
UNIVERSIDADE FEDERAL FLUMINENSE

EDUARDO DE OLIVEIRA ANDRADE

Malware Classification Using Word Embeddings
Algorithms and Long Short-Term Memory Networks

NITERÓI

2019

UNIVERSIDADE FEDERAL FLUMINENSE

EDUARDO DE OLIVEIRA ANDRADE

Malware Classification Using Word Embeddings
Algorithms and Long Short-Term Memory Networks

Dissertation presented to the Computing
Graduate Program of the Universidade Fed-
eral Fluminense in partial fulfillment of the
requirements for the degree of Master of Sci-
ence. Field: Systems and Information Engi-
neering.

Advisor:
JOSÉ VITERBO FILHO

Co-advisor:
CRISTINA NADER VASCONCELOS

NITERÓI

2019

Ficha catalográfica automática - SDC/BEE
Gerada com informações fornecidas pelo autor

Bibliotecária responsável: Fabiana Menezes Santos da Silva - CRB7/5274

A553m Andrade, Eduardo de Oliveira
 Malware Classification Using Word Embeddings Algorithms and
Long Short-Term Memory Networks / Eduardo de Oliveira Andrade
; José Viterbo Filho, orientador ; Cristina Nader
Vasconcelos, coorientadora. Niterói, 2019.
 77 f. : il.

 Dissertação (mestrado)-Universidade Federal Fluminense,
Niterói, 2019.

DOI: http://dx.doi.org/10.22409/PGC.2019.m.13457297746

 1. Aprendizado de máquina. 2. Segurança da Informação.
3. Produção intelectual. I. Viterbo Filho, José,
orientador. II. Vasconcelos, Cristina Nader, coorientadora.
III. Universidade Federal Fluminense. Instituto de
Computação. IV. Título.

 CDD -

“We can only see a short distance ahead, but we can see plenty there that needs to be done.”

Alan Turing

Acknowledgements

I thank my family, friends, fiancée and advisors for the support and contribution that
gave me the necessary strength for the conclusion of this thesis.

I thank all those who have made available essential content for the work even without
knowing them.

Thank you so much for everything.

Resumo

O número de softwares maliciosos, mais conhecidos como malwares, aumenta a cada ano e
seu desenvolvimento torna-se mais sofisticado à medida que novas técnicas são utilizadas
para contornar a verificação de programas, como os antivírus. Com isto, a área de apren-
dizado de máquina surge como um novo meio para a identificação destas ameaças. Muito
tempo e dinheiro já estão sendo investidos por governos e empresas na coleta de dados
para algoritmos de aprendizagem na procura por novas soluções que envolvam tecnologias
capazes de lidar com uma vasta quantidade de dados. O aprendizado profundo consiste
em uma abordagem de aprendizado de máquina que possui um alto nível de abstração,
sendo capaz de obter bons resultados com grandes conjuntos de dados. As arquiteturas
mais conhecidas de aprendizado profundo são as redes neurais e uma das redes mais uti-
lizadas é a rede neural recorrente (RNN). Neste trabalho, são propostos alguns modelos
de redes neurais baseados em um tipo de RNN, a rede long short-term memory (LSTM)
para os cenários de classificação binária e multiclasse, analisando dados não estruturados
de malware em um novo conjunto de dados balanceado criado especificamente para este
trabalho e disponibilizado publicamente. Três modelos de LSTM são propostos e dois
deles foram desenvolvidos em conjunto com outros dois algoritmos não supervisionados
de vetorização de palavras, global vectors (GloVe) e word2vec. Por fim, estes modelos
são comparados e a acurácia da LSTM com o word2vec apresenta os melhores resultados:
88.94% para a classificação binária e 75.13% para a classificação multiclasse, incluindo
seis classes com cinco diferentes tipos de malware.

Palavras-chave: Classificação de Malware; Aprendizado Profundo; Redes Neurais.

Abstract

The number of malicious softwares, more commonly known as malwares, increases every
year and its development becomes more sophisticated as new techniques are used to bypass
scanning of programs, such as antivirus. Thereby, the machine learning area emerges as a
new way for the identification of these threats. Much time and money are already being
invested by governments and companies in data collection to help learning algorithms in
the search for new solutions that involve technologies capable of handling a vast amount
of data. Deep learning consists of a machine learning approach that has a high level
of abstraction and can achieve good results with large datasets. The most well-known
architectures of deep learning are neural networks and one of the most used networks is
the recurrent neural network (RNN). In this work, some models of neural networks based
on a type of RNN, the long short-term memory network (LSTM), are proposed for the
binary and multiclass classification scenarios, analyzing unstructured malware data in a
new balanced dataset created specifically for this work and made publicly available. Three
LSTM models are proposed and two of them have been developed in conjunction with two
other unsupervised word embeddings algorithms, global vectors (GloVe) and word2vec.
Finally, these models are compared and the accuracy of LSTM with word2vec shows
the best results: 88.94% for binary classification and 75.13% for multiclass classification,
including six classes with five different types of malware.

Keywords: Malware Classification; Deep Learning; Neural Networks.

List of Figures

2.1 An example of a dead-code insertion. 7

2.2 Encrypted code snippet of a malware. 8

2.3 Process of infection by an oligomorphic malware. 8

2.4 The mutation engine and the process of infection by polymorphic malware. 9

2.5 The creation of different code segments by the mutation engine in a meta-
morphic malware. 9

3.1 Representation of a feedforward neural network with three layers 13

3.2 Architecture of the perceptron neural network. 14

3.3 Linear function graphic. 15

3.4 Sigmoid function graphic. 16

3.5 Hyperbolic tangent function graphic. 17

3.6 ReLU function graphic. 18

3.7 Dropping of neurons in a neural network with one hidden layer and p = 0.5. 20

3.8 Architecture of an LSTM memory block. The neural network is usually
composed of several of these blocks. 22

3.9 Architecture of the word2vec considering the input vector for the horse
example. 24

3.10 Example of a dataset using the skip-gram and CBOW models 25

5.1 Schematization of the methodology for the creation of the MC-dataset. . . 37

5.2 MC-dataset file structure. 38

6.1 The LSTM architecture design for the binary classification. 43

6.2 Example of converting a sample hexadecimal file to the time steps corre-
sponding to the input layer. 44

List of Figures vii

6.3 The LSTM architecture design with the word embeddings weights for the
multiclass classification. 45

6.4 Example of the vector training process for words in a sample hexadecimal
file to the embedding layer. 46

7.1 Training epoch & validation accuracy for the binary classification. 48

7.2 Training epoch & validation loss for the binary classification. 48

7.3 TPR for the binary classification. 49

7.4 FPR for the binary classification. 49

7.5 FNR for the binary classification. 49

7.6 Training epoch & validation accuracy for the multiclass classification. . . . 51

7.7 Training epoch & validation loss for the multiclass classification. 51

7.8 TPR for the multiclass classification. 52

7.9 FPR for the multiclass classification. 52

7.10 FNR for the multiclass classification. 52

7.11 Execution time for binary classification. 55

7.12 Execution time for multiclass classification. 55

List of Tables

3.1 Co-occurrence between words considering the examples trojan and worm. . 26

7.1 LSTM confusion matrix for the binary classification. 50

7.2 GloVe+LSTM confusion matrix for the binary classification. 50

7.3 Word2vec+LSTM confusion matrix for the binary classification. 50

7.4 LSTM confusion matrix for the multiclass classification. 53

7.5 GloVe+LSTM confusion matrix for the multiclass classification. 53

7.6 Word2vec+LSTM confusion matrix for the multiclass classification. 53

7.7 The Wilcoxon test for the neural network models considering the binary
and multiclass scenarios. 57

List of Acronyms

ANN — Artificial Neural Network
BCE — Binary Cross-Entropy
CBOW — Continuous Bag-of-Words
CCE — Categorical Cross-Entropy
CNN — Convolutional Neural Network
CPU — Central Processing Unit
DLL — Dynamic-Link Libray
ESN — Echo State Network
FNR — False Negative Rate
FPR — False Positive Rate
GloVe — Global Vectors
GPU — Graphics Processing Unit
GRU — Gated Recurrent Unit
LSTM — Long Short-Term Memory
ME — Mutation Engine
NLP — Natural Language Processing
ODL — Online Deep Learning
PE — Portable Executable
PReLU — Parametric Rectified Linear Unit
ReLU — Rectified Linear Unit
RNN — Recurrent Neural Network
SGRAM — Skip-Gram
SVM — Support Vector Machine
TFIDF — Term Frequency-Inverse Document Frequency
TPR — True Positive Rate

Contents

1 Introduction 1

1.1 Problem Definition . 2

1.2 Objective . 3

1.3 Methodology . 4

1.4 Organization . 4

2 Malicious Software 6

2.1 Overview . 6

2.2 Types . 10

2.3 Countermeasures . 10

3 Deep Learning 12

3.1 Artificial Neural Networks . 12

3.1.1 Activation Functions . 14

3.1.2 Loss Functions . 18

3.1.3 Gradient Descent Optimization Algorithms 19

3.1.4 Dropout . 20

3.2 Long Short-Term Memory Networks . 21

3.3 Word Embeddings Algorithms . 23

3.3.1 Word2vec . 23

3.3.2 GloVe . 26

4 Related Work 28

Contents xi

4.1 Binary Approach . 28

4.2 Multiclass Approach . 32

4.3 Adversarial Examples . 34

5 The MC-dataset 36

5.1 Overview . 36

5.2 Data Gathering . 39

5.3 Data Labeling . 39

5.4 Handling . 41

6 Model Implementation 42

6.1 LSTM . 42

6.2 Word2vec+LSTM and GloVe+LSTM . 44

7 Experimental Results 47

7.1 Binary Classification . 47

7.2 Multiclass Classification . 50

7.3 Discussion . 53

7.3.1 Execution Time and Parameters . 54

7.3.2 Comparison of Scenarios . 56

7.3.3 Statistical Results . 57

8 Conclusion 58

8.1 Limitations . 59

8.2 Future Work . 59

References 60

Chapter 1

Introduction

The number of malicious software, more commonly known as malwares, increases every
year [34, 54]. In one day, 230.000 new malware samples are produced1 and the continuous
growth of information security spending underscores its importance [35]. One of the most
damaging causes for people and businesses is trojan ransomware, a type of malware that
can encrypt the victim’s data so that they can no longer be accessed or even block access
to a particular system. In this way, the victims usually need to pay a certain amount of
money for the attacker to unblock their data or to re-release the system access. This is
just one example of malware whose estimated collection for criminals is around 1.4 billion
in the year 2018 [37].

Complementing the issue of information security, the number of data generated has
increased dramatically in recent years, e.g., the number of emails sent and received that
reached 196 billion in 2014 [56]. There is a trojan called TibsPK2 that is responsible for
most of the malicious emails that circulate on the network and after its execution, installs
itself in the Windows system folder and opens a door to other malware.

There are numerous examples of threats that can infect multiple systems. There is a
lot of talk today about the term big data, because we are in an era characterized by the
great volume of data, whether they are in transition, as in the case of exchanging emails
or stored, as in a possible source of infection by a ransomware. In any case, security is
still a priority issue and the damage that can be caused by malware is a major source of
concern [14].

Through all this amount of data and malware that comes up every time [53], the
analysis of this data is a complex process and multiple studies are needed to characterize

1
https://goo.gl/sMGMQg

2
https://goo.gl/5xJrsY/

1.1 Problem Definition 2

and differentiate a cleanware file (short for clean software) from a malware file. This
is known as a binary malware classification, and when malware is divided into classes
determined by its subtypes (trojan, virus, worm, etc.) or families (confiker, cryptowall,
nivdort, etc), the task is a multiclass malware classification, disregarding that malware
may have more than one subtype (ransomware trojan, for example).

The machine learning area has been very promising in terms of malware classifica-
tion [16] with better results over time, using computational techniques based on mathe-
matical models that aim to carry out a learning process through the available data, and
thus performing a classification task according to some characteristics of this data. Learn-
ing essentially has three approaches: supervised, semi-supervised and unsupervised. The
supervised and semi-supervised approaches deal with a labeled dataset, but in the case
of semi-supervised learning, generally only part of the dataset is labeled. In the unsuper-
vised case it is different, the data involved are not labeled and it is sought to group them
into distinct sets according to characteristics that are similar.

When dealing with a large amount of data, the deep learning area, which is a machine
learning subarea, is superior in achieving better results than traditional approaches [21],
using artificial neural networks (ANNs) that can be based on any of the three forms of
learning. About malware classification, ANNs are also used and show good results [58,
20, 36].

The unsupervised approach is used by word embeddings algorithms that return words
represented as mathematical objects, usually vectors. Each dimension value of these
vectors considered corresponds to a characteristic that can have a semantic meaning or
even a grammatical interpretation [60]. In the case of cleanwares or malwares, you can
consider the machine instruction codes, for example, as the words that make up software
“language” [46].

