
UNIVERSIDADE FEDERAL FLUMINENSE

JORGE REYNALDO MORENO RAMÍREZ

HEURISTIC AND EXACT APPROACHES FOR
SOME COMBINATORIAL OPTIMIZATION

PROBLEMS ON GRAPHS

NITERÓI

2019

UNIVERSIDADE FEDERAL FLUMINENSE

JORGE REYNALDO MORENO RAMÍREZ

HEURISTIC AND EXACT APPROACHES FOR
SOME COMBINATORIAL OPTIMIZATION

PROBLEMS ON GRAPHS

Proposal of a Ph.D. thesis submitted
to the Post-Graduation Program in
Computing of the Universidade Federal
Fluminense, as part of the require-
ments required to obtain a Ph.D. in
Computer Science. Concentration area:
ALGORITHMS AND OPTIMIZATION

Tutor:
SIMONE DE LIMA MARTINS

Co-tutor:
YURI ABITBOL DE MENEZES FROTA

NITERÓI

2019

Ficha catalográfica automática - SDC/BEE
Gerada com informações fornecidas pelo autor

Bibliotecária responsável: Fabiana Menezes Santos da Silva - CRB7/5274

R173h Ramírez, Jorge Reynaldo Moreno
 Heuristic and exact approaches for some combinatorial
optimization problems on graphs. / Jorge Reynaldo Moreno
Ramírez ; Simone De Lima Martins, orientadora ; Yuri Abitbol
de Menezes Frota, coorientador. Niterói, 2019.
 95 f. : il.

 Tese (doutorado)-Universidade Federal Fluminense, Niterói,
2019.

DOI: http://dx.doi.org/10.22409/PGC.2019.d.06335968762

 1. Heurística. 2. Otimização combinatória
(Computação). 3. Teoria dos grafos. 4. Programação linear.
5. Produção intelectual. I. De Lima Martins, Simone,
orientadora. II. Abitbol de Menezes Frota, Yuri, coorientador.
III. Universidade Federal Fluminense. Instituto de
Computação. IV. Título.

 CDD -

Dedicatoria: A minha familia.

Acknowledgment

Agradeço a minha família, por seu apoio incondicional.

Agradeço aos meus orientadores Simone Martins e Yuri Frota pela sua compreensão

e confiança.

Agradeço aos meus amigos por sempre me encorajarem.

Resumo

Nesta tese foram estudados os problemas The Minimum d-Branch Vertices, The Rainbow
Cycle Cover e The Rainbow Spanning Forest. O problema The Minimum d-Branch Ver-
tices possui aplicações no desenho de redes ópticas, visando a construção de uma rede
com o menor número de replicadores de sinal. Por sua vez, The Rainbow Cycle Cover
e The Rainbow Spanning Forest são usados no estudo de redes sociais e de transporte.
Esses dois últimos problemas pertencem à classe de problemas sobre grafos com cores nas
arestas e visam a obtenção de componentes em que cada cor aparece no máximo uma vez.
Diferentes estratégias foram desenvolvidas para resolver esses problemas, como a redução
do tamanho das instâncias baseada em propriedades dos grafos, o uso de estruturas de
dados eficientes e a implementação de heurísticas. Dentro das contribuições deste tra-
balho está a definição do conceito de co-classe, que foi usado para o pré-processamento
das instâncias, assim como para a definição de inequações válidas. Além disso, foram
implementados diferentes níveis de colaboração entre métodos heurísticos e exatos. Como
resultado, foram desenvolvidas novas formulações matemáticas e heurísticas que resul-
taram ser mais efetivas do que as encontradas na literatura consultada.

Palavras-chave: Metaheurística, ramificação e poda, matheurística, cortes, otimização
combinatória.

Abstract

In this thesis The Minimum d-Branch Vertices, The Rainbow Cycle Cover and The Rain-
bow Spanning Forest problems were studied. The Minimum d-Branch Vertices problem
has applications in the design of optical networks, aiming at the design of a network with
the least number of signal replicators. Meanwhile, The Rainbow Cycle Cover and The
Rainbow Spanning Forest problems are used to study social and transportation networks.
These last two problems belong to the class of problems on edge-colored graphs whose
objective is obtaining components in which each color appears at maximum once. Differ-
ent strategies were developed to solve these problems, such as the reduction of the size of
the instances based on properties of the graphs, the use of efficient data structures and
the implementation of heuristic methods. Among the contributions of this work is the
definition of the concept of co-class, which was used for preprocessing the instances as
well as for the definition of valid inequalities. Further, different levels of collaboration
between heuristic and exact methods were implemented. As a result, new mathematical
formulations and heuristics were developed which are more effective than those found in
the reviewed literature.

Key-words: Metaheuristic, branch and cut, matheuristic, cuts, combinatorial optimiza-
tion.

List of Figures

1.1 Optical network with two signal replicators switches. 3

2.1 A connected graph. 13

2.2 A connected graph with 4 maximal co-classes. 13

2.3 A spanning tree with two branch vertices (v3 and v5) 21

2.4 A spanning tree after the local search without branch vertices 22

3.1 Edge-colored graph with 4 possible colors (labels) 39

3.2 A feasible solution for the graph . 39

3.3 Edge-colored graph with 8 colors . 42

3.4 (a) Optimal solution for the RCC problem. (b) Optimal solution by solving

the model proposed in [47] with M = 2c. 42

3.5 Edge-colored graph . 45

3.6 Graph after removing vertex 9 and all edges in the co-class C2 45

3.7 Graph after the reduction process . 46

4.1 A graph with n = 5 vertices . 66

4.2 A rainbow forest with three rainbow trees 66

4.3 A rainbow forest with two rainbow trees 67

4.4 A rainbow forest with three rainbow trees 68

4.5 A rainbow forest with two rainbow trees after Leaf_Merge 69

4.6 A rainbow forest with two rainbow trees 69

4.7 A rainbow forest with one rainbow tree after Edge_Merge 70

4.8 A rainbow forest with two rainbow trees 70

4.9 A rainbow forest with one rainbow tree after 2Edge_Merge 70

List of Tables

2.1 Results of the heuristic for Medium Instances for the MBV problem (d = 2) 24

2.2 Results of the heuristic for Large Instances for the MBV problem (d = 2) . 25

2.3 Heuristics results for dimacs, stein and tcp instances for the MBV problem

(d = 2) . 26

2.4 Heuristic results for d ∈ {2, 3, 4, 5} on random instances 28

2.5 Heuristic results for d ∈ {6, 7, 8, 9} on random instances 29

2.6 Exact results for Medium Instances for the MBV problem (d = 2) 31

2.7 Exact results for Large Instances for the MBV problem (d = 2) 31

2.8 Exact results for tcp instances for the MBV problem (d = 2) 32

2.9 Exact results for values of d ∈ {2, 3, 4} on random instances 33

2.10 Exact results for values of d ∈ {5, 6, 7, 8, 9} on random instances 34

2.11 Impact of inequalities on relaxation in medium instances 35

2.12 Impact of inequalities on relaxation in large instances 35

3.1 Reduction process for the RCC problem. 52

3.2 Results for the original and improved formulation for the TC-RCC and

RCC problems. 53

3.3 Experiments results for ILS(ILP). 55

3.4 Impact of the different strategies . 57

4.1 Heuristic results on small scenarios . 73

4.2 Heuristic results on large scenarios . 74

4.3 Exact results on small scenarios . 76

4.4 Exacts results on large scenarios with 100 vertices 77

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Objectives . 4

1.3 Thesis outline . 4

2 The Minimum d-branch Vertices Problem 6

2.1 Mathematical Formulation . 7

2.1.1 Miller-Tucker-Zemlin based formulation 7

2.1.2 Graph decomposition . 9

2.1.2.1 Decomposition based on bridges 9

2.1.2.2 Decomposition based on articulation point 11

2.1.3 Analyzing the 2-cocycles . 12

2.1.4 Other Valid Inequalities . 14

2.2 ILS Heuristic for the d-MBV problem . 15

2.2.1 Building an initial solution . 16

2.2.2 Local Search . 18

2.2.3 Perturbation . 21

2.3 Computational Experiments . 23

2.3.1 Heuristic Results . 23

2-MBV results: . 23

d-MBV results: . 27

2.3.2 Exact results . 27

Contents ix

2-MBV results: . 27

d-MBV results: . 32

2.3.3 Analyzing the impact of the inequalities 33

2.4 Conclusions . 36

3 The Rainbow Cycle Cover 38

3.1 Mathematical Model . 39

3.1.1 Preprocessing and cutting . 43

3.2 Matheuristic for the RCC problem . 47

3.2.1 Initial Solution . 47

3.2.2 Local Search . 48

3.2.3 Perturbation . 49

3.3 Experimental analysis . 49

3.3.1 Exact results . 50

3.3.2 Heuristics results . 54

3.3.3 Analyzing the impact of the strategies 56

3.4 Conclusions . 58

4 The Rainbow Spanning Forest 59

4.1 Mathematical formulation . 60

4.1.1 A modified formulation for the RSF problem 62

4.2 Heuristic approach . 64

4.2.1 Greedy randomized construction . 64

4.2.2 Local search . 67

4.3 Computational experiments . 71

4.3.1 Results of the heuristic . 72

4.3.2 Results of the exact method . 75

Contents x

4.4 Conclusions . 77

5 Conclusions 78

References 80

Chapter 1

Introduction

Several computational problems and everyday phenomena are successfully modeled by

graphs. These problems appear in many different scenarios, such as computer networks,

vehicle routing, social networks, parallel computing, among others. Some of these prob-

lems are solvable in polynomial time, such as to determine the minimum number of nodes

that should fail in a computer network to disconnect it (Vertex Connectivity Problem [49])

and to find the shortest distance between two points in a city (Shortest Path Problem [14]).

Although many problems on graphs are solvable in polynomial time and are considered

easy problems, there are many problems that belong to the class of computationally hard

problems. It is unknown if these problems may be solvable in polynomial time and

the complete exploration of the solution space depends exponentially on the size of the

analyzed instance. This issue has aroused great interest in the scientific community due

to the challenge of developing effective strategies for finding good quality solutions in

reasonable time.

An example of a computationally hard problem is to find the optimum set of routes

to be performed by a fleet of vehicles to satisfy the demand of a given set of customers

(Vehicle Routing Problem [13]). Another example is to determine which is the smallest

number of colors needed to color the cities on a map in such a way that two adjacent

cities do not have the same color (Graph Coloring Problem [16]).

Algorithms that perform an intelligent search in the solution space are used to find

exact solutions for hard problems. The Branch-and-Bound (B&B) algorithm [23] is one

of the most used algorithms with this feature. It performs a systematic enumeration of

candidate solutions, discarding in the process subsets of candidates by using upper and

lower bounds estimated for the value of the objective function. Using the same idea and

1.1 Motivation 2

incorporating cutting plans, the Branch-and-Cut algorithm(B&C) [37] is also one of the

algorithms most commonly used to solve combinatorial optimization problems.

Depending on the size of the instance under analysis, the above algorithms may re-

quire unreasonable computational time. To solve this issue, different heuristics and meta-

heuristics were developed. Metaheuristics are algorithms (usually non-deterministic) that

produce good quality solutions in reasonable times. Unlike the exact methods, meta-

heuristics do not guarantee to find the global optimum of a given problem. Among the

most used metaheuristics are Greedy Randomized Adaptive Search Procedures (GRASP)

[41], Genetic Algorithms (GA)[42], Iterated Local Search (ILS) [27] and Tabu Search (TS)

[52].

In the last years, different strategies have been developed that combine exact and

heuristics algorithms [4, 5]. These strategies may be separated in two groups: Collab-

orative Combination and Integrated Combination [40]. In Collaborative Combination,

heuristic and exact methods exchange data, but are executed individually. For example,

a heuristic can be used to create a set of good solutions and patterns may be extracted

from this set. These patterns may be used to fix some variables in the mathematical

model of the problem, obtaining a solution that generally improves that obtained by the

heuristic [38]. In Integrated Combination, one method can be embedded as a component

within the other. For example, a metaheuristic could explore neighboring solutions of a

solution, using an exact algorithm to find the best neighbor [53]. Another strategy is to

use heuristics to determine cutting planes for algorithms such as Branch-and-Cut.

In this work, exact and heuristic approaches are proposed for combinatorial optimiza-

tion problems on graphs. The selected problems are The Minimum d-Branch Vertices

[17], The Rainbow Cycle Cover [47] and The Rainbow Spanning Forest [7].

1.1 Motivation

The Minimum Branch Vertices problem was introduced by Gargano et al. [17] to help

in the design of optical networks. Recently, this problem was generalized by Merabet et

al. [33]. Basically, if a network node connects with d or more nodes (d ≥ 2), then it

is necessary to introduce a switch to replicate the signal. These switches represent an

additional cost in the design of the network, and each switch has a capacity of replicating

several times the original signal. For that reason, designing a network with the least

number of these replicators becomes a task of great importance. Figure 1.1 shows the

1.1 Motivation 3

design of an optical network with two signal replicator switches (vertices 3 and 5). The

results obtained in Merabet et al. [33] show that as the parameter d increases, the

instances are more difficult to solve. However, the model developed by them does not

explore the advantages of the preprocessing used in Melo et al. [32]. In addition, there

is no heuristic procedure for this problem when d > 2. All these situations make this

problem very attractive to be studied.

Figure 1.1: Optical network with two signal replicators switches.

Meanwhile, the Rainbow Cycle Cover and the Rainbow Spanning Forest problems

belong to the set of problems on edge-colored graphs. Practical applications in social

networks, transport systems, route designs and computer networks may be modeled as

edge colored graphs problems. In the context of computer networks, the colors of the

edges can specify a certain security protocol. Finding multicolored routes would bring

as a benefit a strengthening in the level of security of the network by applying different

security protocols on transmitting data.

The Minimum 2-Branch Vertices and the Rainbow Spanning Forest problems were

recently studied by Silvestri et al. in [48] and Carrabs et al. [7] respectively. In these

works, exact and heuristics algorithms were proposed for those problems, but no methods

were investigated to decompose and reduce the instances. Also, no procedures integrating

exact and heuristic methods were found to solve these problems. In addition, the Rainbow

Cycle Cover problem is very difficult to solve, but no heuristic method was found to solve

it in the literature.

Therefore, we decided to propose new mathematical models for each of these problems,

as well as heuristic and hybrid methods in order to obtain better quality solution using

1.2 Objectives 4

less computational time.

1.2 Objectives

The general objective of this thesis is to develop strategies based on graph properties and

the use of different levels of collaboration between exact and heuristic methods to obtain

good quality solutions on the selected problems. To achieve this objective the following

activities were developed:

• Analysis of the selected problems and the most effective methods found in the

literature to solve them.

• Development of new mathematical formulations for these problems based on integer

linear programming, as well as valid inequalities to improve the performance of the

developed exact methods.

• Development of effective heuristics for the selected problems.

• Use of different levels of collaboration between heuristics and the exact algorithms.

• Validation of the performance of the proposed methods, making comparisons with

the main works already developed to solve these problems.

• Dissemination of the results in scientific events and journals related to the subject

of the thesis.

1.3 Thesis outline

The remainder of this thesis is structured as follows:

• Chapters 2 presents a new model for The Minimum d-Branch Vertices problem.

Cutting planes based on the graph structure are determined, as well as a scheme to

decompose the problem into less complex subproblems. In addition, an ILS heuristic

for the RCC problem is presented.

• Chapters 3 presents algorithms to solve exactly and approximately the Rainbow

Cycle Cover problem. A branch and cut algorithm is developed for this problem

and new cutting planes based on the graph structure are determined, as well as

1.3 Thesis outline 5

a scheme to decompose the problem into less complex subproblems. Also, an ILS

matheuristic is presented in this chapter.

• Chapter 4 presents a new model for the Rainbow Spanning Forest problem based on

the non-trivial connected components. Moreover, a GRASP heuristic is presented

in this chapter.

• Chapter 5 presents the conclusions of this work, as well as some directions for future

research.

Chapter 2

The Minimum d-branch Vertices Problem

Optimization problems related to finding a spanning tree of an undirected graph have been

extensively studied in the literature [1], [9], [11], [29], [32]. The criterion for choosing this

tree depends on the particular problem and may be associated with properties of the

vertices, edges, or both. The Minimum Branch Vertices (MBV) problem is associated to

the degree of vertices. The goal of this problem is to find a spanning tree with the lowest

number of vertices of degree greater than 2. This problem was introduced by Gargano

et al. [17] to help the design of optical networks. In Cerrulli et al. [11], a mixed integer

modeling and three heuristics for this problem were developed. Other approaches in the

literature, besides proposing mathematical models, presented heuristics or metaheuristics

[50] to solve this problem.

In Silva et al. [45] a heuristic was developed based on an exchange of edges, in which

edges of higher weight are replaced by edges of lower weight. The weights of the edges were

determined by the degrees of the end vertices of the edge. A refinement of this heuristic

was proposed by Silva et al. [46]. Other two heuristics were proposed by Carrabas et al.

[9], and tested on a wide set of instances. In Marín [29], a new model was presented, as

well as a heuristic with the best average results for the instances used in Carrabas et al.

[9].

Silvestri et al. [48] developed a hybrid formulation containing undirected and directed

variables. This formulation was solved by a branch-and-cut algorithm, improving the

results obtained by Marín [29]. Finally, Melo et al. [32] proposed an effective constructive

heuristic, which takes into consideration the problem structure in order to obtain good

feasible solutions. Also, a decomposition approach based on bridges and cut vertices of

the graph was developed, reducing the size of the subproblems to solve.

2.1 Mathematical Formulation 7

Recently, a generalization of the MBV problem was proposed by Merabet et al. [33].

This problem uses the concept of k-branch, which is a vertex with degree strictly greater

than k+2. The value of k is considered as a tolerance parameter for the design of optical

networks, since if a light signal is splitted into k copies, the signal power of one copy will

be reduced with, at least, a factor of 1/k of the original signal power. The k-Minimum

Branch Vertices problem (k-MBV) consists in searching for a spanning tree with the

minimum number of k-branch vertices. Merabet et al. [33] proved that this problem is

NP-hard whatever the value of k. Also, an ILP based on a single flow formulation was

developed and applied on sparse graphs for different values of the parameter k.

