
FLUMINENSE FEDERAL UNIVERSITY

Isela Mendoza Del Castillo

Combining Verification and Validation Methods to
Cover Software Quality Characteristics

Dissertation presented to the Computing
Graduate program of the Fluminense Federal
University in partial fulfilment of the require-
ments for the degree of Master of Science.
Research area: Systems and Information En-
gineering.

Advisor:
Uéverton dos Santos Souza

NITERÓI

2018

Isela Mendoza Del Castillo

Combining Verification and Validation Methods to Cover Software Quality

Characteristics

Dissertation presented to the Computing

Graduate program of the Fluminense Federal

University in partial fulfilment of the require-

ments for the degree of Master of Science.

Research area: Systems and Information En-

gineering.

Approved in July of 2018

EXAMINATION COMMISSION

Niterói

2018

Dedicated to God and my family, my pillars.

Acknowledgments

I would like to thank God for always giving me the strength I need to continue and

never give up.

I want to thank infinitely the Computer Institute of the Fluminence Federal Univer-

sity - UFF, in which I studied. Thanks to all my teachers, especially to my advisors:

Prof. Uéverton dos Santos Souza and Prof. Marcos Kalinowki. Thanks to all those who

collaborated in the research, thanks to the members of the examining commission and

thanks to the secretary and security staff of the institute for their cordiality, especially

Teresa. Thank to CAPES, CNPq and FAPERJ organizations for the financial support.

I also want to thank my parents Anabel and Jorge Enrique for their support and

infinite love. Thank to my husband Ruben for always being by my side, and his family.

Thank my little daughter Anna who is my biggest motivation. Thanks to all my Cuban

family.

Many thanks also to those I consider as my Brazilian parents: Father Henrique and

the presbyter Tatiana of our holy Orthodox church, for all her love and dedication to all

of us.

I would also like to thank all my cuban friends who have been like brothers, with

whom I studied here: Jose Angel, Ruslan, Moreno, Jose Ramon, Alberto, Egberto, Elio,

Alfredo, Daysel, Angel y Javier. Thanks to my best friends Yanexis, Rosana, Debora,

Yenisei and Ely for all my support, care and love with my daughter whenever I needed it.

Thanks to Marielena and Dalia, coworkers and friends, for their good recommendations

and having trusted me.

Thanks to all my Brazilian friends and wonderful neighbors especially Rose, thank

you Brazil for the opportunity and for welcoming us.

“Being educated is the only way to be free”

José Martí

Abstract

Studies point out that a large amount of the total cost of software development con-
cerns quality control purposes. According to the literature, an adequate combination
of verification and validation (V&V) methods is important to improve software quality
control throughout the development process and to reduce such costs. However there
is no concrete evidence on what V&V methods are used to cover each of the software
quality characteristics. For this, a survey was applied to experts of the area, obtaining
an initial configuration of the relationship between V&V methods and software quality
characteristics.

On the other hand, finding an appropriate set of V&V methods that together prop-
erly cover the desired quality characteristics of a given project is a NP-hard problem.
In this work, is presented a novel approach that combines V&V methods efficiently in
order to properly cover a set of quality characteristics. To modelated the problem is us-
ing a bipartite graph representing the relationships between V&V methods and quality
characteristics. Then, the problem is interpreted as the Set Cover Problem. Although
Set Cover is considered hard to be solved, through the theoretical framework of Parame-
terized Complexity is proposed an FPT-Algorithm (fixed-parameter tractable algorithm)
that effectively solves the problem, considering the number of quality characteristics to
be covered as a parameter.

Is concluded that the results of the survey are essential for the identification of “best”
V&V methods that cover a set of quality characteristics, this initial configurations can be
refined according to the cost of the methods, type of project and context to be applied
in the industry. The algorithm proposed represents a powerful tool to combine V&V
methods optimally, being more scalable and efficient than others like brute force or ex-
haustive searches in terms of the maintainability and expertise, which represent a valuable
contribution to the community.

Keywords: combination, verification, validation, method, software, quality characteris-
tics.

Resumo

Estudos apontam que uma grande parte do custo total do desenvolvimento de software se
refere a propósitos de controle de qualidade. De acordo com a literatura, uma combinação
adequada de métodos de verificação e validação (V&V) é importante para melhorar o
controle de qualidade de software durante todo o processo de desenvolvimento, reduzindo
tais custos. No entanto, não há evidências concretas sobre quais métodos de V&V são
mais adequados para cobrir cada uma das características da qualidade do software. Para
isso, uma pesquisa foi aplicada a especialistas da área, obtendo-se uma configuração inicial
da relação entre métodos de V&V e características de qualidade de software.

Por outro lado, encontrar um conjunto apropriado de métodos V&V que juntos co-
brem adequadamente as características de qualidade desejadas de um determinado projeto
é um problema difícil. Neste trabalho, apresenta-se uma nova abordagem que combina os
métodos V&V de forma eficiente para cobrir adequadamente um conjunto de característi-
cas de qualidade. Para modelar o problema utilizanse um grafo bipartido que representa
as relações entre os métodos V&V e as características de qualidade. Então, o problema
é interpretado como o Problema da Cobertura por Conjunto (Set Cover). Embora Set
Cover seja considerado difícil de ser resolvido, através do referencial teórico da Complex-
idade Parametrizada propomos um Algoritmo FPT (algoritmo tratável por parâmetros
fixos) que efetivamente resolve o problema, considerando o número de características de
qualidade a serem cobertas como parâmetro.

Conclui-se que os resultados da pesquisa são essenciais para a identificação dos “mel-
hores” métodos de V&V que cobrem um conjunto de características de qualidade, estas
configurações iniciais podem ser refinadas de acordo com o custo dos métodos, tipo de
projeto e contexto a ser aplicado na indústria. O algoritmo proposto representa uma
ferramenta poderosa para combinar os métodos V&V de forma otimizada, sendo mais
escalável e eficiente do que outros de força bruta em termos de capacidade de manutenção
e especialização, representando uma contribuição valiosa para a comunidade.

Palavras-chave: combinação, verificação, validação, método, software, características
de qualidade.

List of Figures

2.1 Characteristics of ISO 9126 and ISO 25010 11

2.2 Classification of V&V methods . 13

3.1 Studies selection process . 27

3.2 Combinations methods type . 29

3.3 Combinations categories . 29

3.4 Research type . 30

3.5 Number of papers by combination methods types 31

3.6 Number of papers by years of publication 31

3.7 Number of papers by publisher and source type 31

4.1 Number of responses by country . 37

4.2 Degree of concordance (MAD) between the experts 38

4.3 Results of the first question . 40

5.1 Bipartite graph of V&V methods vs. Quality characteristics 45

5.2 Set cover FPT–Algorithm . 47

5.3 Algorithm execution. State of the graph after the preprocessing step 48

5.4 Algorithm execution. State of the graph after the recursive call 49

5.5 Optimal solution . 49

List of Tables

3.1 Search String . 21

3.2 Set of Initial Papers . 24

3.3 First Iteration . 24

3.4 Results of First Iteration . 25

3.5 Second Iteration . 26

3.6 Results of Second Iteration . 26

3.7 Third Iteration . 26

4.1 Threats and Treatment . 36

4.2 Survey Result . 39

5.1 Experiment Results . 53

Abbreviations and Acronyms List

V&V: Validation and Verification.

ISO : International Organization for Standardization.

SM: Systematic Mapping

SCP: Set Cover Problem.

NP: Nondeterministic Polynomial Time.

FPT: Fixed Parameter Tractable.

PR: Peer Review.

WM: Workflow Models.

FSM: Finite-State Machines.

OP: Operational Profile.

MT: Mutation Testing.

ET: Exploratory Testing.

FS: Functional Suitability.

PE: Performance Efficiency.

C: Compatibility.

U: Usability.

R: Reliability.

S: Security.

M: Maintainability.

P: Portability.

Contents

1 Introduction 1

1.1 Context . 1

1.2 Background . 1

1.3 Problem . 3

1.4 Motivation . 3

1.5 Goal . 4

1.5.1 Specific Objectives . 5

1.6 Main Idea . 5

1.7 Methodology . 6

1.8 Structure Dissertation . 7

2 Software Quality and V&V Methods 8

2.1 Introduction . 8

2.2 Terms and Definitions . 9

2.3 The ISO Standards . 10

2.3.1 ISO/IEC 9126:1991 . 10

2.3.2 ISO/IEC 25010:2011 . 10

2.4 Description of ISO 25010 Quality Characteristics 11

2.5 Characterization of V&V Methods . 12

2.5.1 Based on Intuition and Experience 12

2.5.2 Input Domain-Based Techniques . 13

2.5.3 Code-Based Techniques . 13

Contents xii

2.5.4 Fault-Based Techniques . 14

2.5.5 Usage-Based Techniques . 14

2.5.6 Model-Based Testing Techniques 14

2.5.7 Reviews . 14

2.6 Conclusions . 15

3 Systematic Mapping on Combinations of V&V Methods 16

3.1 Introduction . 16

3.2 Systematic Mapping . 17

3.3 Protocol Planning . 17

3.3.1 Research Questions . 17

3.3.2 Search Strategy . 19

3.3.2.1 The PICO Criteria and Keywords 19

3.3.2.2 The Controls Papers . 19

3.3.2.3 Data Search and Snowballing Strategy 20

3.3.2.4 Data Sources . 21

3.3.3 Selection Strategy . 21

3.3.3.1 Inclusion Criteria . 21

3.3.3.2 Exclusion Criteria . 22

3.3.3.3 Procedures of Selecting Studies by Filters 22

3.4 Results . 27

3.4.1 Data Extraction Strategy . 27

3.4.2 Data Synthesis Strategy . 30

3.5 Conclusions . 32

4 Relating V&V Methods to Software Product Quality Characteristics: Results of

an Expert Survey 33

4.1 Introduction . 33

Contents xiii

4.2 Survey Planning . 34

4.2.1 Main Goal and Scope . 34

4.2.2 Population . 34

4.2.3 Survey Questions . 34

4.2.4 Metrics . 35

4.2.5 Execution Strategy . 35

4.2.6 Statistical Techniques . 35

4.2.7 Instrumentation . 36

4.2.8 Validity Assessment . 36

4.3 Operation . 37

4.4 Survey Results . 38

4.4.1 Answering the Research Question 1 40

4.4.2 Answering the Research Question 2 41

4.5 Conclusions . 41

5 An Efficient Algorithm for Combining V&V Methods 42

5.1 Introduction . 42

5.2 Parameterized Complexity . 42

5.2.1 Fixed-Parameter Tractable (FPT) Approach 43

5.2.2 Scalability of the FPT–algorithms 44

5.3 Modeling the Problem . 44

5.4 FPT–Algorithm to Combine V&V Methods 46

5.4.1 Execution of the Set Cover Algorithm 48

5.4.2 Running Time Analysis . 50

5.5 Computational Experiments . 51

5.5.1 Integer Linear Programming Model 51

5.5.2 Results . 52

Contents xiv

5.6 Discussion . 54

5.7 Conclusions . 54

6 Concluding Remarks 56

6.1 Conclusions . 56

6.2 Contributions . 57

6.3 Future Work . 57

References 58

Appendix A -- Expert survey: V&V Methods and Quality Attributes. 65

Chapter 1

Introduction

1.1 Context

Studies suggest high costs related to quality assurance activities in software development

projects [61]. The appropriate combination of verification and validation (V&V) methods

is seen in the literature as a way to reduce these costs and increase product quality

[10]. Over the years, some knowledge has been generated regarding V&V methods when

observed in isolation. However, the selection of different V&V methods as well as the

interdependencies among them are still not well-understood [31].

Quoting from [37] “The purpose of V&V is to help the development organization build

quality into the system during the life cycle. V&V processes provide an objective assess-

ment of products and processes throughout the life cycle. This assessment demonstrates

whether the requirements are correct, complete, accurate, consistent, and testable. The

V&V processes determine whether the development products of a given activity conform

to the requirements of that activity and whether the product satisfies its intended use and

user needs.”

1.2 Background

The quality of software products is strongly dependent on the appropriate combination

of V&V methods employed during development [31]. Experimental studies have long

demonstrated that the use of combinations of different V&V methods to ensure the quality

of a software is more effective than using isolated methods [10].

Elbertzhager et al. [27] conducted a mapping study concerning the combination of

1.2 Background 2

V&V methods. They describe two fundamental approaches: Compilation and Integration.

We focus on the Compilation approach since our purpose is purely to combine existing

V&V methods (Compilation process). We are not focusing on creating new techniques

by combining different methods in one, nor in using the results of the application of some

technique as an instance to apply another one (Integration of V&V methods).

In order to establish how other works perform the combination of V&V methods in

the Compilation approach, Elberzhager et al. [27] created a categorization to classify and

organize these studies into three subgroups. In the first subgroup, static and dynamic

techniques are combined, focusing on thread escape analysis, atomicity analysis, protocol

analysis, vulnerability analysis, concurrent program analysis or on defects in general.

All these combinations are supported by open-source or proprietary tools. The second

subgroup compares different testing and inspection techniques discussing advantages and

disadvantages among them. In most cases, two or three techniques are compared to each

other. Several studies initially perform inspections, followed by some tests, corroborating

then the effectiveness of the combination of both technics. The last subgroup describes

other combinations, such as testing techniques and inspections combined with formal

specifications, bug-finding tools, comprehensive quality control processes in industrial

environments, comprising several inspections and technical tests, requirements and static

analysis, tutorials, simulations, and vision-based approaches.

The most cited papers in the SM [27] regarding the Compilation approach are: Basili

[7], Kamsties and Lott [48], and Wagner et al. [75]. Basili [7] makes a comparison of three

software testing techniques: reading of code by gradual abstraction, functional testing

using equivalence partition and border value analysis, and structural testing using total

coverage of criticism, according to efficiency, cost, and fault detection classes. Kamsties

and Lott [48], evaluate three techniques through a controlled experiment: reading of

code by gradual abstraction, functional (black-box) testing and (3) structural (white-

box) testing. Wagner [75] describes a case study where several projects are analyzed in

an industrial environment. In this project, automatic static analysis, testing, and reviews

are used to detect defects. Their results show that these techniques complement each

other and that they should be combined.

In the SM [27], papers were analyzed until 2010. This led us to carry out an update

regarding the compilation approach, with the aim of finding more relevant and recent

papers from 2010 to present.

Dwyer and Elbaum [26] suggest an approach based on dividing V&V methods in two

1.3 Problem 3

main classes: those that make dynamic analyses (or focused on behavior of the system,

e.g., testing) and those that use static analysis (typically focused on a single property of

the system at a time). Runeson et al. [67] compare code inspections and structural unit

tests by analyzing three replications of an experiment in order to know which method

finds more faults. Olorisade et al. [63] investigate the effectiveness of two tests techniques

(partition of equivalence class and decision coverage) and one review technique (code by

abstraction) in terms of their ability to detect faults. Cotroneo et al. [22] combine testing

techniques adaptively, based on machine learning, during the testing process, by learning

from past experience and adapting the technique selection to the current testing session.