1.1 Problem Definition

The main use of artificial neural networks was initially in relation to image classification.
Some works even use convolutional neural networks (CNNs) to classify malware, usually
performing the conversion of some characteristics to images [18, 63]. However, the use of
these neural networks has been expanded to several areas and to achieve this purpose,
one must deal with different details present in each domain.

One of these domains is in language modeling [59], where the application of deep

1.2 Objective 3

learning and the recurrent neural networks (RNNs) has been widely used. The states
of these networks aid in the understanding of sentences, in which so-called “cells”, in
the case of long short-term memory neural networks (LSTMs) [26], a specific type of
RNN, process a word a time and return the probabilities of possible values that the next
word may have in one sentence. The “deep” aspect of neural networks represents the
transformation process that such data undergoes, which becomes more abstract as they
reach higher levels in theses networks. In this way, some details of the data end up being
more relevant, while other details become less important and are disregarded.

In this work, we try to explore the understanding of malwares by reading their hex-
adecimal codes as sentences. This approach was proposed by [32], while malware samples
were obtained from VirusShare3, a repository of malware collected from various Windows
systems. The native hexdump tool of Unix systems was responsible for generating the
text files containing the hexadecimal representations that were used to serve as input to
the LSTM models developed in this master’s thesis.

In addition, each type of malware has its peculiarities [11], even in the case of “lan-
guage”, since some machine instructions, for example, are common in certain types than
others [10]. Therefore, the approach of this work also tries to deal with the multiclass sce-
nario, whose classification is important to differentiate the types of malware that present
a higher level of threat and how users protect themselves in the best way4.

1.2 Objective

The main objective of this thesis was to obtain good classification results with the MC-
dataset (abbreviation for malware and cleanware), which was created specifically for this
work and can be divided into two parts: the MC-dataset-binary5 for the binary case
(classification task between two distinct classes) and the MC-dataset-multiclass6 for the
multiclass case (classification task between several distinct classes). Apart from this, there
is a hypothesis that was considered in this research:

“Does the use of word embeddings algorithms with neural networks improve the results
of malware classification?”

To answer this question, the LSTM models proposed in this work were executed
3
https://virusshare.com/

4
https://goo.gl/ShUAoZ/

5
https://goo.gl/8AhXuy/

6
https://goo.gl/YkiY7h/

1.3 Methodology 4

with and without the main unsupervised word embeddings algorithms: word2vec [40] and
GloVe [45], an abbreviation for global vectors. In addition, the MC-dataset has been made
publicly available so that other users can use it. We did not find another dataset with
the same number of samples and malwares types included into MC-dataset-multiclass like
this work. This was another goal, because there was no dataset with a good size for
deep learning, including sufficient cleanwares samples, and a contribution, as well as the
development of the neural network models for the classification.

1.3 Methodology

A classification based only on GloVe and word2vec was carried out without the use of the
neural networks. The first model named only “LSTM” was the only one executed on a
“home machine” because it required a smaller amount of RAM than in the other models.
This model did not use word embeddings algorithms as a preprocessing.

The remaining two models were run on DGX7, a supercomputer provided by NVIDIA
for research at our university. This was required by the amount of RAM required by
word2vec and GloVe. The second and third models, named “word2vec+LSTM” and
“GloVe+LSTM”, respectively, present a similar architecture as the “LSTM”, but using
word embeddings algorithms as preprocessing for the neural networks. Thus, through the
comparison of the output values obtained from the neural network models, we tried to
corroborate the classification results.

1.4 Organization

The structure of this work is divided into 8 chapters. In Chapter 2, an overview about
the malwares, describing its main aspects, types, and most current and commonly used
countermeasures against these threats. After this, Chapter 3 presents a review of the
literature about deep learning, including basics concepts of ANNs, LSTMs and the word
embeddings algorithms, word2vec and GloVe.

In Chapter 4, we have the related work of the malware classification area in the binary
and multiclass scenarios. After this, Chapter 5 presents the methodology adopted in the
creation of the MC-dataset, which is separated into MC-dataset-binary, relative to binary
classification and MC-dataset-multiclass, relative to the multiclass classification.

7
https://www.nvidia.com.br/object/prbr_080311.html/

1.4 Organization 5

In Chapter 6, the implementation of the three proposed LSTM models in this master’s
thesis, LSTM, word2vec+LSTM and GloVe+LSTM. The results of the experiments with
the binary and multiclass scenarios, discussing the classification values returned in the
tests are in Chapter 7. Lastly, Chapter 8 presents the conclusions of this work, describing
some limitations of the research and future work.

Chapter 2

Malicious Software

This chapter begins by describing malicious software since the emergence of the term
malware to the techniques and strategies developed to evade the current scanners. In
addition, the various types of malware are presented with details that differentiate them.
Finally, countermeasures with the advantages and disadvantages, including the static and
dynamic analysis used for the detection and classification of malware, are explained in
the last section.

2.1 Overview

The term malware, a combination of the words malicious and software, was first mentioned
by professor Yisrael Radain in 1990 [23]. The main function of malware is to cause harm
to a computer, mobile device, data or even people. This can occur in a variety of ways,
such as deleting, stealing, or changing data, monitoring users without permission, etc.

Since the emergence of the first virus in 1982 called the Elk Cloner [55], millions
of other types of malware have been created, with about 12 million of malwares being
reported per month today only for Windows1. The principle of virus replication, like the
Elk Cloner, remains the same until today but now it propagates through various other
systems and services. However, practically all types of malware are now being developed
with much more complex techniques and strategies that seek to evade detection tools [7],
like obfuscation, encryption, oligomorphism, polymorphism and metamorphism.

• Obfuscation: A set of techniques used to evade signature-based detection methods,
such as antivirus. Usually involves the implementation of unnecessary instructions

1
https://goo.gl/KBY2yP/

2.1 Overview 7

or even changing the order in which they are executed but maintaining the behavior.
In Figure 2.1, there is a simple dead-code insertion, in which there is the addition
of inefficient code only to make it difficult to be detected by a signature scan [68].

Figure 2.1: An example of a dead-code insertion.

• Encryption: Generally, malware encryption involves two sections, one with the
body of the code and another with the decryption loop. Again, there is an attempt
to escape signature-based detection methods because the encrypted code snippet is
only decrypted when malware is executed, before that the code has no meaning,
making it difficult to be detected by a scanner. In Figure 2.2 a code snippet is
displayed before and after decryption [47].

2.1 Overview 8

Figure 2.2: Encrypted code snippet of a malware.

• Oligomorphism: It also makes use of encryption as a defense mechanism, but in
this case, the oligomorphic malware is able to change its encryption routine to a
limited number of times. If there is more than one decryption routine, malware can
be considered as oligomorphic. As we can see in Figure 2.3, malware presents itself
differently in each new infection.

Figure 2.3: Process of infection by an oligomorphic malware.

• Polymorphism: It follows the same principle of oligomorphic malware but can
generate infinite decryptors using various obfuscation techniques. The mutation
engine (ME) tool is responsible for introducing obfuscated snippets of code and
generation of different decryptors, as represented in Figure 2.4. Generally. the

2.1 Overview 9

default function of polymorphic malwares is not changed every time a decryption
occurs, remaining basically the same.

Figure 2.4: The mutation engine and the process of infection by polymorphic malware.

• Metamorphism: Metamorphic malwares can change their internal structure com-
pletely every time an infection process occurs. Unlike polymorphic malware, a
decriptor is not required in this strategy. In Figure 2.5, we observe the generation
through ME with malware containing completely different code segments from one
to another. Despite this, the malware behavior remains the same for each created
M [62].

Figure 2.5: The creation of different code segments by the mutation engine in a meta-
morphic malware.

2.2 Types 10

2.2 Types

Malware can be divided into several types that are not mutually exclusive depending on
the function for which a particular malware was developed. Five types of malware were
included in the dataset used in this work but there are several other types of malware.

• Backdoor: This type of malware was developed to bypass authentication proce-
dures, being able to compromise multiple systems. After the bypass, more backdoors
can be installed, allowing future access to the attacker without detection by the user.

• Rootkit: The implementation of this malware is intended to make it “invisible” to
users and security softwares. It tries to take control of a computer or gain remote
access in this way.

• Trojan: The trojan horse or just trojan is probably the most common type of
malware. This malware through a “camouflage” tries to pass as a conventional
cleanware or some program that the user is convinced to download. Unauthorized
access is granted to the computer on which the trojan is installed and can be used
to monitor user activities, steal data, modify files, make the computer part of a
botnet, and so on.

• Virus: The virus is able to replicate itself several times. It can spread across
multiple connected computers on the same network, for example, and be activated
by running software that the user does not know that is infected.

• Worm: One of the most dangerous types of malware, the worm is able to spread
rapidly across a computer network exploiting operating system vulnerabilities. The
worm is also able to replicate itself, but does not need to a program running by the
user as in the case of the virus for this to occur.

2.3 Countermeasures

Basically, there are two types of malware analysis: dynamic (also called behavioral analy-
sis) and static (also called code analysis). The hybrid analysis is simply the use of parts of
each of the two analyzes. Generally, dynamic analysis consists of monitoring the behavior
of malware in a controlled environment, such as a sandbox, preventing a system infection
and observing the flow of information, instructions and function calls while the malware
is running [61].

2.3 Countermeasures 11

The problems of dynamic analysis are the time required for monitoring, the analysis
environment might not be completely secure, and the difficulty in detecting multipath
malware [41]. In contrast, dynamic analysis is the best solution for metamorphic malware.
In this work, only the static analysis that seeks to detect the malwares without executing
them was explored. Static analysis can be divided into techniques based on signature
detection or heuristics.

• Signature-based detection: The most known technique of static analysis since
it is a commonly used approach to antivirus software. In this case, the signatures
may be pattern strings that are injected as malicious code that characterizes the
malware, and being added to the antivirus databases in the updates. This procedure
is less costly than other approaches, but frequent updates are necessary for the new
malwares that emerge every day.

• Heuristic-based detection: Unlike signature-based detection, this technique looks
for instructions or commands that are not present in conventional software, making
detection better for new malwares. For example, you can search in a program for
commands that are considered malicious, such as deleting some type of essential file
and then classify this program as a malware. It is also possible to assign varying
weights to certain commands that are considered malicious to classify software as
malicious or not.

About obfuscation and other malware strategies that do not include metamorphism
to evade detection tools, static analysis, depending on the way it is performed. is able to
detect these threats (including the implemented models of this work). There are common
code snippets even in the case of polymorphism that can be detected, which does not
occur in metamorphic malwares, since the code is always different, using the most varied
obfuscation techniques.

Considering the identification of malware, whether by dynamic or static analysis, it
is important to verify not only the accuracy and the true positives, but also the false
negatives and false positives. Classifying a malware as a cleanware is apparently the most
dangerous case but also classifying a cleanware as malware can be quite damaging in
financial terms for businesses and governments.

Chapter 3

Deep Learning

A review of the literature about deep learning is presented in this chapter since the devel-
opment of the first artificial neural networks. The functions of activation, loss, gradient
descent optimization algorithms, backpropagation, and dropout are described, which are
usually present in most neural networks. We also present the architectures and charac-
teristics of the long-term memory networks and then the unsupervised word embeddings
algorithms, word2vec and GloVe, which were important for the models implemented in
this work.

3.1 Artificial Neural Networks

The first neural network model created with electrical circuits and considered the be-
ginning of the development of ANNs occurred in 1943 [38]. The main idea behind the
elaboration of ANNs is the creation of models that simulate biological nerve systems, such
as the brain, for instance, and thus be able to learn from the data [18].

The simplest architecture of a neural network is the feedforward neural network [8], as
we can visualize in Figure 3.1 and which is best explained in [3], another work published
by the same authors of this master’s thesis. In its smallest form, this architecture is
represented by an input layer, a hidden layer and an output layer, and has no cycles.

3.1 Artificial Neural Networks 13

Figure 3.1: Representation of a feedforward neural network with three layers

Given an input vector i (represented by the values assigned to the neurons of the
input layer), the weight matrix Gih (represented as a set of transformations occurring
in the neurons of the input layer destined to the neurons of the hidden layer) and the
activation function fh (responsible for the activation of the neurons of the hidden layer),
we have the Equation 3.1 representing the vector of the hidden layer h.

h = fh(iGih) (3.1)

Following the previous reasoning, given an input vector h (represented by the values
assigned to the neurons of the hidden layer), the weight matrix Gho (represented as a set
of transformations occurring in neurons of the hidden layer destined to the neurons of the
output layer) and the activation function fo (responsible for the activation of the neurons
of the output layer), we have the Equation 3.2 representing the vector of the output layer
o.

o = fo(hGho) (3.2)

Years later, the first neural network consisting of a supervised learning algorithm, the
perceptron [49], was developed. Its architecture can be seen in Figure 3.2. The percep-
tron works as a basic ANN, being able to receive several input values (i1, i2, ..., ik) and
producing output o through the product with the weights (g1, g2, ..., gk). This produced
output is unique, being represented by the Equation 3.3, in which the bias b is added to
allow the classifier to change its decision boundary to either right or left, for example.