To simplify the notation, we introduce a parameter d = k + 2 and call a node in the

graph with degree strictly greater than d, (d ≥ 2) of a d-branch vertex. According to this

definition the d-MBV problem is defined as:

Problem 1 (d-MBV problem) Given an undirected graph G = (V,E) with n = |V |
vertices, the d-Minimum Branch Vertices (d-MBV) problem consists in finding a spanning

tree of G with the minimum number of vertices with degree greater than a fixed integer

value d, (d ≥ 2).

The remainder of this chapter is organized as follows: Section 2.1 presents a mathematical

formulation for this problem and the strategies developed to solve it using exact methods.

Section 2.2 describes the proposed heuristic algorithm. Section 2.3 presents the results

obtained for the heuristic and exact method. Finally, the conclusions are discussed in

Section 2.4.

2.1 Mathematical Formulation

2.1.1 Miller-Tucker-Zemlin based formulation

Given an undirected graph G = (V,E), where V denotes the set of vertices (|V | = n)

and E the set of edges, a neighborhood in G of vertex v ∈ V is defined as NG(v) = {u ∈
V | {u, v} ∈ E} where dG(v) = |NG(v)| is denoted degree of vertex v. Similarly, the

neighborhood of a subset S ⊆ V is defined as NG(S) =
�

u∈S
NG(u) .

A usual way to model the MBV problem is through formulations based on creating an

arborescence with root r ∈ V and the use of a set of arcs A, such that for all {i, j} ∈ E,

then (i, j), (j, i) ∈ A. The main difference between these formulations is how to avoid

2.1 Mathematical Formulation 8

cycles.

The most interesting instances for the d-MBV problem are those on sparse graphs,

which have a greater chance of having d-branch vertices [9, 33]. In Leggieri et al. [25] the

Miller-Tucker-Zemlin (MTZ) constraints were applied with success over sparse graphs

with up to 1000 vertices. So, in this work, we use MTZ constraints to avoid cycles. The

idea to solve the problem is finding an arborescence with vertex source r.

We define variable yi equal to 1 if the node i ∈ V is a d-branch vertex, otherwise it

is equal to 0. We also define variable xij, which will take the value 1 if and only if arc

(i, j) ∈ A belongs to the solution. Variable zi represents the level of vertex i ∈ V on the

arborescence (the root is at level 0). These variables are used to prevent cycles (e.g. if

arc xij belongs to the solution then zj > zi). We propose the following formulation for

the d-MBV problem.

min
n�

i=1

yi (2.1)

Subject to:

�

j∈V :(j,i)∈A
xji = 1, ∀i ∈ V, i �= r (2.2)

�

(i,j)∈A
xij = n− 1, (2.3)

xij + xji ≤ 1, ∀{i, j} ∈ E (2.4)
�

j∈V,j �=r:(i,j)∈A
xij ≤ (dG(i)− d)yi + d− 1, ∀i ∈ V, i �= r (2.5)

�

j∈V :(r,j)∈A
xrj ≤ (dG(r)− d)yr + d (2.6)

�

(j,r)∈A
xjr = 0 (2.7)

zr = 0 (2.8)

zj ≥ zi + xijn+ xji(n− 2)− (n− 1), ∀(i, j) ∈ A, j �= r (2.9)

yi ∈ {0, 1}, ∀i ∈ V (2.10)

xij ∈ {0, 1}, ∀(i, j) ∈ A (2.11)

zi ∈ Z, zi ∈ [0, n− 1], ∀i ∈ V (2.12)

The objective function (2.1) requires minimizing the number of d-branch vertices in the

2.1 Mathematical Formulation 9

tree. Constraints (2.2) indicate that there must be exactly one edge entering each vertex,

with the exception of the root vertex. Constraints (2.3) forces that the arborescence

contains exactly n − 1 edges. Constraints (2.4) require that there is at most one arc

between any pair of vertices. Moreover, constraints (2.5) ensure that a vertex (different

from the root) is d-branch if more than d− 1 arcs leave it, while constraints (2.6) assure

that the root vertex is d-branch if at least d + 1 arcs leave it. Constraints (2.7) impose

that no arcs enter the root vertex. Constraints (2.8) define that the level of the root

vertex is 0, and Constraints (2.9) determine that the level of each vertex j is greater than

the level of the vertex i, if the arc (i, j) belongs to the arborescence. Finally, constraints

(2.10) to constraints (2.12) ensure the integrality requirements on the variables.

2.1.2 Graph decomposition

A graph decomposition approach was developed for the MBV problem by Melo et al. [32]

and also recently by Landete et al. [24]. The basic idea is to analyze the problem by

decomposing the graph into subgraphs that are easier to solve, and then recombine the

solutions of these subgraphs to generate a solution to the problem. To implement this

decomposition, they detect and analyze bridges and articulation points (or cut vertices)

of the graph.

2.1.2.1 Decomposition based on bridges

A bridge in a graph G is an edge that when removed from the graph increases the number

of connected components of G. Finding the set BG of bridges in the original graph G

allows to characterize some of its vertices as obligatorily d-branch vertices. Let β(v) be

the number of bridges incident on the vertex v, then we define the following sets:

• OD = {u ∈ V | dG(u) > d ∧ β(u) ≥ d}

• ND = {u ∈ V | dG(u) ≤ d}

Note that set OD only contains vertices that will be d-branch in the optimal solution.

If the number of adjacent bridges to vertex v is greater than d, then the vertex v has

to be d-branch in the optimal solution. Moreover, suppose that vertex v has exactly d

adjacent bridges. In this case, if these bridges were removed, the vertex v would belong

to a component consisting of more than one vertex (dG(v) > d) and therefore, for any

2.1 Mathematical Formulation 10

spanning tree on this component, it would be necessary at least one edge incident to

vertex v. As a consequence v have at least d + 1 incident edges and therefore has to

be a d-branch. On the other hand, the set ND contains the vertices that cannot be d-

branch in any solution, since none of these vertices have enough incident edges to become

a d-branch.

As in Melo et al. [32], a decomposition approach can be applied to solve smaller

subgraphs using the previous formulation and combining the solutions. The idea is to

eliminate each bridge and in its place incorporate the parameter l(v) associated with each

vertex that indicates the number of bridges incident to vertex v. If k is the number of

resultant connected components, then the optimal solution of the problem is f =
k�

i=1

fk,

where fk is the optimal value obtained for the k-th connected component Gk = (Vk, Ek)

, with |Vk| = nk. The formulation for the d-MBV problem in Gk is presented below.

min

nk�

i=1

yi (2.13)

Subject to:

(2.2)-(2.4), (2.9)-(2.12); (replacing n by nk)

�

j∈V,j �=r:(i,j)∈A
xij + l(i) ≤ (dGk

(i) + l(i)− d)yi + (d− 1), ∀i ∈ V, i �= r (2.14)

�

j∈V :(r,j)∈A
xrj + l(r) ≤ (dGk

(r) + l(r)− d)yr + d (2.15)

yi = 1, ∀i ∈ OD (2.16)

yi = 0, ∀i ∈ ND (2.17)

All bridges must be in any spanning tree of the graph. Since every vertex v has

associated the value l(v) (i.e. the number of incident bridges), constraints (2.14) -(2.15)

are sufficient to determine whether or not a vertex will be a d-branch vertex in the solution.

Note that, except for the root, all the vertices have an incident arc. Therefore, if the

number of arcs coming out of the vertex plus the number of adjacent bridges (obligatory

edges) is greater than or equal to d, the vertex will be d-branch. For the root the same

principle applies: the root vertex will be d-branch if the number of arcs leaving it plus

the number of bridges adjacent to it is greater than or equal to d+1. Finally, constraints

2.1 Mathematical Formulation 11

(2.16) and (2.17) are related to the preprocessing phase and are used to help speed up

the problem solving process.

2.1.2.2 Decomposition based on articulation point

Melo et al. [32] showed that it is possible to further decompose the graph considering the

articulation points (cutting vertices) which increase the number of connected components

of the graph when removed.

Let Gk = (Vk, Ek) be one of the connected graphs obtained after removing all bridges

as explained before such that each vertex v ∈ Vk has associated the number l(v) of adjacent

bridges. Let cGk
(v) be the number of connected components by eliminating v of Gk and

suppose cGk
(v) > 1. Note that the only way to connect these cGk

(v) components is using

an edge incident to v. Therefore, cGk
(v) represents a number of obligatory incident edges

to v. Since l(v) also represents a number of obligatory incident edges to v, then the vertex

v will be a d-branch if cGk
(v) + l(v) > d.

The Algorithm 2.1 named SolveGraph was developed to solve the d-MBV problem

for the subgraphs G� obtained by eliminating the bridges from G. It receives as input

the subgraph G� = (V �, E �), the values l(v�) associated to each vertex v� ∈ V � and the set

CutD = {v� ∈ V � | cG�(v�) > 1 ∧ cG�(v�) + l(v�) > d} which contains all cut vertices that

will necessarily be d-branch vertices in the optimal solution. The procedure SolveModel

in line 3 is used to solve the proposed model presented in the Section 2.1.2.1 for the

subcomponents Gk that are subgraphs of G� after removing all cut vertices v ∈ CutD.

In each step, the method delete a vertex v� ∈ CutD (line 5) and create cG� connected

components by duplicating vertex v� in each component k = 1, . . . , cG�(v�) (lines 10 and

11). The neighborhood of the new vertex (denoted as v�k) is defined as the set of vertices

to which v� is adjacent in the component k (line 12). Furthermore, the value l(v �k) will

not necessarily hold the same value after this process, since l(v �k) is incremented by the

number of edges incident to v� that do not belong to the component k. Note that vertex

v�k will be classified as a d-branch vertex in each of the connected components, so the

value cG�(v�) − 1 must be subtracted from the number of vertices of the solution in G�

(line 13).

2.1 Mathematical Formulation 12

Algorithm 2.1: SolveGraph
Input: A graph without bridges G� = (V �, E �) and the value l(v�) associated to

each vertex v� ∈ V � and the set CutD.
Output: The optimal solution for the d-MBV problem

1 s ← 0
2 if CutD = ∅ then
3 s ← SolveModel(G�)

4 else
5 Choose any v� ∈ CutD and delete it from G�

6 Obtain the connected components Gk = (Vk, Ek) k = 1, . . . , cG�(v�)

7 Let Cut
(k)
D = CutD ∩ Vk, k = 1, . . . , cG�(v�)

8 for k ← 1 to cG�(v�) do
9 /* create a copy of vertex v� in each component k */

10 Vk ← Vk ∪ {v�
k}

11 Ek := Ek ∪ {{u�, v�k} | u� ∈ Vk ∧ {u�, v�k} ∈ E �}
12 l(v�k) ← l(v�k) + dG�(v�)− dGk

(v�k)

13 s ← s + SolveGraph(Gk,Cut
(k)
D)

14 s ← s− cG�(v�) + 1

15 return s

2.1.3 Analyzing the 2-cocycles

Let G = (V,E) be a connected graph. A 2-cocycle (also know as 2-edge-cut) is defined as

a set of two edges {e, f} ⊆ E such that (V,E \ {e, f}) is not connected, while (V,E \ {e})
and (V,E \ {f}) are connected. So, at least one of the edges of a 2-cocyle has to belong

to any feasible solution. Considering e = {u, v} and f = {w, t} the following constraints

may be added [29, 48]:

xuv + xvu + xwt + xtw ≥ 1, ∀{e, f} ∈ C (2.18)

where C denotes the set of 2-cocycles of G.

In this context, we define a co-class H ⊆ E as a set of edges, with | H |≥ 2, such that

any pair of edges in H is a 2-edge-cut for G. Notice that by this definition, if an edge

of a co-class is eliminated from the graph, the other edges of the co-class in the resulting

graph would become bridges. Furthermore, we denote CC as the family of all maximal

co-classes in G, where a co-class is maximal if it is not included in any other co-class.

Note that each edge that belongs to a co-class Ce also belongs to a 2-cocycle structure

with each other edge from Ce. Therefore, any two edges from Ce cannot be outside the

d-MBV solution at the same time (i.e. the solution would be a disconnected graph). For

2.1 Mathematical Formulation 13

this reason, the following stronger constraints are used in the model instead those used

by Marín [29] and Silvestri et al. [48]:

�

{u,v}∈H
(xuv + xvu) ≥ |H|− 1, ∀H ∈ CC (2.19)

As an example, consider the graph of Figure 2.1. As shown in Figure 2.2, the set

of maximal co-classes is CC = {C1, C2, C3, C4}, where C1 = {{1, 2}, {1, 12}, {11, 12}},
C2 = {{3, 4}, {4, 5}}, C3 = {{7, 8}, {8, 9}} and C4 = {{2, 3}, {6, 7}, {9, 10}, {10, 11}}.

Figure 2.1: A connected graph.

Figure 2.2: A connected graph with 4 maximal co-classes.

2.1 Mathematical Formulation 14

We use the same method used in Marín [29] for the detection of 2-cocycles. The

method consists of removing a non-bridge edge and applying the bridge detection algo-

rithm proposed by Schmidt [43]. Note that if an edge belongs to a calculated co-class,

it is not necessary to perform the procedure to find the associated 2-cocycles, decreasing

the required computational time needed.

2.1.4 Other Valid Inequalities

In addition to the constraints presented for the d−MBV model, the following inequalities

are useful to strengthen the formulation.

�

j∈V,j �=r:(i,j)∈A
xij + l(i) ≥ d yi, ∀i ∈ V, i �= r (2.20)

�

j∈V :(r,j)∈A
xrj + l(r) ≥ d yr + 1 (2.21)

Basically, those constraints indicate that if a vertex v is a d-branch vertex, then the

number of arcs leaving v must be equal or greater than d (d + 1 in case v is the root).

Furthermore, a new family of valid inequalities were developed to the d-MBV problem by

extending the valid inequalities proposed in Silvestri et al. [48] for the 2-MBV problem.

Proposition 1 For all v ∈ V \ {r}, S ⊂ N+
G (v) with |S| ≥ d− l(v) and l(v) < d:

�

(v,u)∈S
xvu + l(v) + 1 ≤ (|S|+ l(v) + 1− d)yv + d (2.22)

where N+
G (v) = {u ∈ V | (v, u) ∈ A}.

Proof : Let G be the preprocessed graph. For any subset S ⊂ N+
G (v), if the sum of

the arcs leaving v (i.e.
�

(v,u)∈S xvu) with the number of adjacent leaves (i.e. l(v)) and

the incident arc on v (i.e. +1) exceeds the value of d in the solution, then vertex v has to

be a d-branch. �

The separation of inequalities in Proposition 1 is pretty straight forward. Let (x,y)

be a feasible solution for the linear programming relaxation and xv ⊆ x be the set of all

values of variables xvu, ∀u ∈ N+
G (v). For each vertice v \ {r} where dG(v) > d > l(v), we

first sort in descending order the values of xv. Then, search for the minimal k for the set

Sk
v = {u ∈ N+

G (v) | xvu is one of the first k elements of xv} where

�

u∈Sk
v

xvu + l(v) + 1 > (k + l(v) + 1− d)yv + d

2.2 ILS Heuristic for the d-MBV problem 15

if we find such inequality, then the following cut is added to the formulation

�

u∈Sk
v

xvu + l(v) + 1 > (k + l(v) + 1− d)yv + d

2.2 ILS Heuristic for the d-MBV problem

The metaheuristic Iterated Local Search (ILS) [27] has been used in several optimization

problems and has obtained good quality results [3],[12],[54]. The pseudocode for the

metaheuristic ILS is presented in Algorithm 2.2.

Algorithm 2.2: Iterated Local Search
Input: The graph G.

Output: A valid solution T .

1 x0 ← Initial_Solution(G)

2 x∗ ← Local_Search(G)

3 repeat

4 x� ← Perturbation(x∗)

5 x∗� ← Local_Search(x�)

6 x∗ ← AcceptanceCriterion(x∗, x∗� , history)

7 until termination condition met

8 return x∗

First, an initial solution is generated for the problem (line 1) and a local search

is applied in this solution to improve the quality of the constructed solution (line 2).

Between lines 3 and 7, iterations are performed until a stopping criterion is reached. In

each iteration, a perturbation in the current solution is done trying to escape of local

optimum and then a local search is performed. In line 6, a criterion is used to decide if

the current solution will be replaced by the new generated solution.

We propose an ILS heuristic aiming to provide a good quality solution to be used as an

upper bound for the previous proposed formulation. The metaheuristic will be applied to

each of the connected subgraphs G� = (V �, E �) resulting from the decomposition process

(Section 2.1.2), where G� is a graph without bridges. The solution (upper bound) for the

original graph G will be achieved by merging the solutions obtained for each subgraph,

using Algorithm 2.1, replacing method SolveModel(G�) (line 13) with the metaheuristic

ILS(G�).

Procedures for generating the initial solution, performing local search and perturba-

2.2 ILS Heuristic for the d-MBV problem 16

tion were developed. The acceptance criterion updates the current solution if the solution

obtained in the local search has less number of d-branch vertices than the best solution

found in previous iterations. The termination condition is met when perturbation can no

longer be applied. More details are provided in Section 2.2.3.

2.2.1 Building an initial solution

A heuristic based on the selection of edges of the undirected graph G that are not already

in the tree was developed to generate an initial solution.

The following weights wsOD and waOD of an edge {u, v} are defined as:

wsOD = dG(u) + l(u) + dG(v) + l(v)− fD(u) · n− fD(v) · n

and

waOD = dG(u) + l(u) + dG(v) + l(v) + fD(u) · n+ fD(v) · n

respectively. Moreover, the function fD(v) defines if a vertex v belongs to the set OD and

is defined as:

fD(v) =

�
1 if v ∈ OD

0 if v /∈ OD

Algorithm 2.3 contains the pseudocode of the strategy used for the initial construction

of the solution. A tree T is initialized with all vertices of G without any edges. In this

algorithm, the set of arcs A of the graph (as defined in Subsection 2.1) is explored to

select the edges that will be in T. Between lines 3 and 6, the arc (u, v) with associated

edge {u, v} of minimum wsOD value is selected if (i) vertex u has no incident edges in T ,

(ii) vertex v is incident to T and (iii) the sum of the degree of v in T with its associated

l(v) value is different from d. For this selected arc, the associated edge will be added in

T . This added edge will not create neither cycles nor new d-branch vertices in T . Also,

selecting arcs with minimum wsOD values for the associated edges prioritizes those arcs

whose vertices are d-branch vertices and have a small degree in the graph G. In this way,

the obligatory vertices will have more added edges.

Between lines 7 and 9, arcs are selected according to the following ordered criteria.