Bishop et al. [9] combine a monotonicity analysis with a defined set of tests, showing that,

unlike “independent” dynamic methods, this combination provides a full error coverage.

Solari and Matalonga [70] study the behavior of two techniques, equivalence partition

and decision coverage, to determine the types of defects that are undetectable for either

of them. Finally, Gleirscher et al. [34] analyze three different techniques of automated

static analysis: code clone detection, bug pattern detection, and architecture conformance

analysis. They claim that this combination tends to be affordable in terms of application

effort and cost to correct defects.

1.3 Problem

A significant part of the software industry is made up of small and medium-sized com-

panies that, given the lack of guidelines for performing the right combination of V&V

methods, have difficulties in optimizing this combination for their context, increasing the

costs of resources and time and mainly harming the quality of the produced software.

1.4 Motivation

It is known that an adequate combination of V&V methods outperforms any method

alone [29]. Performing this combination properly is beneficial to ensure product quality

and maximize the chances of success of software development projects. In the literature

cited above does not provide objective subsidies that support the organization in deciding

which V&V methods cover which quality characteristics (e.g., considering the quality

characteristics described in the ISO 25010 quality model standard). This is a problem

complex and not trivial that depends on several factors as costs, context and type of

project.

1.5 Goal 4

Taking into account the quality characteristics of the ISO 25010 standard [41] and

series of V&V methods compiled mainly from the SWEBOK [12] and other sources [74]

[76], this work suggests an initial configuration of the relationship between which V&V

methods are the most appropriate to cover each of the ISO 25010 characteristics. This

proposal is presented at a high level, in a general way that will need to be refined in detail

to be implemented in the industry. This configuration represents an important starting

point for the solution of the problem in question.

Finding a set of methods that together properly cover all quality characteristics of

interest can be seen as a Set Cover Problem (SCP) [49]. The SCP is a classic NP–hard

problem in the computational complexity area, whose decision version belongs to the

list of the 21 Karp’s NP–complete problems [49]. This means that when the number of

methods or quality characteristics increase, the performance of the algorithm drastically

decreases.

The existence of efficient algorithms to solve NP–complete, or otherwise NP–hard,

problems is unlikely, if the input parameters are not fixed; all known algorithms that

solve these problems require exponential time (or at least superpolinomial time) in terms

of the input size. However, some problems can be solved by algorithms for which we can

split the running time into two parts: one exponential, but only with respect to the size of

a fixed parameter, and another polynomial in the size of the input. Such algorithms are

denoted FPT (fixed-parameter tractable) in the Parameterized Complexity field, because

the problem can be solved efficiently for small values of the fixed parameter [23] [33] [62].

This field emerged as a promising alternative for working with NP–hard problems [68].

To obtain the optimal combination of methods in reasonable computational time an

algorithm is proposed, adopting a parameterized approach, that consider the set of quality

characteristics as the fixed parameter, and obtaining an algorithm classified as FPT.

1.5 Goal

The main goal of this work is suggest an approach to obtain the optimal combination of

V&V methods that cover the quality characteristics of ISO 25010 standard, the smallest

number of methods covering all the characteristics.

1.6 Main Idea 5

1.5.1 Specific Objectives

To satisfy the main goal, the following specific objectives are proposed:

• Classify and analyze the existing bibliography about the combination of V&V meth-

ods executing a secondary study, a systematic mapping (SM).

• Identify, classify and characterize an initial set of V&V methods.

• Plan and execute a survey to determine which method (s) meets which ISO 25010

quality characteristics.

• Model the problem in question.

• Implement an efficient algorithm to obtain the optimal combination of the least

amount of V&V methods that cover all the ISO 25010 characteristics.

1.6 Main Idea

With the purpose of obtaining concrete evidence on which V&V methods are most suitable

to address each of the ISO 25010 characteristics, as a first instance, a survey is conducted.

Experts with PhD in Software and Quality Engineering and relevant publications in the

area were interviewed to know their opinion and obtain, in a general way, an initial

configuration of the relationship between the V&V methods and the software quality

characteristics. The set of V&V methods, and their classification, used in the survey and

in the approach to get the optimal combination is extracted from SWEBOK [12] and other

sources [74] [76], a reliable source and one of the most representative software engineering

books.

The relation between the characteristics and the methods can be modeled as an undi-

rected bipartite graph. The problem of finding the smallest combination of methods that

cover all the ISO quality characteristics is interpreted as SCP. The set of characteristics

is the universe U , and each method defines Mi, a subset of U that is covered by that

method. We need to find a smallest set of subsets that cover U . The available data

(instance) has exactly 8 characteristics and 20 methods. At most, they can be close to 50

methods in the literature.

The SCP is a classic NP–hard problem in the computational complexity area, whose

decision version belongs to the list of the 21 Karp’s NP–complete problems. The existence

1.7 Methodology 6

of efficient algorithms to solve NP–complete, or otherwise NP–hard, problems is unlikely,

if the input parameters are not fixed; all known algorithms that solve these problems

require exponential time (or at least superpolinomial time) in the total size of the input.

Nevertheless, if some parameter k of the problem is set at a small value or the growth

of k is relatively small, then this type of problem can still be considered “manageable”

despite its traditional classification as “intractable”.

To obtain an optimal solution, parameterize the problem by the characteristic to be

covered by the V&V methods through an algorithm classified as FPT (fixed parameter

tractable) in the Theory of Parameterized Complexity it is proposed. This type of algo-

rithms emerged as a promising alternative to work with NP–hard problem, in this way

the problem can be solved efficiently considering the small values of a fixed parameter.

The goal of the exact algorithm is to obtain the optimal combination (least amount)

of V&V methods that cover all the quality characteristics. The objective function is the

number of methods that cover all the characteristics. The parameter to be set is the

number of quality characteristics of ISO 25010, parameterizing the problem of the cover

of the set by the number of characteristics that will cover the V&V methods.

The set of methods presented and their relationship with the software quality char-

acteristics obtained from the survey, represent only the basis to be refined and applied to

the industry. To refine the initial set, in addition to increase or modify the set of V&V

methods to consideration, each organization have to take into account other important

elements such as: the cost of application of each V&V method for each of the software

quality characteristics, the context and type of project in which the approach will be

applied. The step of refinement is suggested for future work. The present study focuses

on the approach to obtain an optimal combination on any data set that is modeled as a

SCP through an FPT-algorithm.

1.7 Methodology

The methodology will follow an experimental approach to developing software technolo-

gies with support from primary and secondary studies. This approach extends the Shull

methodology [69] by including surveys and secondary studies and has already been suc-

cessfully adopted in other contexts for example by Kalinowski et al. in [46] [47]. Primary

and secondary studies will be planned and conducted to support the achievement of the

proposed objectives as described in the next section: Structure Dissertation.

1.8 Structure Dissertation 7

1.8 Structure Dissertation

The dissertation is organized in 6 chapters including this Chapter 1 Introduction, followed

by Chapter 2 Software Quality and V&V Methods where terms related to software quality

are defined, existing ISO Standards are analyzed, quality characteristics of the ISO 25010

Standard are described, and the selected V&V Methods are classified and characterized.

In Chapter 3 Systematic Mapping on Combinations of V&V Methods, is conducted for

the obtaining and classification of relevant studies on combination approaches of V&V

methods is conducted. In Chapter 4 Survey of V&V Methods for ISO 25010 Quality

Characteristics, a survey towards the experts of the academy is executed and analyzed,

with the purpose of obtaining concrete evidence on the relationship between quality char-

acteristics and V&V methods. In Chapter 5 An Efficient Algorithm for Combining V&V

Methods, presents the FPT-Algorithm that obtains the optimal combination, the exper-

iments performed are executed and analyzed. Finally Chapter 6 Concluding Remarks

with the contributions and future works.

Chapter 2

Software Quality and V&V Methods

2.1 Introduction

Quality is the set of properties that allow to establish the value of an object. On the

other hand, a Software is a set of programs, instructions and computer rules to perform

certain tasks on a computer. This leads to the definition of Software Quality, the degree

to which a system meets the specified requirements and expectations of a customer or user

[74]. For the industry, quality assurance in software development projects has become a

high-cost activity. An adequate selection of verification and validation methods (V&V) to

ensure that the product is correctly implemented and meets its specifications, is essential

for reducing these costs [29] [61].

To guarantee the quality of a product there are standards such as ISO 25010 [41].

The standard specifies the main attributes or characteristics that products should meet

to achieve its quality. V&V methods are used to evaluate the quality of some particular

software. Unfortunately, the selection of different V&V methods as well as the interde-

pendencies among them are still not well understood. Today the software development

industry is faced with the problem of choosing specific V&V methods to evaluate the

quality of the software, since an inadequate selection of these methods can generate high

costs and a greater effort in software development [29] [61].

This chapter provides a series of state-of-the-art terms and definitions related to soft-

ware quality, followed by a background on ISO 9126 quality standard and its evolution

towards ISO 25010. As well as a brief description of each of the ISO 25010 quality stan-

dard characteristics, and of each selected V&V methods. This description is used as

supporting documentation in the survey form present in Appendix A.

2.2 Terms and Definitions 9

2.2 Terms and Definitions

Software Quality is the degree to which a system, component or process meets specified

requirements, the degree to which a set of inherent characteristics fulfils specifications.

This concept relies to the ability of a product, service, system, component or process to

meet customer or user needs, expectations or requirements [74].

The concepts of Process and Product quality are closely related. According to [39],

high quality processes also lead to high quality products. It is important to note that:

Process Quality is made through institutionalization and continuous improvement

of the processes that are used for software development. A software quality process is

composed by activities, tasks, procedures, etc., used to produce and maintain software

[74].

Product Quality is the degree to which the system satisfies the stated and implicit

needs of its various stakeholders, and thus provides value. These stakeholders’ needs

(functionality, performance, security, maintainability, etc.) are represented in the quality

model, which categorizes the product quality into characteristics and subcharacteristics

[41].

The quality of the processes is important to deliver high quality software products.

However, many factors influence the quality of the product itself, so it is necessary to

evaluate and monitor the quality directly in the product, and improve the processes that

create them [74].

This study focuses on the software product. ISO 25010 standard characteristics are

evaluated in the product finding defects in the product in order to guarantee software

quality.

The ISO 25010 Standard defines the quality model that is considered the cornerstone

of a product quality evaluation system. The quality model determines which quality

characteristics will evaluate the properties of a software product [41].

The Verification is the evaluation of the correct construction of a product. It ex-

presses whether it meets the specifications and requirements [12] [74].

TheValidation is the assurance that a product was built and that it fulfills its specific

purpose [12]. It is the activity that evaluates if a work result adjusts to the expectations

of the stakeholders [74].

2.3 The ISO Standards 10

Two types of analysis to find defects during V&V process are static analysis and

dynamic analysis [74].

Static Analysis is the process of evaluating a system or component according to its

form, structure, content or documentation, that is, the evaluation of a software without

executing it. Examples of static analysis are reviews and inspections [74].

Dynamic Analysis is the process of evaluating a system or component based on

its behavior during execution. It is the opposite of the static analysis. In this case it is

necessary to run the software to analyze it. Examples of dynamic analysis are testing

techniques [74].

2.3 The ISO Standards

Quoting from [40] “ International standards make things work. They offer world-class

specifications for products, services and systems, to ensure quality, safety and efficiency.

They are essential to facilitate international trade. The ISO standards creates documents

that provide requirements, specifications, guidelines or features that can be used consis-

tently to ensure that materials, products, processes and services are adequate for their

purpose.”

This section presents, in summary, the evolution of the quality model of ISO standards

for a software product.

2.3.1 ISO/IEC 9126:1991

The ISO 9126 is an international standard for the evaluation of software quality created

in 1991 designed to help organizations ensure that they meet customer needs and that

they comply with regulatory and legal requirements related to the product [13]. Was later

replaced by ISO 25000 in 2011 following the same concepts: classify software quality into

a structured set of characteristics and subcharacteristics.

2.3.2 ISO/IEC 25010:2011

The product quality model defined by ISO 25010 is composed of eight quality character-

istics, which determine the properties of a software product for its evaluation [41]. These

standard is an evolution of the ISO/IEC 9126 standard. Note that two more characteris-

2.4 Description of ISO 25010 Quality Characteristics 11

tics were added in the ISO 25010 with respect to ISO 9126, see in Figure 2.1, they are:

Compatibility and Security. Security, that was one of the subcharacteristics of Function-

ality following ISO 9126, is now one of the main characteristics in this latest version of

the standard. In the next section, these characteristics are described in more detail.

Figure 2.1: Characteristics of ISO 9126 and ISO 25010

2.4 Description of ISO 25010 Quality Characteristics

Next, the software quality characteristics of ISO 25010 and its secondary characteristics

will be briefly described [41]:

Functional Suitability: Degree to which a product or system provides functions

that meet stated and implied needs when used under specified conditions. Is composed for

the subcharacteristics: Functional Completeness, Functional Correctness and Functional

Appropriateness.

Performance efficiency: Represents the performance relative to the amount of

resources used under stated conditions. Is composed for the subcharacteristics: Time

Behavior, Resource Utilization and Capacity.

Compatibility: Degree to which a product, system or component can exchange

information with other products, systems or components, and/or perform its required

functions, while sharing the same hardware or software environment. Is composed for the

subcharacteristics: Co-existence and Interoperability.

Usability: Degree to which a product or system can be used by specified users to

achieve specified goals with effectiveness, efficiency and satisfaction in a specified context

of use. Is composed for the subcharacteristics: Appropriateness Recognizability, Learn-

ability, Operability, User Error Protection, User Interface Aesthetics and Accessibility.

2.5 Characterization of V&V Methods 12

Reliability: Degree to which a system, product or component performs specified

functions under specified conditions for a specified period. Is composed for the subchar-

acteristics: Maturity, Availability, Fault Tolerance and Recoverability.

Security: Degree to which a product or system protects information and data so that

persons or other products or systems have the degree of data access appropriate to their

types and levels of authorization. Is composed for the subcharacteristics: Confidentiality,

Integrity, Non-repudiation, Accountability and Authenticity.

Maintainability: Degree of effectiveness and efficiency with which a product or

system can be modified to improve it, correct it or adapt it to changes in environment,

and in requirements. Is composed for the subcharacteristics: Modularity, Reusability,

Analyzability, Modifiability and Testability.

Portability: Degree of effectiveness and efficiency with which a system, product

or component can be transferred from one hardware, software or other operational or

usage environment to another. Is composed for the subcharacteristics: Adaptability,

Installability and Replaceability.

