
UNIVERSIDADE FEDERAL FLUMINENSE

HENRIQUE DO PRADO LINHARES

Provenance-enhanced Algorithmic Debugging

NITERÓI

2019



UNIVERSIDADE FEDERAL FLUMINENSE

HENRIQUE DO PRADO LINHARES

Provenance-enhanced Algorithmic Debugging

Dissertation presented to the Computing
Graduate Program of the Universidade
Federal Fluminense in partial fulfil-
ment of the requirements for the degree
of Master of Science. Research area:
Systems and Information Engineering.

Advisor:
Prof. D.Sc. Leonardo Gresta Paulino Murta

Co-Advisor:
D.Sc. Troy Costa Kohwalter

NITERÓI

2019



Ficha catalográfica automática - SDC/BEE
Gerada com informações fornecidas pelo autor

Bibliotecária responsável: Fabiana Menezes Santos da Silva - CRB7/5274

L735p Linhares, Henrique do Prado
  Provenance-enhanced Algorithmic Debugging / Henrique do
Prado Linhares ; Leonardo Gresta Paulino Murta, orientador ;
Troy Costa Kohwalter, coorientador. Niterói, 2019.
  70 f.

  Dissertação (mestrado)-Universidade Federal Fluminense,
Niterói, 2019.

DOI: http://dx.doi.org/10.22409/PGC.2019.m.06127233720

  1. Programação (Computação). 2. Programa de computador.
3. Engenharia de software. 4. Python (Linguagem de
programação de computador). 5. Produção intelectual. I.
Murta, Leonardo Gresta Paulino, orientador. II. Kohwalter,
Troy Costa, coorientador. III. Universidade Federal
Fluminense. Instituto de Computação. IV. Título.

                                      CDD -





For my family



Acknowledgements

Firstly, I would like to thank my parents and my family for all the support, patience,

and believing in my potential.

This dissertation would not have been possible without the help, patience, and wisdom

of my advisors Leonardo Murta and Troy Kohwalter.

I would like to thank the researcher João Felipe Pimentel for the valuable guidance

and support.

I also would like to thank all students, researchers, and professors that I interacted

during the last years.

I gratefully acknowledge the support of CAPES for the award of a research scholarship.



Resumo

A localização de defeitos em software é uma atividade notoriamente difícil. Pesquisadores
propuseram diversas técnicas para ajudar os desenvolvedores a localizar defeitos. Uma
dessas técnicas é a depuração algorítmica, que consiste em executar o programa defeituoso,
construir uma árvore de execução com as subcomputações, fazer perguntas ao desenvolve-
dor sobre a corretude de algumas subcomputações específicas e podar o espaço de busca de
acordo com as respostas a estas perguntas. No entanto, dependendo da complexidade do
programa, o número de perguntas pode ser alto, aumentando a duração da sessão de depu-
ração. Neste trabalho propomos o DebugProv, uma abordagem de depuração algorítmica
para programas em Python que aprimora a árvore de execução com proveniência para
reduzir o número de questões necessárias para localizar o defeito e, consequentemente,
reduzir a duração das sessões de depuração. Avaliamos nossa técnica em diferentes pro-
gramas e descobrimos que ela conseguiu reduzir o número de perguntas em 25.2%, em
média.

Palavras-chave: depuração algorítmica, proveniência, fatiamento de programa, defeitos
de software



Abstract

Localizing defects in a faulty software is a notoriously difficult activity. Researchers
proposed several techniques to help developers to locate defects. One of these techniques
is Algorithmic Debugging, which consists on executing the defective program, building
an execution tree with the subcomputations, asking questions to the developer about the
correctness of some specific subcomputations, and pruning the search space according to
the answers to those questions. However, depending on the complexity of the program,
the number of questions can be high, increasing the duration of the debug session. In this
work we propose DebugProv, an algorithmic debugging approach for Python programs
that enhances the execution tree with provenance to reduce the number of necessary
questions to locate the defect, and, consequently, reduce the duration of debug sessions.
We evaluated our technique over different programs and found that it was able to reduce
the number of questions in 25.2%, on average.

Keywords: algorithmic debugging, provenance, program slicing, software defects



List of Figures

2.1 Python script used as a guiding example . . . . . . . . . . . . . . . . . . . 6

2.2 The execution tree of our guiding example . . . . . . . . . . . . . . . . . . 7

2.3 Example of Single Stepping Navigation Strategy (first step) . . . . . . . . . 9

2.4 Example of Single Stepping Navigation Strategy (second step) . . . . . . . 10

2.5 Example of Single Stepping Navigation Strategy (third step) . . . . . . . . 10

2.6 Example of Single Stepping Navigation Strategy (fourth step) . . . . . . . 11

2.7 Example of Single Stepping Navigation Strategy (fifth step) . . . . . . . . 11

2.8 Example of Single Stepping Navigation Strategy (sixth step) . . . . . . . . 12

2.9 Example of Single Stepping Navigation Strategy (ET after navigation) . . 12

2.10 Example of Top Down Navigation Strategy (first step) . . . . . . . . . . . 13

2.11 Example of Top Down Navigation Strategy (second step) . . . . . . . . . . 13

2.12 Example of Top Down Navigation Strategy (third step) . . . . . . . . . . . 14

2.13 Example of Top Down Navigation Strategy (fourth step) . . . . . . . . . . 14

2.14 Example of Top Down Navigation Strategy (fifth step) . . . . . . . . . . . 15

2.15 Example of Heaviest First Navigation Strategy (first step) . . . . . . . . . 16

2.16 Example of Heaviest First Navigation Strategy (second step) . . . . . . . . 17

2.17 Example of Heaviest First Navigation Strategy (third step) . . . . . . . . . 17

2.18 Example of Heaviest First Navigation Strategy (fourth step) . . . . . . . . 18

2.19 Example of Heaviest First Navigation Strategy (fifth step) . . . . . . . . . 18

2.20 Example of Divide and Query Navigation Strategy (first step) . . . . . . . 19

2.21 Example of Divide and Query Navigation Strategy (second step) . . . . . . 20

2.22 Example of Divide and Query Navigation Strategy (third step) . . . . . . . 21



List of Figures viii

2.23 Example of Divide and Query Navigation Strategy (fourth step) . . . . . . 21

3.1 Architecture of DebugProv . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 A provenance graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 The provenance enhanced execution tree . . . . . . . . . . . . . . . . . . . 30

4.1 Boxplot of the number of questions required to locate the defective node

without provenance enhancement (left) and with provenance enhancement(right).

Outliers removed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Boxplot of the number of questions required to locate the defective node

without provenance enhancement (left) and with provenance enhancement(right)

in the Single Stepping navigation strategy. Outliers removed. . . . . . . . . 43

4.3 Boxplot of the number of questions required to locate the defective node

without provenance enhancement (left) and with provenance enhancement(right)

in the Top Down navigation strategy. Outliers removed. . . . . . . . . . . 44

4.4 Boxplot of the number of questions required to locate the defective node

without provenance enhancement (left) and with provenance enhancement(right)

in the Heaviest First navigation strategy. Outliers removed. . . . . . . . . 45

4.5 Boxplot of the number of questions required to locate the defective node

without provenance enhancement (left) and with provenance enhancement(right)

in the Divide and Query strategy. Outliers removed. . . . . . . . . . . . . . 46



List of Tables

2.1 Navigation Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Steps of Single Stepping Navigation Strategy . . . . . . . . . . . . . . . . . 9

2.3 Steps of Top Down Navigation Strategy . . . . . . . . . . . . . . . . . . . 13

2.4 Steps of Heaviest First Navigation Strategy . . . . . . . . . . . . . . . . . 15

2.5 Weight of subtrees for Heaviest First navigation strategy . . . . . . . . . . 16

2.6 Steps of Divide and Query Navigation Strategy . . . . . . . . . . . . . . . 18

2.7 Weight of nodes for Divide and Query Navigation Strategy . . . . . . . . . 19

2.8 Updated (1) weight of nodes for Divide and Query Navigation Strategy . . 20

2.9 Updated (2) weight of nodes for Divide and Query Navigation Strategy . . 21

2.10 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1 Improvements obtained by DebugProv in the guiding example . . . . . . . 31

4.1 Selected Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Mutants Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Individual analysis of provenance enhancement by selected program. . . . . 40

4.4 Navigation strategies performance over trees with and without provenance

enhancement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41



List of Acronyms and Abbreviations

ET : Execution Tree;

AD : Algorithmic Debugging;

Prov. : Provenance;

Enhc. : Enhancement;

Reduct. : Reduction;

GADT : Generalized Algorithmic Debugging and Testing;

IDTS : Integrated Debugging, Testing and Slicing;

JavaDD : Java Declarative Debugger;

DDJ : Declarative Debugger for Java;

HDT : Hybrid Debugging Technology;

LCS : Longest Common Subsequence;

OOP : Object-oriented Programming;

ODB : Omniscient Debugging;



Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Algorithmic Debugging 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Guiding Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Capturing Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Navigation Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4.1 Single Stepping Navigation . . . . . . . . . . . . . . . . . . . . . . . 9

2.4.2 Top Down Navigation . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.3 Heaviest First Navigation . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.4 Divide and Query Navigation . . . . . . . . . . . . . . . . . . . . . 18

2.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 DebugProv 26

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Capturing Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Enhancement Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Navigation Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30



Contents xii

3.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.6 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Evaluation 34

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3.1 Does the provenance enhancement reduce the number of questions

in algorithmic debugging (RQ1)? . . . . . . . . . . . . . . . . . . . 38

4.3.2 How provenance enhancement improves each navigation strategy

(RQ2)? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3.2.1 How provenance enhancement improves Single Stepping

strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3.2.2 How provenance enhancement improves Top Down strategy 43

4.3.2.3 How provenance enhancement improvesHeaviest First strat-

egy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3.2.4 How provenance enhancement improves Divide and Query

strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.5 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 Conclusion 49

5.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

References 53



Chapter 1

Introduction

1.1 Motivation

Finding defects in software is a notoriously difficult activity. When a program presents an

unexpected behavior, programmers must search, among several lines of code, the one that

contains the defect. Developers in charge of the debugging task usually do this search in

an unsystematic way, based on guesses [50, 27]. These guesses demand great effort and,

the larger the software, the bigger the number of possible locations for the defects.

Nowadays, two techniques are widely used to help developers during the debugging

task [39]: logging and breakpoint debugging. Both require the developer to select the right

variables. When using the logging technique, if the selected variables are not related to the

defect, then the values in the logs are also not going to be related to the defect [22]. A very

similar limitation occurs with breakpoint debuggers but, instead of selecting a variable,

the challenge is the selection of a statement to insert the breakpoint. Moreover, any

change in the logged variables or the statements with breakpoints requires a complete

re-execution of the program. Thus, these techniques are based on trial and error and

eventually demands multiple executions to find a specific defect.

In the last decades, researchers proposed more elaborate debugging techniques, going

far beyond the logging and breakpoint techniques mentioned above. Almost 40 years ago,

Shapiro [43] introduced algorithmic debugging as an iterative technique to find defects.

An algorithmic debugging session starts when a computation presents an incorrect or

unexpected result. Then, the algorithmic debugger builds a tree that represents this com-

putation. In this tree, the root node is the initial computation, and the children nodes

are the routines (or function activations) that executed in that computation. Then, the

algorithmic debugger asks questions to an oracle (usually a developer) to compare the



1.2 Goal 2

result of the routines with the expectations of the developer, e.g., “the routine AVER-

AGE(10,20) returned 15. Is this valid (Y/N/I Don’t Know)?”. The algorithmic debugger

traverses the execution tree, checking the validity of the nodes to find the defective node:

the invalid node that has all of its children nodes as valid nodes [5].

After the initial proposal of algorithmic debugging in the early 1980s, researchers

proposed several concrete implementations for the functional programming paradigm [1,

16, 26, 32, 34]. GADT [10] was the first algorithmic debugger to work with an imperative

programming language: Pascal. GADT used a static program slicing technique [48] to

remove irrelevant nodes from the execution tree. The major limitation of GADT is the

necessity to apply a program transformation technique before building the execution tree.

Due to this program transformation, the questions asked to the developers are based

on the transformed program, instead of the original one, which increases the difficulty

of the algorithmic debugging questions. Another approach that works with imperative

programs written in Java is JDD [3]. JDD employs equivalence classes to reduce the

number of questions that the debugger presents to the developer. However, this technique

only removes equivalent questions, still presenting a sub-optimum set of questions to

developers.

Therefore, the main motivations of this dissertation are:

• Debugging is an expensive, time-consuming, and challenging activity.