First, in criterion (a) an arc (u, v) is selected if vertex u has a degree less than d and

if vertex v is a d-branch vertex, so inserting the associated edge will not generate new

d-branch vertices in T . This criterion prioritizes arcs whose vertices have to be d-branch

vertices in the final solution and have large degree in G. If no vertices are found in criterion

2.2 ILS Heuristic for the d-MBV problem 17

Algorithm 2.3: Initial Solution
Input: A graph G = (V,E) without bridges, the value l(v) associated to each

vertex, the set OD and the set of arcs A such that for all {i, j} ∈ E, then
(i, j), (j, i) ∈ A.

Output: A spanning tree T of the graph
1 T ← (V, ∅)
2 m ← 0
3 repeat
4 Find the arc (u, v) ∈ A such that dT (u) = 0 and dT (v) + l(v) �= d and whose

associated edge {u, v} has minimum wsOD value; then, add the edge {u, v} in
T .

5 m ← m+ 1

6 until There is no arc that satisfies this condition
7 repeat
8 Consider criteria (a)-(f), whose priorities are in descending order ((a) has the

highest priority). Find an arc (u, v) in A with associated edge {u, v}, such
that T ∪ {u, v} is a tree and no other arc satisfies a higher priority criterion.

(a) arc (u, v) has maximum value dG(v) + l(v) + n · fD(v) such that
dT (u) + l(u) < d , dT (v) + l(v) > d.

(b) edge {u, v} has maximum waOD in T , and arc (u, v) with
dT (u) + l(u) > d , dT (v) + l(v) > d.
(c) edge {u, v} has minimum wsOD in T and arc (u, v) with
dT (u) + l(u) < d , dT (v) + l(v) < d.
(d) edge {u, v} has maximum waOD in T and arc (u, v) with
dT (u) + l(u) > d , dT (v) + l(v) = d.
(e) edge {u, v} has maximum waOD in T and arc (u, v) with
dT (u) + l(u) < d , dT (v) + l(v) = d.
(f) edge {u, v} has maximum waOD in T and arc (u, v) with
dT (u) + l(u) = d , dT (v) + l(v) = d.

Add {u, v} in T
m ← m+ 1

9 until m < |V |− 1
10 return T

a, then an arc with maximum waOD value in T for the associated edge and whose both

vertices are already d-branch vertices is selected (criterion (b)), so that the number of

d-branch vertices is not incremented. This criterion also prioritizes arcs whose vertices

have to be d-branch vertices and have large degree. Again, if no vertices are found in

criterion (b), an arc is selected if both vertices are not already d-branch vertices in T in

such a way that when an edge is inserted in T none of them turns to be a d-branch vertex

(criterion (c)). This criterion prioritizes arcs whose vertices have small degrees, letting

the vertices with larger degrees to be analyzed later. Moreover, criteria (d), (e) and (f)

choose arcs whose associated edges will create new d-branch vertices, (one when using

2.2 ILS Heuristic for the d-MBV problem 18

(d) and (e) and two when using (f)). These criteria select arcs whose vertices have large

degrees, so when a vertex turns to be a d-branch vertex, there is a chance that new edges

will be chosen incident to this vertex in the next selections. The edge associated to the

arc selected in line 8 will be inserted in the tree T .

2.2.2 Local Search

There is no guarantee that the initial solution returns a locally optimal solution with

respect to some neighborhood. Therefore, the tree obtained by Algorithm 2.3 may be im-

proved by the local search procedure described in Algorithm 2.4. In line 1, the best current

solution Tbest is initialized with the solution Tcurr, and the procedure FirstBest_Neighbor

(line 4), described in Algorithm 2.5, is executed while there is improvement in the current

solution.

Algorithm 2.4: Local Search
Input: The current solution Tcurr.
Output: The best solution Tbest.

1 Tbest ← Tcurr

2 repeat
3 improvement ← 0
4 T ←FirstBest_Neighbor(G,Tbest, OD)
5 if T �= Tbest then
6 Tbest ← T
7 improvement ← 1

8 until improvement = 0
9 return Tbest

The FirstBest_Neighbor method (Algorithm 2.5) looks for a neighbor solution (i.e. a

solution obtained by swapping some edges) with less d-branch vertices than the current

solution. The aim of this procedure is to remove edges from a d-branch vertex until its

degree is equal or less than d. In line 3 the list of candidate vertices DB is initialized with

vertices that are not obligatory and whose degree is greater than d. The d-branch vertices

in DB with smaller degree should be easier to process, so DB is sorted in ascending order

related to the degree of vertices in T . Then, for each v ∈ DB, each one of its neighbors u

is analyzed. In lines 5 to 17, the procedure tries to find another edge (different from the

one that connects u and v in T) that does not create new d-branch vertices. If a new tree

is obtained with fewer d-branch vertices the procedure returns it in line 16. Otherwise,

vertex v is inserted in the list LD of d-branch vertices.

Algorithm 2.6 shows the procedure that tries to find an edge different from {u, v} that

2.2 ILS Heuristic for the d-MBV problem 19

Algorithm 2.5: FirstBest_Neighbor
Input: A graph G = (V,E) without bridges, the current solution Tcurr and the set

OD of obligatory d-branch vertices.
Output: The solution T .

1 T ← Tcurr

2 LD ← OD

3 DB ← {v ∈ V \OD | dT (v) + l(v) > d}
4 Sort DB in ascending order by value (dT (v) + l(v))
5 foreach v ∈ DB do
6 foreach u ∈ NT (v) do
7 Remove the edge {u, v} from T
8 e ←Find_Edge(u, v, T, LD)
9 if e �= ∅ then

10 Insert the edge e in T

11 else
12 Insert the edge {u, v} in T

/* v or u are d−branch vertices no more */

13 if dT (v) + l(v) ≤ d or ((dT (u) + l(u) ≤ d) ∧ (u ∈ DB)) then
14 return T

15 LD ← LD ∪ {v}
16 return T

Algorithm 2.6: Find Edge
Input: Vertices u and v, a forest T , where Tu = (Vu, Eu) and Tv = (Vv, Ev) are the

connected subtrees containing u and v respectively, and the set LD of
d-branch vertices.

Output: An edge e �= {u, v} between Tu and Tv or ∅ if not exists.
1 U1 ← LD ∩ Vu

2 U2 ← {w ∈ Vu | dT (w) + l(w) < d}
3 U3 ← {w ∈ Vu \ LD | dT (w) + l(w) > d}
4

5 V1 ← LD ∩ Vv

6 V2 ← {w ∈ Vv | dT (w) + l(w) < d}
7 V3 ← {w ∈ Vv \ LD | dT (w) + l(w) > d}
8

9 e ← {u�, v�} such that {u�, v�} �= {u, v}, u� ∈ Ui, v� ∈ Vj and (i, j) is
lexicographically smaller than any other valid pair (i, j ∈ {1, 2, 3}).

10 return e

connects the subtrees Tu and Tv so that T has fewer d-branch vertices. Subtree Tu is the

subtree obtained from T when {u, v} is removed and contains vertex u, while subtree Tv

is the subtree that contains vertex v. The following sets of vertices are defined for each

2.2 ILS Heuristic for the d-MBV problem 20

subtree Tu and Tv :

• U1,V1: contain vertices that are obligatory d-branch vertices or have already been

processed by Algorithm 2.5 and are considered d-branch vertices.

• U2,V2: contain vertices that are not d-branch vertices and if an edge incident to

them is inserted, they do not turn to be d-branch vertices.

• U3,V3: contain vertices that are d-branch vertices but are not obligatory d-branch

vertices or have not yet been considered d-branch vertices by the Algorithm 2.5.

The search of a new edge is performed by looking for edges {u�, v�} (or {v�, u�}) such that

u� ∈ Ui, v
� ∈ Vj with i, j ∈ {1, 2, 3}, in the following order:

1. u� ∈ U1 and v� ∈ V1 and the edge {u�, v�} has the smallest value dG(u
�) + dG(v

�) −
n · fD(u�)− n · fD(v�). This prioritizes edges whose vertices are obligatory d-branch

vertices and have small degree.

2. u� ∈ U1 and v� ∈ V2 and the edge {u�, v�} has the smallest value dG(u
�)−n · fD(u�)+

dG(v
�). In this case, one of the vertices of the edge is a obligatory d-branch and the

other vertex has a small degree in the graph. The aim of this criterion is to choose

an edge that has one obligatory d-branch vertex and the other one has small degree

so that a vertex with small degree is chosen to be part of the solution.

3. u� ∈ U1 and v� ∈ V3 and the edge {u�, v�} has the smallest value dG(u
�)−n · fD(u�)−

dT (v
�). In this case, the objective is to look for an edge with a obligatory d-branch

and a non-obligatory d-branch with a large degree, which probably is a d-branch

vertex in the optimal solution.

4. u� ∈ U2 and v� ∈ V2 and the edge {u�, v�} has the smallest value dG(u
�)+dG(v

�). The

vertices of these edges are not d-branch vertices and will not turn to be d-branch

vertices if an edge incident to them is inserted. The objective is to choose vertices

with small degrees.

5. u� ∈ U2 and v� ∈ V3 and the edge {u�, v�} has the smallest value dG(u
�) − dT (v

�).

The objective is to find an edge with one vertex (non d-branch) with a small degree

in the graph, and the other vertex is a non-obligatory d-branch vertex with large

degree in the tree.

2.2 ILS Heuristic for the d-MBV problem 21

6. u� ∈ U3 and v� ∈ V3 and the edge {u�, v�} has the highest value dT (v
�) + dT (u

�). The

objective is to find an edge whose vertices are non-obligatory d-branch vertices with

large degree. This type of vertices are probably in the optimal solution.

In all described cases, the inserted edge will not generate a tree T with new d-branch

vertices.

Consider the graph of figure 2.3. In this graph, the edges with broken lines represent

edges that belong to the original graph but are not in the solution tree. Working with d =

2, the tree T in figure 2.3 has two branch vertices. When applying the local search on this

tree, the tree T � showed in figure 2.4 can be obtained through the following operations:

(1) remove the edge {1, 3} from the branch vertex v3 and add the edge {1, 2} in the vertex

leaf v2; (2) remove the edge {5, 6} from the branch vertex v5 and add the edge {1, 6} in

the vertex leaf v1.

Figure 2.3: A spanning tree with two branch vertices (v3 and v5)

2.2.3 Perturbation

The perturbation method should enable the algorithm to escape from local optima and

provide diversification to the ILS. The method attempts to replace an edge {u, v} of T ,

which has at least one non-obligatory d-branch vertex, by another edge {u�, v�} �= {u, v},
with u� ∈ Tu and v� ∈ Tv, creating another d-branch vertex (u� or v�). Algorithm 2.7

presents the pseudocode of the implemented perturbation movement.

2.2 ILS Heuristic for the d-MBV problem 22

Figure 2.4: A spanning tree after the local search without branch vertices

Algorithm 2.7: PERTURBATION
Input: A graph G = (V,E) without bridges, the current solution Tcurr and the set

OD of obligatory d-branch vertices.
Output: The solution T .

1 T ← Tcurr

2 DB ← {v ∈ V \OD | dT (v) + l(v) > d}
3 Sort DB in ascending order by value (dG(v) + l(v))
4 foreach v ∈ DB do
5 foreach u ∈ NT (v) do
6 Remove the edge {u, v} from T
7 Let {u�, v�} = argmin{i,j}{dG(i) + dG(j) | i ∈ Tu,

j ∈ Tv such dT (i) = d or dT (j) = d, but not both } and {u�, v�} is not
forbidden

8 if {u�, v�} �= ∅ then
9 Insert the edge {u�, v�} in T and mark this edge as forbidden.

10 return T

11 else
12 Insert the edge {u, v} in T

13 return T

Each vertex v is analyzed according to the value dG(v) + l(v) in ascending order.

Among all possible edges to be added, the chosen edge {u�, v�} that will reconnect the

tree and create (exactly) one d-branch vertex (i.e. dT (u
�) = d or dT (v

�) = d), should be

the one that minimizes:

{u�, v�} = argmin{i,j}{dG(i) + dG(j)}

2.3 Computational Experiments 23

This criterion selects edges whose vertices have small degree in G. In this way, when

inserting the new edge, the other vertices with larger degree in G will have more chance

to "steal" edges from the d-branch vertices during the local search.

The inserted edges are marked as forbidden and cannot be manipulated by the per-

turbation process until the method finds a better solution. This rule was established with

the purpose of not creating cycles of moves by adding and deleting the same edge without

having an improvement over the best value found.

The ILS method halts when is not possible to find any unmarked edges to proceed

with the perturbation.

2.3 Computational Experiments

To validate the effectiveness of the proposed method, several computational experiments

were performed (results are available online 1). First, experiments were executed with

the most used instances in the literature for the 2-MBV problem: 500 instances proposed

by Carrabas et al. [9], which contain sparse graphs with different densities, and 21 in-

stances proposed by Silva et al. [46], which are based on graphs that have a Hamiltonian

path and therefore it is possible to find spanning trees without branch vertices. Second,

we conducted experiments to investigate the impact of different values of d in a set of

random instances. The experiments were developed on an Intel (R) Core i5-4460S CPU

@ 2.90GHz, with 6 Mb of cache and 8 Gb of RAM using Linux and all methods were

programmed in C++ language using the gcc compiler.

2.3.1 Heuristic Results

2-MBV results:

Tables 2.1 and 2.2 show the results obtained by the developed heuristic for the group of

instances proposed by Carrabas et al. [9] classified as Medium Instances (Table 2.1) and

Large Instances (Table 2.2) for the MBV problem (d = 2). These instances correspond

to very sparse graphs and they were also studied in Melo et al. [32], but the authors only

presented the results of a subset of instances. In addition, the results presented in Melo

et al. [32] did not improve those obtained by Marín [29] in that group of instances and

for that reason were not considered in Tables 2.1 and 2.2.
1www.ic.uff.br/~yuri/files/dMBV.zip

2.3 Computational Experiments 24

Each row represents a group of 25 graphs in Table 2.1 and a group of 5 graphs

in Table 2.2. The first two columns represent the number of vertices and the average

number of edges of each group. Columns 3 and 4 represent the number of vertices and

edges respectively (after decomposition). The opt column shows the optimal value of

each group of instances. The column ubM presents the results obtained by the heuristic

developed by Marín [29] and the column gapM shows the gap obtained by his heuristic

in relation to optimum value. The last three columns show the value obtained by the

ILS heuristic, the gap in relation to the optimum value, and the average time to process

the group of instances in seconds. The gap shows the percentage difference of the value

obtained by the heuristic method in relation to the optimum value, using the following

equation: gap = heur−opt
opt

× 100.

Table 2.1: Results of the heuristic for Medium Instances for the MBV problem (d = 2)

n’ m’ np mp opt ubM gapM ILS gap time

20 41.8 18.1 39.9 0.8 0.8 0.0 0.8 0.0 0.00
40 70.8 33.4 64.2 2.8 2.9 3.6 3.0 7.1 0.00
60 95.0 46.0 81.0 6.3 6.6 4.8 6.7 6.3 0.00
80 119.8 58.1 97.8 9.2 9.5 3.3 9.6 4.3 0.00

100 144.0 69.0 112.9 13.3 13.9 4.5 13.8 3.8 0.00
120 168.8 80.0 128.7 17.5 18.0 2.9 18.2 4.0 0.01
140 193.0 92.1 145.0 20.9 21.8 4.3 21.6 3.3 0.01
160 217.8 103.1 160.8 25.0 25.8 3.2 25.9 3.6 0.02
180 242.0 112.9 174.8 29.1 30.3 4.1 30.2 3.8 0.02
200 266.8 122.4 189.2 32.6 33.8 3.7 33.8 3.7 0.02
250 321.0 145.4 216.4 44.6 46.0 3.1 45.7 2.5 0.03
300 380.0 164.2 244.2 57.4 59.0 2.8 58.7 2.3 0.05
350 434.8 188.7 273.3 68.6 70.3 2.5 70.1 2.2 0.08
400 489.0 204.3 293.2 81.8 83.8 2.4 83.5 2.1 0.11
450 548.0 228.9 326.7 93.4 95.7 2.5 95.3 2.0 0.15
500 602.8 243.7 346.4 106.7 109.4 2.5 108.6 1.8 0.19

Marín [29] presented the best result achieved after executing 100 times each instance

using his proposed heuristic (ubM). The total execution times for Medium and Large

instances were 239 seconds and 264 seconds respectively leading to a total of 503 seconds

using an Intel Core 2 Quad CPU Q9300, 2.50GHz × 4, with 3 Gb of RAM memory and

running on Linux. The heuristic developed in this work consumed 17.5 seconds and 28.7

seconds to solve the Medium and Large instances respectively with a total time of 46.2

seconds.

2.3 Computational Experiments 25

Table 2.2: Results of the heuristic for Large Instances for the MBV problem (d = 2)

n’ m’ np mp opt ubM gapM ILS gap time

600 637 106.4 143.4 183.8 184.0 0.1 185.0 0.7 0.0
600 674 162.6 236.6 167.2 168.8 1.0 168.6 0.8 0.1
600 712 205.6 317.6 150.6 154.8 2.8 153.0 1.6 0.1
600 749 236.6 385.6 138.8 144.0 3.7 140.4 1.2 0.1
600 787 266.4 453.2 125.8 132.8 5.6 128.8 2.4 0.2
700 740 123.2 163.2 214.4 215.0 0.3 215.4 0.5 0.0
700 780 181.6 261.6 198.0 199.6 0.8 199.8 0.9 0.1
700 821 229.8 350.8 180.0 184.0 2.2 182.4 1.3 0.2
700 861 263.4 424.4 164.0 169.2 3.2 167.4 2.1 0.2
700 902 296.8 498.8 154.2 161.8 4.9 157.0 1.8 0.2
800 843 133.2 176.2 245.6 246.6 0.4 246.6 0.4 0.0
800 886 200.6 286.6 227.6 229.6 0.9 229.8 1.0 0.1
800 930 253.4 383.4 208.4 213.0 2.2 211.4 1.4 0.1
800 973 294.2 467.2 194.2 200.2 3.1 197.2 1.5 0.3
800 1017 331.8 548.8 176.2 184.0 4.4 179.6 1.9 0.4
900 944 143.6 187.6 279.6 280.6 0.4 280.6 0.4 0.1
900 989 214.4 303.4 259.2 261.6 0.9 261.0 0.7 0.2
900 1034 267.0 401.0 240.6 245.4 2.0 243.6 1.2 0.3
900 1079 316.4 495.4 223.2 229.8 3.0 226.6 1.5 0.5
900 1124 352.4 576.4 206.0 214.8 4.3 209.4 1.7 0.4

1000 1047 150.4 197.4 312.0 313.4 0.4 313.2 0.4 0.1
1000 1095 233.0 328.0 290.0 292.4 0.8 292.2 0.8 0.3
1000 1143 295.0 438.0 271.2 275.8 1.7 275.0 1.4 0.4
1000 1191 342.4 533.4 251.0 257.8 2.7 254.8 1.5 0.5
1000 1239 390.2 629.2 235.2 244.6 4.0 238.6 1.4 0.9

In these tables (2.1 and 2.2) we can see that the gap value decreases as the instance

size is increased, which indicates that the proposed heuristic maintains a small absolute

difference with respect to the optimum. On the other hand, as the instances become

more complex, the proposed heuristic begins to perform better than the one proposed by

Marín [29]. For the 25 Large instances, the ILS heuristic obtained 19 better results and

2 ties, while Marín heuristic obtained 4 better values. For the 41 groups of instances, the

proposed heuristic obtained strictly better results in 65.8 % of the instances and equal

results in 9.7 % of the instances. The average gap for the heuristic proposed in Marín [29]

was 2.6, while the average gap obtained by the ILS heuristic was 2.0.