2.5 Characterization of V&V Methods

Some software Verification and Validation (V&V) methods and their classification, ex-

tracted mainly from the Swebok [12] and the other relevant sources [74] [76], was compiled.

The Figura 2.2 show a classification of the selected methods according the literature [12],

following the description of each of them in the next subsections.

2.5.1 Based on Intuition and Experience

Ad Hoc: Tests are derived relying on the software engineer's skill, intuition, and expe-

rience with similar programs.

Exploratory Testing: Is defined as simultaneous learning, test design, and test

execution, that is, the tests are not defined in advance in an established test plan, are

dynamically designed, executed, and modified.

2.5 Characterization of V&V Methods 13

Figure 2.2: Classification of V&V methods

2.5.2 Input Domain-Based Techniques

Equivalence Partitioning: Involves partitioning the input domain into a collection of

subsets (or equivalent classes) based on a pacified criterion or relation.

Pairwise Testing: Test cases are derived by combining interesting values for every

pair of a set of input variables instead of considering all possible combinations.

Boundary-Value Analysis: Test cases are chosen on or near the boundaries of

the input domain of variables, with the underlying rationale that many faults tend to

concentrate near the extreme values of inputs.

Random Testing: Tests are generated purely at random. This form of testing falls

under the heading of input domain testing since the input domain must be known to be

able to pick random points within it.

Cause-Effect Graphing: Represent the logical relationships between conditions

(roughly, inputs) and actions (roughly, outputs). Test cases are systematically derived by

considering combinations of conditions and their corresponding resultant actions.

2.5.3 Code-Based Techniques

Control Flow-Based Criteria: Are aimed to covering all the statements, blocks of

statements, or specified combinations of statements in a program.

Data Flow-Based Criteria: In data flow-based testing, the control flow graph is

2.5 Characterization of V&V Methods 14

annotated with information about how the program variables are defined, used, and killed

(undefined).

2.5.4 Fault-Based Techniques

Error Guessing: In error guessing, test cases are specifically designed by software engi-

neers who try to anticipate the most plausible faults in a given program.

Mutation Testing: A mutant is a slightly modified version of the program under

test, differing from it by a small syntactic change.

2.5.5 Usage-Based Techniques

Operational Profile: In testing for reliability evaluation (also called operational test-

ing), the test environment reproduces the operational environment of the software, or

the operational profile, as closely as possible. The goal is to infer from the observed test

results the future reliability of the software when in actual use.

Usability Inspection Methods:Usability principles can provide guidelines for dis-

covering problems in the design of the user interface. Are also called usability inspection

methods, including: Heuristic evaluation or User Observation Heuristics, Heuristic esti-

mation, Cognitive walkthrough, Pluralistic walkthrough, Feature inspection, Consistency

inspection, Standards inspection and Formal usability inspection.

2.5.6 Model-Based Testing Techniques

Finite-State Machines: By modeling a program as a finite state machine, tests can be

selected in order to cover the states and transitions.

Workflow Models: Workflow models specify a sequence of activities performed by

humans and/or software applications, usually represented through graphical notations.

2.5.7 Reviews

Walkthrough: The purpose of a systematic walk-through is to evaluate a software prod-

uct. A walkthrough may be conducted for educating an audience regarding a software

product.

2.6 Conclusions 15

Peer Review: The authors do not explain the artifact. They give it to one or more

colleagues who read it and give feedback. The aim is to find defects and get comments

on the style, including: Team reviews, Walkthroughs, Pair programming, Peer desk check

passaround and Ad hoc review.

Technical Review: Further formalize the review process. They are often also man-

agement reviews or project status reviews with the aim to make decisions about the project

progress. In general, a group discusses the artefacts and decides about the content.

Inspection: The purpose of an inspection is to detect and identify software product

anomalies. Some important differentiators of inspections as compared to other types

of technical reviews are the roles (author, inspection leader, inspector, and scribe) and

the inspection process which consists of the steps planning, kick off, individual checking,

logging meeting and edit and follow-up. Some examples of inspections are: Checklist-

based reading, Usage-based reading, Defect-based reading, and Perspective-based reading.

2.6 Conclusions

In this chapter, a background an software quality and V&V methods is provided, in which

important terms and definitions related to the quality of software are presented, as well

as the relationship that exists between them. The evolution of the quality standards

of the ISO is analyzed, emphasizing the characteristics of the last one, the ISO 25010

standard, also described in the chapter. Finally, 19 validation and verification methods are

classified and characterized, which together with the 8 quality characteristics of ISO 25010,

constitute the main objects of studies in the present work. This theoretical framework

also served as supporting documentation for the survey form shown in Appendix A.

Chapter 3

Systematic Mapping on Combinations of
V&V Methods

3.1 Introduction

In the present chapter it is analyzed the combination approach by “Compilation” as de-

fined Elberzhager [27] in the previous systematic mapping. The authors here [27] describe

two fundamental approaches to combining dynamic and static V&V methods: the “com-

pilation” approach based on the selection of a set of V&V techniques, and the approach

for “Integration” which is the union of several techniques to form a new one, included

papers related.

The study focuses on the analysis of the Compilation approach since the purpose of

the study is to treat the combination as the use/selection of a set of techniques of V&V

(Compilation of V&V) and not as the combination of different techniques for compose a

new one or use the results of the application of an first technique as instances to apply

another second (Integration of V&V).

The mapping executed will be a partial update of the first [27]. The snowballing

technique is used to obtain new studies from 2010 to the present related to the approach

by Compilation. The documents found in the compilation approach of the first SM will

be added to the result of the search string, followed by the application of snowballing

forwards and backwards.

The chapter presents the detailed planning of the SM protocol, defining the research

questions, the search strategy and the selection strategy to be applied to obtain the most

relevant bibliography. Followed by the results and their analysis.

3.2 Systematic Mapping 17

3.2 Systematic Mapping

A systematic mapping (SM) is a type of secondary study where the main goal is the

classification and thematic analysis of literature on a specific topic. A SM follows the

same principled process as systematic literature reviews, but have different criteria for

inclusions/exclusions and quality. Due to its broader scope and varying type of studies, the

collected data and the synthesis tend to be more qualitative than for systematic literature

reviews. However, it is important for the contribution and relevance of a mapping study

that the analysis goes beyond the pure descriptive statistics and relates the trends and

observations to real-world needs [17].

For this research is fundamental to find, know and classify the bibliography that exists

about the combination of methods and techniques of V&V by means of SM to Show the

frequency/number of publications per category within a scheme. In this way, the coverage

of a particular area of research or topic can be determined.

For the conduction of the SM on the combination of methods and techniques of V&V

a protocol was carried out where a series of stages were defined, executed and explained

in detail in the following sections.

3.3 Protocol Planning

3.3.1 Research Questions

Given the need to identify, catalog and classify existing literature regarding the combi-

nation of V&V methods, the following research questions to organize and summarize the

content are formulated:

Main Question RQ1:

What approaches have been proposed for combining verification and validation methods

and which it is most suited to the purposes of work?

The objective of this main question is to obtain from the bibliography all the relevant

information about the approaches and strategies that exist to combine verification and

validation methods and identify which best suits the purposes of work: treating the

combination as the use/selection of a set of the V&V techniques.

To support this main question, the following secondary questions were derived:

3.3 Protocol Planning 18

Secondary Question RQ1.1:

What is the purpose of combining verification and validation methods?

To understand why the need to combine methods in each study. The goals.

Secondary question RQ1.2:

What types of V&V are used to be combined by the approach?

Intended to extract from the selected bibliography the type of V&V methods that are

combined by the approach and which methods are identified if specified.

Secondary question RQ1.3:

How are the V&V methods being combined by the approach?

The information to obtain from this question is how the methods presented in each

of the studies are combined.

Main Question RQ2:

What are the types of research in which the approaches are presented?

This question responds were the types of research presented in the approaches. In

this way, the bibliography can be classified according to Wieringa [77]:

• Evaluation research: Implemented in practice, evaluation of implementation con-

ducted; requires more than just one demonstrating case study.

• Solution proposal: Solution for a problem is proposed, benefits/application is

demonstrated by example, experiments, or student labs; also, includes proposals

complemented by one demonstrating case study for which no long-term evalua-

tion/dissemination plan is obvious.

• Philosophical paper: New way of thinking, structuring a field in form of a tax-

onomy or a framework, secondary studies like SLR or SMS.

• Opinion paper: Personal opinion not grounded in related work and research

methodology.

• Experience paper: Personal experience, how are things done in practice.

3.3 Protocol Planning 19

3.3.2 Search Strategy

3.3.2.1 The PICO Criteria and Keywords

To determine the keywords of the search string and the research questions, is used the

PICO criteria: (population, intervention, comparison, outcomes) with the purpose of

delimiting the scope of the investigation.

According to Kitchenham [50]: The population in which the evidence is collected,

i.e. which group of people, programs or businesses are of interest for the review? The

intervention applied in the empirical study, i.e. which technology, tool or procedure

is under study? The comparison to which the intervention is compared, i.e. how is

the control treatment defined? The outcomes of the experiment should not only be

statistically significant, but also be significant from a practical point of view.

For this study, that give a general view on the combination of V&V methods, in the

area of software engineering, the following criteria of the (PI)CO are sufficient for de SM:

Population: Research papers about V&V methods.

Keywords: software, approach, method, strategy, technique,

Intervention: Combination of V&V methods.

Keywords: combining, combination, unifying, unification, selecting, selection, veri-

fication, validation, inspection, test, testing.

3.3.2.2 The Controls Papers

• M. B. Dwyer and S. Elbaum, Unifying Verification and Validation Tech-

niques: Relating Behavior and Properties through Partial Evidence.

FSE/SDP workshop on Future of Software Engineering Research (FOSE), pp. 93-

98, Santa Fe, New Mexico, USA, 2010.

• D. Cotroneo, R. Pietrantuono and S. Russo, A Learning-Based Method for

Combining Testing Techniques. Proceedings - International Conference on Soft-

ware Engineering 6606560, pp. 142-151, San Francisco, CA; USA, 2013.

• S. Mouchawrab, L.C. Briand and Y. Labiche, Assessing, comparing, and com-

bining statechart-based testing and structural testing: An experiment.

Proceedings - 1st International Symposium on Empirical Software Engineering and

Measurement, ESEM, 4343731, pp. 41-50, Madrid; Spain, 2007.

3.3 Protocol Planning 20

3.3.2.3 Data Search and Snowballing Strategy

Taking as a starting point, the keywords based on the papers of control and defined by

(PI)CO criteria, is constructed the search string presented in the 3.1, to support and

extend the initial seed set extracted from the first SM [27]. The search should return in

the result the controls papers.

On the set of seeds resulting from the search, the snowballing technique was applied

backwards (from the reference lists) and forward snowballing (finding quotes from the

news papers), with the aim of increasing the scope of the study and find relevant and

recent bibliography. The backwards snowballing is repeated in the documents obtained

from each iteration, so as not to lose any potentially relevant study, until the new set of

paper obtained is empty. It is a recursive process.

To carry out this process, efficient and organized, are followed the instructions of

Felizardo et al. [32]. The authors say that it is beneficial to have several search approaches

that support the updating of this type of study (SM), such as database searches and

snowballing techniques (backward and forward). About forward snowballing, for example,

considerably reduces the effort of updating secondary studies in Software Engineering

due to its high precision, however, the risk of losing relevant documents should not be

underestimated [32].

In the case of the use of search strings to update secondary studies, it is important

that the protocol be carefully detailed and documented, including the search string, to

perform the replication. Unfortunately, for this update, it is not possible to perform a

replication of the first SM [27] with the precision that it should have, since in the protocol

specification the search string used is not clear, although it is still a study very well argued

that it predicts and validates this type of threats with respect to replications. However,

the works resulting from this first SM [27] are fundamental as a starting point for the

update.

For all the above, it was decided to make a new protocol and a search chain in

accordance with the proposed objectives. In the presented protocol, the key words and

their possible combinations are redefined in the most appropriate way, which is a great

challenge in this type of studies due to the lack of formalization of the terminology. There

is no common terminology, appropriate descriptors and keywords in the area of Software

Engineering. This constitutes one of the greatest difficulties faced by specialists, since the

probability of using the same term to refer to the same concept is usually very small [32].

3.3 Protocol Planning 21

Table 3.1: Search String

TITLE-ABS (software AND (approach OR method OR strategy OR
technique) AND (((combining OR combination OR unifying OR unifica-
tion) AND (verification AND validation)) OR ((combining W/3 Testing)
OR (combining W/3 Review) OR (combination W/3 Testing) OR (com-
bination W/3 Review) OR (unifying W/3 Testing) OR (unifying W/3
Review) OR (unification W/3 Testing) OR (unification W/3 Review))))

The search string shown in Table 3.1 above was built based on the benefits of the

SCOPUS library, using the resources that its advanced search engine offers.

3.3.2.4 Data Sources

To execute the search string, the SCOPUS library is chosen, this is one of the most

recommended data sources of papers for software engineering researchers, they provide

access to important journals and conferences in the area such as ACM, IEEE, Springer,

Elsevier, and it has less foibles than others [16].

For the development of this SM, the benefits and resources offered by the SCOPUS

library are exploited to the maximum. In the construction of the string, first, is used

“TITLE-ABS”, which means that the documents returned, include in the title and sum-

mary the keywords used in the search string. The following resource is also used: “W/3”,

allowing between one keyword and another to exist up to three words in the middle.

3.3.3 Selection Strategy

For the selection of the studies it is necessary to establish criteria and make filters since

the search return many papers that are not relevant for the research. The inclusion and

exclusion criteria and the 5 filters are presented below:

3.3.3.1 Inclusion Criteria

• The language must be English.

• Papers published in peer reviewed venues (e.g., conferences, workshop, and journals)

• Studies related to project development and software engineering.

3.3 Protocol Planning 22

• Studies focused on the combination of methods of V&V attending the combination

strategy by Compilation specifically.

• Parts of the string and the keywords should be contained in the titles and abstracts

of the papers.

3.3.3.2 Exclusion Criteria

• White paper, thesis, technical report, power point, proceedings abstracts and irrel-

evant source.

• Studies in duplicity.

• Studies not being available.

• Studies completely outside the area and research topic.

3.3.3.3 Procedures of Selecting Studies by Filters

The identification and filtering of the papers is divided into five steps following for the

followed by the snowballing process, described below. The complete selection process is

summarized and represented by the Figure

• Searching for papers using the Search String in the digital library selected for the

study. This first step returned 370 papers.

• The first filtering (Filter 1) Use the exclusion criteria in this process. With this

filter, is reduced to 174 papers.

• The second filter (Filter 2) Filtering by reading the titles, abstracts and using the

inclusion and exclusion criteria. Here is reduced to 32 relevant papers.