• Algorithmic debugging has emerged as an alternative technique to locate defects in

software. However, the number of questions to locate the defect can be high, leading

to long debugging sessions.

• Hence, if we reduce the number of questions in a session, then it will reduce the

time and effort necessary to locate a defect in a faulty program.

1.2 Goal

In this work, we propose DebugProv, an algorithmic debugging approach for Python

programs. DebugProv enhances the execution tree with provenance captured from the

execution of a defective program. In general, provenance refers to the origin of a data

object [30]. In the specific context of debugging, it encompasses all the data and compu-

tations that were necessary to derive the program results.



1.2 Goal 3

A computer program often does more than one task and generates more than one

result. When a program contains a defect and produces an incorrect result, the parts of

the program that were not responsible for generating that incorrect result are irrelevant

to find the defect in question. The provenance enhancement technique removes from the

search space parts of the program that are irrelevant to a specific incorrect outcome.

The traditional data structure of algorithmic debugging is the execution tree, which

represents all the routines (functions and methods) that were activated in a program

execution. In our proposal, we enhance the execution tree with a provenance graph, a

structure that represents which routines were responsible for producing each one of the

results. By asking the programmer which outcome of the program is incorrect, we can

select an intersection between the execution tree and the provenance graph: a selection

containing only the nodes that were responsible for generating the incorrect outcome.

Consequently, DebugProv can reduce the number of questions asked to developers during

algorithmic debugging sessions by removing from the search space nodes that did not

influence the production of the incorrect result.

We evaluated our proposed approach over a set of 15 Python programs. We first

artificially inserted different defects into each one of them, generating 458 mutants [9].

Then, we ran DebugProv over these mutants and measured the number of questions asked

to the developer to detect each defect. We contrasted the performance of DebugProv

with the classic algorithmic debugging technique, without provenance enhancement. Our

results show that provenance enhancement produces an average reduction of 25.2% in the

number of algorithmic debugging questions. The reduction in the number of questions

brings initial evidence that enhancing execution trees with provenance may reduce the

duration and the effort necessary to locate defects in algorithmic debugging sessions.

As such, the main goal of this dissertation is to propose our DebugProv approach,

which brings the following contributions:

• It is a novel approach to implement algorithmic debugging for an interpreted and

dynamically-typed imperative language (i.e., Python).

• It is the first approach that uses provenance collected through dynamic program

slicing to enhance the execution tree used in algorithmic debugging.

• It was able to reduce in 25.26% the number of required questions during algorithmic

debugging sessions.



1.3 Organization 4

1.3 Organization

This dissertation is organized as follows:

• Chapter 2 introduces algorithmic debugging and related work.

• Chapter 3 describes our approach, including its architecture, the provenance en-

hancement technique, and the implementation aspects.

• Chapter 4 presents the DebugProv evaluation and discuss the results.

• Chapter 5 concludes our work and presents some future work.



Chapter 2

Algorithmic Debugging

2.1 Introduction

Algorithmic debugging is a semi-automated technique for locating defects in a faulty

computer program. The technique consists of decomposing the computation that produces

an incorrect output into smaller sub-computations and asking the developer about the

correctness of the sub-computations until a defective sub-computation is found.

An algorithmic debugging session starts when a computation produces an incorrect

output. Then, the debugger builds a data structure that represents the incorrect compu-

tation. This structure is usually a tree, which is called an execution tree. A navigation

strategy is an algorithm used to traverse the execution tree, selecting nodes and asking

questions to the developer about the correctness of the nodes. The developer answers the

questions until the defective node is found.

Caballero et al. [5] interprets algorithmic debugging as a process with two phases:

(i) capturing and (ii) navigation. The capturing phase is responsible for running the

defective program and gathering data related to function executions with parameters and

results to build an execution tree. The navigation phase is responsible for navigating in

the execution tree nodes, asking questions to developers, to find the defective node.

In this chapter, we introduce a defective Python program in Section 2.2, which is

used in a guiding example. In section 2.3, we describe the capturing phase of algorithmic

debugging. In Section 2.4, we present the navigation phase, and describe the usage of

four different navigation strategies (Single Stepping, Top Down, Heaviest First and Divide

and Query) over our guiding example. In Section 2.5, we present the related work. We

conclude this chapter with the final remarks in Section 2.6.



2.2 Guiding Example 6

2.2 Guiding Example

In this chapter, we use the Python script presented in Figure 2.1 as an intentionally

simple but didactic guiding example to introduce algorithmic debugging. This script

prints a header (print), reads data from a file (readfile), finds the minimum value in the

data (find_min), and prints the count of elements and the minimum value (print_result).

The script has a defect in the function find_min.

1 from j s on import load
2 FILE_NAME = ’ data . j son ’
3
4 def r e a d f i l e ( f i l ename ) :
5 f = open( f i l ename , ’ r ’ )
6 return load ( f )
7
8 def find_min ( data ) :
9 cur rent = f loat ( ’ i n f ’ )
10 for d in data :
11 i f d < current :
12 pass # De f e c t i v e Line
13 return cur rent
14
15 def p r i n t_r e su l t s ( data , d_min ) :
16 d_count = len ( data )
17 print ( d_count )
18 print (d_min)
19
20 print ( "Count␣−␣Min : " )
21 data = r e a d f i l e (FILE_NAME)
22 pdata = find_min ( data )
23 p r i n t_r e su l t s ( data , pdata )

Figure 2.1: Python script used as a guiding example

2.3 Capturing Phase

The capturing phase can employ techniques such as program transformation, code

instrumentation, reflection, or modifications in the compiler to identify all function and

method calls during the execution of the program and compose the execution tree. In

this tree, nodes represent executed computations. The root node of the execution tree

corresponds to the first call that started the computation. In many languages, the root

node represents the function main of the program. Figure 2.2 illustrates the execution

tree built from the execution of our guiding example. Note that the root node is the script

program.py itself, a consequence of having code outside functions in Python.



2.4 Navigation Phase 7

program.py

print("Count - Min:") readfile(FILE_NAME) find_min(data) print_results(data, pdata)

open(filename, 'r') load(f) float('inf') len(data) print(d_count) print(d_min)

Figure 2.2: The execution tree of our guiding example

Every node in the execution tree can contain descendants. A descendant (or child)

of a node n corresponds to a computation (a function or method, in Python) that was

activated during the execution of n. In Figure 2.2, we can notice that the function

readfile has two descendants: open and load. This indicates that the execution of the

computation readfile activated two other computations: first, the computation open, and

then, the computation load.

2.4 Navigation Phase

The navigation phase is the core of an algorithm debugging process. During the naviga-

tion phase, the algorithmic debugger uses a navigation strategy to traverse the generated

execution tree and interacts with the user, asking questions about the correctness of the

computations to find the defective node. The navigation strategy decides the order of

nodes to visit and, consequently, the questions to be asked to the user. After receiving an

input from the user, the algorithmic debugger process the answer and prunes the execu-

tion tree before moving forward and asking another question to the user. Depending on

the order of questions and on the execution tree structure, an algorithmic debugger may

prune more or fewer nodes.

Therefore, every question asked in an algorithmic debugging session leads to a prune.

When a node n is evaluated and classified as valid (i.e., correct), n and all the subtree

rooted at n is pruned (removed) from the search space. In Figure 2.2, when the debugger

classifies readfile as valid, it marks both open and load as valid as well. On the other hand,

in case that n is classified as invalid (i.e., incorrect), all nodes that are not descendants

of n are removed from the search space. In other words, n becomes the new root of the

execution tree. In Figure 2.2, it occurs when the debugger classifies find_min as invalid.

In this case, the debugging session continues to check if the defect is in the find_min node



2.4 Navigation Phase 8

itself or if it is in one of its descendants.

The defective node is a node that is invalid while all of its children are valid. When

the developer finds the defective node, the algorithmic debugging session stops and the

debugger presents to the user the defective node, which relates to a defective function

call since we are using an execution tree. The algorithmic debugger assumes that there

is only one defective node per debugging session [7].

Nevertheless, the pruning process that occurs in the execution tree can be more or less

effective depending on the sequence of questions asked to the developers, which depends

on the chosen navigation strategy. Many navigation strategies have been proposed for

algorithmic debugging in the literature [46]. The most relevant are Single Stepping [43],

Top Down [1], Heaviest First [2], and Divide and Query [43]. Table 2.1 describes these

strategies and presents the navigation steps to find the defective node find_min in the

execution tree presented in Figure 2.2 and we describe each in more details in the following

subsections.

Table 2.1: Navigation Strategies
Nav. Strategy Description Steps in Figure 2.2 # Quest.
Single Stepping Navigates the execution

tree in a post-order depth-
first traversal, respecting
the original execution order
(left to right).

print, open, load,
readfile, float,
find_min

6

Top Down Navigates the execution
tree in a breadth first
traversal, respecting the
original execution order
(left to right).

program.py, print,
readfile, find_min,
float

5

Heaviest First Variation of the Top Down
strategy that selects the
child with the biggest sub-
tree instead of simply navi-
gating according to the exe-
cution order.

program.py,
print_results, read-
file, find_min, float

5

Divide and
Query

Navigates to nodes that
prune almost half of the exe-
cution tree for every answer.

print_results, read-
file, find_min, float

4



2.4 Navigation Phase 9

2.4.1 Single Stepping Navigation

The Single Stepping strategy navigates the execution tree in a post-order depth-first

traversal, respecting the original execution order (left to right). The sequence of steps to

locate the defective node with this navigation strategy is presented in Table 2.2, and the

execution tree after the end of the navigation is presented in Figure 2.9.

Table 2.2: Steps of Single Stepping Navigation Strategy
Step Node Arguments Return Validity Figure
1 print “Count - Min:” - Valid Figure 2.3
2 open “data.json”,“r” _io.TextIOWrapper Valid Figure 2.4
3 load _io.TextIOWrapper [738,967,667,122] Valid Figure 2.5
4 readfile “data.json” [738,967,667,122] Valid Figure 2.6
5 float “inf” inf Valid Figure 2.7
6 find_min [738,967,667,122] inf Invalid Figure 2.8

Following the post-order depth-first traversal, the first step is to evaluate the node

print. The algorithmic debugger informs the developer that the computation print re-

ceived an argument that is a string, and printed the string without returning any value.

Since this behavior was correct, the developer evaluates the node as valid. The algorith-

mic debugger defines the print node as a valid node. The execution tree after the first

step is presented in Figure 2.3.

program.py

print("Count - Min:") readfile(FILE_NAME) find_min(data) print_results(data, pdata)

open(filename, 'r') load(f) float('inf') len(data) print(d_count) print(d_min)

Figure 2.3: Example of Single Stepping Navigation Strategy (first step)

Following the single stepping strategy, the second step evaluates the node open.

The debugger informs the developer that open received two arguments: An argument

named filename, that stores the value ‘data.json’, and an argument named mode, con-

taining the value ‘r’. The computation returns a file object which can be used to read

files. The description of the file object is: _io.TextIOWrapper name‘̄data.json’ mode‘̄r’



2.4 Navigation Phase 10

encoding‘̄cp1252’. The developer concludes that the behavior was correct, and answer

that the node is valid. The algorithmic debugger defines the open node as a valid node.

The execution tree after the second step is presented in Figure 2.4.

program.py

print("Count - Min:") readfile(FILE_NAME) find_min(data) print_results(data, pdata)

open(filename, 'r') load(f) float('inf') len(data) print(d_count) print(d_min)

Figure 2.4: Example of Single Stepping Navigation Strategy (second step)

The third step evaluates the node load. The debugger informs the developer that

the computation load received a file object as an argument, and returned a list containing

the following numbers: 738, 967, 667, and 122. The developer confirms that the behavior

was correct, and the debugger defines the node as valid. The execution tree after the

third step is presented in Figure 2.5.

program.py

print("Count - Min:") readfile(FILE_NAME) find_min(data) print_results(data, pdata)

open(filename, 'r') load(f) float('inf') len(data) print(d_count) print(d_min)

Figure 2.5: Example of Single Stepping Navigation Strategy (third step)

The fourth step evaluates the readfile node. The debugger informs the developer

that the computation readfile received a string named FILE_NAME as an argument,

containing the value ´data.json’, and returned a list containing the following numbers:

738, 967, 667, and 122. The developer evaluates readfile as a correct computation, and the

debugger defines it as a valid node. The execution tree after the fourth step is presented

in Figure 2.6.