Table 2.3 shows the results obtained for 21 instances proposed in Silva et al. [46],

also for the MBV problem (d = 2), where each line represents a graph. The first three

2.3 Computational Experiments 26

Table 2.3: Heuristics results for dimacs, stein and tcp instances for the MBV problem
(d = 2)

Instance n m ubM ubM-time MPE ILS ILS-time

le450_15a 450 5714 0 1.5 0 0 0.2
le450_15b 450 5734 0 0.7 0 0 0.2
le450_15c 450 9803 0 7.2 0 0 0.7
le450_15d 450 9757 0 2.5 0 0 0.8
le450_25a 450 8168 0 0.4 0 0 0.2
le450_25b 450 8169 0 5.5 0 0 0.2
le450_25c 450 16680 0 0.4 0 0 0.8
le450_25d 450 16750 0 0.4 1 0 0.8
le450_5a 450 8260 0 0.2 0 0 0.1
le450_5b 450 8263 0 0.2 0 0 0.1
le450_5c 450 17343 0 0.5 0 0 0.3
le450_5d 450 17425 0 0.4 0 0 0.3

steind11 1000 5000 4 45.1 0 0 0.3
steind12 1000 5000 4 47.8 1 0 0.3
steind13 1000 5000 4 45.0 0 0 0.2
steind14 1000 5000 4 42.0 1 0 0.3
steind15 1000 5000 4 48.7 1 0 0.3

alb1000 1000 1998 9 84.0 16 1 1.0
alb2000 2000 3996 19 697.0 28 2 7.8
alb3000a 3000 5999 29 2467.0 43 4 35.5
alb4000 4000 7997 39 8783.0 58 4 67.5

columns of the tables present the file name, the number of vertices n and the number

of edges m of the graph. Unfortunately, the decomposition process does not bring any

benefits to these instances, so, we omit columns np and mp. Furthermore, columns 4,

6 and 7 show, respectively, the results for these instances obtained by the heuristics of

Marín [29] (ubM), Melo et al. [32] (MPE) and the proposed heuristic in this work (ILS).

Finally, columns 5 and 8 show the times (in seconds) used by the heuristics ubM and

ILS respectively. In the case of the heuristic MPE, the times used to obtain these results

are not presented by the authors.

The proposed ILS heuristic presents superior performance in time and quality of the

results. The optimal value was reached in all instances of the first two groups (dimacs

and stein). For tcp instances, the heuristic obtained better values in much less time

than required by other heuristics. The value ubM is the minimum value obtained in 100

2.3 Computational Experiments 27

executions, while heuristics MEP and ILS were executed only once.

d-MBV results:

In Merabet et al. [33] the authors presented results for the d-MBV problem over a set

of random instances with different values of d. Their instances have d-branch vertices in

the optimal solution for high values of d. Unfortunately, we were not able to use these

instances to compare with our method because they were not available. The authors

informed that the set of instances was disposed after the experimental analysis, but they

provided the generator used by them to create sparse graphs. So, we used this generator

to create new instances which are similar to the instances used by them.

As in Merabet et al. [33] we consider 9 values for the number of vertices |V | ∈
{50, 100, 200, 300, 400, 500, 600, 700, 800} and, for the number of edges m, we used the

same equation:

m =
�
|V |− 1 + i× 1.5×

��
|V |

��

with i ∈ {1, 2, 3}. We have generated 30 instances for each pair (|V |, i) and performed

experiments for several values of d. Tables 2.4 and 2.5 show the results obtained for

values of d ∈ {2, 3, 4, 5} and d ∈ {6, 7, 8, 9}. Each row represents a group of 30 graphs.

First column indicates the number of vertices of the group. Columns ILS and time show

the upper bound and computational time obtained by the proposed heuristic. Column

gap shows the gap relative to the optimum. It can be observed that the number of d-

branch vertices decreases rapidly while increasing the d value. Our heuristic again shows

a good performance, presenting a very small gap relative to the optimum within low

computational time. As shown in Tables 2.4 and 2.5, our heuristic yielded the optimal

value several times, mainly for d ≥ 4.

2.3.2 Exact results

2-MBV results:

Tables 2.6 and 2.7 show the computational time required to obtain exact solutions for

the MBV problem (d = 2). These optimal values were obtained by solving the model

developed in Section 2.1 using Constraints (2.20) and (2.21). If the obtained solution was

not an integer solution then a search for violated Constraints (2.22) was performed, and

the violated cuts were added to the model.

The first two columns represent the number of vertices and the average number of

2.3 Computational Experiments 28

Table 2.4: Heuristic results for d ∈ {2, 3, 4, 5} on random instances

i = 1 i = 2 i = 3

|V | ILS time gap ILS time gap ILS time gap
d = 2

50 6.60 0.000 0.5 3.80 0.001 10.7 2.13 2.134 25.5
100 17.17 0.001 0.6 12.43 0.004 4.5 8.87 0.006 12.2
200 38.00 0.005 0.9 28.93 0.018 3.0 22.30 0.032 8.1
300 60.07 0.011 0.4 47.87 0.045 1.6 37.97 0.089 4.4
400 82.47 0.017 0.2 68.80 0.073 1.2 56.97 0.163 2.6
500 105.20 0.025 0.2 87.73 0.108 1.2 74.93 0.325 2.7
600 128.23 0.039 0.2 107.93 0.188 0.9 93.67 0.428 2.2
700 151.00 0.044 0.2 130.43 0.232 0.7 111.23 0.630 2.0
800 174.77 0.056 0.0 151.47 0.347 0.6 131.23 0.879 1.8

d = 3

50 1.03 0.000 0.0 0.23 0.000 0.0 0.10 0.100 0.0
100 4.77 0.001 1.4 1.37 0.000 0.0 0.37 0.000 0.0
200 11.47 0.002 2.1 5.30 0.002 1.3 1.53 0.001 0.0
300 20.50 0.005 0.7 10.30 0.008 1.3 5.03 0.004 2.7
400 29.87 0.010 0.8 18.27 0.020 1.9 9.87 0.011 3.1
500 38.60 0.015 0.4 25.40 0.034 2.1 13.87 0.024 4.0
600 50.17 0.020 0.5 32.03 0.061 1.4 19.70 0.046 2.1
700 60.43 0.031 0.3 39.67 0.084 1.5 24.97 0.078 2.3
800 69.67 0.038 0.3 47.43 0.139 1.6 32.63 0.154 3.2

d = 4

50 0.13 0.000 0.0 0.03 0.000 0.0 0.00 0.000 0.0
100 1.07 0.000 0.0 0.10 0.000 0.0 0.07 0.000 0.0
200 2.57 0.000 0.0 0.43 0.001 0.0 0.10 0.001 0.0
300 5.47 0.001 0.0 1.37 0.001 0.0 0.47 0.002 0.0
400 8.93 0.003 0.8 3.07 0.002 0.0 1.77 0.002 0.0
500 11.93 0.004 0.8 4.80 0.003 0.0 1.83 0.003 0.0
600 15.80 0.006 0.2 6.73 0.004 0.0 2.93 0.005 0.0
700 19.57 0.010 0.3 9.23 0.007 0.0 4.17 0.006 0.0
800 24.57 0.013 0.7 10.17 0.009 1.3 5.33 0.007 0.0

d = 5

50 0.00 0.000 0.0 0.00 0.000 0.0 0.00 0.000 0.0
100 0.20 0.000 0.0 0.00 0.000 0.0 0.00 0.000 0.0
200 0.47 0.000 0.0 0.03 0.000 0.0 0.03 0.000 0.0
300 1.40 0.000 0.0 0.23 0.000 0.0 0.10 0.000 0.0
400 1.90 0.000 0.0 0.60 0.000 0.0 0.27 0.000 0.0
500 3.60 0.000 0.9 0.93 0.000 0.0 0.30 0.000 0.0
600 3.87 0.000 0.0 1.77 0.000 0.0 0.23 0.000 0.0
700 4.83 0.000 0.0 1.93 0.000 0.0 0.80 0.000 0.0
800 6.77 0.000 0.0 1.87 0.000 0.0 1.10 0.000 0.0

2.3 Computational Experiments 29

Table 2.5: Heuristic results for d ∈ {6, 7, 8, 9} on random instances

i = 1 i = 2 i = 3

|V | ILS time gap ILS time gap ILS time gap
d = 6

50 0.00 0.000 0.0 0.00 0.000 0.0 0.00 0.000 0.0
100 0.00 0.000 0.0 0.00 0.000 0.0 0.00 0.000 0.0
200 0.07 0.001 0.0 0.00 0.001 0.0 0.00 0.001 0.0
300 0.33 0.001 0.0 0.00 0.001 0.0 0.00 0.001 0.0
400 0.57 0.001 0.0 0.03 0.001 0.0 0.00 0.002 0.0
500 0.90 0.002 0.0 0.17 0.002 0.0 0.03 0.003 0.0
600 1.00 0.002 0.0 0.53 0.003 0.0 0.07 0.003 0.0
700 1.27 0.003 0.0 0.30 0.004 0.0 0.17 0.004 0.0
800 1.60 0.003 0.0 0.40 0.004 0.0 0.17 0.006 0.0

d = 7

50 0.00 0.000 0.0 0.00 0.000 0.0 0.00 0.000 0.0
100 0.00 0.000 0.0 0.00 0.000 0.0 0.00 0.000 0.0
200 0.03 0.000 0.0 0.00 0.001 0.0 0.00 0.001 0.0
300 0.07 0.001 0.0 0.00 0.001 0.0 0.00 0.001 0.0
400 0.10 0.001 0.0 0.00 0.001 0.0 0.00 0.002 0.0
500 0.10 0.001 0.0 0.00 0.002 0.0 0.00 0.003 0.0
600 0.20 0.002 0.0 0.10 0.003 0.0 0.00 0.003 0.0
700 0.17 0.003 0.0 0.07 0.003 0.0 0.03 0.004 0.0
800 0.37 0.003 0.0 0.07 0.004 0.0 0.03 0.005 0.0

d = 8

50 0.00 0.000 0.0 0.00 0.000 0.0 0.00 0.000 0.0
100 0.00 0.000 0.0 0.00 0.000 0.0 0.00 0.000 0.0
200 0.00 0.000 0.0 0.00 0.001 0.0 0.00 0.001 0.0
300 0.03 0.001 0.0 0.00 0.001 0.0 0.00 0.001 0.0
400 0.03 0.001 0.0 0.00 0.001 0.0 0.00 0.002 0.0
500 0.03 0.001 0.0 0.00 0.002 0.0 0.00 0.002 0.0
600 0.00 0.002 0.0 0.00 0.003 0.0 0.00 0.003 0.0
700 0.03 0.002 0.0 0.00 0.003 0.0 0.00 0.004 0.0
800 0.00 0.003 0.0 0.03 0.004 0.0 0.00 0.005 0.0

d = 9

50 0.00 0.000 0.0 0.00 0.000 0.0 0.00 0.000 0.0
100 0.00 0.000 0.0 0.00 0.000 0.0 0.00 0.000 0.0
200 0.00 0.000 0.0 0.00 0.000 0.0 0.00 0.000 0.0
300 0.00 0.000 0.0 0.00 0.000 0.0 0.00 0.001 0.0
400 0.00 0.001 0.0 0.00 0.001 0.0 0.00 0.002 0.0
500 0.00 0.001 0.0 0.00 0.002 0.0 0.00 0.002 0.0
600 0.00 0.002 0.0 0.00 0.002 0.0 0.00 0.003 0.0
700 0.00 0.002 0.0 0.00 0.003 0.0 0.00 0.004 0.0
800 0.00 0.003 0.0 0.00 0.003 0.0 0.00 0.005 0.0

2.3 Computational Experiments 30

edges for each group of instances. Columns 3 and 4 show the average number of co-classes

and optimal value for each group. Columns 5 and 6 correspond to the times in seconds

to find the optimal value by the methods proposed in Marín [29] and Silvestri et al. [48]

respectively. Silvestri et al. [48] used one Intel Xeon X5675 running at 3.07 GHz with 96

GB of RAM and a 64-bit Linux operating system with IBM ILOG CPLEX 12.5. Melo et

al. [32] method had a poor performance in this group of instance so we chose to compare

our results only with Marín [29] and Silvestri et al. [48].

Column 7 shows the execution time obtained by the proposed model in this work using

the IBM ILOG CPLEX 12.6 solver. We use the CPLEX default settings and configure it

to run over a single thread of execution and a time limit of one hour. The value reported

in this column includes the time used to execute all preprocessing operations described

in Section 2.1 and the heuristic described in Section 2.2 to define an upper bound. For

all instances, the preprocessing time was very close to zero seconds. Finally, the last two

columns contain the number of the user’s cuts (constraints 2.19) and nodes.

Martinez et al. [31] showed that the time to solve a based Miller-Tucker-Zemlin

formulation may be influenced by the vertex that is chosen as the arborescence root.The

root selection usually depends on the addressed problem. For example, Akgun et al.

[1] proposed a methodology to select the root node in their Miller-Tucker-Zemlin-based

formulation for the Min-degree Constrained Minimum Spanning Tree problem. In this

problem, the edges have weights and their criterion was to select a vertex with a small

sum of the weights of its incident edges.

In our context, we developed the following criterion to select the root node:

r = argmaxu∈V {dG(u)− (d+ 1) · l(u) + n · fD(u) +
�

v∈NG(u)

dG(v) · (1 + fD(v))}

The first term (dG(u)− (d+1) · l(u)+n · fD(u)) considers the particular characteristics of

vertex u. Vertices that are obligatorily d-branch vertices (fD(u) = 1), with large degree

and small l(u) value (adjacent leaves) have a greater chance of being chosen as root. The

second term of the expression (
�

v∈NG(u) dG(v) · (1 + fD(v))) benefits those vertices that

are in a dense zone of the graph and with adjacent vertices that are obligatorily d -branch

vertices. We believe that a good root will be in a dense zone of the graph, reducing the

height of the resulting arborescence.

The results show the effectiveness of the proposed exact method. All groups of in-

stances in Table 2.6 were solved faster than the previous exact methods. The results

2.3 Computational Experiments 31

Table 2.6: Exact results for Medium Instances for the MBV problem (d = 2)

n’ m’ co-class opt timeM timeS time cuts nodes

20 41.8 2.4 0.8 0.0 0.0 0.0 0.4 0.0
40 70.8 7.5 2.8 0.1 0.1 0.0 3.0 2.7
60 95.0 12.2 6.3 1.4 0.5 0.1 14.7 17.9
80 119.8 16.4 9.2 2.2 0.7 0.1 18.0 4.5

100 144.0 20.2 13.3 2.9 1.0 0.2 23.4 23.4
120 168.8 24.7 17.5 3.7 1.1 0.4 28.8 28.0
140 193.0 28.7 20.9 4.9 2.0 0.6 35.4 71.4
160 217.8 31.9 25.0 6.1 1.9 0.7 38.0 36.4
180 242.0 35.6 29.1 6.8 2.5 1.0 43.0 86.8
200 266.8 38.4 32.6 7.8 3.1 0.8 43.1 41.4
250 321.0 46.1 44.6 11.3 3.1 1.3 48.1 101.8
300 380.0 51.8 57.4 13.6 4.2 1.5 51.9 79.7
350 434.8 60.1 68.6 20.3 6.9 3.1 68.7 221.7
400 489.0 64.9 81.8 24.2 9.1 2.5 67.3 181.8
450 548.0 72.3 93.4 29.7 9.5 3.9 70.1 335.3
500 602.8 79.0 106.7 35.3 9.8 3.3 70.0 206.2

Table 2.7: Exact results for Large Instances for the MBV problem (d = 2)

n’ m’ co-class opt timeM timeS time cuts nodes

600 637 37.6 183.8 5.1 3.2 0.3 30.0 18.2
600 674 52.8 167.2 10.9 8.7 1.4 45.6 94.0
600 712 56.8 150.6 19.9 10.3 1.9 64.4 30.0
600 749 50.0 138.8 26.7 17.6 2.3 70.2 85.2
600 787 47.8 125.8 39.2 16.2 3.9 62.8 197.4
700 740 42.0 214.4 6.5 8.7 0.5 37.0 20.0
700 780 58.8 198.0 16.8 11.0 2.0 57.8 170.0
700 821 64.6 180.0 37.8 12.5 20.0 74.8 1591.2
700 861 58.4 164.0 39.7 17.4 7.5 75.4 904.8
700 902 59.2 154.2 57.8 14.7 7.5 93.2 812.0
800 843 45.8 245.6 6.7 10.3 0.4 39.4 7.6
800 886 67.4 227.6 19.1 11.2 1.8 62.8 178.0
800 930 74.4 208.4 85.0 22.7 5.8 90.6 365.4
800 973 74.0 194.2 65.6 48.8 9.8 88.0 695.8
800 1017 69.4 176.2 167.2 37.1 11.3 103.8 568.6
900 944 51.0 279.6 10.0 12.6 0.8 44.6 46.0
900 989 69.8 259.2 23.4 66.2 2.8 63.2 268.8
900 1034 79.0 240.6 44.5 30.2 19.4 92.6 1121.2
900 1079 86.0 223.2 94.0 90.5 9.0 105 406.8
900 1124 77.2 206.0 81.2 30.7 9.1 94.6 322.0

1000 1047 52.4 312.0 10.6 26.2 1.1 42.2 62.6
1000 1095 78.8 290.0 71.1 17.0 4.0 86.0 172.0
1000 1143 91.4 271.2 112.4 57.1 7.8 99.4 458.0
1000 1191 91.6 251.0 150.2 75.4 16.1 109.4 1138.6
1000 1239 96.4 235.2 642.9 62.6 31.0 110.0 1920.8

2.3 Computational Experiments 32

presented in Table 2.7 shows that for all instances, excepting the group of graphs with

700 vertices and 821 edges, the optimal values were reached using the proposed formula-

tion in shorter times than previous works. We believe this behavior was obtained due to

the preprocessing method, which made it possible to obtain graphs with smaller dimen-

sions, and also allowed to fix the value of several variables by using Constraints (2.16)

and (2.17), resulting in a lighter formulation.

