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Resumo

Os Head Mounted Displays (HMD’s) tornaram-se dispositivos populares, aumentando
drasticamente o uso da Realidade Virtual, Mista e Aumentada. Embora os recursos visuais
dos sistemas sejam precisos e imersivos, as interfaces ainda sao semelhantes as usadas em
computacao convencional, tais como joysticks e controladores, indo contra a expressao
natural do corpo. Este trabalho apresenta uma abordagem para o uso de maos nuas para
controlar um sistema imersivo a partir de uma perspectiva egocéntrica que é construida
por meio de uma metodologia de estudo de caso proposta. Utilizamos uma arquitetura
CNN do DenseNet para realizar o reconhecimento em tempo real, com uma precisao média
de 97,89%, tanto de ambientes internos quanto externos, nao exigindo nenhum processo de
segmentacao de imagens. Nossa pesquisa também gerou um vocabulério, considerando as
preferéncias dos usuarios, buscando um conjunto de poses de maos naturais e confortaveis
e avaliando a satisfacao e o desempenho dos usuarios. Nos demonstramos nossos resultados
usando HMD'’s comerciais de baixo custo e comparamos nossa solugao com métodos de
ultima geragao.

Palavras-chave: Reconhecimento de Poses de Mao, Rede Neural Convolucional, Apren-
dizado Profundo, Realidade Virtual, Interfaces do Usuério.



Abstract

Head Mounted Displays (HMDs) became a popular device, drastically increasing the us-
age of Virtual, Mixed and Augmented Reality. While the systems’ visual resources are
accurate and immersive, precise interfaces require depth cameras or special joysticks, re-
quiring either complex devices or not following the natural body expression. This work
presents an approach for the usage of bare hands to control an immersive system from
an egocentric perspective and built from a proposed case study methodology. We used a
DenseNet CNN architecture to perform the recognition in real-time, with a mean accuracy
of 97.89%, from both indoor and outdoor environments, not requiring any image segmen-
tation process. Our research also generated a vocabulary, considering users’ preferences,
seeking a set of natural and comfortable hand poses and evaluated users’ satisfaction and
performance. We demonstrate our results using commercial low-end HMDs and compare
our solution with state-of-the-art methods.

Keywords: Hand Poses Recognition, Convolutional Neural Network, Deep Learning,
Virtual Reality, User Interfaces.
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Chapter 1

Introduction

Head Mounted Displays (HMD’s) [41] are becoming popular and accessible, leveraging
Virtual, Mixed and Augmented Reality applications to a new level of consumption. A
considerable amount of these market is strongly attached to low-end devices, based on
smartphones as displays and computing hardware, enhancing the possibility of users in-
teracting with virtual worlds anytime, anywhere, whether to watch a movie, work or play

games [18|.

High-end devices, such as Oculus Rift [28] or HTC Vive [44], provide sophisticated
interfaces controllers and tracking systems, allowing powerful and complex interactions
with the virtual environment [20]. Due to the lack of these components, mobile-based
systems must be projected to be more straightforward and in many cases less immersive

solutions.

1.1 Problem Statement

Visual immersion achieved by the HMDs can generate high interaction expectation among
the users. It is common to observe, at interaction time, that the user makes undesired

body and hand gestures, moved by a natural body instinct.

This body interaction cannot be implemented with regular HMD joysticks and con-
trollers. Thus, research has been conducted to offer a more natural engagement to users.
For instance, several body and hand gestures recognition solutions are being presented
in the last years, some of them using very different approaches than traditional joysticks:
heart rate monitors [40], Coulomb friction model [11], acoustic resonance analysis [47] and

even clothing that restricts joint movements [1].
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The usage of bare hands is what seems to be the most natural and immersive solution,
and some researchers are working on this [34, 36]. In this sense, precise and comfortable
solutions still require some dedicated hardware, such as depth cameras, structured light-

based systems, and even Inertial Measurement Unit (IMU) based hardware [38].

Depth cameras (RGB-D) have the capacity of delivering depth information for each
pixel, making possible the use of different techniques for geometry reconstruction and esti-
mation of inverse kinematics bones positioning [34]. In indoor and controlled environments
the depth cameras perform very well and are being vastly used. However, depth sensors
can generate noisy depth maps, presenting some limitations: restricted field of view and
range, near-infrared interference (such as light solar) and non-Lambertian reflections, and
thus cannot acquire accurate measurements in outdoor environments [32, 33]. When the
cameras not fixed, these issues become more critical, and we option let’s not associate
low-end HMD with IMU-based hardware.

When the cameras are not fixed, these issues become more critical, and we opted to
let us not associate low-end HMD with IMU-based hardware. Therefore, how to present
a solution capable of performing the bare hand recognition, in real-time and with high
accuracy, in indoor and outdoor, using ordinary cameras as input devices through low-end

platforms?

Besides, defining Natural User Interfaces (NUIs) is not an easy task, but often when
we think about user interfaces that are natural and easy to use, we think of user interfaces
where the interaction is direct and consistent with our natural behavior. Too often, people
think that if they use, for example, gesture interaction, the user interface will be natural.
Nevertheless, it is not always true. If we consider something like multi-touch gestures,
some gestures come naturally and intuitively, such as swiping with one finger you scroll
through pages or you move content from one side of the screen to the other. In this case,
the gesture itself corresponds to the action you are performing. Some gestures, though,
require more learning such as a four-finger swipe to the left or right. When you swipe
to the left or right with four fingers, you will switch from one app to the next. The

four-finger swipe is not intuitive, and it does not come naturally to us [25].

Bill Buxton [4] says that NUIs exploit skills that we have acquired through a lifetime
of living in the world, which minimizes the cognitive load and therefore minimizes the
distraction. He also states that NUIs should always be designed with the use of context
in mind. No user interface can be natural in all use contexts and to all users. So, rather

than try to design NUIs that are natural for all users, we should focus any NUI we design
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on specific users and contexts.

Bowman et al. [3] questioned naturalism in 3D interface saying that high levels of
naturalism can enhance performance and the overall user experience, but moderately
natural 3D Uls can be unfamiliar and reduce performance. Traditional, less natural,
interaction styles can provide good performance, but result in lower levels of presence,
engagement, and fun. Dealing with this trade-off between naturalism versus performance
is still a challenge and few efforts have been reported about how to explore the design

space in order to find the appropriate and natural interaction for a specific context of use.

So, the question remaining is if NUIs are not just created by using modalities that
can be naturally translated into interaction commands in the interface, how can we define
what they are? This work addresses such issue by using a user-centered design approach

to build a hand pose vocabulary for 3D user interaction in an egocentric vision scenario.

1.2 Research Objective

The main objective of this dissertation is to present a solution capable to perform the
bare hand poses recognition, in real-time and with high accuracy, indoor and outdoor,
using ordinary cameras as input devices through low-end platforms. Besides, the solution
should be providing a user-centered design approach to build a hand pose vocabulary for

3D user interaction in an egocentric vision scenario, that is natural and comfortable.

1.3 Contributions

The hand pose recognition is a Machine Learning problem modeled as a pattern recogni-
tion task. Given that the state-of-the-art algorithms for pattern recognition in images are
based on Convolutional Neural Networks (CNN) [35], we have chosen to use this approach

in our work.