2.4 Navigation Phase 11

program.py

print("Count - Min:") readfile(FILE_NAME) find_min(data) print_results(data, pdata)

open(filename, 'r') load(f) float('inf') len(data) print(d_count) print(d_min)

Figure 2.6: Example of Single Stepping Navigation Strategy (fourth step)

The fifth step evaluates the float node. The debugger informs the developer that

the computation float received as argument a string containing ´inf’ and returned an

object of class float containing the value inf. The developer evaluates float as a correct

computation, and the debugger defines it as a valid node. The execution tree after the

fifth step is presented in Figure 2.7.

program.py

print("Count - Min:") readfile(FILE_NAME) find_min(data) print_results(data, pdata)

open(filename, 'r') load(f) float('inf') len(data) print(d_count) print(d_min)

Figure 2.7: Example of Single Stepping Navigation Strategy (fifth step)

The sixth step evaluates the find_min node. The debugger informs the developer

that the computation find_min received as argument a list containing the following num-

bers: 738, 967, 667, and 122. The computation find_min returned inf. In this case,

the developer answer that this computation was not correct, since the smallest number

between the list is 122, and not infinite. This step is presented in Figure 2.8.

After answering the question about find_min, the debugger defines it as an invalid

node. Since find_min only have valid descendants, it is the defective node. The algorith-

mic debugging session ends in this step, and the developer is informed that the defective

node is find_min.



2.4 Navigation Phase 12

program.py

print("Count - Min:") readfile(FILE_NAME) find_min(data) print_results(data, pdata)

open(filename, 'r') load(f) float('inf') len(data) print(d_count) print(d_min)

Figure 2.8: Example of Single Stepping Navigation Strategy (sixth step)

The execution tree after the end of the algorithmic debugging session is presented in

Figure 2.9. The node painted with red color is the defective node, and the nodes painted

with orange color are the invalid nodes. In Figure 2.9 the root node is the only invalid

node.

program.py

print("Count - Min:") readfile(FILE_NAME) find_min(data) print_results(data, pdata)

open(filename, 'r') load(f) float('inf') len(data) print(d_count) print(d_min)

Figure 2.9: Example of Single Stepping Navigation Strategy (ET after navigation)

2.4.2 Top Down Navigation

This navigation strategy traverses the execution tree from top to bottom. The root node

is the first to be evaluated. After evaluating a node n, the children of n are evaluated

following the left to right order, i.e., the execution order. The sequence of questions for

the Top Down navigation strategies is defined in Table 2.3.

The debugger first evaluates the root node (first step), which refers to the program

itself. The developer answers that this node is presenting a wrong result, and the debugger

marks the root as invalid. As this is the root node, the debugger does not prune any other

node. The state of the execution tree after the first step of this algorithmic debugging



2.4 Navigation Phase 13

session is presented in Figure 2.10.

Table 2.3: Steps of Top Down Navigation Strategy
Step Node Arguments Return Validity Figure
1 program.py - - Invalid Figure 2.10
2 print “Count - min” - Valid Figure 2.11
3 readfile “FILE_NAME” [738,967,667,122] Valid Figure 2.12
4 find_min [738,967,667,122] inf Invalid Figure 2.13
5 float “inf” inf Valid Figure 2.14

1 program.py

10 print("Count - Min:") 13 readfile(FILE_NAME) 25 find_min(data) 53 print_results(data, pdata)

16 open(filename, 'r') 21 load(f) 28 float('inf') 58 len(data) 61 print(d_count) 63 print(d_min)

Figure 2.10: Example of Top Down Navigation Strategy (first step)

The second step evaluates the node print. The debugger informs that the function

received a string and outputted it without returning any value. Since the developer

answers that this behavior is correct, the debugger marks it as valid without pruning

other nodes, as this node has no children. The second step of this algorithmic debugging

session is presented in Figure 2.11. The node painted with green color is defined as valid

and consequently removed from the search space.

1 program.py

10 print("Count - Min:") 13 readfile(FILE_NAME) 25 find_min(data) 53 print_results(data, pdata)

16 open(filename, 'r') 21 load(f) 28 float('inf') 58 len(data) 61 print(d_count) 63 print(d_min)

Figure 2.11: Example of Top Down Navigation Strategy (second step)

Then, in the third step the debugger evaluates readfile. The developer is informed

that readfile received a parameter named FILE_NAME with value ´data.json’ and re-

turned an array with the following integer numbers: 738, 967, 667, 122. As the computa-

tion of readfile is correct, the developer answers that the node is valid as well. Following

the rules of algorithmic debugging pruning, the debugger classifies the node readfile and



2.4 Navigation Phase 14

all of its subtree nodes as valid, removing them from the search space. This operation

results in the execution tree presented in Figure 2.12. The nodes in green are valid, and

the nodes in orange are invalid. Just the white ones are still in the search space.

program.py

print("Count - Min:") readfile(FILE_NAME) find_min(data) print_results(data, pdata)

open(filename, 'r') load(f) float('inf') len(data) print(d_count) print(d_min)

Figure 2.12: Example of Top Down Navigation Strategy (third step)

In the fourth step, the debugger evaluates the node find_min. Here, the developer

is informed that find_min received a parameter named data with values 738,967,667,122

and returned the value inf. It is an incorrect computation: the smallest number among

the inputs is 122, and not infinite. Thus, the developer answers that the computation is

invalid. Following the algorithmic debugging pruning rules, the debugger defines find_min

as invalid, and all nodes that are not descendants of find_min are marked as valid and

consequently removed from the search space.

1 program.py

10 print("Count - Min:") 13 readfile(FILE_NAME) 25 find_min(data) 53 print_results(data, pdata)

16 open(filename, 'r') 21 load(f) 28 float('inf') 58 len(data) 61 print(d_count) 63 print(d_min)

Figure 2.13: Example of Top Down Navigation Strategy (fourth step)

In the fifth step, the algorithmic debugger evaluates the descendant float. This node

receives the string ‘inf’ and returns the float representation of infinite. Since the developer

considers this as a correct behavior, the debugger marks this node as valid. Hence, the

debugging session finishes, indicating that the defective node is find_min since this is the

only invalid node that has all of its children marked as valid. The resulting execution tree

is presented in Figure 2.14. The red color distinguishes the defective node.



2.4 Navigation Phase 15

program.py

print("Count - Min:") readfile(FILE_NAME) find_min(data) print_results(data, pdata)

open(filename, 'r') load(f) float('inf') len(data) print(d_count) print(d_min)

Figure 2.14: Example of Top Down Navigation Strategy (fifth step)

2.4.3 Heaviest First Navigation

The Heaviest First navigation strategy is a variation of the Top Down strategy. The Top

Down strategy traverses the execution tree from the top to the bottom, following the

execution order, that means, after evaluating a node n, the Top Down strategy select the

first descendants of n following the execution order.

The difference between the Top Down and the Heaviest First is that the Heaviest First

selects the descendant with the biggest sub-tree instead of simply navigating according to

the execution order. The sequence of steps to locate the defective node with the Heaviest

First navigation strategy is presented in Table 2.4, and the execution tree after the end

of the navigation is presented in Figure 2.19.

Table 2.4: Steps of Heaviest First Navigation Strategy

Step Node Arguments Return Validity Figure
1 program.py - - Invalid Figure 2.15
2 print_results [738,967,667,122],inf - Valid Figure 2.16
3 readfile “data.json” [738,967,667,122] Valid Figure 2.17
4 find_min [738,967,667,122] inf Invalid Figure 2.18
5 float “inf” inf Valid Figure 2.19

The Heaviest First navigation strategy first evaluates the root node (first step),

which refers to the program itself. The developer answers that this node is presenting a

wrong result, and the debugger marks the root as invalid. As this is the root node, the

debugger does not prune any other node. The state of the execution tree after the first

step is presented in Figure 2.15.

To select the next node to be evaluated, the Heaviest First strategy weights the

subtrees of the descendants of program.py. The weight is calculated by measuring the



2.4 Navigation Phase 16

1 program.py

10 print("Count - Min:") 13 readfile(FILE_NAME) 25 find_min(data) 53 print_results(data, pdata)

16 open(filename, 'r') 21 load(f) 28 float('inf') 58 len(data) 61 print(d_count) 63 print(d_min)

Figure 2.15: Example of Heaviest First Navigation Strategy (first step)

number of nodes in the subtree. In this step, the weights of each descendant of program.py

are presented in Table 2.5.

Table 2.5: Weight of subtrees for Heaviest First navigation strategy
Node Weight

print(´´Count - min:") 1
readfile(FILE_NAME) 3

find_min(data) 2
print_results(data,pdata) 4

Since print_results(data,pdata) is the node with the heaviest weight, it is selected to

be evaluated on the second step. The debugger informs that the function received two

arguments: a list containing integer numbers(data), and a number(d_min) that is sup-

posed to be the smallest number of the list. The length of the list and the value of d_min

are printed, and the function does not return any value. Since the developer answers

that this behavior is correct, the debugger marks it as valid, and all the descendants of

print_results are consequently marked as valid and removed from the search space.

The second step of this algorithmic debugging session is presented in Figure 2.16.

The nodes painted with green color are defined as valid and consequently removed from

the search space.

Between the three descendants of program.py remaining in the search space (print,

readfile, and find_min) readfile is the one with bigger weight, so it is evaluated on

the third step. The debugger informs that the function received a parameter named

FILE_NAME with value data.json and returned an array with the following integer

numbers: 738, 967, 667, 122. The computation of readfile is correct, and the developer

answers that the node is valid as well. The debugger classifies the node readfile and all of

its subtree nodes as valid, removing them from the search space. This operation results in



2.4 Navigation Phase 17

1 program.py

10 print("Count - Min:") 13 readfile(FILE_NAME) 25 find_min(data) 53 print_results(data, pdata)

16 open(filename, 'r') 21 load(f) 28 float('inf') 58 len(data) 61 print(d_count) 63 print(d_min)

Figure 2.16: Example of Heaviest First Navigation Strategy (second step)

the execution tree presented in Figure 2.17. The nodes in green are valid, and the nodes

in orange are invalid. Just the white ones are still in the search space.

1 program.py

10 print("Count - Min:") 13 readfile(FILE_NAME) 25 find_min(data) 53 print_results(data, pdata)

16 open(filename, 'r') 21 load(f) 28 float('inf') 58 len(data) 61 print(d_count) 63 print(d_min)

Figure 2.17: Example of Heaviest First Navigation Strategy (third step)

In the fourth step, the debugger evaluates the node find_min. Here, the developer

is informed that find_min received a parameter named data with values 738,967,667,122

and returned the value inf. It is an incorrect computation: the smallest number among

the inputs is 122, and not infinite. Thus, the developer answers that the computation is

invalid. Following the algorithmic debugging pruning rules, the debugger defines find_min

as invalid, and all nodes that are not descendants of find_min are marked as valid and

consequently removed from the search space.

In the fifth step, the only node with unknown validity is the float. The algorithmic

debugger evaluates float. This node receives the string ‘inf’ and returns the float represen-

tation of infinite. Since this is a correct behavior, the debugger defines this node as valid.

Hence, the debugging session finishes, indicating that the defective node is find_min since

this is the only invalid node that has all of its children marked as valid. The resulting

execution tree is presented in Figure 2.19. The red color distinguishes the defective node.



2.4 Navigation Phase 18

1 program.py

10 print("Count - Min:") 13 readfile(FILE_NAME) 25 find_min(data) 53 print_results(data, pdata)

16 open(filename, 'r') 21 load(f) 28 float('inf') 58 len(data) 61 print(d_count) 63 print(d_min)

Figure 2.18: Example of Heaviest First Navigation Strategy (fourth step)

1 program.py

10 print("Count - Min:") 13 readfile(FILE_NAME) 25 find_min(data) 53 print_results(data, pdata)

16 open(filename, 'r') 21 load(f) 28 float('inf') 58 len(data) 61 print(d_count) 63 print(d_min)

Figure 2.19: Example of Heaviest First Navigation Strategy (fifth step)

2.4.4 Divide and Query Navigation

The Divide and Query navigation strategy aims to, in each step, divide the execution

tree into two parts with similar weights. The steps of the Divide and Query strategy are

presented in Table 2.6. The Divide and Query strategy starts calculating the weight of

every node in the execution tree. The weight of a node is given by the size of its subtree.

The weights for every node in our example are presented in table 2.7.

