
UNIVERSIDADE FEDERAL FLUMINENSE

SIDNEY ARAUJO MELO

Detecting long-range cause-and-effect relationships in
game provenance graphs with graph-based

representation learning

NITERÓI

2019

UNIVERSIDADE FEDERAL FLUMINENSE

SIDNEY ARAUJO MELO

Detecting long-range cause-and-effect relationships in
game provenance graphs with graph-based

representation learning

Dissertação de Mestrado apresentada ao Pro-
grama de Pós-Graduação em Computação da
Universidade Federal Fluminense como req-
uisito parcial para a obtenção do Grau de
Mestre em Computação. Área de concen-
tração: Computação Visual

Orientador:
Prof. Dr. Esteban Walter Gonzalez Clua

Co-orientador:
Profa. Dra. Aline Marins Paes Carvalho

NITERÓI

2019

Ficha catalográfica automática - SDC/BEE
Gerada com informações fornecidas pelo autor

Bibliotecária responsável: Fabiana Menezes Santos da Silva - CRB7/5274

M528d Melo, Sidney Araujo
 Detecting long-range cause-and-effect relationships in game
provenance graphs with graph-based representation learning /
Sidney Araujo Melo ; Esteban Walter Gonzalez Clua, orientador
; Aline Marins Paes Carvalho, coorientadora. Niterói, 2019.
 76 f. : il.

 Dissertação (mestrado)-Universidade Federal Fluminense,
Niterói, 2019.

DOI: http://dx.doi.org/10.22409/PGC.2019.m.04639694300

 1. Aprendizado de máquina. 2. Jogo eletrônico. 3. Grafo.
4. Produção intelectual. I. Walter Gonzalez Clua, Esteban,
orientador. II. Marins Paes Carvalho, Aline, coorientadora.
III. Universidade Federal Fluminense. Escola de Engenharia.
IV. Título.

 CDD -

SIDNEY ARAUJO MELO

Detecting long-range CauSe-and-effect relationships in game provenance graphs with

graph-based representation leaming

Dissertapあde Mestrado apresentada ao Pro-

grana de P6s-Graduacao em Computapあda

Universidade Fもderal Flu皿inense como req-

uisito parcial para a obtenc急o do Grau de

Mestre em Computapao. Årea de concen-

trapfb: ComputapあVisual

BANCA EXAMINADORA

Aprovada em Fbvereiro de 2019.

Prof. Dr. ES紗in Walter Gonzalez Clua - Orientador, UFF

講繁務e岬
Prof. Dr. Leo壷do Gresta Paulino Murta, UFF

Niter6i

2019

"Sarani mukou e! PLUS ULTRA!!"

Kohei Horikoshi

À minha futura esposa, Raquel Azevedo, e aos meus pais, José Ribamar e Angela

Zulmira.

Agradecimentos

Primeiramente, aos meus pais, José Ribamar e Angela Zulmira, e à minha irmã Cindy

Anne, pelo apoio incomensurável em todas as escolhas, etapas, quedas e jornadas da

minha vida. Devo todas as minhas conquistas essencialmente a vocês.

À Raquel Azevedo, minha futura esposa, pelo amor inesgotável e carinho acalentador

que me faz enxergar o mundo com um pouco mais de leveza, pela força emprestada nos

momentos mais difíceis dessa etapa que se finda, pelo companheirismo e cumplicidade

ímpar e, claro, por compartilhar dos melhores hobbies.

Aos meus orientadores Esteban Clua e Aline Paes por terem me guiado habilmente

durante a pesquisa que culmina nessa dissertação. Tenho gratidão e orgulho pela confiança

depositada em mim, principalmente na reta final dessa etapa. Muito obrigado!

Às famílias Azevedo e Pinheiro por terem me acolhido tão bem, em especial às amadas

avós que ganhei: Lourdinha e Zezé.

Ao meu grande amigo Daniel Geovane, pela ajuda sincera e compreensão cirúrgica em

todos os momentos.

Aos amigos Lô, Pedro e Yuri pela amizade primordial para meu apreço por essas

terras fluminenses. Obrigado por me mostrarem que não se demora em achar pessoas

maravilhosas.

Aos amigos da República 49: Nick, Beto, Anderson, Fábio, Beer, Douglas e Heron e

Ivan pelos muitos papos, rolês, churrascos, jogatinas, risadas e bagunças.

Aos amigos que fiz no IC, em especial, Ashey, Ícaro, Maira, Felipe, Márcio, Daniel,

Paulo, Danilo, Matheus e Léo.

Aos amigos da AMAGames, dos RPGs, de bandas e de outros núcleos que, apesar da

distância, continuam fazendo parte da minha vida.

A todos os amigos e colegas que me apoiaram de alguma forma nessa longa caminhada.

Resumo

Game Analytics compreende um conjunto de técnicas para analisar tanto a qualidade
de um jogo quanto o comportamento do jogador, a fim de aperfeiçoar a experiência do
jogador e/ou dar suporte a decisões de game design. Para obter sucesso em tal tarefa, é
essencial identificar o que acontece em um jogo (um efeito) e rastrear suas causas. Assim,
ferramentas para construir e manipular dados de proveniência de jogos têm sido propostas
para capturar relações de causa e efeito durante sessões de jogo para auxiliar o processo
de game design, organizando esses dados em grafos de proveniência. No entanto, como
a extração de dados de proveniência é guiada por um conjunto de regras pré-definidas
estritas estabelecidas pelos desenvolvedores do jogo, a detecção de relações de causa e
efeito de longo alcance pode exigir um grande esforço de codificação. Nesse trabalho,
apresentamos um framework chamado PingUMiL que aproveita os recentemente propos-
tos embeddings de grafos para representar grafos de proveniência em um espaço vetorial
latente. Os embeddings aprendidos com os dados são utilizados como atributos de uma
tarefa de aprendizado de máquina concebida para detecção de relações de causa e efeito
de longo alcance. A avaliação do PingUMiL é realizada por meio de comparações de
performance contra métodos clássicos de aprendizado de máquina utilizando as métricas
de avaliação precisão, recall e f1. Além disso, a capacidade de generalização do PingU-
MiL é testada através de testes de desempenho conduzidos a partir de dados extraídos
de grafos de proveniência de jogos de corrida. Os experimentos conduzidos em dois jo-
gos de corrida mostram que (1) o PingUMiL supera a aplicação de métodos clássicos de
Aprendizado de Máquina cujos atributos são apenas aqueles obtidos diretamente a partir
dos atributos do jogo (ao invés de endereçar a estrutura do grafo), (2) o aprendizado de
representações pode ser usado para inferir relações de causa e efeito de longo alcance em
grafos de proveniência de jogos não observados e (3) o PingUMiL melhora a detecção de
alguns tipos de arestas usando grafos de diferentes jogos do mesmo gênero.

Palavras-chave: Grafo de proveniência, Game Analytics, Aprendizado de representação,
Aprendizado de máquina, Embeddings de grafos.

Abstract

Game analytics comprises a set of techniques to analyze both the game quality and the
player behavior in order to improve player experience and/or support game design deci-
sions. To succeed on that, it is essential to identify what is happening in a game (an effect)
and track its causes. Thus, game provenance data extraction and manipulation tools have
been proposed to capture cause-and-effect relationships occurring in a gameplay session
to assist the game design process, organizing this data as provenance graphs. However,
since game provenance data extraction is guided by a set of strict predefined rules estab-
lished by the game developers, the detection of long-range cause-and-effect relationships
may demand huge coding efforts. In this paper, we contribute with a framework named
PingUMiL that leverages the recently proposed graph embeddings to represent the prove-
nance graphs in a latent vector space. The embeddings learned from the data pose as the
features of a machine learning task tailored towards detecting long-range cause-and-effect
relationships. Evaluation of PingUMiL is realized by comparing its performance against
classical machine learning methods in terms of precision, recall and f1-score metrics. Also,
PingUMiL’s generalization capability is tested through performance tests conducted from
data extracted of two racing games provenance graphs. The experiments conducted on
these two racing games show that (1) PingUMiL outperforms application of classical ma-
chine learning methods whose attributes are only the ones directly obtained from game
attributes (instead of addressing graph structure), (2) representation learning can be
used to infer long-range cause-and-effect relationships in unobserved game data prove-
nance graphs and (3) PingUMiL enhances detection of some edge types using graphs
from different games of the same genre.

Keywords: Provenance graph, Game Analytics, Representation learning, Machine learn-
ing, Graph embeddings.

List of Figures

1.1 A Venn diagram showing and relating AI technologies. [25] 2

2.1 First step of PinGU implementation: instantiate Core provenance classes. . 8

2.2 Second step of PinGU implementation: attach ExtractProvenance prove-

nance classes. 9

2.3 Fourth step of PinGU implementation: create domain-specific provenance

tracking functions. 11

2.4 Example of function for adding game-related attributes to a provenance

node. 12

2.5 Example of function for generating influences. 13

2.6 Fifth step of PinGU implementation: provenance export function attached

to an event. 13

2.7 Racing game provenance graph example. 14

2.8 Provenance graph elements example. 15

2.9 Visual illustration of the GraphSAGE sample and aggregate approach[28].

Source: http://snap.stanford.edu/graphsage 18

4.1 Overview of the proposed framework. 26

4.2 Example of a game Y’s graph during the preprocessing step. 33

4.3 Example of a game Y’s graph during inference application step. 36

5.1 Racing games screenshots. 39

5.2 Flying → Crash edges examples. 40

5.3 Overall classification results per edge type in CT graphs. 48

5.4 Overall classification results per edge type in AC graphs. 51

5.5 Overall classification results per edge type in CTAC experiment setting. . . 55

List of Tables

5.1 Total number of CT’s positive and negative examples. 41

5.2 Total number of AC’s positive and negative examples. 41

5.3 Total number of edge examples for both CT and AC. 42

5.4 Averaged time (seconds) duration of CT’s embedding generation step. . . . 45

5.5 Averaged time (seconds) duration of CT’s classifier training per fold. 45

5.6 Averaged results of CT classifiers in a 7-fold cross-validation setting. 45

5.7 Averaged performance results per edge for CT. 46

5.8 Averaged time (seconds) duration of AC’s embedding generation step. . . . 48

5.9 Averaged time (seconds) duration of AC’s classifier training per fold. 48

5.10 Averaged results of AC classifiers in a 4-fold cross-validation setting. 49

5.11 Averaged performance results per edge for AC. 50

5.12 Averaged time (seconds) duration of CTAC’s embedding generation step. . 51

5.13 Averaged time (seconds) duration of CTAC’s classifier training per fold. . . 52

5.14 Mean averaged results of the generalization experiments. 52

5.15 Averaged performance results per edge for CTAC. 53

List of Abbreviations and Acronyms

AC : Arcade Car;

BinG : Balance in Games;

CT : Car Tutorial;

FN : False Negative;

FP : False Positive;

GCN : Graph Convolutional Networks;

GLA : Gaming Learning Analytics;

GNN : Graph Neural Networks;

GraphSAGE : Graph Sample and Aggregate;

HMM : Hidden Markov Models;

LSTM : Long Short-Term Memory;

MLP : Multi-Layer Perceptron;

MMOG : Massively Multiplayer Online Game;

MOBA : Multiplayer Online Battle Arena;

NPC : Non-Playable Characters;

OPM : Open Provenance Model;

PinG : Provenance in Games;

PinGU : Provenance in Games for Unity;

PPI : Protein-protein interaction;

POS : Part-of-Speech;

SGD : Stochastic Gradient Descent;

SVM : Support Vector Machine;

TN : True Negative;

TP : True Positive;

Contents

1 Introduction 1

1.1 Motivation . 3

1.2 Objectives . 4

1.3 Methodology . 5

1.4 Thesis Organization . 5

2 Theoretical Background 7

2.1 Provenance in games . 7

2.2 Graph representation learning . 15

2.2.1 GraphSAGE . 17

2.3 Final considerations . 20

3 Related Work 22

3.1 Machine Learning in Game Analytics . 22

3.2 Machine Learning in Graphs . 24

3.3 Final considerations . 25

4 PingUMiL: A framework for completing game provenance based on graph-based

representation learning 26

4.1 Example of a scenario for using PinGUMiL 27

4.2 Graph capture . 28

4.3 Preprocessing . 28

Graph definition . 28

Contents xi

4.4 Embedding generation . 33

4.5 Classifier training . 34

4.6 Inference Application . 35

4.7 Final considerations . 37

5 Experimental Results 38

5.1 Case Study . 38

5.1.1 Graph capture . 39

5.1.2 Preprocessing . 40

5.1.3 Embedding generation . 42

5.1.4 Classifier training . 42

5.2 Results . 43

5.2.1 Car Tutorial . 45

5.2.2 Arcade Car . 47

5.2.3 Generalization among racing games 51

5.3 Threats to Validity . 54

6 Conclusions 56

References 58

Chapter 1

Introduction

A game metric is a quantitative measure of one or more attributes of one or more objects

that operate in the context of games[18]. Due to the expansion of the game industry and

the higher complexity that games have achieved in the past years, game metrics have

become a popular, if not essential, tool to support game design and game development.

The main idea behind the use of game metrics is to form a basis for analysis using variables

and features recorded during game sessions to support decision-making during both the

game design and game development[18]. For example, a game metric that measures the

mean completion time of a puzzle could be used to determine how hard a puzzle is and

where in the game it should appear. However, there is no standard terminology widely

accepted to perform in game analytics[18].

Nonetheless, acquiring understandable game metrics is essential to enhance a data-

driven game design. This kind of information can be useful for many purposes, such as

game balancing[4][69], players behavior understanding[47][66], detection of failures in the

game design[76][27], or even enhancing in-game monetizing strategies[21][68].

However, to obtain such metrics, it is necessary to track and remotely gather data

from the game sessions, a task known as game telemetry[18]. Thus, game telemetry holds

the pillars to intrinsically understand the player’s behavior, instead of only relying on

feedback that not always retains the true beliefs and motivations of the player [6]. There

are different strategies for gathering and storing data collected from games, ranging from

raw logs to structured formats such as graphs[72][70]. Particularly, by using a structured,

relational representation one can naturally handle objects, entities, characters, their prop-

erties and their relationships in a game. With that in mind, provenance graphs, a causality

graph that records historic data about objects and their relations, have been proposed

for Game Analytics tasks and were recently successfully adapted to record game session

1 Introduction 2

history while still denoting the elements of the game and the causal relationships between

them [35][38][41][40]. However, there are still few initiatives to discover information and

pattern from the data extracted from game provenance, which could bring insights into

the process of game design and game development.

Figure 1.1: A Venn diagram showing and relating AI technologies. [25]

Pattern recognition and information discovery are examples of tasks commonly real-

ized by a plethora of Machine learning techniques[53][51][3][14]. However, the performance

of machine learning methods is heavily dependent on the choice of data representation

(or features) on which they are applied[8]. For this reason, representation learning, i.e.,

learning representations of the data that make it easier to extract useful information in

machine learning tasks, has become a field in itself in the machine learning community[8].