We adopted three of CNN’s based architectures (GoogLeNet, Resnet, and DenseNet
[42, 10, 12]) , with which we conducted several training sessions using two different datasets

until we get to the model used in our solution.

We present an interaction solution based on bare hand interactions, which perform
the real-time recognition with 98% accuracy and can be executed indoor and outdoor

using ordinary cameras as input devices through low-end platforms, such as smartphones.
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One of the data sets was created explicitly for this work, containing approximately

59,000 RGB images of the hand in a First-Person Vision (FPV) [15], see Figure 4.2.

We present a user-centered design approach to build a hand pose vocabulary for 3D

user interaction in an egocentric vision scenario.

To simulate a first-person vision navigation system (FPV), we developed the FPVRGame,

a virtual reality environment, see Chapter 4.

The main contributions can be summarized as:

1. Implementation of a CNN-based method for recognition of user’s hand poses cap-
tured from a first-person vision navigation system (FPV) perspective in any envi-

ronment (indoor and outdoor) and without any background or lighting constraints;

2. Creation of an open dataset with approximately 59,000 images of hand poses from

a first-person vision navigation system (FPV) perspective;

3. Design process for generation and assessment of a hand pose vocabulary by using
the Wizard of Oz method;

4. Empirical evaluation of user’s experience and performance, using the proposed hand
posture recognition in comparison to the main interfaces available for HMDs, in both

low and high-end systems;

In addition, while we attempted to solve FPV systems, our solution can be trivially
extended to any other interaction paradigm, depending only on providing a new image

dataset.

1.4 Applicability and Evaluation

The FPVRGame design and evaluation process involved three empirical studies. In Study
One we specified a preliminary vocabulary containing the hand poses considered more
intuitive to represent the actions of a character from an FPV perspective. In Study
Two we evaluated the hand poses existing in the preliminary vocabulary and built a new
and more comfortable vocabulary, capturing the images required to create the dataset.
Finally, in Study Three we validated our results using a low-end HMD and a simple VR

environment.
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1.5 Dissertation Structure

This dissertation is organized as follows: Chapter 2 describes the related works. Chapter
3 presents our CNN based solution for hand posture recognition. Chapter 4 presents the
FPVRGame design and evaluation process, i.e., hand poses vocabulary construction pro-
cess; the comparison between the accuracy achieved by our method with other interfaces.
Chapter 5 discuss. Finally, Chapter 6 and 7 present the conclusions of our work and

future works.



Chapter 2

Related Work

In this chapter, we present previous works that are related to our proposed solution. We
discuss the types of technologies involved in recognizing hand poses and compare our work

to others who make up state-of-the-art.

2.1 Overview of Hand Pose Recognition

Hand Pose Recognition

- 0 | background
— | 1 move left
2 | move rigth
3 move forward
\‘ _ g mave back
| 5 select
B pick up
7 jump

Receives the image and return the class 5

Figure 2.1: The process to convert a hand pose into a game command (action of selecting
a coin).

The use of bare hands as a game controller requires to recognize the hand poses per-

formed by the user during the game. Recognition refers to the whole process of identifying
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the player’s hands, making their representation possible, and converting a hand pose into

a game command, such as the action of selecting an object, see Figure 2.1.

Two types of technologies promote this kind of interaction between humans and com-
puters, vision-based and contact-based devices. Although there are several precise and
functional interface devices for HMDs, we affirm that the use of bare hands is the most

natural, intuitive and immersive [34].

Hand gestures can be classified using the following taxonomy: static and dynamic
gestures. We chose to implement our solution through devices based on computer vision,
using Convolutional Neural Networks (CNN’s) [35], which in this work are responsible for
classifying static gestures performed by the player and provide a numeric label, so that

the actions of the game can be executed, see Figure 2.1 (Trained Model).

Because we choose to use low-cost HMDs, the recognition is made from RGB images
that are captured by a simple camera coupled to a smartphone, and the images are
obtained from a perspective of an egocentric view of the user, see Figure 2.1 (Input RGB

image).

2.2 Datasets for CNNs

Training a CNN from scratch requires a significant amount of labeled data, being thus, we
search in the literature for datasets containing images in First-Person Vision, also known

as egocentric vision are available, such as |21, 43, 24, 48].

Li et al. [21] address the problem of recognizing the wearer’s actions from videos
captured by an egocentric camera. Its work encodes features hand pose, head motion,
and gaze direction and using a similar pipeline with [45] tracks feature points in an input

video with a time window of 6 frames, besides of extract a set of local descriptors.

Tewari et al. [43] introduced a dataset including the top view images of the palm and
used a dedicated CNN architecture for hand pose recognition, its dataset of hand-pose

was recorded using 3D Time-of-Flight (ToF) camera.

Molchanov et al. [24] used an algorithm for joint segmentation and classification of
dynamic hand gestures from continuous depth, color, and stereo-IR data streams. For

gesture recognition, it was used a network that employs a recurrent three dimensional

(3D)-CNN.

Most of the datasets found contain dynamic gestures or use RGB-D images. Dy-
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namic gestures recognition usually exploits spatiotemporal features extracted from video
sequences. The evaluation of this type of method usually employs a sliding window of
16 frames or more |5, which introduces a significant input lag corresponding to the time
between the 16 frames and the gesture recognition. Our work recognizes static gestures
through a CNN; classifying hand poses from a single frame and allowing real-time recog-

nition without the before-mentioned input lag penalty.

Since we did not find any dataset that represented all our gestures according to our

context, we created a specific dataset to our context with a limited number of poses.

Tests performed in an egocentric dataset [48] show that our method has a competitive

accuracy when taking account gestures similar to our hand poses vocabulary.

2.3 Similar Experiments of Hand Pose Recognition

Yousefi et al. [46] presented a gesture-based interaction system for immersive systems.
Their solution makes use of the smartphone camera to recognize the gesture performed
by the user’s hands. The recognition process is based on matching a camera image
with an image in a gesture dataset. The gesture dataset contains images of a user’s
hand performing one of the 4 available gestures. The images were recorded for both
left and right hands under different rotations and a chroma key screen was employed to
remove the background pixels. The construction of the dataset is labor-intensive, requiring
the manual annotation of 19 joint points for each image in the dataset. At runtime, a
preprocessing step is necessary to ensure that only the relevant data is fed to the gesture
recognition system. This stage consists in segmenting the hand from the background
and crop the image in the region of interest. The gesture recognition system performs a
similarity analysis based on L1 and .2 norms to match the camera image with one of the
dataset images. A selective search strategy based on the previous camera frame is used

to reduce the search domain and efficiently recognize the gesture in real time.

The previous method requires extensive labor-intensive adjustments through the man-
ual annotation of 19 joint points for each sample on the dataset creation process. Fur-
thermore, the segmentation process requires manual adjustments based on the user’s
environment. As opposed to their approach, our method employs a dataset creation pro-
cess that automatically annotates the images while the user is experimenting with the
application. Furthermore, our recognition system works on raw input images and does

not require background extraction, chroma key, and lighting adjustments.
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Among several works, Son and Choi [39] proposed a hand pose detection approach
that is capable for classifications based on raw RGB images. Their method recognizes
three distinct hand poses employing a faster R-CNN, capable of identifying the region
of interest and classifying one of the three possible poses. The dataset for training the
network requires additional annotation for the palm position and fingertip. Their method
aims to estimate the bounding box of the hands and identify which hand is in the camera
field of view (left or right). In our paper, we consider that the game controller should
work similarly for both hands, allowing left-handed and right-handed users to share the

salne experiences.

