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Resumo

Juntas coladas são um método eficiente de unir diferentes componentes em projetos estru-
turais. No entanto, a ausência de um método de inspeção não-destrutivo confiável capaz
de atestar a integridade de juntas coladas é ainda um problema em aberto. Nas últi-
mas décadas, muitos pesquisadores se esforçaram no sentido de atender essa demanda e,
nesse contexto, métodos que utilizam ultrassom para realizar a inspeção emergiram como
os mais promissores. É um consenso que a capacidade de modelar matematicamente e
computacionalmente a interação entre ondas ultrassônicas e as juntas de adesão tem um
papel crucial no desenvolvimento de qualquer método de inspeção por ultrassom. Tendo
isso em mente, num trabalho anterior foi desenvolvido e implementado um algoritmo que
simula numericamente a interação entre ondas ultrassônicas e juntas coladas (defeitu-
osas). A implementação foi desenvolvida em MATLAB e leva por volta de um minuto
para executar uma simulação típica, tornando-o impraticável para resolver o problema in-
verso em tempo real. No presente trabalho, nós revisitamos o algoritmo e desenvolvemos
uma nova implementação baseada na estratégia de paralelismo SIMT (Instrução Única,
Múltiplos Threads), adequada para um implementação paralela em GPU. Desta forma,
nós executamos diversas simulações afim de comparar o tempo de execução dessa nova
implementação com a anteriormente proposta. A grosso modo, nossa nova implemen-
tação foi capaz de reduzir o tempo de execução num fator de 25, abrindo a possibilade
do problema ser resolvido em tempo real. Tanto quanto sabemos, essa é a primeira vez
na literatura em que GPUs são aplicadas para resolver este problema de propagação de
onda em particular.

Palavras-chave: Espalhamento acústico, ultrassom, juntas coladas, computação em
GPU, otimização em performance, sistemas industriais em tempo-real.



Abstract

Adhesive bonding is an efficient method to join different components in structural design.
However, a reliable non-destructive inspecting method to attest the integrity of adhesive
bonds is still an open task. In the last few decades, many researchers have put effort into
addressing this demand, and the methods based on ultrasound have emerged as the most
promising ones. It is consensual that the capability of modeling both mathematically and
computationally the interaction between ultrasonic waves and adhesive bonds will play a
crucial role in the development of any ultrasonic inspecting method. In that sense, in a
previous work, an algorithm to numerically simulate the interaction between ultrasonic
waves and localized interfacial adhesion defects was developed and implemented. The
implementation was developed using MATLAB and takes around a minute to run, mak-
ing it non feasible to solve the correlated inverse problem in real time. In the present
work, we develop a novel GPU parallel implementation, aiming to reduce considerably
the execution time. We then perform several simulations to compare the execution time
of our new enhanced code with the previous implementation. Roughly speaking, our new
implementation has reduced the execution time by a factor of 25, opening the possibility
for solving the inverse problem in real time. To the best of our knowledge, this is the first
time in the literature that GPU is employed to solve this particular wave propagation
problem.

Keywords: Scattering problem, ultrasound, adhesive bonds, GPU computing, perfor-
mance optimization, real-time industrial systems.
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Chapter 1

Introduction

Adhesive bonds are an efficient method to join different components in structural design.

Its emerging utilization is intimately related with the advantage that this solution presents

in opposition to traditional bonding methods such as riveted or welded joints: the effi-

cient load transfer between its constituents elements. This is, for instance, the situation

presented in multilayered composites, when many constituent layers of different materials

are bonded together in order to create a different material, as schematically represented

in Figure 1.1.

Figure 1.1: Multilayered composite.

In terms of mechanical properties, five regions can be distinguished in any adhesive

bond: the adherents, the adhesive layer itself, and two thin adhesion interfaces between

the adhesive layer and the adherents. As an illustrative example, a typical adhesive layer

thickness is on the order of hundred of microns, whereas a typical adhesion interface

thickness is on the order of a few microns. However, as small as it seems, it is observed

that degradation of this thin interface, rather than the entire adhesive layer, can lead to

disastrous failure [23]. In that context, the absence of a reliable non-destructive inspection

method to attest the integrity of such a thin and difficult-to-access region is the main factor

that prevents further application of this type of bonding. The implementation of such a
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inspecting method is still an open issue.

Among possible solutions for this particular task, the use of ultrasound techniques to

inspect the interfaces have emerged and been proposed by many researchers in the last

few decades (see, e.g., [16, 17, 9, 15, 7, 1, 22, 10]). In this context, it is consensual that the

capability of modeling both mathematically and computationally the interaction between

ultrasonic waves and adhesion interfaces will play a crucial role in the development of any

ultrasonic inspecting method.

So far, the vast majority of the authors have considered homogeneous adhesion in-

terfaces in theoretical as well as in experimental works. Considering the interfaces as

homogeneous simplifies enormously the wave propagation modeling. However, it implies

that the bond is intact or uniformly degraded, which is not a realistic assumption. It is

more realistic to consider locally degraded bonds, i.e., that only a small portion of the

bond is degraded. This spatial inhomogeneity gives rise to the scattering of ultrasonic

waves, bringing new challenges to the modeling.

Leiderman et al [26] have implemented a recursive algorithm based on an adaptation

of the invariant embedding technique to numerically simulate the interaction between

ultrasonic waves and defective interfaces. The algorithm is numerically stable, even for

evanescent wave components at high frequencies. They used a quasi-static approxima-

tion (QSA) to model adhesion interfaces and the perturbation method to account for

nonuniform defects. However, as it is common for this method, they have shown that

the resulting series will converge for some value of the parameters, but will diverge for

others. In Ref. [31], Nakagawa et al have studied a similar problem, solving directly a

discretization of the resulting convolution integral equation of an inhomogeneous fracture

between two identical isotropic half-spaces. However, his formulation is overwhelmingly

complex and becomes intractable for the case of layered medium. Later, Leiderman and

Castello have presented in Ref. [27] a whole new approach to simulate the interaction

between ultrasonic waves and heterogeneous interfaces. The QSA approximation was still

used to model the adhesion interfaces, but the direct scattering problem was now formu-

lated as least-squares problem that was then solved accordingly. The developed method

is well suited for anisotropic as well as for isotropic layers and does not suffer from any

of the pitfalls of the two other mentioned works, being relatively simple to implement,

numerically stable and convergent for any case. In that sense, we stand that it is the best

method to modeling the interaction between ultrasonic waves and defective interfaces.

We would like to emphasize that, to the best of our knowledge, only these two authors
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have treated non-homogeneous interfaces.

In Ref. [28], the authors have utilized the Particle Swarm Optimization (PSO) tech-

nique combined with the same algorithm presented in [27] to solve the correlated inverse

problem. That is, they have shown how to recover the stiffness distribution at an internal

interface of a layered composite from the reflected ultrasonic field measured at its top.

Since the PSO is an iterative search method that works heuristically, the associated di-

rect problem of modeling the interaction between ultrasonic waves and defective interfaces

have to be solved hundreds (or even thousands!) of times to find the best individual (each

individual corresponds to a different interfacial stiffness distribution).

The implementation related to the work presented in Ref. [27] was developed using

MATLAB and takes around a minute to solve the direct problem. Therefore, it makes it

non feasible to solve the inverse problem in real time, since this requires the direct problem

to be solved hundreds - or thousands - of times, as discussed above, making it impracti-

cal to be used in industrial ultrasonic inspection systems, such as the one schematically

depicted in Figure 1.2. In that sense, in the present work we revisit the implementation

of the algorithm presented in Ref. [27], aiming to optimize it and, therefore, to reduce

considerably the execution time. In order to achieve this goal, we divide the algorithm

into distinct major stages, each one having its particular tasks and processes. We then

analyze each stage individually to understand which one(s) takes longer to run. As we

find which stages/tasks are critical in the processing, we model the problem for a SIMT

(Single Instruction Multiple Thread) parallelism strategy, suitable for a GPU parallel im-

plementation, capable to accelerate the performance of the bottlenecks. Last, we perform

simulations of a few case studies to compare the execution time of our new enhanced

code with the previous implementations. Roughly speaking, as will be seen later, our new

implementation has reduced the execution time by a factor of 25.
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Figure 1.2: Inspecting scheme.

In what follows, we present the mathematical formulation used for modeling the in-

teraction between ultrasonic inspecting waves and defective interfaces. Then, in Chapter

3, we describe the algorithm proposed in Ref. [27] and find the bottlenecks in execu-

tion based in theoretical complexity analysis and computational tests, and in Chapter 4

we show the proposed optimization for the execution of this bottleneck. In Chapter 5,

we present and discuss the results obtained with our new implementation. Finally, we

conclude in Chapter 6, where we also propose future works.



Chapter 2

Theoretical Formulation

The scenario considered in the present work is schematically represented in Figure 2.1.

As it is observed, there are two solid elastic half-spaces and, in addition, we assume that

the thin interface between these half-spaces is actually an interfacial layer with its own

constitutive properties.

Figure 2.1: scenario considered in the present work. u+
2 is the incident displacement field,

u+
1 is the reflected displacement field and u−

1 is the transmitted displacement field.

2.1 Elastic half-spaces

First, we should say that we assume that all the field variables are time-harmonic depen-

dent, i.e., the temporal dependence is represented by e−iωt. Following, we define some

field variables crucial to the development of this work:
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u = [ u x u y u z ]T (2.1)

is the displacement vector field defined at each point of the domain. ux is the component

in the x direction, uy is the component in the y direction and uz is the component in the

z direction. Each component is a function of coordinates x, y and z. Notice that they

may be complex values.

t = [ τ zx τ zy σ zz ]T . (2.2)

is the traction vector containing the stress tensor components acting at the plane xy.

Each component is a function of coordinates x, y and z and it may be a complex value.

Based on the invariant embedding technique [8], our formulation is developed, firstly,

decomposing the displacement u and the traction t into upgoing and downgoing fields:

u = u 1 + u 2, (2.3)

t = t 1 + t 2. (2.4)

In the equations 2.3 and 2.4 the subscript 1 is related to upgoing fields while subscript 2

refers to downgoing fields. In a practical example, u 1 is the displacement field traveling

in the positive direction of z. On the other hand, t 2 is the traction field associated with

the wave traveling in the negative vertical direction z.

From the exact solution of the elastodynamic equations of motion, we may define

the local impedance tensors Z 1 and Z 2 that relate up and downgoing tractions with the

corresponding displacement, or velocity, fields:

t̄ α = −iωZα ū α, α = 1, 2. (2.5)

These tensors are 3-by-3 matrix operators. Further details and expressions for tensors

Z 1 and Z 2 for isotropic medium can be found at the appendix of this work. For the case

of anisotropic medium, it can be found in Refs [26, 25]. The bar over the fields variables

in Equation 2.5 represent that these fields are no longer evaluated on the Cartesian co-

ordinates, but, in fact, a Fourier Transform has been applied at each component in order

to transform the x spatial direction into the x component of the wavenumber vector (kx).
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The wavenumber vector k always point into the propagation direction and its modulus k

is related with the velocity of propagation c and the angular frequency ω by equation

k =
ω

c
. (2.6)

The x component of the wavenumber vector (kx) is the projection of vector k on the

x-axis, such as

kx = ksinθ. (2.7)

Figure 2.2 illustrates this decomposition. Notice that a simple application of the Pythago-

ras’ theorem is sufficient to find kx assuming that both the wavenumber k and θ, which is

the propagation angle, are known. It means that kx is indicative of the propagation angle

and vice-versa.

Figure 2.2: Decomposition of wavenumber vector k.

2.2 Adhesion Interfaces

We consider the Quasi Static Approximation (QSA) for interfaces. This approximation

was apparently first proposed by Baik and Thompson in Ref. [5]. The QSA is valid

when the inspecting wavelength is much larger than the interfacial layer thickness (the

interface is considered as infinitesimally thick), so that it is possible to replace it by a set

of tangential and normal springs as schematically represented in Figure 2.3.
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Figure 2.3: The Quasistatic approximation (QSA). We replace the interface by a set of
tangential and normal springs.

In the QSA, the springs connect the two substrates and enforce continuity of the

traction and (approximately) displacement vectors. It gives us the following boundary

conditions:

K(u + − u −) = t +, (2.8)

t + = t −. (2.9)

The superscript “+” indicates the values of the field variables immediately above the

interface, while the superscript “-” indicates those immediately below. K is the spring

diagonal matrix that represents the effective interfacial stiffness. Its entries are normal

and tangential spring constants:

K =


K xx 0 0

0 K yy 0

0 0 K zz

 . (2.10)

The QSA has been broadly used in theoretical and experimental works to model adhe-

sive bonding, fractured embedded in solid medium and rough contact interfaces between

solids (see, e.g., [35, 39, 21, 29, 33, 34, 18, 31, 24, 36]). The precise values of the spring
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constants can be written in terms of the elastic properties and nominal thickness of the

considered interfacial layer [35]. In practice, values of K can be experimentally obtained

with the aid of inverse methods.

Although the QSA is valid when the inspecting wavelength is much larger than the

interface thickness, it is possible to give different interpretations to boundary conditions

defined in Eqs 2.8 and 2.9, depending on the frequency range of interest. At higher

frequencies, where the wavelength is shorter or comparable to the adhesive layer thickness,

the interface between the adhesive layer and the adherent are modeled by Eqs. 2.8 and

2.9, with the matrix K being interpreted as the adhesion interface stiffness. In this case,

the adhesive layer itself is modeled as an entire separate elastic layer of finite thickness.

On the other hand, at lower frequencies, the wavelength is much larger than the thickness

of the adhesive layer, so that the entire adhesive layer is modeled by Eqs. 2.8 and 2.9 and

the matrix K portrays the adhesion stiffness. Examples of the usage of Eqs. 2.8 and 2.9 to

model the rough contact interface between two solids can be found in [39, 31, 24, 36]. In

this case, the matrix K is proportional to the interfacial contact area between the solids.