Recent advances in the Deep Learning field takes advantage of the internal representation

learning performed by deep architectures during whichever task it is trying to solve. As

Goodfellow et. al[25] points out, feedforward networks perform representation learning,

where the last layer works as a linear classifier and the rest of the network learns to

provide a representation to this classifier. Training with a criterion naturally leads to

the representation at every hidden layer taking on properties that make the classification

task easier[25]. Figure 1.1 shows AI technologies and its relations. Recently, represen-

tation learning for structured data (including graphs) has become popular and several

techniques have been proposed to generate data representations more suitable for down-

stream machine learning tasks. In this work, we propose a machine learning framework

for provenance graphs based on graph representation learning techniques and evaluate the

capabilities of the proposed framework.

1.1 Motivation 3

1.1 Motivation

Due to its structured representation of game sessions, that is, an annotated causality graph

where nodes represent game entities and their respective attributes, and edges represents

the causal relationship between these game entities and its attributes, game provenance

graphs are a very rich data source. In the context of game provenance, all cause-and-

effect relationships in game provenance graphs are materialized as edges. This edges, on

their turn, represents the influence between game elements. Existing game provenance

solutions[41] improve the extraction and structured representation of game sessions, sub-

serving further game analysis. This includes, for example, the automatic extraction and

representation of direct influence between elements, which are depicted through edges

connecting sequential nodes in the provenance graph. Direct influence edges are used to

represent cause-and-effect relationships of sequential events or states. Still, there is also

a need for domain-specific provenance tracking functions implementation, since different

games might have different mechanics. Because of that, these domain-specific functions

are implemented by the game developer. One of the needs for domain-specific functions is

indirect influences, i.e., a causal relation between non-consecutive events, which represents

a long-range cause-and-effect relationship. An example of indirect influence is the influ-

ence between jumping and landing. After jumping, it doesn’t matter how many events

happen before landing, the landing event happens due to the jumping action. However,

functions that track indirect influences might grow in complexity if developers need to

detect indirect influences, that is, if they need to identify the influence between nodes in-

stantiated along distant timestamps and/or with large path distances. Other difficulties

may arise when influences are defined by large sets of rules, conditions or formulas. For

example, determining if a player’s movement is influenced by a suddenly appearing enemy

would have to take into account several variables, such as their positions, orientations,

previous and actual movement directions, speed, etc, or assign threat levels regarding all

the involved entities attributes. Furthermore, there might still exist important influences

not foreseen by the game developer, making difficult their extraction and evidence even

in a structured representation such as a provenance graph.

Until now, these difficulties have remained unexplored and no improvements have been

proposed regarding indirect influence detection in game provenance graphs. In this work,

we propose a framework that uses a recent graph-based representation learning techniques

called GraphSAGE [29] in order to detect indirect influence edges and improve game

provenance data extraction. Graph representation-learning methods induce a mapping

1.2 Objectives 4

that embeds nodes, edges, or entire (sub)graphs, as points in a low-dimensional vector

space[29], which can, therefore, be fed to a downstream machine learning method for

tasks such as classification, regression or clustering[3]. By using our framework, the game

developer/analyst benefits from automatically detecting edges to complete provenance

graphs in at least two scenarios: (i) within a game that lacks some edges, for example, in

case of graphs captured with older provenance extraction functions or with older versions

of the game, or (ii) the game designer or developer did not realize influences which, in

their turn, were not captured during game sessions. Even though in this work we focus

on automatically finding indirect influence edges, detection of other types of edges may

also be accomplished by the framework with minor modifications.

PingUMiL leverages graph structure and the context in which nodes are inserted in

the edge detection task, i.e., given a game object node v, its learned representation will

take into account its neighborhood, which comprises v’s previous and next (if applicable)

feature information, as well as feature information of any other game object with which v is

connected to. On the other hand, classical machine learning algorithms are limited to the

use of node raw features, that is, only the attribute values attached to the node, ignoring

the context in which it is inserted. We assume that the context of a node contains relevant

information for influence detection and conduct in order to validate this assumption.

1.2 Objectives

The main objective of this work is to develop a framework for detecting long-range cause-

and-effect relationships by leveraging methods of representation learning in game prove-

nance graphs. The framework is called PingUMiL. The secondary objectives are:

1. to propose a conceptual framework for Machine Learning tasks in game provenance

graphs based on representation learning and graph embeddings;

2. evaluate if graph representation learning improves the detection of influence edges

compared to classical machine learning techniques with raw features;

3. evaluate if the framework achieves generalization capability that allows inferring

long-range relationships in unobserved but similar provenance graphs.

1.3 Methodology 5

1.3 Methodology

We develop a conceptual framework for long-range cause-and-effect edges that uses prove-

nance graphs as inputs, employs graph-based representation learning techniques to gen-

erate node embeddings for graph nodes and a machine learning library for downstream

tasks, in this case, edge detection. Therefore, we investigate both game provenance ex-

traction tools and graph-based representation learning techniques. Thus, we build the

conceptual framework containing all steps necessary to perform edge detection, taking

into account data transformations required for coupling each framework component into

another.

After conceptualizing the framework, we implement PingUMiL around a chosen graph-

based representation learning approach and implement scripts that conduct provenance

graph input data throughout the framework. In our case, we choose GraphSAGE, a graph

representation learning framework that uses neighborhood aggregation architectures for

node embedding. We validate our framework with two racing game prototypes. The

reasons behinds that are: (1) game provenance data recording was already applied to a

racing game prototype in previous researchs, and (2) racing games tend to generate graphs

with mostly homogeneous nodes, since game elements (in this case, cars) have mostly the

same features.

We evaluate the benefits of our graph-based framework by comparing its performance

in terms of quality metrics (precision, recall, f1 score) against feeding classical machine

learning methods with raw features extracted from the provenance of two racing games.

Also, we take advantage of the similarities between both case studies to investigate the

generalization capacity of the proposed framework, by transferring the model learned from

one game to another.

1.4 Thesis Organization

The remaining of this work is organized as follows: Chapter 2 presents some background

about Provenance in Games and Machine Learning on graphs. Chapter 3 presents related

work, discussing recent applications of Machine Learning techniques in the game analyt-

ics context and Machine learning techniques for graph-structured problems. Chapter 4

presents our framework proposal. Chapter 5 shows two case studies over racing games,

explaining in detail how the framework was applied to them, followed by analysis and

1.4 Thesis Organization 6

discussion of experimental results. Finally, Chapter 6 concludes this work, pointing out

contributions, limitations and future works.

Chapter 2

Theoretical Background

This chapter presents two fundamental topics for understanding PingUMiL: Provenance in

games and Learning graphs embeddings. In section 2.1, provenance in the game context is

defined, followed by a review on previous game provenance works and a discussion on the

weak and strong points in the game provenance extraction process. Section 2.2 overviews

recent advances in graph representation learning and presents key concepts regarding this

topic.

2.1 Provenance in games

Provenance is well understood in the context of art and digital libraries, where it respec-

tively refers to the documented history of an art object, or the documentation of processes

in a digital object’s life cycle[35]. According to the Open Provenance Model (OPM)[52],

provenance of objects is represented by an annotated causality graph, which is a directed

acyclic graph enriched with annotation capturing further information pertaining to exe-

cution.

The adoption of data provenance in the context of games was first proposed by Ko-

hwalter et al. in the PinG (Provenance in Games) framework[35]. The authors define

a mapping between game elements and each type of node of a provenance graph. Sum-

marizing the proposed mapping, one can say that players, enemies and Non-Playable

Characters (NPCs) are mapped as Agent nodes; items, weapons, potions, static obsta-

cles or any other object used in the game are mapped as Entity nodes; and actions and

events such as attacking, jumping or interacting with an item are mapped as Activity

nodes. Causal relationships between game elements are mapped into edges connecting

their respective nodes, resulting in a game data provenance graph.

2.1 Provenance in games 8

The PinG framework was implemented in [39] as a domain-dependant prototype and,

later, in [41] as a generic framework for the Unity game engine called Provenance in

Games for Unity (PinGU). The PinGU plugin is a domain-independent and low-coupling

solution, written in UnityScript (a version of JavaScript used by Unity) that provides

easier provenance extraction, requiring minimal coding in the game’s existing components

[40].

PinGU can be easily integrated into a game by following five steps: instantiate Core

provenance classes, attach provenance extraction classes, identify actions and interactions,

domain-specific provenance tracking function implementation, provenance export[41].

The first step is to instantiate Core provenance classes that act as a centralizing server

for provenance information[41]. In Unity, that step is completed by creating a game

object with two attached components: ProvenanceController, responsible for creating

both vertices and edges as well as linking them, and InfluenceController, responsible

for managing the cause-and-effect relationships (influence edges), dealing with possible

influences and passing them to the Provenance Controller when they materialize in the

game[41]. Figure 2.1 shows a Unity game object with the two Core provenance classes

instantiated.

Figure 2.1: First step of PinGU implementation: instantiate Core provenance classes.

The second step is to attach provenance extraction classes to each character or entity

in the game and link them to the game object created in the first step[41]. The class

ExtractProvenance actually creates provenance vertices for the attached game entity and

2.1 Provenance in games 9

passes it to the ProvenanceController. Figure 2.2 shows a Unity game object named Car,

the player’s avatar in a racing game. For conciseness sake, the Car game object is the

only entity in the game that we want to track. Therefore, an ExtractProvenance class is

attached to the Car game object.

Figure 2.2: Second step of PinGU implementation: attach ExtractProvenance provenance
classes.

The third step is to define relevant actions and interaction among actions. This is

a conceptual step closely related to game design and the intended game analytics task.

In this step, game developers identify existing classes that contain the actions that they

want to track[41]. Let’s assume that, in our Car game object example, we want to track

actions such as Driving, ChangingGear, Crash, LostControl, Flying (whenever the car is

not touching the ground), Landing (when it touches the ground after the Flying action),

etc. This is a conceptual step, therefore, the definition of these actions completes the

third step for our example.

The fourth step is creating the domain-specific provenance tracking functions and at-

2.1 Provenance in games 10

taching it to each entity in the game that has the ExtractProvenance module[41]. For each

action defined in the third step, a provenance function must be implemented. However,

these functions follow a four-step recipe:

• Add game-related attributes (e.g., health points, experience points, speed, etc.).

Class ExtractProvenance provides a function AddAttribute to add desired attributes

to node attributes.

• Create the appropriate node using functions NewActivityVertex, NewAgentVertex

or NewEntityVertex.

• Check for influences. In this step, it is verified whether there is any influence that

can affect the current action. This is achieved by using a tag HasInfluence, which

groups a collection of influences that has something in common, or by an influence

ID HasInfluence_ID.

• Generate influence. In this step, influences are created using the GenerateInflu-

ence function. Also, influences can be created with restrictions such as expiration

time leading to the suffix E (i.e., GenerateInfluenceE), the number of times used

leading to the C (consuming) suffix (i.e., GenerateInfluenceC) or both (GenerateIn-

fluenceCE). There is also the missable influence, which represents something that

should have happened. Functions for missable influences are GenerateInfluenceM,

GenerateInfluenceMC, GenerateInfluenceMCE [41].

For conciseness sake, we take as example the Flying action. The Flying action is

realized whenever the car loses contact with the ground. This could happen due to high

speed values in ramp-like section of the speedway or after a violent crash. In the fourth

step, we need to create a domain-specific tracking function for the Flying action that

will be called every time the player gets suspended in the air. We name this provenance

function Prov_Flying and its code can be seen in Figure 2.3.

Note that lines 227-230 follows the recipe for a provenance tracking function. In

line 227, game-related attributes are added to current node attributes. The code of the

function Prov_GetPlayerAttributes can be seen in figure 2.4. First, the function assign

values for attributes such as speed, turning rate, velocity, angular velocity, drag vector,

etc. Then, PinGU’s native function AddAttribute is called several times. On each call,

two strings are passed: the first one represents the name of the attribute and the second

represents the value of the attribute. These two strings are attached to the current node

2.1 Provenance in games 11

Figure 2.3: Fourth step of PinGU implementation: create domain-specific provenance
tracking functions.

as an (attribute, value) pair. In line 228, another PinGU native function is called to

create the appropriate vertex type. We are creating the Flying Activity Vertex. In line

229, possible influences affecting the current node state of the game object Player are

checked. If there is any, an edge is created between existing nodes and the current one.

In line 230, the method FlyInfluence is called. This method is shown in Figure 2.5.

Three influences are generated by FlyInfluence. First, an influence with an expiration

time of 2 seconds of type Flying (Crash) for future Crash nodes. That is, an influence

edge will be generated if a Crash node is created during the time span of 2 seconds from

the creation of the current node. The ProvInfluence function for the first line internally

calls a GenerateInfluenceE function. Second, a consumable influence of type Landing for

future Landing nodes. The intuition behind this influence is that if the player is flying,

sooner or later, it will land. Whenever that happens, a Landing node will be created

and an edge between the last Flying node will connect them. The third influence is very

similar to the first one, except it is a LostControl (Crash) influence for future LostControl

nodes.

The fifth and final step is to create a function that exports the graphs and use an

event as a trigger. Whenever the event occurs, the ProvenanceController will save the

current graph to an external xml file[41]. Figure 2.6 shows a Unity game object with an

ExportCollider script. This game object is instantiated in the scene so that every time the

player completes a lap, it triggers the provenance export function Prov_Export, which, in

its turn, saves the provenance graph to an external xml file.

2.1 Provenance in games 12

Figure 2.4: Example of function for adding game-related attributes to a provenance node.

Once these five steps are completed, every gameplay session of the game will be

recorded according to all the implemented tracking functions and exported as an xml file

containing its respective provenance graph. After a provenance graph is exported, it could

be visualized in the Prov Viewer tool[37]. Prov Viewer is a graph based visualization tools

which has been developed for post-game session analysis.

One of the most prominent advantages of provenance graphs is its richness of detail,

i.e. the data collected at fine-grain. The Figure 2.7 presents an example of a racing

game provenance graph and its components. The graph is plotted using the player node’s

coordinates X and Z within the game space so that it is possible to have a general view

of the race course and, for that specific scenario, follow the player trajectory and other

events by traversing the graph. It is important to notice that in the scenario presented in

2.1 Provenance in games 13

Figure 2.5: Example of function for generating influences.

Figure 2.6: Fifth step of PinGU implementation: provenance export function attached to
an event.

Figure 2.7, a single lap has generated 140 nodes and more than 700 edges in less than a

two-minute gameplay session.

In Figure 2.8(a), it is possible to observe all the attributes of a car controlled by the

player during the Driving activity. While PinGU implements several methods to facilitate

provenance capture, game developers must write domain-specific provenance tracking

functions and attaching it to each entity in the game [40]. Therefore, the amount of

data gathered in a single node depends on the developer’s design and his analytic choices.

In summary, the implementation of the data extraction algorithms and the events

happening within a game session directly influence the amount of generated data[40]. In

addition, this rich and raw provenance data can also be used for machine learning tasks,

to describe hidden patterns, aid the game maintenance and help in future developments.

These are the main assumptions of this research.