2.4 Hand-Based Interaction in Virtual Environments

We started looking at literature for hand-based interaction in virtual environments. We
found many works presenting technological solutions for gestures interaction recognition
[39, 21, 43, 46, 24, 48] and many others focusing on the usability and performance eval-
uation of the proposed hand gestures interactions [37, 22, 2, 31, 30]. We noticed that all
of them focused on the assessment of the user experience and usability factors of using
a specific hand-pose or gesture interaction. However, few of them described the design
process used to choose those interactions, especially when those interactions cannot be

directly mapped from natural users gestures.

For instance in the work of Rempel et al. [22] eighteen participants evaluated four
different ray-casting hand gestures (index thrust, index click, palm thrust, and palm click)
and three snapback thresholds while selecting 2D targets of different sizes. Dependent
variables were mean time to select targets, a number of selections not completed, a number
of incorrect targets selected, and subjective preference. The index thrust and index click
gestures were preferred by subjects and had faster mean selection times and lower number

of incorrect target selections.

In previous work, the purpose of Rempel and colleagues’ study [30] was to develop
a lexicon for 3-D hand gestures for common human-computer interaction (HCI) tasks by
considering usability and effort ratings. Subjects (N = 30) with prior experience using
2-D gestures on touch screens performed 3-D gestures of their choice for 34 common
HCI tasks and rated their gestures on preference, match, ease, and effort. Videos of the
1,300 generated gestures were analyzed for gesture popularity, order, and response times.

The authors rated gesture hand postures on biomechanical risk and fatigue. A final task
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gesture set was proposed based primarily on subjective ratings and hand posture risk.
The different dimensions used for evaluating task gestures were not highly correlated
and, therefore, measured different properties of the task-gesture match. A method is
proposed for generating a user-developed 3-D gesture lexicon for common HCIs that
involves subjective ratings and a posture risk rating for minimizing arm and hand fatigue.

Results of this work were the start point of our first empirical study.

In another work [2], a study was conducted to explore the efficiency of hand tracking
and virtual reality for 3D object manipulations in conceptual design. Based on existing re-
search on conceptual design and hand gestures, an intuitive hand-based interaction model
was proposed. An experiment on basic 3D manipulation shows that participants using a
simple virtual reality and hand tracking interface prototype have similar performance to

those using a traditional mouse and screen interface.

In Pirker et al. [31], they explore the Leap Motion controller as a gesture-controlled
input device for computer games. Their work integrated gesture-based interactions into
two different game setups to explore the suitability of this input device for interactive
entertainment with focus on usability, user engagement, and personal motion control
sensitivity, and compare it with traditional keyboard controls. The study proposes some
gestures to interact with these games but did not discuss why they have chosen such

gestures.



Chapter 3

Hand pose recognition solution

The hand pose recognition is the process of classifying poses of the user’s hands in a given
input image. We use the recognized pose to perform an action in an interactive game.
Since we are using the player’s hands like a game controller, the process must be robust
to recognize the player’s hands in multiple scenarios and different environments. It is
important to have a consistent result in the hand recognition since a wrong classification
would result in an involuntary movement in the game, potentially harming the user’s

experience.

The hand pose recognition is a Machine Learning problem modeled as a pattern
recognition task. Given that the state-of-art the algorithms for pattern recognition in
images are based on Convolutional Neural Networks [35], we choose to use this approach

in our work.

3.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are learning algorithms that require a two-step
process. A compute-intensive training step executed once, and a fast inference step,
performed in the application runtime. Considering that our method aims to be executed
in a mobile environment, the hand pose recognition must be executed in interactive time
even on low spec mobile devices. This requirement makes the Deep Neural Network a

suitable approach for our purposes.

The input of our method is a RGB image containing the user’s hands (Table 4.1). The
output is a probability distribution of the k possible classes. The classes are composed

of the specified vocabulary described in Chapter 4, and an additional Background Class,
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that represents the absence of the user’s hands in the input image.

3.2 CNNs’ Architectures

We adopted three CNN architectures for the hand pose recognition: GooglLeNet, Resnet,
and DenseNet [42, 10, 12]. We discuss the different architectures in this subsection.

3.2.1 GoogLeNet

The GoogLeNet is a modular CNN based on the inception architecture [42]. It utilizes
inception modules containing 1x1, 3x3, and 5x5 convolution layers plus an additional 3x3
polling layer. The modules are stacked 9 times by connecting the output of a previous

module to the input of the next one.

The combination of multiple convolutional layers can lead to large computational
complexity in the deeper layers of the neural network. Thus, a dimensionality reduction
is performed by a 1x1 convolutional layer to reduce the number of filters for the expensive
3x3 and 5x5 convolution layers. Figure 3.1 shows the inception module with reduced

dimensionality operation.
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Figure 3.1: The inception module contains 1x1, 3x3 and a 5x5 convolution layers. The
operations in the module are executed in parallel.
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3.2.2 ResNet

The ResNet is a modular CNN based on the residual learning framework [10]. This
CNN architecture makes use of shortcut connections to improve the classification accu-
racy while reducing the number of learned parameters when compared with GoogLeNet.
The shortcut connection acts by merging the input with the output (Element-wise addi-
tion operation) of a ResNet module, resulting in a learnable identity mapping operation.
Consequently, during training, the CNN is capable of flowing the gradients through the

network skipping one or more modules.

The main layer in a ResNet module is a 3x3 convolution layer. To reduce the compu-
tational complexity of stacking multiple modules, a bottleneck design is improved. This
design consists of inserting a 1x1 convolution layer, for dimensional reduction, before the
3x3 convolution, and a 1x1 convolution layer to restore the dimensions of the output in
the building block. Thus, any module has the same feature size in the input and output
but uses fewer parameters in the main convolution layer. An additional regularization is
performed by the introduction of batch normalization layers in the ResNet [10]. Figure
3.2 illustrates the ResNet module with the bottleneck design, shortcut connection, and

batch regularization.
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Figure 3.2: The ResNet module is a structure containing a 3x3 convolution layer in a
bottleneck design with a residual shortcut connection.
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Similarly to the GoogLeNet, the ResNet is constructed modularly by stacking mod-
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ules, connecting the input of a module to the output of a previous one. In the cases where
the feature map size are different between modules, a 1x1 convolution neural network is
employed to adequate the dimensionality. In our experiments, we use a ResNet with 50

convolution layers.

3.2.3 DenseNet

The DenseNet is a CNN architecture that explores a simple connectivity pattern. Every
layer is connected directly with each other. This pattern allows the network to achieve
a similar accuracy with fewer parameters when compared to traditional CNNs [12]. This
interconnection between layers also improves the flow of the gradients, thus helping the
training of deeper network architectures. The connections also act as regulator for small

training set sizes, effectively reducing overfitting during the training of the CNN.
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Unit
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Normalization
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Figure 3.3: The DenseNet convolution block is a structure containing batch normalization

and ReLu preactivated convolution layers. The input of the DenseNet block receives the

output of all previous layers.
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Every convolution layer in the DenseNet is preceded by a batch normalization and
a ReLu activation function. The batch normalization layer act as a regulator that helps
the training of the network, preventing overfitting of the training data. We arrange the
convolution layer of the DenseNet in a structure named Convolution Block. This block

contains a 1x1 convolution layer followed by a 3x3, as illustrated in Figure 3.3.