Table 2.6: Steps of Divide and Query Navigation Strategy

Step Node Arguments Return Validity Figure
1 print_results [738,967,667,122],inf - Valid Figure 2.20
2 readfile “data.json” [738,967,667,122] Valid Figure 2.21
3 find_min [738,967,667,122] inf Invalid Figure 2.22
4 float “inf” inf Valid Figure 2.23

After calculating the weights of the nodes, the Divide and Query strategy calculates

w, that corresponds to the weight of the nodes with unknown validity (or, the weight of

the suspicious area [45]), and selects all the nodes with a weight smaller than w/2. The



2.4 Navigation Phase 19

node selected for evaluation is the one with the biggest weight, among the nodes with a

weight smaller than w/2.

Table 2.7: Weight of nodes for Divide and Query Navigation Strategy
Node Weight

program.py 10
print("Count - Min:") 0
readfile(FILE_NAME) 2

open 0
load 0

find_min 1
float 0

print_results(data, pdata) 3
len(data) 0

print(d_count) 0
print(d_min) 0

In the first step, the w corresponds to the weight of the root node, that is 10. In Ta-

ble 2.7 we can see that among the nodes with a weight smaller than w/2 the print_results

is the biggest one. So, it is the first selected for evaluation.

The debugger informs that print_results received a list containing integer numbers(data),

and a number(p_data) that is supposed to be the smallest number of the list. The length

of the list and the value of p_min are printed, and the function does not return any value.

Since the developer answers that this behavior is correct, the debugger marks it as valid,

and all the descendants of print_results are consequently marked as valid and removed

from the search space. The execution tree after the first step is presented in Figure 2.20.

program.py

print("Count - Min:") readfile(FILE_NAME) find_min(data) print_results(data, pdata)

open(filename, 'r') load(f) float('inf') len(data) print(d_count) print(d_min)

Figure 2.20: Example of Divide and Query Navigation Strategy (first step)

In the previous step, four nodes were defined as valid and removed from the search

space. So, the Divide and Query strategy recalculates the weights of the nodes. Table 2.8



2.4 Navigation Phase 20

presents the updated weights of the nodes in the execution tree.

Table 2.8: Updated (1) weight of nodes for Divide and Query Navigation Strategy
Node Weight

program.py 6
print("Count - Min:") 0
readfile(FILE_NAME) 2

open 0
load 0

find_min 1
float 0

In the second step, the algorithmic debugger evaluates the node readfile. The de-

veloper is informed that readfile received a parameter named FILE_NAME with value

´data.json’ and returned an array with the following integer numbers: 738, 967, 667, 122.

As the computation of readfile is correct, the developer answers that the node is valid

as well. Following the rules of algorithmic debugging pruning, the debugger classifies the

node readfile and all of its subtree nodes as valid, removing them from the search space.

This operation results in the execution tree presented in Figure 2.21.

program.py

print("Count - Min:") readfile(FILE_NAME) find_min(data) print_results(data, pdata)

open(filename, 'r') load(f) float('inf') len(data) print(d_count) print(d_min)

Figure 2.21: Example of Divide and Query Navigation Strategy (second step)

In the previous step, three nodes were defined as valid. The weights of the remaining

nodes are recalculated as presented in Table 2.8.

In the third step, the debugger evaluates the node find_min. Here, the developer

is informed that find_min received a parameter named data with values 738,967,667,122

and returned the value inf. It is an incorrect computation: the smallest number among

the inputs is 122, and not infinite. Thus, the developer answers that the computation is

invalid. Following the algorithmic debugging pruning rules, the debugger defines find_min



2.4 Navigation Phase 21

as invalid, and all nodes that are not descendants of find_min are marked as valid and

consequently removed from the search space.

Table 2.9: Updated (2) weight of nodes for Divide and Query Navigation Strategy
Node Weight

program.py 6
print("Count - Min:") 0

find_min 1
float 0

program.py

print("Count - Min:") readfile(FILE_NAME) find_min(data) print_results(data, pdata)

open(filename, 'r') load(f) float('inf') len(data) print(d_count) print(d_min)

Figure 2.22: Example of Divide and Query Navigation Strategy (third step)

The navigation strategy updates the weights. In the fourth step, there is only one

node with unknown validity: the float node. The algorithmic debugger evaluates float.

This node receives the string ‘inf’ and returns the float representation of infinite. Since

this is a correct behavior, the debugger defines this node as valid, defining find_min as

the defective node, as presented in Figure 2.23.

program.py

print("Count - Min:") readfile(FILE_NAME) find_min(data) print_results(data, pdata)

open(filename, 'r') load(f) float('inf') len(data) print(d_count) print(d_min)

Figure 2.23: Example of Divide and Query Navigation Strategy (fourth step)



2.5 Related Work 22

2.5 Related Work

Since the introduction of algorithmic debugging in 1982 [43], several tools were developed

to instantiate the base concept in different programming paradigms and environments,

such as logic [33] and functional [4, 38].

We have identified two approaches that combined algorithmic debugging with program

slicing techniques to reduce the number of questions outside the context of imperative or

objected-oriented programming languages. IDTS [23] is an algorithmic debugger for Pro-

log programs (logic programming paradigm). IDTS incorporates the Category Partition

Testing Method (CPTM) [35] to remove unnecessary questions by comparing inputs and

outputs to expected values of test cases. Additionally, a slicing method is applied to re-

move irrelevant nodes of the execution tree. The capability of IDTS to reduce the number

of algorithmic debugging questions was assessed with an experiment over just three pro-

grams. They observed reductions of 0%, 50%, and 60% for the best strategy (i.e., Divide

and Query) when the slicing technique was applied together with CPTM.

In the context of functional programming, a Haskell debugger combined the concept of

algorithmic debugging with program slicing [47]. Instead of the traditional execution tree,

this Haskell debugger applied program slicing into a new structure: the Augmented Redex

Trails. Even though the authors described the inner mechanisms of the new technique, it

was not evaluated through an experiment.

The first project that adapted the concept of algorithmic debugging for an imperative

programming language with side-effects was presented in 1990 [42]. The implemented

prototype, called GADT (Generalized Algorithmic Debugging and Testing), was able to

run algorithmic debugging sessions in programs written in Pascal. GADT [42] aimed at

reducing the number of questions by allowing users to indicate a variable that contains

an incorrect value and using static program slicing to discover and remove the nodes of

computation that were irrelevant to that variable. However, GADT employed program

transformations that change the source code before the execution to perform algorithmic

debugging in Pascal programs. These transformations have the disadvantage of requiring

the developer to answer questions about a transformed program, instead of the program

he or she is familiar with, increasing the difficulty of the task.

In 2003, HDT [25] was the first tool to bring algorithmic debugging to Java. HDT is

presented as a hybrid debugger, which combines algorithmic debugging with breakpoint

debugging. It uses the standard execution tree proposed in 1982, but the nodes of this



2.5 Related Work 23

tree represents Java methods. Some other tools apply algorithmic debugging in Java.

JavaDD [11] keeps the execution history of a Java program in a deductive database (built

internally in Prolog) and performs debugging sessions through queries to this database.

DDJ [17] is another algorithmic debugger for Java. It uses concepts of equivalence classes

and def-use chains to reduce the number of questions. A later study performed by the

authors of DDJ evaluated the number of questions asked by different navigation strategies

over a set of execution trees, and concluded that the Single Stepping strategy presented

the worst performance: it needs more questions than the other strategies. Among the four

strategies discussed in this dissertation, the Divide and Query asked the smallest number

of questions in this related work [46].

JHyde [15] is a hybrid debugger for Java that combines techniques from algorithmic

debugging and omniscient debugging (ODB) [28], which is a technique that allows in-

terruption and navigation in states of a program, but not only forward (like traditional

breakpoint debuggers) but also backward, without needing to re-execute. HDJ [12] is an

extension of DDJ [17] that combines algorithmic debugging, omniscient debugging, and

breakpoint debugging.

In Table 2.10 we have organized related work that is related to algorithmic debugging

in the context of imperative or Objected-oriented languages.

Table 2.10: Related work
Name Language Paradigm Program

Slicing ODB Year(s) Publications

GADT Pascal Procedural 3 1990-1998 [20, 42, 10, 19]
HDT Java OOP 2003 [25]
HDTS Java OOP 3 2004 [24]
JavaDD Java OOP 2006 [11]
JDD Java OOP 2006-2007 [13, 3]
DDJ Java OOP 2010 [17]
JHyde Java OOP 3 2011 [15]
HDJ Java OOP 3 2013 [12]

In Table 2.10, we can see that GADT introduces the usage of static program slicing in

(transformed) Pascal programs, and HDTS uses static program slicing in Java programs.

In the column ODB, we present the debuggers that adopted omniscient debugging.

In the last years, researchers prioritized the development of tools that embraced mul-

tiple features. An example of this is that both of the tools presented by Hermanns and

Kuchen [15] and González et al. [12] are capable of performing omniscient debugging.



2.6 Final Remarks 24

This trend can be noticed in Table 2.10. The most recent approach that tried to apply

program slicing over algorithmic debugging is HDTS[24] in 2004.

We also noticed that program slicing techniques have improved over the last years.

Even though the dynamic program slicing produces a much more accurate slice [8], the po-

tential of these improvements in program slicing was not applied in algorithmic debuggers

yet.

One recent study presented by Insa et al. [18] introduced an approach that automat-

ically balances the structure of the execution tree of Java programs by collapsing and

projecting nodes. An experiment with real applications shows evidence that the balance

technique can reduce the number of questions, speeding up the debugging sessions by

42%. According to the authors, the changes in the execution tree structure can lead to

more difficult questions. The impact of the increase in the difficulty of the questions

was not evaluated. This recent study, and also a survey performed in 2017 [5], provides

evidence that the effort for reducing the number of questions in algorithmic debugging is

still relevant.

2.6 Final Remarks

In this chapter, we presented the main concepts of algorithmic debugging, a technique

that builds an execution tree that represents a faulty execution of a program, and traverses

this tree until the defective node is found.

The size of the execution tree influences the number of questions directly: bigger

execution trees leads to many questions and a longer debugging sessions. Approaches that

reduce the size of the execution tree (or reduces the number of questions) can increase the

efficiency of the algorithmic debugging sessions, reducing the time and effort necessary to

locate the defect.

Our study of related works show that until now, all algorithmic debugging tools for

imperative programming languages focused on statically typed programming languages,

such as Pascal and Java. Moreover, there are only two tools that employed program slicing

to enhance the execution tree in imperative or object-oriented languages programs until

now: GADT and HDTS (presented in Table 2.10). None of these tools take advantage of

the dynamic program slicing techniques.

In the next chapter, we describe the provenance enhancement, the technique we pro-



2.6 Final Remarks 25

pose to enhance the execution tree and reduce the number of irrelevant questions in

algorithmic debugging. We explain what the provenance enhancement is and how it

works.



Chapter 3

DebugProv

3.1 Introduction

DebugProv is an algorithmic debugging approach that uses provenance enhancement to

prune nodes from the execution tree before the navigation phase of the algorithmic de-

bugging. It was implemented in Python and assists in the debugging of Python programs.

It is an open-source project available for download at a public repository1. DebugProv

currently runs either in command-line mode or embedded in a Jupyter Notebook2. The

algorithmic debugging session starts in command-line mode by making the following com-

mand, according to our guiding example: debugprov program.py.

Our algorithmic debugger is composed of three modules. The capturing module is

responsible for running the defective program while capturing execution data and building

the execution tree. The provenance enhancement module is responsible for enhancing the

execution tree with the provenance graph, and removing from the execution tree the

nodes that were irrelevant for the incorrect output. The navigation module is responsible

for traversing the execution tree (using a navigation strategy) and asking questions to

the developer until the defective node is found. Figure 3.1 illustrates the architecture of

DebugProv.

In this chapter, we present the capturing module in Section 3.2. The provenance

enhancement module is presented in Section 3.3. We present the navigation module in

Section 3.4. In Section 3.5 we discuss the implementation of DebugProv. The final

remarks are presented in Section 3.6.
1https://github.com/gems-uff/debugprov
2The Jupyter notebook is an open-source, web-based tool that allows developers to create and share

documents that contain code, equations, visualizations, and narrative text [21].

https://github.com/gems-uff/debugprov


3.2 Capturing Module 27

Parse
AST

Execute

Transform
AST

Capturing

Python
Program

Execution
Tree

Merge

Enhancement

Provenance
Graph

Single 
Stepping

Heaviest
First

Top Down

Navigation

Provenance
Enhanced
Execution

Tree
Divide and

Query

Localized
Defect

Prune

Figure 3.1: Architecture of DebugProv

3.2 Capturing Module

Suppose that we have a Python program that contains a logical defect and presents an

incorrect result. The capturing module is responsible for running the defective program

and capturing the data necessary to build an execution tree. At this moment, it also

captures many other data, which compose the provenance of the incorrect outcome. We

divide the captured data into two groups: the definition data and the execution data.