3.1 Artificial Neural Networks 14

Figure 3.2: Architecture of the perceptron neural network.

f(i1, i2, ..., ik) =

8
<

:
1, if

P
ikgk + b � 0

0, otherwise
(3.3)

The perceptron problem is its classification capacity, being limited to outputs 0 or 1,
making it impossible to work with problems involving more classes. A classic example is
the problem of XOR [67] that was solved with the multilayer perceptron, which gave rise to
the current neural networks, which mostly have a much more complex architecture. This
increased complexity of neural networks is one of the characteristics of deep learning, also
characterized by the implementation of multiple hidden layers, providing a higher level
of abstraction and making deep neural networks a more specific approach to machine
learning and its conventional algorithms.

3.1.1 Activation Functions

The insertion of the activation functions in the neural networks had as purpose to make
the networks more powerful to deal with a higher level of abstraction, being able to work
with more complex problems and data. This occurs mainly with the use of non-linear
functions, which can return real values, for instance, which does not occur in the case of
the perceptron because changes in weights and bias, even though small changes in values,

3.1 Artificial Neural Networks 15

may change completely the network that can assume only an output of value 0 or 1.
The most known non-linear activation functions are the sigmoid, hyperbolic tangent and
rectified linear units (ReLU).

• Linear: It is the activation function used in the perceptron and can be seen in
Figure 3.3 and Equation 3.4. In relation to deep learning, linear function is the
worst option for dealing with most complex problems with many parameters. It
has an output in the (�1,1) range, and a major drawback is that every time a
backpropagation is performed, the gradient ends up continuing the same and the
error is not improved. In addition, the “deep” characteristic of the neural network
is lost because no matter how many layers with linear transformations the network
has, the final output remains a linear transformation of the input, all layers could
be reduced to a single layer with neurons whose activation function is linear.

Figure 3.3: Linear function graphic.

f(x) = x (3.4)

• Sigmoid: The sigmoid or logistic function can be seen in Figure 3.4 and Equation
3.5. As advantages, the sigmoid is able to always return values between the (0, 1)

range, unlike the linear function, for example, which may have an output in the
interval (�1,1). Therefore, it is able to work with non-binary activations and its
gradient is smooth, with no abrupt changes as in the perceptron.

3.1 Artificial Neural Networks 16

Figure 3.4: Sigmoid function graphic.

S(x) =
ex

ex + 1
(3.5)

• Hyperbolic tangent: The hyperbolic tangent or tanh has a sigmoid-like trend and
can be seen in Figure 3.5 and Equation 3.6. A tanh can have outputs between the
(�1,�1) range and so you can choose the tanh instead of the sigmoid. In fact, tanh
is no longer a sigmoid by its S-shape, but the logistic function is more commonly
called the sigmoid. Other reasons for the use of tanh rather than sigmoid are the
strongest gradients from tanh whose derivatives are larger and bias in the gradients
is also avoided [33].

3.1 Artificial Neural Networks 17

Figure 3.5: Hyperbolic tangent function graphic.

tanh(x) =
1� e�2x

1 + e�2x
(3.6)

• ReLU: In Figure 3.6 and Equation 3.7, we can observe the function ReLU that
simply returns a value x, case x is positive and 0 otherwise. The disadvantage
of using ReLU for some problems is that all negative values become zero, since
(0,1) is the range covered by the function, decreasing the learning ability of the
network. There is another version of the ReLU function called Leaky ReLU, which
instead of the zero gradient, uses a very small gradient, allowing the network to
continue learning [66]. In any case, ReLU is the most used activation function
in deep learning, demanding a computational cost less than the sigmoid and tanh
and trying to solve the vanishing gradient problem [25] by obtaining more sparse
representations [19].

3.1 Artificial Neural Networks 18

Figure 3.6: ReLU function graphic.

R(x) = max(0, x) (3.7)

3.1.2 Loss Functions

The loss function, objective function or cost function, is intended to minimize the cal-
culated error. In Equation 3.8, we can visualize one of the most commonly used loss
functions, in which MSE represents the mean squared error. MSE is the sum of squared
distances, considering our target variable and predicted values.

MSE =

Pn
i=1(yi � ypi)

2

n
(3.8)

In the case of neural networks, backpropagation is responsible for this error calcula-
tion, in which the error usually traverses a path back through the previous layers of the
network. As this backpropagation occurs, the weights and biases are updated, trying to
minimize the error. There are several loss functions that can be used in neural networks.
Choosing this function for your neural network depends on the problem you want to solve.
However, some are more used and known, such as the classification loss functions used in
this work, binary cross-entropy (BCE) and categorical cross-entropy (CCE).

• Binary cross-entropy: Before the BCE receives its input, there must be a pre-

3.1 Artificial Neural Networks 19

ceding sigmoid function that gives its output values to the BCE. This choice of
activation function occurs because the sigmoid can return outputs of value either 0
or 1 and as the name itself says, this cross entropy aims to perform a classification
of the binary type. The Equation 3.9 is relative to the loss function BCE for N

training examples.

BCE = � 1

N

NX

j=0

ojlog(ôj) + (1� oj)log(1� ôj) (3.9)

• Categorical cross-entropy: The CCE is similar to BCE but aims to perform
a classification that involves several classes and not just two classes. For this to
occur, the Equation 3.10 differs as it traverses all output nodes through the sum
that considers M and tj,m is 1 if sample j is in class m and 0 otherwise. The predicted
probability pj,m reffers to the change of sample j be in the class m. Preceding the
CCE, we have the softmax activation function1 that can be seen in the Equation
3.11 and is responsible for the input values in the CCE.

CCE = � 1

N

NX

j=1

MX

m=1

tj,mlog(pj,m) (3.10)

�(xm) =
exm

PJ
j=1 e

xm
(3.11)

3.1.3 Gradient Descent Optimization Algorithms

The gradient descent optimization algorithms are intended to assist in the search for
a path that minimizes the objective function by updating network parameters in the
opposite direction of the calculated gradient. There are various forms of gradient descent
whose characteristic that differs is the amount of data used to compute the objective
function gradient. The most commonly used form is the mini-batch gradient descent that
performs an update for each mini-batch of any number of training examples, as described
in Equation 3.12, where ⌘ is the learning rate that determines the number of steps to arrive
at a local minimum, ✓ are the parameters (such as weights, for example) with x(j) and y(j)

being each training example and label, respectively. Complementing the Equation 3.12,
r✓ represents the gradient associated with the parameters and J the Jacobian matrix.

1
https://goo.gl/5Sfq3V

3.1 Artificial Neural Networks 20

✓t+1 = ✓t � ⌘r✓J(✓; x(j); y(j)) (3.12)

In terms of optimization algorithms, the most used are those of adaptive learning that,
unlike those with a constant learning rate, such as those based on the standard stochastic
gradient descent, try to update the learning rate per parameter, higher depending on the
behavior of previous gradients. The adam [31] is one of the examples of adaptive learning
gradient descent optimization algorithm and can be seen in the Equation 3.13, where t

represents a step in time, wt is the first moment, vt the second moment and generally
�1 = 0.9, �2 = 0.999, and ✏ = 10�8.

✓t+1 = ✓t �
⌘q

vt
1��t

2
+ ✏

wt

1� �t
1

(3.13)

3.1.4 Dropout

A serious problem that can occur in neural networks is when some models learn a lot
about training data, including details and noises. This can negatively impact learning
on new data and accuracy in terms of classification. The name of this modeling error is
overfitting. Some of the ways to mitigate the overfitting problem include penalties for
loss functions and weights, such as stopping training as the results of the validation set
begin to worsen [43]. For example, in logistic regression there are the known penalties L1
(Laplacian) and L2 (Gaussian).

Another technique that tries to solve the overfitting problem is called dropout. The
main idea of the dropout is to randomly drop some of the network’s neurons along with
their connections, preventing these neurons from “learning too much” [57]. Generally, a
probability of p = 0.5 is used for the drop of the neurons because this value is closer to
the optimal one that covers a larger number of networks and tasks that can be executed.
In the Figure 3.7, we can observe a simple example of execution of the dropout technique.

Figure 3.7: Dropping of neurons in a neural network with one hidden layer and p = 0.5.

3.2 Long Short-Term Memory Networks 21

3.2 Long Short-Term Memory Networks

The main characteristic that differentiates an RNN from other neural networks is the
formation of direct cycles between their neurons. This provides time processing and
sequential learning to the network with the creation of internal states. These details and
the complexity of the RNNs usually cause them to require a greater amount of memory
and a longer execution time.

The internal states in the RNNs keep part of the activation of the previous entries and
perform a feedback of the calculations of the network with each step of time. Defining
Ghh as the weight matrix of the hidden layer represented by the set of transformations
that occur in the hidden layer neurons destined to the neurons of the hidden layer itself,
we have the Equations 3.14 and 3.15.

h(t) = fh(i(t)Gih + h(t� 1)Ghh) (3.14)

o(t) = fo(h(t)Gho) (3.15)

The neural network LSTM is a subtype of RNN that seeks to solve the problem of
long-term dependency [27]. The memory cells present in the LSTMs were implemented
to solve this problem because they can preserve the states against long periods of time.
We can observe the basic architecture of a block or unit of LSTM memory in Figure 3.8.
We can have several of these units that connect to a standard structure of an RNN or
other units.

3.2 Long Short-Term Memory Networks 22

Figure 3.8: Architecture of an LSTM memory block. The neural network is usually
composed of several of these blocks.

Memory cells through self-connections store the network time state. Also in each unit
there are 3 gates, the forget gate, the input gate and the output gate. The forget gate
acts by using the internal state of the cell before adding it back to the cell as input. This
happens with the use of a self-recurring connection, adaptively redefining the memory cells
in an adaptative way. The input gate attempts to control the input activations in relation
to the memory cell. The control of the output of the activation cells is responsibility of the
output gate. Finally, the peephole connections (the connections that leave the memory
cell destined to the gates) are an attempt to learn the precise timing of the outputs, but
they do not greatly increase the performance and are sometimes are omitted in the LSTM
units’ representations [6].

Defining y, x, w, and z as the forget gate, input gate, output gate, and cell activation
vectors respectively, Gix as the weight matrix of the input vector destined to the input
gate, Ghx as the weight matrix of the hidden layer destined to the input gate, Gzx as the
weight matrix of the cell vector destined to the input gate, Giy the weight matrix of the
input vector destined to the forget gate, Ghy as the weight matrix of the hidden vector
destined to the forget gate, Gzy as the weight matrix of the cell vector destined to the
forget gate, Giz as the weight matrix of the input vector destined to the cell, Ghz as the
weight matrix of the hidden vector destined to the cell, Giw as the weight matrix of the

3.3 Word Embeddings Algorithms 23

input vector destined to the output gate, Ghw as the weight matrix of the hidden vector
destined to the output gate and Gzw as the weight matrix of the cell vector destined to
the output gate, we have the Equations 3.16, 3.17, 3.18, 3.19, and 3.20.

x(t) = �(Gixi(t) +Ghxh(t� 1) +Gzxz(t� 1) + bx) (3.16)

y(t) = �(Giyi(t) +Ghyh(t� 1) +Gzyz(t� 1) + by) (3.17)

z(t) = y(t)z(t� 1) + x(t) tanh(Gizi(t) +Ghzh(t� 1) + bz) (3.18)

w(t) = �(Giwi(t) +Ghwh(t� 1) +Gzwz(t) + bw) (3.19)

h(t) = w(t) tanh(z(t)) (3.20)

3.3 Word Embeddings Algorithms

Unsupervised word embeddings algorithms are a distributed representation of text that
has the idea of mapping words into vectors of real values in continuous or embedded
representations. The concept of embedded word consists of a concept of learning through
a text in which words that have the same meaning present a similar representation.
The values present in the vectors are learned as a conventional neural network and the
embedded words can serve as a pre-training for a neural network such as an LSTM. There
are two unsupervised word embeddings algorithms that are the most commonly used and
known [2], which are covered in this work, word2vec and GloVe.

3.3.1 Word2vec

The introduction of word2vec was quite impressive in the natural language processing
(NLP) scenario. When we deal with NLP, words are usually treated as discrete atomic
symbols. It is easier to differentiate between horse and trojan related images than both
represented as words in a malware context, for example. Working as a simple neural net-
work, the performance of word2vec was superior to other word embeddings algorithms that

3.3 Word Embeddings Algorithms 24

were published until its release, such as the neural network language model (NNML) [9].

In Figure 3.9, we can observe the example in word2vec for the input vector corre-
sponding to the word horse. The hidden layer in this case has a linear activation function
for its neurons and in the output layer the softmax function is used. The vocabulary
consists of all the words that appear in the text that we are considering or in the words
that appear at least a certain number of times. Thus, the input vector is represented by
n components that constitute the total number of words present in the vocabulary.

