19
25

.8
2

14
0

14
0

i0
4

20
0

59
11

57
19

6
14

13
.6

1
15

2
15

2
i0

5
20

0
53

10
19

17
2

13
78

.0
7

14
2

14
2

i0
6

20
0

55
10

65
18

0
14

34
.8

4
14

8
14

8
i0

7
20

0
52

99
6

17
6

13
13

.6
6

14
1

14
1

i0
8

20
0

49
92

7
17

1
13

22
.6

3
14

1
14

1
i0

9
20

0
53

10
19

18
3

14
02

.8
6

14
7

14
7

i1
0

20
0

54
10

42
19

0
13

73
.8

3
15

4
15

4

5.5 Computational experiments 84

In the next experiment we assess the behavior of both the Bounded BRKGA + LS heuristic

and the GRASP heuristic using time-to-target plots. Two hundred independent runs have been

performed for each algorithm. Each run was terminated when a solution with value less than

or equal to a given target was found. The perl program tttplots-compare [60], developed to

compare time-to-target plots or general runtime distribution for measured CPU times of any

two heuristics based on stochastic local search, was used to compare the results obtained by

Bounded BRKGA + LS and GRASP. Given two algorithms A1 and A2, tttplots-compare gives

the probability that algorithm A1 finds a solution at least as good as a given target value in a

smaller computation time than A2, for the case where the runtimes of the two algorithms follow

any general runtime distribution. The continuous random variable denoted by X1 (resp. X2)

represents the time needed by algorithm A1 (resp. A2) to find a solution at least as good as

a given target value. The probability that GRASP finds a solution in a smaller computational

time than Bounded BRKGA + LS is shown in Tables 5.17 and 5.18, for 50 instances, with

sizes of 100 to 180 vertices. These tables show that, out of the 50 instances, GRASP is more

likely to find the target faster than Bounded BRKGA + LS in 40 instances (80% of the cases).

Figures 5.20 to 5.24 show the superimposed runtime distributions of Bounded BRKGA + LS

and GRASP for five of these instances.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 0.1 1 10 100

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

Time (seconds)

Bounded BRKGA + LS
GRASP

Figure 5.20: Runtime distribution from 200 runs of Bounded BRKGA + LS and GRASP for
instance i6.120 with a total of 120 vertices and a target value set at 98 (best known value is 96).
For this instance, Pr(X1 ≤ X2) = 0.12.

5.5 Computational experiments 85

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 1 5 10 15 25 30 50 60 90 120 150 200 250 300 390

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

Time (seconds)

Bounded BRKGA + LS
GRASP

Figure 5.21: Runtime distribution from 200 runs of Bounded BRKGA + LS and GRASP for
instance i5.140 with a total of 140 vertices and a target value set at 104 (best known value is
104). For this instance, Pr(X1 ≤ X2) = 0.59.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 1 10 100

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

Time (seconds)

Bounded BRKGA + LS
GRASP

Figure 5.22: Runtime distribution from 200 runs of Bounded BRKGA + LS and GRASP for
instance i9.140 with a total of 140 vertices and a target value set at 115 (best known value is
115). For this instance, Pr(X1 ≤ X2) = 0.51.

5.5 Computational experiments 86

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 1 10 100

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

Time (seconds)

Bounded BRKGA + LS
GRASP

Figure 5.23: Runtime distribution from 200 runs of Bounded BRKGA + LS and GRASP for
instance i5.180 with a total of 180 vertices and a target value set at 134 (best known value is
134). For this instance, Pr(X1 ≤ X2) = 0.09.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 1 10 100

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

Time (seconds)

Bounded BRKGA + LS
GRASP

Figure 5.24: Runtime distribution from 200 runs of Bounded BRKGA + LS and GRASP for
instance i8.180 with a total of 180 vertices and a target value set at 142 (best known value is
142). For this instance, Pr(X1 ≤ X2) = 0.13.

5.6 Conclusions 87

5.6 Conclusions

In this chapter three heuristics for the generalized median graph were proposed: a heuristic ba-

sed on the BRKGA metaheuristic, a variant of the BRKGA heuristic, called Bounded BRKGA,

that uses a theoretical result to reduce the search space of the problem, and Bounded BRKGA

with a local search phase inserted between any two consecutive generations. These heuristics

were compared among themselves, showing that Bounded BRKGA and Bounded BRKGA +

LS provided the best results in terms of execution time, and Bounded BRKGA + LS provided

the best solutions among the three heuristics. Bounded BRKGA + LS was then compared with

GRASP, with both heuristics presenting equivalent results in terms of solution quality. In the

comparison using time-to-target plots, GRASP showed to be more likely to find target values

in less computational times than Bounded BRKGA + LS in 80% of the tested instances. The

theoretical result that served as the basis for Bounded BRKGA was able to significantly reduce

the search space of the algorithm, with a strong effect in reducing the execution times of the

heuristic.

5.6 Conclusions 88

Table 5.17: Probabilities that GRASP finds a solution at least as good as the target value in a
smaller computational time than Bounded BRKGA + LS (instances with sizes 100 to 120).

Instance Target value Pr(X1 ≤ X2)
i1.100 72 0.55
i2.100 72 0.98
i3.100 82 0.98
i4.100 83 0.93
i5.100 70 0.79
i6.100 70 0.98
i7.100 73 0.14
i8.100 74 0.83
i9.100 82 0.85
i10.100 86 0.64
i1.120 92 0.98
i2.120 93 0.94
i3.120 100 0.42
i4.120 94 0.74
i5.120 94 0.75
i6.120 96 0.12
i7.120 102 0.13
i8.120 86 0.82
i9.120 98 0.94
i10.120 84 0.67

5.6 Conclusions 89

Table 5.18: Probabilities that GRASP finds a solution at least as good as the target value in a
smaller computational time than Bounded BRKGA + LS (instances with sizes 140 to 180).