Figure 2.8(b) presents a sequence of activity nodes connected by edges which represent

the causal relationship between these activities. For example, the presented sequence

could be interpreted as "the player crashed due to its high speed while using the hand

brake" by observing the sequence of ChangedGear, HandBrake, ReleasedHandBrake and

Crash activity nodes and their speed attribute values, which quickly increases between

2.1 Provenance in games 14

Figure 2.7: Racing game provenance graph example.

the last two nodes of the sequence.

Edges, in their turn, are extracted according to its influence range. Direct influence

edges, i.e. edges connecting nodes sequentially are automatically extracted by PinGU.

Indirect influence edges, similarly to node attributes extraction, are extracted through

domain-specific provenance tracking functions. These indirect influences are provided by

the game designer which, in turn, guides these functions implementation.

The amount of data gathered during a game session to be included in a game prove-

nance graph implies in huge time and manual efforts to the game analysis process. More-

over, much effort has also to be put by the game developer and the game designer when

implementing or adapting domain-specific provenance extraction algorithms, besides, the

possibility of not preconceiving all the types of influences. Thus, we leverage recent ad-

vances of machine learning techniques acting on graph-structured data to suggest their

use to detect long-range influences as a first attempt to enhance and automate game

2.2 Graph representation learning 15

(a) Provenance node and attributes example. (b) Provenance edge example.

Figure 2.8: Provenance graph elements example.

provenance data extraction.

2.2 Graph representation learning

Graphs are a fundamental data structure in computer science[19]. Real-world data com-

monly containing relationships (hierarchy, interactions, geometry) between entities are

often represented as graphs: social networks[73], molecular structures[46], web data[1],

etc. In these domains, each object is represented as a node, and the relation between

these objects are modeled as edges.

Recently, efforts to employ graph-structured data in machine learning tasks have

gained attention[61][56][55][26][12][28]. Most machine learning applications seek to make

predictions, discover new patterns or classify nodes by transforming graph-structured data

into feature information [43][67][29].

Many graph representation learning methods have been proposed in order to incorpo-

rate information about the structure of the graph[56][71][33][28]. The idea behind these

representation learning approaches is to learn a mapping that embeds nodes, or entire

(sub)graphs, as points in a low-dimensional vector space, Rd. The goal is to optimize this

2.2 Graph representation learning 16

mapping so that geometric relationships in this learned space reflect the structure of the

original graph[29]. Vector representations resulting from mapping nodes into the learned

space are called node embeddings. These node embeddings, on their turn, can be fed to

downstream machine learning tasks such as classification, clustering, etc.

Hamilton et al. also points out that various node embedding methods rely on the four

components below[29]:

• A pairwise proximity function, which measures how closely two connected nodes

are.

• An encoder function, which generates node embeddings.

• A decoder function, which reconstructs pairwise proximity values from the generated

embeddings.

• A loss function, which determines the quality of the pairwise reconstructions in

order to train the model.

Earliest methods such as the Laplacian Eigenmap [7], HOPE [55], DeepWalk [56],

node2vec [26] generate vector representations for each node independently. These meth-

ods, which can be categorized as direct encoding methods [29], rely on matrix factorization

approaches for dimensionality reduction [7] (Laplacian Eigenmaps, HOPE) or on random

walk statistics (DeepWalk, node2vec). However, these methods do not consider node

attributes during the encoding. This is a major drawback since node attributes can be

highly relevant to a node’s representation.

Thus, convolutional approaches have been proposed to solve this problem. In general,

these approaches generate a node embedding iteratively. At the first step, the node embed-

ding is initialized with the node’s features. At each iteration, the nodes aggregate their

neighbors’ embeddings, generating new embeddings. These approaches determine the

node embedding according to its surrounding neighborhood attributes. Therefore, these

methods are also called neighborhood aggregation methods. Examples of these methods

are Graph Convolutional Networks (GCN) [33], Column Networks [57] and GraphSAGE

[28]. Still, these methods have been proposed for homogeneous, non-layered graphs and

graphs in which proximity is more relevant to embeddings than the structural role of the

nodes. Very recently, extensions and solutions have been proposed for handling these

limitations[17][75][58].

2.2 Graph representation learning 17

According to the complexity of the domain, a graph might contain several types of

nodes and edges and also data pertinent to each of its components. Therefore, graphs

not only capture structural data but also allow this structured data to be very rich in

features. In a number of real-world problems, such as the ones handling drug structures,

graphs may have multiple types of nodes, multiples types of edges and features attached

to each type of node or edge. This is also the case of the game provenance graphs we

tackle here.

Chang et al. present a solution for graphs with different types of nodes by using

different encoders for each type of node and pairwise decoders for each pair of node

types[13]. This approach is also employed by Schlichtkrull et al[?].

Another relevant topic to the representation learning is the Graph Neural Networks

(GNN). Closely related to the neighborhood aggregation methods, feature aggregation

and subgraph embedding are achieved through recurrent neural network layers built over

the graph structure. The method proposed by Scarselli et al[61] relies on the resultant

recurrent neural network with a set of parameters that ensures convergence. Once the

embeddings have converged, they are aggregated for the entire (sub)graph and this ag-

gregated embedding is used for subgraph classification[29].

Li et al.[43] proposes extensions to the GNN by implementing Gated Recurrent

Units[15] and backpropagation through time to improve the GNN. The Gated Neural

Network proposed by Li is capable of outputting intermediate embeddings of subgraphs.

Velickovic et al.[67] presents the Graph Attention Networks, which are based on attention

mechanisms to compute representations. Attention mechanisms allow for dealing with

variably sized inputs, focusing on the most relevant parts of the input to make decisions.

In the graph context, the attention operations are employed only in the neighborhood of

a node.

2.2.1 GraphSAGE

The GraphSAGE (Graph Sample and Aggregate) framework[28], as previously mentioned,

is a convolutional approach for graph representation learning that uses neighborhood

aggregation methods to build up node embeddings. In this subsection, we describe in

details GraphSAGE and its features and justify its choice as graph embedding tool for this

work. We start by explaining its embedding generation process, followed by its parameter

learning function. Finally, we describe GraphSAGE’s aggregator architectures.

2.2 Graph representation learning 18

Figure 2.9: Visual illustration of the GraphSAGE sample and aggregate approach[28].
Source: http://snap.stanford.edu/graphsage

Figure 2.9 illustrates the approach implemented by GraphSAGE. Its main goal is

to learn useful representations by aggregating features from a node’s local neighborhood

iteratively and then use graph-based loss functions to fine-tune weight matrices and ag-

gregation functions’ parameters. This graph-based loss function enforce similarities on

representations of nearby nodes.

Algorithm 1: GraphSAGE embedding generation algorithm
input : Graph G(V,E); input features {xv,∀v ∈ V }; depth K; weight matrices

Wk, ∀k ∈ {1, ..., K}; non-linearity σ; differentiable aggregator functions

AGGREGATEk,∀k ∈ {1, ..., K}; neighborhood function N : v → 2V

output: Vector representations zv,∀v ∈ V
1 h0

v ← xv,∀v ∈ V ;

2 for k = 1..K do

3 for v ∈ V do

4 hkN(v) ← AGGREGATEk
({
hk−1u ,∀u ∈ N(v)

})
;

5 hkv ← σ
(
Wk · CONCAT

(
hk−1v ,hkN(v)

))
;

6 hkv ← hkv/
∥∥hkv∥∥2

,∀v ∈ V ;

7 zv ← hKv ,∀v ∈ V

Algorithm 1 describes the embedding generation process. GraphSAGE’s embedding

generation approach employs K aggregator functions (denoted as AGGREGATEk,∀k ∈
{1, ..., K} in order to aggregate information from node neighbors and a set of weight

matrices Wk,∀k ∈ {1, ..., K} to propagate information between different layers of the

model. For the sake of conciseness, let’s assume that parameters for both aggregator

2.2 Graph representation learning 19

functions and weight matrices are already learned. Line 1 initializes the algorithm by

populating vectors h0
v with input features xv. Lines 2-6 presents the outer loop with

K steps that generate a node representation hk for each step. First, each node v ∈
V aggregates representations of the nodes in its immediate neighborhood sampled by

function N ,
{
hk−1u ,∀u ∈ N(v)

}
into a single vector hkN(v) (Line 4). This aggregation step

depends on the previous iteration of the outer loop, defined in hk−1u , or on the case base

k = 0, defined as the input node features in Line 1. After aggregating the neighborhood of

a node, GraphSAGE concatenates node’s current representation hk−1v with the aggregated

neighborhood vector hkN(v). The concatenated vector is fed through a fully-connected layer

with nonlinear activation function σ, which outputs representations hkv to be used at the

next step of the algorithm. Final representation, obtained after K steps, is output as

zv[28].

In order to learn useful, predictive representation in an unsupervised setting, Graph-

SAGE applies a graph-based loss function to the output representations zu,∀u ∈ V and

tunes the weight matricesWk,∀k ∈ {1, ..., K} and parameters of the aggregator functions

via stochastic gradient descent[28]:

JG(zu) = −log
(
σ
(
z>u zv

))
−Q · Evn∼Pn(v)log

(
σ
(
z>u zvn

))
(2.1)

In equation 2.1, v is a node that co-occurs near u n fixed-length random walk, σ is

the sigmoid function, Pn is a negative sampling distribution and Q defines the number of

negative samples. This function encourages nearby nodes to have similar representations,

while enforcing disparate nodes have different representations[28].

GraphSAGE presents three base aggregator functions: Mean aggregator, LSTM ag-

gregator and Pooling aggregator.

The Mean aggregator takes the elementwise mean of the neighbors’ representations

vectors hk−1u ,∀u ∈ N(v). A GCN aggregator is derived by replacing lines 4 and 5 in

algorithm 1 with the following[28]:

hkv ← σ
(
W ·MEAN

({
hk−1v

}
∪
{
hk−1u ,∀u ∈ N(v)

}))
(2.2)

The LSTM aggregator is based on an LSTM architecture[30]. Since LSTMs process

their inputs in a sequential manner, GraphSAGE’s LSTM aggregator applies LSTMs to

a random permutation of the node’s neighbors[28].

2.3 Final considerations 20

In Pooling aggregators, each neighbor’s vector is independently fed through a fully-

connected neural network, followed by an element-wise pooling operation to aggregate

information across neighbor set[28]. The equation 2.3 shows a max-pooling aggregator,

where max denotes the element-wise max operator and σ is a nonlinear activation func-

tion. GraphSAGE provides both max and mean-pooling aggregators.

AGGREGATEpool
k = max

({
σ
(
Wpoolhkui + b

)
,∀ui ∈ N(v)

})
(2.3)

In this research, we opted for GraphSAGE (Graph Sample and Aggregate) framework

due to the following reasons:

• GraphSAGE is an inductive approach to node embedding generation, which facili-

tates generalization across graphs with the same form of features.

• It comprises an unsupervised setting, which emulates situations where node features

are provided to downstream machine learning applications, as a service or in a static

repository.

• It has multiple aggregator architectures, i.e., functions defined for aggregating node

embeddings according to its sampled neighborhood.

It is also worth mentioning that GraphSAGE achieved state-of-the-art performance on

node classification tasks on the Web of Science citation and a Reddit posts datasets[28].

Also, the performance of unsupervised GraphSAGE is reasonably competitive with the

fully supervised version, indicating that GraphSAGE can achieve strong performance

without task-specific fine-tuning[28].

2.3 Final considerations

In this chapter, we defined provenance in games, presented how provenance graphs were

conceptualized and implemented in the context of games and discussed relevant char-

acteristics on both provenance graphs, specially its huge amount of detailed data and

the difficulty on implementing indirect edges extraction algorithms. Then, we introduced

graph representation learning and reviewed several approachs and techniques that lever-

age graph structure and permit graphs to be fed to downstream machine learning tasks.

We also presented the GraphSAGE framework, the convolutional graph representation

2.3 Final considerations 21

learning tool employed in PingUMiL. In the next chapter, we contextualize the PingU-

MiL in the context of machine learning applied to game analytics and machine learning

applied on graph structured data.

Chapter 3

Related Work

This chapter presents previous works related to our in two contexts. First, some works

relating Machine Learning and Game Analytics are presented in section 3.1 in order to

contextualize PingUMiL among recent Game Analytics research. Following that, sections

3.2 presents works relating Machine Learning and graph-structured problems, in order to

show what kind of tasks and challenges have been attacked and solved by graph-based

machine learning solutions.

3.1 Machine Learning in Game Analytics

Machine Learning in Game Analytics is a recent research area, whose advent is related to

technological advances in cloud computing, machine learning, infrastructures, etc. Recent

works have explored tasks such as procedural generation of content, prediction (recom-

mendation systems, event prediction)[63] and game learning analytics[62][10].

Block et al.[10] presents a procedurally generated content tool called Echo which uses

live and historic match data to detect extraordinary player performances and dynamically

translates interesting data points into audience-facing graphics. Echo compares the per-

formance metrics of each player to thousand of historic, calculating how many percents

of historic performances are exceeded in the game session.

Schubert et al.[62] present a technique for segmenting matches of the Multiplayer

Online Battle Arena (MOBA) game DOTA into spatio-temporally defined components

called encounters. Encounters happen when two or more units (avatars controlled by

players) from opposing teams are in range to affect each other. Encounter dynamics are

modeled as graphs where each node represent a unit and edges connects closely positioned

3.1 Machine Learning in Game Analytics 23

units. Then, encounters are defined as a sequence of situations in time and space involving

the same units. Metrics such as unit values, defeated units and resources earned per team

are captured during these encounters. Using an algorithm to extract encounters while

parsing through replay files and encounter-based analysis, it was possible to break down

complex dynamics into manageable components and train a logistic regression classifier

to predict the outcome of an encounter based on its initial conditions.

In [63], Tamassia et al. investigate player retention prediction in the Massively Multi-

player Online Game (MMOG) Destiny using Hidden Markov Models (HMM). Sequences

of weeks are labeled according to the total playtime of a player and features such as mean

lifespan, kill/death ratio and absence are used to predict if a player is about to churn, i.e.

leave the game indefinitely and discontinue to be a costumer.

Freire et al.[24] combines the educational goals of Learning Analytics and tools and

technologies from Game Analytics into Gaming Learning Analytics (GLA) and defines a

conceptual model of the tasks required to analyze players interactions in serious games.

The main objective of GLA is to improve the practical applicability of serious games.

Recently, Kickmeier[32] combined learning performance metrics and log files from serious

games to predict learning performances in serious games.

Regarding game provenance data, most recent works have combined provenance with

data mining and logical programming. In [36], Kohwalter et al. proposed similarity

collapse algorithms based on the DBSCAN algorithm[20], a classic clustering algorithm,

in order to filter sequential information that has similar values or represents the same

states inside a provenance graph. In [22], Figueira et al. present BinG (Balance in

Games), a framework to collect and process game provenance information to produce

parameters for game dynamic balancing. BinG transforms gathered data into facts and

rules in a logical programming paradigm, which are used by a Balancing Model in order

to improve game experience.