The construction of a DenseNet follows the modular approach where blocks are stacked
to produce a deep CNN. A DenseNet module is a stack of densely connected convolutional
blocks. The connections are made in a way that any layer of the network is connected to
every other subsequent layer within the module. Figure 3.4 illustrates the interconnection

of the Convolution Blocks within a DenseNet module.

Module Input

Dense Block 1

Dense Block 2

Dense Block N

Module Output

Figure 3.4: The DenseNet module stacks convolution blocks connecting the input of a
block to all the previous blocks in the module. This interconnection improves the flow of
the gradients between layers, allowing the training of deeper neural networks.

The DenseNet utilizes a hyperparameter k, referred to as the growth rate of the
network. This hyperparameter defines the number of feature maps in the output of the
convolutional layer of a DenseNet block. The DenseNet building blocks are connected
by a transition layer composed of a 1x1 convolution and a 2x2 polling layer. In our

experiments, we used a DenseNet with 121 layers and a growth rate of £ = 32.
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3.3 Datasets

We use two datasets in CNNs training. The dataset 1 is employed to precondition the
CNN to recognize features related to human hands under different poses. The dataset 2

was explicitly created to meet the FPVRGame, see section 4.

3.3.1 Dataset 1 (DS1)

7R 8 A N3

o .
| SN
'\-4\ -"i ',I \

Figure 3.5: Example of DS1 images [19].

We use a pre-training dataset, containing 1,233,067 samples, taken from publicly available
sign language datasets [19]. A sample in the dataset consists of a tuple (image, label)
where the image portrays an interpreter performing a sign language gesture. Even though
this dataset does not contain the correct label for our recognition system, the images of
the dataset are employed to precondition the CNN to recognize features related to human

hands under different poses.

3.3.2 Dataset 2 (DS2)

We created a second dataset specially tailored for our recognition system. The dataset
consists of 58,868 samples captured in an indoor environment, comprising images of fifteen

people (eleven men and four women). To improve our detection for both right-handed
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and left-handed users, we applied a mirror transformation in the images. The images were
manually annotated with one of the seven classes that represent the possible actions of

the game, or a class representing the background (Table 4.1).

A preprocessing step in both datasets ensures that the images have the same dimen-
sions (256 x 256 pixels). A bicubic transformation was performed to resize images to

adequate dimensions.

The process employed to acquire the images and annotation of the classes were per-
formed during the Wizard of Oz study, described in Study Two in Section 4. The label
annotation of the images was conducted during the acquisition of the images without the
user’s awareness. Resulting in obtaining natural images devoid of the conscious action of
the user of effecting each hand pose, precisely the same as defined, as usually occurs when

the collection is done with the conscious user.

3.4 CNNs’ Training Results

Training a CNN from scratch requires a significant amount of labeled data; therefore, we
trained three CNNs through a process known as fine-tune. We loaded a pre-trained model
with weights adjusted to the ImageNet dataset|7]; then we fine-tuned our network to the

DS2 dataset. Figure 3.6 shows a summary of the results obtained during the training.
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Figure 3.6: Best results achieved during the training of CNNs, using the two data sets
DS1 and DS2.
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The ResNet architecture obtained a not satisfactory result, with a mean accuracy of
85.46% (test) and 79.25% (validation), with a mean error of 0.854%. Aiming to improve
the accuracy of the classification, we performed a second experiment that exploits the

features learned from the DS1 dataset.

The second experiment consists in, first, fine-tuning the CNN from the ImageNet
dataset to the DS1 dataset, then fine-tuning the resulting model to the DS2 dataset. The
result of this experiment for the ResNet architecture results in a mean accuracy of 93.03%
(test) and 89,79% (validation) with a mean error of 0.406%. When compared to the first
approach, we obtained a significant improvement in the mean accuracy of 8.85% (test)

and 13.28% (validation) with a mean error of 0.406%.

While the ResNet highly benefit from the second approach, the GoogleNet and DenseNet
obtained only a slight change in the mean accuracy when compared to the first experi-
ment. The GoogLeNet test accuracy improved by a small margin (from 97.47% to 98.05%)
while the DenseNet present a small decrease in test accuracy (from 97.89% to 97.23%).

Overall, the GoogLeNet obtained the highest mean accuracy of 98.05% on tests while
the DenseNet, trained with the first approach, achieved the lowest mean error on the vali-
dation and a better mean accuracy distribution across the different classes. Furthermore,
the training process was facilitated due to the usage of the first approach that does not
require the finetuning to the DS1 dataset. The mean accuracy across multiple classes can
be observed in the confusion matrix depicted in Figure 3.7. In our hand pose recognition
system, we choose to use the DenseNet implementation due to less associated error across

multiple classes and the relative uncomplicated single training process.
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Figure 3.7: a) Mean class accuracy distribution (error bar: 95% confidence interval). b)

DenseNet’s confusion matrix. ¢) GoogleNet’s confusion matrix.
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3.4.1 Hardware Configuration and Training Parameters.

The CNN training was executed on a DGX-1 machine with the following specification:
Intel Xeon E5-2698 v4 2.2Ghz, 512 GB DDR 4, 8 x NVIDIA P100 GPU. All the networks
are trained using 4 GPUs adopting stochastic gradient descent (SGD) as our solver. The
cross-validation is widely used to estimate the prediction error, thus we applied 5-fold
cross-validation to our model, splitting the dataset into 5 distinct folds [8]. We achieved
our best results running the tests for 30 epochs with batch size 96. The learning rate is

set initially to 0.01 with the exponential decay (gamma=0.95).

3.5 Benchmarking

For validation purposes, we tested our trained CNN against a public available egocentric
benchmark dataset, EgoGesture [48|. The dataset contains 2,081 RGB-D videos, 24,161
gesture samples totaling 2,953,224 frames. There are 83 classes of gestures, mainly focused
on interaction with wearable devices. Because it is a data set different from ours, we have
chosen a subset of gestures that are similar to the poses of our vocabulary. The mapping

between the EgoGesture classes and our vocabulary classes is shown in the Table 3.1.

Table 3.1: Gesture mapping our vocabulary of hand poses to EgoGesture[48] gestures.

Our Vocabulary EgoGesture
Class Gesture Class Gesture
1 move loft 66 thumb toward
left

2 move right "3.-{ 65 tbumb toward
b right
»

3 move forward ‘ 83 move fingers

forward

% thumbs

4 move back \ 67 backward

5 select \\ 29 number 5

Our GloogleNet model, even though have never been trained with any of the images

in the EgoCentric dataset achieved an accuracy of 64.3%. This result is superior to the
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mean average accuracy of 62.5% in the VGG16 model presented by Cao et. al [5]. On one
hand, we could improve our accuracy results by considering spatiotemporal strategies like
appending an LSTM network to the output of our last fully connected layer, on the other
hand, this introduction would increase the input lag in our application, thus making the

model inadequate for VR applications.