Instance Target value Pr(X1 ≤ X2)
i1.140 110 0.81
i2.140 104 0.84
i3.140 114 0.87
i4.140 101 0.76
i5.140 104 0.59
i6.140 110 0.54
i7.140 124 0.40
i8.140 117 0.72
i9.140 115 0.51
i10.140 117 0.97
i1.160 116 0.43
i2.160 128 0.73
i3.160 124 0.37
i4.160 123 0.98
i5.160 130 0.85
i6.160 129 0.09
i7.160 119 0.94
i8.160 124 0.99
i9.160 114 0.96
i10.160 113 0.52
i1.180 149 0.59
i2.180 123 0.92
i3.180 124 0.92
i4.180 138 0.99
i5.180 134 0.09
i6.180 150 0.77
i7.180 138 0.88
i8.180 142 0.13
i9.180 124 0.99
i10.180 136 0.75

Chapter 6

Concluding remarks

In this work, five heuristics for the generalized median graph problem were presented. One

of them was based on a greedy strategy, another on the GRASP metaheuristic, and the others

on the BRKGA metaheuristic. The BRKGA heuristics consisted of a pure BRKGA, a variant

called Bounded BRKGA, and the Bounded BRKGA with a local search. The instances used in

the computational experiments consisted of molecules related to the AIDS virus. The heuristics

were executed in larger instances than the ones used in exact algorithms, and the results showed

that the approximate generalized median graphs computed by the heuristics were of good qua-

lity, being able to be used in an application involving a classification task. In the comparison

with the set median graph, the graphs obtained by the heuristics presented a superior quality.

In the comparison of the five heuristics, GRASP and the Bounded BRKGA with local search

heuristics were both superior to the greedy heuristic, and both presented similar results in terms

of solution quality.

Two theoretical results were also presented in this work. The first one gives a bound to the

sum of distances of a graph, and a practical use of this result is also presented: in conjunction

with a previously computed solution, it is used to eliminate candidate graphs of poor quality

from the search space of Bounded BRKGA and Bounded BRKGA with local search. Usually,

these graphs of poor quality have a large number of nodes. As a consequence of eliminating

these large sized graphs, Bounded BRKGA and Bounded BRKGA with local search presented

smaller computational times when compared with BRKGA.

The second theoretical result, presented in Appendix A, shows that the empty graph Ge is

the generalized median graph of a set S, if the graphs in S satisfy a certain property.

As future work, BRKGA and its variants can be improved in terms of efficiency. As men-

tioned, the GRASP heuristic uses a technique to avoid recomputing the distances between two

6 Concluding remarks 91

graphs whenever possible. The inclusion of this technique in BRKGA can possibly speed up

the computation of the distances and consequently lessen the execution times. Data mining te-

chniques may also be used to improve BRKGA and its variants. One possible idea is to extract

patterns that appear frequently in good solutions and use them in post-optimization processes

(for example, in a path-relinking procedure).

The results obtained by the first theoretical result can be further explored. More specifically,

it can be used in other metaheuristic algorithms, such as tabu search and simulated annealing,

to possibly reduce the search spaces and the computation times. The search space reduction can

also be implemented in matheuristic algorithms, where the conditions on the number of nodes

in the solutions are obtained by incorporating a constraint in the mathematical model.

Still as future work, approximative algorithms for the generalized median graph problem

can be researched.

References

[1] AARTS, E. H. L.; VAN LAARHOVEN, P. J. M.; LENSTRA, J. K.; ULDER, N. L. J. A
computational study of local search algorithms for job shop scheduling. ORSA Journal on
Computing 6 (1994), 118–125.

[2] AIEX, R. M.; RESENDE, M.; RIBEIRO, C. Probability distribution of solution time in
GRASP: An experimental investigation. Journal of Heuristics 8 (2002), 343–373.

[3] AIEX, R. M.; RESENDE, M.; RIBEIRO, C. TTTPLOTS: A perl program to create time-
to-target plots. Optimization Letters 1 (2007), 355–366.

[4] ALLAHYARI, S.; SALARI, M.; VIGO, D. A hybrid metaheuristic algorithm for the multi-
depot covering tour vehicle routing problem. European Journal of Operational Research
242 (2015), 756–768.

[5] ALPAYDIN, E. Introduction to Machine Learning, 2nd ed. The MIT Press, 2010.

[6] BALAS, E.; YU, C. S. Finding a maximum clique in an arbitrary graph. SIAM Journal
on Computing 15 (1986), 1054–1068.

[7] BEAN, J. C. Genetic algorithms and random keys for sequencing and optimization. IN-
FORMS Journal on Computing 6 (1994), 154–160.

[8] BENGOETXEA, E. Inexact Graph Matching Using Estimation of Distribution Algorithms.
Tese de Doutorado, Ecole Nationale Supérieure des Télécommunications, Paris, 2002.

[9] BERRETTI, S.; BIMBO, A. D.; VICARIO, E. Efficient matching and indexing of graph
models in content-based retrieval. IEEE Transactions Pattern Analysis Machine Intelli-
gence 23 (2001), 1089–1105.

[10] BRANDÃO, J. S.; NORONHA, T. F.; RESENDE, M.; RIBEIRO, C. A biased random-
key genetic algorithm for scheduling heterogeneous multi-round systems. International
Transactions in Operational Research 24 (2017), 1061–1077.

[11] BUNKE, H. On a relation between graph edit distance and maximum common subgraph.
Pattern Recognition Letters 18 (1997), 689–694.

[12] BUNKE, H. Graph representation for intelligent information processing - Fundamen-
tals and algorithms for classification and clustering, 2011. Online reference available at
http://cvpr-ss-2010.cecs.anu.edu.au/pdfs/HorstBunke.pdf, last visited on March 12, 2018.

[13] BUNKE, H.; FOGGIA, P.; GUIDOBALDI, C.; SANSONE, C.; VENTO, M. A comparison
of algorithms for maximum common subgraph on randomly connected graphs. Lecture
Notes in Computer Science 2396 (2002), 123–132.

References 93

[14] BUNKE, H.; JIANG, X.; KANDEL, A. On the minimum common supergraph of two
graphs. Computing 65 (2000), 13–25.

[15] BUNKE, H.; RIESEN, K. Towards the unification of structural and statistical pattern
recognition. Pattern Recognition Letters 33 (2012), 811–825.

[16] CONTE, D.; FOGGIA, P.; SANSONE, C.; VENTO, M. Thirty years of graph matching
in pattern recognition. International Journal of Pattern Recognition and Artificial Intelli-
gence 18 (2004), 265–298.