The component with value 1 associated in Figure 3.9 represents the word horse in
that position of the input vector. Meanwhile, all other words are represented by 0 in their
positions in this same vector. In the output, we have a vector with the same number of
components of the input vector but with values corresponding to the probabilities that
the words appear next to the word horse, for example. Therefore, the word trojan would
have a value between 0 and 1 which would correspond to the probability that it appears
next to the word horse. It is important to note that the sum of all the probabilities
returned in the output layer must result in the value 1.

Figure 3.9: Architecture of the word2vec considering the input vector for the horse ex-
ample.

This closeness between words in a given text can be considered through a window of
size c. An example with c = 1 for the case of the word horse would be the probability
that the word trojan would appear at a distance of 1 for horse in terms of words, either
forward or back in text. This can be seen in Figure 3.10, in which two prediction models
used in word2vec are observed, the skip-gram (SGRAM) and the continuous bag-of-words
(CBOW) with the Equations 3.21 and 3.22 being relative to these models, respectively
and in which v1, v2, ..., vT represent the sequence of words.

3.3 Word Embeddings Algorithms 25

Figure 3.10: Example of a dataset using the skip-gram and CBOW models

SGRAM = T�1
TX

t=1

log p(vt|
X

�cjc,j#0

vt+j) (3.21)

CBOW = T�1
TX

t=1

X

�cjc,j#0

log p(vt+j|vt) (3.22)

We can notice a reversal of the pair (context, target) in skip-gram, which does not
occur in CBOW. This change interferes with the input and output of word2vec. In the
case of skip-gram, the architecture of word2vec remains similar to Figure 3.9. However,
when we consider CBOW, the architecture becomes slightly different with the inclusion of
more input vectors in the network for each word related to the context. The probabilities
can be obtained by the softmax activation function adapted to the skip-gram in Equation
3.23, where uv is a target embedding vector and dv is a context embedding vector for v,
swapping both vectors in the case of CBOW.

p(vc|vt) =
ed

T
vcuvt

PV
v=1 e

dTv uvt

(3.23)

The inversion may seem to show no significant change between the prediction models
but this is not true. The skip-gram gives better results [39] by treating each pair (context,
target) as new samples but CBOW has a faster execution. However, when dealing with
large datasets, we must also be aware of the problem of high dimensionality [65] and
sparsity, since not always a larger number of samples returns more precise results.

Finally, the purpose of word2vec is to learn about words that appear in similar con-
texts. In the case of the words horse and trojan, the algorithm could help in the classifica-

3.3 Word Embeddings Algorithms 26

tion of a text among the categories information security or traction animals, for example.
Some analogies could also be made, such as horse� animal + trojan = malware.

3.3.2 GloVe

GloVe is a counting-based model, different from word2vec, which is a predictive model.
The implementation of GloVe was an attempt to use the advantages of counting methods
and linear extraction of meanings that occurs in word2vec, for example. The name of the
algorithm, global vectors, expresses the ability of the algorithm to directly capture the
statistics of an entire text or dataset.

In Table 3.1, we can see an example of how GloVe works for trojan and worm, demon-
strating the frequency between words present in rows and columns within the same con-
text. The last column of Table 3.1 could be any random word in the text or dataset that
had a minimal degree of relationship with trojan and worm.

Table 3.1: Co-occurrence between words considering the examples trojan and worm.

Probability and ratio s = horse s = replication s = malware s = belgian

p(s|trojan) high low high low
p(s|worm) low high high low
p(s|trojan)
p(s|worm) high low ⇠ 1 ⇠ 1

Defining Dqs as the count of the instances in which q is in the context of s, the terms
bq and b̃s as the respective biases to q and the statistical mean of s, vq representing the
vector of the main word and vs the vector of the probed words, we have the Equation
3.24. The same reasoning can be seen in the Equation 3.25 only by changing the variable
s to r, where vr is the vector of the context word and br the bias.

log(Dqs) = vTq ṽs + bi + b̃s (3.24)

log(Dqr) = vTq vr + bi + br (3.25)

The f weighting function is used to avoid learning only extremely common word pairs.
The authors of GloVe chose amax = 100 and empirically ↵ = 0.75 as the most appropriate
value for the incognito in the exponent of the Equation 3.26. Finally, considering a possible
set of words like s, q = trojan and r = worm, we finally have E as the cost function

3.3 Word Embeddings Algorithms 27

expressed in the Equation 3.27, where U is the size of the vocabulary.

f(a) =

8
<

:
(a
amax

)↵, if a < amax

1, otherwise
(3.26)

E =
UX

q=1

UX

r=1

f(Dqr)(v
T
q ṽs + bq + b̃s � log(1 +Dqs))

2 (3.27)

As we can see, Table 3.1 is formulated through the implementation of a co-occurrence
matrix, in which each entity in a row (words) is paired with the entities present in the
columns (context). In the example, it is noted that the words malware and belgian are
not good for discriminating trojan and worm, unlike horse and replication.

It is expected that the co-occurrence matrix will be filled with zeros when we consider
a whole dataset. However, we have the factorization of the matrix for vectors of words and
vectors of contexts (features) in the search for dimensionality reduction, and this occurs
with the attempt to minimize the reconstruction loss function. There is a normalization
of counting and exponential-logarithmic smoothing, in which the most recent observations
carry a greater weight than the older ones, technique also used in predictive models, such
as word2vec. In the GloVe article, it is stated by the authors that the results are obtained
faster and are better than those returned by word2vec, regardless of the velocity [45].

Chapter 4

Related Work

This chapter follows a chronological order on related work, since more papers with different
approaches about viruses and other types of malware started to be published. The main
aspects of the papers are discussed in relation to the implemented models of this work.
Lastly, the adversarial examples are also considered because of their current relevance for
the malware classification.

4.1 Binary Approach

The first mention of computer viruses with an emphasis on dealing with these threats
in a comparative way with viruses in humans occurred in 1988 [42]. An epidemiological
analysis is carried out and situations of isolation, quarantine, immunization, among others,
are described. All of these situations are approached analogously between viruses in
humans and computers, providing ideas that protect computer systems and networks.

Years later [30] still under the biological aspect, is designed the first neural network
for defense against computer viruses. In this case, this antivirus technology had as main
objective to detect boot viruses that at that time were responsible for 80% of the incidents.
The boot sector was a small code sequence of 512 bytes in size. The number of existing
viruses was also very small (about 4000 viruses, including 250 of boot) compared to the
current amount. Despite the simplicity of the neural network model and the small number
of virus samples, the problem has already been addressed in the form of n-grams1 (3-byte
strings or 3-grams). A training set with 150 samples included 76.500 3-grams, in which
25.000 were distinct. Only the most frequent 3-grams were considered, and the network
had only one layer and 50 weights, so they tried to reduce these 25.000 3-grams to a

1
https://web.stanford.edu/~jurafsky/slp3/3.pdf

4.1 Binary Approach 29

window of size 50. The result between the virus and non-virus classes was a rate of about
15% of false negatives and 0.02% of false positives with an estimated accuracy of 85% for
new boot viruses.

Different types of features have been proposed in another work [52]. Three features
were used and one of them was the portable executable (PE) headers, that are a Windows
relevant file format for executables, dynamic-link libraries (DLLs), object file, etc. The
headers are responsible for informing how the respective PE mapping to the dynamic
linker is done. The remaining features were the n-grams strings (obtained by extract-
ing strings from binaries, such as “kernel” and “advapi”, for example) and byte-sequences
(using the hexdump tool, transforming the binary files in hexadecimal). The dataset
consisted of 4.266 files in total, including 3.265 malware and 1.001 cleanwares, all labeled
as malicious or benign. All malicious executables were obtained from various FTP sites
and the labels were assigned by a commercial virus scanner that was not specified in the
article, with 5% of the malware in the dataset consisting of trojans and the remainder by
viruses. The cleanwares were mostly collected from Windows 98 and others downloaded
from the Internet. The URL to the dataset is no longer available. The machine learn-
ing algorithms used were an inductive rule-based model (RIPPER classifier) for the PE
headers, probability-based model (naive bayes) for the n-grams strings and multi-naive
bayes model for the byte-sequences. The best result of accuracy was the multi-naive bayes
with 97.76%. The naive bayes had the lowest false positive rate at 3.80%. There was not
an approach mixing the different types of features and the dataset that served as input
for the RIPPER model was smaller, with only 244 files, making impossible an accurate
evaluation in relation to the other classification algorithms.

The features approach of this master’s thesis was mainly based on a work published
in the last decade [32]. Again, using the hexdump tool, each executable of the dataset
was converted to hexadecimal codes and n-grams were made from the combination of each
4-byte sequence, resulting in 256.000.000 features. The dataset consisted of 3622 executa-
bles, including 1651 malwares and 1971 cleanwares. The cleanwares were collected from
Windows 2000, XP and SourceForge2. The malwares composed of viruses, worms, and
trojans were obtained from VX Heavens3 and from forensic computer experts at MITRE
Corporation4. Several classifiers were used, such as term frequency-inverse document fre-
quency (TFIDF), naive bayes, decision tree (J48), support vector machine (SVM) and

2
https://sourceforge.net/

3
http://83.133.184.251/virensimulation.org/

4
https://www.mitre.org/

4.1 Binary Approach 30

boosted [15]. Because of the large number of features, there was a reduction for the
500 most relevant n-grams. The training and test sets were cross-validated using 10-fold
cross-validation, which consists of randomly partitioning the executables into 10 disjoint
sets of the same size, choosing one of them to be test set and the other 9 combined to be
the training set. This procedure is repeated 10 times, choosing a different test partition
every time. The classification experiments performed occurred in the larger dataset of
3622 executables and in another smaller dataset. In relation to the largest dataset that
returned the best result, an accuracy of 99.58% was obtained with the boosted J48. The
authors report a high computational overhead and time to perform the experiment on the
larger dataset but do not cite more details about the features used and runtime.

Three years later, another article [10] did a statistical analysis of the distributions of
opcodes, which are the machine language instructions that specify the operations to be
performed by the programs. Despite the small sampling of 67 malware executables that
have been disassembled, that is, they have gone through a reverse engineering process
using IDA PRO5, more relevant opcodes to discriminate cleanwares from malwares have
been discovered. The author found that in fact the rarer opcodes present in executables
are a more important predictor for differentiating malware from cleanwares than the other
way around. In addition, it is also possible to differentiate malware types through these
rare opcodes often below 0.2% of the total opcodes. The most frequent opcodes were
responsible for explaining only a variation between 5% and 15% in terms of prediction
while the rarest had a variation between 12% and 63%. The approach of this master’s
thesis tried to implement this idea in terms of the n-grams considering the sequences of
bytes, but the obtained results were inferior by the large number of features generated
and rare n-grams were not a good option for differentiation.

Another work [51] with a huge dataset and false positive detection rate of only 0.1%
was published in 2015. The dataset was created from benign and malicious binary files
obtained from Invincea’s6 own computers and its client network. The total files included
in the dataset were 431.926, with 350.016 labeled as malware and 81.910 as benignware.
Labeling occurred through VirusTotal7, a site made up of several antivirus products and
which returns the results of these scans for uploading one or more files by users. Unlike
this master’s thesis, the authors labeled as malware files that were considered malware
by 30% or more of antivirus scans and those with a malware alarm of 0% were labeled

5
https://goo.gl/WHK8nq/

6
https://www.sophos.com/en-us/lp/invincea.aspx/

7
https://www.virustotal.com/

4.1 Binary Approach 31

benignware. Files that were detected as malware by more than 0% and less than 30% by
antivirus softwares have been discarded by the uncertainty of their malignant or benign
nature. The experiments were run on an Amazon EC2 g2.8xlarge instance with 60 GB of
RAM and four 1.536 CUDA core graphical processing units, but only one was used. The
Keras8 framework was used for the implementation of the neural network model proposed
by the authors. Four types of features were considered for the creation of what served
as input to the neural network. The first feature was obtained by binary values from
a two-dimensional byte entropy histogram that modeled the distribution of bytes in the
benign and malignant files. The second feature was derived from the input binary’s import
address table, constituting the initialization of an array with 256 integers with value zero
and that can be incremented according to another table of DLLs, creating a model that
tries to capture the semantics of external function calls. The third feature is similar to
the extraction of the PE headers performed in [52] but in this case it was through the
numeric fields present in the binary files and using the Python “pefile” parsing library,
entering the names also obtained in an array of size 256 and with that, trying to help the
neural network in learning signatures of malware. The last feature is just a concatenation
of all the previous features in a large vector and according to the authors, the reduction to
a smaller vector dramatically reduced memory usage and central processing unit (CPU)
time to load and train the neural network without greatly harming the ending result of
accuracy. The neural network model was elaborated with four layers, in which three were
constituted by 1024 nodes, using the dropout technique and the parametric rectified linear
unit (PReLU) [24], as activation function in the first two layers and the sigmoid function
in the last hidden layer, being the fourth layer related to the prediction. The proposed
features were analyzed together and separately, with the metadata extracted from the PE
obtaining the best result. In the set with all features, the accuracy was 95.2%. The input
of the neural network was reduced to 256 and 200 epochs were performed for training.
Each epoch took about 15 seconds to be trained and the entire model was trained in
about 40 minutes, and the training chart showed no signs of overfitting. The article in
this experiment provided a link to the code of the neural network but unfortunately it is
not possible to see it because it is protected by copyright terms and the dataset is also
not accessible.