The aforementioned works use game analytics to comprehend events occurring during

a game session and use machine learning for tasks such as prediction and performance

improvement related to the game session itself. On the other hand, the present dis-

sertation is an attempt to support and improve a game analytics process (in this case,

Provenance in Games[35]) regarding causal relationships between game components using

machine learning. To the best of our knowledge, there are no works directly related to the

framework proposed in this paper. Also, PingUMiL could support previously mentioned

examples by providing node embeddings as alternative inputs that take into account both

3.2 Machine Learning in Graphs 24

node features and the context in which the node is inserted.

3.2 Machine Learning in Graphs

The most common machine learning tasks in the graph domain are clustering, node clas-

sification, and link (edge) prediction. Most recent solutions have proposed the use of node

embeddings for these tasks. Also, applications related to graphs and machine learning be-

longs to a wide range of domain, such as computational social science and computational

biology[29].

One example of clustering for graphs is aforementioned similarity collapse clustering

in [36]. In [23] several applications are presented for clustering tasks in domains such as

biological and social networks. For example, in [59], a hierarchical clustering technique is

employed to detect clusters of proteins involved in the process leading microorganisms to a

filamentous form. In [56], DeepWalk is used on Zachary’s Karate network[73] to generate

node embeddings which, in their turn, are used to detect communities. Rosvall and

Bergstrom used a clustering technique based on compressing random walks information

of a citation graph of over 6000 scientific journals to derive a map of science[60].

Node classification is perhaps the most common task for graph-structured problems.

In most cases, a node classification task is a form of semi-supervised learning, where la-

bels are only available for a small proportion of nodes, with the goal being to label the

full graph based only on this small initial seed set[29]. In [26], node embeddings are

employed on multi-label classification tasks in the following datasets: Blog Catalog[74], a

network of social relationships of bloggers where labels represent blogger interests; Protein-

Protein Interactions (PPI)[11], a PPI network in which nodes contained protein informa-

tion and labels are obtained from hallmark gene sets[44] and represent biological states;

and Wikipedia[48], a co-occurrence network of words appearing in the first million bytes

of the Wikipedia dumb, where labels represent Part-of-Speech (POS) tags[65]. Similar

tasks are also presented in [33][56][64][67].

Link prediction is the task whose goal is to predict missing edges or edges that are

likely to form in the future[5]. In [9], Berg et al. propose a graph auto-encoder framework

based on differentiable message passing on the bipartite interaction graph, a user-item

graph relating users and movie ratings. Applications of this task share several domains

with node classification task. For example, Grover et al.[26] also applies link predictions

task in the PPI and Facebook datasets. Similarly, [2] also realizes link prediction in the

3.3 Final considerations 25

PPI dataset. Link prediction is also used in recommender systems. For example, in [42],

a graph kernel-based recommendation framework is proposed for link prediction in a user-

item interaction graph. Another example is presented in [45], where Liu and Kou cast the

“Who Rated What" task as a link prediction problem. The goal of the task is to predict

whether users will review movies in the future. The proposed technique was applied in a

huge Netflix user-item interaction dataset.

The framework presented in this dissertation relies on node embedding generation

techniques, that is, nodes are mapped to a latent vector space. Once embedding gener-

ation is realized, it is possible to use node embeddings for all the previously mentioned

tasks. The PingUMiL experiments described in the present dissertation are similar to the

aforementioned link prediction examples. Yet, one could use PingUMiL generated node

embeddings for both node classification or clustering.

3.3 Final considerations

In this chapter, we reviewed work relating Machine Learning and Game Analytics, and

Machine Learning and graph-structured problems. Previous works related to game an-

alytics use Machine Learning to improve understading of the game session itself, while

we attempt to support and improve the game analytics process and its products (in this

case, provenance graphs). Works related to graph-structured problems presents the most

frequent Machine Learning tasks for this data structure, including link prediction.

In the next chapter, we introduce, explain in details and discuss the PingUMiL frame-

work, its concepts, steps and components.

Chapter 4

PingUMiL: A framework for completing
game provenance based on graph-based
representation learning

In this chapter we propose a framework for detecting long-range cause-and-effect rela-

tionship by leveraging methods of representation learning in game provenance graphs.

Also, we intend to define a conceptual framework that could be easily adapted for other

Machine Learning tasks. By the end of this chapter, all steps and tools employed by the

framework should be explained in details.

Figure 4.1: Overview of the proposed framework.

The general procedure of the framework proposed in this work, named as PingUMil1

is to induce a latent representation of the edges in a provenance graph so that they

become the examples in a classification task, aiming at inducing a model that discriminates

whether an edge is of a specific type or not. For example, we would like to know whether

or not a given edge example is a long-range influence edge or not.

An overview of PingUMil is shown in Figure 4.1. A set of provenance graphs is the

input to the whole framework. These graphs must be preprocessed due to node hetero-
1https: // github. com/ sidneyaraujomelo/ PingUMiL

4.1 Example of a scenario for using PinGUMiL 27

geneity and the definition of balanced sets of positive and negative example edges for the

downstream classification tasks. After the preprocessing, graphs are fed to an embedding

generation technique which outputs node embeddings. Then, edges from positive and

negative example edge sets are encoded using their connecting nodes’ embeddings. En-

coded edges are finally fed to a classifier training algorithm. The resulting classifier should

be able to detect edges similar to the examples edge sets and generalize this detection

capability to semantically analogous edges in graphs not seen in the training phase.

In section 4.1, we define a guiding example for better explaining our framework. Then,

we divided the proposed framework for detecting edges in four steps, discussed in their

respective sections: graph capture (4.2), pre-processing (4.3), embedding generation (4.4),

classifier training (4.5). Finally, the use of the resulting model is discussed in the section

4.6. Before detailing the steps, we introduce a guiding example that is revisited in each

of the following sections.

4.1 Example of a scenario for using PinGUMiL

In this section, we present an intentionally simplified scenario to illustrate PingUMiL

usage. Let us consider a game development studio X which employs Provenance in Games

for Game Analytics features in their game racing game Y . Game studio X stores every

played game session as a provenance graph. Some time after releasing the game, which

means that X has numerous provenance graphs stored, Bob, a game analytics specialist

from the company X, notices an unforeseen influence between non-consecutive player

actions while watching gameplay videos: most players tended to start drifting whenever

they perceived an "avoidable collision" instead of breaking.

After an in-depth analysis of the graphs, Bob finds no trivial set of rules that determine

this new influence, i.e., the player perception of what defines an "avoidable collision", even

though he can detect it by observing the context in which the influence is realized. Bob

could then start to manually insert new influence edges for all game Y graphs. Another

alternative would be to use a method that, given examples of edges on provenance graphs,

could find the hidden pattern underlying the influence cases observed by Bob. We present

in the following sections a method that aims solving this and similar problems regarding

edge detection.

4.2 Graph capture 28

4.2 Graph capture

The first step of PingUMiL is to capture provenance graphs from the played sessions of

a game. This step can be skipped if there are already captured provenance graphs. If

graph capture is needed, provenance extraction algorithms must be implemented in the

game of interest, using tools such as the PinGU plugin[41]. Then, game sessions must be

played and recorded in order to generate a dataset of provenance graphs.

Regarding the posterior machine learning tasks, it is also necessary to provide posi-

tive and negative examples for training the classifier. Thus, developers should consider

coding some long-range influence edges extraction functions or identify these manually in

generated provenance graphs. These edges will be referred to as positive example edges

from now on.

In our scenario, graph capture is already realized by game studio X as part of their

game analytics process.

4.3 Preprocessing

The preprocessing step is fundamental for both the node/edges embedding generation

and the training of the classifier tasks. In the case of provenance graphs containing long-

range influence edges, these edges must be removed. This is necessary for embedding

generation because the learned node representations must simulate a graph without long-

range indirect edges. Generating node embeddings containing the long-range indirect

edges would encode the same relationships we want to detect and introduce a bias to the

classification task. These removed edges are going to compose the positive example edges

set. In its turn, this set of edges and their connecting node’s attributes are used to define

sample criteria for sampling negative example edges. This step is explained in details as

follows.

Graph definition Consider a graph G = (V,E, Tv). A node v is defined as v ∈ V =

(xv, tv) where xv ∈ Rn(τ(v)) is the node feature vector, τ is a mapping function that maps

node into a type t ∈ Tv and n is a function that maps a type of node t into an integer

that represents the dimension of the type t. Tv =
{
ti ∈ Rdi , i = 1, ..., |Tv|

}
is the set of

node types, where di is the number of dimensions of the type ti. Every dimension of ti
represents a label l ∈ L for node attributes such as "speed", "hp", "damage", etc. In

4.3 Preprocessing 29

summary, nodes have a vector or features and its dimension depends on the type of the

node. Every type t of a node defines a set of labels so that each label corresponds to a

value in the node feature vector. Using this notation, an activity node with attributes

HP = 10 and Speed = 5 and provenance label Running could have, for example, a type

tx = (provenance_type, provenance_label, hp, speed) and xv = (activity, running, 10, 5).

Edges are defined as (v, v′) ∈ V × V . Even though edge types are present in provenance

graphs, they are not inserted in this notation for conciseness sake.

Embedding generation is realized through GraphSAGE [28], which takes as input

graphs with homogeneous nodes, i.e., nodes with the same set of features. Provenance

graphs with heterogeneous nodes must, therefore, be mapped into homogeneous nodes.

That can be achieved by creating a new type t′ = {l | l ∈ ti, i = 1, ..., |Tv|}. A homoge-

neous node is defined as v′ = (xv′ , t
′), where xv′ ∈ R|t′| is composed of the original values

of node feature vector xv, respecting labeling order and default values for previously un-

addressed features. Once all the nodes are homogeneous, any non-numeric attribute must

be mapped into one-hot-vector representations, i.e., a k-dimensional binary vector with

a single ’1’ value, where k is the number of possible values of the non-numeric attribute

and the position of the ’1’ value represents the attribute value.

As mentioned in section 4.2, positive and negative example edges are necessary for

posterior binary classification tasks. Positive examples might be obtained through:

(a) provenance extraction algorithms, in case of easy or relaxed rules for long-range

influence edges,

(b) through an expert’s analysis and identification.

In the first case, captured long-range influences must be removed from the graph. This

step is necessary to make the classifier able to detect long-range edges from the node

embeddings generated using only direct edges. In other words, if the long-range edges are

already part of the graph when the node embeddings are generated, the classifier would

assume from the embeddings that there is nothing left to be linked, as the desired edges

to be induced would be already there. From now on, we refer as G− ⊂ G and E+ ⊂ E

the resulting graph without the long-range edges and the set of positive example edges,

which are exactly the long-range edges, respectively.

Positive example edges are used to determine the sample criteria for negative example

edges in G−. Let Lv be the set of node’s provenance label values, we define edge labels

as Le = li → lj where li, lj ∈ Lv. Thus, we define LE+ as the set of labels from positive

4.3 Preprocessing 30

example edges. This defines the first criteria for acquiring negative example edges, i.e.,

a negative example edge e−i must have an edge label lk ∈ LE+ . Therefore, the set of

negative example edges labels is defined as LE− ⊆ LE+ .

If positive example edges are extracted through provenance extraction algorithms,

one could acquire negative example edges by relaxing the set of rules used for inserting

the positive edges. For example, if a rule for inserting a long-range influence edge is a

maximum difference between node attribute values, a derived negative example sample

criteria could use the double of this maximum difference. On the other hand, if positive

example edges are provided by human analysis of the graph, additional sample criteria

could be, in a similar way, derived from the range of absolute values, differences, average,

etc, of attribute’s values from nodes connected by positive example edges. It’s important

to notice that no edge can be in both positive and negative example sets.

GraphSAGE is fed with graphs in the NetworkX2 format, JSON files mapping node

ids and node classes and a numpy array containing node features (npy file). Node id

files map any domain-dependent node id attribute to an integer id value. For example,

in provenance graphs, node id is a string. Every provenance node id is then assigned

to a unique integer value in the id mapping file. Node class files map the integer id

value of a node to a class value. The node class file is used by GraphSAGE for node

classification-driven embeddings tasks in a supervised setting. Since our work intends to

generate node embeddings in an unsupervised setting, node class file is not relevant to

embedding generation. Finally, node features are stored in numpy arrays files. A stored

numpy array maps a node id to its respective node features.

Since all the data for these files are stored in the provenance graph data structure,

transformation algorithms must be implemented. The provenance graph data is structured

as an xml file containing nodes and edges. Every node contains several attributes and its

values. Edges contain its connecting nodes ids and pairs of attributes and its values as

well. A tree-traversing based algorithm could be used to visit provenance nodes and store

id, attributes and class values to its respective files and visit provenance edges and build

the graph structure into an instance of a NetworkX graph. Also, GraphSAGE requires

that nodes are divided into training, test and validations sets for the supervised setting,

as well as edges for unsupervised setting.
2https://networkx.github.io/

4.3 Preprocessing 31

Algorithm 2: Provenance to GraphSAGE files conversion algorithm
input : Graph G(V,E), function defineSet :→ {”train”, ”test”, ”val”}
output: NetworkX Graph nx; Id Map id_map; Class Map c_map; features

array f

1 nx = {};

2 id_map = {};

3 c_map = {};

4 f = [[]];

5 for v ∈ V do

6 original_id = GetID(v);

7 id = length(id_map);

8 id_map[id] = original_id;

9 nx.add_node(id);

10 nx[id]["set"] = defineSet();

11 for every element el ∈ v and el is not the ID element do

12 f [id].append(el.value);

13 if el is the class element then

14 c_map[id] = el.value;

15 for e ∈ E do

16 original_source, original_target = getNodesOriginalID(e);

17 source = getMapKey(id_map, original_source);

18 target = getMapKey(id_map, original_target);

19 nx.addEdge(source, target);

20 nx[source,target]["set"] = defineSet();

The pseudocode described in Algorithm 2 covers most requirements to generate Graph-

SAGE required files from a provenance graph. Lines 5-14 traverses node elements. Lines

6-8 maps original node ids (regardless of their type) to a unique integer id. Then, the

node is added to the NetworkX graph instance nx. In line 10, the current node receives an

attribute "set" defined by a function defineSet. Lines 11-14 iterate over elements of the

current node and append their values to the features array. Since the algorithm iterates

over an xml structure, the order in which features are appended to the features array is

always the same and must be ordered according to labels of previously defined type t′.

The last line of this block assigns an element value for the class mapping function. The

class map is not used in the unsupervised setting, therefore, the definition of the class

4.3 Preprocessing 32

element might be ignored. Lines 15-20 traverses edge elements. Connecting node ids are

retrieved on line 16 and mapped back from id_map in lines 17 and 18. After the edge is

added to nx, it also receives a "set" attribute which value is defined by function defineSet.

An example of a defineSet function could randomly divide elements into train, test and

validation using a proportion ratio such as 70%/20%/10%.

In our illustrative scenario, G represents all game Y’s provenance graphs available.