[17] CONTE, D.; FOGGIA, P.; VENTO, M. Challenging complexity of maximum common
subgraph detection algorithms: A performance analysis of three algorithms on a wide
database of graphs. Journal of Graph Algorithms and Applications 11 (2007), 99–143.

[18] CROCE, F. D.; TADEI, R.; VOLTA, G. A genetic algorithm for the job shop problem.
Computers Operations Research 22 (1995), 15 – 24.

[19] DE LA HIGUERA, C.; CASACUBERTA, F. Topology of strings: Median string is NP-
complete. Theoretical Computer Science 230 (2000), 39–48.

[20] DORNDORF, U.; PESCH, E. Evolution based learning in a job shop scheduling environ-
ment. Computers Operations Research 22 (1995), 25 – 40.

[21] DUDA, R. O.; HART, P. E.; STORK, D. G. Pattern Classification, 2nd ed. Wiley, New
York, 2000.

[22] DURAND, P.; PASARI, R.; BAKER, J. W.; TSAI, C.-C. An efficient algorithm for simi-
larity analysis of molecules. Internet Journal of Chemistry 2, 17 (1999). Online reference
available at http://www.cs.kent.edu/∼jbaker/paper, last visited on March 12, 2018.

[23] ERICSSON, M.; RESENDE, M.; PARDALOS, P. M. A genetic algorithm for the weight
setting problem in OSPF routing. Journal of Combinatorial Optimization 6 (2002), 299–
333.

[24] FAN, K. C.; LIU, C. W.; WANG, Y. K. A fuzzy bipartite weighted graph matching appro-
ach to fingerprint verification. In Proceedings of the 1998 IEEE International Conference
on Systems, Man, and Cybernetics (San Diego, 1998), vol. 5, IEEE, pp. 4363–4368.

[25] FEO, T.; RESENDE, M. A probabilistic heuristic for a computationally difficult set cove-
ring problem. Operations Research Letters 8 (1989), 67–71.

[26] FEO, T.; RESENDE, M. Greedy randomized adaptive search procedures. Journal of
Global Optimization 6 (1995), 109–133.

[27] FERRER, M. Theory and Algorithms on the Median Graph - Application to Graph-based
Classification and Clustering. Tese de Doutorado, Universitat Autonoma de Barcelona,
Belaterra, 2008.

[28] FERRER, M.; VALVENY, E.; SERRATOSA, F. Median graph: A new exact algorithm
using a distance based on the maximum common subgraph. Pattern Recognition Letters
30 (2009), 579–588.

References 94

[29] FERRER, M.; VALVENY, E.; SERRATOSA, F. Median graphs: A genetic approach based
on new theoretical properties. Pattern Recognition 42 (2009), 2003–2012.

[30] FERRER, M.; VALVENY, E.; SERRATOSA, F.; RIESEN, K.; BUNKE, H. An approximate
algorithm for median graph computation using graph embedding. In 19th International
Conference on Pattern Recognition (Tampa, 2008), vol. 2, pp. 1–4.

[31] FERRER, M.; VALVENY, E.; SERRATOSA, F.; RIESEN, K.; BUNKE, H. Generalized
median graph computation by means of graph embedding in vector spaces. Pattern Re-
cognition 43 (2010), 1642–1655.

[32] FESTA, P.; RESENDE, M. GRASP: An annotated bibliography. In Essays and Surveys in
Metaheuristics, C. Ribeiro and P. Hansen, Eds. Kluwer, 2002, pp. 325–367.

[33] FESTA, P.; RESENDE, M. An annotated bibliography of GRASP, Part I: Algorithms.
International Transactions in Operational Research 16 (2009), 1–24.

[34] FESTA, P.; RESENDE, M. An annotated bibliography of GRASP, Part II: Applications.
International Transactions in Operational Research 16 (2009), 131–172.

[35] FISCHER, S.; GILOMEN, K.; BUNKE, H. Identification of diatoms by grid graph mat-
ching. In Proceedings of the Joint IAPR International Workshop on Structural, Syntactic,
and Statistical Pattern Recognition (London, 2002), Springer, pp. 94–103.

[36] FOGGIA, P.; PERCANNELLA, G.; VENTO, M. Graph matching and learning in pattern
recognition in the last 10 years. International Journal of Pattern Recognition and Artificial
Intelligence 28 (2014), 1450001–1–1450001–40.

[37] FUKUNAGA, K. Introduction to Statistical Pattern Recognition, 2nd ed. Academic Press,
San Diego, 1990.

[38] GAREY, M.; JOHNSON, D. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., New York, 1979.

[39] GONÇALVES, J. F.; RESENDE, M. Biased random-key genetic algorithms for combina-
torial optimization. Journal of Heuristics 17 (2011), 487–525.

[40] GONÇALVES, J. F.; DE MAGALHÃES MENDES, J. J.; RESENDE, M. A hybrid genetic al-
gorithm for the job shop scheduling problem. European Journal of Operational Research
167 (2005), 77 – 95.

[41] HLAOUI, A.; WANG, S. A new median graph algorithm. Lecture Notes in Computer
Science 2726 (2003), 225–234.

[42] HOLLAND, J. H. Adaptation in Natural and Artificial Systems: An Introductory Analysis
with Applications to Biology, Control and Artificial Intelligence. MIT Press, Cambridge,
1992.

[43] HONG, P.; WANG, R.; HUANG, T. Learning patterns from images by combining soft
decisions and hard decisions. In Proceedings of the Conference on Computer Vision and
Pattern Recognition (Hilton Head, 2000), vol. 1, IEEE Computer Society, pp. 79–83.

References 95

[44] JIANG, X.; MUNGER, A.; BUNKE, H. On median graphs: Properties, algorithms, and
applications. IEEE Transactions on Pattern Analysis and Machine Intelligence 23 (2001),
1144–1151.

[45] LADES, M.; VORBRUGGEN, J. C.; BUHMANN, J.; LANGE, J.; VON DER MALSBURG,
C.; P., R.; WURZ; KONEN, W. Distortion invariant object recognition in the dynamic
link architecture. IEEE Transactions on Computers 42 (1993), 300–311.

[46] MCGREGOR, J. J. Backtrack search algorithms and the maximal common subgraph pro-
blem. Software Practice and Experience 12 (1982), 23–34.

[47] MONTGOMERY, D. C.; RUNGER, G. C. Applied Statistics and Probability for Engineers.
John Wiley and Sons, 2003.