In the QSA context, adhesion defects are represented in the reduction of the springs

constants. It is based on the notion that bond strength and bond stiffness are corre-

lated. The vast majority of authors have considered uniform adhesion imperfections, so

that along the whole extension of the interface it is observed uniformly reduced stiffness.

However, this approach is not realistic. In more realistic scenarios, localized flaws in

defective adhesive bonds are observed and, within the QSA approximation, these local

imperfections should be modeled by corresponding local reductions in the spring stiffness

constants in K. Accordingly, in the present work, imperfections are supposed to be lo-

calized, implying that K = K(x), i.e., the interfacial stiffness is allowed to vary in the x

direction.

This spatial heterogeneity breaks the problem’s translational invariance upon which

depend analytical methods, and gives rise for the scattering effect. In the present context,

the scattering effect is characterized by the presence of a broad range of kx components

in the field’s spectrum. For instance, if a plane wave impinges the interface with a de-

fined incident angle, it will be reflected and transmitted in several different directions

(different transmission and reflection angles). This is in contrast to the geometric reflec-

tion/transmission where a plane wave will be reflected and transmitted as a single plane

wave only. This effect is schematically represented in Figure 2.4.
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Figure 2.4: The scattering effect observed.

2.3 Scattering from imperfectly bonded half-spaces

Based on the mathematical basis introduced above, it is possible to develop the formula-

tion for the situation depicted in figure 2.1 to compute the resulting scattered field u+
1 .

We should say that we took the main idea from the field of parameter estimation and

reformulate the scattering problem as an inverse problem. Accordingly, our first step is to

take an initial guess for ū+
1 (we recall that the incident field u +

2 is known). Then, we cal-

culate t̄+ with the aid of Eqs. 2.4 and 2.5, and use Eq. 2.5 again in conjunction with the

Boundary Condition 2.9 to solve for ū−
2 (we recall that there are only downpropagating

waves in the lower halfspace - radiation condition, i.e, u−
2 = u−):

ū−
2 = [Z −

2 ]−1 (−iω)−1 t̄ +. (2.11)

Finally, we apply the inverse Fourier Transform to find u−
2 .

As it will be shown in later sections, this result can be used in conjunction with u+
2

to write a cost function based on Eq. 2.8, whose minimization parameter is ū+
1 so that

the value assumed by this function is zero when the value assumed by the minimiza-

tion parameter satisfies the Boundary Condition 2.8. In that sense, u+
1 responsible for

minimizing this cost function is also the solution for the current scattering problem.
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First, we define rj as the residual vector:

rj = Kj(u +
j − u −

j )− t +
j . (2.12)

Then, the cost function can be written simply as the ordinary least-squares norm as:

M∑
j=1

[ real {rj}]T [ real {rj}] + [ imag {rj}]T [ imag {rj}], (2.13)

where M is the total number of points at the interface in which the fields variables are

evaluated and uj(tj,Kj) is the value of the field variable at the jth point in the interface.

The minimum number of points at the interface where the field variables have to be

evaluated in order to get accurate results and ensure the solution uniqueness is still an

open issue. So far, the same number of points that was used to perform the DFT have

been used.

As it is shown in equation 2.13, the real and imaginary parts of the residual rj must

be treated independently. In that sense, the minimization parameter vector p can be

written as:

p = [ [ real {ū +
11} ]T , [ imag {ū +

11} ]T , [ real {ū +
12} ]T , [ imag {ū +

12} ]T ,

... [ real {ū +
1N} ]T , [ imag {ū +

1N} ]T ,
. (2.14)

where

ū +
1β = ū +

1 (k xβ), β = 1, 2, 3, ..., N (2.15)

and kxβ are the kx wave number components present in the harmonic wave spectrum.

Notice that N is the total number of wave number components. So, if the most general

case is to be considered, the length of p is N × 2 × 3 = 6N , where 2 represents the real

and imaginary parts of minimization parameters, while 3 is related with all the 3 possible

spatial directions.

It is possible to conclude that the cost function Equation 2.13 is quadratic with respect

to the minimization parameters because each residual rj represented in the cost function

is a linear function of the minimization parameter vector represented in Equation 2.14.

Since the cost function is quadratic, it only has one (global) minimum, and the Jacobian

(sensitivity) matrix associated to the problem is not a function of the minimization pa-

rameters. In this particular case, the minimization can be performed in a single iteration,
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as shown in [3]:

p∗ = p(0) − [JTJ]−1 JT r(p(0)), (2.16)

where p∗ is an array that contains the solution for the scattering problem, p(0) is the

minimization parameter vector that contains the initial guess for the scattered field, J is

the Jacobian matrix computed, and r(p0) is the residual column vector evaluated for the

initial guess p(0). In the most general case, the length of r is M × 2 × 3 = 6M (using

the same considerations mentioned above for the length of p). The components of the

Jacobian matrix are determined using the finite differences. If the forward difference is

used, it can be represented as:

Jij =
ri(p

(0)
1 , p

(0)
2 , ..., p

(0)
j + ε, ..., p

(0)
N )− ri(p(0)1 , p

(0)
2 , ..., p

(0)
j , ..., p

(0)
N )

ε
. (2.17)

In Equation 2.17, ε is a small parameter. It is noticeable that J is a matrix with

dimensions 6M × 6N and that the jth column of J can be assembled from the jth min-

imization parameter perturbation. It is important to recall that u− is a function of the

minimization parameter in Equation 2.12 and has to be computed with Eq. 2.11.

Another point worth mentioning is that if the same points in the x-axis are to be

used to compute the residual vector and to perfom the FFT, then the resulting Jacobian

matrix J is square. For the case of square J, it is possible to simplify Equation 2.16 to

p∗ = p(0) − J−1r(p(0)). (2.18)

At this point, we should say that in the present work we perform the discrete version

of Fourier transform (FFT), where the frequency components represented in the harmonic

x-wave number spectrum are linked to the x axis discretization. Further, it is intrinsic

to the formulation presented here that first we have to guess the wave number spec-

trum’s frequency content (or, conversely, discretize the x axis) to choose the initial guess

accordingly. For the discretization, two issues have to be taken into account:

i) As it was discussed earlier (and will be seen in the numerical results presented in

Chapter 5), the scattered field spectrum is expected to be broader than the specular field

because this broadening effect is intimately related with the scattering of the incident field

by the defective interface. In that sense, it is difficult to know a priori which is the largest

frequency component that has to be represented in the spectrum. For the solution to be
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considered valid, ∆x must be small enough to capture this largest value, i.e, it must be

small enough to avoid aliasing. Anyway, it is always possible to identify in the scattered

field spectrum the cases where aliasing had occurred. For this cases, a finer discretization

of the x-axis is required in order to consider larger kx components.

ii) ∆kx must be small enough for all the excited modes that appear in the wave

number spectrum in the form of "spikes" (as seen in the numerical results presented in

Chapter 5) to be represented accurately. In fact, in general, the larger is the angular

frequency (ω) of the inspecting incident field, the thinner becomes that "spikes". We

recall that ∆kx is related to the extent of the represented x-axis. The larger the x-axis

representation, the smaller ∆kx.

In the sense of what is discussed in the two items above, it can be seen that for

several cases a fine x-axis discretization will be needed. Besides that, we will need to

represent a large extent of the x-axis. Thus, for these cases, we will have a large number of

minimization parameters and a relevant bottleneck for fast and real time solving strategies.

In this work we will introduce novel modelling and solution representations, turning the

method much more faster and close to real time simulation.



Chapter 3

Serial Implementation and Bottleneck
Analysis

On this chapter, we present and discuss the serial implementation of the algorithm to

compute the scattered field resulting from the interaction of a time harmonic ultrasonic

incident wave with a plane arbitrarily heterogeneous interface located between two half-

spaces described and formulated in Chapter 2. For a better comprehension, a pseudocode

of this algorithm will be presented.

After presenting and discussing the algorithm, we will detail it in minor tasks and pro-

cesses in order to analyze meticulously the time spent by each stage and its relevance for

the global time spent by the entire application. As it will be shown, since the algorithm is

composed mostly of dense linear algebra operations such as matrix/vector multiplications

and solving linear systems, and application of Fourier transforms, a theoretical time anal-

ysis is made in order to predict possible bottlenecks through the workflow. Ultimately,

some simulations will be made to illustrate and confirm those assumptions.

The method to compute the scattered displacement field consists of a series of cal-

culations based on the mathematical formulation presented in Chapter 2. From now on,

the integer n represents the total number of points considered in the discretization of the

interface. As input, it receives numerical data that characterizes the upper and lower half-

spaces, the distribution of the stiffness of springs along the defective interface, and the

incident displacement field which is composed of 3-by-n complex arrays, where 3 stands

for each one of the spatial directions x, y and z.

As the phase speed of an elastic wave can be considered a property of the medium,

we use the P -wave speed and S-wave speed as well as the density ρ as constants to

characterize the half-spaces. From these values, it is possible to calculate Lamé first and
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second parameters, respectively, λ and µ (also known as the shear modulus) that will be

used later in the program. All of these parameters that characterizes the media are to be

considered as real scalar values.

A summary of the computational procedures corresponding to the Scattering Algo-

rithm based in the theoretical formulation is described as follows and can be schematically

seen in Figure 3.1.

Algorithm 1: Scattering Algorithm.
input : 3-by-n complex arrays u+

2 , 3-by-n complex arrays u+
1 , 3-by-3-by-n real

matrix K, real scalar constants ρ, vp and vs for each medium.

output: 3-by-n complex arrays uscat
1 Compute tensors Z1 and Z2 for each wavenumber kβx component ;

2 Compute residual vector r(p0) for the initial guess for u+
1 ;

3 Assembly of Jacobian matrix J ;

4 Compute p∗ and assemble the scattered displacement field ūscat ;

 1st STAGE
compute impedance 

tensors Z1 and Z2

2nd STAGE
compute residual 

column vector r(p0)

3rd STAGE
compute & assemble 

Jacobian matrix J

4th STAGE
compute scattered 
reflected field uscat

time complexity: O(n)

time complexity: O(n.log(n))

time complexity: O(n².log(n))

time complexity: O(n³)

input:
- incident field; 
- initial guess reflected field;
- stiffness distribution;
- media constant properties.

output:
- scattered reflected field.

_____________________________________________________________________
4th STAGE pseudocode

_____________________________________________________________________
1 /***       Compute p*                     ***/
2
3 p* ← p0 - J-1 r(p0);
4
5 /***    Assembly of uscat                ***/
6
7 cont1 ← 0;
8 for j=1 to n  do
9 |   uscat[ 0 ][ j ] ← p*(cont1) + i p*(cont1+1); 
10 |   uscat[ 0 ][ j ] ← p*(cont1+2) + i p*(cont1+3);
11 |   uscat[ 0 ][ j ] ← p*(cont1+4) + i p*(cont1+5);
12 L  cont1← cont1+6;
13 return uscat ;

BOTTLENECK 
IN EXECUTION 

“Scattering Algorithm” flow chart

Critical task:
- Solve implicit dense linear system

x’ = J -1 . r(p0)
 
  

parallel LU

Solution:
- Use parallel LU factorization 
GPU implementation from 
NVIDIA’s cuSOLVER library

Figure 3.1: Flow chart of the Scattering Algorithm.

As depicted in the Scattering Algorithm and Figure 3.1, the program must sequentially

accomplish four different stages (each one dependent of the previous) in order to compute

correctly the 3-by-n complex array uscat that represents the scattered displacement field.
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First, it must compute the local impedance tensor Z1 and Z2 for each component

of the wavenumber vector x domain discretization. These tensors are computationally

treated as 3-by-3-by-n complex matrices and will be needed at the next stage, when the

6n-size real array r(p0) representing the residual column vector will be calculated based

on the Eq. 2.12 for an arbitrary 3-by-n complex array u+
1 that stands for the initial guess

for the solution of the problem. The third stage consists on the assembly of the Jacobian

matrix, a 6n-by-6n real matrix, using the same calculations as before, but with the subtle

difference that emerges from perturbing each component of the 6n-size real array p(0) at

a time. Finally, we compute 6n-size real array p∗ by solving Equation 2.18 and assemble

the 3-by-n complex matrix uscat that is the solution of the scattering problem. Each one

of these stages will be better described in the next sections.

3.1 Computing Z1 and Z2

As algorithms 2 and 3 shows, the computation of 3-by-3 complex matrices Z1 and Z2

for a kx component basically consists of a few value attributions, the calculation of the

inverse of matrix A and its multiplication by matrix L (both A and L are defined in the

algorithm itself). Notice that those matrices are square and of order 3 so this computation

can be performed very fast. However, as mentioned in Algorithm 1, it must be done for

each value of kx.
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Algorithm 2: Compute Z1

input : real scalar constants µ, ρ and λ, real value kx and ω.
output: 3-by-3 complex matrix Z1

1 Compute velocity of propagation of a P-type wave
2 CP ← SQRT(λ+ 2µ/ρ) ;
3 Compute velocity of propagation of a S-type wave
4 CS ← SQRT(µ/ρ) ;
5 kP ← ω/CP ;
6 kS ← ω/CS ;
7 kzP ← SQRT(k2

P/k
2
x) ;

8 kzS ← SQRT(k2
S/k

2
x) ;

9 sin(θP )← kx/kP ;
10 cos(θP )← kzP/kP ;
11 sin(θS)← kx/kS ;
12 cos(θP )← kzS/kS ;
13 Setting matrix A1

14 A1[0][0]← sin(θP ) ;
15 A1[0][1]← -cos(θS) ;
16 A1[0][2]← 0.0 ;
17 A1[1][0]← 0.0 ;
18 A1[1][1]← 0.0 ;
19 A1[1][2]← 1.0 ;
20 A1[2][0]← cos(θP ) ;
21 A1[2][1]← sin(θS) ;
22 A1[2][2]← 0.0 ;
23 Setting matrix L1

24 L1[0][0]← −µ ∗ (kx ∗ cos(θP ) + kzP ∗ sin(θP )) ;
25 L1[0][1]← µ ∗ (kzS ∗ cos(θS)− kx ∗ sin(θS)) ;
26 L1[0][2]← 0.0 ;
27 L1[1][0]← 0.0 ;
28 L1[1][1]← 0.0 ;
29 L1[1][2]← −µ ∗ kzS ;
30 L1[2][0]← −λ ∗ (kzP ∗ cos(θP ) + kx ∗ sin(θP ))− 2µ ∗ kzP ∗ cos(θP ) ;
31 L1[2][1]← λ ∗ (kx ∗ cos(θS)− kzS ∗ sin(θS))− 2µ ∗ kzS ∗ cos(θS) ;
32 L1[2][2]← 0.0 ;
33 Multiplying matrices
34 Z1(kx)← (L1 ∗ A−1

1 )/ω ;
35 return Z1(kx) ;
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Algorithm 3: Compute Z2

input : real scalar constants µ, ρ and λ, real values kx and ω.
output: 3-by-3 complex matrix Z2.