Most of the errors associated with our model are the misclassification of gestures as
background (class 0), as shown in the confusion matrix depicted in Figure 3.8a. This
error is associated with the different nature of our training dataset and the tested dataset
(video sequences in the EgoGesture vs single frames in our dataset). Frames at the two
extremes (beginning and ending) of a video sequence in the EgoGesture dataset contains
no identifiable gestures, for example, partially visible hands or the very beginning/ending
of a gesture. To test this hypothesis, we tested our model by dropping the few beginning
and ending frames of the video sequences. With 4 and 8 frames dropped, the model
achieved a notable higher mean accuracy of 76.17% and 78.81%. The improvement in the

model’s accuracy and the confusion matrix (Figure 3.8b and c) confirm our hypothesis.
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Figure 3.8: Confusion Matrix: a) 0 frames dropped, b) 4 frames dropped, c¢) 8 frames
dropped. As for classes 6 and 7 we did not find similar gestures. Class 0 does not make
its inference because it does not appear in the label of the base EgoCentric.

3.6 Inference Server Implementation

The recognition system is based on a client/server system. The FPVRGame, running on
a smartphone Moto X4, act as a client that captures the HMD camera image and send
them to the inference server application through a TCP/IP protocol. The server feeds
the CNN with the received image and carries the recognized hand pose identification back
to the FPVRGame. The inference server application (Figure 4.1¢) was implemented with
Python 3.6 using the Caffe framework [13] within an Intel® Core” i7-7700HQ CPU @
2.80GHz, 16GB RAM and NVIDIA GeForce® GTX 1050 Ti machine and running the

DenseNet model performs the inference with an average of 28 milliseconds. Thus, the
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inference process can run in real-time (35 fps) on any modern GPU enabled devices.
Alternatively, it is possible to use our CNN model with third-party inference engines such

as NVIDIA TensorRT [27], Clipper [6], and DeepDetect [14]. Moreover, the NVIDIA

Inference Server [26] can be used for a cloud computing service solution.



Chapter 4

FPVRGame - Design and Evaluation Pro-
cess
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Figure 4.1: The FPVRGame is a VR environment developed to simulate an FPV game
which allows the usage of the bare hand to control a character. This figure shows the
action of selecting a coin and the process involved: the capture of the RGB image, the
inference of CNN and the label send for execution of the action in the game.

FPVRGame is a VR environment developed to simulate a First Person View game,
as illustrated in Figure 4.1. Its primary objective is to navigate through the scenario and

collect as many coins as possible.

Providing input for the selection of objects and navigation in virtual, augmented, and
mixed-mode reality can be done with hand-held controllers or hand gestures depending
on the complexity and precision required. Freehand gestures have the advantages of

eliminating the need for a game controller, not needing to see the controls of the controller.

Our game requires bare hands like a controller. For this, it captures the image of the

player’s hand and forwards the images to the Inference Server.
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Figure 4.2: Camera angle and the field of view for hand positing.

As the camera is the single input device, the player has to position his hand inside
the camera field of view (Figure 4.2). Due to this limitation, position the hand within
the angle of the camera may require considerable physical effort and if the hand pose is

not the most suitable, may cause pain.

Table 4.1 shows the vocabulary provided by FPVRGame, built based on two empir-
ical studies, that offer a set of intuitive and comfortable hand poses, according to the

experience of the users.

Table 4.1: Vocabulary of hand poses used for the player.
Class Game action Captured RGB images

0 background i ‘ E
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Using the proposed vocabulary requires from the users to learn it as a dedicated move-
ment because they need an understanding of the underlying system so as to understand
the connection between the gesture and the action they are performing. In order to find
which are the more appropriate hand poses for this context of use, we performed three

empirical studies. The studies are described as follows.

4.1 Study One - Identifying Users’ Preferences

Using an online questionnaire (APPENDIX A), we collected users’ preferences about

which would be the most appropriate hand poses to represent each player action.

4.1.1 Participants

We distributed the questionnaire to a group of users. A total of 173 people answered the
questionnaire, 105 males, and 68 females, aged between 18 to 39 years (M = 25, SD =
4.06), right-handed 92.5% and 7.5% left-handed.

4.1.2 Procedures and Results

Participants were invited to imagine were using virtual reality glasses to simulate the use
of the hand poses, to check how natural and comfortable they are. For each game’s action,
the questionnaire presented three images with different hand poses and a text field, so
that the user could choose an option or describe a new hand pose, see APPENDIX A.
Figure 4.3 shows the results obtained for the preliminary vocabulary of hand poses. The

hand poses initially suggested in the questionnaire were selected from [30, 31].

% . 3 W8 2
h W .

52.5% 53.8% 61.9% 46.6% 68.8% 38.1% 33.8%
move left move right move forward move back select pick up jump

Figure 4.3: The preliminary vocabulary of hand poses (% of participants’ choices).
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4.2 Study Two - Formative Evaluation

This study aims to validate the preliminary vocabulary (Figure 4.3) investigating the
users’ experience in order to discard poses that are not intuitive and comfortable. We
captured the participants’ hand poses (with Wizard-of-Oz method) and generated the
database for CNNs training, giving the participant the impression that they are using a

ready-made game with the recognizing hand poses function [16].

4.2.1 Participants

We recruited 15 volunteers, 11 males and 4 females, aged 18 to 43 years (M = 26.46, SD =
6.94), all right-handed. To keep the magic of the Wizard of Oz, we chose the participants
with little or no experience with games that use gesture recognition and participated in

Study One.

4.2.2 Prototype

Moedas Coletadas: 0 Moedas Coletadas: 0

Sy
A7

= {

Figure 4.4: Prototype: a) participant performing the tasks, b) tutorial scenario, ¢) VR
game with complete scenery and coins scattered. d) RGB images captured during the

study to compose the DS2.

It was developed to simulate a VR game in the context of FPV where the player navigates
the scenario and must collect as many coins as possible in the shortest time. It was

composed of a tutorial (Figure 4.4b), formed by a small scenario with around the scene,
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and a game (Figure 4.4c) with a bigger scenery and scattered coins. With the tutorial,
the participant had the opportunity to become familiar with the game’s actions and with

the hand pose commands.

The prototype was designed to be used with the Wizard-of-Oz method with the fol-
lowing feedbacks: a frame that displays in real time the images captured by the camera
of the mobile device and a set of buttons representing each one of the seven actions of the
game. The frame should be used by the "wizard" to perform the game’s actions synchro-
nized with the hand’s poses made by the participant. The set of buttons was used to give
the impression that the recognition solution was working. Actually, they were triggered

according to the decision of the "wizard", highlighting the action accordingly.

4.2.3 Setup

We used a controlled environment with: an HMD Oculus Rift DK1, a webcam (HD 720p
LifeCam HD-3000 T3H-00011 MFT Microsoft) at the front of the HMD, both connected
to a laptop running the prototype and with a turntable adapted to follow the player’s
movements. The "wizard" stands on the other side of the table, moving it as the player
walks around the room and controls the game’s character through the keyboard (Figure
4.4a). Participants needed to hand pose within the camera field of view, so their hands
would be centered on the frame, and we could capture the participant’s hands images, as

shown in Figure 4.4d.