Table 2.8: Exact results for tcp instances for the MBV problem (d = 2)

Instance n m opt timeMelo time cuts nodes

alb1000 1000 1998 0 30.13 284.3 0 875
alb2000 2000 3996 0 180.18 1856.7 0 1094
alb3000a 3000 5999 0 74.70 3600.0 0 40
alb4000 4000 7997 0 1778.87 3600.0 0 0

Table 2.8 shows the results only for the tcp instances, since instances dimacs and

stein were exactly solved by the ILS (the method found a 0 bound). As we stated before,

the decomposition process does not bring any benefits to these instances because none

of them have cut vertices that split the graph into three or more components and only

instance le450_15b has two bridges. For this reason, two (out of four) of these instances

were not solved by the proposed exact method into the time limit. On the other hand,

Melo et al. [32] method seems to perform particularly well in these instances. As we can

see in Table 2.8, their method could solve the 4 instances into the time limit with a faster

machine (Intel Core i7-4790K (4.00GHz) CPU and 16GB of RAM).

d-MBV results:

Results of the exact approach for d ∈ {2, 3, 4, 5, 6, 7, 8, 9} are presented in Tables 2.9 and

2.10.

In Merabet et al. [33] the results obtained by using an exact method with their

formulation are shown for different values of d. Their results have shown that the prob-

lem becomes more difficult to solve as the parameter d increases. So, we have tested

our approach to solve similar instances using exact methods and we came to a different

conclusion.

We notice that instances with greater value of d are "easier" to solve because less

computational time has been spent to solve them. We believe that the inclusion of the

constraints (2.16) and (2.17) in our formulation is the main reason for this difference.

With the increment of the parameter d it is easier to classify a vertex as non obligatory

2.3 Computational Experiments 33

Table 2.9: Exact results for values of d ∈ {2, 3, 4} on random instances

i = 1 i = 2 i = 3

|V | opt time nodes opt time nodes opt time nodes
d = 2

50 6.57 0.0 0.1 3.43 0.0 3.8 1.70 1.8 20.7
100 17.07 0.0 1.4 11.90 0.1 3.0 7.90 0.3 31.5
200 37.67 0.0 1.5 28.10 0.1 1.3 20.63 0.7 31.1
300 59.83 0.1 16.3 47.10 0.3 46.5 36.37 0.8 68.9
400 82.33 0.1 0.0 68.00 0.2 0.4 55.53 1.0 34.3
500 105.00 0.1 3.1 86.70 0.4 51.5 72.93 1.5 108.0
600 127.97 0.1 4.8 107.00 0.5 10.5 91.63 1.4 6.5
700 150.70 0.1 0.0 129.53 0.5 11.3 109.10 2.6 114.5
800 174.70 0.1 0.0 150.57 0.8 30.3 128.93 2.8 401.2

d = 3

50 1.03 0.0 13.0 0.23 0.0 0.6 0.10 0.1 2.8
100 4.70 0.0 5.7 1.37 0.1 255.6 0.37 0.0 2.5
200 11.23 0.1 52.3 5.23 0.6 806.9 1.53 0.1 30.3
300 20.37 0.1 2.3 10.17 0.5 294.6 4.90 0.2 35.1
400 29.63 0.1 0.0 17.93 0.2 24.3 9.57 0.2 16.5
500 38.43 0.1 6.6 24.87 0.2 11.0 13.33 0.5 33.3
600 49.90 0.1 2.5 31.60 0.5 24.1 19.30 0.6 37.1
700 60.27 0.1 3.6 39.07 0.5 33.5 24.40 0.9 58.8
800 69.47 0.2 5.2 46.67 0.7 27.9 31.63 6.6 1503.1

d = 4

50 0.13 0.0 0.1 0.03 0.0 0.3 0.00 0.0 0.0
100 1.07 0.0 0.0 0.10 0.0 1.0 0.07 0.0 1.7
200 2.57 0.0 0.9 0.43 0.0 4.7 0.10 0.1 6.4
300 5.47 0.0 3.3 1.37 0.1 10.8 0.47 0.1 13.4
400 8.87 0.1 47.5 3.07 0.1 4.5 1.77 0.2 24.6
500 11.83 0.1 1.3 4.80 0.2 38.5 1.83 0.2 10.6
600 15.77 0.4 302.1 6.73 0.2 38.0 2.93 0.3 26.6
700 19.50 0.1 6.6 9.23 0.3 40.4 4.17 0.3 22.8
800 24.40 0.3 104.3 10.03 0.3 38.0 5.33 0.4 35.8

d-branch. On the other hand, it is also more difficult to classify a vertex as obligatory

d-branch.

2.3.3 Analyzing the impact of the inequalities

To investigate how the inequalities used affect the performance of the exact method,

the result of the relaxation of the model in the root node was analyzed under several

circumstances. Tables 2.11 and 2.12 show the results of these experiments.

The first column shows the result of the relaxation when executing the model without

2.3 Computational Experiments 34

Table 2.10: Exact results for values of d ∈ {5, 6, 7, 8, 9} on random instances

i = 1 i = 2 i = 3

|V | opt time nodes opt time nodes opt time nodes
d = 5

50 0.00 0.0 0.0 0.00 0.0 0.0 0.00 0.0 0.0
100 0.20 0.0 0.0 0.00 0.0 1.1 0.00 0.0 0.2
200 0.47 0.0 0.7 0.03 0.0 0.0 0.03 0.0 1.9
300 1.40 0.0 2.5 0.23 0.0 3.3 0.10 0.1 6.3
400 1.90 0.0 0.7 0.60 0.1 9.2 0.27 0.1 10.8
500 3.57 0.1 5.1 0.93 0.1 2.1 0.30 0.2 8.8
600 3.87 0.2 211.3 1.77 0.1 5.8 0.23 0.2 10.6
700 4.83 0.1 37.3 1.93 0.2 42.0 0.80 0.3 42.9
800 6.77 0.1 9.7 1.87 0.2 27.2 1.10 0.3 34.2

d = 6

50 0.00 0.0 0.0 0.00 0.0 1.2 0.00 0.0 0.1
100 0.00 0.0 0.0 0.00 0.0 0.1 0.00 0.0 1.5
200 0.07 0.0 0.0 0.00 0.0 0.1 0.00 0.0 0.0
300 0.33 0.0 3.6 0.00 0.0 2.5 0.00 0.1 4.3
400 0.57 0.0 5.3 0.03 0.1 4.4 0.00 0.1 2.3
500 0.90 0.0 10.3 0.17 0.1 1.2 0.03 0.2 10.8
600 1.00 0.0 1.9 0.53 0.1 26.8 0.07 0.2 2.8
700 1.27 0.1 6.6 0.30 0.1 9.2 0.17 0.2 3.7
800 1.60 0.1 4.7 0.40 0.2 17.5 0.17 0.3 16.4

d = 7

50 0.00 0.0 0.0 0.00 0.0 0.0 0.00 0.0 0.0
100 0.00 0.0 0.0 0.00 0.0 0.0 0.00 0.0 0.8
200 0.03 0.0 0.0 0.00 0.0 0.0 0.00 0.0 0.3
300 0.07 0.0 1.4 0.00 0.0 2.7 0.00 0.1 2.2
400 0.10 0.0 0.9 0.00 0.0 0.2 0.00 0.1 1.0
500 0.10 0.0 1.4 0.00 0.1 1.1 0.00 0.1 2.2
600 0.20 0.0 4.3 0.10 0.1 2.6 0.00 0.2 6.1
700 0.17 0.0 2.6 0.07 0.1 2.3 0.03 0.2 5.5
800 0.37 0.1 1.1 0.07 0.1 1.6 0.03 0.2 3.3

d = 8

50 0.00 0.0 0.0 0.00 0.0 0.0 0.00 0.0 0.0
100 0.00 0.0 0.0 0.00 0.0 0.0 0.00 0.0 0.0
200 0.00 0.0 0.0 0.00 0.0 0.0 0.00 0.0 0.0
300 0.03 0.0 0.0 0.00 0.0 0.0 0.00 0.1 0.1
400 0.03 0.0 0.8 0.00 0.0 0.7 0.00 0.1 1.0
500 0.03 0.0 0.6 0.00 0.1 2.3 0.00 0.1 4.4
600 0.00 0.0 0.3 0.00 0.1 2.0 0.00 0.1 0.4
700 0.03 0.0 0.0 0.00 0.1 0.4 0.00 0.2 3.2
800 0.00 0.1 0.5 0.03 0.1 4.7 0.00 0.2 2.8

d = 9

50 0.00 0.0 0.0 0.00 0.0 0.0 0.00 0.0 0.0
100 0.00 0.0 0.0 0.00 0.0 0.0 0.00 0.0 0.0
200 0.00 0.0 0.0 0.00 0.0 0.0 0.00 0.0 0.0
300 0.00 0.0 0.0 0.00 0.0 0.0 0.00 0.0 0.0
400 0.00 0.0 0.0 0.00 0.0 0.0 0.00 0.1 0.0
500 0.00 0.0 1.0 0.00 0.0 3.0 0.00 0.1 0.9
600 0.00 0.0 0.3 0.00 0.1 1.0 0.00 0.1 4.6
700 0.00 0.0 1.0 0.00 0.1 0.7 0.00 0.1 1.2
800 0.00 0.0 0.6 0.00 0.1 0.5 0.00 0.2 1.6

2.3 Computational Experiments 35

Table 2.11: Impact of inequalities on relaxation in medium instances

R R(2.16) R(2.17) R(2.19) R(2.21) R(2.22)
0.386 0.386 0.575 0.386 0.386 0.386
1.676 1.676 2.153 1.705 1.676 1.676
4.184 4.184 5.127 4.194 4.184 4.184
6.564 6.564 7.783 6.573 6.564 6.564
9.900 9.900 11.726 9.912 9.900 9.900
13.160 13.160 15.584 13.160 13.160 13.160
15.910 15.910 18.620 15.910 15.910 15.910
19.221 19.221 22.706 19.228 19.221 19.221
22.820 22.820 26.347 22.820 22.820 22.820
25.726 25.726 29.981 25.733 25.726 25.726
36.352 36.352 41.675 36.352 36.352 36.352
46.832 46.832 53.681 46.832 46.832 46.832
56.842 56.842 63.877 56.852 56.842 56.842
69.021 69.021 77.271 69.021 69.021 69.021
78.584 78.584 88.241 78.593 78.584 78.584
90.264 90.264 101.686 90.264 90.264 90.264

Table 2.12: Impact of inequalities on relaxation in large instances

R R(2.16) R(2.17) R(2.19) R(2.21) R(2.22)
172.850 172.850 180.333 172.850 172.850 172.850
150.483 150.483 163.756 150.483 150.483 150.483
130.987 130.987 147.210 130.987 130.987 130.987
115.492 115.492 136.070 115.492 115.492 115.492
101.147 101.147 123.905 101.147 101.147 101.147
203.400 203.400 211.017 203.400 203.400 203.400
178.567 178.567 193.633 178.567 178.567 178.567
157.333 157.333 175.653 157.333 157.333 157.333
138.386 138.386 160.772 138.386 138.386 138.386
124.450 124.450 151.135 124.450 124.450 124.450
233.667 233.667 242.017 233.667 233.667 233.667
207.250 207.250 223.393 207.250 207.250 207.250
182.937 182.937 204.230 182.937 182.937 182.937
164.637 164.637 189.850 164.637 164.637 164.637
145.033 145.033 172.346 145.033 145.033 145.033
266.733 266.733 275.083 266.733 266.733 266.733
238.634 238.634 253.900 238.634 238.634 238.634
215.117 215.117 235.620 215.117 215.117 215.117
192.087 192.087 217.920 192.087 192.087 192.087
172.357 172.357 202.178 172.357 172.357 172.357
297.933 297.933 307.483 297.933 297.933 297.933
267.167 267.167 282.950 267.167 267.167 267.167
240.883 240.883 265.287 240.883 240.883 240.883
217.630 217.630 244.905 217.630 217.630 217.630
196.340 196.340 230.267 196.340 196.340 196.340

2.4 Conclusions 36

any of the restrictions {2.16, 2.17, 2.19, 2.21, 2.22} (denoted as ILPbasic). The next 4

columns show the R relaxation value of the ILPbasic model by adding only the valid

inequality in parentheses.

These results highlight that inequality (2.17) and, to a lesser extent, the inequality

(2.19) impact the performance of the model. Interesting is the fact that the model is

stronger when it establishes which vertices are not branch vertices than when it establishes

which vertices are obligatory. This would explain why instances with large values of d

were solved in less time. The instances used in these experiments are sparse graphs, so

when values of d are large, many vertices can be detected as not being branch vertices in

the solution, because they do not have the sufficient degree for this. Inequalities related

to co-classes (2.19) also impact the performance of the model as evidenced in Table 2.11.

For larger instances, at least in the root node, it was not seen to have a positive impact,

but in general performance, the model with co-classes is faster than without them.

2.4 Conclusions

In this chapter, methods were developed for obtaining exact and heuristic solutions for the

d-MBV problem. A decomposition scheme was applied based on bridges and articulation

points of the graph. In the computational experiments, the average number of vertices in

relation to the original graph was reduced in 42,3% and the average number of edges was

reduced in 52,7%.

An ILS heuristic was developed and obtained good quality results for different d values.

Particularly, for the 2−MBV problem, the heuristic provided better results in 65.8% of

the instances and equal results in 9.7% for the instances of Carrabas et al. [9]. For the

instances used in Silva et al. [46] the heuristic obtained better results in all instances

which previous works have not reached the optimal value.

A based Miller-Tucker-Zemlin formulation and some new valid inequalities were pro-

posed for the problem. The computational results show the effectiveness of the proposed

method, since 97,6% of the instances of Carrabas et al. [9] were solved faster than previous

works (for the 2−MBV problem).

As verified by the experiments carried out, the analysis of the structure of the graph,

as well as the use of concepts such as co-classes had the greatest impact on the effec-

tiveness of the proposed method, both in the decomposition process and in the creation

of new equations for the model. Moreover, the experiments on the analyzed instances

2.4 Conclusions 37

created based on [33] have shown that the number of solved instances increases and the

computational time decrease as the d value rises, since the number of non-obligatorily

vertices is increased.

Chapter 3

The Rainbow Cycle Cover

An edge-colored graph is a graph G = (V,E), with a set of labels or colors L and a color

function f : E → L which assigns a color from L to each edge of E. A large number

of applications can be modeled using edge-colored graphs, being useful in situations that

need to differentiate the types of connections between the vertices [19, 20, 21, 22].

For example, suppose a company wants to do a product promotion tour going through

a few places in a city. When passing between two places, the area being crossed may be

labeled by a major characteristic of its population (young, elderly, women, etc.). The

places may be represented as vertices of a graph, the connection between the places as

edges and these characteristics as colors of the edges. If the objective of the tour is to reach

a wide range of possible customers, the problem may be defined as finding a multicolored

cycle with the largest possible size. Multicolored cycles are also called rainbow cycles [2].

A rainbow cycle is a cycle with all its edges of different colors. Single vertices are

considered trivial rainbow cycles. A rainbow cover for the graph G is defined as a disjoint

collection of rainbow cycles, which means that each vertex can only belong to exactly one

rainbow cycle. According to these definitions, the RCC problem is defined as:

Problem 2 (RCC problem) Given an undirected graph G, the Rainbow Cycle Cover

(RCC) problem consists of finding the minimum number of disjoint rainbow cycles covering

G.

Figure 3.1 shows an example of an edge-colored graph with 4 possible colors (labels)

for the edges. A feasible solution for the RCC problem on this graph is shown in Figure

3.2. In this case there are two non-trivial rainbow cycles and one trivial rainbow cycle.

Moreover, the RCC problem has been proved to be NP-hard in [26]. In [55] it is

3.1 Mathematical Model 39

Figure 3.1: Edge-colored graph with 4 possible colors (labels)

Figure 3.2: A feasible solution for the graph

shown that it is still NP-hard even if the graph does not have cycles of size 3. Recently,

in [47] an integer mathematical formulation was presented for this problem and tested in

different instances.

In this chapter we present a modification of the mathematical formulation presented

in [47], as well as a preprocessing procedure to reduce the size of instances for the RCC

problem. Moreover, we define a new family of valid cuts based on properties of edge-

colored graphs.

3.1 Mathematical Model

Given an undirected graph G = (V,E), where V denotes the set of vertices (|V | = n) and

E the set of edges, we define by δ(v) the set of edges incident to a vertex v in G, where

d(v) = |δ(v)| denotes the degree of vertex v. We also define El = {e ∈ E | f(e) = l}
as the set of edges associated with a color l ∈ L. Finally, R denotes the family of all

non-trivial rainbow cycles of the graph G, where a non-trivial rainbow cycle H ∈ R is

defined by its edge set, i.e., H ⊆ E.

As observed in [47] the maximum number of non-trivial rainbow cycles in a solution

for a graph with n vertices is bounded by the value c = �n
3
�, that occurs when all

rainbow cycles have the minimum length (3 edges). In [47], the authors proposed an

integer formulation, defining a set of indices I = {0, . . . , c − 1} that represents possible

non-trivial cycles in a solution. The binary variables used in their model are defined as

follows:

3.1 Mathematical Model 40

ycv: 1, if and only if the vertex v belongs to the non-trivial cycle c.

xc
e: 1, if and only if the edge e belongs to the non-trivial cycle c.

γc: 1, if and only if c is a non-trivial cycle of the solution.