1 Compute velocity of propagation of a P-type wave
2 CP ← SQRT(λ+ 2µ/ρ) ;
3 Compute velocity of propagation of a S-type wave
4 CS ← SQRT(µ/ρ) ;
5 kP ← ω/CP ;
6 kS ← ω/CS ;
7 kzP ← SQRT(k2

P/k
2
x) ;

8 kzS ← SQRT(k2
S/k

2
x) ;

9 sin(θP )← kx/kP ;
10 cos(θP )← kzP/kP ;
11 sin(θS)← kx/kS ;
12 cos(θP )← kzS/kS ;
13 Setting matrix A2

14 A2[0][0]← sin(θP ) ;
15 A2[0][1]← cos(θS) ;
16 A2[0][2]← 0.0 ;
17 A2[1][0]← 0.0 ;
18 A2[1][1]← 0.0 ;
19 A2[1][2]← 1.0 ;
20 A2[2][0]← −cos(θP ) ;
21 A2[2][1]← sin(θS) ;
22 A2[2][2]← 0.0 ;
23 Setting matrix L2

24 L2[0][0]← µ ∗ (kx ∗ cos(θP ) + kzP ∗ sin(θP )) ;
25 L2[0][1]← µ ∗ (kzS ∗ cos(θS)− kx ∗ sin(θS)) ;
26 L2[0][2]← 0.0 ;
27 L2[1][0]← 0.0 ;
28 L2[1][1]← 0.0 ;
29 L2[1][2]← µ ∗ kzS ;
30 L2[2][0]← −λ ∗ (kzP ∗ cos(θP ) + kx ∗ sin(θP ))− 2µ ∗ kzP ∗ cos(θP ) ;
31 L2[2][1]← −λ ∗ (kx ∗ cos(θS)− kzS ∗ sin(θS)) + 2µ ∗ kzS ∗ cos(θS) ;
32 L2[2][2]← 0.0 ;
33 Multiplying matrices
34 Z2(kx)← (L2 ∗ A−1

2 )/ω ;
35 return Z2(kx) ;

As mentioned before, further details and expressions for tensors A, L and Z for

isotropic media can be found in the appendix of this work while references [26, 25] treats

the case for anisotropic media.
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3.2 Computing the residual column vector

The 6n-length real array r(p0) is calculated based on Eqs. 2.9, 2.11 and 2.12 of the

mathematical formulation. It is noticeable that the 3-by-3-by-n matrices Z1 and Z2

computed in the previous stage will be needed for this calculation.

Algorithm 4: Compute residual column vector r(p0)

input : 3-by-n complex arrays u+
2 , 3-by-n complex arrays u+

1 , 3-by-3-by-n matrix
K, 3-by-3-by-n complex matrices Z1 and Z2.

output: 6n-size real array r(p0)
1 for i = 1 to 3 do
2 ū+

2 (i)← FFT (u+
2 (i)) ;

3 ū+
1 (i)← FFT (u+

1 (i)) ;

4 for j = 1 to n do
5 t̄+ ← (−iω) ∗ (Z+

1 ∗ ū+
1 + Z+

2 ∗ ū+
2 ) ;

6 ū− = (Z−
2 )−1 ∗ (−iω) ∗ t̄+ ;

7 for i = 1 to 3 do
8 t+(i)← IFFT (t̄+(i)) ;
9 u−(i)← IFFT (ū−(i)) ;

10 Since u+ = u+
1 + u+

2

11 for j = 1 to n do
12 r(j)← K(j) ∗ ((u+

1 (j) + u+
2 (j))− u−(j))− t+(j) ;

13 cont1← 0 ;
14 for j = 1 to n do
15 r(p0)(cont1)← REAL(r(1, j)) ;
16 r(p0)(cont1 + 1)← REAL(r(2, j)) ;
17 r(p0)(cont1 + 2)← REAL(r(3, j)) ;
18 r(p0)(cont1 + 3)← IMAG(r(1, j)) ;
19 r(p0)(cont1 + 4)← IMAG(r(2, j)) ;
20 r(p0)(cont1 + 5)← IMAG(r(3, j)) ;
21 cont1← cont1 + 6 ;

22 return r(p0) ;

Notice that register i (generally going from 1 to 3) is considered for calculations at

each spatial direction, while register j computes at each point of the discretization (from

1 to n).

As described in Algorithm 4, at this stage we are required to apply Fourier trans-

formations (direct or inverse) at the fields variables arrays in order to transform domain
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from spatial to wavenumber coordinates. This procedure is explicit in lines 1 − 3 and

7 − 9. Notice that these transforms are applied for each direction independently. Lines

4− 6 describes the calculation of 3-by-n complex arrays t̄+ and ū−
2 for each point of the

wavenumber domain, while lines 14− 21 counts for the 6n real array r(p0) computation

and assembly. It is yet worth mentioning that as the final residual column vector r(p0)

contain only real values, complex numbers must be broken in real and imaginary parts

independently (functions REAL and IMAG in the algorithm).

3.3 Computation and assembly of the Jacobian matrix

The computation and assembly of the Jacobian matrix J are described in Algorithm 5.

At this stage, the algorithm fills each column of J at a time repeating the same procedure:

first, it computes a new residual column vector rguess that results from the application

of a small perturbation ε at one of the minimization parameters contained in p0 array.

Then, it uses the finite difference (see Equation 2.17) of rguess and the original residual

column vector r(p0) computed at the previous stage to fill the corresponding column of

J. Notice that the output matrix is supposed to be square and of order 6n filled with real

values.

Algorithm 5: Computation and assembly of Jacobian matrix J
input : 3-by-n complex arrays u+

2 , 3-by-n complex arrays u+
1 , 3-by-3-by-n real

matrix K, 3-by-3-by-n complex matrices Z1 and Z2, real scalar ε
output: 6n-by-6n real matrix J

1 ūguess ← ū+
1 ;

2 for each column (col) of J do
3 point← bcol/6c ;
4 coord← 2 ∗ b(col % 6)/2)c ;
5 type← ((col % 6) % 2) ;
6 if(type == 1) type← I (imaginary part)
7 if(type == 0) type← 1 (real part)
8 ūguess[coord][point]← ūguess[coord][point] + type ∗ ε ;
9 =======================================

10 Use Algorithm 4 to compute residual vector rguess for ū+
1 = ūguess ;

11 =======================================
12 for j = 1 to 6n do
13 J[j][col]← (rguess(j)− r(p0)(j))/ε ;

14 return J ;
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Lines 3−7 identifies and relate the current column of the iteration with the point and

coordinate of uguess upon which perturbation ε may be applied (line 8). Line 10 refers to

a call for the same procedure of Algorithm 4, but this time, the initial guess utilized for

calculation is updated with the small perturbation ε. Algorithm 4 will return a different

residual vector rguess at each column computation. At line 13 each element of the column

of matrix J is computed from a forward finite difference scheme as mentioned. Finally,

line 14 of the pseudocode deduct the perturbation from the related coordinated of uguess
so that it is once again equivalent to the initial guess before another column is computed.

3.4 Computation and assembly of the scattered dis-
placement field

Finally, at the last stage of the algorithm, the 3-by-n complex array uscat (solution of the

scattering problem), is computed and assembled. The 6n-size real array p∗ that contains

the solution is computed based on Eq. 2.18. This computation involves the matrix-vector

multiplication of the inverse of the 6n-by-6n real matrix J by the 6n-size real array r(p0).

However, it is computationally advantageous to reframe this multiplication in a simple

algebraic problem of solving a liner system. Doing so we avoid the difficult work of

calculating the inverse of such a large matrix.

Suppose A is a square matrix of coefficients, x is a solution vector and b is a right-hand

side of the generic linear system:

Ax = b. (3.1)

If A is invertible, it is possible to multiply both sides of equality by the inverse of

matrix A, obtaining:

A−1Ax = A−1b, (3.2)

where A−1 represents the inverse of A.

Notice that the multiplication of any matrix by its inverse results in the identity

matrix of adequate order. For this case, as consequence, the solution vector equals the

multiplication of the inverse of matrix A and the right-hand side vector b.
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x = A−1b. (3.3)

This means that it is possible to reformulate Eq. 2.18 to

p∗ = p(0) − y, (3.4)

where x′ is the solution vector of the linear system J.y = r(p(0)).

Algorithm 6: Compute ūscat
input : 6n-by-6n real jacobian matrix J, 6n real residual column vector r(p0)
output: 3-by-n complex arrays ūscat

1 p∗ ← p0 − J−1 ∗ r(p(0)) ;
2 Assembly of ūscat
3 cont1← 0 ;
4 for j = 1 to n do
5 ūscat[0][j]← p∗(cont1) + i ∗ p∗(cont1 + 1) ;
6 ūscat[1][j]← p∗(cont1 + 2) + i ∗ p∗(cont1 + 3)
7 ūscat[2][j]← p∗(cont1 + 4) + i ∗ p∗(cont1 + 5) ;
8 cont1← cont1 + 6 ;

9 return ūscat ;

In the pseudocode for Algorithm 6, lines 3 − 8 represent the assembly of the 3-by-n

complex array ūscat from the 6n-size real array p∗ computed in line 1. Notice that this

solution 3-by-n complex array is in the kx domain.

3.5 Finding the bottleneck of the Scattering Algorithm

The algorithm described above was proposed by Leiderman and Castello in Ref. [27].

Later, the same authors have used its formulation again to solve the correlated inverse

scattering problem in Ref. [28]. For better organization of our development, it will be

analyzed based on the division of stages made in the previous sections. In this division,

the whole model is compounded by four major stages: i) computation of the 3-by-3-by-n

complex matrices Z1 and Z2; ii) computation of the 6n real array r(p0); iii) computation

and assembly of the square matrix J of order 6n; iv) computation of the 3-by-n complex

array uscat. We will analyze each one of these stages individually in order to find the most
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expensive tasks in terms of time complexity. This analysis gives a good intuition of where

the bottleneck is during execution. Later, we will perform a few experimental simulations

to validate this theoretical analysis.

In the first stage (Algorithms 2 and 3), the routine used to compute 3-by-3-by-n

complex matrices Z1 and Z2 is composed basically of a few value attributions. These

attributions are executed a constant number of times and it is independent to the size of

the discretization. Some real value constants that characterize the half-space are used to

compute the elements of matrices A and L. Notice that these matrices are square and

of order 3, so multiplication and inversion are also performed with a constant number of

operations. Therefore, its complexity is of order O(1). As these calculations are executed

for every component of the domain, this routine is called n times during execution of the

entire program. Thus, the total complexity of the first stage of the Scattering Algorithm

is of order O(n).

At the second stage (computation of the residual column vector), there are tasks

of very different nature being accomplished. Using the same observations made in the

previous stage, we can stand that the complexity assigned for tasks that involve arithmetic

operations with matrices and vectors of a pre-fixed low order are O(1). This is valid for

the lines that denote calculation of fields variables such as traction and displacement

fields and the r(p0) array. For each component of the discretization, values for t̄ and

ū are computed based in matrix-vector operations, so the total cost of these tasks is

of order O(n). In addition, the break of vector rj for attribution of vector r(p0) is of

complexity O(n) as well, since the same quantity of operations are done to separate the

real and imaginary parts of the complex vector rj for each component. The task within

the second stage that has the largest complexity and, therefore, the associated higher

cost, is the Fourier Transform over complex arrays t̄+2 , ū+
2 , ū−. In our implementation,

for both direct and inverse transform, we use the same algorithm known as Fast Fourier

Transform (FFT). This is a recursive algorithm based on the divide-and-conquer strategy

that takes advantage upon the intrinsic symmetry of the problem to execute it in time

O(n log(n)). As it is explicited in Algorithm 4, each array representing fields variable t̄+2 ,

ū+
2 , ū− execute the FFT for each spatial direction independently. Thus, in terms of order

of magnitude and complexity, the group of tasks related to Fourier transforms hold the

higher associated cost (O(n log(n))) in comparison with other tasks at this second stage

(O(n)).

In the routine that computes and assembles the Jacobian matrix, first, it is made an
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attribution of values for a 3-by-n complex array called ūguess equivalent to the initial guess

array ū+
1 of same size and dimension. This attribution task costs O(n) because it basically

consists of copying information from each of the n points of domain from the former array.

After this copy, each column of the Jacobian matrix is computed. The number of steps

remains the same for each column and, therefore, to obtain the total cost of the entire

routine, we multiply the number of columns (6n) by the resulting cost of a complexity

analysis of the operations performed for each column. Inside this procedure, there is a

call for the Algorithm 4 in order to compute a residual column vector related to the case

when the initial guess array p(0) suffers a small perturbation ε at one of its components.