The definition data corresponds to the structure that can be extracted from the

script before executing it. We capture definition data by constructing an Abstract Syntax

Tree (AST) of the script code and extracting the necessary information from the AST.

The definition data includes:

• Function definitions: information about functions that were defined in the source

code.

• Parameters: information about received parameters of functions.

• Code components: information about code components of a Python script. Expres-

sions and assigns are examples of code components.

The execution data corresponds to the data that is captured during the script

execution. We capture execution data by transforming the AST before the execution to

add function calls that collect the necessary information. This transformation is internal

to the capturing module, with no side effects in the enhancement or navigation modules.

The execution data includes:

• Function activations: information about functions that were activated (called) dur-

ing the program execution and also the relationship between these functions (i.e.,

the sequence of activations in the call stack).



3.3 Enhancement Module 28

• Arguments and returns: the values of the arguments passed to the activated func-

tions and their respective return values.

• Evaluations: the Python interpreter evaluates the code components of a Python

program during their executions. Our approach stores the following information

about the evaluated components: (1) the code component associated with an eval-

uation, (2) the activation associated with an evaluation, and (3) the representation

(or the result of) that evaluation.

• Dependencies: by using dynamic program slicing [8], DebugProv can store the de-

pendencies between evaluations. A dependency is a relationship between two eval-

uations, where the value of the dependent was influenced somehow by the value

of the dependency. Capturing and storing the dependencies between evaluations is

essential to perform the provenance enhancement in the execution tree.

In PROV terms, we map each Python evaluation to a PROV “entity”. These enti-

ties have “wasDerivedFrom” relationships to other entities, which are extracted from the

dependencies collected by a dynamic program slicing technique. When the evaluation

is an activation (function call), we represent its resulting value as an entity that “was-

GeneratedBy” an “activity” that represents the activation. We indicate that this activity

“used” the entities passed as arguments. As we capture the provenance recursively, we also

use “wasInformedBy” relationships between activities to indicate which activity occurs in

the context of others. Note, however, that we demonstrate the equivalences in PROV

for didactic purposes, but the provenance is processed in a proprietary format, without

exporting and importing to PROV [30].

As a result, this module provides the enhancement module both the execution tree

and the provenance graph, which respectively contains the function activations and the

dependencies among evaluations of code components. Considering our guiding example

shown in Figure 2.1, while the execution tree informs that function readfile calls function

load, the provenance graph informs that the input of find_min depends on the results of

readfile.

3.3 Enhancement Module

The enhancement module merges the provenance graph constructed through dynamic

program slicing into the execution tree. This information allows DebugProv to perform



3.3 Enhancement Module 29

additional tree pruning based on the user input when answering typical debugging ques-

tions. Thus, the provenance enhancement potentially reduces the total number of required

questions to detect defective nodes, speeding up the algorithmic debugging session.

The provenance enhancement allows this extra pruning before even starting the typical

navigation in an algorithmic debugging session. It occurs by asking the developer which

program output is incorrect. This question is straightforward to answer because the

developer usually starts a debugging session when he or she observes some inappropriate

output. By answering this question, our approach is capable of making an initial prune of

all nodes in the execution tree that did not influence the inappropriate output, reducing

the search space for the defective node.

Therefore, after the user report which output data is not correct, the provenance en-

hancement module searches in the provenance graph for the dependencies that influenced

such incorrect output. This process is done in backward, answering the following question:

"Which function activations contributed to the production of the incorrect output?"

We present a provenance graph from our guiding example in Figure 3.2. DebugProv

merges the dependency relationships from the provenance graph into the execution tree.

The result of this provenance enhancement can be observed in Figure 3.3. The blue

edges represent the dependencies between nodes and they go from the influenced to the

influencer node, as dictated by PROV [30], the W3C provenance notation. For example,

an arrow from find_min to readfile indicates that readfile influences find_min. The nodes

in grey do not belong to the provenance transitive closure and can be safely pruned from

the search space.

open(filename, 'r') load(f) readfile(FILE_NAME)

find_min(data) print(d_min)

float('inf')

Figure 3.2: A provenance graph

Since the developer needs to inform the incorrect output, the current version of De-

bugProv does not work for silent defects (i.e., infinite loops or defects that consist of the

absence of outputs). We intend to improve this in the future by investigating why-not

provenance techniques [6]. Additionally, limitations in the provenance collection of De-

bugProv may prevent it from reducing the number of questions in some kinds of programs.

For instance, when a node from the execution tree reads a file written by another node,

there is an indirect provenance dependency that DebugProv does not consider. If the in-



3.4 Navigation Module 30

program.py

print("Count - Min:") readfile(FILE_NAME) find_min(data) print_results(data, pdata)

open(filename, 'r') load(f) float('inf') len(data) print(d_count) print(d_min)

Figure 3.3: The provenance enhanced execution tree

correct node is in the transitive closure of the latter node, informing an incorrect output

related to the former node does not help in finding the defect.

3.4 Navigation Module

The navigation module of DebugProv employs the standard navigation strategies of algo-

rithmic debugging, discussed in Chapter 2. However, instead of using the plain execution

tree, they use the provenance enhanced execution tree, which was already pruned by the

enhancement module.

Currently, DebugProv allows developers to choose any of the four navigation strategies

presented in Table 2.1. For instance, similarly to the example discussed in Chapter 2,

suppose that DebugProv is using the Top Down navigation strategy, but now over the

provenance enhanced execution tree, shown in Figure 3.3. Instead of evaluating the root

and the print nodes, which were pruned by the enhancement module, DebugProv first

evaluates the readfile node. The developer is informed about the inputs and outputs of

this node and answers that the node is valid. Consequently, DebugProv classifies the node

readfile and all of its subtree nodes as valid, removing them from the search space.

Afterward, DebugProv asks the developers about the find_min node and the devel-

oper answers that the computation is invalid. Hence, DebugProv defines find_min as

invalid, and all nodes that are not descendants of find_min are marked as valid and are

removed from the search space. Finally, DebugProv askes about the float node, and the

developer indicates that its behavior is correct. Thus, DebugProv marks this node as

valid and finishes the debugging session, showing that the defective node is find_min.

For this specific navigation strategy, the number of questions asked to the developer

dropped from 5 to 3, which consists of a 40% gain. Table 3.1 summarizes the improvements

introduced by DebugProv in our guiding example, for each one of the navigation strategies.



3.5 Implementation 31

Although DebugProv currently implements just the four classic navigation strategies, it

was specifically designed to accommodate additional navigation strategies in the future

easily.

Table 3.1: Improvements obtained by DebugProv in the guiding example
Nav. Strategy Steps in Figure 3.3 # Quest. Reduction
Single Stepping open, load, readfile, float, find_min 5 16%

Top Down readfile, find_min, float 3 40%
Heaviest First readfile, find_min, float 3 40%

Divide and Query readfile, find_min, float 3 25%

3.5 Implementation

DebugProv is implemented in Python 3.7 and is able to run algorithmic debugging ses-

sions on Python programs (compliant to version 3.7). We adopt noWorkflow [31, 36, 37]

for capturing the provenance data required by our capturing module. We chose this tool

because it not only captures the provenance of Python script, as required by our prove-

nance enhancement module, but also captures enough execution data in the provenance

for the generation of execution trees by our approach.

DebugProv invokes noWorkflow to execute the defective program, capture all the

related provenance data, and store it in a directory .noworkflow. Then, the capturing

module of DebugProv consumes the provenance data from an SQLite database stored in

this directory and produces an execution tree in a fully automated step. After capturing

the provenance data and building the executing tree, the capturing module stores it and

sends it to the provenance enhancement module.

The collection process implemented in noWorkFlow includes dynamic program slic-

ing [8], which captures the steps used by a program to generate the values used by its

variables, function results, or outputs.

In a perfect scenario, the provenance data collected by the capturing module would al-

ways exactly represent the nodes that were responsible for producing an incorrect output.

In other words, if a node does not contribute to producing an incorrect output, it would

not be on the provenance graph, and if a node contributed for producing an incorrect

output, it would be on the provenance graph.

In our implementation, we are using noWorkFlow in version 2.0 alpha. We decided to



3.6 Final Remarks 32

use this version of the tool because it is the most recent and active version, with constant

maintenance and corrections. Even so, every provenance collection and storage tool has

its own limitations, and noWorkFlow (especially in an alpha version) is not free from

limitations.

We identified limitations in three situations. First, when a function influences the

values of members of an object, but not the object itself, e.g., a function influences an

element of a list, but not the list itself. In this case, noWorkflow does not store the

dependency between the list and the function. Second, when noWorkflow is not able to

capture the existing dependency relation between a function and its caller. Third, when

the absence of a computation influenced the program outcome, and noWorkflow can not

capture the dependency relation between an absent computation and the produced out-

come. In these cases, the provenance data captured by noWorkFlow was not representing

exactly what we expected: some nodes that were supposed to be in the provenance graph

were not captured.

In order to provide a workaround to these limitations of noWorkFlow 2.0 alpha, we

implemented a fallback technique. The fallback technique is our way of handling the

imperfections of the captured provenance. It is applied when an execution tree is enhanced

with provenance and traversed by a navigation strategy, but the defective node is not

found. Then, we assume that the provenance data did not capture the dependency on

the defective node, and the search continues by evaluating the nodes that were not on the

provenance slice.

The fallback technique only needs to be executed when a node that was supposed to

be on the provenance graph is not on it. The fallback technique can increase the number

of questions to locate the defective node. We expect that as the provenance collection and

storage tools improve and get more precision, the fallback technique will be less necessary,

consequently leading to fewer questions during debugging sessions.

3.6 Final Remarks

In this chapter, we introduced DebugProv, our algorithmic debugging approach for Python

programs. Besides the capturing module and the navigation module, we introduced the

enhancement module, which is responsible for implementing the provenance enhancement,

our technique to remove from the execution tree the nodes that did not influence the

incorrect output, reducing the number of questions and consequently the necessary effort



3.6 Final Remarks 33

to locate the defective node. We also explained our implementation and the usage of

noWorkFlow in the capturing module to collect provenance data from Python programs.

In the next chapter, we present our approach for evaluating DebugProv and the prove-

nance enhancement technique. We describe our experimental study and discuss the re-

sults.



Chapter 4

Evaluation

4.1 Introduction

In this chapter, we present our approach to evaluate DebugProv and the provenance

enhancement technique. In this evaluation, we investigate the impact of the provenance

enhancement technique in the number of steps (or questions) to locate the defective node

in the execution tree.

We performed a quantitative evaluation of DebugProv to assess its effectiveness in

comparison to the classic algorithmic debugging technique. Our evaluation is concerned

with the following research questions:

• RQ1: Does the provenance enhancement reduce the number of questions in algo-

rithmic debugging?

• RQ2: How provenance enhancement improves each navigation strategy?

Our evaluation is structured as follows: (i) we first selected a set of Python programs

to form the corpus; then (ii) we generated mutant versions of these programs by insert-

ing different types of defects; finally, (iii) we executed automated algorithmic debugging

sessions with DebugProv and with the classic algorithmic debugging technique over the

defective programs. For automating the algorithmic debugging sessions, we simulated the

answer of users in algorithmic debugging sessions by generating oracles that store the

validity of each node in the execution tree. To answer these research questions, we mea-

sured the number of questions asked to the developer to detect each defect and contrasted

the performance of both approaches (with and without provenance enhancement). We

explain our experiment in more detail in the following subsections.



4.2 Materials and Methods 35

4.2 Materials and Methods

Our evaluation process is described by the following workflow:

1. Select a set of Python programs

2. Run all selected programs, storing the outputs

3. Generate mutants of the selected programs

4. Run all mutants, storing the outputs

5. Generate oracles

6. Run automated algorithmic debugging sessions

In the first step, we selected a set of 25 Python programs from GitHub repositories to

form the corpus of our experiment. We selected the repositories by searching on Github for

"algorithms" and filtering by the Python language. We used three criteria to select each

program: (i) the program must be exclusively written in the Python language (compliant

to version 3.7), (ii) the program must be syntactically correct, and (iii) the program must

produce an output. The selected programs and the respective repositories are presented

in Table 4.1.

In the second step, we executed each program using Python 3.7 and stored their

respective outputs. We assume that these outputs represent the correct executions of the

programs, and we use them as baselines for the oracle generation (step 5).