Let the set of node attribute tv =(provenance_type, provenance_label, speed, acceleration,

direction_x, direction_y, direction_z, angularspeed_x, angularspeed_y, angularspeed_z,

timestamp) and the set of node provenance labels types Lv = {driving_straight, turn-

ing_left, turning_right, breaking, crashing, changing_gear, drifting}. Bob may select a

subset of graphs G′ ⊂ G. Bob annotates influence edges for graphs G ∈ G′. These anno-

tated influence edges compose the positive edge example set E+, to which belong edges

with labels LE+={driving_straight → drifting, turning_right → drifting, turning_left →
drifting, changing_gear → drifting, drifting → drifting}. In Figure 4.2, sequential edges

(black) are automatically extracted. Green dashed edges represent influence edges anno-

tated by Bob. Green edges compose the positive edge example set and are not existing

edges in the graph.

Bob implements a method in his favorite programming language that, given all labels

LE+ , pairs of nodes with the same labels are found. Bob annotates edges e′i ∈ E connecting

these pair of nodes if e′i /∈ E+. These second set of annotated edges compose the negative

edge examples set E− ⊂ E. In Figure 4.2, red dashed edges represent negative examples

sampled by Bob’s method. Notice that the red dashed edge connects two nodes whose

labels are similar to a positive example (green dashed edge).

Concerned about the need of employing a neighborhood aggregation approach, Bob

compares some edges from positive and negative edge examples set and finds edges e+k =

(vk1 , vk2) ∈ E+ and e−m = (vm1 , vm2) ∈ E− with very similar values for all attributes tv

in the pair of source nodes (vk1 , vm1) and of target nodes (vk2 , vm2), thus rendering it

difficult to set a trivial rule for differing positive from negative examples and supporting

his decision for a neighborhood aggregation approach. This could be the case of both

example edges of type turning_right → drifting in Figure 4.2. Finally, Bob writes an

algorithm that transforms provenance graphs into files required for GraphSAGE.

4.4 Embedding generation 33

Figure 4.2: Example of a game Y’s graph during the preprocessing step.

4.4 Embedding generation

As aforementioned, embedding generation is realized using the GraphSAGE framework,

which is based on neighborhood aggregation techniques and includes several aggregation

methods based on functions and neural network architectures. An exhausting list of

aggregation methods implemented within GraphSAGE is:

1. Mean-based aggregator: this architecture generates embeddings by taking the element-

wise mean of feature vectors.

2. LSTM-based aggregator: this architecture generates embeddings by feeding a ran-

dom permutation of node’s neighborhood to an LSTM network.

3. Max-pooling aggregator: in this architecture, each neighbor’s feature vector is in-

dependently fed through a fully-connected neural network. Then, an element-wise

max-pooling operation is applied to aggregate information.

4. Mean-pooling aggregator: similar to the previous one, but using an element-wise

mean-pooling operation.

5. GCN-based aggregator: this architecture generates embeddings by feeding node and

its neighbors feature vector into an inductive GCN (Graph Convolutional Network).

Using the unsupervised setting of GraphSAGE with any of the provided methods

above to aggregate the representation of the nodes, we finally have the embeddings that

are going to pose as features to a machine learning classifier. In addition, these embeddings

can be used for other downstream machine learning tasks such as clustering and prediction,

for example.

In our scenario, Bob should generate node embeddings for all nodes v ∈ G′ using

a GraphSAGE aggregation technique of his choice. He chooses to generate embeddings

using the LSTM aggregator and set the number of output dimension to 128. Now, for

4.5 Classifier training 34

each node v ∈ G′ exists a node embedding hv ∈ R128. Bob could also generate node

embeddings using all the aggregation methods and apply some validation technique to

compare the performance of each aggregation method. Yet, for conciseness sake, we

continue our scenario considering only the LSTM aggregator.

4.5 Classifier training

Classification tasks can be realized using several predictive models, such as decision

trees or functions, which in turn can be induced based on optimization algorithms such

as stochastic gradient descent. Nowadays, there is a number of different libraries and

packages available that implement machine learning algorithms, such as Apache Spark’s

MLLib[50], SciKit-Learn[16] and WEKA[31]. Any of these classification tools require in-

put examples in the form of features vectors and their respective labels, which are, in our

binary case, 0 or 1.

Input feature vectors are composed of example edges encoded through their connect-

ing node’s embeddings. In this way, each feature is one of the dimensions of the input

vector, represented in a latent vectorial space. Since generated node embeddings are vec-

tors all with the same dimension, it is possible to generate edge embeddings using a simple

function embed_edge(v1, v2) = f(xv1 , xv2) where v1 and v2 are the connecting nodes of

edge e and f is an operation such as concatenation, element-wise sum or cross product.

Positive examples, representing long-range influence, receive label 1, while negative ex-

amples, which are long-range edges that do not represent an influence relation between

their connecting nodes, receive label 0.

Finally, the training of the classifier is achieved by feeding the input feature vectors

and their classes. The resulting model can then be used to detect the targeted edges in

provenance graphs.

In our scenario, Bob chooses SciKit-Learn for the classifier training step. He must

then encode input feature vectors from E+ and E− by feeding the connecting nodes’

embeddings hv ∈ R128 for each edge ei = (vk, vj) into a embed_edge function of his choice.

He chooses to use a concatenation function, which leads to encoded edges he ∈ R256. After

that, Bob labels each encoded edges as 1, if a positive example, or 0, if a negative example.

Finally, Bob feeds a machine learning algorithm (such as MLP) with input feature vectors

and their labels in order to obtain a model M trained to detect the desired type of edge.

4.6 Inference Application 35

4.6 Inference Application

The resulting model M is trained to detect encoded candidate edges. Given a new graph

Gn that should be enhanced using model M , all its nodes must be embedded using the

same architecture employed in the Embedding generation step. From node embeddings,

candidate edges must be sampled. Then, candidate edges must be encoded using the same

encoding function employed in the Classifier training step. Encoded edges are fed to the

trained model in order to be classified as a target edge or not. If positively classified,

candidate edges are added to the graph. Still, strategies for sampling candidate edges

from this new graph are also needed, otherwise, one should simply test every possible

edge, which is a computationally expensive task.

We list below some advice and strategies about sampling candidate edges for graph

enhancement:

• Trivially, it is not necessary to encode candidate edges using nodes already connected

in graph Gn, because doing so, one would try to detect edges that already exist in

Gn.

• Candidate edges could be encoded by combining nodes whose distance is smaller to

n neighbors, similar to a BFS-search window approach, excluding the ones that are

already connected.

• If a timestamp attribute is available for all nodes, a time window approach could

also be applied. In this approach, candidate edges could be encoded by combining

nodes whose timestamp difference is smaller than a threshold value ts.

• Another approach would be to set node’s label constraints such as those defined

in the pre-processing step, i.e., candidate edges must connect nodes with label se-

quences contained in positive example set’s node label sequences.

• Both search BFS-window, time and label constraint approaches could be applied

simultaneously.

It is worth mentioning that by not using the label constraints approach, the trained

model might classify positively candidate edges with node labels differently from the

ones defined in positive examples. That means, it is possible that the model M infers an

influence between pairs of nodes with label sequence unobserved in the model training. We

name this phenomenon influence discovery. The aggregation approach and deep learning

4.6 Inference Application 36

architectures used in Embedding generation step are believed to be the reason for this

phenomenon.

The aggregation methods aggregate information from sampled neighbors. In other

words, in these methods, a node’s neighborhood affects its resulting embedding. Also, it

is well known that deep learning techniques are capable of learning relevant unforeseen

features and structures from its inputs. Therefore, candidate edges with unobserved

training labels, classified positively by the resulting modelM , could also represent existing

influences between nodes, similar to the ones used in the training step. Evaluation of this

kind of candidate edges could be performed by game analytics and game design experts.

Also, we intend to investigate the use of this framework’s resulting models on unforeseen

influence discovery.

Figure 4.3: Example of a game Y’s graph during inference application step.

In our final scenario example step, Bob generates node embeddings for previous game

4.7 Final considerations 37

Y’s graphs G′′ = G−G′. Bob uses both time search window, with ts=2 seconds, and label

constraint approaches, that is, candidate edges must be of types LE+={driving_straight

→ drifting, turning_right→ drifting, turning_left→ drifting, changing_gear→ drifting,

drifting→ drifting}. He feeds encoded candidate edges from all graphsG′′ toM . In Figure

4.3 we have subgraph from G′′ containing nodes v10 to v16. Sequential edges (colored in

black) are edges automatically extracted. Long-range edges are colored in green and red.

Candidate edges are (v10, v13), (v11, v13), (v13, v16) and (v14, v16). Edge (v11, v14) is not a

possible candidate edge because even though it passes on the time search window, its type

turning_right → changing_gear /∈ LE+ . On the other hand, edge (v10, v16) is also not a

possible candidate edge because even though its type driving_straight→ drifting ∈ LE+ ,

the time difference between these nodes is 2.5s > ts=2. Therefore, model M will only try

to infer long-range influence between candidate edges (v10, v13), (v11, v13), (v13, v16) and

(v14, v16). Model M receives edges encoded using the pair of nodes of each edge. Green

edges represent candidate edges which model M considered as existing influence edges

and should, therefore, be added to the final graph. Red edges represent candidate edges

rejected byM as existing influences. Therefore, the final version of the subgraph in Figure

4.3 would contain black and green edges.

At the end of the process, Bob has a new set of graphs enhanced with new influence

edges. Also, forthcoming graphs can also be processed by the influence edge detector, so

that Bob can resume his game analytic tasks with more complete working material.

4.7 Final considerations

In this chapter, we presented the PingUMiL, a framework for detecting long-range cause-

and-effect relationship by leveraging methods of representation learning in game prove-

nance graphs and explained in details all steps and tools employed by the framework. The

PingUMiL framework is defined by four steps: graph capture, pre-processing, embedding

generation and classifier training. Also, we also explained how a PingUMiL model could

be used in a real world scenario. For better understading of each step, a guiding example

was used to contextualize the framework.

In the next chapter, we present experimental methodology and results, by presenting

a materialization of the PingUMiL framework on two case studies.

Chapter 5

Experimental Results

This chapter presents our experimental methodology and results. Section 5.1 illustrates

our proposal applied in two racing game prototypes, detailing every step of the framework.

After that, the results from experiments realized in order to evaluate research objectives

defined in the Introduction chapter are presented in section 5.2.

5.1 Case Study

Both game prototypes are example stages of racing games in which a single player drives

along a single track. The first game is Car Tutorial Unity (CT)1, presented in Figure

5.1(a), and the second one is Arcade Car Physics (AC)2, presented in Figure 5.1(b). Car

Tutorial Unity (CT) is a free prototype asset for racing games, designed for Unity 3.x, i.e.,

an older version of the game engine. The game is single player, contains only a single track

and uses Unity’s native car physics. Arcade Car Physics (AC) is an open source prototype

implemented in Unity 2018. Like CT, this prototype is single player and has only one

track, even though it provides several objects outside the track, like bridges and ramps,

for simulating physics. However, this prototype presents a significant difference from CT

when it comes to the car game entity’s physics. AC implements several algorithms over

or instead native engine physics, such as Speed Curve, Ackermann Steering and Stabilizer

Bar Forces[49].

Beyond serving as examples for the PinGUMiL framework application, both case

studies are used for evaluating the secondary objectives stated in the introduction. That

is, all graphs, edge sets and models produced by the steps described in the following
1https://assetstore.unity.com/packages/templates/tutorials/car-tutorial-unity-3-x-only-10
2https://github.com/SergeyMakeev/ArcadeCarPhysics

5.1 Case Study 39

(a) Car Tutorial Unity screenshot.
Source: https://answers.unity.com/
questions/582986

(b) Car Arcade Physics screenshot.

Figure 5.1: Racing games screenshots.

sections are used in our Results section(5.2).

5.1.1 Graph capture

The first step is to capture provenance graph from game sessions. The provenance ex-

traction algorithm for CT developed by Kohwalter et al. is used in CT[40] and adapted

with minor changes for AC, mostly due to differences in physics implementation between

both games.

Both games were made available for 4 playtesters, all male, age between 20 and 30

years old, experienced with racing games and considered themselves hardcore gamers. All

instructions given to playtesters were:

• Play the game as much as they wanted.

• Play the game as a racing game, completing at least one lap.

• At the end of the game session, send the output xml file.

For CT, 10 game session graphs were extracted, which in total contain 9194 nodes and

47497 edges. For AC, 3 game session graphs were extracted, which in total contain 4146

nodes and 21397 edges. The number of game sessions per game was influenced solely by

playtesters availability. Notice that 3 AC graphs have almost half the number of nodes

and edges of 10 CT graphs, since the amount of recorded data is proportional to the game

session duration.

5.1 Case Study 40

5.1.2 Preprocessing

Provenance extraction algorithm for CT[40] already implemented long-range influence

edges capture for the following type of edges: Crash → Crash, Crash → LostControl,

Crash→ Scraped, Flying→ Crash, Flying→ Landing, Flying→ LostControl, Flying→
Scraped, HandBrake → LostControl, Scraped → Crash, Scraped → Scraped. Therefore,

the positive examples were automatically extracted and removed from the graph in this

step for both CT and AC.

(a) Positive example. (b) Negative example.

Figure 5.2: Flying → Crash edges examples.

Once the positive example set is defined, it is possible to define the sample criteria for

negative edge examples generation. The first sample criteria is the set of types of positive

examples. In this case, negative examples would necessarily connect two nodes with labels

represented in the positive example set, respecting the node label’s order. For better

understanding, a positive and negative example of Flying → Crash edges are shown in

Figure 5.2. For both examples, the nodes are colored according to the player’s speed value,

i.e. the higher the speed the higher the color saturation. The positive example shown

in Figure 5.2(a) presents an influence edge between nodes 74 (Flying) and 81 (Crash).

In this example, the player flies, lands, and tries to prevent a crash by not accelerating,

which results in a sequence of ChangedGear nodes. Still, he is not able to prevent the

crash. A case of a candidate negative example is shown in Figure 5.2(b). Notice that the

edge between node 115 (Flying) and node 118 (Crash) is a positive example. Node 118

5.1 Case Study 41

(Crash) leads to another Crash node, i.e. node 119. An edge between nodes 115 (Flying)

and 119 (Crash) is a negative example, since Crash in node 119 is a direct consequence

from Crash node 118.

The second criteria is derived from the provenance extraction algorithm. Kohwalter et

al. define a time constraint[40] of two seconds for non-consecutive sequential nodes with

most label sequences defined in the first criteria. We define a relaxed constraint based on

node path distances by using a search window of 10 nodes. Statistics regarding all positive

and negative examples for CT an AC are shown in Tables 5.1 and 5.2 respectively.