[48] MUKHERJEE, L.; SINGH, V.; PENG, J.; XU, J.; ZEITZ, M. J.; BEREZNEY, R. Genera-
lized median graphs: Theory and applications. In Proceedings of the IEEE 11th Interna-
tional Conference on Computer Vision (Buffalo, 2007), IEEE, pp. 1–8.

[49] MUKHERJEE, L.; SINGH, V.; PENG, J.; XU, J.; ZEITZ, M. J.; BEREZNEY, R. Genera-
lized median graphs and applications. Journal of Combinatorial Optimization 17 (2009),
21–44.

[50] MUSMANNO, L. Approximate algorithms for the generalized median graph problem (in
Portuguese). Master’s thesis, Universidade Federal Fluminense, Niterói, 2013.

[51] MUSMANNO, L. M.; RIBEIRO, C. Heuristics for the generalized median graph problem.
European Journal of Operational Research 254 (2016), 371–384.

[52] NEUHAUS, M.; RIESEN, K.; BUNKE., H. Fast suboptimal algorithms for the computa-
tion of graph edit distance. Lecture Notes in Computer Science 4109 (2006), 163–172.

[53] NGUYEN, V.-P.; PRINS, C.; PRODHON, C. Solving the two-echelon location routing
problem by a GRASP reinforced by a learning process and path relinking. European
Journal of Operational Research 216 (2012), 113–126.

[54] REBAGLIATI, N.; SOLÉ-RIBALTA, A.; PELILLO, M.; SERRATOSA, F. On the relation
between the common labelling and the median graph. In Proceedings of the 2012 Joint
IAPR International Conference on Structural, Syntactic, and Statistical Pattern Recogni-
tion (2012), Springer, pp. 107–115.

[55] RESEARCH GROUP ON COMPUTER VISION AND ARTIFICIAL INTEL-
LIGENCE. IAM graph database repository, 2011. online reference at
http://www.iam.unibe.ch/fki/databases/iam-graph-database, last visited on March
12, 2018.

[56] RESENDE, M.; RIBEIRO, C. Greedy randomized adaptive search procedures. In Hand-
book of Metaheuristics, F. Glover and G. Kochenberger, Eds. Kluwer, 2002, pp. 219–249.

[57] RESENDE, M.; RIBEIRO, C. GRASP with path-relinking: Recent advances and applica-
tions. In Metaheuristics: Progress as Real Problem Solvers, T. Ibaraki, K. Nonobe, and
M. Yagiura, Eds. Springer, 2005, pp. 29–63.

References 96

[58] RESENDE, M.; RIBEIRO, C. Greedy randomized adaptive search procedures: Advances,
hybridizations, and applications. In Handbook of Metaheuristics, M. Gendreau and J.-Y.
Potvin, Eds., 2nd ed. Springer, 2010, pp. 283–319.

[59] RESENDE, M.; RIBEIRO, C. GRASP: Greedy Randomized Adaptive Search Procedures.
In Search Methodologies, E. Burke and G. Kendall, Eds., 2nd ed. Springer, 2014, ch. 11,
pp. 285–310.

[60] RIBEIRO, C.; ROSSETI, I.; VALLEJOS, R. On the use of run time distributions to evaluate
and compare stochastic local search algorithms. In Engineering Stochastic Local Search
Algorithms. Designing, Implementing and Analyzing Effective Heuristics (Berlin, Heidel-
berg, 2009), T. Stützle, M. Birattari, and H. H. Hoos, Eds., Springer Berlin Heidelberg,
pp. 16–30.

[61] SERRATOSA, F.; CORTÉS, X.; SOLÉ-RIBALTA, A. Component retrieval based on a
database of graphs for hand-written electronic-scheme digitalisation. Expert Systems with
Applications 40 (2013), 2493–2502.

[62] SHEARER, K.; BUNKE, H.; VENKATESH, S. Video indexing and similarity retrieval by
largest common subgraph detection using decision trees. Pattern Recognition 34 (2001),
1075–1091.

[63] SPEARS, V. M.; JONG, K. A. D. On the virtues of parameterized uniform crossover.
In In Proceedings of the Fourth International Conference on Genetic Algorithms (1991),
pp. 230–236.

[64] SUGANTHAN, P. N.; YAN, H. Recognition of handprinted chinese characters by cons-
trained graph matching. Image and Vision Computing 16 (1998), 191 – 201.

[65] TORSELLO, A.; HANCOCK, E. R. Computing approximate tree edit-distance using rela-
xation labeling. Pattern Recognition Letters 24 (2003), 1089–1097.

[66] TOSO, R. F.; RESENDE, M. A c++ application programming interface for biased random-
key genetic algorithms. Optimization Methods and Software 30 (2015), 81–93.

[67] VENTO, M. A long trip in the charming world of graphs for pattern recognition. Pattern
Recognition 48 (2015), 291–301.

[68] VOIGT, K. Semi-automatic matching of heterogeneous model-based specificati-
ons. Lecture Notes in Informatics P-160 (2010), 537–542. Online reference
at http://subs.emis.de/LNI/Proceedings/Proceedings160/article5479.html, last visited on
March 12, 2018.

[69] ZENG, Z.; TUNG, A. K. H.; WANG, J.; FENG, J.; ZHOU, L. Comparing stars: On
approximating graph edit distance. Proceedings of the VLDB Endowment 2 (2009), 25–
36.

97

APPENDIX A -- Computing the exact generalized

median graph - Special case

The computation of the generalized median graph of a set S of graphs is a difficult task. This

appendix illustrates a special situation where it is possible to find the generalized median graph

of a set of graphs. More specifically, it was shown in [44] that min{SOD(Ge,S),SOD(Gu,S)} is

an upper bound for the SOD of the generalized median graph of S, where Ge is the empty graph

and Gu is the union graph of the graphs in S. It will be proved that, in some particular cases, Ge

is the actual generalized median graph of the set.

Consider a set S = {G1,G2,G3}, as shown in Figure A.1.