In the third step, we generated mutants [9] for each of the selected programs. Mu-

tants are variants of a program with the introduction of some logical change in the source

code. This technique is originally used in the software testing area to assess the quality

of test suites. For instance, a single mutation may be the replacement of a “==” (equal

sign) to a “!=” (not equal sign), or the replacement of a “<” (less sign) to a “>=” (greater

or equal sign). As the number of possible transformation is large, a single program can

produce several mutants, each one containing exactly one change. We used universalmu-

tator [14], which is a multi-language regex-based mutant generator, to produce mutants

for our selected programs. The complete set of mutation operators supported by univer-

salmutator is available in the tool repository. In this experiment, we used the python



4.2 Materials and Methods 36

Table 4.1: Selected Programs

# Program Name Repository on GitHub Application Domain LOCs
01 Compression Analysis TheAlgorithms/Python Image Processing 40
02 Bisection TheAlgorithms/Python Arithmetic 39
03 Intersection TheAlgorithms/Python Arithmetic 21
04 LU Decomposition TheAlgorithms/Python Arithmetic 31
05 Newton Method TheAlgorithms/Python Arithmetic 18
06 Basic Binary Tree TheAlgorithms/Python Data Structures 47
07 Dijkstra Algorithm TheAlgorithms/Python Graphs 212
08 Caesar Cipher TheAlgorithms/Python Cryptography 73
09 Brute Force Caesar Cipher TheAlgorithms/Python Cryptography 56
10 Basic Maths TheAlgorithms/Python Arithmetic 74
11 Mergesort TheAlgorithms/Python Sorting 69
12 Decision Tree TheAlgorithms/Python Machine Learning 143
13 Math Parser keon/algorithms Arithmetic 143
14 Merge Interval keon/algorithms Data Structures 83
15 Binary Search keon/algorithms Searches 36
16 Permute keon/algorithms Combinatorics 57
17 LCS haikentcode/top10algoritms Data Comparison 28
18 Catalan haikentcode/top10algoritms Combinatorics 15
19 Bubblesort haikentcode/top10algoritms Sorting 28
20 Quicksort haikentcode/top10algoritms Sorting 47
21 Heapsort mingrammer/sorting Sorting 80
22 Generate Parenthesis marcosfede/algorithms Combinatorics 34
23 Knn harrypotter0/algorithms-in-python Machine Learning 95
24 String Permutation harrypotter0/algorithms-in-python Combinatorics 35
25 Linear Regression llSourcell/linear_regression_demo Machine Learning 21

operators1 and the universal operators2. We generated a total of 6,197 mutants in this

step of the workflow, which are the subjects of our experiment. Since universalmutator

could not generate mutants for two programs (#01 - Compression Analysis and #22 -

Generate Parenthesis), they were removed from our corpus.

In the fourth step, we ran all 6,127 mutants generated in step 3. We could observe

three distinct situations for each mutant execution: (i) the mutant ran successfully, and

thus we stored the output of the execution (4,758 cases); (ii) the mutant entered in

an infinite loop and was discarded after waiting for 90 seconds3 (163 cases); and (iii) the

mutant did not even start to run due to invalid syntax or broken dependencies, generating

an error before execution (1,276 cases). In this case, we also stored the information related

to the error. Subsequently, we removed mutants that did not produce outputs (1,439 from

cases ii and iii) and removed the mutants that produced the same output of the original
1https://github.com/agroce/universalmutator/blob/master/universalmutator/static/

python.rules
2https://github.com/agroce/universalmutator/blob/master/universalmutator/static/

universal.rules
3As discussed before, the current version of DebugProv does not deal with silent defects.

https://github.com/agroce/universalmutator/blob/master/universalmutator/static/python.rules
https://github.com/agroce/universalmutator/blob/master/universalmutator/static/python.rules
https://github.com/agroce/universalmutator/blob/master/universalmutator/static/universal.rules
https://github.com/agroce/universalmutator/blob/master/universalmutator/static/universal.rules


4.2 Materials and Methods 37

program (1,794 cases). This latter case indicates that the code transformation introduced

during the generation of the mutant for some reason did not lead to a failure. By the end

of this step, we only have mutants that ran and finished the execution with an output

that is different from the output of the original program, leaving us with 2,964 mutants.

In the fifth step, we generated the oracle for each mutant. To do so, we first calculated

the diffs between the original programs and the mutants. These diffs precisely identify

the lines where a defect was introduced during the mutant generation (step 3). We used

difflib [40], a Python module that compares files, to identify the diffs. Then, we ran

the mutants using the capturing module of DebugProv to capture and store execution

data about the mutants. Finally, we located the line (or lines) of code that the mutation

process changed and identified the respective node in the execution tree. The generated

oracle indicates this node and its ancestors as invalid and all other nodes as valid.

We removed out mutants that have more than one defective node in the execution

tree (2,506 cases). Please remember that each node in the execution tree represents an

activation, and activations are associated with code components. Since a code compo-

nent may produce multiple activations (e.g., a recursive function that was called multiple

times), the execution tree could contain more than one invalid node. We opted to remove

theses imprecise situations as they could introduce bias to the results of the experiment.

Consequently, after this step, we end up with 458 mutants. Table 4.2 summarizes the

characterization of the mutants. In this step, eight of the selected programs were re-

moved because they had no remaining mutants. The removed programs in this step are

#8 - Caesar Cipher, #9 - Brute Force Caesar Cipher, #10 - Basic Maths, #12 - Deci-

sion Tree, #13 - Math Parser, #23 - Knn, #24 - String Permutation, and #25 - Linear

Regression.

Table 4.2: Mutants Characterization
Description Step # of mutants

Generated Mutants 3 6,197
Mutants that do not start executing 4 1,276
Mutants that do not finish executing 4 163

Mutants without failure 4 1,794
Mutants without a unique oracle 5 2,506

Used Mutants 6 458

Finally, in the sixth step, we ran the algorithmic debugging sessions over each of the

458 mutants. DebugProv was originally designed to perform semi-automated debugging

sessions with a developer being the oracle – the developer must answer the questions



4.3 Results and Discussion 38

about the validity of the execution tree nodes. During our evaluation, we adapted Debug-

Prov to perform automated debugging sessions, by reading the oracle that contains the

information about the validity of nodes (see step 5). We also run in this step the classic

algorithmic debugging technique, without provenance enhancement. After finishing all

automated debugging sessions, we analyzed the output data.

4.3 Results and Discussion

4.3.1 Does the provenance enhancement reduce the number of
questions in algorithmic debugging (RQ1)?

To answer this question, we looked at (i) the number of steps to locate the defective node

using provenance enhancement (i.e., DebugProv) and (ii) the number of steps to locate

the defective node without provenance enhancement (i.e., classic algorithmic debugging),

regardless of the navigation strategy. Thus, we pose the following hypotheses, which are

subject to statistical tests:

• H0: The number of questions asked during debugging sessions is the same for

execution trees with and without provenance enhancement.

• H1: The number of questions asked during debugging sessions is different for

execution trees with and without provenance enhancement.

We applied the Shapiro-Wilk test [44] to check whether our samples followed a normal

distribution. Both samples (with and without provenance enhancement) do not follow a

normal distribution (p-value lower than 2.2 × 10−16). Therefore, we used the Wilcoxon

Signed-Rank test [49], a non-parametric test to compare two paired samples. The resulting

p-value was 4.815× 10−16, rejecting the null hypothesis (H0) and indicating that there is

indeed a difference between the samples. A visual inspection of the boxplots in Figure 4.1

indicates that the provenance enhancement reduced the number of questions asked during

the debugging sessions.

We also applied Cliff's Delta (for paired samples) to calculate the effect size between

the samples. Cliff's Delta is a non-parametric test that allows quantifying the magnitude

of the difference between two samples that do not meet the normality assumptions. The

results have an effect size of 0.36, which is classified as medium4 [41]. In addition to the
4The magnitude is determined by applying the thresholds presented by Romano et al. [41], i.e.

negligible < 0.147 ≤ small < 0.33 ≤ medium < 0.474 ≤ large.



4.3 Results and Discussion 39

w/o Prov. Enhancement w/ Prov. Enhancement
0

20

40

60

80

100

Figure 4.1: Boxplot of the number of questions required to locate the defective node
without provenance enhancement (left) and with provenance enhancement(right). Out-
liers removed.

effect size, we also calculated the proportional reduction in the number of questions by

subtracting the number of questions with provenance from the number of questions with-

out provenance and dividing this result by the number of questions without provenance.

We observed a reduction of 25.26% in the number of questions, on average.

Finally, we analyzed each program individually. In this analysis, we computed the

number of questions for each mutant of that program, both for the execution tree with

and without provenance. In Table 4.3, we present the results of this analysis. We can

observe that the decrease in the number of questions can vary from program to program:

in some cases, like the 02 - Bisection program, the provenance enhancement practically

does not change the number of questions, but in other cases, such as the LU Decomposition

program, we were able to observe an impressive reduction.



4.3 Results and Discussion 40

RQ1: Does the provenance enhancement reduce the number of questions in algorithmic

debugging?

Answer: We could observe a statistically significant reduction in the number of ques-

tions asked during debugging sessions when the execution tree is enhanced with prove-

nance, with medium effect size. The average number of questions dropped from 41.05

to 30.68, while the median number of questions dropped from 17.0 to 6.0. The maxi-

mum number of questions dropped from 102 to 71. We also observed that the reduction

varies from program to program.

Table 4.3: Individual analysis of provenance enhancement by selected program.

# Program Muts.
Questions
w/o Prov.
Enhc.

Questions
w/ Prov.
Enhc.

Reduct. Fallback

02 Bisection 71 24,564 24,097 1.9% 9
03 Intersection 40 6,699 5,516 17.66% 10
04 LU Decomposition 55 4,743 990 79.13 0
05 Newton Method 15 419 321 23.39% 0
06 Basic Binary Tree 5 296 254 14.19% 1
07 Dijkstra Algorithm 92 24,430 15,170 37.9% 49
11 Mergesort 3 36 24 33.33% 0
14 Merge Intervals 28 850 276 67.53% 0
15 Binary Search 17 170 112 34.12% 0
16 Permute 2 99 83 16.16% 0
17 LCS 8 112 96 14.29% 0
18 Catalan 5 52 40 23.08% 0
19 Bubblesort 51 510 710 -40% 51
20 Quicksort 10 434 471 -8.53% 10
21 Heapsort 56 11,805 8,056 31.76% 0

Total 458 75,219 56,220 25.26% 130

It is important to notice in Table 4.3 that the usage of the fallback technique can

produce an increase in the number of questions, comparing to the traditional algorithmic

debugging technique. In the programs Bubblesort and Quicksort, the fallback technique

was applied in every session: 51 sessions in Bubblesort and 10 sessions in Quicksort. The

high usage of the fallback technique leads to a total increment in the number of questions.

4.3.2 How provenance enhancement improves each navigation
strategy (RQ2)?

To answer RQ2, we computed the number of questions to locate the defective node

by navigation strategy. Each one of the four navigation strategies was executed over



4.3 Results and Discussion 41

the execution tree with and without provenance enhancement. Therefore, we have eight

treatments for this analysis.

Similar to RQ1, we first checked normality with the Shapiro-Wilk test and obtained p-

values lower than 2.2× 10−16 for all samples, which indicates that none of them followed

a normal distribution. Therefore, we used the Wilcoxon Signed-Rank test (for paired

samples) for comparing the number of required questions to locate the defective node

for each permutation of navigation strategy (Single Stepping, Top Down, Heaviest First,

and Divide and Query) and execution tree (with or without provenance enhancement).

The obtained p-values for the Wilcoxon Signed-Rank test were lower than 2.2× 10−16 for

Single Stepping, Top Down, Heaviest First, while for Divide and Query it was 2.103×10−8.

The results indicate that for every navigation strategy, there is a statistically difference

between the samples (with or without provenance enhancement). We also used Cliff's

delta (for paired samples) to calculate the effect size.

Table 4.4 shows the reduction of the number of questions for each navigation strat-

egy. We can observe that the effect size was large for the Top Down strategy, followed

by Heaviest First and Single Stepping, with medium effect size. The Divide and Query

strategy presented the smallest effect size among the evaluated strategies. Moreover, Sin-

gle Stepping was the navigation strategy with the most significant proportional reduction,

followed by Top Down. However, Heaviest First is the navigation strategy with the best

performance in terms of the total number of questions, both for execution trees with and

without provenance enhancement. Surprisingly, Divide and Query is just the third best

navigation strategy in terms of proportional reduction of the number of questions. We

believe that the pruning of nodes by the provenance reduced the number of descendants

in the biggest functions, which are also the functions that are most likely to have defects.