Despite the wide use of n-gram byte in numerous works, this approach was questioned
in [48], which disagrees with [52] on increasing the amount of data necessarily improve
the results. The authors have shown that there is always a tendency to overfitting even

8
https://keras.io/

4.2 Multiclass Approach 32

with the 6-gram that got the best results in the experiments and generated 1.6 million
features. The dataset was constructed with 400.000 training samples, divided equally
between benign and malignant files and 77.349 test samples, 40.000 of malignant files and
37.349 of benign ones. In addition, the memory consumption is very high, and it is better
to include other features for classification as well. Therefore, the authors consider that the
n-gram byte approach is overestimated and had never been questioned for static malware
analysis. In this master’s thesis, considering the context of deep learning and byte n-gram,
we looked for the best that we can get from this approach to use it in conjunction with
other features in other works, considering the help of word embeddings algorithms.

Three neural network architectures (LSTM, gated recurrent unit (GRU) [12] and
CNN) are proposed in another work [5]. The LSTM with temporal max pooling and
logistic regression returned the best result according to the authors, with the false pos-
itive rate being only 1%. They also state that features learned by the LSTM language
model help improve performance when compared to other random-weighted-based and
initialized architectures such as the echo state network (ESN) [28]. The dataset used in
the experiments with the three neural networks was created from 50.000 files for training,
10.000 for validation and 15.000 for testing. The number of files malignant and benign was
equal, that is, 37.500 of each type. As input to the LSTM with temporal max pooling, a
dynamic analysis of the files was performed and a vector of 114 positions were created for
the API calls found in the dataset. The second stage considered after the outputs returned
by the LSTM, was constituted of the logistic regression as final classifier. The maximum
number of epochs was 15, with the mini-batch used being 50 and 1.500 hidden units. As
in this master’s thesis, the Keras framework was also used for the implementation of the
LSTM model.

4.2 Multiclass Approach

A malware family consists of malicious code that shares the same characteristics and
behaviors [17] and an approach considering this was made in this decade [13] to solve the
problem of sparse binary features with the implementation of a capable architecture to
handle 2.6 million labeled samples, returning an error rate of 0.49% with a single neural
network and 0.42% with a set of neural networks. To obtain good classification results,
random projections that reduced dimensionality in the input space by a factor of 45 were
used, allowing the neural network to be trained on a high-dimensional input data. The
number of malicious samples present in the dataset was 1.843.359 and 817.485 were of

4.2 Multiclass Approach 33

benign samples. Most of the files were manually labeled by analysts and the remainder
by other sources, such as CERT9. Each malicious file was also associated with a malware
family. From these families, a set of files belonging to the 134 most important families
to be identified was selected. This was determined by analysts who also created another
generic class to label the remaining malware files that were not considered to belong to
these 134 families. Three different features were extracted that consisted of system strings
for creating unknown malware files on a virtualized machine, denominated 3-grams of
system API calls (three consecutive system calls), and a combination of API call with
an input parameter (which assists in the individual identification of malware families).
These features were extracted in real time with the dynamic analysis of malware behavior.
Two classification techniques were used, including logistic regression and neural networks.
About the neural networks, a final softmax classification produced the probability that the
file would belong to one of 136 classes, including 134 families of malware, a generic class
of malware and a class corresponding to cleanwares. Several network architectures were
used, and the authors concluded that more than one layer did not have many benefits,
the neural network of a layer without pre-training returned the best results with an error
rate of 9.53% for multiclass classification. The sparse binary inputs were 179.000, followed
by 4.000 linear units corresponding to the random projection. After that, 1.536 sigmoid
hidden units and to finish, the final layer corresponding to the softmax classifier. The
momentum value used for training was 0.9 and learning was 0.3, using a NVIDIA C2075
graphics processing unit (GPU) and taking about three hours. Despite the robust work,
the dataset used and the code on the different neural network architectures implemented
were not made available. A dynamic analysis was also carried out, differently from this
master’s thesis, with an enormous quantity of samples that requires resource and time,
even with manual labeling of the samples by several analysts.

In 2015, the Microsoft malware classification challenge10 (BIG 2015) occurred. The
dataset still available has about 400 GB, consisting of 9 different malware families with
21.741 samples, 10.868 for training and 10.873 for testing. The number of samples of
each class is not uniform in this dataset, which presents almost 3.000 instances of the
Obfuscator.ACY family and less than 500 of the Vundo family, for example. The winner
of the challenge made a feature extraction engineering composed of opcodes count, 4-
gram byte, single byte frequencty, and so on. The modeling was done with XGBoost (the
machine learning library focused on gradient boosted trees11) and the accuracy obtained

9
https://goo.gl/pHFQMW/

10
https://www.kaggle.com/c/malware-classification/

11
http://blog.kaggle.com/2017/01/23/a-kaggle-master-explains-gradient-boosting/

4.3 Adversarial Examples 34

was 99.87%. This work was very relevant due to the large number of different features
that were considered but the focus was on obtaining the best possible classification for
the Microsoft dataset to overcome the challenge, not being necessarily a better approach
to other malware classification scenarios.

Using the same Microsoft dataset, [1] managed to get an accuracy of 99.77%. Exe-
cuting only static analysis, hexadecimal-based features of malware files were extracted,
including 1-gram, 2-gram, metadata, entropy, strings histograms and grayscale represen-
tation of images. Other features were extracted from the assembly of these same files
(through IDA PRO), including frequency of symbols, opcodes, registers, etc. The feature
fusion occurred with the creation of a long vector, representing all this extracted informa-
tion. The authors also used XGBoost and a laptop with a quad-core processor (2 GHz)
and 8 GB RAM. 2-gram featured more than 65.000 features and took about 10.123 sec-
onds to extract. Because of this amount of time, 3-gram and 4-gram were discarded. The
accuracy obtained was lower than the work that won the challenge, but the complexity
and computational resources used were smaller.

4.3 Adversarial Examples

One of the most important current issues in deep learning and information security are
the adversarial examples, which are made up of entries created purposely to misclassify
the results of deep neural networks [44] according to the goals of the attacker. This can
occur in the form of white-box, when there is prior knowledge of how the deep neural
network was modeled or black-box, which is otherwise, when the model is unknown.

In the malware analysis, the problem is also pertinent [22], in which it is possible to
do a misclassification by classifying a benign file as malignant and vice versa, for example.
In the case, adversarial examples are applied in a malware detector for the classification
of dataset DREBIN [4], which contains files from Android system. DREBIN consists of
123.453 benign and 5.560 malware files. A malware detector was trained specifically for
the problem that considered as features, vectors composed of binary indicators of system
file calls, whether they execute these calls or not, similar to the entries of [5]. Also,
the case considered as the worst by an attacker in this article, was the total knowledge
about the model and training data, that is, completely white-box. Then we modify
the vectors that can only have binary values in a minimal way that is able to change
the classification, like adding system calls that do not occur, however in a way that is

4.3 Adversarial Examples 35

not abrupt and influences in too many intermediate changes of the gradients. It was
considered at most a change of 20 system call features to create the adversarial examples
in the problem. For these modifications to preserve the functionality of the applications
intact, it was only possible to change some files originating from Android itself. The
deep neural network architecture considered for classification in DREBIN by the authors
consisted of two hidden layers with 200 neurons in each. Of all the features, only 0.0004%
or 89 system calls were specifically used to deceive the classifier. Finally, considering
a black-box situation for the models implemented in this master’s thesis and described
in Chapter 6, probably a problem could be the increase of the computational resources
necessary for the appropriate classification of the malwares. In the case of white-box, the
problem could be a more serious misclassification, with a new interpretation of the inputs
by the network models.

Chapter 5

The MC-dataset

In this chapter, the methodology adopted for the creation of the MC-dataset used in this
master’s thesis is discussed. The dataset, besides being elaborated exactly for the purpose
of this work, also had the objective of public disclosure to other users and researchers to
use the available data. Considering the number of samples and the exclusivity of the
classes present (especially the cleanwares), the MC-dataset at the time it was launched,
presented itself as the largest public labeled dataset available.

5.1 Overview

The dataset was divided into two parts, one part related to the binary (MC-dataset-
binary) case with the cleanware and malware classes, and the other part related to
the multiclass case (MC-dataset-multiclass) with the classes backdoor, cleanware, tro-
jan, rootkit, virus and worm. Both parties followed practically the same methodology for
creation, which can be visualized in Figure 5.1. The MC-dataset was created in a totally
balanced way in relation to the number of samples in each scenario and this determined
the choice by which the dataset was divided. In MC-dataset-binary, 5.740 samples of each
class are present and in MC-dataset-multiclass, 3.290 samples are also present for each
class. The total size of each compressed dataset is 1.87 GB for MC-dataset-binary and
2.91 GB for MC-dataset-multiclass.

5.1 Overview 37

Figure 5.1: Schematization of the methodology for the creation of the MC-dataset.

It is important to note that the files selected for the dataset, both cleanwares and
malwares, do not exceed something around 3.2 MB. We did this for a better fit in LSTM
models and to maintain a reasonable size for uploading the dataset itself. Another char-
acteristic that needs to be mentioned in our dataset are the 32-bit and 64-bit files. It is
not an easy task to check if a file is 32-bit or 64-bit in a set of files from different sources.
We tried to put half of the cleanwares samples as 32-bit files and the other half as 64-bit,
but we know that this amount was not perfectly exact.

Most malware analysis papers usually deal with Windows executables only. How-
ever, malwares obtained from VirusShare contained different media types1 (also known
as MIME types). This is not entirely reliable because malwares can use a variety of tech-
niques that “trick” this simple identification based on headers and some other parameters.
Steganography [29] and encryption [47] are examples of techniques that can easily fool
this check. Anyway, files were inserted into the MC-dataset with similar MIME types and
Windows executable files were the vast majority, both for cleanwares and malwares. Basi-
cally, 5010 cleanwares and 5056 malwares inserted into the MC-dataset-binary were from

1
https://goo.gl/8oeynU/

5.1 Overview 38

Windows executable files. In MC-dataset-multiclass, were inserted 2995 cleanwares and
14894 malwares (considering the five distinct malware classes as one) of these executable
files. Again, it is not possible to state precisely these numbers in relation to malwares
because of the techniques that can deceive this simple file type verification.

The approach proposed by [32] was followed, in which the hexdump of the malware
sample files is used to generate text files containing the bytes of the original files, repre-
sented by hexadecimal pairs. We discard information such as memory address or checksum
that are sometimes present. Once this is done, the hexadecimals are converted to num-
bers that serve as input to our LSTM models. These numbers are read in sets of sixteen
hexadecimal digits, which corresponds to a 32-bit words pair or just a 64-bit word. The
hexdumps were not included in the dataset for size reasons and because they were an
approach created exclusively for our work. The organization of the directories and files of
the dataset can be seen in Figure 5.2.

Figure 5.2: MC-dataset file structure.

• label.txt: This file contains all samples of the dataset labeled row by row. Firstly,
the file name appears and then, its class, with the separation made by a “;”. Ex-
amples: “cleanware-b221fbcd761bf3ee1d6d9f0968abb9c7;cleanware” and “malware-
4719a04edaf693b42be3f8b352682500;trojan” (the insertion of “cleanware” and “tro-
jan” into the names was just a way of making the files easier to handle).

• md5_cleanware.txt: Here are all the MD5 hash codes that are part of the name
of the cleanware files. It was also done for the purpose of hiding the original name
of the files. This separate file assists in checking the originality of the cleanwares,

5.2 Data Gathering 39

even though the files name already contains the hash codes. The malware samples
downloaded from VirusShare are accompanied by a similar file. Example of a line
in the file: “b221fbcd761bf3ee1d6d9f0968abb9c7”.

• md5_malware.txt: Same idea as the file md5_cleanware.txt but for the samples
of malware. Example of a line in the file: “4719a04edaf693b42be3f8b352682500”.

5.2 Data Gathering

The first step in building the MC-dataset was the register on VirusShare. An account must
be requested from the repository administrators along with a justification for accessing
torrent files containing malware samples of various types and systems, but most of them
are trojans designed for Windows. The size of the torrent files in VirusShare is quite
variable. The largest downloaded torrent size for this work was 106.99 GB with 131.072
samples and the lowest was 5.01 GB with 65.536 samples. The number of downloaded
malware samples was 7.340.032, totaling 2314.34 GB.

The cleanwares were obtained from various Windows systems of different collaborat-
ing users and from software downloads on the Internet, such as The Portable Freeware
Collection2. All cleanwares underwent a check of some antivirus as well to avoid incorrect
labeling. For this entire collection process, mainly malware, additional machines were
required and for this, Google Cloud3 was used to create instances of virtual machines. In
Section 5.3, this creation is best detailed.