And the proposed formulation:

min
�

c∈I
γc +

�

v∈V
M

�
1−

�

c∈I
ycv

�
(3.1)

subject to:

�

v∈V
ycv ≤ |L|γc, c ∈ I (3.2)

�

v∈V
ycv ≥ 3γc, c ∈ I (3.3)

c−1�

c=0

ycv ≤ 1, v ∈ V (3.4)

�

e∈δ(v)
xc
e = 2ycv, v ∈ V, c ∈ I (3.5)

xc
e ≤ ycv, v ∈ V, e ∈ δ(v), c ∈ I (3.6)

�

e∈δ(S)
xc
e ≥ 2(ycv + ycu − 1), S ⊂ V, {v, u} ∈ {S, V \ S}, c ∈ I (3.7)

�

e∈El

xc
e ≤ 1, l ∈ L, c ∈ I (3.8)

γc+1 ≤ γc, c ∈ {0, . . . , c− 2} (3.9)
c�

c=v+1

ycv = 0, v ∈ V : v < c (3.10)

ycv ≤
�

w<v

yc−1
w , v ∈ V \ {0}, c ∈ {2, . . . , c− 1} (3.11)

ycv ∈ {0, 1}, v ∈ V, c ∈ I (3.12)

xc
e ∈ {0, 1}, e ∈ E, c ∈ I (3.13)

γc ∈ {0, 1}, c ∈ I (3.14)

where δ(S) = {{u, v} ∈ E | u ∈ S and v ∈ V \S}.

The objective function (3.1) aims to minimize the number of rainbow cycles. The

first part minimizes the sum of variables γc, that is, the number of non-trivial cycles. The

second part tries to force the vertices to belong to a cycle, giving a sufficient large weight

M to each trivial cycle (i.e. isolated vertex).

Constraints (3.2) express that the number of vertices belonging to a non-trivial cycle

3.1 Mathematical Model 41

cannot be greater than the number of colors. Constraints (3.3) ensure that a non-trivial

cycle must have at least three vertices. Constraints (3.4) guarantee that a vertex will

belong to at most one non-trivial cycle. Constraints (3.5) ensure that a vertex belonging

to a non-trivial cycle must have exactly two adjacent edges. Constraints (3.6) impose

that if a vertex does not belong to a non-trivial cycle c, none of its adjacent edges can

belong to that cycle. One can notice that, due to constraints (3.5), constraints (3.6) are

redundant in the formulation. However in [47], the authors used (3.6) as valid cuts in the

branch-and-cut algorithm. Moreover, constraints (3.7) prevent two different non-trivial

cycles to use the same variable γc. Constraints (3.8) impose that in each non-trivial cycle

there may be at most one edge with color l.

Constraints (3.9)-(3.11) are not necessary for the model, but their inclusion helps to

eliminate symmetric solutions. Constraints (3.9) ensure that a variable for the non-trivial

cycle γc is not used if the variable γc−1 is not used. Constraints (3.10) indicate that a

vertex v, with index lower than c, cannot belong to a non-trivial cycle with index c, such

that c > v. Finally (3.11) impose that a vertex v can only belong to a non-trivial cycle

with index c if at least one vertex w, where w < v, belongs to the non-trivial cycle with

index c− 1.

In [47], the authors presented the formulation (3.1)-(3.14) and chose to set M = 2c in

the second part of the objective function (3.1). They claimed that this strategy forces the

vertices of the graph to belong to a non-trivial cycle whenever possible and, consequently,

solve the RCC problem. Actually, with M = 2c, the formulation presented in [47] aims

to cover the graph with disjoint rainbow cycles that minimizes the number of trivial

cycles, breaking ties in favor of covers with minimum number of non-trivial cycles. As a

consequence of this choice, the solution obtained in [47] does not always correspond to

the solution of the RCC problem. To illustrate this point let us consider the graph of

Figure 3.3.

Note that, while the optimal solution for the RCC is the one illustrated in Figure 3.4a

with 3 cycles, the optimal solution obtained by solving the mathematical model proposed

in [47] with

M = 2c = 2�n
3
� = 2�10

3
� = 6

is the one depicted in Figure 3.4b with 4 cycles. In fact, only when M = 1, the formulation

(3.1)-(3.14) can be used to solve the RCC problem.

Our contribution here are twofold: first, in order to differentiate the two problems,

we define the Trivial Cycle RCC (TC-RCC) problem as the problem of finding a rainbow

3.1 Mathematical Model 42

Figure 3.3: Edge-colored graph with 8 colors

Figure 3.4: (a) Optimal solution for the RCC problem. (b) Optimal solution by solving
the model proposed in [47] with M = 2c.

(a) A non-trivial cycle and two trivial cycles
(isolated vertices).

(b) Three non-trivial cycles and one trivial cycle
(isolated vertex).

cover for the graph with minimum number of trivial cycles (isolated vertices) and, as a

secondary objective, to minimize the number of non-trivial cycles. Next, we propose a

slight modification in the set of constraints of the original formulation presented for the

TC-RCC problem. We replace constraints (3.7) by constraints (3.15) in order to prevent

two different non-trivial cycles to use the same variable γc.

�

e∈H
xc
e + xc

f ≤ |H|, H ∈ R, f ∈ E \H, c ∈ I (3.15)

Besides that, in [47], the authors claimed that in the objective function (3.1), the first

3.1 Mathematical Model 43

summation that minimizes the number of non-trivial cycles is less then or equal to c in

the worst case. Thanks to this observation a value equal to 2c is given to the weight M in

their experiments. Actually, one can notice that any value M ≥ c is sufficient to prioritize

the minimization of the trivial cycles. Therefore, we refer to the original and modified

formulation for the TC-RCC problem (when M ≥ c) as TC-RCCIP and TC-RCCIP
MOD,

respectively. Similarly, we refer to the modified formulation for the RCC problem (when

M = 1) as RCCIP
MOD.

3.1.1 Preprocessing and cutting

In [47] some properties of multicolored graphs were presented which were added as con-

straints (cuts) to the problem. Following similar ideas, we design new constraints in order

to strengthen the formulation.

Let’s first define ζ(v) as the number of different colors incident to vertex v ∈ V . In

addition, let ζ(v) ⊕ ζ(v) be the number of different colors incident to the vertices u and

v. Note that, if ζ(v) < 2, the vertex v will be an isolated vertex (i.e. a trivial cycle) and

it can be removed from the original graph in a preprocessing phase. A similar reasoning

can be applied with edges. If an edge {u, v} ∈ E belongs to a rainbow cycle, then the

edges connected to u and v must have different colors. This leads to the conclusion that if

ζ(u)⊕ ζ(v) ≤ 2, then {u, v} cannot belong to any rainbow cycle and can also be removed.

These properties were first noted in [47] and used as formulation constraints. Following

their lead, we also consider removing bridges of the graph, as they do not belong to any

cycle.

Furthermore, as in Chapter 2, the co-classes will have an application in the process

of dimension reduction. We notice that edges that belong to the same co-class have an

interesting property: if one edge of a co-class belongs to a rainbow cycle, then all other

edges of this co-class have to be in this same cycle. This is easy to see since any pair of

edges of the co-class is a 2-edge-cut in the graph. Therefore, if a co-class has at least two

edges with the same color, then none of its edges will be in any solution and the set of

edges can be eliminated. Otherwise, we include the following constraint for each feasible

co-class found:

�

e∈H
xc
e = xc

f · |H|, H ∈ CC , c ∈ I, for any f ∈ H. (3.16)

Notice that constraints (3.16) ensure that if an edge f , that represents co-class H, belongs

3.1 Mathematical Model 44

to cycle c, then all edges of H must be in the same cycle. Otherwise none of the edges of

the co-class will be in the solution. Preprocessing and reducing the instances of a problem

can decrease the resolution time [32, 34]. For this reason Algorithm 3.1 was developed to

process the original graph G = (V,E).

Algorithm 3.1: Reduce_Graph
Input: A graph G
Output: A reduced graph G.

1 change ← True
2 repeat
3 change ←False
4 if there are vertices such that ζ(v) < 2 then
5 remove these vertices from G
6 change ←True

7 else
8 if there are edges {u, v} such that ζ(u)⊕ ζ(v) ≤ 2 then
9 remove these edges from G

10 change ←True

11 else
12 if there are bridges {u, v} then
13 remove these edges from G
14 change ←True

15 else
16 CC = Find_CoClass(G)
17 foreach co-class H ∈ CC do
18 if H has repeated colors then
19 remove all edges of H from G
20 change ←True

21 else
22 include constraints (3.16), based on co-class H

23 until change =False
24 return G

After applying the preprocessing procedure described in Algorithm 3.1, we could end

up with a disconnected graph. Let G1, G2, ..., Gk be the set of graphs induced by the

connected components of the reduced graph G. Since two connected components do not

share any edges, and consequently, any cycles, we can express the objective function of

the problem as:
k�

i=1

zk + |VD|

where VD is the set of removed vertices from G and zk is the optimal solution obtained from

3.1 Mathematical Model 45

solving the problem in graph Gk. In order to illustrate the reduction process presented

in Algorithm 3.1, we consider the graph shown in Figure 3.5.

Figure 3.5: Edge-colored graph

Note that, since vertex 9 has only one incident color, the reduction process shown

in Algorithm 3.1 removes this vertex (lines 4 - 6). The resulting graph does not contain

edges {u, v} such that ζ(v)⊕ζ(v) ≤ 2 or bridges, so only the co-classes are analyzed (lines

16 - 20).

The co-classes of the graph after removing vertex 9 are: C1 = {{1, 2}, {1, 5}}, C2 =

{{2, 3}, {3, 4}, {6, 7}} and C3 = {{7, 10}, {10, 11}}. The edges {2,3} and {6,7} of the

co-class C2 have the same color l3(red), so all edges of C2 are removed from the graph

resulting in the graph shown in Figure 3.6.

Figure 3.6: Graph after removing vertex 9 and all edges in the co-class C2

Now, vertex 3 became isolated and it is removed from the graph (lines 4 - 6). Fur-

thermore, edge {4, 8} is also removed from the graph because ζ(4) ⊕ ζ(8) ≤ 2 (lines 8 -

10). Vertex 4 is removed from the resulting graph because it has only one incident color

(lines 4 - 6) resulting in the graph of Figure 3.7.

After the reduction process, we have to solve the problem in two graphs with 4 vertices

and 5 edges each, instead of one with 11 vertices and 16 edges. As a final step, the method

will determine the following co-classes in the processed graph: C1 = {{1, 2}, {1, 5}},

3.1 Mathematical Model 46

Figure 3.7: Graph after the reduction process

C2 = {{2, 6}, {5, 6}}, C3 = {{7, 10}, {10, 11}} and C4 = {{7, 8}, {8, 11}}, including the

following constraints in the formulation:

xc
{1,2} + xc

{1,5} = 2xc
{1,2}, c ∈ I

xc
{2,6} + xc

{5,6} = 2xc
{2,6}, c ∈ I

xc
{7,10} + xc

{10,11} = 2xc
{7,10}, c ∈ I

xc
{7,8} + xc

{8,11} = 2xc
{7,8}, c ∈ I

with | I |= c = �8
3
� = 2.

We finish this section by presenting an approach to find the co-classes of a graph,

based on the algorithm for bridges detection proposed in [44].

Algorithm 3.2: Find_CoClass
Input: A graph G = (V,E) without bridges.
Output: The co-class family CC .

1 CC ← ∅
2 foreach e ∈ E do
3 mark[e] ← FALSE

4 foreach e ∈ E do
5 if mark[e] = FALSE then
6 mark[e] ← TRUE
7 βG ← the set of all bridges in G\e (presented in [44])
8 if βG �= ∅ then
9 foreach h ∈ βG do

10 mark[h] ← TRUE

11 βG ← βG ∪ {e}
12 CC ← CC ∪ βG

13 return CC

The method, presented in Algorithm 3.2, receives as input a graph without bridges and

repeatedly removes an edge from the graph and determines which edges become bridges

3.2 Matheuristic for the RCC problem 47

by this process. The new bridges and the eliminated edge form a maximal co-class, so

they are marked as analyzed to avoid finding the same co-class again. This algorithm

guarantees to find the set of maximal co-classes, because it processes all the edges of the

graph and does not include twice the same co-class in CC . Since the algorithm proposed

in [44] has complexity O(|V |+ |E|), then Algorithm 3.2 has complexity O(|E|(|V |+ |E|)).

3.2 Matheuristic for the RCC problem

The RCC problem becomes quickly more difficult as the size of the instances increases.

In this sense, developing heuristic methods arises as a necessity. Analyzing the structure

of the problem we can see that from a given solution, finding a neighbor solution of

better quality can be an extremely complicated and expensive task. In the last years,

different strategies have been developed that combine exact and heuristics algorithms.

In this context, matheuristics [28, 30, 15] have attracted the attention of the scientific

community. Matheuristics may use some features of the mathematical models developed

for the problems to customize heuristics to solve these problems or use heuristics to

improve time effectiveness of mathematical programming techniques. In this section,

we develop a matheuristic for the RCC problem based on the Iterated Local Search

(Algorithm 2.2) and the ILP model (Section 3.1), in order to quickly obtain solutions

with good quality.

The developed matheuristics is based on ILS metaheuristic ([27]), so this section will

show the methods used for the Initial Solution, Local Search and the Perturbation. In

our implementation, the best solution found is updated every time a better solution is

obtained in the local search. Moreover, we use as stop condition that a maximum of 10

iterations be performed, as we want to quickly get a solution.

3.2.1 Initial Solution

The mathematical formulation for the RCC (Section 3.1) problem works well for small

graphs, but as the size of the graphs increases, the computational time to solve the problem

increases very fast. One of the causes is the large number of variables and restrictions of

this model.

Let ILP (q)(G) be the procedure that solves the formulation for the RCC in the graph

G, restricting to q the number of non-trivial cycles. Algorithm 3.3 shows the pseudocode

used to construct an initial solution for the RCC problem.

3.2 Matheuristic for the RCC problem 48

Algorithm 3.3: Initial Solution
Input: The graph G.
Output: A rainbow cycle cover R.

1 R ← ∅
2 R� ← ILP (2)(G)
3 N ← non-trivial cycles in R�

4 T ← trivial cycles in R�

5 while N �= ∅ do
6 R ← R ∪N
7 H ← induced graph by T

8 R� ← ILP (2)(H)
9 N ← non-trivial cycles in R�

10 T ← trivial cycles in R�

11 R ← R ∪ T
12 return R

Basically, Algorithm 3.3 solves the mathematical formulation by restricting the max-

imum number of non-trivial cycles to two. Each non-trivial cycle found will be part of

the solution under construction. Then, the algorithm solves again the restricted mathe-

matical formulation for the induced graph on the set of isolated vertices. This process is

repeated until the solution for the induced graph does not contain any non-trivial cycle.

In that case, all the vertices will be added to the solution as trivial cycles (line 11). When

fixing the maximum number of non-trivial cycles for the formulation, the number of the

variables and the restrictions are considerably reduced.

3.2.2 Local Search

Once an initial solution is obtained, a local search is applied (Algorithm 3.4). A neighbor

solution of a current solution is obtained as follows. First, any two non-trivial cycles are

removed and their vertices are added to the set of isolated vertices. The other non-trivial

cycles are fixed. Then, ILP (q)(G) is applied over the set of isolated vertices limiting the

maximum number of non-trivial cycles to three. Then, the neighbor is obtained joining

the solution obtained by solving the formulation ILP (3) over the set of isolated vertices

with the previous fixed non-trivial cycles.

Instead of analyzing all the possible neighbors obtained by removing two non-trivial

cycles, we decided to analyze NN neighbors for a given solution. We set NN as two

times the amount of non-trivial cycles. The reason is to limit to a linear exploration of

the search space related to the number of non-trivial cycles and not to a quadratic one,

3.3 Experimental analysis 49

as it would be if exploring all the neighbors obtained by removing each two non-trivial

cycles.

Moreover, we explored this neighborhood using the first improvement strategy that

stops the local search as soon as the first neighbor that improves the current solution is

found.

Algorithm 3.4: Local_Search

Input: A rainbow cycle cover R.
Output: A rainbow cycle cover R∗.

1 nN ← 0
2 R∗ ← R
3 while nN < NN do
4 nN ← nN + 1
5 N ← non-trivial cycles in R∗

6 T ← trivial cycles in R∗

7 C,C � ← any two cycles in N
8 N ← N \ {C ∪ C �}
9 T � ← all vertices in the cycles C and C �

10 H ← induced graph by T ∪ T �

11 R� ← ILP (3)(H)
12 if |N |+ |R�| < |R∗| then
13 R∗ ← N ∪R�

14 nN ← 0

15 return R∗

3.2.3 Perturbation

The goal of the perturbation in the ILS metaheuristics is to escape from local optima and

to introduce diversity in the search space. To achieve this, α|N | (α ∈ (0, 1]) non-trivial

cycles of the set of non-trivial cycles of the solution are removed. Then, the solution is

reconstructed in a similar way to the one performed in Algorithm 3.3. The main difference

is that when the ILP (2) procedure is executed the first time, restrictions are added to

avoid forming the removed cycles.

3.3 Experimental analysis

In this section, the results obtained by the proposed mathematical formulation and the

matheuristic are presented. We analyze the same set of instances used in [47] for the

3.3 Experimental analysis 50

Algorithm 3.5: Perturbation

Input: A rainbow cycle cover R.
Output: A perturbed rainbow cycle cover R∗.

1 N ← non-trivial cycles in R
2 LC ← list formed by α|N | cycles in N
3 LR ← list of restrictions to avoid forming cycles in LC.
4 N ← N \ LC
5 T ← trivial cycles in R and the vertices in LC
6 R ← ∅
7 flag ← 0
8 while N �= ∅ do
9 R ← R ∪N

10 H ← induced graph by T
11 if flag = 0 then
12 R� ← ILP (2)(H,LR)
13 flag ← 1

14 else
15 R� ← ILP (2)(H)

16 N ← non-trivial cycles in R�

17 T ← trivial cycles in R�

18 R ← R ∪ T
19 return R

exact method. In addition, some of the instances used in [7] were analyzed (all results

are available online 2). These instances correspond to graphs with number of vertices

ranging from 20 to 100, and densities varying between 0.1, 0.2 and 0.3. The number of

colors is always smaller than the number of vertices and varies between 3 and 18. The

tests were developed on an Intel (R) Core i5-4460S CPU @ 2.90GHz, with 6 Mb cache and

8 Gb of RAM using the operating system Fedora 22 and all methods were programmed

in C ++ language using the gcc compiler. The IBM ILOG CPLEX 12.6 was used with a

single thread of execution and 10800 seconds as time limit. All other CPLEX parameters

were left to their default values.