Thus, the provenance enhancement did not reduce as many notes in the Divide and Query

strategy, as it did in the other strategies.

Table 4.4: Navigation strategies performance over trees with and without provenance
enhancement.
Navigation Strategy Questions

w/o
Prov.

Questions
w/ Prov.

Reduction Effect Size

Single Stepping 36,498 25,181 31.01% 0.347 (Medium)
Top Down 13,787 10,252 25.64% 0.476 (Large)
Heaviest First 11,683 9,170 21.51% 0.454 (Medium)
Divide and Query 13,251 11,617 12.33% 0.163 (Small)



4.3 Results and Discussion 42

RQ2: How provenance enhancement improves each navigation strategy?

Answer: We could observe a reduction in the number of questions for all navigation

strategies when the execution tree is enhanced with provenance. The effect size ranges

from 0.163 to 0.454, and the reduction ranges from 12.33% to 31.01%. The navigation

strategy with the greatest reduction is Single Stepping, and the navigation with the

highest effect size between the number of questions with and without provenance en-

hancement is Top Down. Nevertheless, Heaviest First is the strategy with the smallest

total number of questions when the provenance enhancement is applied.

In the following subsections we analyze and discuss the RQ2 for each navigation

strategy evaluated in this work (Single Stepping, Top Down, Heaviest First and Divide

and Query).

4.3.2.1 How provenance enhancement improves Single Stepping strategy

We can observe that in the Single Stepping navigation strategy, the total number of ques-

tions dropped from 36,498 to 25,181, a reduction of 31.01%. Among the four navigation

strategies evaluated in this work, Single Stepping is the one with the most significant

percentage reduction in the number of questions.

We can also observe that even though the reduction is significant, Single Stepping is

by far the strategy that needed more questions to locate the defective node. While the

Single Stepping with provenance enhancement asked a total of 25,181 questions, no other

strategy with provenance enhancement asked more than 12,000 questions.

We conclude that even though the reduction of the total number of questions is

numerous in the Single Stepping navigation strategy, the total number of questions was

significantly smaller in Top Down, Heaviest First and Divide and Query.

In Figure 4.2 we can see a boxplot representing the results of the Single Stepping

experiment: the distribution of the number of questions to locate the defective node

without provenance enhancement is presented on the left, and the number of questions

to locate the defective node with provenance enhancement is presented on the right. The

average number of questions dropped from 79.7 to 54.9, while the median number of

questions dropped from 22 to 11.



4.3 Results and Discussion 43

w/o Prov. Enhancement w/ Prov. Enhancement
0

50

100

150

200

250

Figure 4.2: Boxplot of the number of questions required to locate the defective node
without provenance enhancement (left) and with provenance enhancement(right) in the
Single Stepping navigation strategy. Outliers removed.

4.3.2.2 How provenance enhancement improves Top Down strategy

In the Top Down navigation strategy, we observed that the total number of questions

dropped from 13,787 to 10,252, which represents a reduction of 25.64%. Comparing Top

Down to the other navigation strategies evaluated in this work, we can notice that it

performs the second greatest percentage reduction.

It is important to notice that we analyzed the effect size of the reduction of every

navigation strategy. Top Down performed the greatest effect size, with value 0.476, which

is classified as a large magnitude [41].

The provenance enhancement was able to reduce significantly the number of questions

in the Top Down strategy. Even though the percentage reduction in Single Stepping

strategy is bigger, the total number of questions with provenance enhancement performed

by Top Down (10,252) is smaller than the total number of questions with provenance

enhancement performed by the Single Stepping strategy (25,181).

The results of the Top Down analysis are presented in Figure 4.3. The distribution



4.3 Results and Discussion 44

of the number of questions to locate the defective node without provenance enhancement

is presented on the left, and the number of questions to locate the defective node with

provenance enhancement is presented on the right. The average number of questions

dropped from 30.1% to 22.3%, while the median number of questions dropped from 20 to

6.

w/o Prov. Enhancement w/ Prov. Enhancement
0

20

40

60

80

Figure 4.3: Boxplot of the number of questions required to locate the defective node
without provenance enhancement (left) and with provenance enhancement(right) in the
Top Down navigation strategy. Outliers removed.

4.3.2.3 How provenance enhancement improves Heaviest First strategy

The total number of questions dropped from 11,683 to 9,170, which represents a reduction

of 21.51% in the Heaviest First navigation strategy. We can notice that the percentage

reduction of this strategy is below the reductions performed by Single Stepping and Top

Down.

We noticed that among the navigation strategies presented in this work, Heaviest

First is the strategy with the smallest total number of questions. Not only in the sessions

without provenance enhancement, but also in the sessions with provenance enhancement.

The effect size of the reduction of Heaviest First is 0.454, which is classified as a



4.3 Results and Discussion 45

medium magnitude. Even though the Heaviest First is not the strategy that performed

the biggest percentage reduction in the number of questions, it is the one that needed the

smallest number of questions to locate the defective node.

w/o Prov. Enhancement w/ Prov. Enhancement
0

10

20

30

40

50

Figure 4.4: Boxplot of the number of questions required to locate the defective node
without provenance enhancement (left) and with provenance enhancement(right) in the
Heaviest First navigation strategy. Outliers removed.

The results of the Heaviest First analysis are presented in Figure 4.4. Even though

the maximum value does not drop, the average number of questions dropped from 25.51

to 20.02 and the median number of questions dropped from 10 to 5.

4.3.2.4 How provenance enhancement improves Divide and Query strategy

In theDivide and Query navigation strategy, we observe that the total number of questions

dropped from 13,251 to 10,617, which represents a reduction of 12.33%. Comparing Divide

and Query to the other navigation strategies evaluated in this work, we can notice that

it performs the smallest percentage reduction.

We analyzed the effect size of the reduction for the Divide and Query every navigation

strategy. The effect size value is 0.163, which is classified as a small magnitude [41].

Among the navigation strategies evaluated in this work, Divide and Query performed the



4.4 Threats to Validity 46

smallest effect size.

The provenance enhancement was able to reduce the number of questions inDivide and

Query strategy. Even though the total number of questions with provenance enhancement

is not big (11,617), the percentage reduction of this strategy presented the smallest value,

and the effect size is also the smallest value among the strategies evaluated in this work.

w/o Prov. Enhancement w/ Prov. Enhancement
0

10

20

30

40

50

60

70

Figure 4.5: Boxplot of the number of questions required to locate the defective node
without provenance enhancement (left) and with provenance enhancement(right) in the
Divide and Query strategy. Outliers removed.

The results of the Divide and Query analysis are presented in Figure 4.5. Even though

the maximum value increased with the provenance enhancement, the average number of

questions dropped from 28.93 to 25.36, and the median number of questions dropped from

17 to 8.

4.4 Threats to Validity

Even though we have carefully conducted the experiment design and execution, as in any

experimental study, our work is subject to some threats to validity.

Construct. Our dependent variable in all research questions is the number of ques-



4.4 Threats to Validity 47

tions asked to the user during a debugging session. However, different questions may

have different difficulties. Consequently, debugging sessions with fewer questions are not

necessarily faster than the ones with more questions.

Construct. Our approach requires the developer to indicate the node that manifested

the defect. We attempted to simulate this operation in our oracles by comparing the print

statements of the original program with the mutant program and choosing the most likely

to be the one that produced an invalid output. If the program has many print statements,

the oracle may have indicated the wrong node. It could cause the removal of the defective

node from the execution tree, and the impossibility of finding it with fewer steps.

Construct. We implemented the fallback technique (described in Section 3.5) to

handle imperfections in the provenance data. The usage of the fallback technique can lead

to cases where the provenance enhancement provides a sub-optimal number of questions.

Consequently, the results presented in this experiment should be seen as a lower bound

of the provenance enhancement technique. We expect that the provenance enhancement

can reduce even more the number of questions in a scenario where the provenance does

not present imperfections.

Internal. We used program mutation to simulate defective programs. The tool we use

to produce mutants, universalmutator [14], implements a set of operators for generating

mutants. Even though a mutant generated by universalmutator is a defective program,

we cannot assume that defects naturally produced by programmers are similar to those

artificially generated by the universalmutator tool.

External. We selected implementations of known algorithms in Python. However,

we cannot assume that DebugProv will reach the same effectiveness when executed over

other Python programs.

External. We used a script to generate oracles for running automated algorithmic

debugging sessions. Our script was not able to generate an oracle for every mutant – when

the mutated code component was associated with multiple nodes in the execution tree,

we were not able to automatically distinguish which nodes exercised the mutant lines.

Consequently, we could not generate the oracle in these situations. We removed several

mutants from the evaluation due to this limitation. Therefore, we may have removed

mutants that shared the same behavior, compromising somehow the generalizability of

our results.



4.5 Final Remarks 48

4.5 Final Remarks

In this chapter, we presented our experimental approach to evaluate DebugProv and the

provenance enhancement technique. We artificially generated defective programs and ex-

ecuted algorithmic debugging sessions with DebugProv and with a traditional algorithmic

debugging approach, measuring the number of questions to locate the defective node. In

our experiment, DebugProv was able to reduce the number of questions: The average

number of questions dropped from 41.05 to 30.68, a reduction of 25.26%.



Chapter 5

Conclusion

5.1 Contributions

In this work, we presented DebugProv, an algorithmic debugging tool for Python. With

DebugProv, we introduce the provenance enhancement, a novel technique to remove ir-

relevant nodes from the execution tree, reducing the number of questions to locate the

defective node. DebugProv is the first tool that uses provenance to enhance algorithmic

debugging over a dynamically-typed and interpreted imperative language. Moreover, the

provenance captured by DebugProv is based on dynamic program slicing instead of static

program slicing, thus increasing the precision of the results.

We evaluated our approach through a quantitative study with 15 Python programs.

We artificially inserted defects into each program, generating hundreds of mutants that

were used during automated algorithmic debugging sessions. Our study evaluated the ef-

fects of provenance enhancement in algorithmic debugging sessions by contrasting Debug-

Prov with traditional algorithmic debugging. We used four common navigation strategies

in our evaluation. Our results showed that provenance enhancement reduced the number

of algorithmic debugging questions by 25.26%, on average.

5.2 Limitations

We identified some limitations on our approach, DebugProv, and our technique, prove-

nance enhancement. A limitation present in several algorithmic debuggers, including

DebugProv, is only to detect one defect per debugging session. It is possible to perform

an algorithmic debugging session in a program with multiple defects, but each session is

going to indicate a defective node until all defects are eliminated.



5.3 Future Work 50

In order to run an algorithmic debugging session with DebugProv, the defective pro-

gram must produce an incorrect output. Latent defects cannot be detected. Since the

navigation phase begins after the end of the program execution, DebugProv is not able

to run algorithmic debugging sessions on programs with infinite loops. Consequently,

DebugProv does not support programs that run but do not produce any output.

Other limitations were presented due to the infrastructure used in the capturing mod-

ule, presented in section 3.2. When the capturing module runs a defective program, the

capture of the execution data produces an overhead that slows down the program execu-

tion. The provenance data captured by the capturing module can present imperfections:

cases where the provenance data was not representing exactly what we expected, that can

lead to false negatives (computations that influenced an incorrect output, but the depen-

dency relation was not captured). To deal with these imperfections, we implemented a

fallback technique. The capturing module is also not able to capture execution data from

multi-thread programs. Consequently, DebugProv is not able to debug them.

5.3 Future Work

We have identified several possibilities for future work. Currently, DebugProv runs the

debugging session based on a single faulty execution of a program. We intend to take

advantage of multiple executions to refine even further the pruning process with the aid of

a statistical mechanism. Comparing the differences between successful and unsuccessful

executions would allow us to propose another pruning technique that reduces, even more,

the number of questions to locate the defective node. For example, assume two functions

in a particular program: function A and function B. Moreover, all the executions that

activated function A without activating function B produced a correct outcome. How-

ever, 82% of the executions that activated function B produced an incorrect output. In

this example, we have an initial insight that function A is probably not defective, while

function B is probably defective. We intend to bring to DebugProv statistical mecha-

nisms to explore the correlations between the executed lines and the correctness of the

outcome. Additionally, we intend to use why-not provenance in DebugProv to detect

silent defects [6]. These defects manifest on infinite loops or in the absence of outputs.