Comparing the size and quantity of downloaded samples with the final version of MC-
dataset, we have a huge difference. This was because of the dataset balancing, which was
based on the number of avaliable cleanwares. The cleanwares were harder to obtain and
the restriction of the size of the files was approximately 3.2 MB maximum. In addition,
the amount of trojans present in the torrent files is much higher than the other types in
VirusShare and the excess was discarded.

5.3 Data Labeling

Although a small piece of code has already been created for collecting cleanwares on the
computers of collaborating users, the first script was written for VirusTotal. This script

2
https://www.portablefreeware.com/

3
https://cloud.google.com/

5.3 Data Labeling 40

was responsible for generating a JSON with the information of all samples of malware
downloaded to this work through VirusShare. The information was simply text files for
each torrent with the outputs that are shown when the MD5 hashes of the malware files
are inserted into VirusTotal, which includes the results of about 50 antivirus scanners for
each file.

With this, the criterion adopted for MC-multiclass-dataset was the count of the re-
sults of all antivirus for each malware and classified them according to the class re-
turned as the majority. For example, we could imagine the malware file named “malware-
1edb420700aa68aba62122b69b805853” classified as trojan by 30 antivirus scanners and
20 classified as backdoor. In this case, we consider malware as belonging to the trojan
class. In the case of a tie, we simply did not put the malware in the dataset. All files
were named this way, in both datasets, the word cleanware or malware attached to the
respective md5 of each file. Other approaches have been considered for labeling in other
works, such as [51], but there is no consensus on the best choice. Although we know of the
existence of hybrid malwares, we do not consider such cases that would be more related
as a multi-label problem.

The second and most important script was the one that made this choice for a particu-
lar class through the outputs returned from VirusTotal. As previously stated, cleanwares
were crucial for balancing the dataset but there were other types of malware that could be
inserted into the dataset. Adwares4 or ransomwares could be considered, for example. In
the case of Adware, there is an uncertainty in the information security community about
its malignancy5. Some adware programs are considered only as “annoying” and others
as malware in fact. In addition, they are more confused with trojans than otherwise.
The ransomware sample quantity present in the torrents is small, appearing more in the
most recent VirusShare torrents and by the results of antivirus scanners, many are also
considered trojans since the ransomware-trojan hybrid case is very common.

To speed up the download process of VirusShare torrents and execute the naming-
parsing script several times, four instances of virtual machines were created and ran
in parallel. The hardware configuration of the instances was pretty basic, using the free
credits provided by Google Cloud for a newly created account. More precisely, each virtual
machine was created with 200 GB of standard persistent disk, 4 vCPUs n-1-standard-4
with 15 GB of RAM and Ubuntu 16.04 LTS 64-bit6. Then for each instance, the following

4
https://www.avast.com/pt-br/c-adware/

5
https://goo.gl/BjjAo3/

6
https://cloud.google.com/compute/docs/machine-types/

5.4 Handling 41

order was followed: installation of the necessary dependencies for Ubuntu, upload of a
VirusShare torrent, upload of the JSON corresponding to this torrent, extraction of the
compressed file from the torrent and execution of the naming-parsing script to select the
samples, label and name them. Finally, the files were downloaded to an external hard
drive.

5.4 Handling

Shortly after downloading samples of malware from virtual machine instances, it was also
necessary to name cleanwares files and organize them along with malwares. Some samples
were discarded because there were incongruities, such as duplicates and very small file
sizes. A manual check was done after the hexdump of the files to look for some type of
irregularity too. For example, some files hidden in the directories were unbalancing the
dataset because the hexdump command considered these files at the time of hexadecimals
generation. After verifying these details, all files were organized as in Figure 5.2 and sent
to the DGX used for some of the experiments of this work.

The publication of the dataset occurred without the hexadecimal of the samples, as
explained in Section 5.1. MC-dataset-binary [?] and MC-dataset-multiclass [?] are in the
FigShare7 data repository and can be downloaded and used by any user. After the MC-
dataset has been uploaded to FigShare, all instances used to create the labeled malware
samples have been terminated. This process with the virtual machines running took about
three months to be finalized. In DGX, the dataset still had to be inserted into a Docker8

container because of the access restrictions on the machine, only then was possible to run
the experiments.

7
https://figshare.com/

8
https://www.docker.com/

Chapter 6

Model Implementation

Three neural network models were proposed for this master’s thesis. The implementation
of each model is explained in this chapter, from the input of the data to the final classi-
fication. These models were developed for the classification of the MC-dataset that was
also created for this work, but could be used in other datasets with specific adjustments,
if necessary. The LSTM was used in all models, two of which were also composed by the
word embeddings algorithms, word2vec and GloVe.

6.1 LSTM

One of the concerns with the LSTM was the cost-benefit regarding the time and con-
figuration of the machine for the experiment. We can say that the chosen architecture
is relatively simple and has been tested a lot of times until reaching the desired final
version. In Section 7.3 the values chosen for the parameters after the numerous tests are
best discussed. Our model for the binary classification consists sequentially in four layers,
an input layer, followed by an LSTM layer (hidden layer), a dropout layer, a dense layer
and its design can be seen in Figure 6.1.

The terms architecture and model for neural networks are used in a confusing way by
many authors. In this work, the architecture refers to the configuration of the network in
terms of numbers of neurons, connections between them, layers. The term model refers
more to the programming used to implement the different neural networks and others
parameters chosen, such as batch size and learning rate, for example. The programming
language for the model implementation was Python with the framework Keras, derived

6.1 LSTM 43

from the open-source machine learning software library called TensorFlow1.

Figure 6.1: The LSTM architecture design for the binary classification.

The input layer receives the hexadecimal samples of cleanwares and malwares con-
verted to numerical values and passes it on to the LSTM layer. Time steps were suitable
to fit the LSTM’s reading of 2048 hexadecimals for each sample, which represents the
most frequent 128 64-bit words and 256 32-bit words presents in each file, because the
dataset presents both 32-bit and 64-bit files, as explained in Section 5.1. The use of less
frequent words was not a viable approach and has returned worse results, even addressing
them in conjunction with the more frequent ones.

The entries in Keras must have a fixed size and a zero padding to the right has been
done without impacting the performance of the network. Another important detail is that
the model works as a stateful LSTM, which helps in searching for dependencies between
the words of the samples and improved the results. In the Figure 6.2 is schematized the
process from the hexadecimal generated by the hexdump of a dataset file to the input
layer.

1
https://www.tensorflow.org/

6.2 Word2vec+LSTM and GloVe+LSTM 44

Figure 6.2: Example of converting a sample hexadecimal file to the time steps correspond-
ing to the input layer.

The LSTM layer has about 128 cells that use tanh as an activation function and are
responsible for receiving the inputs of the input layer and produce outputs for the dense
layer. However, after the LSTM layer and before the dense layer, there is a dropout.
Keras defines dropout as a layer but it only consists in randomly setting a fraction rate of
input units to zero at each update during training time, which helps prevent overfitting.
The value chosen for the dropout was the default 0.5 found in most papers, since there
were no different results with other values. In this case, the unit set to zero has as input,
the output of the cell. Finally, the dense layer has the sigmoid as activation function for
the binary classification.

For the multiclass classification, the architecture is the same, but the dense layer has
the softmax as activation function. Briefly, the dense layer returns six values correspond-
ing to the probabilities of the sample belongs to a given class. In binary classification, the
idea is the same with only two values. Therefore, the sample is associated with a given
class by the highest value returned. In the case of two identical values of probability, the
choice considered was alphabetical order of class names, but this never happened in the
experiments. The tests for this LSTM model were conducted at a computer with a 2.2
GHz Intel Core i7 processor and 8 GB 1600 MHz DDR3 of RAM without using GPUs.

6.2 Word2vec+LSTM and GloVe+LSTM

The architecture chosen for the two neural networks with the word embeddings algorithms
was similar, with the difference that the embedding layer was seeded with the word2vec

6.2 Word2vec+LSTM and GloVe+LSTM 45

word embedding weights for one of the networks and GloVe word embedding weights
for the other. Both models for the multiclass classification consists sequentially in eight
layers, an embedding layer (input layer), a dropout layer, an LSTM layer (first hidden
layer), another dropout layer, another LSTM layer (second hidden layer), the last dropout
layer, a flatten layer, a dense layer and its design can be seen in Figure 6.3.

Figure 6.3: The LSTM architecture design with the word embeddings weights for the
multiclass classification.

The embedding layer in the models works as a table in which each word in the vocab-
ulary has an index and is represented by a vector of 128 positions. This can be seen in
Figure 6.4. These 128 positions have numbers that correspond to the final weights after
the execution of word embeddings algorithms. As a result, we have a matrix of weights
already trained in the input layer for the samples. Finally, by converting each word from
the samples to numeric values and associating it as a dictionary, we get the outputs that
serve as input to the first LSTM layer.

6.2 Word2vec+LSTM and GloVe+LSTM 46

Figure 6.4: Example of the vector training process for words in a sample hexadecimal file
to the embedding layer.

A dropout layer with a default value of 0.5 precedes each LSTM layer. As in the
Section 6.1 model, the two LSTM layers present 128 cells that use tanh as the activation
function. The only difference in this case is that they are two layers instead of one,
increasing network complexity and the “return_sequences” flag is set to “true” in Keras.
This is necessary when there is more than one LSTM layer, because the output sequence
for the next layer will be of the same size.

Since the output of the second LSTM layer is not just a vector, it is necessary to have
a flatten layer to do a reshape for the one dimension of the dense layer. For binary clas-
sification, unlike the multiclass classification illustrated in Figure 6.3, only two values are
required to discriminate the classes with the sigmoid activation function in the dense layer,
so just a single neuron is needed. Again, the softmax activation function is responsible
for the classification among the six possible classes in the multiclass classification.

Word2vec and GloVe needed a lot of memory because of the size of the vocabulary,
more than the processing of GPUs. For a vocabulary of 10 million words and dimension
128 for word2vec, for example, we would have 2 ⇤ 4 bytes per float ⇤ 10000000 ⇤ 128 =

⇠ 10 GB of memory usage. The vectors returned by the two algorithms used for the
embedding layer are different in their training method, but they work in the same way
as weights for the neural network models. The tests for these LSTM model with word
embeddings algorithms were run on DGX with 2 CPUs 20-core IntelXeon E5-2698 v4 2.2
GHz, 512 GB of RAM and 8 GPUs Tesla P100.

Chapter 7

Experimental Results

The experiments that were conducted with the use of the neural networks models pro-
posed in this work for the MC-dataset, are described in this chapter. The outputs and
parameters adopted for the binary and multiclass scenarios are discussed after the various
tests performed. The distinct results that were obtained are compared and graphics were
elaborated for the best visualization of the final classification of the classes considered in
each scenario.

7.1 Binary Classification

The number of cleanware and malware present in the MC-dataset-binary is 11480. The
randomly split of these samples was done as follows: 6888 samples for the training set and
2296 samples for the test set and validation set. A mini-batch of 14 was used and each
network was run 20 times to obtain the results described in this section, not including the
intermediate experiments, with other parameters and reduced number of samples.

The stopping point chosen was the highest validation accuracy value and this occurred
with network training snapshots. Thus, the networks were executed more than once for
each of the 20 considered times. All tests took place up to the 30th training iteration
for a better visualization of the graphics and because all the networks had overfitting
before that, following what was discussed in [48]. We can observe these training graphics
for the accuracy and loss in Figure 7.1 and Figure 7.2. The comparative charts of true
positive rate (TPR), false positive rate (FPR) and false negative rate (FNR), can be seen
in Figure 7.3, Figure 7.4 and Figure 7.5, respectively. Finally, the confusion matrices of
each network can also be seen in Table 7.1, Table 7.2, and Table 7.3.

7.1 Binary Classification 48

Figure 7.1: Training epoch & validation accuracy for the binary classification.

Figure 7.2: Training epoch & validation loss for the binary classification.

7.1 Binary Classification 49

Figure 7.3: TPR for the binary classification.

Figure 7.4: FPR for the binary classification.

Figure 7.5: FNR for the binary classification.

7.2 Multiclass Classification 50

Table 7.1: LSTM confusion matrix for the binary classification.

cleanware malware

cleanware 969 197
malware 136 994

Table 7.2: GloVe+LSTM confusion matrix for the binary classification.

cleanware malware

cleanware 952 201
malware 103 1040

Table 7.3: Word2vec+LSTM confusion matrix for the binary classification.

cleanware malware

cleanware 1028 138
malware 116 1014

7.2 Multiclass Classification

The number of backdoors, cleanwares, rootkits, trojans, viruses and worms present in the
MC-dataset-multiclass is 19740. The randomly split of these samples was done as follows:
11844 samples for the training set and 3948 samples for the test set and validation set. A
mini-batch of 14 was used and each network was executed 20 times too. It is important
to note that in addition to the stopping point by the validation accuracy, the training
with the highest accuracy was adopted. Therefore, there was no type of average between
the 20 considered times.