We can use the previous analysis to conclude that this call costs O(n log(n)) since its most

expensive task corresponds to the application of the FFT. This way, the total complexity

of Stage 3 is of order O(n2 log(n)). Other tasks in the loop do not have complexity equal

or greater to this value. As an example, the associated cost to identifying the coordinate

and domain point for application of the perturbation (lines 3−7) is of order O(n) since it is

made by a constant number of operations for each column. Additionally, the computation

of each element of the column of the Jacobian matrix J (line 13) costs O(n) as for each

of the 6n elements it is made a simple arithmetic operation of subtraction and division.

Hence, in the total sum of all iterations, this step has cost of order O(n2).

Lastly, we analyze the final stage of the implementation. Eq. 2.18 is used to compute

6n-length real array p∗. As discussed earlier, instead of computing the inverse of the

Jacobian matrix J and multiply it by the r(p0) array, it is much more interesting in the

computational context to solve the implicit linear system. The solution of this linear

system can be made by many possible direct or iterative methods. We will explain in

more details in the next chapter of this work but, in resume, the best and most used

method is to solve it with a LU factorization, since the Jacobian matrix J is assumed to

be any generic square matrix.

The LU factorization method has two main steps: factorizing the coefficient matrix

A into the product of a lower (L) triangular matrix by an upper (U) triangular matrix,

and solving the resulting triangular linear system. The factorization step costs O(n3)

while the solution of the resulting triangular linear systems is of order O(n2). Therefore,

the cost associated with the computation of the 6n-size array p∗ via Equation 2.18 is

of order O(n3) and, therefore, it is the most expensive task of the final stage of the

implementation. Other steps in the forth stage consists in the attribution and assembly

of the 3-by-n complex array ūscat (lines 3− 8), executed in time O(n).
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Table 3.1 summarizes the conclusions made by the analysis of each stage of the im-

plementation.

Table 3.1: Summary of theoretical complexity analysis for each stage of the Scattering
Algorithm.

Stage Most Expensive Task Computational Cost
1 n O(1) order-3 matrix computations O(n)
2 O(1) FFT of n-size arrays O(n · log(n))
3 O(n) FFTs of n-size arrays O(n2 · log(n))
4 Solve linear system Jy= r(p(0)) O(n3)

Overall Solve linear system Jy= r(p(0)) O(n3)

As conclusion, we found out that the bottleneck of the current implementation lies on

solving the linear system Jy = r(p(0)). Table 3.2 shows the results from a few simulations

that were made to confirm the theoretical analysis. These simulations use an entirely serial

implementation which applies implementations from the FFTW[14] library to perform the

FFT and a LU factorization from LAPACK[2] library to solve the bottleneck dense linear

system. Details of this implementation, including environment aspects, half-spaces and

defect characterization are discussed in the chapter 5 of this work.

Table 3.2: Time/cost analysis for each stage.
Stage 1 Stage 2 Stage 3 Stage 4

Points time (s) % time (s) % time (s) % time (s) %
400 0.0011 0.1194 0.0003 0.0284 0.1971 21.5061 0.7179 78.3461
1200 0.0033 0.0149 0.0007 0.0032 1.9705 8.8671 20.2485 91.1149
2400 0.0066 0.0035 0.0015 0.0008 9.3440 4.9998 177.5339 94.9959
4800 0.0132 0.0008 0.0029 0.0002 40.8540 2.6009 1529.9221 97.3981

As Table 3.2 illustrates, Stage 4 really represents the bottleneck of the serial imple-

mentation. Our theoretical analysis foresaw the trend observed in practice that, for larger

domains, the linear system solution becomes dominant in time consumption. As an ex-

ample, in a 400-point it took 0.72 seconds (approximately 78.35%) while in a 4800-point

simulation, it took 1529.92 seconds (over 25 minutes), 97.39% of the entire execution time.

Therefore, our main goal is to propose strategies to reduce the time taken to perform this

particular computation.



Chapter 4

Using GPU solution in the critical path

Based on the complexity analysis, we propose a novel formulation for the problem, suitable

for a SIMT (Single Instruction Multiple Thread) parallel paradigm. As mentioned in

section 3.5 and detailed by Tables 3.1 and 3.2, the main bottleneck of the algorithm

consist of finding the solution of a linear system Ax = b. The Jacobian matrix J takes

the role as the coefficient matrix A and the residual column vector r(p0) as the right-

hand side b. We present a brief discussion to justify the method chosen to solve this

linear system and explain its basic functioning before showing how it is executed in the

parallel context, where large and highly parallelable operations are benefited from the

computation being executed through GPU accelerators.

Additionally, we propose another optimization for the Scattering Algorithm based

solely on the analysis of the initial guess for the reflected displacement field u+
1 . As

it will be shown, if a null initial guess is chosen, the execution time of a simulation is

relatively reduced (especially for discretizations with a reduced number of points) as a lot

of unnecessary computation is avoided.

4.1 Solving a Dense Linear System

It is possible to computationally solve a linear system with direct or iterative methods.

Theoretically, direct methods solve the system in such a way that the exact solution is

found in a finite number of steps. This is accomplished through operations that modify

the original coefficients matrix A to the point that this solution can be found by a simple

backward substitution of the unknown variables. On the other hand, iterative methods

such as Gauss-Seidel or the Conjugate Gradient reformulates the linear system so that,

at each iteration, the initial guess for the system’s solution is updated until it reaches
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a value that is close enough to the original solution. Each method, whether direct or

iterative, has its own advantages and inconveniences. While direct methods can be slower

for many cases and hold round-off error associated with the arithmetic being used that

may compromises the final solution, iterative methods need a preliminary analysis over

convergence. In case this convergence can not be guaranteed, the method is inadequate

as it may never find a solution that satisfies the problem.

In general, for systems of higher order (and, therefore, with larger coefficient ma-

trices), it is assumed that direct methods are more suitable for dense matrices, while

iterative methods works better for sparse ones. A linear system of equations is supposed

to be dense if the entries of the coefficient matrix A are mostly composed of non-zero

elements. Likewise, sparse linear systems are the ones in which the matrix A presents

a high percentage of null elements. Computationally, large order sparse matrices have

the big advantage of low memory occupancy, once it is not necessary to save the null

entries of the matrix, although it is additionally required to save the data location. On

the other hand, large and dense matrices demand large memory availability in order to

store information.

In our particular problem, the Jacobian matrix assembled is dense because the vast

majority of its elements are non-zero. In fact, we expect that all the elements are non-zero.

The most conventional direct method to solve a linear system of equations is the

Gaussian Elimination. It consists, basically, of two steps: triangularization of the the

system of equations and a backward substitution to solve the resulting system. The tri-

angularization of the coefficient matrix A modifies the original matrix so that its elements

under the main diagonal become zeros through operations of rows exchange and sum of

entire rows with a multiple of another one.

(Ei)↔ (Ej), (4.1)

where Ei represents the entire i-th row,

(Ej +mj,iEi)↔ (Ej) (4.2)

and

mj,i =
a
(i)
ji

a
(i)
ii

. (4.3)



4.1 Solving a Dense Linear System 28

Notice that application of these operations does not change the original solution of

the linear system as the right-hand side vector b is also subject for the same operations

performed for the matrix A.

Once the system is properly triangulated, it assumes the shape illustrated below,



a11 a12 . . . . . . a1n

0 a22 a2n
... . . . . . . ...
... . . . . . . ...

0 · · · · · · 0 ann





x1

x2
...
...

xn


=



b1

b2
...
...

bn


in such a way that the solution can be found through a simple backward substitution.

xn =
bn
ann

and xi =
1

aii

[
bi −

n∑
j=i+1

aijxj

]
. (4.4)

For our application, at least at first, it is not possible to predict the characteristics of

the Jacobian matrix, so it is fundamental for our algorithm the ability to deal with a big

possibility of distinct scenarios of both defective interfaces and incident wave fields. With

that in mind, the model must adopt the method that can solve the linear system for generic

matrices, i.e., matrices that are not of a special type such as symmetric, positive definite,

diagonally dominant etc. In general, for these generic matrices the LU decomposition is

the most indicated method, in opposition to others optimized implementations available

in different libraries, such as QR, Cholesky and Bunch-Kaufman (LDL) factorizations.

Each one of these factorizations is based in different principles to decompose the original

coefficient matrix A into a product of matrices with very specific particularities.

Ref. [4] discuss that, as a viable alternative, the QR factorization is also suitable for

this problem. However, despite the fact it has the great advantage of being numerically

stable intrinsically, it is usually more time-expensive and its application is more adequate

for solving least-squares problems where the number of unknowns exceeds the number of

equations.

On the other hand, in order to achieve numerical stability, it is very common to

add pivoting techniques to the LU method, although it increases the risk of the entire

factorization to run slower than the alternative QR method. It is observed that, for most
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cases, the simple adding of this technique does not represent a significant increase in time

cost and its application is proved worthy.

4.2 LU factorization

It takes O(n3/3) operations to transform the original coefficient matrix A into a triangular

one, while to solve the resulting linear system by a backward substitution takes O(n2)

operations. The number of operations required to solve a lower-triangular system is

similar. In order to explore this discrepancy in time cost, it is very common to reconfigure

the problem factorizing the matrix A into the product of a lower triangular matrix L and

an upper triangular matrix U (A = LU). Then, we can solve for x more easily by using

a two-step process.

1. Let y = Ux. Solve the lower triangular system Ly = b for y. Since L is triangular,

determining y from this equation requires O(n2) operations.

2. Once y is known, the upper triangular system Ux = y requires an additional O(n2)

operations to determine the solution x.

Solving the linear system Ax = b in factored form results in a reduction in opera-

tions from O(n3/3) to O(2n2) comparing with the usual Gaussian Elimination method.

However, this reduction comes with a cost; it takes O(n3/3) operations to determine the

specific lower and upper triangular matrices L and U . But once this factorization is deter-

mined, we can solve the linear system for the original matrix A by this simplified manner

for any number of vectors b.

To perform the LU factorization, the Gaussian elimination should be performed on the

system Ax = b without row interchanges. This observation is equivalent to having nonzero

pivot elements at each step of the triangularization. At the end of the triangularization

steps, the modified matrix A(k) is upper triangular. If we consider this modified matrix

to be our desired matrix U , it is possible to determine the lower triangular matrix L

considering the operations applied at the original matrix A.

The first step in the Gaussian elimination process consists of performing at the first

element the operations described in Eq. 4.2 with i = 1, for each row below . All the entries

in the first column below the diagonal are assumed as zero. The system of operations

proposed can be viewed in another way as a multiplication of the original matrix A on

the left by the elementary matrix l (1) resulting in A(2):
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l (1) =



1 0 · · · · · · 0

−m21 1
. . . ...

... 0
. . . . . . ...

...
... . . . . . . 0

−mn1 0 · · · 0 1



l (1) · A = A(2) (4.5)



1 0 · · · · · · 0

−m21 1
. . . ...

... 0
. . . . . . ...

...
... . . . . . . 0

−mn1 0 · · · 0 1
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11 a
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(1)
1n

a
(1)
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(1)
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...
... . . . ...
... . . . ...

a
(1)
11 · · · · · · · · · a
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nn


=



a
(1)
11 a

(1)
12 · · · · · · a

(1)
1n

0 a
(2)
22 a

(2)
2n

... . . . ...

0
. . . ...

0 a
(2)
n2 · · · · · · a

(2)
nn


.

In a similar manner, we build l(2), which is the identity matrix with the entries below

the diagonal in the second column replaced by the negatives of the multipliers mj,2.

Multiplying A(2) on the left by l(2) will result in A(3) upon which every element below the

first two elements of the diagonal are zeros. In general, for A(k)x = b(k), we will have l(k)

so that

l(k) =



1 0 · · · · · · · · · · · · · · · · · · · · · 0

0
. . . . . . ...

... . . . . . . . . . ...

... . . . . . . . . . ...

... . . . . . . . . . ...

... 0
. . . . . . ...

...
... −mk+1,k

. . . . . . ...
...

...
... 0

. . . . . . ...
...

...
...

... . . . . . . 0

0 · · · · · · · · · 0 −mn,k 0 · · · 0 1



.

The process ends with the formation of A(n)x = b(n), where A(n) is the upper triangular

matrix U
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A(n) =



a
(1)
11 a

(1)
12 · · · · · · a

(1)
1n

0 a
(2)
22

. . . a
(2)
2n

... . . . . . . . . . ...

... . . . . . . a
(n−1)
(n−1)n

0 · · · · · · 0 a
(n)
nn


,

given by

l(n−1) · l(n−2) · · · l(1) · A = A(n). (4.6)

Assuming M to be the resulting matrix of the multiplication of all the l(k) elementary

matrices, we have that MA = U . Multiplying on the left by the inverse (assuming it is

invertible), we have that

A = M−1U. (4.7)

Since M is compounded by the product of matrices l(k), We can assume that its

inverse is the also the product of the inverse of each particular elementary matrix l in the

opposite order.

M−1 = (l(1))−1 · (l(2))−1 · · · (l(n−1))−1. (4.8)

The inverse of each matrix l(k) is simple to be calculated:

(l(k))−1 =



1 0 · · · · · · · · · · · · · · · · · · · · · 0

0
. . . . . . ...

... . . . . . . . . . ...

... . . . . . . . . . ...

... . . . . . . . . . ...

... 0
. . . . . . ...

...
... mk+1,k

. . . . . . ...
...

...
... 0

. . . . . . ...
...

...
...

... . . . . . . 0

0 · · · · · · · · · 0 mn,k 0 · · · 0 1



.

Therefore, the product of the inverse of these elementary matrices is our desired lower
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triangular matrix L, that is:

L =


1 0 · · · 0

m21 1
. . . ...

... . . . . . . 0

mn1 · · · mn,n−1 1

 .