• The last filter (Filter 3) Read the selected papers in full. With this last filter, is

selected 5 new papers after applying the inclusion and exclusion criteria. In this

step, is added only 23 papers corresponding to the “Compilation” approach extracted

from the initial systematic mapping [27] of 26 initial papers, because two were not

possible to obtain and one not meet the inclusion criteria. A total of 28 paper

were obtained show in the Table 3.2 , that use the prefix S for the IDS of the

papers obtained by the search string and M for the papers IDS of the first SM [27].

Highlighting the years after 2010, the year to where the documents were analyzed

by Elberzhager in [27].

3.3 Protocol Planning 23

• Finally, apply the Forward and Backward Snowballing, checking the references list

(backward snowballing) and finding citations to the papers (forward snowballing),

of both group: the papers resulting from the search string and the ones that is

extracted from the first Systematic Mapping [27], obtaining 20 new papers, adding

up in total 48 papers.

In the Table 3.3 shows the process data of backward (B) with the references and

forward (F) with citations snowballing in the first iteration, taking as an initial set of

papers the shown above in the Table 3.2. For each paper that corresponds an ID, it is

done backward snowballing from the reference lists: REFs (B) and forward snowballing

finding citations to the papers: REFs (F). Filters 2: ABSTRACT and 3: FULL READ are

applied for the references and citations (B/F) using the inclusion and exclusion criteria.

Finally, the new paper of each one is obtained and then, the process is repeated again in

another iteration and so on until the set of papers NEWs is empty.

It is important to know that to get the new papers is applying the inclusion and

exclusion criteria. In the case of duplicates, as is to be expected, there is always the

possibility that more than one study refers to the same paper, in this case, the new paper

corresponds to the first one that references it according to the order in which they are

analyzed, and so for each iteration.

In the Table 3.4 is showed the results of the first iteration of the snowballing proses,

identifying the new papers use the prefix N for their IDs, the TITLE and YEARS of the

studies. The column FROM represent the origin of the papers, for example, F if it was

for forward snowballing or B if it was for backward snowballing followed by the id of the

paper from which they came. This procedure will be performed for each of the subsequent

iterations: the second iteration represented in the Table 3.5 and Table 3.6, and the third

and final iteration by the Table 3.7. The process concludes when no new results are found.

3.3 Protocol Planning 24

Table 3.2: Set of Initial Papers

ID TITLE YEAR REF

S1 Unifying Verification and Validation Techniques: Relating Behavior and
Properties through Partial Evidence

2010 [26]

S2 A Learning-Based Method for Combining Testing Techniques 2013 [22]
S3 Assessing, comparing, and combining statechart-based testing and struc-

tural testing: An experiment
2007 [59]

S4 On the integration of software testing and formal analysis 2012 [14]
S5 Combining Testing and Proof to Gain High Assurance in Software: A Case

Study
2013 [9]

M1 A verification-centric software development process for Java 2009 [80]
M2 Combining static and dynamic analysis of concurrent programs 1994 [4]
M3 Enforcing object protocols by combining static and runtime analysis 2008 [36]
M4 HAVE: detecting atomicity violations via integrated dynamic and static

analysis
2009 [20]

M5 HEAT: an integrated static and dynamic approach for thread escape anal-
ysis

2009 [19]

M6 Integrating static and dynamic analysis for detecting vulnerabilities 2006 [1]
M7 The use and limitations of static-analysis tools to improve software quality 2008 [2]
M8 An empirical evaluation of defect detection techniques 1997 [64]
M9 An empirical evaluation of six methods to detect faults in software 2002 [71]
M10 An empirical evaluation of three defect-detection techniques 1995 [48]
M11 An experimental evaluation of inspection and testing for detection of design

faults
2003 [3]

M12 An industrial case study of the verification and validation activities 2003 [8]
M13 Comparing the effectiveness of software testing strategies 1987 [7]
M14 Detection or isolation of defects? An experimental comparison of unit test-

ing and code inspection
2003 [66]

M15 Estimating the value of inspections and early testing for software projects 1994 [51]
M16 Functional testing, structural testing, and code reading: what fault type do

they each detect?
2003 [43]

M17 Studying the effects of code inspection and structural testing on software
quality

1998 [52]

M18 Test inspected unit or inspect unit-tested code? 2007 [38]
M19 “Continuous verification” in mission critical software development 1997 [18]
M20 A method combining review and testing for verifying software systems 2008 [21]
M21 Comparing bug finding tools with reviews and test 2005 [75]
M22 Integration of formal specification, review, and testing for software compo-

nent quality assurance
2009 [57]

M23 V&V of flight and mission-critical software 1989 [24]

Table 3.3: First Iteration

ID REFs (B) CITEs (F) ABSTRACT (B/F) FULL READ (B/F) NEWs (B/F)

S1 20 4 9/3 3/2 0/0

S2 25 6 8/3 5/2 0/0

S3 25 8 9/4 3/2 0/1

S4 18 2 7/1 3/1 0/0

S5 24 4 6/1 2/0 0/0

M1 41 5 5/2 2/2 0/1

M2 42 6 3/1 0/1 0/0

M3 30 7 4/4 1/2 0/2

M4 21 23 8/11 3/3 0/0

M5 15 2 2/0 0/0 0/0

M6 11 21 3/7 0/2 0/0

M7 5 6 1/1 0/0 0/0

M8 15 35 4/12 2/4 1/1

M9 25 21 4/9 1/6 0/3

M10 26 44 8/15 2/6 0/0

M11 25 16 11/5 7/3 0/1

M12 23 21 5/8 2/2 1/0

M13 56 243 6/46 2/10 0/3

M14 25 19 5/9 1/5 0/1

M15 5 11 2/3 0/1 0/0

M16 11 17 2/8 1/2 0/0

M17 27 18 5/6 2/4 0/0

M18 30 2 7/0 4/0 0/0

M19 7 3 1/0 0/0 0/0

M20 15 1 4/0 2/0 1/0

M21 22 54 4/17 1/4 0/2

M22 18 5 5/3 0/1 0/0

M23 11 10 2/0 0/0 0/0

Total 618 614 140/179 49/65 3/15

3.3 Protocol Planning 25

Table 3.4: Results of First Iteration

ID TITLE YEAR FROM REF

N1 Model-based quality assurance of automotive software 2008 F-S3 [45]

N2 Combining tests and proofs 2008 F-M3 [35]

N3 Verifying consistency of web services behavior 2008 F-M3 [79]

N4 An integrated analysis and testing methodology to support model-

based quality assurance

2014 F-M1 [28]

N5 A Controlled Experiment in Program Testing and Code Walk-

throughs/Inspections

1978 B-M8 [60]

N6 A controlled experiment to explore potentially undetectable defects for

testing techniques

2014 F-M8 [70]

N7 Determining the effectiveness of three software evaluation techniques

through informal aggregation

2013 F-M9 [63]

N8 A comparative analysis of three replicated experiments comparing in-

spection and unit testing

2011 F-M9 [67]

N9 Modelling the effects of combining diverse software fault detection tech-

niques

2000 F-M9 [55]

N10 What do we know about defect detection methods? 2006 F-M11 [65]

N11 Comparing and combining software defect detection techniques: A

replicated empirical study

1997 B-M12 [78]

N12 A replicated empirical study to evaluate software testing methods 2017 F-M13 [73]

N13 Comparing the effectiveness of equivalence partitioning, branch testing

and code reading by stepwise abstraction applied by subjects

2012 F-M13 [44]

N14 Are test cases needed? Replicated comparison between exploratory and

test-case-based software testing

2014 F-M13 [42]

N15 Further investigations into the development and evaluation of reading

techniques for object-oriented code inspection

2002 F-M14 [25]

N16 Integrating specification-based review and testing for detecting errors

in programs

2007 B-M20 [56]

N17 Comparing the effectiveness of penetration testing and static code anal-

ysis on the detection of SQL injection vulnerabilities in web services

2009 F-M21 [5]

N18 Introduction of static quality analysis in small- and medium-sized soft-

ware enterprises: experiences from technology transfer

2016 F-M21 [34]

3.3 Protocol Planning 26

Table 3.5: Second Iteration

ID REFs (B) CITEs (F) ABSTRACT (B/F) FULL READ (B/F) NEWs (B/F)

N1 18 1 4/1 3/0 2/0
N2 4 0 2/0 1/0 0/0
N3 21 5 2/0 1/0 0/0
N4 65 0 6/0 2/0 0/0
N5 11 129 3/18 0/6 0/0
N6 9 0 5/0 2/0 0/0
N7 36 1 11/0 5/0 0/0
N8 20 1 3/0 1/0 0/0
N9 16 1 4/0 2/0 0/0
N10 22 59 8/12 2/4 0/0
N11 15 36 5/10 0/3 0/0
N12 28 0 6/0 0/0 0/0
N13 58 17 9/3 2/0 0/0
N14 70 9 10/2 3/1 0/0
N15 19 18 0/3 0/|0 0/0
N16 17 15 2/2 0/1 0/0
N17 21 30 1/2 0/0 0/0
N18 74 7 4/2 0/0 0/0
Total 524 329 85/55 24/15 2/0

Table 3.6: Results of Second Iteration

ID TITLE YEAR FROM REF

N19 A comparison of three verification techniques: Directed testing, pseudo-
random testing and property checking

2002 B-N2 [6]

N20 Experimental evaluation of verification and validation tools on martian
rover software

2004 B-N2 [15]

Table 3.7: Third Iteration

ID REFs (B) CITEs (F) ABSTRACT (B/F) FULL READ (B/F) NEWs (B/F)

N19 3 29 0/7 0/2 0/0
N20 19 38 3/9 1/3 0/0
Total 22 67 3/16 1/5 0/0

3.4 Results 27

Figure 3.1: Studies selection process

3.4 Results

3.4.1 Data Extraction Strategy

At this stage, is collected the information from the 48 selected papers, answering the

research questions.

RQ1: What approaches have been proposed for combining verification and validation

methods and which it is most suited to the purposes of work?

Two categories of approaches are defined by Elberzhager [27] to combine V&V meth-

ods and their corresponding subcategories:

Compilation approach: treat the combination as the process of selecting V&V

methods. This is divided into three subcategories. The first, static and dynamic analysis

combined, the second compares different testing techniques and inspections discussing

advantages and disadvantages among them and the third describes other combinations

for example some techniques of testing each other, inspections combined with formal

specifications, bug–finding tools among others. Important to note that the 48 paper

obtained in the SM correspond to this category.

Integration approach: address the combination as the process of creating a new

technique combining different methods in one or using the results of the application of

some technique as an instance to apply another one technique in consequence. This is

divided into two subcategories: the first is the integration of static and dynamic analysis

which covers most of the approaches. With respect to the order of application, the

3.4 Results 28

static analysis with greater frequency is first to be applied, followed by dynamic analysis.

The second subcategories, integrate inspection and testing approaches, where inspections

derive test cases and the test code that is automatically generated is inspected.

RQ1.1: What is the purpose of combining verification and validation methods? With

the purpose of evaluate the effectiveness and efficiency are the papers: S2, S3, M8,

M10, M11, M13, M16, M17, M18, N3, N9, N11, N12, N13, N14 and N17. To detect

the most amount of problem and faults: M3, M4, M5, M6, M14, N7, N8, N16, N19

and N20. To complement the results: S1, M2, M9, M18, N1, N2, N5, N10, N15 and

N18, this means that the results of applying a method is complemented by the results

of the others that are combined, since what cannot be detected by one, the other can

detect it. To reduce efforts, costs and runtime: S5, M7, M15, M21 and M22. With

other specific purposes such as provide a roadmap for future research the study:

S4. To verify and analyze a software development process and ensure quality:

M1 and N4. To investigate the balance between inspections and tests M12. To

ensure software quality from the early stages of development M19. To maintain the

consistency between the specification structure and the program structure M20. To

guarantee the security, qualification and validity of the system: M23 and with

the purpose of determine which types of defect are potentially undetectable to either one:

N6.

RQ1.2: What types of V&V are used to be combined by the approach?

To answer this research question, new subcategories were redefined within the com-

pilation approach regarding to the type of V&V methods. Each subcategory corresponds

to a group of types of methods that are usually combined. The Figure 3.2 represents in

percentage the corresponding peppers in each group, they are:

• Static & Dynamic Analysis: S1, S5, M1, M2, M3, M4, M5, M6, M7, N2, N4,

N15, N17, N18 and N20.

• Reviews–Inspection & Testing: M9, M11, M12, M13, M14, M15, M16, M17,

M18, M20, M21, N5, N8, N10 and N16.

• Testing & Testing: S2, S3, S4, M8, M10, N1, N6, N7, N11, N12, N13, N14 and

N19.

• Formal Methods & Others: M19, M22, M23, N3 and N9.

3.4 Results 29

Figure 3.2: Combinations methods type

RQ1.3: How are the V&V methods being combined by the approach?

The approaches are combined and classified in three categories fundamentally, by

Tools: S1, S4, M1, M2, M3, M4, M5, M6, M7, and N17, such as framework and al-

gorithms. By Comparison: S2, S3, M8, M9, M10, M11, M12, M13, M14, M15, M16,

M17, M18, M21, M22, N1, N2, N5, N6, N7, N8, N10, N11, N12, N13, N14, N15, N16,

N18, N19 and N20, which consists in the analysis of the results of each of the methods

used, complementing in most cases. And finally in the classification of Others: S5, M19,

M20, M23, N3, N4 and N9, those who have a very particular way of combining for each

of the studies. The Figure 3.3 represents in percentage the corresponding peppers in each

combination category.

Figure 3.3: Combinations categories

RQ2: What are the types of research in which the approaches are presented?

3.4 Results 30

Three types of research, including the empirical studies that determine it, were iden-

tified in the papers.

• Evaluation Research determined by empirical study “Case Study” includes the

papers: S1, S2, S5, M1, M12, M14, M19, M21, M22, M23, N2, N3, N18, N19.

• Philosophical Paper determined by empirical study “Secondary Study” include

the paper: S3.

• Solution Proposal determined by the empirical studies “Example” including the

papers: M2, M3, M7, M20, N1, N4, N5, N9, N16, N17. And the empirical studies

“Experiment” including the papers: S3, M4, M5, M6, M8, M9, M10, M11, M13,

M14, M16, M17, M18, N6, N7, N8, N10, N11, N12, N13, N14, N15, N20.

The Figure 3.4 shows the percentages that represent the types of research and the

empirical studies of the total of pepers, sticking out the Solution Proposal as the type

of research most used together with the empirical study “Experiment”, taking the greater

amount of the papers analyzed.

Figure 3.4: Research type

3.4.2 Data Synthesis Strategy

In this stage, an analysis of the data was done through graphs to compare effect sizes and

values to assess the synthesized outcome.