As the binary classification, all tests took place up to the 30th training iteration too.
We can observe these graphics for the accuracy and loss in Figure 7.6 and Figure 7.7. The
comparative charts of TPR, FPR, and FNR, can be seen in Figure 7.8, Figure 7.9 and
Figure 7.10, respectively. Lastly, the confusion matrices of each network can also be seen
in Table 7.4, Table 7.5, and Table 7.6.

7.2 Multiclass Classification 51

Figure 7.6: Training epoch & validation accuracy for the multiclass classification.

Figure 7.7: Training epoch & validation loss for the multiclass classification.

7.2 Multiclass Classification 52

Figure 7.8: TPR for the multiclass classification.

Figure 7.9: FPR for the multiclass classification.

Figure 7.10: FNR for the multiclass classification.

7.3 Discussion 53

Table 7.4: LSTM confusion matrix for the multiclass classification.

backdoor cleanware rootkit trojan virus worm

backdoor 422 28 8 82 61 31
cleanware 22 451 5 33 106 7
rootkit 26 20 578 25 23 8
trojan 125 49 14 289 153 49
virus 56 87 16 87 386 29
worm 37 13 6 50 23 543

Table 7.5: GloVe+LSTM confusion matrix for the multiclass classification.

backdoor cleanware rootkit trojan virus worm

backdoor 486 25 1 59 37 42
cleanware 12 465 3 33 98 16
rootkit 24 6 615 14 18 7
trojan 78 35 9 344 110 66
virus 46 56 10 96 427 40
worm 21 7 1 38 30 573

Table 7.6: Word2vec+LSTM confusion matrix for the multiclass classification.

backdoor cleanware rootkit trojan virus worm

backdoor 488 26 8 71 31 8
cleanware 27 531 1 15 50 0
rootkit 9 5 629 14 21 2
trojan 82 49 10 370 131 37
virus 38 100 7 85 418 13
worm 21 10 4 61 46 530

7.3 Discussion

In both classifications, binary and multiclass, all neural network models implemented
had overfitting and it happened before in the neural networks with word embeddings
algorithms, since the pre-trained weights of these algorithms accelerated the learning
process. In addition, the GloVe+LSTM and word2vec+LSTM networks obtained better
results than LSTM in both scenarios, that is, word embeddings algorithms also helped
to improve training in a way that LSTM could not reach. In contrast, more time and
computational resources were needed, especially in terms of memory.

7.3 Discussion 54

7.3.1 Execution Time and Parameters

Conversion process using our computer for hexdump and Unix time command, registered
22.31 minutes of elapsed real time for all samples of MC-dataset-binary and 38.40 minutes
for MC-dataset-multiclass. Considering the NumPy array (n-dimensional array object)
with numerical values corresponding to the hexadecimals that serve as input to the LSTM,
including all the same samples, it took about 9.49 hours for the binary classification and
14.69 hours for the multiclass classification.

In the case of GloVe+LSTM and word2vec+LSTM for binary classification, it took
6.59 hours for the NumPy array, 12.33 hours for the word2vec training with 1000 iterations
and 14.18 hours for the GloVe training with the same number of iterations. There was no
overfitting in the word embeddings algorithms and more iterations also did not improve
the results in the tests. We also performed the experiment with only word embeddings
algorithms without the LSTM models, but the results were worse, with the accuracy
reduced by about 10% for each algorithm.

For the multiclass classification, GloVe+LSTM and word2vec+LSTM took 11.12
hours for NumPy array, 12.62 hours for word2vec training with 1000 iterations and 15.26
hours for GloVe training with the same number of iterations. For the training of the
networks in the three models in the binary classification and with 30 epochs, it took 5
hours for the LSTM, 1.54 hours for the word2vec+LSTM and 1.22 for the GloVe+LSTM.
It is important to remember that the LSTM was the only network that did not have
outputs from the execution in the DGX, in which the only gain would be in relation to
the time (tests with more complexity and other parameters were executed in the DGX
for the LSTM model, but without better results).

The training of LSTM in the multiclass classification took 8.31 hours. Considering
word2vec+LSTM, the training took 1.64 hours and for GloVe+LSTM, 1.91 hours. If a
user wanted to insert a single sample to be classified with an already trained network, this
would take a few seconds. The time of hexdump and NumPy array vary by sample size.
In terms of test set, all networks did a fast classification of the samples and this would not
be different with this single sample. Word2vec+LSTM, for example, took only 31 seconds
to classify the 3948 multiclass samples. It should also be mentioned that in DGX there
were other processes running together with the experiments of this work and this may
have influenced in the execution times. The the execution time including each model,
can be best seen in Figure 7.11 and Figure 7.12 for binary and multiclass classification,
respectively.

7.3 Discussion 55

Figure 7.11: Execution time for binary classification.

Figure 7.12: Execution time for multiclass classification.

Adam is a widely used method of stochastic gradient-based optimization, which is
standard in Keras and has been selected for this work. The binary and categorical cross
entropy are standard loss functions in Keras too and are adopted in the neural network
models for binary and multiclass classifications, respectively. The learning rate adopted

7.3 Discussion 56

was 0.00001, a value considered low and was chosen as an attempt to reduce the chance
of overfitting. Other parameter choices such as number of layers and neurons occurred
through the various tests until the best possible accuracy was obtained.

The size of the binary vocabulary was 606854 and the multiclass vocabulary, 949520.
If we considered that all words were different among the 128 chosen from each sample,
we would have 1469440 words for the binary vocabulary and 2526720 for the multiclass
vocabulary. Thus, approximately 41.30% of the words that would be possible were suf-
ficient to compose the vocabulary of binary classification and 37.58%, the vocabulary of
multiclass classification. There were words among the 128 most frequent in the samples
that appeared only once. However, reducing from 128 to fewer words or even increasing,
the results were worse, even changing other parameters of the networks.

7.3.2 Comparison of Scenarios

The best accuracy values were obtained with the word2vec+LSTM network, 88.94% for
the binary classification and 75.13% for the multiclass classification. However, in addition
to the accuracy, it is necessary to observe other important statistical measures in the
two scenarios, such as FPR and FNR. In the malware classification, FPR is a relevant
measure because of the risks, especially when we have malware that are classified as
cleanware. Therefore, the reduction of FPR should be a priority. In this case, considering
the binary scenario, GloVe+LSTM is slightly better, with an FPR of 9.76% versus 10.14%
of word2vec+LSTM.

Compressing the six classes in only two classes (cleanware and malware), GloVe+LSTM
also has the lowest FPR (21.72%) compared to LSTM (30.40%) and word2vec+LSTM
(26.35%). In general, LSTM had the worst results and an accuracy of 85.50% for binary
classification and 67.60% for multiclass classification. The GloVe+LSTM presented an
accuracy of 86.76% for the binary classification and 73.71% for the multiclass classifica-
tion.

Looking only at the multiclass malware scenario, we observed that the trojan class
achieved the worst results overall for all neural network models implemented. Probably
this was because the trojan was the type of malware with the most subtypes. The best
results were 60.06% for TPR and 39.94% for FNR with word2vec+LSTM. The FPR was
8.86% with GloVe+LSTM. Afterwards, we had the virus as the second worst class in
terms of classification results.

7.3 Discussion 57

Although the classification with the trojan and virus classes did not reach the best
TPR, FPR, and FNR values, other two had excellent results. The rootkit class had a TPR
of 96.24%, FNR of 3.76% with GloVe+LSTM, and FPR 1.55% with word2vec+LSTM.
The other class was worm, with a TPR of 89.83%, FNR of 10.17% with word2vec+LSTM,
and FPR 3.03% with GloVe+LSTM. Summarizing, the implemented models have ob-
tained good classification results for some classes, such as rootkit and worm, and bad
results for others, such as trojan and virus. In the binary scenario, word2vec+LSTM was
able to classify the cleanwares better and GloVe+LSTM obtained a lower FPR in relation
to malware misclassification.

7.3.3 Statistical Results

The Wilcoxon or Mann-Whitney [64] test was chosen because it is nonparametric and
appropriate for data from repeated-measures with two conditions. The test was performed
for each two of the three models of neural networks for the binary and multiclass scenarios.
An alternative hypothesis Ha : m > m0 was established (“There is an increase in the
performance of the classifiers in terms of accuracy? ”), in which m and m0 correspond to
the higher accuracy values obtained (N = 10) by the implemented models. The p-value
was chosen as 2.5% of significance level.

Table 7.7: The Wilcoxon test for the neural network models considering the binary and
multiclass scenarios.

Ha : m > m0 p-value (binary) p-value (multiclass) Ha

GloVe+LSTM > LSTM 0.9986 > 0.9999 acceptance
Word2vec+LSTM > LSTM > 0.9999 > 0.9999 acceptance

Word2vec+LSTM > GloVe+LSTM 0.9998 0.9955 acceptance

In Table 7.7, it is possible to view the p-values and results from the statistical test
for each scenario. There are significant differences between the performance of the neural
networks. Therefore, there is an increase in the classification accuracy considering the
proposed models, especially in word2vec+LSTM. The medians in the binary and mul-
ticlass scenario, respectively, were 0.8324 and 0.6574 for LSTM, 0.8497 and 0.7027 for
GloVe+LSTM, and were 0.8768 and 0.7234 for word2vec+LSTM.

Chapter 8

Conclusion

This master’s thesis studies the problem of malware classification in two distinct sce-
narios, trying to understand the language that differs non-malicious from malicious files.
The language consisted of the hexadecimal codes of these files read as sentences. The
MC-dataset was created specifically for this work, with file samples for the binary and
multiclass scenarios of malware. The classification was done through neural networks,
which tried to learn about the hexadecimal codes of these samples.

The malware classification is not a trivial task because at every moment, new threats
are created with new techniques to make it difficult to be detected by the maximum
number of possible automatic tools. In addition, there is also a difficulty in finding large
datasets available. Thus, one of the goals was to produce a dataset and make it publicly
available for other researches. This has been successfully made, but the size of the dataset
is still smaller than in some other works. However, if we consider the number of cleanware
samples present, the MC-dataset is the largest available public dataset until the date of
publication of this work.

The LSTM was the type of neural network chosen in conjunction with word embed-
dings algorithms for malware classification. This choice occurred because of the good
recent results in other works of the area with the LSTM. The word2vec and GloVe were
chosen because they are the most used word embeddings algorithms and have consistent
implementations. The experiments demonstrated that these algorithms with the LSTM
can actually improve the classification results.

At the end of the experiments, it was possible to conclude that the approach used
in this work for the multiclass classification, for instance, served to classify some classes
better than others. It was also found that some statistical measures were better with

8.1 Limitations 59

GloVe+LSTM and others with word2vec+LSTM. However, even using different architec-
ture and parameter settings, overfitting was a characteristic present in all tests. Even
so, the results and experiments were a success, enabling a discussion about the different
models and introducing new ideas that can be implemented.

8.1 Limitations

Some limitations were present in this work. The utilization of DGX for the experiments of
GloVe+LSTM and word2vec+LSTM was sometimes hampered by the processes of other
users occurring in parallel and using a large part of the machine resources. The power
outages also disrupted the tests, forcing new executions of the neural network experiments
and taking time of this master’s thesis completion.

The labeling of MC-dataset was restricted to the analysis coming from VirusTotal
scanners. A multi-label dataset would be closer to the real malware scenario, but this is
more difficult and hard-working to do. Finally, the number of samples was also limited to
the number of available cleanwares that were obtained from the computers of other users
and from freewares downloaded from the internet, to maintain the dataset balanced, even
knowing that the ideal dataset would be composed of more cleanwares than malwares.

8.2 Future Work

There are several improvements that can be done. One of them would be to expand the
MC-dataset with the creation of a multi-label dataset and increase the number of samples.
Tests with varying amounts of samples, such as a small, medium and large dataset sizes,
could be performed to evidence improvement through increasing data too. Other types
of neural networks could also be considered and even hybrid networks, like CNN-LSTM.

Adding new features may also improve the classification results. In addition to static
analysis with only the understanding from the hexadecimal codes of the files, there are
other approaches that could be considered together, such as dynamic analysis with the
extraction of API calls most commonly used by malware, for example.

Another improvement that could be made is regarding scalability. New approaches
to neural networks include learning on the fly. This open challenge is called Online Deep
Learning (ODL), a promising area that has as input sequential data in a stream form [50]
and can enhance the execution time and results of networks for malware classification.

References

[1] Ahmadi, M.; Ulyanov, D.; Semenov, S.; Trofimov, M.; Giacinto, G. Novel
feature extraction, selection and fusion for effective malware family classification. In
Proceedings of the sixth ACM conference on data and application security and privacy
(2016), ACM, pp. 183–194.

[2] Alvarez, J. E.; Bast, H. A review of word embedding and document similarity
algorithms applied to academic text. Tese de Doutorado, University OF Freiburg,
2017.