1 2

3

A

C

B

(a) Graph G1

1 2

D
E

(b) Graph G2

1
F

(c) Graph G3

Figure A.1: Graphs in set S

In this case, #(MaxSub(Gi,G j)) = 0,∀i, j, i 6= j, i, j = 1,2,3. The goal of this section is to

show that, in cases like this, where #(MaxSub(Gi,G j)) = 0 for all pairs of graphs Gi and G j in

the set, the empty graph Ge is the graph that presents the smallest sum of distances (SOD) to

the graphs in set S, i.e, Ge is the generalized median graph of set S.

We first compute SOD(Ge,S) = d(Ge,G1)+d(Ge,G2)+d(Ge,G3):

• d(Ge,G1) = #(Ge)+#(G1)−2×#(MaxSub(Ge,G1)) = 3+0−2×0 = 3

• d(Ge,G2) = #(Ge)+#(G2)−2×#(MaxSub(Ge,G2)) = 2+0−2×0 = 2

Appendix A -- Computing the exact generalized median graph - Special case 98

• d(Ge,G3) = #(Ge)+#(G3)−2×#(MaxSub(Ge,G3)) = 1+0−2×0 = 1

Hence, SOD(Ge,S) = #(G1)+#(G2)+#(G3) = 3+2+1 = 6.

In the attempt to find a candidate graph that presents a smaller SOD, one idea is to take

combinations (union) of subgraphs of G1,G2 and G3. The expectation is that these subgraphs

possibly result in smaller distances. Consider as our first candidate the graph Cand1, shown in

Figure A.2 (a). This graph consists of an induced subgraph G′1 ⊂ G1, with #(G′1) = 2, and an

induced subgraph G′2 ⊂ G2, with #(G′2) = 1. The SOD of this candidate is:

• d(Cand1,G1) = #(Cand1)+#(G1)−2×#(MaxSub(Cand1,G1)) = 3+3−2×2 = 2

• d(Cand1,G2) = #(Cand1)+#(G2)−2×#(MaxSub(Cand1,G2)) = 2+3−2×1 = 3

• d(Cand1,G3) = #(Cand1)+#(G3)−2×#(MaxSub(Cand1,G3)) = 1+3−2×0 = 4

Thus we have SOD(Cand1,S) = 9. If, instead, we had taken as a candidate the graph Cand2

shown in Figure A.2(b), the SOD would be even larger, since now the distance d(Cand,G1)

increased, because the subgraph of G1 is not and induced subgraph of G1, since the edge con-

necting the nodes with labels A and B is missing.

Connecting the subgraphs with edges makes no difference, as the graph Cand3 in Figure

A.2(c) shows. This graph in Figure A.2(c) has the same SOD as the graph shown in Figure

A.2(a). The inserted edge (B,D) does not modify the distances, since it makes no change in

the maximum common subgraphs. Inserting into the candidate a graph that is not a subgraph of

any of the graphs Gi, i = 1,2,3, can only further increase the SOD. As an example, the graph

Cand4 in Figure A.2(d) presents nodes with labels X and Z, not present in any of the graphs in

set S. Computing the SOD of Cand4 we have:

• d(Cand4,G1) = #(Cand4)+#(G1)−2×#(MaxSub(Cand4,G1)) = 3+5−2×2 = 4

• d(Cand4,G2) = #(Cand4)+#(G2)−2×#(MaxSub(Cand4,G2)) = 2+5−2×1 = 5

• d(Cand4,G3) = #(Cand4)+#(G3)−2×#(MaxSub(Cand4,G3)) = 1+5−2×0 = 6

Hence, SOD(Cand4,S) = d(Cand4,G1)+d(Cand4,G2)+d(Cand4,G3) = 15, and thus it is

a worse representative to set S than the graph presented in Figure A.2(a).

Therefore, in the search for a better representative for set S, the best approach is to construct

a candidate by taking the union
⋃3

i=1 G′i, where each G′i is an induced subgraph of Gi, i = 1,2,3.

Appendix A -- Computing the exact generalized median graph - Special case 99

1 2

3

A

D

B

(a) Graph Cand1 consists of induced
subgraphs of G1 and G2.

1 2

3

A

D

B

(b) Graph Cand2: without edge
(1,2), G1’s subgraph is not induced.

1 2

3

A

D

B

(c) Graph Cand3 consists of the same
nodes and edges of Cand1, with the
inclusion of edge (2,3).

1 2

3

A

D

B

X

Z 5

4

(d) Graph Cand4: inserting nodes
with labels not present in S.

Figure A.2: Possibilities in the construction of a candidate.

However, we will show that not even this approach can improve on the empty graph. Take as a

candidate Cand the union
⋃3

i=1 G′i, where each G′i is an induced subgraph of Gi, i = 1,2,3, with

#(G′1) = m1, #(G′2) = m2 and #(G′3) = m3. Computing the distances from this candidate to the

Appendix A -- Computing the exact generalized median graph - Special case 100

graphs in S we have:

d(G1,Cand) = #(G1)+#(Cand)−2×#(MaxSub(Cand,G1)) =

= #(G1)+(m1 +m2 +m3)−2×m1 =

= #(G1)+(m2 +m3−m1)

d(G2,Cand) = #(G2)+#(Cand)−2×#(MaxSub(Cand,G2)) =

= #(G2)+(m1 +m2 +m3)−2×m2 =

= #(G2)+(m1 +m3−m2)

d(G3,Cand) = #(G3)+#(Cand)−2×#(MaxSub(Cand,G3)) =

= #(G3)+(m1 +m2 +m3)−2×m3 =

= #(G3)+(m1 +m2−m3)

Hence, this candidate’s SOD is equal to:

SOD(Cand,S) = d(Cand,G1)+d(Cand,G2)+d(Cand,G3) =

= #(G1)+#(G2)+#(G3)+(m2 +m3−m1)+(m1 +m3−m2)+(m1 +m2−m3) =

= #(G1)+#(G2)+#(G3)+(m1 +m2 +m3) =

= SOD(Ge)+(m1 +m2 +m3)

Thus, we have SOD(Cand,S) ≥ SOD(Ge,S), and the equality holds only if m1 = m2 =

m3 = 0, i.e, if the candidate is the empty graph itself. Therefore, the empty graph Ge is the

generalized median graph of this set.

The next property formalizes this result, showing that, in sets like set S above, where

#(MaxSub(Gi,G j)) = 0, i, j = 1, . . . ,n, i 6= j, Ge is the exact generalized median graph of the

set.