3.4 Results 31

Figure 3.5: Number of papers by combination methods types

Figure 3.6: Number of papers by years of publication

Figure 3.7: Number of papers by publisher and source type

3.5 Conclusions 32

Figure 3.5 represents the number of paper by type of combination of methods and

category of combination, previously defined in the research questions. The graph shows

the highest concentration of studios in combinations of the type Reviews-Inspection &

Testing (14 paper) through the comparison, followed by Testing & Testing (12 paper) in

the same category.

Figure 3.6 shows the number of papers per year of publication, reflecting a crescent

development of research on the years between 2000-2009.

Finally the Figure 3.7, number of papers by publisher and source type, indicates

that the IEEE is the publisher with the more number of studies published in conference

proceeding compared to the others, with an amount of 24 paper representing the half of

the total papers analyzed in this SM.

3.5 Conclusions

In this chapter, a SM of V&V methods was performed. 48 relevant papers with approaches

that combine V&V techniques were found. In most of them, the type of V&V methods

and the purpose of the combination were identified. These papers were classified by type

of empirical study, type of research and approach they used. For all this is can conclude

that the SM fulfilled the proposed goal.

The snowballing proved to be, once again, effective and the most appropriate search

technique for updates of systematic studies. This SM, in addition, can be considered a

potential guide for future studies of this type in the academic field, being able to apply

its protocol, meticulously detailed and explained, to any context.

Chapter 4

Relating V&VMethods to Software Prod-
uct Quality Characteristics: Results of an
Expert Survey

4.1 Introduction

The main goal of the survey presented is to obtain concrete evidence on which V&V

methods are the most appropriate to cover each of the ISO 25010 characteristics, from

the point of view of the 19 software engineering experts, all of them with a PhDs in

Software Engineering and Quality, being part of outstanding committees in the area and

having relevant publications. The results gives an initial configuration of V&V methods.

The initial configuration indicates which of the previously selected methods can be used

to address each one of the software quality characteristics of the ISO 25010 standard. It

can serve as a further reference in the software development industry.

The planning of the survey is explained in detail in each of its stages according to

Wohlin [17]: Main goal and Scope of the study using the GQM (goal, question, metric)

definition template. The population, research questions, metrics, the execution strat-

egy, the statistical techniques for data analysis, the instrumentations and the validity

assessment are also described in the planning. In the chapter the operation is described

also, survey operation, i.e., how the survey was conducted, as well as survey results are

presented and analyzed.

4.2 Survey Planning 34

4.2 Survey Planning

A Survey is a process of collection of information from people to describe, compare or

explain their knowledge, attitudes and behavior. Its main tools to collect qualitative or

quantitative data are interviews or questionnaires made to people from a representative

sample of a population. It is realized to obtain information relevant for some investigation

[17].

4.2.1 Main Goal and Scope

The main goal of this survey is to gather initial evidence, through expert opinion, about

the suitability of V&V methods to address ISO 25010 software product quality character-

istics. Using the GQM (Goal Question Metric) definition template [17] this goal can be

stated as: Analyze V&V methods for the purpose of characterization with respect

to their suitability for addressing ISO 25010 software quality characteristics from the

point of view of experts in the area of V&V in the context of the software engineering

research community.

4.2.2 Population

Following the advice of deciding upon the target population based on whether they are

the most appropriate to provide accurate answers instead of focusing on hopes to get high

response rates [72], the population of V&V experts will be sampled by selecting PhDs in

software engineering that are active in at least one of the following software engineering

and V&V program committees: ICSE, ICST, ESEM, SEAA-SPPI, and SWQD. Addition-

ally, each survey participant should have at least one publication within the last 5 years

directly related to V&V methods. While there are other sampling strategies, this one

can be allows effectively reaching a sample of V&V experts from the software engineering

research community

4.2.3 Survey Questions

The survey was designed with only two very direct questions. The intent of keeping the

design simple was to allow the experts to answer within a reasonable timeframe.

Q1: To what extent do you agree that the following V&V methods can be applied to

address the listed quality attributes?

4.2 Survey Planning 35

This question was structured as a table crossing the selected V&V methods (cf. Sec-

tion 2) against the ISO 25010 quality characteristics (cf. Section 3). The researchers

should provide their answers filling each cell with a number corresponding to a Likert

scale (1- Disagree, 2-Partially Disagree, 3- Partially Agree, 4- Agree, and N- Not Sure).

Q2: Complete the list by rating any other V&V methods that you believe could be

applied to address one or more of the listed quality attributes.

This question was optional and provided to allow the expert to suggest and evaluate

other V&V methods, not included in the initial list, that he considers relevant.

4.2.4 Metrics

Likert scales (1- Disagree, 2-Partially Disagree, 3- Partially Agree, 4- Agree, and N-

Not Sure) were used for assessing the V&V methods against the quality characteristics

in both questions. The aggregated metric on the agreement for each method/quality-

characteristic set was obtained using the median value, which can be safely applied to

Likert scales [17].

4.2.5 Execution Strategy

The execution strategy consisted of identifying the population sample according to the

strategy and distributing the survey instrument via email. Due to the format of the

questions, the survey was provided by e-mail as an MS Word attachment. Participants

should answer the survey within 15 days.

4.2.6 Statistical Techniques

The aggregation of the responses for the set of answers was conducted using the median

value. Additionally, the Median Absolute Deviation (MAD), representing the degree of

concordance between the experts, should be analyzed to further understand the repre-

sentativeness of the median for the sample. Statistical visualization features to provide

an overview of the results include tables and a bubble plot crossing information of V&V

methods and quality characteristics.

4.2 Survey Planning 36

4.2.7 Instrumentation

The questionnaire instrument had a title, a short description of the research goal, a note

of consent stating that individual data will be handled anonymously, followed by the two

questions. Additionally, as supporting documentation, short descriptions of the V&V

methods and the ISO 25010 quality characteristics were also provided as an appendix.

4.2.8 Validity Assessment

Throughout the process of planning the survey, is identified some threats. Table 4.1

lists these potential threats and how are treated them in the survey. One of the main

mitigation strategies was validating the instrument by asking other individuals to answer

the survey, as part of a pilot study, before handing it over to the experts. This also

allow to understand that, to keep it is simple as possible, answering the questionnaire still

requires at least 20 minutes.

Table 4.1: Threats and Treatment

Threats Treatment
Bad instrumentation. Revision and evaluation of the questionnaire about

the format and formulation of the questions. Run-
ning a pilot study.

Inadequate explanation
of the constructions.

Revision and evaluation of the questionnaire about
the format and formulation of the questions. Run-
ning a pilot study.

Doubts of the experts on
the purpose or on specific
definitions.

Including the research goal explanation and adding
support information on the V&Vmethods and ISO
25010 quality characteristics..

Measurement and results
reliability.

Using medians to aggregate individual Likert scale
entries. Using the median absolute deviation to
check on the agreement among the experts..

Statistical conclusion va-
lidity.

This threat strongly depends on the sample size.
A mitigation that could be used is running future
survey replications and aggregating the results.

4.3 Operation 37

4.3 Operation

The population sampling strategy, described in the sub-section 4.2.2, allowed to identify

145 candidate subjects (PhDs in software engineering, active in one of the selected program

committees, and with relevant publications on V&V methods). The survey was sent to

them by e-mail as an MS Word attachment, which could be easily answered by using

any MS Word compatible editor. Experts had 15 days to answer the survey. After this

deadline the data collection was considered concluded.

At all, 19 experts (response rate of 13%) from 7 different countries answered the

survey. Taking into account the main factors that directly affect the response rate [54]:

length of the form (number of pages), sending of the form through e-mail, duration to

fill out the form (indeed, some experts mentioned that answering took them much longer

than expected from our pilot study) and comparing with similar studies (e.g., [30]), where

the response rate is commonly around 10%, it can be considered that the response rate

satisfactory and according to the expectation.

Figure 4.1: Number of responses by country

The Figure 4.1 represents the number of responses per country. It can be observed

that most of the answers came from Brazil and Austria. This was probably related to the

direct relationship of the authors with researchers from these countries.

4.4 Survey Results 38

4.4 Survey Results

The overall results relating the V&V and ISO 25010 quality characteristics are shown in

Table 4.2. The rows contain each of the selected V&V methods and the columns show the

ISO 25010 software quality characteristics: FS–Functional Suitability, PE–Performance

Efficiency, C–Compatibility, U–Usability, R–Reliability, S–Security, M–Maintainability

and P–Portability. The numbers in the cells correspond to the median values of the

expert’s answers on how suitable the method is for a given characteristic. For the purpose

of calculating the median value ‘N - Not Sure’ responses were not considered. The Median

Absolute Deviations (MAD) are shown within parentheses.

For the analysis of the survey data, is considered that the method is reported to

address a quality characteristic if the median value of the answers of the respondents is

greater than or equal to 3. The cells corresponding to these values are highlighted in

Table 4.2. It is possible to observe that, according to the experts, there is at least one of

the selected V&V methods addressing each quality characteristic. Most of the methods

address functional suitability.

The MAD represents the agreement between the experts. Figure 4.2 shows the overall

distribution of the MAD values: 32%, 9%, 58%, and 1%, for the MAD values 0 (blue),

0.5 (orange), 1 (grey), and 1.5 (yellow), respectively. It can be seen that these values

mainly oscillate in a range between 0 and 1 (except for one element that equals 1.5,

concerning using inspections to address reliability). These overall low deviations indicate

small differences between the opinions of the experts.

Figure 4.2: Degree of concordance (MAD) between the experts

4.4 Survey Results 39

Table 4.2: Survey Result

Methods FS PE C U R S M P

1.Ad Hoc 3 (0) 1 (0) 2 (0.5) 3 (1) 1 (0) 1.5 (0.5) 1 (0) 1 (0)

2.Exploratory

Testing

3 (1) 2 (1) 2 (0.5) 3 (1) 2 (0) 2 (1) 2 (0) 2 (1)

3.Equivalence

Partitioning

4 (0) 2 (1) 1.5 (0.5) 1 (0) 2 (1) 1 (0) 1 (0) 1 (0)

4.Pair wise 3.5 (0.5) 1 (0) 2 (1) 1 (0) 2 (1) 2 (1) 1 (0) 1 (0)

Testing

5.Boundary-

Value Analysis

4 (0) 2 (1) 2 (1) 1 (0) 2 (1) 2 (1) 1 (0) 1 (0)

6.Random 3 (1) 2 (1) 2 (1) 1 (0) 2 (1) 2 (1) 1 (0) 1 (0)

Testing

7.Cause-Effect

Graphing

4 (0) 2 (1) 2 (0.5) 1.5 (0.5) 2 (1) 2 (1) 1.5 (0.5) 1 (0)

8.Control 3 (1) 1.5 (0.5) 1 (0) 1 (0) 3 (1) 2 (1) 2 (1) 1.5 (0.5)

Flow-Based

9.Data 3 (1) 1 (0) 1 (0) 1 (0) 3 (1) 2 (1) 2 (1) 1 (0)

Flow-Based

10.Error 3 (1) 2 (1) 2.5 (0.5) 2 (1) 3 (1) 2 (1) 1 (0) 2 (1)

Guessing

11.Mutation

Testing

3 (1) 1 (0) 2 (1) 1 (0) 3 (1) 2 (1) 1 (0) 1 (0)

12.Operational

Profile

3 (1) 3 (1) 3 (1) 3 (1) 3 (1) 2 (1) 1 (0) 2 (1)

13.Usability 2 (1) 1.5 (0.5) 2 (1) 4 (0) 2 (1) 2 (1) 1 (0) 1 (0)

Inspection

14.Finite-State

Machines

4 (0) 2 (1) 2 (1) 2 (1) 3 (1) 3 (1) 2 (1) 1 (0)

15.Workflow

Models

4 (0) 2 (0) 2 (1) 3 (1) 2 (1) 3 (1) 2 (1) 1 (0)

16.Walkthrough 3 (1) 2 (1) 2 (0) 2 (1) 2 (1) 2 (1) 3 (0.5) 2 (1)

17.Peer Review 3 (1) 2 (1) 2 (1) 2 (1) 2 (1) 3 (1) 3 (1) 2 (1)

18.Technical 3 (0) 2 (1) 2 (1) 2 (1) 2.5 (0.5) 3 (1) 3 (1) 3 (1)

Review

19.Inspection 4 (0) 2 (1) 2 (1) 3 (1) 2.5 (1.5) 3 (1) 3 (1) 3 (1)

4.4 Survey Results 40

4.4.1 Answering the Research Question 1

RQ1: To what extent you agree that the following V&V methods can be applied to address

the listed quality attributes?

The figure 4.3 provides a summary of the relation between the V&V methods and

the quality characteristics in a bubble plot. In this Figure, the size of the bubble: small,

medium and large, represents the median value: 3, 3.5 and 4, respectively. The colors

refer to the MAD value: Blue, Orange and Grey represent the values of 0, 0.5 and 1,

respectively. Thus, the large blue plots represent combinations where the experts agree

(median 4) with strong consensus (MAD 0) that the V&V method is suitable for address-

ing the quality characteristic. It is noteworthy that the grey dots, still represent a positive

evaluation for the combination (median 3 and MAD 1).

Figure 4.3: Results of the first question

4.5 Conclusions 41

4.4.2 Answering the Research Question 2

RQ2: Complete the list by rating any other V&V methods that you believe could be applied

to address one or more of the listed quality attributes.

The participants mentioned 20 other (more specific) V&V methods. Among these

methods, the ones that were cited by more than one expert were: Model Checking,

Penetration Testing, Stress Testing, and Fuzz Testing. It is noteworthy that all

methods suggested by more than one expert are automated or semi-automated ones. This

indicates that in a future survey trial such methods should probably be included.

4.5 Conclusions

This chapter proposed to establish a relation between a set of V&V methods and the ISO

25010 quality characteristics, based on expert opinions. It is noteworthy that, to the best

of knowledge, such relation, while being extremely relevant for research and practice, has

not yet been established.

Therefore, an initial list of V&V methods has been compiled and carefully selected

experts to answer the survey. At all, It is received answers from 19 experts, all holding

PhDs in software engineering, being part of relevant program committees and having

recent publications concerning V&V methods.

The resulting relations (suitability of the V&V methods to address the ISO 25010

quality attributes) are summarized in Figure 4.3. All the bubbles represented in this

Figure concern an agreement on the relation between the method and the quality char-

acteristic. Nevertheless, considering the sample size, the relations depicted by the small

(median 3) grey (MAD 1) bubbles, while still representing an aggregated expert agree-

ment on the relationship, should be taken with a grain of salt, given that in these cases the

experts disagreed slightly more. Considering the overall sample, experts mostly provided

consistent answers with small deviations from the median.

While the sample size is small and do not claim for statistical conclusion validity and

are aware of the importance of replications to reinforce the results, is still believe that

the aggregated opinion of 19 experts can serve as a starting point for other researchers

and practitioners, who currently completely lack information on the suitability of V&V

methods to address ISO 25010 quality attributes.