4.2.4 Task 1

The participant was invited to play the game using the set of hand poses that he/she
has chosen in Study One. They started by following the tutorial, which advised them to
perform all hand poses so that they could become familiar with the character’s actions.
The challenge proposed was simple: to collect five coins with no time limit. The purpose
was to observe the participants’ behavior and to stimulate their comments on how intuitive

and comfortable it was.

After collecting all the coins, the participant was invited to play the complete game,
which has the same features as the tutorial, but with a bigger scenario and with scattered

coins. The goal was to collect as many coins as possible in 10 minutes.

We instructed the participant to think aloud while performing the assignments and

recorded the entire study. After completing the task, we asked the participants the fol-
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lowing questions:

Q1: Are the hand poses you performed natural and intuitive?
Q2: If, so, are they good representations of the game action?
Q3: What did you think of the hand poses you chose?

Q4: Did you feel any discomfort when using a particular pose? Which?

4.2.5 Task 2

The participant was invited to play again using the preliminary vocabulary of hand poses
(Figure 4.3) defined in Study One. The same steps of Task 1 were repeated. After

completing the task, we asked the participants to answer the following questions:

Q1: Did you enjoy playing using your hands as a control? From a grade of 1 to 5.
Q2: If you could change any pose, which changes would you make?

Q3: Would you like to repeat the game using the new hand poses?

100,00% 93,33%

6,67% 6,67% l 6,67%
I —
. R
»

move left move right move forward move back select . pick up
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Figure 4.5: Final users’ preferences (%) of the hand poses vocabulary after had performed
the Task 2.

4.2.6 Task 3

We asked the participant to choose the hand postures that he considers appropriate to
create a new vocabulary, being free to suggest other hand poses. Following, the participant

was invited to play again with same steps of Task 1.
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At the end of the tasks, we verified with the participant if the defined vocabulary has
the most appropriate hand poses to this type of VR game. In case of positive answer, we
proceeded to evaluate the recognition system. If not, the participant could repeat Task 3

until finding a definitive vocabulary that he considers appropriate.

86,67% 86,67% 100,00% 93,33% 86,67%

I I B I I
4 L& |
! 8 - P

%5 72 ).
: & |
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move left move right move forward move back select pick up jump

80,00%

Figure 4.6: Final users’ preferences (%) of the hand poses vocabulary after had performed
the Task 3.

4.2.7 Results and feedbacks

Figure 4.5 shows results from Task 2, where all participants evaluated the preliminary

vocabulary. The hand pose "move left," "

move right" and "move to back " had little
acceptance. Only participant P11 reported that he could use them. All other participants,
despite considering the intuitive poses, pointed out that felt muscle’s pain and discomfort,

even in the first minutes of the task.
Some selected comments about the preliminary vocabulary were:

"I felt pain when performing lateral movements, and difficulties remind me of the

movements to jump and move forward";
"I want to change all the poses, except to move forward...";
"the movements to the left and the right, cause a certain discomfort”;
"I found hand poses of the vocabulary very intuitive. .

Figure 4.6 shows that 4 of 7 hand poses of the preliminary vocabulary (Figure 4.3)
have been replaced due to the discomfort reported by the participants. To replace actions,
"move left" and "move right," 13 participants chose to use the thumb pointed left and
right, respectively. To replace the action, "move back," 11 participants chose to use

the thumb pointed back. All participants reported difficulties in positioning their hands
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within the angle of the camera. Participants said that this disrupted the fun, because
whenever they wanted to execute a command, there was a delay, due to the need to correct

the hand’s position.

4.3 Study Three - Summative Evaluation

A summative evaluation is focused on the outcome of a development process. This study
aimed at assessing the participant’s experience and performance when using our hand
poses recognition solution. For that, we compare it with two other controllers (joystick
and gaze) while manipulating a character in the FPVRGame. We decided to compare the
hand pose interaction with these controllers once joystick is the most used commercial
solution for games interaction while the gaze pointed based interaction has been recently
used in VR mobile interaction [17] and [9]. Look gaze input means that you do not have
to use a trigger. You just keep looking for a certain time on a target and then it gets

selected.

Considering the feedbacks from Study Two, we raised the following hypotheses:
1. The perception of "easy to use" will be lower with the hand pose controller, when
compared to gaze and joystick controllers.

2. The perception of comfort will be lower with the hand pose controller, when com-

pared to gaze and joystick controllers.

3. The perception of affordance will be higher with the hand pose controller, when

compared to the gaze and joystick controllers.

4. The perception of enjoyment will be higher with the hand pose controller when

compared to gaze and joystick controllers.

5. The perception of the effectiveness of the hand pose interaction will be higher in

indoor than outdoor environments.

4.3.1 Participants

Twenty subjects participated voluntarily in the study (15 males and 5 females). Their
ages ranged from 21 to 37 years (M = 25.30, SD = 3.84). First thing to participate in the

study, all subjects have to read and agreed with an Informed Consent Form. None of the
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volunteers participated in the previous studies. Seventeen subjects reported being right-
handed while the remaining were marked as left-handed. Ten subjects reported that
they never used an HMD display or any tracking device before. However, all subjects
reported having some experience with games. No correlation was found between the

subject conditions and their performance during the experiment.

4.3.2 Setup

The equipment used in this study was a low-cost HMD consisting of VR BOX 2.0 glasses
+ Bluetooth remote controller (Joystick), a smartphone running the FPVRGame and a

notebook running the Inference Server.

4.3.3 Procedures

Half of the participants played the game in an indoor environment while the other half
played in an outdoor place. Participants played using all three game controllers alternating
orders and were instructed to capture the coins as quickly as possible. After five minutes,

we stopped the game and registered the number of coins collected.

The game actions using the gaze, are: look to an icon on the screen top for "move
forward," look to coin per 1,5 seconds for "select" and look to coin per 1,5 seconds to
"pick up" it. Using the joystick, the participant presses one button to "select" and other
to "pick up." The hand poses used in this study were the same as those described in Table
4.1.

Each time the participant finished utilizing a specific game controller he was invited

to fill out a questionnaire containing four questions:

Q1 - Easy to learn: I learned how to use this game controller easily.
Q2 - Comfort: I feel comfortable when using this game controller.
Q3 - Natural: I found natural using this game controller.

Q4 - Enjoyment: I enjoyed when using this game controller.

One more sentence was added to assess the feeling regarding the level of recognition of

the hand poses interaction.

Q5 - Effectiveness: I found that recognizing poses was effective during my interaction.
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We used a Likert Scale method for mapping the answers, with the following options:
"strongly disagreed," "disagreed," "neutral," "agreed," or "strongly agreed." At the end
of the experience, we asked the participant if they would like to change any of the hand
poses used to play and to point out positive and/or negative aspects of his interaction.

Finally, we asked the participants to rank the game controllers in order of their preference.

4.3.4 Results

Q1 - I learned how to use this game controller easily.

Hand Poses 5,0%]1“,0.!/“ 40,0% _
JOYStICk 10,0%‘ 40,0% —
Gaze 50%  20,0%

Q2 - | feel comfortable when using this game controller.

: —
Hand Poses 15,0% 30,0% %

JOYStICk * o —
! 100
Gaze 45,0% 15,0% 25,09

Q3 - | found natural of using this game controller.

’ 4
3,00
30,0% 40,0 15.0%
' 00
Gaze l 25,0% 30,0% \{00,0% -

Q4 - 1 enjoyed when using this game controller.