3.3.1 Exact results

Our improved formulations (TC-RCCIP
MOD and RCCIP

MOD) are the starting point for the

development of our branch-and-cut algorithms. We chose to not apply constraints (3.9)

to (3.11) and (3.15) for graphs with |L| ≤ 5. Constraints (3.9) to (3.11) are basically

used to reduce the symmetry of the problem and empirical results indicate a gain of
2www.ic.uff.br/~yuri/files/RCC.zip

3.3 Experimental analysis 51

performance by using (3.9) to (3.11) only for instances where |L| ≥ 6. Besides that, note

that constraints (3.15) are not really necessary for graphs with |L| ≤ 5. This is because

in order to have more than one cycle associated with the same variable γc, there should

exist two different cycles with at least three edges, each one with different colors (as ruled

by constraints (3.8)). So, if |L| < 6 then no variables γc may be associated with more

than one cycle. On the other hand, if |L| > 5 then we include constraints (3.15) as

lazy constraints, i.e., the separation problem is solved only when an integer solution is

obtained.

In order to separate constraints (3.15), a depth first search algorithm is executed in

each rainbow cycle associated with a non-zero variable γc with more than 5 vertices. If

a cycle H ⊆ E is found that contains all vertices associated with variable γc, then the

constraint is not violated. Otherwise, an edge f /∈ H associated with γc (i.e. xc
f = 1) is

selected and a cut is generated, relating f , H and c as constraint (3.15). We only add

one cut for each violated γc variable.

Computational results for the exact method are summarized in Tables 3.1 and 3.2.

Each line presents average statistics over five instances. First, we analyze the impact of

the reduction process described in the previous section over the set of instances. The

results are shown in Table 3.1. The first four columns report the group identification

(ID), number of vertices (n), number of edges (m) and number of colors (l) respectively.

Columns 5, 6, 7 and 8 present, respectively, the average number of vertices (n’), edges

(m’), co-classes used as constraints 3.16 (CC
CUT) and co-classes removed (CC

DEL), after

the reduction process. Unfortunately, the method was not able to increase the number

of connected components in the set of instances tested, but we could slightly reduce the

number of vertices and edges in the graph, which is directly related to the number of

variables and constraints. One can notice that the method is especially more effective in

graphs with few edges and colors, with reductions of up to 45%, 22%, 13.5% and 11.2%

(ID1, ID10, ID19 and ID28) in the number of vertices. Moreover, the number of deleted

co-classes was very small and did not impact the numerical results significantly. On the

other hand, CPLEX tends to solve the formulation faster with the inclusion of constraints

(3.16).

Next, we conduct the experiment to determine the effectiveness of the modified for-

mulations TC-RCCIP
MOD and RCCIP

MOD. In order to be able to compare our results with

[47], a value equal to 2�n
3
� is given to the weight M in the TC-RCCIP

MOD formulation. In

Table 3.2, columns 2 and 3 present, respectively, the average number of rainbow cycles

3.3 Experimental analysis 52

ID n m l n’ m’ CC
CUT CC

DEL

1 20 39 3 11.0 23.8 2.2 1.6
2 20 39 6 14.6 31.4 4.0 0.8
3 20 39 11 16.4 35.0 4.8 0.0
4 20 58 3 16.4 50.0 0.8 1.0
5 20 58 6 18.4 55.6 1.4 0.0
6 20 58 12 18.6 56.2 1.4 0.0
7 20 77 4 19.8 76.8 0.4 0.0
8 20 77 7 19.6 76.4 0.2 0.2
9 20 77 13 19.8 76.8 0.4 0.0
10 30 74 4 23.4 63.2 3.4 2.0
11 30 74 7 27.0 70.6 5.8 0.2
12 30 74 13 27.2 70.8 5.8 0.2
13 30 117 4 27.6 112.0 1.8 0.4
14 30 117 7 29.2 115.8 2.6 0.2
15 30 117 14 29.2 115.8 2.6 0.4
16 30 161 4 29.4 160.2 0.8 0.0
17 30 161 8 29.4 160.2 0.8 0.2
18 30 161 15 29.6 160.6 1.0 0.0
19 40 118 4 34.6 110.6 3.4 1.2
20 40 118 7 35.0 111.4 3.4 0.8
21 40 118 14 36.2 114.2 4.2 0.0
22 40 196 4 38.4 193.2 1.0 0.2
23 40 196 8 38.6 194.2 0.6 0.0
24 40 196 16 39.2 195.2 1.0 0.0
25 40 274 5 39.2 273.0 0.0 0.2
26 40 274 9 39.4 273.4 0.2 0.0
27 40 274 17 39.4 273.4 0.2 0.0
28 50 173 4 44.4 164.6 4.6 0.6
29 50 173 8 45.8 168.2 5.2 0.4
30 50 173 15 46.2 169.0 5.6 0.2
31 50 295 5 48.2 291.8 1.2 0.4
32 50 295 9 48.4 292.6 1.0 0.8
33 50 295 17 49.2 294.2 1.8 0.0
34 50 418 5 49.8 417.8 0.8 0.0
35 50 418 9 49.6 417.4 0.6 0.2
36 50 418 18 49.8 417.8 0.8 0.0

Table 3.1: Reduction process for the RCC problem.

found (TC-RCCIP) and average execution time in seconds obtained by the original for-

mulation reported in [47]. The numbers in subscript indicate the number of instances not

solved to optimality within 10800 seconds. Similarly, columns 4 and 5 present the same

information for the modified formulation (TC-RCCIP
MOD) strengthened by the prepro-

cessing and cutting methods. We also provide information about the number of nodes

examined in the search by the new approach (nodes), and, for each group of instances,

3.3 Experimental analysis 53

the best values (time and solution) for the TC-RCC problem are highlighted in boldface.

Moreover, the last three columns in Table 3.2 display the same information as columns 4

to 6, but now regarding the RCC problem with the modified formulation RCCIP
MOD (with

M = 1). In our results, the time included the preprocessing time (always less than 1

seconds).

ID TC-RCCIP T (s) TC-RCCIP
MOD T (s) nodes RCCIP

MOD T (s) nodes
1 18.00 0.01 18.00 0.00 0.0 18.00 0.00 0.0
2 13.60 0.14 13.60 0.02 3.2 13.60 0.01 0.0
3 10.60 0.18 10.60 0.03 0.0 10.60 0.03 0.0
4 14.80 0.13 14.80 0.09 61.2 14.80 0.13 41.0
5 9.80 1.76 9.80 0.31 171.2 9.80 0.22 123.8
6 6.80 1.71 6.80 0.23 61.0 6.80 0.23 43.0
7 10.00 2.41 10.00 0.49 449.0 10.00 0.40 387.8
8 6.80 5.86 6.80 0.83 667.0 6.60 0.52 365.8
9 4.80 5.71 4.80 0.51 147.0 4.60 0.35 117.8
10 21.80 2.59 21.80 0.26 201.4 21.80 0.31 180.0
11 19.40 15.16 19.40 0.59 162.0 19.40 0.45 80.0
12 15.40 9.33 15.40 0.34 15.6 15.40 0.32 9.6
13 18.20 21.38 18.20 4.23 1564.4 18.20 4.23 1212.6
14 13.00 56.52 13.00 12.13 4574.6 13.00 3.89 1163.6
15 9.60 54.07 9.60 2.94 850.6 9.60 2.42 718.2
16 15.20 180.5 15.20 83.98 7060.0 15.20 93.53 5922.4
17 8.00 210.39 8.00 67.87 23011.6 8.00 63.10 27000.6
18 5.40 55.79 5.40 5.07 1555.6 5.40 8.45 3486.2
19 30.60 10.67 30.60 1.40 719.2 30.60 1.30 768.6
20 24.80 129.83 24.80 3.11 1173.2 24.80 2.74 673.4
21 20.40 34.08 20.40 1.36 245.4 20.40 1.52 145.6
22 25.00 314.22 25.00 83.01 2456.4 25.00 82.55 3038.4
23 15.80 361.94 15.80(1) 2424.49 407878.6 15.8 1613.69 332859.8
24 11.00 480.33 11.00 169.70 24912.4 11.00 23.53 4466.8
25 14.60(2) 5136.55 14.60 2881.00 70865.8 14.60 1314.51 24876.6
26 8.80(2) 6420.92 8.80(1) 4836.47 307291.4 8.40 2358.98 158188.0
27 5.20(1) 3185.14 5.20 344.84 21455.6 5.20 555.02 25825.2
28 35.80 526.1 35.80 44.72 1565.8 35.80 35.73 1505.0
29 30.40 1185.35 30.40 107.87 26816.0 30.20 59.81 15207.2
30 23.40 694.63 23.40 98.95 21368.4 23.00 45.53 13319.0
31 25.40(1) 7354.71 25.40(1) 5529.30 74803.6 25.20 1572.96 18156.4
32 18.40(1) 5558.08 18.40(3) 8099.75 533482.0 18.20(1) 6548.15 515622.8
33 12.80 2695.05 12.80 1635.61 129143.8 12.40 736.82 79698.8
34 19.80(5) 10800 19.60(1) 6165.31 57837.8 19.60(2) 7503.57 62218.4
35 12.80(5) 10214.81 12.80(4) 9974.30 691713.6 12.20(3) 10306.44 449691.2
36 6.60(3) 8954.48 6.40(1) 4664.18 464425.6 6.40(1) 2931.14 101895.4

15.63(20) 1796.68 15.62(12) 1312.37 15.54(7) 996.46

Table 3.2: Results for the original and improved formulation for the TC-RCC and RCC
problems.

The results show that the proposed method (using preprocessing and the modified

mathematical formulation) spends less computational time to solve the 36 groups of in-

stances (1312.37 sec) than the original formulation (1796.68 sec) with a slightly slower

machine (in [47] the experiments were run using a Intel Xeon 3.07GHz with 96 GB of RAM

3.3 Experimental analysis 54

with IBM ILOG CPLEX 12.5). The exception is given by the groups of instances with ID

equal to 23 and 32. Regarding group 23, only one instance (Rand_40_196_51_8.rnd)

could not be solved into the time limit of 10800 seconds, which leads to a large displace-

ment of the mean for the group. Disregarding this instance, the average resolution time

for the remaining four graphs in this group was only 330.61 seconds. Besides that, we

could prove optimality for 2 whole groups of instances (25 and 27), where 3 new optimal

solutions were discovered. Furthermore, the upper bounds of groups 34 and 36 were im-

proved by finding 6 new optimal solutions into these groups. In addition, 2 new optimal

solutions were found in groups 26 and 35. On the other hand, the modified formulation

failed to prove optimality in 3 already known optimal solutions reported in [47] (groups

23 and 32).

Regarding the results for the RCC problem, optimal solutions with fewer cycles were

achieved in 4 groups of instances (8, 9, 29 and 30) when compared to the TC-RCC

problem. Moreover, the mean time for RCCIP
MOD was 24% faster than the time obtained

by the TC-RCCIP
MOD formulation. The reason for that lies in the fact that the big M

factor in the TC-RCC formulation can lead to a main computational disadvantage. In

the RCC, this weakness is avoided by setting M = 1 and eliminating this factor from the

objective function.

3.3.2 Heuristics results

The computational results for the matheuristic are summarized in Table 3.3. As the graphs

of these instances have small dimensions, we decided to use α = 1
3

in the perturbation

procedure. The IBM ILOG CPLEX 12.6 was used to solve the model ILP (q)with a single

thread of execution and 30 seconds as time limit for graphs with 50 vertices or less and

60 seconds for graphs with more than 50 vertices.

In Table 3.3 each line presents average statistics over five instances. The first four

columns report the group identification (ID), number of vertices (n), number of edges

(m) and number of colors (l) respectively. Columns 5 and 6 present, respectively, the

average number of rainbow cycles found and average execution time in seconds obtained

by solving the problem using the mathematical formulation ILP presented in Section 3.1.

Columns 7 and 8 present the same information obtained using the matheuristic

ILS(ILP). The last column shows the gap, calculated as:

gap =
ILP − ILS(ILP)

ILP

3.3 Experimental analysis 55

Table 3.3: Experiments results for ILS(ILP).

ID n m l ILP ILP-time ILS(ILP) ILS(ILP)-time gap
1 20 39 3 18.0 0.00 18.0 0.12 0.0
2 6 13.6 0.01 13.6 1.19 0.0
3 11 10.6 0.03 10.6 1.66 0.0
4 20 58 3 14.8 0.14 14.8 1.25 0.0
5 6 9.8 0.23 9.8 4.37 0.0
6 12 6.8 0.24 6.8 8.85 0.0
7 20 77 4 10.0 0.41 10.0 1.79 0.0
8 7 6.6 0.53 6.6 6.81 0.0
9 13 4.6 0.36 4.6 9.30 0.0
10 30 74 4 21.8 0.31 21.8 1.44 0.0
11 7 19.4 0.45 19.4 9.87 0.0
12 13 15.4 0.32 15.4 9.83 0.0
13 30 117 4 18.2 4.43 18.2 2.66 0.0
14 7 13.0 4.09 13.0 8.36 0.0
15 14 9.6 2.57 9.6 29.02 0.0
16 30 161 4 15.2 94.43 15.4 3.94 0.2
17 8 8.0 64.15 8.4 13.96 0.4
18 15 5.4 8.67 5.4 55.04 0.0
19 40 118 4 30.6 1.31 30.6 2.79 0.0
20 7 24.8 2.77 24.8 9.32 0.0
21 14 20.4 1.53 20.4 12.58 0.0
22 40 196 4 25.0 83.04 25.2 5.09 0.2
23 8 15.8 1717.42 15.8 15.41 0.0
24 16 11.0 23.78 11.0 41.63 0.0
25 40 274 5 14.6 1322.37 15.0 7.44 0.4
26 9 8.4 2388.52 9.4 22.59 1.0
27 17 5.2 561.52 5.6 55.63 0.4
28 50 173 4 35.8 35.80 35.8 3.15 0.0
29 8 30.2 60.29 30.2 22.59 0.0
30 15 23.0 45.75 23.0 33.53 0.0
31 50 295 5 25.2 825.95 26.0 8.72 0.8
32 9 18.2 505.61 19.0 24.32 0.8
33 17 12.4 938.91 12.6 50.65 0.2
34 50 418 5 19.6 7503.57 20.4 11.42 0.8
35 9 12.2 10306.44 13.4 25.96 1.2
36 18 6.4 2931.14 6.6 91.83 0.2
37 100 595 5 69.4 ... 69.0 32.85 -0.4
38 10 56.4 ... 54.0 151.77 -2.4
39 19 46.2 ... 46.0 267.82 -0.2
40 100 1090 6 46.4 ... 43.8 116.26 -2.6
41 11 36.6 ... 32.6 335.23 -4.0
42 21 34.0 ... 23.4 312.22 -10.6
43 100 1585 6 44.4 ... 33.6 92.47 -10.8
44 11 33.6 ... 20.8 445.28 -12.8
45 21 30.0 ... 10.8 463.62 -19.2

3.3 Experimental analysis 56

When the matheuristic ILS(ILP) obtains a better result than the exact method ILP ,

values are highlighted in boldface.

For graphs with 20 and 30 vertices, the branch-and-cut used few seconds to obtain

the exact solution. In these graphs, the matheuristic ILS (ILP) has spent more time and

obtained the optimal values for all groups, except for the groups with id = 16 and id

= 17. For graphs with 40 and 50 vertices, the matheuristic presents a very small gap

related to the exact method and a maximum average time of 91.83 seconds (reached in

the group with id = 36). The proposed method is quite effective in groups of graphs

with 100 vertices. In these groups, the branch-and-cut fails to find the optimal values for

all instances in a time limit of 3 hours (10800 seconds) of execution, and the proposed

matheuristic got much better results in a maximum average time of 463.62 seconds.

3.3.3 Analyzing the impact of the strategies

To investigate how the strategies used affect the performance of the exact method, the

result of the relaxation of the model in the root node was analyzed under several circum-

stances.

Table 3.4 shows the results of these experiments. The first column shows the identifier

of the group of graphs. Column 2 shows the result of the best value obtained by our model

(the same as column 7 in Table 3.2). Column 3 shows the result of the relaxation of the

model described in Section 3.1 (RCCB) without applying the restrictions associated to the

co-class and without using the decomposition scheme (Algorithm 3.1). Column 4 shows

the result of the relaxation of the RCCB model without the decomposition scheme but

adding the constraints relative to the co-classes that are detected in the graph. Column

5 shows the result of the relaxation of the RCCB model by applying the decomposition

scheme and without the restrictions associated with co-class. Finally, the last column

shows the relaxation value of the proposed model using the decomposition algorithm and

the co-class.

The results show that the use of the decomposition scheme and the use of constraints

associated with the co-class impact the resolution of the model. In general, using only

restrictions related to the co-class (R2) turned out to be better than using only decompo-

sition scheme (R3) in 47.22% of the groups of instances. On the other hand, only applying

the decomposition scheme turned out to be better than using only the restrictions related

to the co-class in 25.00% of the groups of instances. When analyzing these results to-

gether with the results of Table 3.1, we can verify that groups of graphs with high number

3.3 Experimental analysis 57

of co-classes were benefited by the use of constraints (3.16), while graphs that have the

largest number of co-classes removed were benefited by the decomposition scheme.