Proposition 2 Let S= {G1, . . . ,Gn}, with n≥ 2, be a set of labeled graphs, where #(MaxSub(Gi,G j))=

0, i, j = 1, . . . ,n, i 6= j. Then, the empty graph is the generalized median graph of set S.

Proof: Let S= {G1, . . . ,Gn}with n≥ 2, be a set of labeled graphs such that #(MaxSub(Gi,G j))=

0, i, j = 1, . . . ,m, i 6= j. Initially, let’s compute the SOD of the empty graph Ge :

Appendix A -- Computing the exact generalized median graph - Special case 101

d(Ge,G1) = #(Ge)+#(G1)−2×#(MaxSub(Ge,G1)) = 0+#(G1)−2×0 = #(G1)

d(Ge,G2) = #(Ge)+#(G2)−2×#(MaxSub(Ge,G2)) = 0+#(G2)−2×0 = #(G2)

...

d(Ge,Gn) = #(Ge)+#(Gn)−2×#(MaxSub(Ge,Gn)) = 0+#(Gn)−2×0 = #(Gn)

Therefore, we have that SOD(Ge,S) = ∑
n
i=1 #(Gi).

As explained previously, the best attempt to find a better representative than the empty

graph is to take the union of induced subgraphs of the graphs from the set. Thus, let’s consider

as our candidate the graph
⋃n

i=1 G′i, where each G′i is an induced subgraph of Gi and #(G′i) = mi,

1≤ i≤ n. Computing the distances from this graph to the graphs of S we have:

d(G1,
n⋃

i=1

G′i) = #(G1)+#(
n⋃

i=1

G′i)−2×#(MaxSub(
n⋃

i=1

G′i,G1)) =

= #(G1)+
m

∑
i=1

mi−2×m1

d(G2,
n⋃

i=1

G′i) = #(G2)+#(
n⋃

i=1

G′i)−2×#(MaxSub(
n⋃

i=1

G′i,G2)) =

= #(G2)+
m

∑
i=1

mi−2×m2

...

d(Gn,
n⋃

i=1

G′i) = #(Gm)+#(
n⋃

i=1

G′i)−2×#(MaxSub(
n⋃

i=1

G′i,Gn)) =

= #(Gn)+
n

∑
i=1

mi−2×mn

Appendix A -- Computing the exact generalized median graph - Special case 102

Therefore, the SOD of this candidate is:

SOD(
n⋃

i=1

G′i) = d(G1,
n⋃

i=1

G′i)+d(G2,
n⋃

i=1

G′i)+ . . .+d(Gn,
n⋃

i=1

G′i) =

=
n

∑
i=1

#(Gi)+n×
n

∑
i=1

mi−2× (m1 +m2 + . . .+mn) =

=
n

∑
i=1

#(Gi)+(n−2)× (m1 +m2 + . . .+mn) =

= SOD(Ge)+(n−2)× (m1 +m2 + . . .+mn)

Since n ≥ 2, we have SOD(Ge,S) ≤ SOD(
⋃n

i=1 G′i,S). It follows that the empty graph is a ge-

neralized median graph of set S. �

In the more general case where the set S is such that #(MaxSub(S)) > 0, it can be shown

that SOD(MaxSub(S),S)< SOD(Ge,S).

103

APPENDIX B -- Instances

The instances used in this work were taken from the AIDS group of the IAM Graph Database

Repository.

Table B.1: Instances with number of nodes equal to 20

Instance Graphs
i1.20 2128, 6497, 13072
i2.20 153, 973, 4493, 8117
i3.20 4901, 6075, 6614, 8117
i4.20 813, 1541, 8117, 22446
i5.20 153, 718, 4901, 14734
i6.20 41, 262, 646, 5461
i7.20 646, 718, 1540, 21840
i8.20 153, 2325, 5727, 7910, 8117
i9.20 41, 2325, 5727, 6073, 8117

i10.20 914, 5727, 6075, 8117, 13072

Table B.2: Instances with number of nodes equal to 40

Instance Graphs
i1.40 8117, 6075, 1540, 4446, 37148, 31114
i2.40 8117, 1540, 165, 1079, 23533, 29886
i3.40 153, 5727, 7910, 31574, 2205, 12741
i4.40 153, 13072, 1540, 7796, 36308, 36531
i5.40 6075, 1540, 973, 607, 6801, 1561
i6.40 8117, 13072, 7910, 1540, 21840, 2803, 3181
i7.40 41, 718, 5461, 14787, 607, 2199, 10567
i8.40 5461, 718, 13072, 7910, 1540, 770, 25925
i9.40 8117, 5727, 153, 1540, 7910, 348, 7411, 5497
i10.40 8117, 153, 22446, 4901, 150, 41, 90, 2528

Appendix B -- Instances 104

Table B.3: Instances with number of nodes equal to 60

Instance Graphs
i1.60 8117, 5727, 4142, 28329, 14689, 21760, 2454
i2.60 5461, 31, 22, 6266, 5048, 9939, 41363
i3.60 22446, 4901, 6073, 646, 486, 1322, 1812, 18026
i4.60 13072, 7910, 11016, 4446, 10567, 5067, 1026, 12427
i5.60 8117, 153, 4901, 22446, 646, 718, 150, 6073, 5461, 7910, 5268, 9901, 21825
i6.60 153, 5727, 718, 1137, 1744, 2632, 231, 3442, 7513
i7.60 8117, 41, 5461, 150, 1540, 426, 107, 4257, 2291, 11563
i8.60 153, 4901, 22446, 718, 19440, 11016, 973, 31, 97, 6497, 2728
i9.60 718, 150, 6073, 4901, 22446, 973, 31, 6497, 11216, 1079, 4464

i10.60 8117, 5727, 153, 6073, 6075, 13072, 1540, 1541, 426, 348, 14912, 5067

Table B.4: Instances with number of nodes equal to 80

Instance Graphs
i1.80 7910, 13072, 1540, 1089, 28915, 975, 11095, 23414, 16664
i2.80 153, 11216, 56, 7411, 21840, 34256, 986, 38951, 23129, 6191
i3.80 8117, 153, 7910, 1540, 13072, 4250, 1486, 25316, 6081, 32791, 11958
i4.80 8117, 1540, 18105, 7834, 97, 7575, 6262, 16370, 10338, 14562, 38971
i5.80 8117, 13072, 348, 21840, 261, 7899, 3344, 1259, 30821, 38, 2029
i6.80 5727, 153, 5461, 22446, 18105, 19440, 6239, 14286, 10498, 16999, 1200
i7.80 5727, 6073, 22446, 13072, 7910, 11216, 5581, 28437, 8478, 16013, 23125
i8.80 153, 914, 426, 246, 7834, 3488, 31, 20691, 21829, 25951, 373
i9.80 6073, 5461, 718, 150, 6075, 1540, 40760, 1154, 32167, 12203, 17167