[3] Andrade, E. O.; Viterbo, J.; Nader, C. V. Um levantamento do uso de apren-
dizado profundo em análise de sentimentos. In 14th National Meeting on Artificial
and Computational Intelligence (ENIAC) (2017), Brazilian Conference on Intelligent
Systems, pp. 85–96.

[4] Arp, D.; Spreitzenbarth, M.; Hubner, M.; Gascon, H.; Rieck, K.;
Siemens, C. Drebin: Effective and explainable detection of android malware in
your pocket. In Ndss (2014), vol. 14, pp. 23–26.

[5] Athiwaratkun, B.; Stokes, J. W. Malware classification with lstm and gru
language models and a character-level cnn. In Acoustics, Speech and Signal Processing
(ICASSP), 2017 IEEE International Conference on (2017), IEEE, pp. 2482–2486.

[6] Azzouni, A.; Pujolle, G. A long short-term memory recurrent neural network
framework for network traffic matrix prediction. arXiv preprint arXiv:1705.05690
(2017).

[7] Bazrafshan, Z.; Hashemi, H.; Fard, S. M. H.; Hamzeh, A. A survey on
heuristic malware detection techniques. In Information and Knowledge Technology
(IKT), 2013 5th Conference on (2013), IEEE, pp. 113–120.

[8] Bebis, G.; Georgiopoulos, M. Feed-forward neural networks. IEEE Potentials
13, 4 (1994), 27–31.

[9] Bengio, Y.; Ducharme, R.; Vincent, P.; Jauvin, C. A neural probabilistic
language model. Journal of machine learning research 3, Feb (2003), 1137–1155.

[10] Bilar, D. Opcodes as predictor for malware. International Journal of Electronic
Security and Digital Forensics 1, 2 (2007), 156–168.

[11] Chen, Z.; Roussopoulos, M.; Liang, Z.; Zhang, Y.; Chen, Z.; Delis, A.
Malware characteristics and threats on the internet ecosystem. Journal of Systems
and Software 85, 7 (2012), 1650–1672.

References 61

[12] Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares,
F.; Schwenk, H.; Bengio, Y. Learning phrase representations using rnn encoder-
decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014).

[13] Dahl, G. E.; Stokes, J. W.; Deng, L.; Yu, D. Large-scale malware classi-
fication using random projections and neural networks. In Acoustics, Speech and
Signal Processing (ICASSP), 2013 IEEE International Conference on (2013), IEEE,
pp. 3422–3426.

[14] Downer, K.; Bhattacharya, M. Byod security: A new business challenge. In
Smart City/SocialCom/SustainCom (SmartCity), 2015 IEEE International Confer-
ence on (2015), IEEE, pp. 1128–1133.

[15] Freund, Y.; Schapire, R. E., et al. Experiments with a new boosting algorithm.
In Icml (1996), vol. 96, Citeseer, pp. 148–156.

[16] Gardiner, J.; Nagaraja, S. On the security of machine learning in malware c&c
detection: A survey. ACM Computing Surveys (CSUR) 49, 3 (2016), 59.

[17] Gennari, J.; French, D. Defining malware families based on analyst insights. In
Technologies for Homeland Security (HST), 2011 IEEE International Conference on
(2011), IEEE, pp. 396–401.

[18] Gibert, D. Convolutional neural networks for malware classification. Tese de
Doutorado, MS Thesis, Dept. of Computer Science, UPC, 2016.

[19] Glorot, X.; Bordes, A.; Bengio, Y. Deep sparse rectifier neural networks. In
Proceedings of the fourteenth international conference on artificial intelligence and
statistics (2011), pp. 315–323.

[20] Gonzalez, L. E.; Vazquez, R. A. Malware classification using euclidean distance
and artificial neural networks. In Artificial Intelligence (MICAI), 2013 12th Mexican
International Conference on (2013), IEEE, pp. 103–108.

[21] Goodfellow, I.; Bengio, Y.; Courville, A.; Bengio, Y. Deep learning, vol. 1.
MIT press Cambridge, 2016.

[22] Grosse, K.; Papernot, N.; Manoharan, P.; Backes, M.; McDaniel, P.
Adversarial examples for malware detection. In European Symposium on Research in
Computer Security (2017), Springer, pp. 62–79.

[23] Hassan, S. S.; Bibon, S. D.; Hossain, M. S.; Atiquzzaman, M. Security
threats in bluetooth technology. Computers & Security 74 (2018), 308–322.

[24] He, K.; Zhang, X.; Ren, S.; Sun, J. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE
international conference on computer vision (2015), pp. 1026–1034.

[25] Hochreiter, S. The vanishing gradient problem during learning recurrent neural
nets and problem solutions. International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems 6, 02 (1998), 107–116.

References 62

[26] Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural computation
9, 8 (1997), 1735–1780.

[27] Hochreiter, S.; Schmidhuber, J. Lstm can solve hard long time lag problems.
In Advances in neural information processing systems (1997), pp. 473–479.

[28] Jaeger, H.; Haas, H. Harnessing nonlinearity: Predicting chaotic systems and
saving energy in wireless communication. science 304, 5667 (2004), 78–80.

[29] Johnson, N. F.; Jajodia, S. Exploring steganography: Seeing the unseen. Com-
puter 31, 2 (1998).

[30] Kephart, J. O.; Sorkin, G. B.; Arnold, W. C.; Chess, D. M.; Tesauro,
G. J.; White, S. R.; Watson, T. Biologically inspired defenses against computer
viruses. In IJCAI (1) (1995), pp. 985–996.

[31] Kingma, D. P.; Ba, J. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014).

[32] Kolter, J. Z.; Maloof, M. A. Learning to detect malicious executables in the
wild. In Proceedings of the tenth ACM SIGKDD international conference on Knowl-
edge discovery and data mining (2004), ACM, pp. 470–478.

[33] LeCun, Y. A.; Bottou, L.; Orr, G. B.; Müller, K.-R. Efficient backprop. In
Neural networks: Tricks of the trade. Springer, 2012, pp. 9–48.

[34] Lo, C. T. D.; Pablo, O.; Carlos, C. M. Towards an effective and efficient mal-
ware detection system. In Big Data (Big Data), 2016 IEEE International Conference
on (2016), IEEE, pp. 3648–3655.

[35] Lowry, P. B.; Posey, C.; Bennett, R. B. J.; Roberts, T. L. Leveraging
fairness and reactance theories to deter reactive computer abuse following enhanced
organisational information security policies: An empirical study of the influence of
counterfactual reasoning and organisational trust. Information Systems Journal 25,
3 (2015), 193–273.

[36] Makandar, A.; Patrot, A. Malware analysis and classification using artificial
neural network. In Trends in Automation, Communications and Computing Tech-
nology (I-TACT-15), 2015 International Conference on (2015), IEEE, pp. 1–6.

[37] Mansfield-Devine, S. Extreme prejudice: securing networks by treating all data
as a threat. Computer Fraud & Security 2018, 6 (2018), 16–20.

[38] McCulloch, W. S.; Pitts, W. A logical calculus of the ideas immanent in nervous
activity. The bulletin of mathematical biophysics 5, 4 (1943), 115–133.

[39] Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781 (2013).

[40] Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G. S.; Dean, J. Distributed
representations of words and phrases and their compositionality. In Advances in
neural information processing systems (2013), pp. 3111–3119.

References 63

[41] Moser, A.; Kruegel, C.; Kirda, E. Exploring multiple execution paths for
malware analysis. In Security and Privacy, 2007. SP’07. IEEE Symposium on (2007),
IEEE, pp. 231–245.

[42] Murray, W. H. The application of epidemiology to computer viruses. Computers
& Security 7, 2 (1988), 139–145.

[43] Nowlan, S. J.; Hinton, G. E. Simplifying neural networks by soft weight-sharing.
Neural computation 4, 4 (1992), 473–493.

[44] Papernot, N.; McDaniel, P.; Jha, S.; Fredrikson, M.; Celik, Z. B.; Swami,
A. The limitations of deep learning in adversarial settings. In Security and Privacy
(EuroS&P), 2016 IEEE European Symposium on (2016), IEEE, pp. 372–387.

[45] Pennington, J.; Socher, R.; Manning, C. Glove: Global vectors for word
representation. In Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP) (2014), pp. 1532–1543.

[46] Popov, I. Malware detection using machine learning based on word2vec embed-
dings of machine code instructions. In Data Science and Engineering (SSDSE), 2017
Siberian Symposium on (2017), IEEE, pp. 1–4.

[47] Rad, B. B.; Masrom, M.; Ibrahim, S. Camouflage in malware: from encryption
to metamorphism. International Journal of Computer Science and Network Security
12, 8 (2012), 74–83.

[48] Raff, E.; Zak, R.; Cox, R.; Sylvester, J.; Yacci, P.; Ward, R.; Tracy, A.;
McLean, M.; Nicholas, C. An investigation of byte n-gram features for malware
classification. Journal of Computer Virology and Hacking Techniques 14, 1 (2018),
1–20.

[49] Rosenblatt, F. The perceptron: a probabilistic model for information storage and
organization in the brain. Psychological review 65, 6 (1958), 386.

[50] Sahoo, D.; Pham, Q.; Lu, J.; Hoi, S. C. Online deep learning: Learning deep
neural networks on the fly. arXiv preprint arXiv:1711.03705 (2017).

[51] Saxe, J.; Berlin, K. Deep neural network based malware detection using two
dimensional binary program features. In Malicious and Unwanted Software (MAL-
WARE), 2015 10th International Conference on (2015), IEEE, pp. 11–20.

[52] Schultz, M. G.; Eskin, E.; Zadok, F.; Stolfo, S. J. Data mining methods for
detection of new malicious executables. In Security and Privacy, 2001. S&P 2001.
Proceedings. 2001 IEEE Symposium on (2001), IEEE, pp. 38–49.

[53] Sen, S.; Aydogan, E.; Aysan, A. I. Coevolution of mobile malware and anti-
malware. IEEE Transactions on Information Forensics and Security 13, 10 (2018),
2563–2574.

[54] Sim, G. Defending against the malware flood. Network Security 2018, 5 (2018),
12–13.

[55] Spafford, E. H. Computer viruses–a form of artificial life?

References 64

[56] Spiekermann, S.; Acquisti, A.; Böhme, R.; Hui, K.-L. The challenges of
personal data markets and privacy. Electronic Markets 25, 2 (2015), 161–167.

[57] Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdi-
nov, R. Dropout: a simple way to prevent neural networks from overfitting. The
Journal of Machine Learning Research 15, 1 (2014), 1929–1958.

[58] Stopel, D.; Moskovitch, R.; Boger, Z.; Shahar, Y.; Elovici, Y. Using
artificial neural networks to detect unknown computer worms. Neural Computing
and Applications 18, 7 (2009), 663–674.

[59] Sundermeyer, M.; Schlüter, R.; Ney, H. Lstm neural networks for language
modeling. In Thirteenth annual conference of the international speech communication
association (2012).

[60] Turian, J.; Ratinov, L.; Bengio, Y. Word representations: a simple and general
method for semi-supervised learning. In Proceedings of the 48th annual meeting of
the association for computational linguistics (2010), Association for Computational
Linguistics, pp. 384–394.

[61] Uppal, D.; Mehra, V.; Verma, V. Basic survey on malware analysis, tools
and techniques. International Journal on Computational Sciences & Applications
(IJCSA) Vol 4 (2014), 103–111.

[62] Walenstein, A.; Mathur, R.; Chouchane, M. R.; Lakhotia, A. The de-
sign space of metamorphic malware. In 2nd International Conference on i-Warfare
and Security (ICIW 2007). 2nd International Conference on i-Warfare and Security
(ICIW 2007)(2007) (2007), pp. 241–248.

[63] Wang, W.; Zhu, M.; Zeng, X.; Ye, X.; Sheng, Y. Malware traffic classifica-
tion using convolutional neural network for representation learning. In Information
Networking (ICOIN), 2017 International Conference on (2017), IEEE, pp. 712–717.

[64] Wilcoxon, F. Individual comparisons by ranking methods. Biometrics bulletin 1,
6 (1945), 80–83.

[65] Wu, X.; Zhu, X.; Wu, G.-Q.; Ding, W. Data mining with big data. IEEE
transactions on knowledge and data engineering 26, 1 (2014), 97–107.

[66] Xu, B.; Wang, N.; Chen, T.; Li, M. Empirical evaluation of rectified activations
in convolutional network. arXiv preprint arXiv:1505.00853 (2015).

[67] Yanling, Z.; Bimin, D.; Zhanrong, W. Analysis and study of perceptron to solve
xor problem. In Autonomous Decentralized System, 2002. The 2nd International
Workshop on (2002), IEEE, pp. 168–173.

[68] You, I.; Yim, K. Malware obfuscation techniques: A brief survey. In Broadband,
Wireless Computing, Communication and Applications (BWCCA), 2010 Interna-
tional Conference on (2010), IEEE, pp. 297–300.