Joystick

Hand Poses 50%  20,0% 40,0%

doystick ¥ o _
i -
G aze M Hoote 20,0% 45.0% / -

M Strongly Disagree Disagree Neutral Agree M Strongly Agree

Figure 4.7: Perceptions of the participants considering all game controllers.

All statistical analyses were performed using IBM SPSS ! with (o = 0.05). The

Thttps://www.ibm.com /analytics/spss-statistics-software.
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primary measures used in this study were the participant’s feelings when using different
game controllers (joystick, gaze and hand poses) to control a virtual character in the
FPVRGame. Figure 4.7 shows a summary of the results for questions Q1, Q2, Q3, and

Q4 for each game controller.

We find none significant difference between the game controllers (Friedman X (22) =
4.480, p = 0.106) for the easy of learning question. Then our first hypothesis was not
confirmed, and all controllers achieved a percentage of positive feelings equal to or greater

than 85%.

For the item "Comfort," there was a significant difference between gaze and joystick
controllers (Friedman X (22) = 16.033, p < 0.001). The joystick achieved the highest per-
centage of positive feelings among the controllers (95%), being significantly higher than
the gaze (40%). Then we did not confirm our second hypothesis where the hand pose

interaction was expected to receive the worst comfort score.

For the item "Natural," there was a significant difference between the joystick and
hand pose controllers (Friedman X (22) = 12.400, p = 0.002). The hand pose achieved the
highest percentage of positive feelings among the controllers (55%), being significantly
higher than the joystick (15%). The hand pose interaction was expected to be more

affordable than the joystick and gaze interactions.

For the "Enjoyment", there was no significant difference between the game controllers
(Friedman X(22) = 8.041, p = 0.018, with the multiple comparisons tests with p value
adjusted (Gaze-Hand Pose p =0.207), (Gaze-Joystick p = 0.144), (Hand Pose-Joystick
p = 1)). Then our fourth hypothesis was not confirmed and all controllers obtained a

percentage of positive feelings equal to or greater than 60%.

Q5 - | found that recognizing poses was effective during my interaction.

Hand Poses Mean 5,0% 70,0% .

Hand Poses Indoor 10,0% 70,0%
Outdoor 70.0%
B Strongly Disagree Disagree Neutral Agree B Strongly Agree

Figure 4.8: Participants’ perception of effectiveness while using the hand pose controller,
first row: all participants, second row: participants separated per group (indoor, outdoor).

For the evaluation of "Effectiveness" perception (Figure 4.8) the majority of the partic-

ipants pointed out positive feelings regarding the effectiveness of the hand pose recognition
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with only 5% of "Neutral" responses. In addition, we found no significant difference be-
tween the participants who performed the study in different environments (Mann-Whitney
U = 41.500, p = 0.423) refuting our fifth hypothesis.

Concerning the performance of participants using the hand pose controller in indoor
and outdoor environments we find none significant difference (t-test ¢;5y = 0.631, p =
0.536). Coins collection in indoors environment had a result of 8.5 (SD=2.27) and in out-
doors was 7.9 (SD=1.96). This result is in agreement with the evaluation of effectiveness

perception.
14
12

10

Quantity of coins in 5 minutes
(8)]

® Hand Pose @ Joystick @ Gaze

Figure 4.9: Quantity of coins per game controller: Hand Pose (M = 8.2, SD = 0.46),
Joystick (M = 8.25, SD = 0.51) and Gaze (M = 6.35, SD = 0.43).

We also recorded the number of coins collected by participants using each game con-
troller (see Figure 4.9). The Shapiro-Wilk test shows that the data follows a normal dis-
tribution (Hand Pose: W = 0.970, p = 0.760, Joystick: W = 0.958, p = 0.499 and Gaze:
W = 0.952, p = 0.396). Thus, a One-way ANOVA with repeated measures (o = 0.05)
with posthoc and correction of Bonferroni was used (F(23s) = 8.218, p = 0.001. We note
that the quantity of coins collected while using the hand pose controller was significantly
higher when compared to the gaze controller. However, it was not different from the

performance achieved while using the joystick.

Only one of the twenty participants reported having an interest in changing their
hands during the interaction. The participants’ preference about controllers was: hand

pose with 9 votes, joystick with 8 votes and gaze with 3 votes.
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We observed that the participants’ preference of controllers followed the same behavior

from participants’ performance of controllers.



Chapter 5

Discussion

The Wizard-of-Oz technique used in Study Two showed to be adequate for validating the
preliminary vocabulary achieved by Study One and contributing for a good final user’s

experience with the FPVRGame as discussed in Study Three.

We noticed that only 1 of 20 participants reported having an interest in changing the
hand poses suggested. Concerning the ease of learning aspect, the hand pose interaction
achieved positive feelings, similar to the other game controllers (see Figure 4.7). While

" "easy to interact,”

most participants reported positive feedbacks saying: "easy to use,
"easy to adapt”, only 2 of 20 reported negative feedbacks: "learning is slower,” "I can

not remember the commands of the hand’.

In addition, the simulation with the wizard allowed appropriate conditions for record-
ing the images and generating the data set. Before using the simulation as described in
Study Two, we tried to ask for volunteers to perform some hand poses to be captured
and used in the CNN’s training. However, in practice, the results were not good and we
assume that it was due to the robotic and not natural movements made by the voluntaries
without causing oscillations in the poses. Even with a dataset composed only of images
collected indoor, the CNN model was able to generalize the recognition of hand poses,
and it works appropriately for both indoors and outdoors environments. Besides that, we
observed that the performance of the hand pose interaction with the FPVRGame pre-
sented satisfactory result, similar to the joystick in the number of collected coins (Figure
4.9).

One limitation of FPVRGame is to use a single input device. The interaction occurs
only when the user places his hand within the angle of the camera (Figure 4.7), which can

cause some physical discomfort. Therefore, we evaluated the participants’ comfort when
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using hand pose and surprisingly such aspect was not a problem for the participants to

enjoy and to achieve good performance.

We identified a significant correlation between the "Comfort" and "Enjoyment" per-
ceptions (Spearman’s p = 0.654, p = 0.002). It demonstrated that the higher the comfort
is, the higher will be the pleasure. However, based on the percentage of positive feelings
and the feedbacks from Study Three, where comfort was not the best neither the worst,
we can assume that the level of discomfort does not prevent the user from feeling pleasure
when using hand pose. Some of these positive comments were: "very intuitive and fun,”
"It is more fun to use the body and does not need any external control”. However, some
negative observations were pointed, such as: "I tried not to keep my arm straight,” "I tire

more".



Chapter 6

Conclusion

FPVRGame is an egocentric vision environment with a hand pose interaction solution
allowing the use of bare hands as a control for VR and Head Mounted Display scenar-
ios, especially for low-end VR devices. Our scenario is focused on egocentric vision and

presents a set of natural and comfortable hand poses, considering users’ preferences.

The FPVRGame demonstrates a hand pose interaction solution, based on deep learn-
ing. Using a trained CNN model capable of recognizing hand poses, we recognized images
from indoors and outdoors environments and without any illumination or background
constraint. We achieved an average accuracy of 97.89%, which allowed smooth and com-

fortable human interaction through different usage scenarios.