Table 5.1: Total number of CT’s positive and negative examples.
Edge Type Positive Examples Negative Examples
Crash → Crash 98 138
Crash → LostControl 16 230
Crash → Scraped 3 150
Flying → Crash 199 266
Flying → Landing 42 507
Flying → LostControl 90 343
Flying → Scraped 1 265
HandBrake → LostControl 62 68
Scraped → Crash 81 78
Scraped → Scraped 2 99
Total 594 2144

Table 5.2: Total number of AC’s positive and negative examples.
Edge Type Positive Examples Negative Examples
Crash → Crash 38 31
Crash → LostControl 11 85
Crash → Scraped 6 127
Flying → Crash 51 125
Flying → Landing 136 278
Flying → LostControl 29 165
Flying → Scraped 8 217
HandBrake → LostControl 4 15
Scraped → Crash 56 38
Scraped → Scraped 11 153
Total 350 1234

Since edge types distribution is unbalanced between negative and positive examples,

both sets are reduced so that every edge type has the same amount of examples in both

positive and negative sets. For this balancing, edges are chosen randomly. Hence, positive

and negative sets will also have the same number of examples. The resulting datasets for

both games are shown in Table 5.3.

5.1 Case Study 42

Table 5.3: Total number of edge examples for both CT and AC.
Edge Type CT Examples AC Examples
Crash → Crash 196 62
Crash → LostControl 32 22
Crash → Scraped 6 12
Flying → Crash 398 102
Flying → Landing 84 272
Flying → LostControl 180 58
Flying → Scraped 2 16
HandBrake → LostControl 124 8
Scraped → Crash 156 76
Scraped → Scraped 4 22
Total 1182 650

5.1.3 Embedding generation

Embedding generation is realized using GraphSAGE on its unsupervised setting. The

default settings were applied for most architectures, except for using 10 epochs, number of

samples in layers 1 and 2 sample_1 = sample_2 = 2 and the number of output dimensions

in the first layer dim_1=256. These settings were observed to reach minimal error during

embedding generation. We generated the embeddings with all available architectures.

Each architecture performance and their resulting embeddings are evaluated and dis-

cussed in section 5.2 through several experiments and simulations.

5.1.4 Classifier training

Classifier training is realized using positive and negative examples sets defined in the

preprocessing step and node embeddings defined on the previous step. We adapted the

node classification evaluation algorithms provided by GraphSAGE so that it takes encoded

edges as inputs and their labels as output. As aforementioned, edges are encoded using

connected node’s embeddings. We used concatenation to encode node embeddings into

edges. After preparing the data for the classifier training, we opted for sci-kit learn [16], a

well known Machine Learning library in python which provides several supervised learning

models based on many well-known solutions (linear models, SVM, Decision Trees and

Neural Networks).

Also, we discuss the performance of classifier models when detecting edges using

embedded data for both AC and CT graphs through several experiments and simulations

in the following section.

5.2 Results 43

5.2 Results

In this section, we describe how PingUMiL corroborates the proposed research objectives

through the experiments performed on case studies described in section 5.1. As a matter

of convenience, the aforementioned research objectives are:

• evaluate if graph representation learning improves the detection of influence edges

compared to classical machine learning techniques with raw features;

• evaluate if the framework achieves generalization capability that allows inferring

indirect influence edges in unobserved but similar provenance graphs.

We test the performance of PingUMiL generated classifier models for AC and CT.

There are three main settings which describe a model: aggregation architecture (used in

embedding generation step), edge encoding function (defined in classifier training step)

and classifier method (defined in inference application step). In our experiments, every

model uses a combination of the following options:

• Aggregation architecture: LSTM, MaxPool, MeanPool, Mean, GCN

• Edge encoding functions: Mult(Elementwise Multiplication) and Cat (Concatena-

tion)

• Classifier method: MLP (multilayer perceptron neural network classifier), SGD

(Stochastic Gradient Descent based classifier), SVM (Support Vector Machine based

classifier).

For example, a model PingUMiL.LSTM + Concat + MLP(100,1) is a model which

relies on the LSTM aggregator for embedding generation, concatenation function for edge

encoding and an MLP neural network whose architecture is described by a tuple (k,n)

where the k represents the number of hidden units per layer and n represents the number

of hidden layers, i.e., MLP(100,1) is an MLP with a single hidden layer with 100 units.

In our experiments, we measure precision, recall and f1-score [54]. Precision represents

how accurate a classifier is regarding their positive predictions and is defined as

Precision =
tp

tp+ fp
,

5.2 Results 44

where tp represents the number of true positives, i.e. positives edges that were classified

correctly and fp represents the false positives, i.e. negative edges that were classified as

positive edges. In the provenance graph context, precision metrics give an insight on the

quality of PingUMiL model’s positively classified example edges.

Recall, in its turn, represents how accurately a classifier reacts to a positive example

and is defined as

Recall =
tp

tp+ fn
,

where fn represents the number of false negatives, i.e. positive edges that were classified

as negative edges. In the provenance graph context, recall metrics determine how often a

PingUMiL model correctly classifies a positive example edge.

Precision, recall and f1-score are measured for both study cases encoded edges in a

stratified k-fold cross-validation setting [34]. That means, encoded edges are split into

k folds. One fold is taken as the test data set while the remaining ones are taken as

the training data set. Then, a model is fit on the training set and evaluated on the test

set. This procedure is realized k times so that every fold is used as test set once. In

our results, we show the average mean of all folds measured metrics. Regarding k-fold

cross-validation of our study cases, CT is divided into 7 folds while AC is divided into 4

folds.

We compare the generated classifiers from PingUMiL against traditional classifica-

tion methods using the raw features and the same classifiers as before (SVM, MLP, and

SGD). We call raw features the attribute values attached to each node in the original

provenance graph, such as speed, acceleration, position, etc. The raw node features were

fed to these methods in order to provide a baseline. The main motivation of this baseline

is to investigate whether the use of embeddings enhance edge detection over raw features

and evaluate the secondary objective 2. We also use these experiments to evaluate sec-

ondary objective 1 since both classical and graph representation approaches are applied

for influence detection.

Finally, we investigate the generalization among case studies by observing the perfor-

mance of a model trained with CT encoded edges and tested with AC encoded edges. We

intend to check whether it is possible to enhance a graph from a game using a previously

trained model from a similar game. This experiment evaluates secondary objective 3. We

also provide a baseline for this experiment using raw node features.

5.2 Results 45

5.2.1 Car Tutorial

As aforementioned, Car Tutorial example edges were split into 7 folds and fed into a

number of different learning settings, leading to more than 60 models. Tables 5.4 and 5.5

presents averaged time duration of embedding generation (for all CT nodes) and some

classifiers’ training step (per fold), respectively. Each combination of fold and model is

trained 50 times and their performance is measured and averaged for each fold and for

each model. Table 5.6 presents some results for generated models’ analysis. All averaged

metrics presented in Table 5.6 has variance < 0.002. The best average performance was

achieved by LSTM-based aggregation method, concatenation as edge encoder and an MLP

neural network with approximately 67% on all metrics, which implies in a 13% gain over

the best baseline.

Table 5.4: Averaged time (seconds) duration of CT’s embedding generation step.
LSTM MaxPool MeanPool Mean GCN
61.236 25.823 24.876 22.367 20.175

Table 5.5: Averaged time (seconds) duration of CT’s classifier training per fold.
Classifier LSTM MaxPool MeanPool Mean GCN
MLP(100,1) 3.811 4.912 3.104 2.577 3.033
MLP(100,2) 2.504 3.109 3.021 1.9 2.327
MLP(256,1) 6.802 8.3 6.903 4.922 5.062

SGD 0.128 0.122 0.122 0.125 0.12

Table 5.6: Averaged results of CT classifiers in a 7-fold cross-validation setting.
Approach Precision Recall F1
Raw features + SVM 0.249 0.293 0.261
Raw features + MLP 0.381 0.382 0.381
Raw features + SGD 0.545 0.542 0.534

PingUMiL.LSTM+Mult+MLP(100,1) 0.673 0.663 0.664
PingUMiL.LSTM+Mult+MLP(100,2) 0.641 0.654 0.638
PingUMiL.LSTM+Cat+MLP(100,1) 0.664 0.662 0.661
PingUMiL.LSTM+Cat+MLP(512,1) 0.672 0.656 0.662
PingUMiL.LSTM+Cat+MLP(100,2) 0.674 0.668 0.669
PingUMiL.MeanPool+Cat+SGD 0.605 0.598 0.575
PingUMiL.Mean+Cat+MLP(100,1) 0.613 0.618 0.614
PingUMiL.GCN+Mult+MLP(100,2) 0.549 0.567 0.538

We observed that the aggregator architectures Mean and GCN tend to score less than

the other architectures on several experimental settings for CT. Also, in some settings,

5.2 Results 46

models composed of these architectures presented metrics lower than baseline. Analogous

trend holds for the classifier methods SVM and SGD. Therefore, it is possible that these

architectures and methods are not suitable for the intended task with CT graphs.

LSTM, MaxPool and MeanPool aggregation architectures, on the other hand, have

shown more than 10% gain over baseline with MLP based classifiers. Results show little

variation between edge encoding functions and MLP architectures with these aggregation

architectures. Still, the most relevant results were achieved with the number of hidden

layers n between 1 and 10 and hidden units per layer k between 100 and 512. The best

average precision inside a fold was achieved by PingUMiL.LSTM + Mult + MLP(100,1)

with 72,3%, while the best average recall and F1 was achieved by PingUMiL.LSTM +

Cat + MLP(100,1) with 72,2% and 71,9% respectively. These top performances suggest

that PingUMiL generated models capable of detecting target edges. We expect similar

results for AC experiments.

Another relevant observation about the aforementioned top performances is that they

were achieved on the same fold (fold 1). Analogously, several models performed better on

fold 1 than on the other folds. It is possible that fold 1’s edge sets have some characteristic

or pattern which improves classifier training.

After evaluating the overall performance of the generated models, an in-depth inves-

tigation regarding types of nodes was realized. For this investigation, the output of a

generated PingUMiL.LSTM + Cat + MLP(100,1) classifier for each test fold is taken

randomly. After that, precision and recall metrics are calculated per edge type per fold.

Table 5.7 presents the mean average and variance of these metrics.

Table 5.7: Averaged performance results per edge for CT.
Edge Type Avg. Precision (Var) Avg. Recall (Var)
Crash → Crash 0.686 (0.013) 0.712 (0.021)
Crash → LostControl 1 (0) 0.881 (0.043)
Flying → Crash 0.72 (0.006) 0.796 (0.006)
Flying → Landing 0.853 (0.041) 0.81 (0.022)
Flying → LostControl 0.643 (0.003) 0.724 (0.015)
HandBrake → LostControl 0.647 (0.012) 0.727 (0.028)
Scraped → Crash 0.714 (0.029) 0.681 (0.026)

Edges of type Crash → Scraped, Flying → Scraped and Scraped → Scraped are not

present in Table 5.7 due to their low occurence in CT graphs. As shown in Table 5.3, the

number of examples (positive and negative altogether) for these 3 types of edges are 6, 2

and 4 respectively. For this reason, some folds did not contain examples of these edges.

5.2 Results 47

Results in Table 5.7 shows that the best average precision and recall was achieved

in edges of type Crash → LostControl, Flying → Landing and Flying → Crash. It’s

important to take into account the wide difference between the number of examples per

type of edge when analyzing the Table 5.7. Edge type with the lowest number of examples

in this experiment is Crash → LostControl with 32 edges, while the highest is Flying →
Crash with 398 edges. Notably, the model achieved the highest performance metric for

these edge types. Regarding results with Crash → LostControl, it is not safe to assume

that this performance would hold in a real-world scenario due to the low number of

example edges. Beyond that, a similar result in AC could support Crash → LostControl

high performance. Flying→ Lading and Flying→ Crash results, on their turn, show that

the model could differ true and false indirect edges with high performance.

It’s possible to observe in the Figure 5.3, in which the horizontal axis lists edge types

and the vertical edges represents the number of edges predicted as FN (false negatives,

true indirect edges classified as false indirect edges), FP (false positives, i.e. false indirect

edges classified as true indirect edges), TN (true negatives, false indirect edges classified as

false indirect edges) and TP (true positives, true indirect edges classified as true indirect

edges), that a trend holds for most edge types: most edges are correctly classified (TP

and TN outnumbers FP and FP) and the number of false positives is higher than the

number of false negatives.

In our understanding, false negatives are more dangerous to game analytics tasks than

false positives. In a real-world scenario, a false negative would be a true influence edge

incorrectly classified and, therefore, not inserted in the graph enhanced by PingUMiL. On

the other hand, a false positive would insert an influence edge that (1) makes no sense

in its neighborhood context and could be ignored by the game analyst or (2) represents

an unforeseen influence with regard to edge examples fed to PingUMiL model. That last

possibility would need to be validated by the game analyst and could lead to refinement

of the model and discovery of new influences edge types.

5.2.2 Arcade Car

The Arcade Car example edges were split into 4 folds and fed into the same learning

settings used in CT experiments. Tables 5.8 and 5.9 presents averaged time duration of

embedding generation (for all AC nodes) and some classifiers’ training step (per fold),

respectively. Similarly, each combination of fold and model is trained 50 times and their

performance is measured and averaged for each fold and for each model. Table 5.10

5.2 Results 48

Figure 5.3: Overall classification results per edge type in CT graphs.

presents some results for generated models’ analysis. All averaged metrics presented in

Table 5.6 had variance < 0.002. The best average performance was obtained by LSTM-

based aggregation method, concatenation as edge encoder and an MLP neural network

with approximately 70% on all metrics, which implies in a 10% gain over the best baseline.

Table 5.8: Averaged time (seconds) duration of AC’s embedding generation step.
LSTM MaxPool MeanPool Mean GCN
58.839 24.061 20.936 18.328 17.091

Table 5.9: Averaged time (seconds) duration of AC’s classifier training per fold.
Classifier LSTM MaxPool MeanPool Mean GCN
MLP(100,1) 4.719 4.126 4.501 4.467 4.831
MLP(100,2) 2.117 1.872 1.965 1.839 2.517
MLP(256,1) 7.726 6.445 6.656 6.08 8.176

SGD 0.131 0.148 0.14 0.138 0.144

Regarding the aggregation architecture, the highest performances were again achieved

using LSTM. However, different from CT experimental results, the Mean and GCN aggre-

gators achieved a better performance than the baseline classifiers in several experiments,

while MaxPool aggregator presented lower performance compared to the baseline meth-

ods.

5.2 Results 49

Table 5.10: Averaged results of AC classifiers in a 4-fold cross-validation setting.
Approach Precision Recall F1
Raw features + SVM 0.249 0.334 0.273
Raw features + MLP 0.394 0.394 0.394
Raw features + SGD 0.596 0.578 0.575

PingUMiL.LSTM+Cat+MLP(100,1) 0.696 0.7 0.697
PingUMiL.LSTM+Cat+MLP(100,2) 0.695 0.69 0.692
PingUMiL.LSTM+Cat+MLP(256,1) 0.696 0.702 0.698
PingUMiL.LSTM+Cat+SGD 0.662 0.613 0.608
PingUMiL.MeanPool+Mult+MLP(100,1) 0.646 0.638 0.641
PingUMiL.Mean+Cat+MLP(100,1) 0.665 0.628 0.646
PingUMiL.GCN+Cat+MLP(256,1) 0.695 0.663 0.678

Notice that most of the results in the Table 5.10 use the Cat (Concatenation) edge

encoding function. Most models using Mult (elementwise multiplication) encoding func-

tion performed worse than its concatenation counterparts. Results for the model PingU-

MiL.MeanPool + Mult + MLP(100,1) achieved the highest performance using a model

with the Multi edge encoding function.