i10.80 6073, 22446, 7910, 1540, 14930, 9901, 486, 22331, 5057, 1481, 2648

Table B.5: Instances with number of nodes equal to 100

Instance Graphs
i1.100 6075, 1540, 11216, 1079, 2291, 36894, 28336, 3058, 1640, 11958, 2075
i2.100 8117, 607, 3344, 31574, 1323, 2694, 35059, 20681, 1861, 5811, 3056, 1422
i3.100 8117, 5727, 13072, 1540, 7910, 7796, 21825, 9834, 1974, 24418, 24420, 133, 22695
i4.100 153, 5727, 646, 718, 1540, 97, 426, 23558, 25929, 16703, 14029, 2817, 1455
i5.100 153, 5727, 22446, 1540, 214, 7899, 266, 18907, 6614, 2818, 27893, 10646, 34221
i6.100 6075, 22446, 1540, 973, 19440, 983, 4257, 2051, 30003, 11064, 3010, 427, 3616
i7.100 150, 7910, 13072, 1540, 214, 803, 7281, 6801, 1079, 1498, 1152, 1917, 22696
i8.100 8117, 5727, 153, 1540, 13072, 11216, 1079, 214, 15698, 2029, 6643, 1422, 17570, 1014
i9.100 8117, 153, 41, 2097, 14930, 7281, 8652, 13480, 1119, 403, 4446, 3182, 26336, 2445

i10.100 5727, 153, 6075, 4901, 6073, 13072, 1540, 1885, 3182, 17256, 10936, 31998, 10858, 18928

Appendix B -- Instances 105

Table B.6: Instances with number of nodes equal to 120

Instance Graphs
i1.120 8117, 261, 12326, 813, 8960, 11425, 2356,

2238, 25358, 37328, 700, 17958, 18682
i2.120 8117, 6073, 646, 718, 11016, 13480, 8652,

2097, 5015, 10320, 21831, 1322, 23600, 10706,
14511

i3.120 8117, 6073, 12431, 214, 90, 41423, 14974,
11041, 4257, 3762, 20702, 7870, 696, 24628,
16694

i4.120 153, 41, 718, 646, 2097, 262, 3759, 21825,
34210, 9009, 28389, 10674, 16402, 11788, 2222

i5.120 22446, 718, 6075, 41, 646, 15698, 22448, 252,
38639, 38974, 30112, 14313, 11369, 15841,
8331

i6.120 8117, 153, 5727, 6073, 34878, 2803, 18931,
31569, 3442, 1089, 1622, 1694, 1259, 1391,
2488, 1085

i7.120 8117, 4901, 6073, 150, 1540, 348, 261, 22448,
1573, 377, 1017, 9335, 1640, 20685, 14920,
1315

i8.120 153, 13072, 7910, 1540, 5330, 1137, 6801, 347,
6757, 35332, 27861, 20691, 1732, 52, 36308,
537

i9.120 22446, 646, 5461, 41, 18105, 2856, 6801,
262, 12116, 3182, 22767, 14899, 1854, 38982,
10982, 1979

i10.120 6073, 150, 5461, 1540, 11216, 13480, 1079,
5268, 7575, 1573, 8652, 1974, 7078, 8165,
25930, 11215

Appendix B -- Instances 106

Table B.7: Instances with number of nodes equal to 140

Instance Graphs
i1.140 153, 5727, 22446, 973, 14787, 7834, 2694,

2688, 1316, 25935, 2263, 10320, 7870, 16381,
29598, 16392, 2099

i2.140 5727, 150, 1540, 13072, 7910, 14787, 914, 90,
102, 34412, 2128, 2728, 1437, 2275, 20708,
13307, 27162, 18330

i3.140 153, 5727, 6073, 646, 1540, 7910, 56, 12431,
347, 3940, 45, 20702, 36307, 10962, 42366,
13468, 15283, 23496, 34258

i4.140 153, 1540, 7910, 973, 3488, 19440, 246, 97,
7834, 983, 214, 2418, 4464, 6036, 32867, 9642,
2967, 337, 18868

i5.140 6073, 150, 22446, 1540, 6497, 56, 1541, 973,
348, 4250, 2291, 28389, 3761, 10151, 20702,
38312, 16370, 23527, 35328

i6.140 153, 5727, 41, 6073, 646, 13072, 6497, 56, 914,
607, 11216, 12326, 377, 22636, 5307, 13195,
10301, 11426, 14337, 1822

i7.140 8117, 153, 5727, 6075, 646, 13072, 7910, 1540,
6153, 1573, 7411, 90, 635, 770, 1026, 22331,
6104, 243, 23612, 10979, 11215

i8.140 8117, 5727, 6073, 718, 6075, 11216, 607, 56,
97, 246, 12116, 948, 16598, 486, 27584, 12326,
6104, 39570, 14899, 118, 20682

i9.140 8117, 5727, 6073, 13072, 7910, 14787, 97, 56,
1541, 19440, 6497, 11016, 3488, 90, 12116,
2028, 3940, 3578, 28597, 2742, 258

i10.140 8117, 41, 6073, 6075, 4901, 150, 5461, 718,
7910, 13072, 1540, 7834, 10567, 39570, 6787,
27870, 25530, 3578, 27735, 22214, 10245