4.2.1 Permutation matrices

From a practical standpoint, the LU factorization presented is useful only when row inter-

changes are not required to control the round-off error that results from the used finite-

digit arithmetic . Luckily, many systems actually can be solved without this important

step, but we must consider the modifications that must be made when row interchanges

are required.

An n × n permutation matrix P = [pij] is a matrix obtained by rearranging the rows

of In, the identity matrix. This gives a matrix with precisely one nonzero entry in each

column and row (always being a 1). As an illustration, the matrix P presented below is

a 3 × 3 permutation matrix.

P =


1 0 0

0 0 1

0 1 0

 .
If a generic 3 × 3 matrix A is multiplied on the left by P , we observe the effect of

interchanging the second and third rows of A. If the multiplication was made on the right,

the effect observed would be a column interchange in the matrix A.

PA =


1 0 0

0 0 1

0 1 0



a 11 a 12 a 13

a 21 a 22 a 23

a 31 a 32 a 33

 =


a 11 a 12 a 13

a 31 a 32 a 33

a 21 a 22 a 23

 .
Two properties of permutations matrices are related to Gaussian elimination. The

first, already described, shows that if we have a permutation of the integers 1, ..., n such

as k1, ..., kn, the permutation matrix is defined as follows. The second is that P is invertible

and P−1 = P T
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pij =

1, if j = ki

0, otherwise

The product PA permutes the rows of A

PA =


ak1 1 ak1 2 · · · ak1n

ak2 1 ak2 2 · · · ak2n
...

... . . . ...

akn 1 akn 2 · · · aknn

 .

This way, if we knew the row interchanges required to solve the linear system by

Gaussian Elimination, then we could arrange the original equations in such a way that

no row interchanges would be needed since all the pivots were always well placed at

each step. Hence, there is a rearrangement of the equations in the system that permits

Gaussian elimination to proceed without row interchanges. That is, for any non-singular

matrix A, a permutation matrix P exists for which the system PAx = Pb can be solved

without row interchanges and, as a consequence, this matrix PA can be factored into

PA = LU , where L is lower triangular and U is upper triangular.

Multiplying both sides of the equality by P−1 (or equivalently P T ) produces the

factorization

A = (P TL)U. (4.9)

Notice that the matrix U is still upper triangular, but P TL is no longer triangular

unless P = I.

Further details for the formulation presented in this section can be found in reference

[11].

4.3 Parallel LU factorization

Parallelism in current computing architectures is omnipresent. This includes not only sys-

tems such as laptops and supercomputers of higher performance in the world, ranked by
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top500 list [38], but also smartphones, watches and other small portable devices. In fact,

the scientific high performance computing community has faced drastic hardware changes

since the arising of multicore architectures, in such a way that the level of heterogeneity in

modern computing systems grows gradually with parallelism. In this context, CPUs mul-

ticore are usually combined with high performance accelerators such as graphic processing

units (GPUs) and coprocessors like Intel’s Xeon Phi. Extracting maximum performance

from these systems’ heterogeneity makes parallel programming of computational problems

extremely challenging. This occurs because of the disparity between systems with this

new architectures (many cores with reduced bandwidth and memory available per core)

and the software traditionally associated with scientific applications, such as numerical

libraries, upon which the High Performance Computing (HPC) community have relied

for their performance and accuracy for a long time. Moreover, considering the future of

research and development on parallel programming models, Ref. [13] observes that it is

essential to take notice of two aspects: possible projected changes in systems architectures

that will define environments on which HPC software will execute in the near future, and

the nature of applications that this software will have to serve eventually. For the first

case, it is possible to predict future architectures examining roadmaps of major hardware

vendors and the next generations of platforms of supercomputers being developed. For

the applications, it is reasonable to extract trends from the topics and subjects of study

that today are already considered of highest interest like big-data analytics, deep learning

etc.

As discussed, a traditional way of exploring parallelism without parallel program-

ming de facto is through the use of implementations of already parallelized HPC libraries.

Among them, linear algebra libraries and, in particular, DLA are of fundamental impor-

tance in a vast range of scientific and engineering applications. Thus, applications will

not perform well if these libraries do not perform well.

Generally, a efficient parallel algorithm will present two important characteristics, as

discussed in Ref.[12]:

1. Fine granularity:

Cores are associated with relatively small local memories. This mean that operations

are splitted into tasks that cover small portions of data so that bus traffic is reduced

as data locality is improved.

2. Asynchronicity:
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Synchronization points in a parallel execution severely affects the efficiency of an

algorithm as the degree of thread level parallelism (TLP) grows and granularity

becomes smaller. On the other hand, the use of asynchronous execution usually

hides the latency of access to memory.

The high performance dense linear algebra software libraries (i.e, LAPACK [2]) pro-

vides a wide set of linear algebra operations aiming to accomplish high performance in

systems equipped with memory hierarchies. The algorithms implemented leverage the

idea of blocking in order to limit the amount of bus traffic, making it possible for data

to be reused. In general, LAPACK’s factorization algorithms can be depicted as the

repetition of two fundamental steps:

1. Panel factorization: depending of the DLA operation being performed, a number

of transformations are computed for a small submatrix of the original problem (the

panel). These transformations are typically computed by means of Level-2 BLAS

operations (matrix-vector operations). They can be accumulated, although the way

this accumulation occurs depends entirely on the operation performed.

2. Trailing submatrix update: all the transformations that have been accumulated

in the panel factorization are to be applied to the rest of the matrix (the trailing

submatrix). This update can be computed by means of Level-3 BLAS operations

(matrix-matrix).

As follows, we present briefly the fundamental strategy behind the parallel LU fac-

torization.

The algorithm has as input the coefficient square matrix A of order n and aims to

compute a lower-triangular matrix L and an upper-triangular U so that A = LU . Matrix

A is divided in submatrices A00, A01, A10, A11 as illustrated in Figure 4.1. We assume

that the panel is of order b so that A00 is of order bxb, A01 is of order bx(n− b), A10 is of

order (n− b)xb and A11 is of order (n− b)x(n− b).

To make visualization clearer, we also divide matrices L and U , keeping in mind their

properties: since L is lower-triangular and U is upper-triangular, all the elements above

or below the diagonal are zeros (for U or L, respectively). This results that L00 and L11

are also lower-triangular and L01 is composed entirely of zero entries. Analogously, U00

and U11 are upper-triangular while U10 is zeroed. Since A = LU , we have that:
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Figure 4.1: Parallel LU factorization

I) A00 = L00 ∗ U00 ;

II) A01 = L00 ∗ U01 ;

III) A10 = L10 ∗ U00 ;

IV) A11 = L10 ∗ U01 + L11 ∗ U11 .

I) In the first step of the algorithm, the panel factorization is performed at the A00

submatrix. Since this factorization is a difficult-to-parallelize task, a LU factorization is

performed sequentially at this small portion of the original coefficients matrix A. As a

result, L00 and U00 are computed.
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2) Since L00 is computed in the first step, it is possible to compute U01 by a simple

backward substitution for each column. Usually, sub-matrix U01 is divided in bxb matrices

so the BLAS routine “trsm” can be performed as illustrated by Figure 4.2.

3) Analogously, L10 can also be computed by application of the “trsm” routine because

U00 were also computed in the first step and it is a lower triangular matrix.

Figure 4.2: Illustrations of computation of submatrices U01 and L10.
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Steps 2 and 3 can occur independently, since there is no data dependencies between

them. This means they are well suited to occur in parallel. Moreover, since matrices U01

and L10 were divided in bxb blocks, it is also possible to execute computation for each

block independently in parallel. Figure 4.2 illustrates this procedure.

4) At this step, sub-matrix A11 needs to be update to get A11
′
so that:

A11
′
= L11 ∗ U11, hence

A11
′
= A11 − L10 ∗ U01.

This update can be made by a simple matrix multiplication computed in previous

steps. Since L10 ∗U01 is of order (n− b)x(n− b), this multiplication costs O((n− b)3) and

it is the bottleneck of the algorithm. Still, as it is basically a Level-3 BLAS operation, it

has very efficient parallel implementations that can be used to optimize execution time

considerably.

After matrix A11
′
is updated, the algorithm performs the same steps in the remainder

matrix recursively until it reaches a bxb matrix A
(k)
11 . At this point, a sequential LU

factorization is applied and the whole matrix is factorized.

Figure 4.3: Scheme that illustrates how matrix A is factorized in the parallel LU algorithm.
Darker areas of matrix A means factorization has been already performed.

It is yet worth mentioning that it is not entirely necessary to allocate two matrices to
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store L and U coefficients. It can be written over the coefficients of the original matrix A

as it is being factorized. Elements above the diagonal will refer to matrix U (including the

elements of the diagonal), while elements below will refer to matrix L. It is only necessary

to allocate another matrix if some technique of pivoting is to be applied. Even for those

cases, it is not usually necessary to allocate another matrix of order nxn.

It is clear that in the algorithm described above, steps 2, 3 and 4 correspond to the

“trailing submatrix update” mentioned earlier in this section. This two-phase division

is typical of LAPACK’s block algorithms. It consists in organizing the linear algebra

algorithm in such a way that only a small portion of the total computation is accomplished

at the “panel phase”, while most part is performed in the “update phase”. Doing so, the

panel factorization is identified as a sequential task that represents a small fractions of

the total number of flops: only O(n2) are in the “panel” while the total computation sums

up to O(n3) flops. This first step is referred as a sequence of operations that can not

be easily parallelized and, as an example, for the LU factorization, this applies to the

“getf2” BLAS routine. As discussed in Ref. [6], parallelism in factorization algorithms are

to be explored in Level-3 BLAs routines that are generally only present in the “trailing

submatrix update” phase. As long as the majority of flops computed are in this phase,

it is reasonable to expect that in a well made implementation the global performance of

the algorithm is similar to the performance obtained by the Level-3 BLAS routine used

in the update phase. This methodology implies the “fork-join” parallelism model in which

the execution flow of factorization represents a sequence of sequential operations (panel

factorizations) interleaved by parallel update ones. It is important to notice that each

factorization algorithm and implementation may vary, modifying the pattern shown in

Figure 4.3.

However, LAPACK have shown some limitations on multicore heterogeneous systems.

The performance relies on the use of standard Level-3 Basic Linear Algebra Subprograms

(BLAS), since these are the kind of operation that LAPACK can parallelize. This fol-

lows to the expensive “fork-join” paradigm, and have made prudent to revisit or redesign

existing numerical linear algorithms to be better suited for such hardware.

The PLASMA project (Parallel Linear Algebra for Scalable Multicore Architectures)

[20] uses tiled algorithms in order to obtain high performance. These algorithms can be

represented as Directed Acyclic Graphs (DAGs) where nodes are tasks of fine granularity

while edges represents data dependencies between the tasks. Thus, a runtime environment

is used to schedule efficiently all the tasks in multicore platforms. This schedule provides
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very efficient algorithms capable of executing tasks of fine granularity asynchronously,

therefore removing the expensive synchronizations associated with the “fork-join” between

large tasks (which typically happens when BLAS is executed in parallel). However, this

asynchronous scheduling have presented overhead of execution in tasks of fine granularity

in many multicore architectures like current GPUs and Xeon Phi coprocessors.

A very popular alternative considered the state-of-the-art in terms of performance are

the hybrid algorithms. Typically, in this approach, small or memory bounds tasks in the

critical path of the algorithm are allocated to the CPU, while large data-parallel tasks

are assigned to the GPU. This is the case for the hybrid algorithms implemented by the

MAGMA[37] library. It makes use of high level tasks of coarse granularity that are split

hierarchically into fine grain data-parallel subtasks through parallel BLAS implementa-

tions.

Although usually working fine, the strategy of scheduling the difficult-to-parallelize

tasks on CPUs can present drawbacks if the balance between processors and accelerators

is not well made, as pointed out in Ref. [19]. As an example, slow CPUs, even after tun-

ing, can make a fast GPU idle. This effect can be even aggravated if the system presents

a slow CPU-to-GPU communication bandwidth. Moreover, from an energy perspective,

the hybrid approach consumes power in both hardwares (processor and accelerator) since

they are operating simultaneously. Typically, the power efficiency of CPUs (measured in

flops/watt) is lower than GPUs, so it is natural to expect hybrid algorithms to be less

efficient in this particular context. On the other hand, implementations that use only the

GPU during computation leave the CPU in idle state, where energy consumption is lower.

This is one of the factors that have motivated the development of DLA algorithms that

uses only the accelerator to perform the computation. Additionally, GPU-only codes are

appealing because they remove the expensive cost related to the CPU-to-GPU communi-

cation and the associated challenge of tuning slow bandwidths. In fact, it is observed that

in the most modern GPUs, GPU-only codes can achieve higher performance than the hy-

brid MAGMA algorithms when the difficult-to-parallelize CPU tasks and communications

cannot be overlapped entirely by the GPU computations.

Development of GPU-only dense linear algebra algorithms have been avoided in the

past because of two main reasons: i) the implementation and optimization of difficult-to-

parallelize computations could be avoided through the use of hybrid algorithm and; ii) as

it was evident at that time, hybrid algorithms were usually faster. However, at least at

first, it was necessary to develop algorithms of this type to cover cases when the size of the
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problem was so small that the total computation at the GPU was not enough to overlap

the expensive CPU-to-GPU communication. The evolution of those algorithms dedicated

entirely to GPUs made it possible to envisage efficient implementations for even larger

problems.

Therefore, as indicated in the following chapter, we opt to use a GPU-only implemen-

tation of the LU factorization.