The performance reached by MLP classifiers were analogous to the previously dis-

cussed CT experiments, except for the use of 256 hidden units, which tended to outper-

form other MLP configurations. The best average precision and F1 inside a fold were

achieved by PingUMiL.GCN + Cat + MLP(256,1) with 77,1% and 74,3%, respectively,

on fold 4, while the best average recall was achieved by PingUMiL.MeanPool + Cat +

MLP(256,1) with 74% on fold 4. These measures corroborate the edge detection capabil-

ity of PingUMiL models. Similar to fold 1 in CT experiments, folds 1 and 4 concentrated

best performance metrics in their experiments.

Observing the results presented in both Tables 5.6 and 5.10, it is possible to conclude

about secondary objectives 1 and 2. For secondary objective 1, machine learning tech-

niques are able to detect influence between game components represented as edges in a

game provenance graph, given that the models achieved above 77% averaged precision.

For secondary objective 2, PingUMiL best performance presents a gain of at least 10%

over classical machine learning approaches.

Similar to the previous section, we investigate model’s performance regarding type

of nodes using a generated PingUMiL.GCN + Cat + MLP(256,1) classifier for each test

fold. Precision and recall metrics are calculated per edge type per fold. Table 5.7 presents

the mean average and variance of these metrics.

5.2 Results 50

Table 5.11: Averaged performance results per edge for AC.
Edge Type Avg. Precision (Var) Avg. Recall (Var)
Crash → Crash 0.59 (0.045) 0.645 (0.047)
Crash → LostControl 0.855 (0.029) 0.9175 (0.027)
Flying → Crash 0.635 (0.004) 0.645 (0.003)
Flying → Landing 0.7325 (0.007) 0.575 (0.001)
Flying → LostControl 0.915 (0.011) 0.87 (0.032)
Scraped → Crash 0.58 (0.015) 0.683 (0.023)
Scraped → Scraped 0.937 (0.015) 0.835 (0.036)

Edges of type Crash → Scraped, Flying → Scraped and HandBrake → LostControl

are not present in Table 5.11 due to their low occurrence in CT graphs (< 20). As shown

in Table 5.3, the number of examples (positive and negative altogether) for these 3 types

of edges are 12, 16 and 8 respectively.

The results in the Table 5.11 shows that the best average precision and recall was

achieved in edges of type Crash → LostControl, Flying → LostControl and Scraped →
Scraped, with number of examples equals to 22, 58 and 22 respectively. In other words,

Crash → LostControl, Flying → LostControl and Scraped → Scraped are the edge types

with the lowest number of examples in this experiment. Similarly to results shown for

CT in Table 5.7, edge type Crash → LostControl achieve precision and recall above 80%.

We believe that models from both games learned to classify correctly this type of edge

due to the low difference among true influence edges which, in its turn, derives from the

low occurrence of this type of edge. The same intuition holds for Flying → LostControl

and Scraped → Scraped in this experiment. Different from CT, the edge type with most

examples, Flying → Lading, achieved low recall performance (57,5%).

Figure 5.3 shows a bar graph in which the horizontal axis lists edge types and the

vertical axis represents the number of edges predicted as FN, FP, TN and TP. Different

from results in CT, AC presents the smallest gap between falsely classified examples (FN

and FP) and correctly classified examples (TN and TP). In Flying→ Landing, Flying→
LostControl and Scraped→ Scraped edges, the number of TN is higher than TP, i.e. the

models managed to correctly classify false examples easier than true ones. Consequently,

the number of FN is higher than FP, which is dangerous for the reasons already discussed

on the previous subsection: a false negative edge would be a true influence edge incorrectly

classified and, therefore, not inserted in the graph enhanced by PingUMiL, which leads

to missing information to game analytics tasks.

5.2 Results 51

Figure 5.4: Overall classification results per edge type in AC graphs.

5.2.3 Generalization among racing games

In this experiment, we try to evaluate secondary objective 3. We observe the generated

models’ generalization capacity over different, yet similar, games by comparing the perfor-

mance of the models trained with the AC game against two other models: (1) one trained

with the dataset generated from CT and tested to detect AC edges, identified with a CT

prefix; and (2) one trained with both CT and AC, identified with CTAC prefix, and tested

to detect AC edges. In this latter case, each AC training fold is concatenated with a CT

training fold. In both cases we choose AC to test the model because it has fewer examples

than CT. Similar to the previous experiments, AC edges are split into 4 folds, the models

are trained 50 times and their performance are measured and averaged for each fold and

for each model. Time performance was also measured for some CTAC models. Tables

5.12 and 5.13 presents averaged time duration of embedding generation (for all CTAC

nodes) and some classifiers’ training step (per fold), respectively.

Table 5.12: Averaged time (seconds) duration of CTAC’s embedding generation step.
LSTM MaxPool MeanPool Mean GCN
64.32 30.065 26.741 23.502 27.361

We propose tests with the first model setting in order to measure how a model trained

5.2 Results 52

Table 5.13: Averaged time (seconds) duration of CTAC’s classifier training per fold.
Classifier LSTM MaxPool MeanPool Mean GCN
MLP(100,1) 6.424 6.125 6.569 5.485 5.123
MLP(100,2) 4.097 3.917 3.796 4.031 4.064
MLP(256,1) 11.207 9.2 8.66 8.186 9.841

SGD 0.356 0.319 0.341 0.328 0.335

only with CT edges responds to AC edges. On the other hand, the intuition behind the

test with the second model setting is that a model performance metrics shall increase

when it learns from a larger dataset. But, in this case, the increment in the training data

derives from a similar yet different game. We also provide a baseline using raw features

and traditional classification methods, similarly to the previous experiments. The models

with the highest metrics scores for each model setting in this experiment are shown in

Table 5.14.

Table 5.14: Mean averaged results of the generalization experiments.
Approach Precision Recall F1
CT-Raw features + MLP 0.46 0.457 0.461
CT-Raw features + SGD 0.554 0.548 0.534
CTAC-Raw features + MLP 0.596 0.588 0.592
CTAC-Raw features + SGD 0.583 0.571 0.577

CT-PingUMiL.LSTM+Cat+MLP(100,1) 0.531 0.408 0.461
CT-PingUMiL.LSTM+Mul+SVM 0.533 0.629 0.573
CTAC-PingUMiL.LSTM+Cat+MLP(256,1) 0.703 0.693 0.697

The results show that CT-PingUMiL.LSTM + Mult + SVM model achieved a slightly

better performance on recall metric, while best precision metric was achieved by CT-Raw

features + SGD. This experiment indicates that the generalization over different, yet

similar, games is not guaranteed, at least when using exactly the model trained with one

game to directly test on another game, without any further training. The reason behind

this is that AC and CT node embeddings generated through GraphSAGE’s mapping of

node features into latent representational spaces might learn different parameters for each

game. That is, the AC test set seems to be located into a different distribution space

than the CT set.

CTAC-PingUMiL.LSTM+Cat+MLP(256,1) achieved the best performance in this ex-

periment: 70,3% precision, 69,3% recall and 69,7% f1-score. The results are very similar

to the ones obtained using only AC edges for training and test shown in Table 5.10.

The difference between metrics are close to 1%. Similar trend holds for best average

5.2 Results 53

performance into a fold: CTAC-PingUMiL.MaxPool+Cat+MLP(256,1) achieved 73,3%

precision on fold 3, while CTAC-PingUMiL.LSTM+Cat+MLP(256,1) achieved 74,7% re-

call and 72,8% F1 on fold 4. We can assume that the models did not benefit from using

CT training edges to detect AC edges on overall performance statistics. We proceed to

investigate performance for each edge type, similar to previous subsections 5.2.1 and 5.2.2.

We investigate model’s performance regarding type of nodes using a generated PingU-

MiL.LSTM + Cat + MLP(256,1) classifier for each test fold. Precision and recall metrics

are calculated per edge type per fold. Table 5.15 presents the mean average and variance

of these metrics.

Table 5.15: Averaged performance results per edge for CTAC.
Edge Type Avg. Precision (Var) Avg. Recall (Var)
Crash → Crash 0.58 (0.017) 0.61 (0.011)
Crash → LostControl 0.793 (0.021) 1 (0)
Flying → Crash 0.643 (0.014) 0.73 (0.037)
Flying → Landing 0.673 (0.014) 0.655 (0.012)
Flying → LostControl 0.855 (0.015) 0.835 (0.025)
Scraped → Crash 0.605 (0.006) 0.723 (0.075)
Scraped → Scraped 0.937 (0.016) 0.833 (0.112)

Performance metrics presented in Table 5.15 were measured over the same edges of

Table 5.11. Therefore, it is interesting to compare results in both tables and relate it to

number of examples per edge type on the CT examples set.

Edges of type Crash → Crash and Scraped → Scraped achieved very similar perfor-

mance. This result is expected for Scraped → Scraped edges because CT example set

contains only 4 edges of this type. On the other hand, Crash → Crash added 196 exam-

ples (thrice the number of examples in AC) in the model’s training phase and that, as

results points, had no effect on precision and recall performances.

Edges of type Crash → LostControl and Flying → Landing presented gain on recall

metrics (7% and 8% respectively) and a decrease in precision metrics (approximately

6% for both). CT training edges add 32 Crash → LostControl examples and 84 Flying

→ Landing examples. These results means that edges from CT enhanced the model’s

comprehension of what defines a negative example at the cost of difficulting comprehension

of what defines a positive example. Since we believe a high recall value is more essential

for provenance graph enhancement, this result shows that for some type of edges, a model

generated using different games might lead to improvements in preferred metrics.

Edges of type Flying → Crash and Scraped → Crash presented gain on both recall

5.3 Threats to Validity 54

(1% and 2.5% respectively) and precision (8.5% and 4% respectively) metrics. For both

edge types, the number of CT examples is more than twice the number of AC examples.

This result corroborates to a positive answer for secondary objective 3, in which the use

of another similar game data improves the capacity to infer long-range influences.

Edges of type Flying→ LostControl presented loss on both precision and recall metrics

(6% and 3.5% respectively). Similar to Flying→ Crash and Scraped→ Crash, the number

of CT examples is more than twice the number of AC examples. The difference lies in

the fact that CT models achieved lower performance metrics on Flying → LostControl

(64.3% and 72.4%) then AC models. The insertion of new CT edges examples prevented

the CTAC model to achieve the same capability that AC example models seem to provide.

For this type of edges, it would be best to rely only on AC edge examples.

Figure 5.5 shows a bar graph in which the horizontal axis lists edge types and the

vertical axis represents the number of edges predicted as FN, FP, TN and TP. Even though

overall performance metrics remain the same between AC and CTAC models, it is possible

to notice that Figure 5.5 corrects the distribution of FN, FP, TN and TP classified edges

presented in Figure 5.4, i.e. the number of false negatives is the lowest in almost all edges

(except for Scraped → Scraped). On the other hand, the overall number of true negative

and true positive examples decreases when compared to AC results, mainly in the edge

type with most examples (Flying → Landing).

Finally, we conclude from this generalization across games experiment that simply

feeding new edges from a similar game doesn’t guarantee overall model’s quality enhance-

ment for the racing games used in the experiment. However, PingUMiL models could

be enhanced by fine-tuning the model with some types of edges, especially edges with

fewer examples and/or lower accuracy performance. Further investigations about quality

enhancement through generalization using other types of games is suggested as future

work.

5.3 Threats to Validity

The previously described experiments and their respective results present three main

validity threats. The first threat lies in the extraction process of provenance graphs,

when several gameplay sessions were recorded. It’s possible that players behavior during

gameplay session could differ from their normal behavior when playing racing games, since

both games are prototypes and the sole purpose of the gameplay sessions was to support

5.3 Threats to Validity 55

Figure 5.5: Overall classification results per edge type in CTAC experiment setting.

this research.

Another threat lies on baselines derived from classical machine learning. All experi-

ments with these techniques were realized with default settings. Therefore, it’s possible

that a fine-tuned classical machine learning technique provides better results than the

baselines presented in this work.

Also, number of folds for both CT and AC were defined so that each fold from both

games had approximately the same number of examples. Therefore, a different experi-

mental setup, where the number of folds and the amount of examples per fold were not

related between games, could lead to different insights and conclusions.

Finally, precision and recall analysis per edge type performed on subsections 5.2.1,

5.2.2 and 5.2.3 were realized using generated PingUMiL models chosen at random. There-

fore, it’s possible that presented results belong to an outlier model with above or below

average accuracy performance.

Chapter 6

Conclusions

This work, to the best of our knowledge, is the first attempt in the literature to combine a

representation learning and game provenance. We introduced PingUMiL, a framework for

enhancing game provenance based on graph-based representation learning, motivated by

a long-range indirect edge detection task. PingUMiL includes four steps for running edge

detection tasks on game provenance graphs: graph capture, pre-processing, embedding

generation, and classifier training. These four steps generate a model which can then be

applied to detect missing edges and graph enhancement. We found that edge detection,

especially long-range influence edges, is possible using both classic and graph represen-

tation learning based machine learning approaches. Experiments were conducted on two

racing games and, for both approaches, precision and recall metrics in several experimen-

tal settings scored above 50%. Still, models generated by PingUMiL have achieved better

performance than classical machine learning techniques with raw features with a gain of

at least 10% on precision, recall, and F1 scores. Finally, by using a CT and AC-trained

model for classifying AC edges we could verify that even though the insertion of new

edges from CT did not enhance model’s overall performance, it did enhanced precision

and recall metrics for some edge types. This conclusion suggests further investigation

towards fine-tuning of PingUMiL models. Also, experiments using other types of games

are also suggested in order to corroborate our conclusions about PingUMiL models.

During the experiments, some combinations of GraphSAGE’s aggregator architectures

and classifier approaches have proven to be unsuitable for the task at hand due to their

poor performance. Since PingUMiL is a general framework and defines a set of steps for

edge detection tasks, any tool used in our experiments can be substituted in the future.

For example, we intend to investigate the use of other embedding generation techniques

in near future. Even though GraphSAGE is a powerful, usable and expressive embedding

6 Conclusions 57

generation tool, it still lacks heterogenous nodes support. It is important to mention that

the PingUMiL framework should benefit from upcoming improvements and advances in

graph representation learning techniques.

Other possible future works are related to prediction tasks and reinforcement learning.

For a prediction task, PingUMiL would be used in a scenario where the complete graph

is not available. In this scenario, PingUMiL should be capable of predicting future nodes

and the edges that connect predicted nodes to existing ones. Regarding reinforcement

learning, we suggest that a learned representation for game provenance graphs, subgraphs

and nodes could be used for game enhancement and agent training.

Also, PingUMiL could also be easily adapted for provenance graphs from other do-

mains such as scientific workflow and software engineering.