Appendix B -- Instances 107

Table B.8: Instances with number of nodes equal to 160

Instance Graphs
i1.160 1540, 246, 5330, 813, 31574, 3759, 2025, 45,

6266, 34256, 2408, 1738, 2709, 16013, 11819,
1570, 26420

i2.160 8117, 153, 5727, 9600, 4493, 2144, 1769,
28915, 27870, 6036, 5811, 34945, 2151, 18018,
13418, 865, 12459, 16999

i3.160 41, 150, 11216, 97, 426, 14787, 3344, 14931,
8130, 4479, 10247, 2078, 23035, 11606, 1455,
10674, 16260, 23984

i4.160 8117, 646, 5461, 13072, 7796, 335, 27584,
8960, 27321, 1437, 6002, 2013, 2728, 1981,
11036, 1722, 1561, 1315, 25360

i5.160 8117, 6075, 7910, 6497, 914, 7411, 7575, 5330,
36116, 4257, 9834, 10094, 21875, 5934, 10498,
8104, 15286, 19619, 14338

i6.160 8117, 7910, 1540, 13072, 107, 973, 11216, 261,
1970, 20478, 3940, 2630, 2244, 16616, 19619,
18037, 18040, 18637, 12761

i7.160 5727, 153, 2856, 9901, 6104, 27584, 5067,
22636, 1744, 20680, 2487, 8394, 1585, 3762,
28597, 14227, 1178, 12340, 11819

i8.160 22446, 6073, 6075, 13072, 1540, 2856, 1431,
1137, 3759, 4493, 35405, 7767, 34224, 16872,
12494, 12360, 26420, 25929, 14920

i9.160 718, 5461, 22448, 2739, 5330, 7899, 4250, 486,
1704, 1440, 52, 20478, 5595, 3363, 22, 7711,
15286, 12283, 16758

i10.160 646, 7834, 11016, 348, 426, 14787, 1541,
18105, 19265, 811, 6266, 6261, 463, 2968,
35329, 1246, 1776, 27970, 12360

Appendix B -- Instances 108

Table B.9: Instances with number of nodes equal to 180

Instance Graphs
i1.180 8117, 7910, 1540, 14787, 3488, 90, 6801, 214,

15698, 30, 23612, 21734, 25256, 18018, 8582,
23614, 37, 15590, 39692, 14944, 1765

i2.180 8117, 7910, 1540, 2856, 7125, 14974, 10301,
3363, 30, 6787, 3064, 18878, 1641, 5581,
33085, 38312, 42366, 34218, 18364, 1210,
12313

i3.180 5727, 13072, 7411, 1079, 2739, 1885, 347,
7796, 15698, 6104, 2694, 62, 2632, 991, 857,
6204, 22695, 27162, 230, 21866, 10180

i4.180 6073, 6075, 41, 4901, 7910, 973, 56, 33085,
4151, 6614, 857, 34218, 2818, 1861, 1889,
34416, 35264, 11390, 13888, 1994, 12744

i5.180 8117, 5727, 5461, 13072, 1540, 7834, 1454,
34878, 23493, 30809, 69, 13239, 12262, 3010,
1481, 2263, 8894, 21332, 34846, 1051, 38, 7444

i6.180 8117, 153, 7910, 13072, 246, 348, 18105,
11016, 11216, 56, 2630, 9600, 30, 6964, 3895,
32873, 19353, 133, 10670, 26693, 11841, 116

i7.180 5727, 153, 6075, 4901, 5461, 41, 6073, 1885,
2487, 20680, 6396, 28389, 2052, 24934, 9915,
6119, 1496, 19622, 19595, 16716, 23802, 18954

i8.180 5727, 153, 4901, 41, 1540, 7910, 13072, 973,
3759, 37660, 21825, 4962, 4550, 21044, 3892,
4897, 36531, 1854, 10963, 19353, 2175, 14338

i9.180 22446, 6073, 5268, 2856, 137, 90, 7575, 15698,
7411, 3759, 14973, 486, 2418, 1089, 28915,
36307, 475, 8394, 2275, 10979, 10670, 10256

i10.180 1540, 7910, 246, 56, 973, 3488, 14930, 7899,
3344, 7796, 2097, 261, 1431, 7125, 335, 34217,
10858, 19085, 11777, 14406, 21594, 28074

Appendix B -- Instances 109

Table B.10: Instances with number of nodes equal to 200

Instance Graphs
i1.200 5727, 7575, 403, 770, 12326, 859, 813, 24830,

2803, 12116, 32363, 8914, 36894, 15841,
17532, 15429, 25958, 11845, 13816, 1994,
21873

i2.200 153, 646, 718, 6073, 11216, 2688, 16598,
12116, 20693, 3578, 25935, 36652, 23524,
29598, 2010, 16381, 13314, 19619, 16713,
10972, 18868, 28164

i3.200 13072, 19440, 11216, 983, 1079, 5268, 137,
3344, 90, 1454, 1320, 36534, 5934, 19098, 749,
13418, 1404, 8582, 27252, 18868, 21760, 11788

i4.200 8117, 153, 5461, 6075, 7796, 4250, 2097, 7281,
9367, 5321, 79, 8572, 35271, 4151, 16871,
37077, 19098, 342, 32167, 16610, 35192,
10982, 1205

i5.200 8117, 4901, 41, 646, 6497, 97, 348, 107, 32363,
5651, 11423, 20681, 1889, 9103, 2715, 3056,
8201, 35328, 29783, 15429, 12360, 11563,
11575

i6.200 8117, 5461, 13072, 7910, 14930, 10099, 771,
488, 5497, 27893, 10109, 39964, 11423, 42366,
2205, 2275, 20566, 10320, 18907, 29785, 5580,
13314, 15592

i7.200 8117, 1540, 7910, 12431, 214, 10122, 62,
12116, 172, 2414, 2144, 13917, 14312, 907,
3719, 118, 4344, 10534, 2130, 12688, 21831,
26358, 215

i8.200 153, 5727, 4901, 41, 214, 1431, 1573, 10946,
20706, 986, 9103, 30014, 643, 451, 36660,
33714, 2185, 41681, 13418, 7319, 11791,
35329, 10936

i9.200 5727, 153, 13072, 7910, 19440, 165, 348, 8806,
2418, 30, 28389, 29586, 9915, 9346, 32791,
30113, 3616, 1918, 537, 8478, 35507, 6191,
13314

i10.200 5727, 646, 7910, 2688, 6104, 15415, 6266,
34217, 35059, 30, 359, 10102, 4143, 11617,
7280, 1048, 941, 46, 4430, 12535, 20140,
28344, 1165

	Page 1
	Titles
	Leonardo Maricato Musmanno

	Images
	Image 1
	Image 2