4.4 "Null Guess" optimization

The simple assumption that the initial guess for the reflected displacement field u+
1 is

null, makes it possible to save operations and resources at the third stage (Algorithm

5). Computationally, this implies that u+
1 is a 3-by-n complex array completely filled

with zeroes entries. In that manner, as calculations related with the fields variables of

displacement and traction at the superior and inferior half-spaces involve multiplications

of square matrix by vector (both of order 3) at each point of the domain, and as we

have assumed that this array represents for each component a 3−dimensional vector that

has only zero entries, we conclude that, in fact, the program might be doing a lot of

unnecessary arithmetic operations, once it is known beforehand that the results are all

going to be zero. Since our minimization method described in chapter 2 does not specify

a initial guess for u+
1 , it is valid to assume it is null.

Within the assembly of the Jacobian matrix, for the computation of each column, a

small perturbation ε is applied to the real or imaginary part of only one coordinate of one

of the n components of ūguess. For any other component of this array, we assume that the

zero value remains. Therefore, for each column being assembled only one matrix-vector

multiplication is required, which is located at the component upon which the perturbation

was applied. This way, the traction at the upper half-space (t̄+) and the displacement at

the lower half-space (ū−), both in the kx domain, can be computed doing (6n)× (n− 1)

algebraic matrix-vector operations less than in the original implementation. Figure 4.4

illustrates the computation being spared: perturbation ε is being applied at component

j = m. This means that for all other components (j 6= m) the computation of t̄+1 is

unnecessary.
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Figure 4.4: Illustration of the "Null Guess" optimization.

With that in mind, a small change has to be made at the previous implementation, in

such a way that within the loop that assembles J only in the particular point where the

perturbation ε is applied, the computation of the mentioned traction is performed. This

requires a minor adaptation in Algorithm 4 when it is called from Algorithm 5 (Assembly

of the Jacobian matrix) to prevent unnecessary calculations.
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Algorithm 7: Adaptation of Algorithm 4 proposed for optimization.
input : 3-by-n complex arrays ū+

2 , ūguess and t̄+, 3-by-3-by-n matrix K,
3-by-3-by-n complex matrices Z1 and Z2, integer point.

output: 6n real array rguess
1 t̄guess ← (−iω) ∗ Z+

1 (point) ∗ ūguess(point) ;
2 t̄+(point)← t̄+(point) + t̄guess ;
3 for j=1 to n do
4 ū− = (Z−

2 )−1 ∗ (−1ω) ∗ t̄+ ;

5 for i=1 to 3 do
6 t+(i)← IFFT (t̄+(i)) ;
7 u+

2 (i)← IFFT (ū+
2 (i)) ;

8 u−(i)← IFFT (ū−(i)) ;

9 for j = 1 to n do
10 r(j)← K(j) ∗ (u+(j)− u−(j))− t+(j) ;

11 cont1← 0 ;
12 for j=1 to n do
13 rguess(cont1)← REAL(r(1, j)) ;
14 rguess(cont1 + 1)← REAL(r(2, j)) ;
15 rguess(cont1 + 2)← REAL(r(3, j)) ;
16 rguess(cont1 + 3)← IMAG(r(1, j)) ;
17 rguess(cont1 + 4)← IMAG(r(2, j)) ;
18 rguess(cont1 + 5)← IMAG(r(3, j)) ;
19 cont1← cont1 + 6 ;

20 return rguess ;

Simulations with reduced domains can present considerable gains in terms of execution

time for the third stage of the algorithm with the application of this simple proposed

optimization. In the Chapter 5 we will show that, in the context of a relatively small

number of minimization parameters, improvements at the third stage can be considered

meaningful for the whole method since its relevance is bigger for these cases.



Chapter 5

Results and discussion

In this chapter, we compare all the implementations developed in the context of the present

work. They are: i) a MATLAB [30] implementation proposed and implemented in Ref.

[27]; ii) a C-language implementation, where the linear system bottleneck is solved with

the serial implementation of LU factorization given in LAPACK library collection; iii) an

implementation that solves the same linear system with the GPU-only LU factorization

using the cuSOLVER library [32] included in NVIDIA’s CUDA Toolkit. Simulations

have been performed using two distinct systems with characteristics of CPUs and GPUs

described in Table 5.1. System 1 has Ubuntu 17.04 as operational system and is composed

of a processor Intel Core i7-7500U (2.70GHz) with 4 cores and 8 GB of memory RAM

and a GeForce 940MX (Maxwell architecture) with 4 GB of memory RAM and 384

CUDA cores as GPU. System 2 operates in Ubuntu 16.04, with processors Intel Xeon

E5-2698 (2.20 GHz) in a cluster with 80 cores and distributed 528 GB of memory RAM. In

this system, only the cuSOLVER implementation was performed in a Tesla P100-SXM2

(Pascal architecture) with 16 GB of memory RAM and 3584 cuda cores. In a nutshell:

implementation i), ii), and iii) were performed in an ordinary personal computer (System

1) while implementation iii) was performed also in the GPU cluster (System 2). As

presented later, for each simulation, we considered a different defect.

Table 5.1: Characteristics of system environments used in simulations.
CPU HOST RAM GPU GPU RAM

System CPU cores memory GPU cores memory
1 Core i7-7500U 4 8 GB GeForce 384 4 GB

(2.70GHz) 940MX
2 Intel Xeon E5-2698 80 528 GB Tesla 3584 16 GB

(2.20 GHz) P100-SXM2

As a validation, the implementations were tested for the scenario with no defect at

the interface. For this particular case, the interface presents homogeneous stiffness along
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its whole extension and the problem can be solved analytically. The comparison between

analytic and numeric results have validated the computational implementations. In addi-

tion, we compared the obtained numerical results with the numerical results obtained by

the method introduced in Ref [26]. Furthermore, it is always possible to check if the ob-

tained numerical results satisfy all the boundary conditions (zeroing the residual vector),

confirming that it worked properly.

It is important to notice that for all simulations presented here it was assumed plain

strain state (every field is constant in the y direction and ∂
∂y

= 0). It means that, for

example, a simulation using a discretization of n points at the interface (and consequently

n x-wavenumber components) will lead to 4n minimization parameters (nx2x2). This

results in a Jacobian square matrix of order 4n with (4n)2 elements.

In all the simulations we have assumed the ultrasonic inspection of two bonded half-

spaces. The upper half-space is made of copper and the lower half-space is made of

aluminum. Additionally, there is an epoxy layer with nominal thickness of 200 µm between

these half-spaces that acts as the adhesive layer. The considered structure is illustrated

in Figure 5.1. Table 5.2 shows the mechanical properties of the constituent materials.

Figure 5.1: Material structure considered in the numerical simulations.
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Table 5.2: Mechanical properties of layers represented in the model.
Density P-wave speed S-wave speed

Material (kg/m3) (m/s) (m/s)

Aluminum 2700 6320 3130
Copper 8930 4660 2160
Epoxy 1200 1480 1030

The incident field is a 100 kHz time harmonic P-wave with an angle of incidence

of 60°. These values were selected based on the strategy introduced in Ref. [26], in

order to enhance the scattering effect. For this inspecting frequency, the whole epoxy

layer can be approximated by an equivalent interfacial stiffness, as discussed in the fourth

paragraph of Section 2.2 (Adhesion Interfaces). Ref. [35] shows how to obtain the spring

matrix corresponding to the QSA from the mechanical properties and geometry of the

considered interfacial adhesive layer. For the present case, when the interface is intact, it

is:

K =


0.6389 0 0

0 0.6389 0

0 0 2.7685

× 1013 Pa/m.

As discussed earlier, to simulate locally degraded interfaces, we have assumed that matrix

K depends upon the position at the interface. More specifically, in defective regions, we

reduced the original values in the diagonal of K.

We recall here that, although we have considered the same structure for all simulations,

our algorithm is suitable for all sorts of materials, frequencies, angles of incidence and

defect geometries.

5.1 First case

Here, we assumed that the interface is defective with the zz component of K being

characterized by a Gaussian with beam waist about 40 cm large with minimum value

equal to 10% of the original interfacial stiffness. I.e., only 10% of the original stiffness

remains at the peak of the defect. For the present simulation we have represented a portion

of the structure extending about 2.14 m, corresponding to x ∼= −1.07 m to x ∼= 1.07 m,

as shown in Figure 5.2.
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Figure 5.2: Interfacial stiffness considered in example 1.

In order to perform the DFT and analyze the implementations performance, we dis-

cretized the interface with 400, 1000, 2500 and 5000 points, dividing our 2.14m portion ac-

cordingly. Therefore, for the 400-points simulation, ∆x ∼= 0.0054m. In terms of the wave

number harmonic spectrum, it corresponds to kxmin ∼= −583.84m−1 , kxmax ∼= 580.92m−1

and ∆kx ∼= 2.92m−1. We recall that we work in the plane strain state. In that sense,

400 wave number components leads to 1600 minimizations parameters and a Jacobian

matrix with 2560000 elements (1600 x 1600). Table 5.3 condenses this information for all

performed simulations.

Table 5.3: Numerical information of simulations for example 1.
Points xmin(m) xmax(m) ∆x(m) kxmin(m−1) kxmax(m

−1) ∆kx(m
−1)

400 -1.0762 1.0708 0.0054 -583.8410 580.9218 2.9192
1000 -1.0762 1.0708 0.0022 -1459.6024 1456.6832 2.9192
2500 -1.0762 1.0708 0.0008 -3649.0062 3646.0870 2.9192
5000 -1.0762 1.0708 0.0004 -7298.0124 7295.0932 2.9192

Minimization Elements in the
Points parameters Jacobian matrix (×106)
400 1600 2.56
1000 4000 16.0
2500 10000 100.0
5000 20000 400.0

For each simulation, the resulting spectrum of the scattered displacement field in the

z direction is plotted in Figure 5.3. Table 5.4 shows the corresponding execution time.
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Figure 5.3: The spectrum of the scattered displacement field in the z direction for sim-
mulations of case 1.
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Table 5.4: Execution time of simulations for example 1 in different implementations.
MATLAB LAPACK cuSOLVER cuSOLVER

Points (s) (s) *PC (s) *DGX (s)
400 10,2829 1,1575 0,7336 0,9986
1000 59,2131 12,9763 4,0165 2,4446
2500 465,8981 208,3537 39,0873 12,5161
5000 2444,8990 1757,2441 268,2733 51,2595

The plots presented in Figure 5.3 as well as Table 5.4 deserve some comments. First,

notice that the resulting spectrum illustrates the broadening effect associated with the

scattering of the incident field by the nonuniform interface. More specifically, the ob-

tained scattered reflected field spectrum is broader than the incident field spectrum that

is composed by only one kx component (an incident plane wave). This broadening effect

becomes harder to visualize as the number of points (number of considered kx compo-

nents) increases, but it is very clear in Figures 5.3(a) & (b). Second, for this particular

example, it is obvious that we have considered much more components in the kx spectrum

than it is necessary (since there are only a few components that have significant ampli-

tudes). It means that we could have performed the same simulation with much lesser

points (a coarser discretization) and even then we would have valid results. However,

this may be not the case where other scenarios are considered, as for example the case

of layered structures (see, e.g., Ref. [27]), or when either higher frequencies or sharper

defects are considered, as discussed at the end of Section 2.3. For these scenarios, a wider

range of relevant kx components are to be expected in the spectrum. This is partially seen

in the next presented examples, where there is more than one mode (spike) present in the

scattered reflected spectrum. As we intend to extend the present work to these scenarios

too, it makes sense to work here with a large number of kx components and, therefore, a

large number of minimization parameters.

Second, as discussed in Chapter 1, in Ref. [28] the authors solved the related inverse

problem of recovering the stiffness distribution at an internal interface of layered composite

heuristically. In doing so, for each inverse problem they had to solve hundreds of times the

direct problem (the current scattering problem), each direct problem corresponding to a

different stiffness distribution. In that context, the results shown in Table 5.4 indicate that

for the simulation with a x-axis discretization of 1000 points (a typical simulation size),

our proposed implementation using cuSOLVER took around 2,44 seconds to be executed

in system 2. In comparison with the MATLAB implementation that took around 59,21

seconds to execute, our new implementation has improved performance by a factor of
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around 25 times. As it will be discussed later in Chapter 6, this opens the possibility for

the inverse problem to be solved in real time. Actually, as our discretization becomes finer,

and, therefore, more points of the interface are considered, the bigger is the improvement,

including here the improvement over the implementation using LAPACK that is around

35 times slower in simulations with a discretization of 5000 points.

5.2 Second case

For the second case, we assumed that the interface is defective with the zz components of

K being characterized as a Gaussian with beam waist about 20 cm large with minimum

value equal to 10% of the original interfacial stiffness. I.e, only 10% of the original stiffness

remains at the peak of the defect. Differently from the previous case, for the present

simulation we adopted a fixed value for ∆x of 0.002 m. In that sense, an increase in the

number of discretization points corresponds to an increase of the represented interface

length (that corresponds, therefore, to a decrease in ∆kx). Figure 5.4 illustrates the

stiffness distribution for all simulations performed in this example.

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

m

0

0.5

1

1.5

2

2.5

3

P
a

/m

10
13 400-points Kzz

(a)

-1.5 -1 -0.5 0 0.5 1 1.5

m

0

0.5

1

1.5

2

2.5

3

P
a

/m

10
13 1200-points Kzz

(b)

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

m

0

0.5

1

1.5

2

2.5

3

P
a

/m

10
13 2500-points Kzz

(c)

-5 -4 -3 -2 -1 0 1 2 3 4 5

m

0

0.5

1

1.5

2

2.5

3

P
a

/m

10
13 5000-points Kzz

(d)

Figure 5.4: Interfacial stiffness considered in example 2.

In order to perform the DFT and analyze the performance of our implementation,

we considered discretizations with 400, 1200, 2500 and 5000 points. As an example, for

the 1200-point simulation, a portion of about 2, 4m was considered. In terms of the
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wave number harmonic spectrum, it corresponded to kxmin ∼= −1570.79m−1 , kxmax ∼=
1568.18m−1 and ∆kx ∼= 0.42m−1. We recall that we work in the plane strain state.