We used a user-centered design approach to built and test the hand based 3D in-
teraction vocabulary. Firstly, the questionnaire application was possible to select the
initial vocabulary according to the users’ preferences. Secondly, with the Wizard of Oz
technique was possible to validate the preliminary vocabulary and also generate a large
dataset (58,868 RGB images), which we made publicly available [29]. Finally, with the
users’ tests was possible to assess how natural the hand pose interaction was and compare

it with traditional interaction devices using commercial low-end HMD'’s.



Chapter 7

Future Works

In future work, we intend to explore the weaknesses pointed out in the user feedback
obtained during the evaluation of the FPVRGame, such as the fact that the user makes
some gesture out of the camera angle and does not get any response from the system. This
failure occurs due to the limitation of using only one input device, and we assume that
adding the solution to a complementary input device using the concept of the Internet of

Things (IoT) and associating it to the context of the game could solve the issue.

We can add to our solution the hand-pose segmentation features associated with a
tracking system and estimating the real-world illumination. In a mixed reality-context,
the usage of a more natural and immersive alternative to the game controllers, such as the
user’s hands, may drastically increase the game interface experience, allowing personalized

visual feedback of the user’s interactions [23].
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APPENDIX A - Questionnaire for Surveying and
Evaluating the Base of Manual
Gestures to Control Electronic

(zames

Questionnaire for surveying and
evaluating the base of manual
gestures to control electronic games.

*Obrigatdrio

Enderego de e-mail *

Seu e-mail

Esta pergunta é obrigatéria

IR —
Term of Consent

43



Research Title: Interacting in Virtual Reality games using recognition of hand poses
captured from the player's point of view.

Researchers in charge: Paulo Roberto Possas (UFF), Eder de Oliveira (Master's degree -
UFF), Professor Luciana Cardoso de Castro Salgado (Counselor - UFF), Professor Daniela G.
Trevisan (Counselor - UFF), Professor Dr. Esteban W. G. Clua (Advisor - UFF), Professor
Cristina Nader Vasconcelos (Counselor - UFF).

Dear volunteer,

You are being invited as a volunteer to participate in the research "Interacting in Virtual
Reality games using recognition of hand poses captured from the player's point of view." In
this study we intend to raise and evaluate different types of manual gestures to control the
characters of a game.

FREE AND CLOSED CONSENT TERM FOR SCIENTIFIC RESEARCH PARTICIPATION.

For this study we will adopt the following procedure (s): Respond to a questionnaire (online)
whose objective is to raise and evaluate a base of standard hand poses for the
implementation of a tool that is intuitive and comfortable.

To participate in this study you will have no cost, nor receive any financial advantage. You
will be free to attend or refuse to attend. Your participation is voluntary and refusal to
participate can be done at any time. The researcher will treat your identity with professional
secrecy standards. You will not be identified in any publication that may result from this
study.

The search results will be at your disposal when finalized. Your name or material indicating
your participation will not be released without your permission. The data and instruments
used in the research will be archived with the researcher responsible for a period of 5 years,
and after that time will be destroyed.

To obtain the material of your participation, or for any other information regarding the
guestionnaire, please contact:

Paulo Roberto Possas

Address: Rua Sao Pedro de Itaipu, 316

CEP: 24355-220 / Nitero6i — RJ

E-mail: paulopossas@id.uff.br

or

Eder de Oliveira
Email: eder.oliveira@ifmt.edu.br

Professional address for student location:
Av. Gal. Milton Tavares de Souza, s/n - Sdo Domingos, Niterdi - RJ, 24210-310.

| agree to everything that has been previously quoted and freely



give my consent by submitting this completed form. *

O Yes.
O No.

Esta pergunta é obrigatéria
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Questionnaire for surveying and
evaluating the base of manual
gestures to control electronic games.

*Qbrigatério

First, help us set up your user profile.

What is your name? *

Sua resposta

Whats is your nationality? *

Escolher

What is your age range? *

(O Lessthan18
(O 18-24years
O 25-30 years
O 30 - 35 years

(O More than 35 years



Do you have color blindness? *

O No
O Yes

If you have any problems that limits or makes it impossible to
move either or both hands, please specify.



Evaluate how much you have heard of the technologies below

from1to 5. *

Your knowledge of technology corresponds to how much you have read and / or studied about
technology in books, magazines, or any other form of media. Admit that 1 represents no knowledge
and 5 represents a lot of knowledge.

1 2 3 4 5

Games for

computer or

consoles (XBOX

ONE, O O O O O
PlayStation 4,

Nintendo Wii U,

etc.)

Mobile games

mﬂfvifs' 105, @, @ @ O O

Phone, etc.)

Virtual Reality

Games with

Head Mounted

Displays (HTC

VIVE, Oculus

Rift, PlayStation O O O O O
VR, Microsoft

Hololens, etc.)

for computers
or consoles

Virtual Reality

Games with

Head Mounted

Displays

(Google O O O O O
Daydream,

Cardboards in

general) for

mobile phones

Gesture

recognition

tools (Kinect, O O O O O
Leap Motion,

Myo, etc.)



Rate your familiarity with technologies below from 1 to 5. *

Your familiarity with the technology corresponds to how much you have used or interacted with that
technology in your life. Admit that 1 represents never having used the technology and 5 represents
using the technology on a daily basis.

1 2 3 4 5

Mobile games

widons O O O O O

Phone, etc.)

Virtual Reality

Games with

Head Mounted

Displays (HTC

VIVE, Oculus

Rift, PlayStation O O O O O
VR, Microsoft

Hololens, etc.)

for computers
or consoles

Virtual Reality
Games with
Head Mounted
Displays

(Google O O O O O

Daydream,
Cardboards in
general) for
mobile phones

Gesture
recognition

tools (Kinect, O O O O O

Leap Motion,
Myo, etc.)

What is your dominant hand? If ambidextrous, check the option
that you use the most every day. *

Your answer will change the next questions you will answer.

(O Right
O Left
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Questionnaire for surveying and
evaluating the base of manual
gestures to control electronic games.

*Qbrigatério

Now imagine that you are using a virtual reality glasses similar to
the image below, which is able to recognize the gestures that you
perform with your hands. As you said earlier that your dominant
hand was right, the images shown in this section will all be right
handed.

In this section we will present images that represent situations of decision making in a game.
In each of the images we will specify the command to be performed (it will be indicated in red)
and you should choose the image with the manual gesture that is more natural and
comfortable. You can choose only one option for each question. If you do not like any of the
moves, please specify the movement you would use.

Which of the following gestures would you choose to represent



the "turn right" command? *

SELECIONAR!

Which of the following gestures would you choose to represent



the "turn left'command? *

SELECIONAR!

(O outro:

Which of the following gestures would you choose to represent



the "move forward" command? *

SELECIONAR!

(O outro:

Which of the following gestures would you choose to represent



the "move backwards" command? *

(O outro:

Which of the following gestures you choose to represent the



"jump" command? *

Which of the following gestures would you choose to represent



the "select coin" command? *

SELECIONAR

Which of the following gestures would you choose to represent



the "grab the coin" command? *
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Questionnaire for surveying and
evaluating the base of manual
gestures to control electronic games.

Comments

Please leave here your critics and comments about the
questionnaire and / or research. Your feedback is very welcome.
Thank you!

Sua resposta

) Envie-me uma cépia das minhas respostas.
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