We intend to implement a storage system to save in a database each question asked

in a debugging session and the corresponding answer given by the programmer. This

database of questions and answers can work as a cache to prevent DebugProv to ask



5.3 Future Work 51

the same question multiple times. We expect that this technique will reduce the number

of questions, specially in two cases: (i) when a program contains multiple defects and

multiple algorithmic debugging sessions are necessary, and (ii) when a program contains

multiple activations of the same routine with the same inputs and outputs.

We also intend to allow the user to inspect different types of inputs and outputs of

a function (or method) to evaluate its correctness. Currently, the user can inspect the

arguments and returns, but functions can consume and produce data beyond the argu-

ments and returns: through external files, database connections, or HTTP connections.

We aim at letting the user inspect these different types of inputs and outputs. Also, we

intend to offer visualization techniques for complex structures so that the user can read

and interpret different types of structures manipulated by the function.

The current implementation of DebugProv does not provide a graphical user interface.

Another future work involves the development of an intuitive and user-friendly graphical

user interface for DebugProv, which could facilitate the adoption and usage of the tool.

Currently, the developer must choose the navigation strategy to traverse the execution

tree. Another future work involves the development of techniques to suggest a navigation

strategy to the developer based on attributes of the program or the execution tree.

We only performed a quantitative evaluation in this dissertation. We expect to do

some other quantitative analyses with our experiment data. We intend to investigate the

correlations between the complexity of the defective program (LOCs, cyclomatic com-

plexity [29]) and the reduction in the number of questions. We also intend to investigate

the correlation between attributes of the execution tree and the performance of the nav-

igation strategy. Moreover, we also intend to perform a qualitative investigation of the

results in order to answer questions such as "Why the provenance enhancement technique

performed better in some programs than in others?".

We also envision two future works to integrate software testing techniques with Debug-

Prov. The first one is to use existing test cases and test oracles of the defective program to

provide answers on the correctness of the nodes, reducing the number of questions asked

to the programmer. The other one is to use the answers provided by the programmer

during a debugging session to automatically generate test cases for the valid nodes of the

defective program.

Lastly, we also plan to use execution data to locate defects in a more fine-grain. Cur-

rently, the grain of DebugProv is a function. After a debugging session with DebugProv,

the developer still needs to locate the defect inside the function. Since we stored data



5.3 Future Work 52

about all the execution, we can use it to help the developer finding the defective line(s)

of code.



References

[1] Av-Ron, E. Top-down diagnosis of prolog programs. Master’s thesis, Weizmann
Institute of Science, Rehovot, Israel, 1984.

[2] Binks, D. F. J. Declarative Debugging in Gödel. Tese de Doutorado, Citeseer, 1995.

[3] Caballero, R.; Hermanns, C.; Kuchen, H. Algorithmic debugging of java
programs. ENTCS 177 (2007), 75–89.

[4] Caballero, R.; Martin-Martin, E.; Riesco, A.; Tamarit, S. Edd: A declar-
ative debugger for sequential erlang programs. In TACAS (Berlin, Heidelberg, 2014),
Springer Berlin Heidelberg, pp. 581–586.

[5] Caballero, R.; Riesco, A.; Silva, J. A survey of algorithmic debugging. CSUR
50, 4 (2017), 60.

[6] Chapman, A.; Jagadish, H. Why not? In SIGMOD (Providence, RI, 2009),
ACM, pp. 523–534.

[7] Cheda, D.; Silva, J. State of the practice in algorithmic debugging. Electronic
Notes in Theoretical Computer Science 246 (2009), 55–70.

[8] Chen, Z.; Chen, L.; Zhou, Y.; Xu, Z.; Chu, W. C.; Xu, B. Dynamic slicing of
python programs. In COMPSAC (Vasteras, Sweden, 2014), IEEE, pp. 219–228.

[9] DeMillo, R. A.; Lipton, R. J.; Sayward, F. G. Hints on test data selection:
Help for the practicing programmer. Computer 11, 4 (1978), 34–41.

[10] Fritzson, P.; Shahmehri, N.; Kamkar, M.; Gyimothy, T. Generalized algo-
rithmic debugging and testing. LOPLAS 1, 4 (1992), 303–322.

[11] Girgis, H. Z.; Jayaraman, B. Javadd: a declarative debugger for java. Tech. rep.,
University at Buffalo, Department of Computer Science and Engineering, 2006.

[12] González, J.; Insa, D.; Silva, J. A new hybrid debugging architecture for eclipse.
In LOPSTR (Madrid, Spain, 2013), Springer, pp. 183–201.

[13] González-Blanch, F.; Roses, F.; Serrano, S. Depurador Declarativo de pro-
gramas JAVA. Tese de Doutorado, Master’s thesis Universidad Complutense de
Madrid. Available from: https://eprints.ucm.es/9114/, 2006.

[14] Groce, A.; Holmes, J.; Marinov, D.; Shi, A.; Zhang, L. An extensi-
ble, regular-expression-based tool for multi-language mutant generation. In ICSE-
Companion (Gothenburg, Sweden, 2018), IEEE, pp. 25–28.



References 54

[15] Hermanns, C.; Kuchen, H. Hybrid debugging of java programs. In ICSOFT
(Seville, Spain, 2011), Springer, pp. 91–107.

[16] Huntbach, M. M. Algorithmic parlog debugging. In Symposium on Logic Pro-
gramming (San Francisco, CA, 1987), IEEE, pp. 288–297.

[17] Insa, D.; Silva, J. An algorithmic debugger for java. In ICSME (Timisoara,
Romania, 2010), IEEE, pp. 1–6.

[18] Insa, D.; Silva, J.; Riesco, A. Speeding up algorithmic debugging using balanced
execution trees. In International Conference on Tests and Proofs (2013), Springer,
pp. 133–151.

[19] Kamkar, M. Application of program slicing in algorithmic debugging. Information
and Software Technology 40, 11-12 (1998), 637–645.

[20] Kamkar, M.; Shahmehri, N.; Fritzson, P. Bug localization by algorithmic de-
bugging and program slicing. In International Workshop on Programming Language
Implementation and Logic Programming (1990), Springer, pp. 60–74.

[21] Kluyver, T.; Ragan-Kelley, B.; Pérez, F.; Granger, B. E.; Bussonnier,
M.; Frederic, J.; Kelley, K.; Hamrick, J. B.; Grout, J.; Corlay, S., et al.
Jupyter notebooks-a publishing format for reproducible computational workflows. In
ELPUB (2016), pp. 87–90.

[22] Ko, A.; Myers, B. Debugging reinvented. In ICSE (Leipzig, Germany, 2008),
IEEE, pp. 301–310.

[23] Kokai, G.; Harmath, L.; Gyim’othy, T. Algorithmic debugging and testing of
prolog programs in proceedings of iclp’97. In The Fourteenth International Confer-
ence on Logic Programming, Eighth Workshop on Logic Programming Environments
Leuven, Belgium (1997), pp. 8–12.

[24] Kouh, H.-J.; Kim, K.-T.; Jo, S.-M.; Yoo, W.-H. Debugging of java programs us-
ing hdt with program slicing. In International Conference on Computational Science
and Its Applications (2004), Springer, pp. 524–533.

[25] Kouh, H.-J.; Yoo, W.-H. The efficient debugging system for locating logical errors
in java programs. In ICCSA (Montreal, Canada, 2003), Springer, pp. 684–693.

[26] Lakhotia, A.; Sterling, L. Promix: A prolog partial evaluation system. In The
Practice of Prolog. MIT Press, Cambridge, MA, 1990, pp. 137–179.

[27] Lawrance, J.; Bogart, C.; Burnett, M.; Bellamy, R.; Rector, K.; Flem-
ing, S. D. How programmers debug, revisited: An information foraging theory
perspective. IEEE Transactions on Software Engineering 39, 2 (2013), 197–215.

[28] Lewis, B. Debugging backwards in time. arXiv preprint cs/0310016 (2003).

[29] McCabe, T. J. A complexity measure. IEEE Transactions on software Engineering,
4 (1976), 308–320.



References 55

[30] Missier, P.; Belhajjame, K.; Cheney, J. The w3c prov family of specifications
for modelling provenance metadata. In EDBT/ICDT (Genoa, Italy, 2013), ACM,
pp. 773–776.

[31] Murta, L.; Braganholo, V.; Chirigati, F.; Koop, D.; Freire, J. noworkflow:
Capturing and analyzing provenance of scripts. In IPAW (Cham, 2015), Springer
International Publishing, pp. 71–83.

[32] Naish, L. Declarative diagnosis of missing answers. New Generation Computing 10,
3 (1992), 255–285.

[33] Naish, L.; Dart, P. W.; Zobel, J. The nu-prolog debugging environment. In
ICLP (Lisbon, Portugal, 1989), MIT Press, pp. 521–536.

[34] Nilsson, H.; Fritzson, P. Algorithmic debugging for lazy functional languages.
Journal of functional programming 4, 3 (1994), 337–369.

[35] Ostrand, T. J.; Balcer, M. J. The category-partition method for specifying and
generating fuctional tests. Communications of the ACM 31, 6 (1988), 676–686.

[36] Pimentel, J. F.; Freire, J.; Murta, L.; Braganholo, V. Fine-grained prove-
nance collection over scripts through program slicing. In IPAW (Cham, 2016),
Springer International Publishing, pp. 199–203.

[37] Pimentel, J. F.; Murta, L.; Braganholo, V.; Freire, J. noworkflow: a tool
for collecting, analyzing, and managing provenance from python scripts. PVLDB 10,
12 (2017).

[38] Pope, B. Declarative debugging with buddha. In AFP (Tartu, Estonia, 2004),
Springer, pp. 273–308.

[39] Pothier, G.; Tanter, É.; Piquer, J. Scalable omniscient debugging. ACM
SIGPLAN Notices 42, 10 (2007), 535–552.

[40] Python Software Foundation. difflib helpers for computing deltas, 2019.
Accessed: 2019-05-19.

[41] Romano, J.; Kromrey, J. D.; Coraggio, J.; Skowronek, J. Appropriate
statistics for ordinal level data: Should we really be using t-test and cohen’sd for
evaluating group differences on the nsse and other surveys. In Annual meeting of
the Florida Association of Institutional Research (Cocoa Beach, FL, 2006), FAIR,
pp. 1–33.

[42] Shahmehri, N.; Fritzson, P. Algorithmic debugging for imperative languages
with side-effects. In CC (Schwerin, Germany, 1990), Springer, pp. 226–227.

[43] Shapiro, E. Y. Algorithmic Program Debugging. Tese de Doutorado, Yale Univer-
sity, New Haven, CT, 1982. AAI8221751.

[44] Shapiro, S. S.; Wilk, M. B. An analysis of variance test for normality (complete
samples). Biometrika 52, 3/4 (1965), 591–611.



References 56

[45] Silva, J. A comparative study of algorithmic debugging strategies. In International
Symposium on Logic-Based Program Synthesis and Transformation (2006), Springer,
pp. 143–159.

[46] Silva, J. A survey on algorithmic debugging strategies. Advances in engineering
software 42, 11 (2011), 976–991.

[47] Silva, J.; Chitil, O. Combining algorithmic debugging and program slicing. In
Proceedings of the 8th ACM SIGPLAN international conference on Principles and
practice of declarative programming (2006), ACM, pp. 157–166.

[48] Weiser, M. Programmers use slices when debugging. CACM 25, 7 (1982), 446–452.

[49] Wilcoxon, F. Individual comparisons by ranking methods. Biometrics Bulletin 1,
6 (1945), 80–83.

[50] Zeller, A. Why programs fail: a guide to systematic debugging. Morgan Kaufmann,
San Francisco, CA, 2009.


	Introduction
	Motivation
	Goal
	Organization

	Algorithmic Debugging
	Introduction
	Guiding Example
	Capturing Phase
	Navigation Phase
	Single Stepping Navigation
	Top Down Navigation
	Heaviest First Navigation
	Divide and Query Navigation

	Related Work
	Final Remarks

	DebugProv
	Introduction
	Capturing Module
	Enhancement Module
	Navigation Module
	Implementation
	Final Remarks

	Evaluation
	Introduction
	Materials and Methods
	Results and Discussion
	Does the provenance enhancement reduce the number of questions in algorithmic debugging (RQ1)?
	How provenance enhancement improves each navigation strategy (RQ2)?
	How provenance enhancement improves Single Stepping strategy
	How provenance enhancement improves Top Down strategy
	How provenance enhancement improves Heaviest First strategy
	How provenance enhancement improves Divide and Query strategy


	Threats to Validity
	Final Remarks

	Conclusion
	Contributions
	Limitations
	Future Work

	References