Chapter 5

An Efficient Algorithm for Combining
V&V Methods

5.1 Introduction

In this Chapter, an algorithm to obtain the optimal combination of methods in reason-

able computational time is presented. With the purpose of find the optimal solution for

the problem, is adopted a parameterized approach, considering the set of quality charac-

teristics as a parameter, and obtaining an algorithm classified as FPT (fixed-parameter

tractable) in the Parameterized Complexity Theory. This field emerged as a promising

alternative for working with NP–hard problems [68].

The algorithm runs in O(f(k) × n), where the constant k is the number of quality

characteristics, n is the number of methods, and f(k) is some function of k. Considering

that the number of quality characteristics of a given quality standard is always constant,

the algorithm runs in polynomial time in terms of the number of V&V methods to be

combined.

It is also presented, a brief introduction to the theory of complexity parameterized,

the problem is modeled as an SCP, followed by the FPT–algorithm, the experiment are

execute and analyzed. Finally, a discussion about the approach is made.

5.2 Parameterized Complexity

The Parameterized Complexity field emerged as a promising approach way to deal with

NP–hard problems [68]. It is a branch of the Computational Complexity Theory that

focuses on classifying computational problems according to their hardness with respect

5.2 Parameterized Complexity 43

to different parameters of the input. The complexity of a problem is mainly expressed

through a function of these parameters.

The theory of NP–completeness was developed to identify problems that cannot be

solved in polynomial time whether P 6= NP . However, it is fundamental to identify

problems for which a polynomial time algorithms for their resolution is not expected,

several NP–complete and NP–hard problems still need to be solved in practice.

For many problems, only super-polynomial time algorithms are known when the com-

plexity is measured according to the size of the input, and in general, they are considered

“intractable” from the theoretical point of view assuming that P is different from NP .

Nevertheless, for several problems is can develop algorithms in which is can split its their

running time into a part computed in polynomial time with respect to the size of the

input and another part computed in exponential time or worse, but only with respect to a

parameter k isolated to analysis. Consequently, if is set the parameter k to a small value

and its growth is relatively small could be consider these problems as “manageable” and

not “intractable” [23] [33] [62].

Thus, an important question arises: “Do these hard problems admit non-polynomial

time algorithms whose exponential complexity part is a function of merely some aspects

of the problem?” [68]. The existence of such algorithms was analyzed by Downey and

Fellows in [23], and is briefly discussed in the next section.

5.2.1 Fixed-Parameter Tractable (FPT) Approach

The fixed-parameter tractable (FPT) approach [23] considers the following format for of

the problems: “Given an object x and a non-negative integer k, the goal is to determine

whether x has some property that depends on k?” The parameter k is considered small

compared to the size of x. The relevance of these parameters lies precisely in the small

range of values they can take, being a very important factor in practice [68].

The FPT–algorithms sacrifice the execution time, which can be exponential, but guar-

antees that the exponential dependency is restricted to the parameter k, which means that

the problem can be solved efficiently for small values of that fixed parameter. The use

of these algorithms provides a more rigorous analysis of problem‘s time complexity since

this complexity is generally obtained from the size of the input [68].

Formally, a problem Π belongs to the class FPT (it is fixed–parameter tractable) with

respect to a parameter k if it admits an algorithm to solve it whose running time is of the

5.3 Modeling the Problem 44

form: f(k)× na, where a is a constant, and f is an arbitrary computable function. Note

that whenever k is bounded by a constant it has O(f(k)× n), hence the running time of

the algorithm will be polynomial.

Finally, for the problem in question, is presented a fixed-parameter tractable algo-

rithm where the size k of the set of characteristics to be covered is the parameter. I.e.,

the complexity is being limited by the number of relevant product characteristics to be

considered when developing the software.

5.2.2 Scalability of the FPT–algorithms

Scalability is the ability of a system or process to handle an increasing amount of data

[11]. Computer algorithms can be called scalable if they are efficient when applied to

large instances, i.e., instances with a large size of the input [53].

It can say that FPT–algorithms are scalable because they are efficient when executed

in large instances. These algorithms take advantage of the specific structure of the in-

stances, which is a differential when comparing to exact or exhaustive search algorithms

that require high computational time.

It is important to note that the studied problem can handle a large number of V&V

methods, given that the number of quality characteristics tends to be relatively small.

Therefore, an FPT–algorithm with respect to the number of characteristics to be covered

will produce a tool for combination of V&V methods with high scalability.

Indeed, in the problem, the number of quality characteristics is already a known small

integer (in the ISO standard this number is 8). Therefore, scalability relies on the ability

of finding the optimal solution even if the number of considered methods is growing.

The initial set comprises 19 methods, but additional methods have been reported by the

survey respondents and the algorithm allows to efficiently work, with 50, 100, 200, 500

and even with 1000 methods as shown by the results of the experiments in Table X for

these instances.

5.3 Modeling the Problem

The problem of finding the smallest combination of methods that cover a specific set of

quality characteristics can be modelled as a Set Cover Problem.

Considering C as the set of characteristics, and Mi as the subset of C that is covered

5.3 Modeling the Problem 45

by a specific method. Is needed to find the smallest set of subsets that cover C. The

problem is NP–hard in general. The relation between the characteristics and the methods

can be modeled as an undirected bipartite graph. The Figure 5.1 shows an instance of

such graph. In the left–hand side the methods are positioned, and in the right–hand side

the characteristics. Edges reflect the relationship between methods and characteristics.

Figure 5.1: Bipartite graph of V&V methods vs. Quality characteristics

In the depicted instance, the set of methods contains the following elements: Peer Re-

view (PR), Workflow Models (WM), Finite-State Machines (FSM), Operational Profile

(OP), Mutation Testing (MT), and Exploratory Testing (ET). The set of characteris-

tics is composed by four characteristics: Usability (U); Reliability (R); Security (S), and

Maintainability (M). The graph shows a scenario in which the method PR covers charac-

teristics M and S, WM covers S and U, FSM covers S and R, OP covers R and U, MT

covers R, and ET covers U.

The example instance was obtained from the results of a survey presented in the

Chapter 4 – Table 4.2 that gathered the opinion of experts on these V&V methods, for

this only a subset of the data will be taken to explain with more clarity and accuracy the

execution of the algorithm. In the survey, the experts answered about their agreement on

the suitability of the methods to address the different quality attributes of the ISO 25010

standard. The relationship between some method m and some characteristic c is obtained

from the median of the survey answers (1 – disagree, 2 – partially disagree, 3 – partially

agree, 4 – agree). In this example is considered that m properly covers c if the median

is bigger or equal to 3, for example, only methods that cover a quality characteristic to

a certain degree will have edges in the graph. Of course, this threshold for the initial

configuration of the graph can be adjusted, but edges should not be included for methods

5.4 FPT–Algorithm to Combine V&V Methods 46

that badly cover a certain quality characteristic (or only some minor aspect of it).

The example serves for illustrative purposes to present the V&V method combination

algorithm. Actually, this shorter example allows providing a better understanding of the

algorithm‘s execution and correctness.

5.4 FPT–Algorithm to Combine V&V Methods

The goal of the algorithm is to obtain the optimal combination (smallest number) of V&V

methods that properly cover all the relevant quality characteristics for the product to be

developed. Certainly, a software organization could complement the resulting set with

other V&V methods that cover similar quality characteristics to find more defects and to

further enhance quality, but at least they would know the minimum set of methods to

consider in order to address all the quality characteristics that are relevant for the product

to be developed. I.e., a combination such that there is a method properly addressing (i.e.,

with an edge in the graph for) each relevant quality characteristic and none of them

remains uncovered.

The objective function is the number of selected methods that properly cover all the

characteristics. The parameter to be set is the number of the selected quality charac-

teristics. In this way, the Set Cover Problem is being parameterizing by the number of

characteristics to be covered by the V&V methods. Coming up next, is presented some

definitions that are used in the algorithm:

C – set of characteristics.

M – set of methods.

N(m) – set of characteristics covered by the method m.

P (c) = {x ∈M : c ∈ N(x)} – set of methods that cover the characteristic c.

R(m) = {x ∈M : N(x) ⊆ N(m)} – set of methods that cover a subset of N(m).

Figure 5.2 shows the pseudocode of the FPT–Algorithm. The input parameters are

the set of characteristics C and the set of methods M . In lines 1 and 2, the variables

M∗ and f ∗ are initialized with the smallest set of methods found until now (initially, all

methods), and the optimal value of the objective function found until now (number of

methods in M). If the set of characteristics C is empty, then an empty set of methods is

returned in lines 3-4.

5.4 FPT–Algorithm to Combine V&V Methods 47

Figure 5.2: Set cover FPT–Algorithm

Otherwise, the redundant methods are removed in line 6 by using a simple prepro-

cessing step. It removes methods that cover a subset of characteristics covered by any

other method. A characteristic c is selected from the set of characteristics in line 7. The

algorithm then focuses on selecting the method that will cover c in the optimal solution.

In line 8, the variable Ct that contains the characteristics to be covered is initialized. A

loop runs through all the methods that cover c in lines 9-25. The set M ′ that stores the

methods that will be part of a feasible solution is initialized with method m in line 10.

The set of characteristics to cover Ct is updated in line 11 by removing the characteris-

tics already covered by m. The set Mt, containing the methods available to cover Ct, is

initialized in line 12 with all methods of M except those covering a subset of N(m). In

5.4 FPT–Algorithm to Combine V&V Methods 48

lines 13-18 a loop is executed while there are characteristics c′ that are covered by a single

method m′. The variables Ct, Mt and M ′ are updated in lines 15-17. The available Mt

methods and the characteristics that have not been covered until now are used to obtain

an optimal sub-problem solution by recursively calling the SetCover algorithm. In line

19, the obtained optimal solution is stored in M ′∗. If the methods selected in M ′ together

with the optimal solution M ′∗ of the sub-problem improve the optimum value found so

far f ∗, then f ∗ and M∗ are updated in lines 20-23. The value of Ct is reinitialized in line

24. The best solution found (M∗), is returned as the optimal solution to the problem in

line 27.

5.4.1 Execution of the Set Cover Algorithm

Taking the graph represented in Figure 5.1 as the entry of the algorithm, we now illustrate

the execution of the pseudocode. After initialization steps 1-5, line 6 removes redundant

methods. In this case, methods MT and ET are removed, because they cover only one

characteristic, already covered by other methods. The result is shown in Figure 5.3.

Figure 5.3: Algorithm execution. State of the graph after the preprocessing step

Afterwards, the first characteristic M is chosen as c, and all the methods that cover M

must be considered in the cycle that begins in line 9. Therefore, method PR is selected.

In line 11, we remove all the characteristics already covered by PR, that is, M and S. The

variable Mt gets the set of methods WM, FSM, OP in line 12. Since there are no char-

acteristics covered by only one method, loop in lines 13-18 does not perform any action,

and the algorithm is called recursively in line 19 with set of characteristics R, U, and set

of methods WM, FSM, OP as parameters. Figure 5.4 illustrates the graph at this stage.

5.4 FPT–Algorithm to Combine V&V Methods 49

Figure 5.4: Algorithm execution. State of the graph after the recursive call

Finally, the algorithm is executed again from the beginning. Methods WM and FSM

are immediately removed as redundant, and the remaining method OP is selected to

cover the last two characteristics. The variables Ct and Mt became empty, and in the

next recursive call, stopping criterion is reached. The OP method is returned as a solution

of the instance represented in Figure 5.4, forming the final solution of the whole instance

together with already selected method PR. The smallest set of methods M∗ is set as PR,

OP, and the optimal value f ∗ is set to 2.

Figure 5.5 shows the methods that form the optimal solution returned by the algorithm

when executed in the graph. If M is selected as the first characteristic at the beginning

of the execution, then the optimal set of methods returned by the algorithm is PR, OP.

Figure 5.5: Optimal solution

As can be observed from the execution, the algorithm considers all the possible ways

of covering the quality characteristics, keeping the most efficient ones. In this sense, the

obtained solution can be considered as optimal for the problem and model we pose.

5.4 FPT–Algorithm to Combine V&V Methods 50

In fact, the algorithm is able to determine the optimal combination (smallest number)

of V&V methods that properly cover all the relevant quality characteristics for a product

to be developed based on any initial graph configuration connecting V&V methods to the

quality characteristics they properly address.

5.4.2 Running Time Analysis

Suppose that there are n methods in the set M , and there are k characteristics in the

set C, being k some small integer. Can be note that a naive (brute force) algorithm

would test all solutions (subsets of the set M) and chose which of them cover C having

smaller size. Because there are 2n subsets of the set M , this naive algorithm has a time

complexity of O(2n). This exponential order is intractable even for some relatively small

values of n, like 30 or 40.

Instead, the proposed algorithm tries to determinate which method is the best option

to cover each characteristic. After choosing some characteristic c, the algorithm tries to

select each method that properly covers c, covering the rest of characteristics recursively.

Because each characteristic can be covered by any of the n methods, the order of this

algorithm can be initially bounded by O(nk). In general, this order is already better than

the ’naive’ solution.

Nevertheless, is improved the upper bound of our algorithm’s running time by refining

the actual number of methods it will analyze. In fact, there are only 2k different ways

of covering a set C of k elements. If there is more than 2k methods, then necessarily

there will be two of that cover exactly the same set of characteristics. That means that

these two methods would be similar and indistinguishable to our algorithm; that is, if

they cover the same characteristics, you can use any of them at your chose. Using this

fact, is can successively preprocess the input, improving the algorithm performance from

O(nk) to O(f(k)× n), where f(k) ≤ (2k)k = 2k2 . In our case, k = 8 and this means that

f(k) is upper bounded by a constant, i.e., f(k) = O(1). Then, a linear algorithm for the

problem instead of an exponential or even a O(n8)-time algorithm is have.

Once again, the upper bound for f(k) is improved (decreased) using the fact that if

some methodm1 covers a subset of characteristics covered by some other methodm2, then

m1 can be removed from the set of methods. This is because if m1 is actually chosen,

you can instead choose m2, since m2 is “better” method in the sense that it covers all

that m1 covers, and possibly more. Lubell [58] showed that there no more than
(

k
bk/2c

)
combinations with the property that no one is a subset of the other. This implies that

5.5 Computational Experiments 51

for k = 8, there can be much less than 2k different methods with the property that there

is no method that covers a subset of characteristic of some other method. In particular,

for k = 8 there can be at most
(
8
4

)
= 70 methods satisfying this property, and at most(

7
3

)
= 35 of these methods attending a common characteristic. Therefore, the redundant

methods are removed by using a simple preprocessing step that searches for methods that

cover a subset of characteristics covered by any other method. At each iteration of the

algorithm, the number of characteristics to be covered decreases and the previous steps

of the algorithm are repeated considering a decremented k value.