In conclusion, our results suggest that PingUMiL can be a useful tool for game analyt-

ics tasks envolving game provenance graphs such as long-range influence edge detection.

We believe that other several game analytics tasks can also be attacked by PingUMiL

generated models by performing minor adaptations on the steps described along this

work.

References

[1] Adamic, L. A., Glance, N. The political blogosphere and the 2004 us election:
divided they blog. In Proceedings of the 3rd international workshop on Link discovery
(2005), ACM, p. 36–43.

[2] Airoldi, E. M., Blei, D. M., Fienberg, S. E., Xing, E. P., Jaakkola, T.
Mixed membership stochastic block models for relational data with application to
protein-protein interactions. In Proceedings of the international biometrics society
annual meeting (2006), vol. 15.

[3] Alpaydin, E. Introduction to machine learning. MIT press, 2009.

[4] Andrade, G., Ramalho, G., Santana, H., Corruble, V. Extending reinforce-
ment learning to provide dynamic game balancing. In Proceedings of the Workshop
on Reasoning, Representation, and Learning in Computer Games, 19th International
Joint Conference on Artificial Intelligence (IJCAI) (2005), p. 7–12.

[5] Backstrom, L., Leskovec, J. Supervised random walks: predicting and recom-
mending links in social networks. In Proceedings of the fourth ACM international
conference on Web search and data mining (2011), ACM, p. 635–644.

[6] Bauckhage, C., Kersting, K., Sifa, R., Thurau, C., Drachen, A.,
Canossa, A. How players lose interest in playing a game: An empirical study
based on distributions of total playing times. In Computational Intelligence and
Games (CIG), 2012 IEEE conference on (2012), IEEE, p. 139–146.

[7] Belkin, M., Niyogi, P. Laplacian eigenmaps and spectral techniques for embed-
ding and clustering. In Advances in neural information processing systems (2002),
p. 585–591.

[8] Bengio, Y., Courville, A., Vincent, P. Representation learning: A review and
new perspectives. IEEE transactions on pattern analysis and machine intelligence
35, 8 (2013), 1798–1828.

[9] Berg, R. v. d., Kipf, T. N., Welling, M. Graph convolutional matrix comple-
tion. In KDD’18 Deep Learning Day (London, UK, August 2018).

[10] Block, F., Hodge, V., Hobson, S., Sephton, N., Devlin, S., Ursu, M. F.,
Drachen, A., Cowling, P. I. Narrative bytes: Data-driven content production
in esports. In Proceedings of the 2018 ACM International Conference on Interactive
Experiences for TV and Online Video (2018), ACM, p. 29–41.

[11] Breitkreutz, B.-J., Stark, C., Reguly, T., Boucher, L., Breitkreutz,
A., Livstone, M., Oughtred, R., Lackner, D. H., Bähler, J., Wood, V.,

References 59

others. The biogrid interaction database: 2008 update. Nucleic acids research 36,
suppl_1 (2007), D637–D640.

[12] Chamberlain, B. P., Clough, J., Deisenroth, M. P. Neural embeddings of
graphs in hyperbolic space. arXiv preprint arXiv:1705.10359 (2017).

[13] Chang, S., Han, W., Tang, J., Qi, G.-J., Aggarwal, C. C., Huang, T. S.
Heterogeneous network embedding via deep architectures. In Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(2015), ACM, p. 119–128.

[14] Chen, H. Machine learning for information retrieval: neural networks, symbolic
learning, and genetic algorithms. Journal of the American society for Information
Science 46, 3 (1995), 194–216.

[15] Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares,
F., Schwenk, H., Bengio, Y. Learning phrase representations using rnn encoder–
decoder for statistical machine translation. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing (EMNLP) (2014), p. 1724–1734.

[16] Cournapeau, D. Sci-kit learn. Machine Learning in Python. online,[cit. 8.5. 2017].
URL http://scikit-learn. org (2015).

[17] Dong, Y., Chawla, N. V., Swami, A. metapath2vec: Scalable representation
learning for heterogeneous networks. In Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (2017), ACM,
p. 135–144.

[18] El-Nasr, M. S., Drachen, A., Canossa, A. Game analytics. Springer, 2016.

[19] Erwig, M., Walkingshaw, E., Chen, S. An abstract representation of varia-
tional graphs. In Proceedings of the 5th International Workshop on Feature-Oriented
Software Development (2013), ACM, p. 25–32.

[20] Ester, M., Kriegel, H.-P., Sander, J., Xu, X., others. A density-based
algorithm for discovering clusters in large spatial databases with noise. In Kdd (1996),
vol. 96, p. 226–231.

[21] Fields, T., Cotton, B. Social game design: Monetization methods and mechanics.
CRC Press, 2011.

[22] Figueira, F. M., Nascimento, L., da Silva Junior, J., Kohwalter, T.,
Murta, L., Clua, E. Bing: A framework for dynamic game balancing using
provenance. In 2018 17th Brazilian Symposium on Computer Games and Digital
Entertainment (SBGames) (2018), IEEE, p. 57–5709.

[23] Fortunato, S. Community detection in graphs. Physics reports 486, 3-5 (2010),
75–174.

[24] Freire, M., Serrano-Laguna, Á., Iglesias, B. M., Martínez-Ortiz, I.,
Moreno-Ger, P., Fernández-Manjón, B. Game learning analytics: learning
analytics for serious games. In Learning, design, and technology. Springer, 2016,
p. 1–29.

References 60

[25] Goodfellow, I., Bengio, Y., Courville, A. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[26] Grover, A., Leskovec, J. node2vec: Scalable feature learning for networks.
In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (2016), ACM, p. 855–864.

[27] Guardini, P., Maninetti, P. Better game experience through game metrics: A
rally videogame case study. In Game Analytics. Springer, 2013, p. 325–361.

[28] Hamilton, W., Ying, Z., Leskovec, J. Inductive representation learning on large
graphs. In Advances in Neural Information Processing Systems (2017), p. 1025–1035.

[29] Hamilton, W. L., Ying, R., Leskovec, J. Representation learning on graphs:
Methods and applications. IEEE Data Engineering Bulletin (2017).

[30] Hochreiter, S., Schmidhuber, J. Long short-term memory. Neural computation
9, 8 (1997), 1735–1780.

[31] Holmes, G., Donkin, A., Witten, I. H. Weka: A machine learning workbench.
In Intelligent Information Systems, 1994. Proceedings of the 1994 Second Australian
and New Zealand Conference on (1994), IEEE, p. 357–361.

[32] Kickmeier-Rust, M. D. Predicting learning performance in serious games. In
Joint International Conference on Serious Games (2018), Springer, p. 133–144.

[33] Kipf, T. N., Welling, M. Semi-supervised classification with graph convolutional
networks. International Conference on Learning Representations (ICLR) (2017).

[34] Kohavi, R. A study of cross-validation and bootstrap for accuracy estimation and
model selection. In IJCAI International Joint Conference on Artificial Intelligence
(1995), vol. 14, Montreal, Canada, p. 1137–1145.

[35] Kohwalter, T., Clua, E., Murta, L. Provenance in games. In Brazilian Sym-
posium on Games and Digital Entertainment (SBGAMES) (2012), p. 11.

[36] Kohwalter, T., Murta, L., Clua, E. Filtering irrelevant sequential data out
of game session telemetry though similarity collapses. Future Generation Computer
Systems 84 (2018), 108–122.

[37] Kohwalter, T., Oliveira, T., Freire, J., Clua, E., Murta, L. Prov viewer:
A graph-based visualization tool for interactive exploration of provenance data. In
International Provenance and Annotation Workshop (2016), Springer, p. 71–82.

[38] Kohwalter, T. C., Clua, E. G., Murta, L. G. Game flux analysis with prove-
nance. In Advances in Computer Entertainment. Springer, 2013, p. 320–331.

[39] Kohwalter, T. C., Clua, E. W. G., Murta, L. G. P. Reinforcing software
engineering learning through provenance. In 2014 Brazilian Symposium on Software
Engineering (SBES) (2014), IEEE, p. 131–140.

[40] Kohwalter, T. C., de Azeredo Figueira, F. M., de Lima Serdeiro, E. A.,
da Silva Junior, J. R., Murta, L. G. P., Clua, E. W. G. Understanding game
sessions through provenance. Entertainment Computing 27 (2018), 110–127.

References 61

[41] Kohwalter, T. C., Murta, L. G. P., Clua, E. W. G. Capturing game telemetry
with provenance. In 2017 16th Brazilian Symposium on Computer Games and Digital
Entertainment (SBGames) (2017), IEEE, p. 66–75.

[42] Li, X., Chen, H. Recommendation as link prediction: a graph kernel-based machine
learning approach. In Proceedings of the 9th ACM/IEEE-CS joint conference on
Digital libraries (2009), ACM, p. 213–216.

[43] Li, Y., Tarlow, D., Brockschmidt, M., Zemel, R. Gated graph sequence
neural networks. In International Conference on Learning Representations (ICLR)
(2016).

[44] Liberzon, A., Subramanian, A., Pinchback, R., Thorvaldsdóttir, H.,
Tamayo, P., Mesirov, J. P. Molecular signatures database (msigdb) 3.0. Bioin-
formatics 27, 12 (2011), 1739–1740.

[45] Liu, Y., Kou, Z. Predicting who rated what in large-scale datasets. ACM SIGKDD
Explorations Newsletter 9, 2 (2007), 62–65.

[46] Lodhi, H., Muggleton, S. Is mutagenesis still challenging. In Proceedings of the
15th International Conference on Inductive Logic Programming, ILP (2005), Cite-
seer, p. 35–40.

[47] Mahlmann, T., Drachen, A., Togelius, J., Canossa, A., Yannakakis,
G. N. Predicting player behavior in tomb raider: Underworld. In Computational
Intelligence and Games (CIG), 2010 IEEE Symposium on (2010), IEEE, p. 178–185.

[48] Mahoney, M. Large text compression benchmark, 2011. http://www.
mattmahoney.net/text/text.html.

[49] Makeev, S. Arcade car physics - vehicle simulation for unity3d, 2018. https:
//github.com/SergeyMakeev/ArcadeCarPhysics.

[50] Meng, X., Bradley, J., Yavuz, B., Sparks, E., Venkataraman, S., Liu, D.,
Freeman, J., Tsai, D., Amde, M., Owen, S., others. Mllib: Machine learning
in apache spark. The Journal of Machine Learning Research 17, 1 (2016), 1235–1241.

[51] Michalski, R. S., Carbonell, J. G., Mitchell, T. M. Machine learning: An
Artificial Intelligence Approach. Springer Science & Business Media, 2013.

[52] Moreau, L., Clifford, B., Freire, J., Futrelle, J., Gil, Y., Groth, P.,
Kwasnikowska, N., Miles, S., Missier, P., Myers, J., others. The open
provenance model core specification (v1. 1). Future generation computer systems 27,
6 (2011), 743–756.

[53] Nasrabadi, N. M. Pattern recognition and machine learning. Journal of electronic
imaging 16, 4 (2007), 049901.

[54] Olson, D. L., Delen, D. Advanced data mining techniques. Springer Science &
Business Media, 2008.

References 62

[55] Ou, M., Cui, P., Pei, J., Zhang, Z., Zhu, W. Asymmetric transitivity pre-
serving graph embedding. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (2016), ACM, p. 1105–1114.

[56] Perozzi, B., Al-Rfou, R., Skiena, S. Deepwalk: Online learning of social rep-
resentations. In Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (2014), ACM, p. 701–710.

[57] Pham, T., Tran, T., Phung, D. Q., Venkatesh, S. Column networks for
collective classification. In Thirty-First AAAI Conference on Artificial Intelligence
(2017), p. 2485–2491.

[58] Ribeiro, L. F., Saverese, P. H., Figueiredo, D. R. struc2vec: Learning node
representations from structural identity. In Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (2017), ACM,
p. 385–394.

[59] Rives, A. W., Galitski, T. Modular organization of cellular networks. Proceedings
of the National Academy of Sciences 100, 3 (2003), 1128–1133.

[60] Rosvall, M., Bergstrom, C. T. Maps of random walks on complex networks
reveal community structure. Proceedings of the National Academy of Sciences 105,
4 (2008), 1118–1123.

[61] Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., Monfardini, G.
The graph neural network model. IEEE Transactions on Neural Networks 20, 1
(2009), 61–80.

[62] Schubert, M., Drachen, A., Mahlmann, T. Esports analytics through en-
counter detection other sports.

[63] Tamassia, M., Raffe, W., Sifa, R., Drachen, A., Zambetta, F., Hitchens,
M. Predicting player churn in destiny: A hidden markov models approach to pre-
dicting player departure in a major online game. In 2016 IEEE Conference on Com-
putational Intelligence and Games (CIG) (2016), IEEE, p. 1–8.

[64] Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q. Line: Large-scale
information network embedding. In Proceedings of the 24th International Conference
on World Wide Web (2015), International World Wide Web Conferences Steering
Committee, p. 1067–1077.

[65] Toutanova, K., Klein, D., Manning, C. D., Singer, Y. Feature-rich part-
of-speech tagging with a cyclic dependency network. In Proceedings of the 2003
Conference of the North American Chapter of the Association for Computational
Linguistics on Human Language Technology-Volume 1 (2003), Association for Com-
putational Linguistics, p. 173–180.

[66] Tychsen, A., Canossa, A. Defining personas in games using metrics. In Pro-
ceedings of the 2008 conference on future play: Research, play, share (2008), ACM,
p. 73–80.

References 63

[67] Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio,
Y. Graph attention networks. International Conference on Learning Representations
(ICLR) (2018).

[68] Viljanen, M., Airola, A., Majanoja, A.-M., Heikkonen, J., Pahikkala, T.
Measuring player retention and monetization using the mean cumulative function.
arXiv preprint arXiv:1709.06737 (2017).

[69] Volz, V., Rudolph, G., Naujoks, B. Demonstrating the feasibility of auto-
matic game balancing. In Proceedings of the Genetic and Evolutionary Computation
Conference 2016 (2016), ACM, p. 269–276.

[70] Wallner, G. Play-graph: A methodology and visualization approach for the anal-
ysis of gameplay data. In Foundations of Digital Games (2013), p. 253–260.

[71] Wang, D., Cui, P., Zhu, W. Structural deep network embedding. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (2016), ACM, p. 1225–1234.

[72] Weber, B. G., Mateas, M. A data mining approach to strategy prediction. In
2009 IEEE Symposium on Computational Intelligence and Games (2009), IEEE,
p. 140–147.

[73] Zachary, W. W. An information flow model for conflict and fission in small groups.
Journal of anthropological research 33, 4 (1977), 452–473.

[74] Zafarani, R., Liu, H. Social computing data repository at asu, 2009. http:
//socialcomputing.asu.edu/.

[75] Zitnik, M., Leskovec, J. Predicting multicellular function through multi-layer
tissue networks. Bioinformatics 33, 14 (2017), i190–i198.

[76] Zook, A., Harrison, B., Riedl, M. O. Monte-carlo tree search for simulation-
based strategy analysis. In Proceedings of the 10th Conference on the Foundations
of Digital Games (2015).