Therefore, 1200 kx components leads to 4800 minimization parameters and a Jacobian

matrix with 23040000 elements (4800 x 4800). Table 5.5 condenses this information for

all performed simulations.

Table 5.5: Numerical information of simulations for example 2.
Points xminm xmaxm ∆xm kxminm

−1 kxmaxm
−1 ∆kxm

−1

400 -0.400 0.3980 0.0020 -1570.7963 1568.1783 1.2500
1200 -1.200 1.1980 0.0020 -1570.7963 1568.1788 0.4167
2500 -2.5000 2.4980 0.0020 -1570.7963 1568.1788 0.2000
5000 -5.0000 4.9980 0.0020 -1570.7963 1568.1788 0.0999

Minimization Elements in the
Points parameters Jacobian matrix (×106)
400 1600 2.56
1200 4800 23.04
2500 10000 100.0
5000 20000 400.0

For each simulation, the resulting spectrum of the scattered displacement field in the

z direction is plotted in Figure 5.5. Table 5.6 shows the corresponding execution time.
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Figure 5.5: The spectrum of the scattered displacement field in the z direction in the
upper half-space for simulations of example 2.
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Table 5.6: Execution time of simulations for example 2 in different implementations.
MATLAB LAPACK cuSOLVER cuSOLVER

Points (s) (s) *PC (s) *DGX (s)
400 9,2754 0,9821 0,8206 1,0809
1200 88,8934 22.4578 5.8723 3.5213
2500 467,0685 207,5607 39,0850 12,5161
5000 2446,4900 1757,9672 268,2178 51,2595

Regarding the resulting spectrum of the scattered displacement field plotted in Figure

5.5, the same considerations made in the previous example still applies. In addition, it is

clear in this example that there is more than one mode being excited by the interaction

between the inspecting field and the defective interface (the extra two spikes present

in the spectrum). Moreover, significant amplitude for negative kx values evidenced the

backscattering phenomenon characterized by reflected waves propagating in the negative

x-direction.

Results shown in Table 5.6 indicate that for the simulation with x-axis discretization

of 1200 points (a typical simulation size), our proposed implementation using cuSOLVER

took around 3.52 seconds to be executed in system 2. In comparison with the MATLAB

implementation that took around 88.89 seconds to execute, our new implementation has

improved performance by a factor of around 25 times, that is similar to the previous

example. As the discretization becomes finer, and, therefore, more points of the interface

are considered, the bigger is the improvement.

5.3 Third case

Here, we assumed that the interface is defective with the zz components of the stiffness

matrix K being characterized by a Gaussian with beam waist about only 2 cm large

with minimum value equal to 10% of the original interface stiffness. I.e, only 10% of

the original stiffness remains at the peak of the defect. For the present simulation we

have represented a portion of the structure extending about 2.14 m, corresponding to

x ∼= −1.07m to x ∼= 1.07m, as shown in Figure 5.6.
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Figure 5.6: Interfacial stiffness considered in example 3.

In order to perform the DFT and analyze the implementation performance, we consid-

ered samples of 400, 1000, 2500 and 5000 points, dividing our 2.14 m portion accordingly.

Since we choose to repeat the discretizations adopted in the first case, Table 5.3 still

condenses the information of the execution time for the present simulations.

For each simulation, the resulting spectrum of the scattered displacement field in the

z-direction is plotted in Figure 5.7. Table 5.7 shows the corresponding execution time.
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Figure 5.7: The spectrum of the scattered displacement field in the z direction in the
upper half-space for simmulations of example 3.
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Table 5.7: Execution time of simulations for example 3 in different implementations.
MATLAB LAPACK cuSOLVER cuSOLVER

Points (s) (s) *PC (s) *DGX (s)
400 9,0128 0,9846 0,7660 1,0820
1000 59,1961 12,9831 3,9078 2,4209
2500 466,3943 220,6346 39,0041 12,9574
5000 2469,5021 1758,6686 268,4357 54,5730

The same considerations made in the two final paragraphs of Section 5.1 and in the

penultimate paragraph of Section 5.2 are also valid for the present case, i.e., it is possible

to visualize in Figure 5.7 the broadening associated to the scattering effect, 3 different

excited modes, and the backscattering phenomenon.

Results shown in Table 5.7 show that for the simulation with x-axis discretization of

1000 points (a typical simulation size), our proposed implementation using cuSOLVER

took around 2.42 seconds to be executed in system 2. In comparison with the MATLAB

implementation that took around 59.19 seconds to execute, our new implementation has,

again, improved the performance by a factor of around 25 times. As before, as the

discretization becomes finer, and, therefore, more points of the interface are considered,

the bigger is the improvement.

5.4 Forth case

For the forth case, we assume that the interface is defective with the zz components of

K reduced to 10% of its original value in a portion of the bond extending about 30 cm.

I.e, for this simulation we have represented a square defect in a portion of the structure

extending about 2.14 m, corresponding to x ∼= −1.07m to x ∼= 1.07m, as shown in Figure

5.8.
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Figure 5.8: Interfacial stiffness considered in example 4.

In order to perform the DFT and analyze our implementation performance, we dis-

cretized the interface with 400, 1000, 2500 and 5000 points, dividing our 2.14m portion

accordingly. Since we choose to repeat the discretization adopted in the first case, Table

5.3 condenses this information for all performed simulations.

For each simulation, the resulting spectrum of the scattered displacement field in the

z direction is plotted in Figure 5.9. Table 5.8 shows the corresponding execution time.
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Figure 5.9: The spectrum of the scattered displacement field in the z direction in the
upper half-space for simmulations of example 4.
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Table 5.8: Execution time of simulations for example 4 in different implementations.
MATLAB LAPACK cuSOLVER cuSOLVER

Points (s) (s) *PC (s) *DGX (s)
400 9,3042 1,1515 0,7811 1,0789
1000 59,9050 14,7500 3,8657 2,4694
2500 466,7717 233,9072 39,0930 13,6291
5000 2431,6890 1815,6481 268,3206 52,7353

The same considerations made in the two final paragraphs of Sections 5.1 and in the

penultimate paragraph of 5.2 are also valid for the present case, i.e., it is possible to visu-

alize in Figure 5.9 the broadening effect, 3 different excited modes and the backscattering

phenomena in the spectrum.

Results shown in Table 5.7 indicate that for the simulation with x-axis discretization

of 1000 points (a typical simulation size), our proposed implementation using cuSOLVER

took around 2.46 seconds to be executed in system 2. In comparison with the MATLAB

implementation that took around 59.90 seconds to execute, our new implementation has,

again, improved performance by a factor of around 25 times. As the discretization be-

comes finer, and, therefore, more points of the interface are considered, the bigger is the

improvement.

5.5 Fifth case

For the fifth and last case, we assume that the interface is defective with the zz components

of the K reduced to 10% of its original value in a portion of the bond extending about 5

cm. For the present simulation, it was once again adopted a fixed value for ∆x of 0.002

m. As discussed in the second case, this augment in the discretization reflects in a larger

portion of the structure being represented. Figure 5.10 illustrates the stiffness distribution

for all performed simulations.
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Figure 5.10: Interfacial stiffness considered in example 5.

In order to perform the DFT and analyze the performance of our implementation, we

considered discretizations with 400, 1200, 2500 and 5000 points. Since we choose to repeat

the discretizations adopted for the second case, Table 5.5 condenses this information for

all performed simulations.

For each simulation, the resulting spectrum of the scattered displacement field in the

z direction is plotted in Figure 5.11. Table 5.9 shows the corresponding execution time.
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Figure 5.11: The spectrum of the scattered displacement field in the z direction in the
upper half-space for simmulations of example 5.
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Table 5.9: Execution time of simulations for example 5 in different implementations.
MATLAB LAPACK cuSOLVER cuSOLVER

Points (s) (s) *PC (s) *DGX (s)
400 8,9944 1,1617 0,8085 1,1078
1200 90,8279 24.4255 6.0201 3.6142
2500 466,3943 220,6346 39,0041 12,9574
5000 2469,5021 1758,6686 268,4357 54,5730

The same considerations made in the two final paragraphs of Sections 5.1 and in the

penultimate paragraph of 5.2 are also valid for the present case, i.e., it is possible to visu-

alize in Figure 5.9 the broadening effect, 3 different excited modes and the backscattering

phenomena in the spectrum.

Results shown in Table 5.7 indicate that for the simulation with x-axis discretization

of 1200 points (a typical simulation size), our proposed implementation using cuSOLVER

took around 3.61 seconds to be executed in system 2. In comparison with the MATLAB

implementation that took around 90.83 seconds to execute, our new implementation has

improved performance by a factor of around 25 times. Actually, as the discretization

becomes finer, and, therefore, more points of the interface are considered, the bigger is

the improvement.

5.6 Profiling the GPU

In order to have a better view of how the GPU is behaving during the execution of

our implementation, especially during the stage identified as the bottleneck (when the

GPU is really called into action), we measured the time spent in each data transfer and

kernel execution. We could record a CUDA event before and after each transfer or kernel

execution, and use cudaEventElapsedTime(), but we can get the elapsed transfer time

without instrumenting the source code with CUDA events by using nvprof, a command-

line CUDA profiler included with the CUDA Toolkit. Moreover, later, we analyzed the

output data file with NVIDIA Visual Profiler, also included in CUDA Toolkit. This

is a very useful tool to optimize and tune CUDA codes with respect to the hardware

specificities.

We choose to run and present the profile of simulations with a discretization of 5000

points in System 2 since it was the example upon which we observed greater improvement

in performance. However, we recall here that, since our implementation uses a library
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provided by NVIDIA, we expect that much of the code implementation (including kernel

concurrent invocations and overlaps in execution) is already optimized and, therefore,

there is very little we could possibly do to obtain even more improvements.

Table 5.10 shows the total time spent with the three main actions while GPU is

active to perform the computation: i) transfer data from host (CPU) to device (GPU);

ii) execute kernels to perfom the computations; and iii) transfer the resulting data from

device (GPU) to host (CPU).

Table 5.10: . Duration of actions performed in GPU during a 5000-points simulation
Action Duration (s)
Memory copy (Host to Device) 0.3761
Memory copy (Device to Host) 0.24× 10−3

Kernel execution 1.8346

Results in Table 5.10 show that the amount of time spent during computation (1.83

seconds summing all 7542 kernel invocations) is about 5 times the amount spent during

data transfer (totalizing around 0.3761 seconds summing the time spent copying memory

from host to device and from device to host). In addition, the reason why most of the

time spent in data transferring applies only to "Host to Device" is because we are only

expected to transfer the large Jacobian matrix for computation purposes. We are not

interested in obtaining the resulting factorized matrix, only the solution vector. It means

that, for the simulation with a discretization of 5000 points, we do not need to transfer

3.2 GB of data back from the device to the host. This important economy saves a lot of

data traffic in the GPU. In comparison, the solution vector data sizes only 160 KB, so

this memory copy is performed much faster.

A very common strategy to optimize the performance of CUDA programs consists of

overlapping memory copy of data between the CPU and the GPU with kernel invocation

and execution, minimizing the time spent with memory traffic. However, it cannot be done

in our implementation, since we are not able to overlap any memory copy with a kernel

execution because the cuSOLVER library demands from the developer a pre-allocation

of all the data involved in computation before any function from its collection are called

from the code. More specifically, we need to transfer all the data related to the Jacobian

matrix and the residual column vector and guarantee that the device is synchronized

before calling the parallel LU solver. On the other hand, it would be interesting to use

more than one copy engine to overlap the transfer of the Jacobian matrix data from host

to device. The 3.2 GB data could be sent in multiple batches concurrently, possibly
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reducing considerably the time spent by our simulation. This approach could be applied

in future optimizations, but it is restricted to more robust GPUs since it would depend

entirely if the GPU available contains more than one "Host to Device" copy engine. Our

implementation could only use this strategy if executed in System 2 because the Tesla

100-SXM2 has 5 copy engines integrated, while the GeForce 940MX has only one.

During the computation phase, the cuSOLVER library is capable of invoking and ex-

ecute kernels concurrently. This is accomplished using two distinct CUDA streams that

run a lot of the time concurrently. This is done optimally, taking advantage of opera-

tions that do not have data dependency to occur at the same time. Table 5.11 specifies

the kernels executed during the factorization procedure highlighting their relevance (in

percentage) and the number of times each one of them is invoked.

Table 5.11: . Kernels
Kernel Invocations Relevance (%)
maxwell_dgemm_128x64_nn 214 40.8
getf2_domino 1250 38.7
laswp 2620 13.3
maxwell_dgemm_64x64_nn 910 4.0
trsm_l_mul32 1503 1.1
trsm_left 83 1.1
others (relevance < 1.0 %) 935 1.0

As discussed in Setion 4.3, the critical path in the parallel LU algorithm corresponds

to matrix multiplications in the "trailing submatrix update" phase. This fact is explicit

in Table 5.11, as the maxwell_dgemm kernels (generic matrix-matrix multiplication in

double precision BLAS routines) sum 44.8% relevance with 1124 invocations. The second

most important kernel with 38.7% relevance and 1250 invocations is the getf2 routine,

related to the "panel factorization" phase where small sub-portions of the original matrix

is factorized in lower and upper submatrices. Since this routine is a difficult-to-parallelize

task, it is executed sequentially in the GPU justifying its great relevance in the com-

putation time. The laswp kernel, third in the relevance hierarchy (13.3%) with 2620

invocations, is responsible for making entire line swaps of the matrix during the factoriza-

tion procedure. It is related to the pivoting technique used here to guarantee numerical

stability. The trsm kernels are also part of the trailing phase, as discussed in the previous

Chapter. It consists of the solution of small triangular sub systems generated during the

factorization and sums 1586 invocations, but as it can be performed very fast, the total

account is of only 2.2% relevance.
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5.7 Other Simulations

Our proposed implementation using the cuSOLVER’s GPU-only LU factorization imple-

mentation for solving the linear system was able to enhance performance significantly in

comparison with the previous MATLAB implementation, and the serial LAPACK im-

plementation tested (even though we assume that MATLAB has already well-optimized

methods). Results show that the larger the number of points considered in the interface,

larger is the absolute difference between performance of those implementations, although

the ratio of this improvement can decay because of hardware limitations (especially for

system 1). Moreover, executions in system 2 evidence that more modern and powerful

GPU architectures are capable of really impressive performance. For simulations with

a 5000-points discretization, the proposed method has obtained results executed around

46 times faster than the MATLAB implementation, 33 times faster than LAPACK serial

implementation and even 5 times faster than the cuSOLVER implementation executed in

system 1.