Summarizing, it holds that:

f(k) <

(
k − 1

b(k − 1)c/2

)
×
(

k − 2

b(k − 2)c/2

)
× · · · ×

(
2

1

)
(5.1)

For k = 8, it follows that f(k) < 35× 20× 10× 6× 3× 2, then our O(f(k)× n)-time

algorithm is an efficient (linear) algorithm where f(k) is upper bounded by a constant.

In practice, this constant is even lower, and does not depend on the number of existing

methods, which produces scalability with respect to the number of methods to be worked.

5.5 Computational Experiments

Several experiments were performed to assess the validity of the algorithm presented

above. The algorithm was implemented in C# programming language and compiled by

Roslyn, a reference C# compiler, in an Intel Core i3 machine with a 2.0 GHz processor

and 4 GB of random-access memory, running under the Windows 10 operating system.

A number of test problems created by a random generator is considered. Each test

problem has two parameters: the number of vertices n and the probability p of a method

to cover a characteristic.

The FPT–algorithm is also executed on the instance obtained from the survey de-

scribed in Chapter 4, and detailed in Table 4.2.

5.5.1 Integer Linear Programming Model

The following classical Integer Linear Programming (ILP) model for the Set Cover problem

was implemented in CPlex program.

5.5 Computational Experiments 52

min
∑
j∈M

xj

subject to:
∑
j∈M

aijxj ≥ 1, ∀i ∈ C.

xi ∈ {0, 1}, i ∈ C,

where aij indicates if the characteristic i is covered by the method j, and the variable

xj = 1 if the method j is selected, xj = 0 otherwise.

This ILP model is used to verify the correctness of the FPT–Algorithm, as well as to

validate the performance of the method.

5.5.2 Results

Table 5.1 shows the optimal solution sizes and runtimes for FPT–Algorithm solver and

CPlex, for each instance. The name of the instance indicate the number of methods,

followed by the probability of a characteristic to be covered by a method, in percents.

The optimal solution sizes (number of methods returned) are equal for all instances,

indicating the correctness of the FPT–Algorithm.

Both, the CPlex solver for the ILP model, and the FTP–Algorithm are efficient,

obtaining the result in less than 0.01 seconds in all cases. The CPlex solver is mostly

faster, but the small computational times even for big instances make the difference in

time negligable for applications.

For the instance obtained from the survey described in Chapter 4, and detailed in

Table 4.2, the FPT–Algorithm returned the methods: 12, 19 and the CPlex returned

the methods: 12, 18. The solution returned by the FPT–Algorithm contains the method

19 that covers a superset of the characteristics covered by the method 18 in the CPlex

solution, showing that FPT–Algorithm performs better using this additional comparison

criterion.

5.5 Computational Experiments 53

Table 5.1: Experiment Results

Instance Runtime Optimal Solution Runtime Optimal Solution

FPT–Algorithm FPT–Algorithm CPlex CPlex

Instance_20_2 0.00031 No solution 0.00013 No solution

Instance_20_5 0.00016 No solution 0.00013 No solution

Instance_20_10 0.00031 5 0.00013 5

Instance_20_20 0.00047 3 0.00011 3

Instance_20_50 0.00062 2 0.00011 2

Instance_50_1 0.00016 No solution 0.00011 No solution

Instance_50_2 0.00016 No solution 0.00011 No solution

Instance_50_5 0.00016 5 0.00011 5

Instance_50_10 0.00031 5 0.00013 5

Instance_50_20 0.00110 2 0.00014 2

Instance_50_50 0.00094 2 0.00013 2

Instance_100_1 0.00094 No solution 0.00009 No solution

Instance_100_2 0.00047 No solution 0.00013 No solution

Instance_100_5 0.00062 5 0.00014 5

Instance_100_10 0.00094 2 0.00016 2

Instance_100_20 0.00125 3 0.00013 3

Instance_100_50 0.00110 2 0.00019 2

Instance_200_1 0.00063 7 0.00014 7

Instance_200_2 0.00078 8 0.00019 8

Instance_200_5 0.00078 4 0.00013 4

Instance_200_10 0.00344 3 0.00013 3

Instance_200_20 0.00188 2 0.00014 2

Instance_200_50 0.00094 1 0.00014 1

Instance_500_1 0.00141 8 0.00016 8

Instance_500_2 0.00156 5 0.00016 5

Instance_500_5 0.00312 4 0.00014 4

Instance_500_10 0.00359 3 0.00014 3

Instance_500_20 0.00469 2 0.00014 2

Instance_500_50 0.00234 1 0.00016 1

Instance_1000_1 0.00344 7 0.00016 7

Instance_1000_2 0.00281 4 0.00017 4

Instance_1000_5 0.00531 3 0.00016 3

Instance_1000_10 0.00766 3 0.00017 3

Instance_1000_20 0.00578 2 0.00016 2

Instance_1000_50 0.00500 1 0.00014 1

5.6 Discussion 54

5.6 Discussion

For illustrative purposes, the described example was based on the initial results of an

expert survey (analyzed in Chapter 4). This initial configuration is out of the scope of

applications in industry, since companies could use a configuration based on a set of V&V

methods that they use, or on their own expert beliefs. This initial configuration may be

considered as a reference and starting point to be refined to the convenience of companies

or users.

From a practical point of view, companies might decide to complement the optimal

solution provided by the algorithm by applying additional V&V methods that cover simi-

lar quality characteristics (e.g., aiming at finding additional defects and further enhancing

product quality), in particular for critical projects. However, using this approach at least

they would know the minimum set of methods to consider in order to properly address

the quality characteristics that are relevant for the product to be developed.

On the other hand, the specialists on software engineering economics might argue

that the solution providing the smallest number of V&V methods is not considering the

cost of applying each method. However, to address this issue is needed to know the

relative cost among the V&V methods and this information is extremely context specific

and hard to generalize. This is considered a limitation that could be addressed more

thoroughly in future work. A possible solution to handle this problem when using the

described approach could be the elimination of methods that are cost-limiting in the initial

configuration.

5.7 Conclusions

The proposed FPT–Algorithm promises to be effective, being able to provide the optimal

combination (smallest number) of V&V methods properly covering a set of chosen quality

characteristics to be considered when developing a software product. Additionally, it is

more efficient than brute-force or exhaustive search algorithms and its execution time

properties match the particularities of the problem well. Indeed, the algorithm can be

applied to instances of different sizes, making the approach scalable, i.e., suitable for larger

case studies (for instance, considering more V&V methods).

It is noteworthy also that none of the related work cited in the Chapters 1 and 2 has

implemented something similar to this proposal, since is focus on covering all set of quality

5.7 Conclusions 55

characteristics with few methods, thus obtaining a general and optimal combination of

V&V methods. While applying all available methods represents a solution, this option

might not be applicable due to cost constraints.

Chapter 6

Concluding Remarks

6.1 Conclusions

For the study of literature and related works a systematic mapping was performed. 49

relevant papers with approaches that combine V&V methods were found. In most of

them, the type of V&V methods to combine were identified. This systematic mapping

classified the papers founded by empirical study, research and approach of combinations

they used. The main search technique applied, snowballing, proved to be effective and

the most appropriate for updates of secondary studies.

Whit the survey, an initial set of V&V methods that can be used in software develop-

ment projects to evaluate and guarantee quality with respect to quality characteristics of

the ISO 25010 standard was identified. A survey for the characterization of those V&V

methods in relation to the quality characteristics was planned and executed using opinions

of experts. The results of the survey are essential for the identification of “best” V&V

methods that address a set of quality characteristics.

The problem of finding best-quality combination of V&V methods as the SCP, a NP-

hard combinatorial optimization problem was modeled. A parameterized FPT–Algorithm

that is specially designed for the instances presented was defined, since typically the

number of considered characteristics is small. The proposed algorithm is able to provide

the optimal combination (smallest number) of V&V methods properly covering a set

of chosen quality characteristics to be considered when developing a software product.

Additionally, is showed that it is more efficient than brute-force or exhaustive search

algorithms in terms of expertise and maintainability. Furthermore, the algorithm can

be applied to instances of different sizes, making the approach scalable, i.e., suitable for

6.2 Contributions 57

larger case studies (for instance, considering more V&V methods).

For all the above mentioned, it can be concluded that the present work fulfilled its

main goal and the specific objectives, developing an efficient approach for the optimal

combination of V&V methods.

6.2 Contributions

• The answers to the survey allow to obtain the first concrete evidence about the

relationship between methods and quality characteristics. The initial configuration

that organizations can take as a starting point to be adapted to its context and the

type of project.

• A FPT-Algorithm was implemented, the first of its type to solve the SCP using

the principles of parameterized complexity, being scalable, maintainable and expert

than the others brute-force or exhaustive search algorithms.

• The systematic mapping could be considered a guide for future secondary studies

of this type in the academic, since it provides a protocol, meticulously detailed and

explained step by step, which can be applied to any context. Highlights the value

of the snowballing technique to reduce efforts when update of a secondary study is

carrying out.

6.3 Future Work

As future work concerns to consider the use of the application costs of the methods, as well

as to extend the initial set of methods with the suggestions proposed by the experts. Also,

tool support could be provided to, given to set V&V methods, quality characteristics and

an initial configuration (starting from the results of the survey and refining it according

to the context and type of project in which the approach will be applied), provide the

optimal combination of V&V methods. Apply the approach to different study cases.

References

[1] Aggarwal, A.; Jalote, P. Integrating static and dynamic analysis for detecting
vulnerabilities. In 30th Annual International Computer Software and Applications
Conference (COMPSAC’06) (2006), vol. 1, pp. 343–350.

[2] Anderson, P. The use and limitations of static-analysis tools to improve software
quality. CrossTalk-Journal of Defense Software Engineering 21 (06 2008).

[3] Andersson, C.; Thelin, T.; Runeson, P.; Dzamashvili, N. An experimental
evaluation of inspection and testing for detection of design faults. In 2003 Interna-
tional Symposium on Empirical Software Engineering, 2003. ISESE 2003. Proceed-
ings. (2003), pp. 174–184.

[4] Anger, F. D.; Rodriguez, R. V.; Young, M. Combining static and dynamic
analysis of concurrent programs. In Proceedings 1994 International Conference on
Software Maintenance (1994), pp. 89–98.

[5] Antunes, N.; Vieira, M. Comparing the effectiveness of penetration testing and
static code analysis on the detection of sql injection vulnerabilities in web services.
In 2009 15th IEEE Pacific Rim International Symposium on Dependable Computing
(2009), pp. 301–306.

[6] Bartley, M. G.; Galpin, D.; Blackmore, T. A comparison of three verification
techniques: Directed testing, pseudo-random testing and property checking. In Pro-
ceedings of the 39th Annual Design Automation Conference (New York, NY, USA,
2002), DAC ’02, ACM, pp. 819–823.

[7] Basili, V. R.; Selby, R. W. Comparing the effectiveness of software testing
strategies. IEEE Transactions on Software Engineering SE-13, 12 (1987), 1278–1296.

[8] Berling, T.; Thelin, T. An industrial case study of the verification and validation
activities. In Proceedings. 5th International Workshop on Enterprise Networking and
Computing in Healthcare Industry (IEEE Cat. No.03EX717) (2003), pp. 226–238.

[9] Bishop, P.; Bloomfield, R.; Cyra, L. Combining testing and proof to gain high
assurance in software: A case study. In 2013 IEEE 24th International Symposium
on Software Reliability Engineering (ISSRE) (2013), pp. 248–257.

[10] Boehm, B.; Basili, V. R. Software defect reduction top 10 list. Computer 34, 1
(Jan. 2001), 135–137.

[11] Bondi, A. B. Characteristics of scalability and their impact on performance. In
Proceedings of the 2Nd International Workshop on Software and Performance (New
York, NY, USA, 2000), WOSP ’00, ACM, pp. 195–203.

References 59

[12] Bourque, P.; Fairley, R. E. SWEBOK: Guide to the Software Engineering Body
of Knowledge, version 3.0 ed. IEEE Computer Society, Alamitos, CA, 2014.

[13] Bozena Poksinska, Jens Jorn Dahlgaard, M. A. The state of iso 9000 certifi-
cation: a study of swedish organizations. The TQM Magazine 14, 5 (2002), 297–306.

[14] Braione, P.; Denaro, G.; Pezzè, M. On the integration of software testing and
formal analysis. In Empirical Software Engineering and Verification: International
Summer Schools, LASER 2008-2010, Elba Island, Italy, Revised Tutorial Lectures
(Berlin, Heidelberg, 2012), B. Meyer and M. Nordio, Eds., Springer Berlin Heidelberg,
pp. 158–193.

[15] Brat, G.; Drusinsky, D.; Giannakopoulou, D.; Goldberg, A.; Havelund,
K.; Lowry, M.; Pasareanu, C.; Venet, A.; Visser, W.; Washington, R. Ex-
perimental evaluation of verification and validation tools on martian rover software.
Formal Methods in System Design 25, 2 (Sep 2004), 167–198.

[16] Brereton, P.; Kitchenham, B. A.; Budgen, D.; Turner, M.; Khalil, M.
Lessons from applying the systematic literature review process within the software
engineering domain. J. Syst. Softw. 80, 4 (Apr. 2007), 571–583.

[17] C. Wohlin, P. Runesson, M. H. M. O. B. R. A. W. Introduction to Experimen-
tation in Software Engineering. Kluwer Academic Publishers, Boston, MA, 2000.

[18] Chang, T.-F.; Danylyzsn, A.; Norimatsu, S.; Rivera, J.; Shepard, D.; Lat-
tanze, A.; Tomayko, J. ldquo;continuous verification rdquo; in mission critical
software development. In Proceedings of the Thirtieth Hawaii International Confer-
ence on System Sciences (1997), vol. 5, pp. 273–284 vol.5.

[19] Chen, Q.; Wang, L.; Yang, Z. Heat: An integrated static and dynamic approach
for thread escape analysis. In 2009 33rd Annual IEEE International Computer Soft-
ware and Applications Conference (2009), vol. 1, pp. 142–147.

[20] Chen, Q.; Wang, L.; Yang, Z.; Stoller, S. D. Have: Detecting atomicity
violations via integrated dynamic and static analysis. In Fundamental Approaches to
Software Engineering (Berlin, Heidelberg, 2009), M. Chechik and M. Wirsing, Eds.,
Springer Berlin Heidelberg, pp. 425–439.

[21] Chen, Y.; Liu, S.; Wong, W. E. A method combining review and testing for veri-
fying software systems. In 2008 International Conference on BioMedical Engineering
and Informatics (2008), vol. 2, pp. 827–831.

[22] Cotroneo, D.; Pietrantuono, R.; Russo, S. A learning-based method for
combining testing techniques. In 2013 35th International Conference on Software
Engineering (ICSE) (2013), pp. 142–151.