At this point, we should say that simulations with a very large number of points,

especially seen in Table 5.14, find a very useful application for cases with ultrasonic

waves of higher frequencies, where each adhesion interface is modeled individually and the

adhesive is treated as a layer. In Refs. [26], this problem was solved with the perturbation

method for discretizations with a number of points of order 104. In this case, the resulting

spectrum of the scattered displacement field presents many spikes (related to the modes

excited) in a phenomenon called leaky waves, as shown in Fig. 14 of Ref. [26].

Based on these discussions, we executed simulations with the implementations pro-

posed in this work increasing the number of points of the discretization from 400 points

to the supported memory limit. Here, we choose to add 400 points to the discretization

of the next simulation (400, 800, 1200 etc). Since the GPU in system 2 possess more

memory (16 GB), it was possible to execute simulations with up to 11200 points in this

system. Here, in order to avoid redundancy, we opt to omit the plotting of the displace-

ment field spectrum since it is very similar to the spectra presented in the five previous

cases. Yet, Tables 5.12, 5.13 and 5.14 shows the execution time of each simulation, high-

lighting the percentage computational time of each one of the four major stages of the

algorithm described in Chapter 3.
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Table 5.12: Execution time of implementation using LAPACK library to solve the linear
system in Stage 4.

LAPACK implementation in System 1
Stage 1 Stage 2 Stage 3 Stage 4 TOTAL

Points % % % % time (s)
400 0.1194 0.0284 21.5081 78.3461 0.9164
800 0.0321 0.0074 12.2072 87.7533 6.8417
1200 0.0149 0.0032 8.8671 91.1149 22.2231
1600 0.0045 0.0010 3.9616 96.0329 96.7085
2000 0.0053 0.0012 6.0311 93.9624 103.0902
2400 0.0035 0.0008 4.9998 94.9959 186.8859
2800 0.0025 0.0006 4.2570 95.7398 298.3853
3200 0.0019 0.0004 3.4916 96.5060 463.7924
3600 0.0015 0.0003 3.3875 96.6107 648.3082
4000 0.0012 0.0003 3.1075 96.8910 895.6887
4400 0.0011 0.0002 3.1378 96.8608 1149.3483
4800 0.0008 0.0002 2.6009 97.3981 1570.7922
5200 0.0007 0.0002 2.6133 97.3858 1990.3980

Table 5.13: Execution time of implementation using cuSOLVER library to solve the linear
system in Stage 4.

cuSOLVER implementation in System 1
Stage 1 Stage 2 Stage 3 Stage 4 TOTAL

Points % % % % time (s)
400 0.0926 0.0124 14.9692 84.9258 1.3324
800 0.1023 0.0148 36.0367 63.8462 2.3114
1200 0.0625 0.0088 33.8514 66.0772 5.8039
1600 0.0038 0.0055 30.9318 69.0589 12.3509
2000 0.0271 0.0042 28.2072 71.7616 21.6047
2400 0.0203 0.0030 24.9696 75.0071 35.1234
2800 0.0154 0.0024 23.6908 76.2914 53.4647
3200 0.0123 0.0018 21.0309 78.9549 77.3740
3600 0.0096 0.0015 21.6331 78.3558 108.5451
4000 0.0082 0.0013 19.3320 80.6586 143.1311
4400 0.0068 0.0011 19.1327 80.8594 187.8935
4800 0.0059 0.0009 17.2719 82.7213 238.6193
5200 0.0051 0.0008 17.2397 82.7544 299.6355
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Table 5.14: Execution time of implementation using cuSOLVER library to solve the linear
system in Stage 4.

cuSOLVER implementation in System 2
Stage 1 Stage 2 Stage 3 Stage 4 TOTAL

Points % % % % time (s)
400 0.2020 0.0271 23.7061 76.0648 0.9441
800 0.1650 0.0271 53.9266 45.8813 1.7837
1200 0.1433 0.0180 69.7378 30.1009 3.3464
1600 0.1178 0.0144 76.0201 23.8477 5.3763
2000 0.0913 0.0131 80.1465 19.7492 8.4394
2400 0.0829 0.0108 82.0016 17.9046 11.8280
2800 0.0642 0.0089 83.3254 16.6016 16.2091
3200 0.0575 0.0076 83.5864 16.3486 21.7117
3600 0.0486 0.0068 83.9558 15.9889 27.1398
4000 0.0471 0.0066 84.1242 15.8222 33.1237
4400 0.0432 0.0058 85.0645 14.8865 40.6586
4800 0.0360 0.0050 84.6189 15.3402 49.2561
5200 0.0336 0.0058 84.6426 15.3181 59.7855
5600 0.0326 0.0047 84.6169 15.3458 63.1926
6000 0.0220 0.0032 84.7944 15.1705 71.8268
6400 0.0271 0.0039 83.0346 16.9344 86.6642
6800 0.0244 0.0038 85.8317 14.5737 103.0061
7200 0.0250 0.0036 84.3876 15.5838 105.5999
7600 0.0216 0.0035 85.6401 14.3349 128.8178
8000 0.2118 0.0031 83.6238 16.1613 140.7402
8400 0.0213 0.0036 84.2743 15.7009 147.9404
8800 0.0190 0.0033 84.7451 15.2326 171.7939
9200 0.0174 0.0031 85.6389 14.3406 198.1747
9600 0.0173 0.0028 82.0421 17.9377 203.6605
10000 0.0174 0.0030 84.0997 15.8799 216.7895
10400 0.0160 0.0027 84.4404 15.5409 244.1156
10800 0.0161 0.0027 83.7137 16.2676 250.9999
11200 0.0147 0.0025 82.9171 17.0658 283.9708
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In system 1, it was not possible to execute simulations for much larger domains than

5200 points due to memory limitations. As the number of points grows, the Jacobian

matrix becomes very heavy in terms of data storage; in a 5000-points simulation in double

precision (8 bytes needed for each value stored), the square Jacobian matrix has 20000

columns and consequently takes up to 3.2 Gigabytes. This opens the door for future

implementations of the present method in distributed memory systems to overcome this

limitation.

Moreover, results presented in Table 5.14 show that the execution in system 2 was

capable of accelerate the solution of the linear system that characterizes stage 4 of the

algorithm in such a way that it is no longer the bottleneck of the problem. This occurs

for discretizations of 800 points or larger, and the bottleneck becomes the third stage,

i.e., the computation and assembly of the Jacobian matrix. This important result allows

future studies of new possible optimizations of this implementation focused on improving

the form this particular computation is done, including parallel approaches to perform

this assembly.

5.8 Final consideration

Since the main goal was achieved, we can only expect that this new proposed imple-

mentation may be incorporated to enhance performance of the algorithm that solves the

scattering problem in multilayered structures, first introduced in Ref. [27]. We expect the

obtained gain to be transferred since the solution of the scattering problem in multilay-

ered structures is based on a very similar formulation, and took around the same amount

of time to be solved if compared to the problem with two halfspaces and one defective

interface treated in the present work.

Moreover, the optimization achieved opens the door to its incorporation to the cor-

related inverse scattering problem, since it usually solves the direct problem hundred of

times. Additionally, as the stiffness distribution at the interface is to be found heuristically

by the Particle Swarm Optimization (in this method, each generation is compounded of

several individuals, where each individual is a possible solution for the inverse scattering

problem), we expect that each generation can be parallelized because the set of individuals

at each generation can be computed concurrently, i.e., with no data dependencies. In the

previous work (see, Ref. [28]), the solution was usually found in at least 6 generations,

with each of them compounded of 20 individuals. If we assume that each direct problem
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was solved in one minute, and the whole method was implemented serially, it took around

200 minutes to find the stiffness distribution. On the other hand, we estimate that our

new improved implementation to the direct problem (usually taking around 2,4 seconds)

added to this parallel approach application in the PSO itself could lead to the solution of

the inverse problem being computed in around 15 seconds. If we are to be pragmatic, we

could say that the solution previously taking a few hours can be potentially found in a

matter of seconds and, thus, be used in a real-time ultrasound inspection system.



Chapter 6

Conclusion and future works

In a previous work, an algorithm to numerically simulate the interaction between ultra-

sonic waves and localized adhesion defects in adhesive bonds was developed and imple-

mented. The implementation was developed using MATLAB and takes around a minute

to run, making it non feasible to solve the correlated inverse problem in real time. In

the present work, we developed a novel GPU parallel implementation, aiming to reduce

considerably the execution time. We then presented several simulations, comparing the

execution time of our new enhanced code with the previous implementations. Roughly

speaking, our new implementation has reduced the execution time by a factor of 25,

opening the possibility for solving the inverse problem in real time, providing future de-

velopments in the adhesive bond industrial ultrasonic inspecting systems.

Results and discussions presented in this work envisage a list of possible future works

related to the theme studied:

i) Applying the same strategy to enhance the performance of the direct scattering

problem in multilayered structures, i.e., structures with two or more adhesion interfaces;

ii) Incorporate the implementation proposed to enhance the performance of the cor-

related inverse scattering problem;

iii) Since results with modern GPU architectures indicates that the third stage of

implementation could be a new bottleneck, apply parallel computing strategies to obtain

better performance in the computation and assembly of the Jacobian matrix;

iv) Make use of methods present in libraries with hybrid CPU-GPU implementations

(notably MAGMA) to solve the linear system of stage 4. This approach could lead to

even better performance results than the ones obtained using cuSOLVER’s GPU-only

approach.
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APPENDIX A -- Impedance Tensors in Isotropic
Media

Consider an isotropic and homogenous elastic solid medium, subjected to small deforma-

tions. Supposing that we have two plane waves, given by the superposition of P, SV and

SH waves, propagating up and down the z direction and that we are solving the problem

in the time frequency domain. Assuming x=0, since we are only interested in propaga-

tion on the z-axis, we have that the displacement and traction vectors can be writen as

described in Chaper 2 as:

u = [ u x u y u z ]T , (A.1)

and

t = [ τ zx τ zy σ zz ]T . (A.2)

It is possible to decompose these vectors into up- and downgoing fields with the aid

of the invariant imbedding technique (Ref. [8]):

u = u 1 + u 2 (A.3)

and

t = t 1 + t 2. (A.4)

In addition, after transforming these vector to the kx domain, they can be rewritten in a

decomposition of matrices:

ūα(z) = AαΦα(z)Cα, α = 1, 2 (A.5)
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t̄α(z) = −iLαΦα(z)Cα, α = 1, 2 (A.6)

C1 and C2 are the amplitude vectors defined as:

C1 =


A

B

C

 (A.7)

and

C2 =


D

E

F

 (A.8)

where A is the amplitude of the upgoing P-wave, B is the amplitude of the upgoing SV-

wave, C is the amplitude of the upgoing SH-wave, D is the amplitude of the downgoing

P-wave, E is the amplitude of the downgoing SV-wave and F is the amplitude of the

downgoing SH-wave.

Operators A1, A2 are given by:

A1 =


sin(θ1) − cos(θ2) 0

0 0 1

cos(θ1) sin(θ2) 0

 (A.9)

and

A2 =


sin(θ4) cos(θ5) 0

0 0 1

− cos(θ4) sin(θ5) 0

 (A.10)

where θ1 is the propagation angle of the upgoing P-wave, θ2 is the propagation angle of

the upgoing SV-wave, θ4 is the propagation angle of the downgoing P-wave and θ5 is the

propagation angle of the downgoing SV-wave.

Operators L1, L2, Φ1(z) and Φ2(z) are defined as:
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L1 =

 −µ(sin(θ1)kz1 + cos θ1kx) µ(cos(θ2)kz2 − sin(θ2)kx) 0

0 0 −µkz3
−λ(cos(θ1)kz1 + sin(θ1)kx)− 2µ cos(θ1)kz1 λ(− sin(θ2)kz2 + cos(θ2)kx)− 2µ sin(θ2)kz2 0

 ,
(A.11)

L2 =

 µ(sin(θ4)kz4 + cos θ4kx) µ(cos(θ5)kz5 − sin(θ5)kx) 0

0 0 µkz6

−λ(cos(θ4)kz4 + sin(θ4)kx)− 2µ cos(θ4)kz4 λ(sin(θ5)kz5 − cos(θ5)kx) + 2µ sin(θ5)kz5 0

 ,
(A.12)

Φ1(z) =


eikz1z 0 0

0 eikz2z 0

0 0 eikz3z

 , (A.13)

Φ2(z) =


e−ikz4z 0 0

0 e−ikz5z 0

0 0 e−ikz6z

 , (A.14)

Where kx and kzβ are the projections of the wave number vector k in the x and z direction.

Additionally, λ and µ are, respectively, Lamé first and second parameters and are both constant

for isotropic media.

The traction vectors can also be written as a function of the matrix operators Z1, Z2.

t̄α(z) = −iωZαūα(z), α = 1, 2 (A.15)

These operators Z1 and Z2 are the impedance tensors, which relate the tractions to the

displacement fields and depend only on the material. Using Eq. A.15 in conjunction with Eqs.

A.5 and A.6, we can compute these operators as:

Zα =
1

ω
Lα.[Aα]−1, α = 1, 2 (A.16)