[23] Downey, R. G.; Fellows, M. R. Parameterized complexity, Monographs in Com-
puter Science. Springer, 1999.

[24] Duke, E. L. V&v of flight and mission-critical software. IEEE Software 6, 3 (1989),
39–45.

References 60

[25] Dunsmore, A.; Roper, M.; Wood, M. Further investigations into the develop-
ment and evaluation of reading techniques for object-oriented code inspection. In
Proceedings of the 24th International Conference on Software Engineering (2002),
ICSE ’02, ACM, pp. 47–57.

[26] Dwyer, M. B.; Elbaum, S. Unifying verification and validation techniques: Relat-
ing behavior and properties through partial evidence. In Proceedings of the FSE/SDP
Workshop on Future of Software Engineering Research (New York, NY, USA, 2010),
FoSER ’10, ACM, pp. 93–98.

[27] Elberzhager, F.; MÃ¼nch, J.; Nha, V. T. N. A systematic mapping study on
the combination of static and dynamic quality assurance techniques. Information
and Software Technology 54, 1 (2012), 1 – 15.

[28] Elberzhager, F.; Rosbach, A.; Bauer, T. An integrated analysis and testing
methodology to support model-based quality assurance. In Software Quality. Model-
Based Approaches for Advanced Software and Systems Engineering (Cham, 2014),
Springer International Publishing, pp. 135–154.

[29] Endres, A.; Rombach, H. D. A handbook of software and systems engineering:
empirical observations, laws and theories. Harlow, England ; New York : Pear-
son/Addison Wesley, 2003.

[30] Felderer, M.; Auer, F. Software quality assurance during implementation: Re-
sults of a survey in software houses from germany, austria and switzerland. In
Software Quality. Complexity and Challenges of Software Engineering in Emerging
Technologies - 9th International Conference, SWQD 2017, Vienna, Austria, January
17-20, 2017, Proceedings (2017), pp. 87–102.

[31] Feldt, R.; Torkar, R.; Ahmad, E.; Raza, B. Challenges with software veri-
fication and validation activities in the space industry. In 2010 Third International
Conference on Software Testing, Verification and Validation (2010), pp. 225–234.

[32] Felizardo, K. R.; Mendes, E.; Kalinowski, M.; Souza, E. F.; Vijaykumar,
N. L. Using forward snowballing to update systematic reviews in software engineer-
ing. In Proceedings of the 10th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (New York, NY, USA, 2016), ESEM ’16,
ACM, pp. 53:1–53:6.

[33] Flum, J.; Grohe, M. Parameterized complexity theory. Springer, 2006.

[34] Gleirscher, M.; Golubitskiy, D.; Irlbeck, M.; Wagner, S. Introduction of
static quality analysis in small and medium-sized software enterprises: Experiences
from technology transfer. CoRR abs/1611.07560 (2016).

[35] Gopinathan, M.; Nori, A.; Rajamani, S. Combining tests and proofs. In
Proceedings of the 2Nd International Conference on Verified Software: Theories,
Tools, Experiments (Berlin, Heidelberg, 2008), VSTTE ’08, Springer-Verlag, pp. 4–
5.

References 61

[36] Gopinathan, M.; Rajamani, S. K. Enforcing object protocols by combining
static and runtime analysis. In Proceedings of the 23rd ACM SIGPLAN Conference
on Object-oriented Programming Systems Languages and Applications (New York,
NY, USA, 2008), OOPSLA ’08, ACM, pp. 245–260.

[37] Gotterbarn, D.; Miller, K.; Rogerson, S.; Barber, S.; Barnes, P.; Burn-
stein, I.; Davis, M.; El-Kadi, A.; Fairweather, N.; Fulghum, M.; Jayaram,
N.; Jeweth, T.; Kanko, M.; Kallman, E.; Langford, D.; Little, J.; Mech-
ler, E.; Norman, M.; Phillips, D.; Prinzivalli, P.; Sullivan, P.; Weckert,
J.; Weil, V.; Weisband, S.; Werth, L. Software engineering code of ethics and
professional practice. Science and Engineering Ethics 7, 2 (2001), 231–238.

[38] Gupta, A.; Jalote, P. Test inspected unit or inspect unit tested code? In
First International Symposium on Empirical Software Engineering and Measurement
(ESEM 2007) (2007), pp. 51–60.

[39] Ian, S. Software Engineering, 9th edition ed. Addison Wesley, University of St
Andrews, Scotland, 2011.

[40] ISO. International organization for standardization. Official site: https://www.
iso.org/standards.html.

[41] ISO25010. Software product quality, 2011. Official site: http://iso25000.com/
index.php/en/iso-25000-standards/iso-25010.

[42] Itkonen, J.; Mäntylä, M. V. Are test cases needed? replicated comparison
between exploratory and test-case-based software testing. Empirical Software Engi-
neering 19, 2 (Apr 2014), 303–342.

[43] Juristo, N.; Vegas, S. Functional testing, structural testing and code reading:
What fault type do they each detect? In Empirical Methods and Studies in Software
Engineering: Experiences from ESERNET (Berlin, Heidelberg, 2003), R. Conradi
and A. I. Wang, Eds., Springer Berlin Heidelberg, pp. 208–232.

[44] Juristo, N.; Vegas, S.; Solari, M.; Abrahao, S.; Ramos, I. Comparing the
effectiveness of equivalence partitioning, branch testing and code reading by stepwise
abstraction applied by subjects. In 2012 IEEE Fifth International Conference on
Software Testing, Verification and Validation (2012), pp. 330–339.

[45] Jürjens, J.; Reiß, D.; Trachtenherz, D. Model-based quality assurance of
automotive software. In Model Driven Engineering Languages and Systems (Berlin,
Heidelberg, 2008), Springer Berlin Heidelberg, pp. 858–873.

[46] Kalinowski, M.; Mendes, E.; Travassos, G. H. An industry ready defect
causal analysis approach exploring bayesian networks. In Software Quality. Model-
Based Approaches for Advanced Software and Systems Engineering (Cham, 2014),
D. Winkler, S. Biffl, and J. Bergsmann, Eds., Springer International Publishing,
pp. 12–33.

[47] Kalinowski, M.; Travassos, G. H. Ispis: From conception towards industry
readiness. In Chilean Society of Computer Science, 2007. SCCC ’07. XXVI Interna-
tional Conference of the (2007), pp. 132–141.

References 62

[48] Kamsties, E.; Lott, C. M. An empirical evaluation of three defect-detection tech-
niques. In Software Engineering — ESEC ’95 (Berlin, Heidelberg, 1995), W. Schafer
and P. Botella, Eds., Springer Berlin Heidelberg, pp. 362–383.

[49] Karp, R. M. Reducibility among combinatorial problems. In Complexity of Com-
puter Computations: Proceedings of a symposium on the Complexity of Computer
Computations, held March 20–22, 1972, at the IBM Thomas J. Watson Research
Center, Yorktown Heights, New York, and sponsored by the Office of Naval Research,
Mathematics Program, IBM World Trade Corporation, and the IBM Research Math-
ematical Sciences Department (Boston, MA, 1972), R. E. Miller, J. W. Thatcher,
and J. D. Bohlinger, Eds., Springer US, pp. 85–103.

[50] Kitchenham, B. A. Guidelines for performing Systematic Literature Reviews in
software engineering (version 2.3). Technical Report, EBSE Technical Report EBSE-
200701,Keele University and Durham University, 2007.

[51] L. A. Franz, J. C. S. Estimating the value of inspections and early testing for
software projects. Hewlett-Packard Journals (12 1994).

[52] Laitenberger, O. Studying the effects of code inspection and structural test-
ing on software quality. In Proceedings Ninth International Symposium on Software
Reliability Engineering (Cat. No.98TB100257) (1998), pp. 237–246.

[53] Laudon, K.; Traver, C. E-commerce: Business, Technology, Society. Stanford
University, 2008.

[54] Linaker, J., S. S. M. M. d. M. R. . H. M. Guidelines for conducting surveys in
software engineering. Research Portal of Lund University (2015).

[55] Littlewood, B.; Popov, P. T.; Strigini, L.; Shryane, N. Modeling the
effects of combining diverse software fault detection techniques. IEEE Transactions
on Software Engineering 26, 12 (2000), 1157–1167.

[56] Liu, S. Integrating specification-based review and testing for detecting errors in
programs. In Formal Methods and Software Engineering (Berlin, Heidelberg, 2007),
M. Butler, M. G. Hinchey, and M. M. Larrondo-Petrie, Eds., Springer Berlin Heidel-
berg, pp. 136–150.

[57] Liu, S.; Tamai, T.; Nakajima, S. Integration of formal specification, review, and
testing for software component quality assurance. In Proceedings of the 2009 ACM
Symposium on Applied Computing (New York, NY, USA, 2009), SAC ’09, ACM,
pp. 415–421.

[58] Lubell, D. A short proof of sperner’s lemma. In Classic Papers in Combinatorics
(Boston, MA, 1987), I. Gessel and G.-C. Rota, Eds., Birkhäuser Boston, pp. 402–402.

[59] Mouchawrab, S.; Briand, L. C.; Labiche, Y. Assessing, comparing, and com-
bining statechart- based testing and structural testing: An experiment. In First In-
ternational Symposium on Empirical Software Engineering and Measurement (ESEM
2007) (2007), pp. 41–50.

References 63

[60] Myers, G. J. A controlled experiment in program testing and code walk-
throughs/inspections. Commun. ACM 21, 9 (Sept. 1978), 760–768.

[61] Myers, G. J.; Sandler, C.; Badgett, T. The art of software testing. John
Wiley & Sons, Hoboken, N.J., 2012.

[62] Niedermeier, R. Invitation to ?xed-parameter algorithms. Oxford University Press,
2006.

[63] Olorisade, B. K.; Vegas, S.; Juristo, N. Determining the effectiveness of
three software evaluation techniques through informal aggregation. Information and
Software Technology 55, 9 (2013), 1590 – 1601.

[64] Roper, M.; Wood, M.; Miller, J. An empirical evaluation of defect detection
techniques. Information and Software Technology 39, 11 (1997), 763 – 775. Evaluation
and Assessment in Software Engineering.

[65] Runeson, P.; Andersson, C.; Thelin, T.; Andrews, A.; Berling, T. What
do we know about defect detection methods? [software testing]. IEEE Software 23,
3 (2006), 82–90.

[66] Runeson, P.; Andrews, A. Detection or isolation of defects? an experimental
comparison of unit testing and code inspection. In 14th International Symposium on
Software Reliability Engineering, 2003. ISSRE 2003. (2003), pp. 3–13.

[67] Runeson, P.; Stefik, A.; Andrews, A.; Gronblom, S.; Porres, I.; Siebert,
S. A comparative analysis of three replicated experiments comparing inspection and
unit testing. In 2011 Second International Workshop on Replication in Empirical
Software Engineering Research (2011), pp. 35–42.

[68] Santos, V.; Souza, U. Uma introdução à complexidade parametrizada. Anais da
34 Jornada de Atualização em Informática, CSBC 2015 (2015), 232–273.

[69] Shull, F.; Carver, J.; Travassos, G. H. An empirical methodology for intro-
ducing software processes. SIGSOFT Softw. Eng. Notes 26, 5 (Sept. 2001), 288–296.

[70] Solari, M.; Matalonga, S. A controlled experiment to explore potentially unde-
tectable defects for testing techniques. In Proceedings of the International Conference
on Software Engineering and Knowledge Engineering, SEKE (07 2014), vol. 2014.

[71] Sup, S. S.; Deok, C. S.; J., S. T.; Rae, K. Y. An empirical evaluation of six
methods to detect faults in software. Software Testing, Verification and Reliability
12, 3 (2002), 155–171.

[72] Torchiano, M.; Fernández, D. M.; Travassos, G. H.; de Mello, R. M.
Lessons learnt in conducting survey research. In Proceedings of the 5th International
Workshop on Conducting Empirical Studies in Industry (Piscataway, NJ, USA, 2017),
CESI ’17, IEEE Press, pp. 33–39.

[73] Umar, F. S.; S.M.K., Q.; Nesar, A. A replicated empirical study to evaluate
software testing methods. Journal of Software: Evolution and Process 29, 9 (2017),
e1883.

References 64

[74] Wagner, S. Software Product Quality Control. Springer, 2013.

[75] Wagner, S.; Jurjens, J.; Koller, C.; Trischberger, P. Comparing bug
finding tools with reviews and tests. In Testing of Communicating Systems (Berlin,
Heidelberg, 2005), F. Khendek and R. Dssouli, Eds., Springer Berlin Heidelberg,
pp. 40–55.

[76] Wiegers, K. E. Peer Reviews in Software: A Practical Guide. Addison-Wesley
Longman Publishing Co., Inc. Boston, MA, USA, 2002.

[77] Wieringa, R.; Maiden, N.; Mead, N.; Rolland, C. Requirements engineering
paper classification and evaluation criteria: A proposal and a discussion. Requir.
Eng. 11, 1 (2005), 102–107.

[78] Wood, M.; Roper, M.; Brooks, A.; Miller, J. Comparing and combining
software defect detection techniques: A replicated empirical study. In Software En-
gineering — ESEC/FSE’97 (Berlin, Heidelberg, 1997), M. Jazayeri and H. Schauer,
Eds., Springer Berlin Heidelberg, pp. 262–277.

[79] Yin, Y.; Li, Y.; Deng, S.; Jian, W. Verifying consistency of web services behavior.
In Proceedings of the 3rd IEEE Asia-Pacific Services Computing Conference, APSCC
(Yilan, Taiwan, 12 2008), IEEE Asia-Pacific Services, pp. 1308–1314.

[80] Zimmerman, D. M.; Kiniry, J. R. A verification-centric software development
process for java. In 2009 Ninth International Conference on Quality Software (2009),
pp. 76–85.

65

APPENDIX A -- Expert survey: V&V Methods and
Quality Attributes.

We have selected some software Verification and Validation (V&V) methods and would

like to have an initial understanding on how suitable they are to address different quality

attributes. Based on your expertise you have been selected to help us gathering such

initial understanding providing answers to two direct questions listed below. Answering

the questionnaire will take around 20 minutes and your answers will be extremely valuable

for our investigation.

At the end of the questionnaire, we provide a Glossary of terms as supporting docu-

mentation, which briefly describes each of the quality attributes and the V&V methods.

In case of any further questions regarding this survey, please refer to Isela Mendoza

(imendozadecgmail.com – M.Sc. Student) or Marcos Kalinowski (kalinowskiinf.puc-rio.br

– Advisor).

Note: Individual data will be anonymized and the information will only be used for

purposes related to the research.

Name (optional):

Appendix A -- Expert survey: V&V Methods and Quality Attributes. 66

Appendix A -- Expert survey: V&V Methods and Quality Attributes. 67