Table 3.4: Impact of the different strategies

ID RCC R1 R2 R3 R4

1 18.000 11.787 12.222 13.600 13.956
2 13.600 8.333 9.083 9.167 9.583
3 10.600 6.000 7.091 6.000 7.091
4 14.800 8.833 9.089 10.000 10.133
5 9.800 5.167 5.333 5.167 5.333
6 6.800 3.500 3.683 3.500 3.683
7 10.000 5.450 5.600 5.450 5.600
8 6.600 3.543 3.543 3.714 3.714
9 4.600 2.092 2.277 2.092 2.277
10 21.800 12.875 13.727 14.350 14.750
11 19.400 7.971 10.314 8.143 10.486
12 15.400 6.092 8.800 6.462 8.985
13 18.200 9.525 10.100 9.825 10.250
14 13.000 5.914 6.600 5.914 6.600
15 9.600 3.907 4.650 4.279 4.836
16 15.200 7.950 7.950 7.950 7.950
17 8.000 4.100 4.188 4.275 4.275
18 5.400 2.373 2.373 2.373 2.373
19 30.600 15.175 16.900 15.625 17.050
20 24.800 11.372 13.343 11.543 13.428
21 20.400 8.614 10.750 8.614 10.750
22 25.000 11.800 11.950 11.950 12.100
23 15.800 7.100 7.100 7.100 7.100
24 11.000 4.187 4.187 4.187 4.187
25 14.600 8.480 8.480 8.640 8.640
26 8.400 4.977 4.977 4.977 4.977
27 5.200 2.918 2.918 2.918 2.918
28 35.800 18.050 19.400 18.500 19.400
29 30.200 11.325 13.162 11.675 13.337
30 23.000 8.560 10.520 8.933 10.707
31 25.200 11.600 11.600 11.600 11.600
32 18.200 6.800 6.800 7.333 7.333
33 12.400 4.259 4.259 4.259 4.259
34 19.600 10.160 10.160 10.160 10.160
35 12.200 5.734 5.734 5.911 5.911
36 6.400 2.967 2.967 2.967 2.967

3.4 Conclusions 58

3.4 Conclusions

In this chapter we establish the difference between two interpretations of the Rainbow

Cycle Cover (RCC) problem. With this objective, the Trivial Cycle RCC (TC-RCC)

problem is defined as the problem of finding a rainbow cover for the graph with minimum

number of trivial cycles (isolated vertices) and, as a secondary objective, to minimize the

number of non-trivial cycles. We proposed a slight modification in the set of original

constraints presented for the TC-RCC and RCC problems, together with a preprocess-

ing and cutting method based on properties of edge-colored graphs. As a result of this

preprocessing procedure and the inclusion of constraints (3.16), a more efficient method

was developed and it was able to find 11 new optimal solutions (8 more than [47]) for

instances that were unsolved for the TC-RCC.

Besides that, this methodology was used to study the RCC problem on the same set

of instances. We pointed out that some of the optimal solutions found had fewer cycles

than the optimal solution values obtained for the TC-RCC problem. Our goal here was to

establish the difference between the two objective functions and give the reader a broader

understanding of the problem domain.

Finally, a based ILS matheuristic was proposed for the RCC problem. According to

the results, the matheuristic obtains very precise values for instances up to 50 vertices.

Moreover, for graphs with 100 vertices, the performance of the matheuristic was superior

to that of the branch-and-cut in terms of time and quality of the results

Chapter 4

The Rainbow Spanning Forest

A rainbow tree is a connected acyclic subgraph of a colored graph G with all its edges of

different colors. Single vertices are considered as trivial rainbow trees. A rainbow spanning

forest of G is defined as a disjoint collection of rainbow trees that covers all vertices of

the graph, which means that each vertex can only belong to exactly one rainbow tree.

Brualdi and Hollingsworth [6] studied the problem of finding rainbow spanning trees and

forests in edge-colored complete bipartite graphs. A necessary and sufficient condition

for the existence of a heterochromatic (rainbow) spanning tree in a graph was given by

Suzuki [51]. Moreover, Carraher et al. [10] studied bounds for the number of edge-disjoint

rainbow spanning trees. Formally, the Rainbow Spanning Forest problem is defined as:

Problem 3 (RSF problem) Given an undirected colored graph G, the Rainbow Span-

ning Forest (RSF) problem consists of finding a rainbow spanning forest of G with the

least number of rainbow trees.

The RSF problem has been proved to be NP-hard in Li and Zhang [26] even for edge-

colored graphs with two colors. Recently, the authors in [8] proved that this problem is

NP-complete on trees and is solvable in polynomial time on paths, cycles and if the optimal

solution value is equal to 1. Moreover, in Carrabs et al. [7], an integer mathematical

formulation and a multi-start scheme based on a greedy algorithm were presented for this

problem. They studied multicolored graphs with different densities and colors. Their

formulation was able to solve problems with up to 50 vertices. In addition, the heuristic

approach presented accurate results when compared to the exactly solution provided by

their formulation.

In this section we present a modification of the mathematical formulation presented

in [7], as well as a fast GRASP [41] metaheuristic for problem. The proposed modified

4.1 Mathematical formulation 60

formulation was capable of solving 38 more instances than the original one. Furthermore,

the GRASP method reduced the execution time in 87.0% while presenting better (in

average) bounds for the tested set of instances.

The remainder of this chapter is organized as follows. Section 4.1 contains the pro-

posed formulation while Section 4.2 presents the heuristic GRASP for RSF. In Section 4.3,

experimental results obtained with the instances proposed in [7] are presented. Finally,

in Section 4.4 the conclusions of this paper are discussed.

4.1 Mathematical formulation

Carrabs et al. [7] present a mathematical formulation based on the maximum number

of connected components in a colored graph G = (V,E, L). They concluded that if no

upper bound is known, then the value c = n − 1 can be used as an upper bound for

the maximum number of connected components, where n = |V |. Since the structure

of the graph is unknown, this value also represents an upper bound for the number of

rainbow trees in a rainbow spanning forest. Their integer formulation uses the set of

indices I = {0, . . . , c− 1} that represents possible connected components (rainbow trees)

in a solution. Similarly, the vertex set uses indices V = {0, ..., n − 1}, where the set of

adjacent edges to the vertex v ∈ V is denoted by δ(v), and the set of edges induced by

a set S ⊆ V is defined as E(S) = {{u, v} ∈ E | u, v ∈ S}. The binary variables used in

their formulation are defined as follows:

ycv: 1, if and only if the vertex v belongs to the connected component c.

xc
e: 1, if and only if the edge e belongs to the connected component c.

αc: 1, if and only if c is a connected component in the solution.

And the following formulation:

min
�

c∈I
αc (4.1)

4.1 Mathematical formulation 61

subject to:

�

v∈V
ycv ≤ (|L|+ 1)αc, c ∈ I (4.2)

�

v∈V
ycv ≥ αc, c ∈ I (4.3)

c−1�

c=0

ycv = 1, v ∈ V (4.4)

xc
e ≤ ycv, v ∈ V, e ∈ δ(v), c ∈ I (4.5)

�

e∈El

xc
e ≤ αc, l ∈ L, c ∈ I (4.6)

�

c∈I

�

e∈E(S)

xc
e ≤ |S|− 1, S ⊂ V, |S| ≥ 2 (4.7)

�

e∈E
xc
e =

�

v∈V
ycv − αc, c ∈ I (4.8)

αc+1 ≤ αc, c ∈ {0, . . . , c− 2} (4.9)

y11 = 1, (4.10)

ycv ≤
�

w<v

yc−1
w , v ∈ V \ {0}, c ∈ {2, . . . , c− 1} (4.11)

ycv ∈ {0, 1}, v ∈ V, c ∈ I (4.12)

xc
e ∈ {0, 1}, e ∈ E, c ∈ I (4.13)

αc ∈ {0, 1}, c ∈ I (4.14)

where El = {e ∈ E | f(e) = l} defines the set of all edges associated with a color l ∈ L.

As we mention in the previous chapter, f : E → L denotes a color function which assigns

a color to each edge of E from the set of colors L.

The objective function (4.1) aims to minimize the number of rainbow trees in the

forest. Constraints (4.2) express that the number of vertices belonging to a connected

component, that is a tree, cannot be greater than the number of colors plus one, otherwise

there will be repeated colours in the tree. Constraints (4.3) ensure that a connected

component must have at least one vertex. Constraints (4.4) guarantee that a vertex will

belong exactly to one tree in the forest. Constraints (4.5) impose that if a vertex does

not belong to the connected component c, none of its adjacent edges can belong to that

component.

Furthermore, constraints (4.6) impose that in each rainbow tree each l ∈ L appears

at most once. Constraints (4.7) are traditional subtour elimination inequalities while

constraints (4.8) ensure a basic condition for a component to be a tree. Constraints (4.9)

4.1 Mathematical formulation 62

to (4.11) are not necessary for the model, but their inclusion helps to eliminate symmetric

solutions. Constraints (4.9) ensure that component c can be used only if component c− 1

has been already assigned to a rainbow tree, while constraint (4.10) breaks symmetry by

fixing a vertex in the first tree. Finally, constraints (4.11) impose that a vertex v can

only belong to a connected component with index c if at least one vertex w, where w < v,

belongs to the component with index c− 1.

The authors in [7] also included the following constraints in order to strengthen the

formulation:

ycv ≤ αc, v ∈ V, c ∈ I (4.15)
�

e∈δl(v)
xc
e ≤ ycv, v ∈ V, c ∈ I, l ∈ L (4.16)

c−1�

c=0



xc

e +
�

h∈δl(u)∪δl(v)
xc
h



 ≤ 2, e = {u, v} ∈ E, l ∈ L \ {f(e)} (4.17)

where δl(v) = {e ∈ El | e = {u, v}} defines the set of all edges of color l with one endpoint

v.

Constraints (4.15) state that if a vertex belongs to a component c, then the variable

representing that component must be used. Constraints (4.16) indicate that if a vertex

belongs to a component, then at most one adjacent edge of each color will be used.

Moreover constraints (4.17) ensure that an edge cannot have two adjacent edges with the

same color.

4.1.1 A modified formulation for the RSF problem

The formulation presented by Carrabs et al. [7] is directly influenced by the maximum

number of connected components c. Actually, one can notice that the number of variables

and constraints is proportional to this upper bound. Thus, in order to deal with this

problem, we propose a slight modification in the previous formulation.

In our approach, we distinguish non-trivial trees, which have more than one vertex,

from trivial trees that have only one vertex. In this scenario, c represents the maximum

number of non-trivial trees in a solution. As a non-trivial tree must have at least two

vertices, then the maximum number of non-trivial trees in a solution is set to c = �n
2
�.

The following binary variables are defined:

4.1 Mathematical formulation 63

ycv: 1, if and only if the vertex v belongs to the non-trivial tree c.

xc
e: 1, if and only if the edge e belongs to the non-trivial tree c.

αc: 1, if and only if c is a non-trivial tree in the solution.

φv: 1, if and only if the vertex v is isolated (trivial rainbow tree) in the solution.

and we propose the following reformulation:

min
�

c∈I
αc +

�

v∈V
φv (4.18)

subject to:

(4.2), (4.6)− (4.9)

(4.11)− (4.14), (4.16)
�

v∈V
ycv ≥ 2αc, c ∈ I (4.19)

c−1�

c=0

ycv = 1− φv, v ∈ V (4.20)

2xc
e ≤ ycu + ycv, e = {u, v} ∈ E, c ∈ I (4.21)
c�

c=v+1

ycv = 0, v ∈ V : v < c (4.22)

α0 = 1, (4.23)

φv ∈ {0, 1}, v ∈ V (4.24)

Similar to the formulation presented by [36], our formulation analyses trivial and non-

trivial components. The objective function aims to minimize the sum of the number of

isolated vertices (trivial trees) and the number of non-trivial trees. Constraints (4.19)

indicate that a non-trivial rainbow tree needs at least two vertices. Constraints (4.20)

enforce that a vertex is an isolated vertex or belongs to exactly one non-trivial tree.

Constraints (4.21) replace constraints (4.5) to force that if an edge belongs to a con-

nected component, then its extreme vertices also belong to the same component. Con-

straints (4.22) were proposed by [47] to solve the Rainbow Cycle Cover Problem and are

used to reduce symmetry. These constraints impose that a vertex v, with index lower than

c, cannot belong to a non-trivial tree with index c, such that c > v. Finally, constraint

(4.23) indicates that any edge-colored graph G = (V,E, L), with E �= ∅, has at least one

non-trivial tree.

4.2 Heuristic approach 64

4.2 Heuristic approach

A greedy randomized adaptive search procedure (GRASP) [41] is a multi-start process,

in which each GRASP iteration consists of two phases: a construction phase and a local

search phase. In the construction phase, the method combines a greedy algorithm with

a random component. Greedy algorithms are iterative procedures and, at each iteration,

include in the solution the element that brings the best possible increment in its qual-

ity. However, this procedure does not always obtain an optimal solution. Therefore, a

random component is included in the construction procedure to bring diversification into

the solutions created, which can lead to good results. Once a solution is generated, a

neighborhood is traversed in search of better solutions (local search phase). This process

is repeated until it reaches the stop criterion. The best solution found among all iterations

is returned as result.

We propose a GRASP heuristic aiming to provide quickly good quality solutions.

Procedures for generating feasible solutions and local search are explained in the next

sections.

4.2.1 Greedy randomized construction

Before proceeding with the method in detail, it will be convenient to introduce some

additional notation. Let G = (V,E, L) be an edge-colored graph. Given a forest F =

{T1, T2, ..., Tk}, where each Ti = (VTi
, ETi

), VTi
⊆ V , ETi

⊆ E, is a non-trivial rainbow

tree, we denote as V = {v ∈ V | v /∈ VT1 ∪ ...VTk
} the set of vertices that do not belong

to any non-trivial tree. Also, for a vertex v ∈ V and a set S ⊆ V we define the set

δS(v) = {u ∈ S | {u, v} ∈ E} as the set of adjacent vertices of v that belong to S and

cS(v) as the number of different colors adjacent to v related to the neighbors in S.

Algorithm 4.1 shows the procedure used to generate a greedy randomized initial so-

lution. In each step of the outer-loop (lines 5 to 19), the algorithm selects an isolated

vertex from V , and later tries to create a rainbow tree from this vertex (inner-loop be-

tween lines 12 to 17). In order to build this rainbow tree, we define a vertex weight

function wS(v) = n · cS(v) + |δS(v)| that establishes an order of candidate vertices S ⊆ V

to be considered. Note that vertices with small weights have few neighbors in S and are

connected by few different colors in this set. Thus, these vertices should be considered

first to be in the rainbow tree. On the other hand, vertices with big weight values have a

larger neighborhood in S, with many adjacent edges with different colors, and are more

4.2 Heuristic approach 65

Algorithm 4.1: Greedy Randomized Construction
Input: The edge-colored graph G = (V,E, L).
Output: A rainbow spanning forest F .

1 it ← 1
2 F ← ∅
3 V ← V

4 while V �= ∅ do
5 wmax, wmin ← maxv∈V {wV (v)}, minv∈V {wV (v)}
6 RCLV ← {v ∈ V |wV (v) ≤ wmin + (wmax − wmin) · β}
7 v ← random element from RCLV

8 VTit
← {v}

9 ETit
← ∅

10 V ← V \ {v}
11 U ← δV (v)

12 while U �= ∅ do
13 wmax, wmin ← maxu∈U{wV (u)}, minu∈U{wV (u)}
14 RLCU ← {u ∈ U |wV (u) ≤ wmin + (wmax − wmin) · β}
15 u ← random element from RLCU

16 VTit
← VTit

∪ {u} and ETit
← ETit

∪ {eu}
17 V ← V \ {u}
18 U ← {u ∈ V | {u} ∪ VTit

and {eu} ∪ ETit
is a rainbow tree}

19 F ← F ∪ {Tit}
20 it ← it+ 1

21 return F

easily handled.

The method starts by randomly selecting a initial vertex from a Restricted Candidate

List RCLV (line 7). We add to RCLV those vertex whose weight wV is lesser than or equal

to a threshold value wmin+(wmax−wmin) ·β, where wmin and wmax are the minimum and

maximum values of wV . The value of β ∈ [0, 1] is used to control the size of the RCLV .

When we choose small values of β the list RCLV contains only vertices with the smallest

weight values, i.e. vertices with few colors incident and low degree. Moreover, for larger

values of β the cardinality of RCLV will grow.

The initial vertex v is the starting point of a new rainbow tree Tit. At each iteration

of the inner-loop (lines 12 to 17), the method tries to expand Tit by inserting a randomly

selected vertex u ∈ RCLU . The Restricted Candidate List RCLU is formed in the same

fashion as RCLV , but now considers only vertices in the subset U ⊆ V that can be used

to expand Tit using vertex u and some edge eu connecting u and the rainbow tree under

construction, i.e., Tit = (VTit
∪ {u}, ETit

∪ {eu}). It is important to note that the weight

4.2 Heuristic approach 66

is always calculated considering the vertices that do not belong to any tree already built

(V). The inner-loop is repeated until U = ∅. At this point, the (maximal) rainbow tree

Tit can not be enlarged and it is finally added to the forest F (line 18). The construction

phase halts when there is no more isolated vertices left in V .

As an example, consider the graph G = (V,E, L) with n = 5 vertices in Figure 4.1.

In this graph, the initial weights of the vertices appear in parentheses. The value of the

evaluation function of vertex 2, for example, is wV (2) = 5 · cV (2)+ δV (2) = 5 · 2+ 4 = 14.

Making good choices in each stage of the construction phase may determine the quality

of the constructed solution. Figure 4.2 shows a forest with 3 trees as result of choosing

the vertex with the highest value of the evaluation function in each step. The sequence

of vertices for the first rainbow tree is (2 → 3 → 1), while the second and third rainbow

trees are composed by vertex 4 and 5, respectively.

Figure 4.1: A graph with n = 5 vertices

Figure 4.2: A rainbow forest with three rainbow trees

4.2 Heuristic approach 67

Figure 4.3 shows a forest with 2 trees, resulting of choosing the vertex with smaller

value of the evaluation function in each step. In this case, the sequence of vertices for the

first rainbow tree is (5 → 2 → 4), and the second rainbow tree was composed using the

sequence (1 → 3).

Figure 4.3: A rainbow forest with two rainbow trees

It is clear that depending on the value chosen for β ∈ [0, 1], the impact on the diversity

of the solutions will be different. If the value of β is close to 1, the algorithm would choose

vertices from a larger list, which could deteriorate the quality of the constructed solutions

and slow down the local search process. On the other hand, if a small value is chosen

for β, then this may be too restrictive and decrease the diversity of the solutions, making

the algorithm behave much like a greedy algorithm. Empirical tests were conducted on

some of the instances with 30 and 40 vertices described in Section 4.3 to evaluate values

of β ∈ {0.1, 0.2, ..., 0.8, 0.9}. The best quality results were obtained using β = 0.2 and

β = 0.3 (slightly better with 0.3). We observe that any further increase beyond this

value, the heuristic takes longer to converge to the same solution. For this reason, for the

computational experiments, we used β = 0.3.

4.2.2 Local search

While at the expense of some computing time, the solution generated at the construc-

tion method can usually be improved by some greedy local search. Given a forest

F = {T1, T2, ..., Tk}, three neighborhoods are defined by considering three movements.

When two rainbow trees Ti = (VTi
, ETi

) and Tj = (VTj
, ETj

) do not have any color in

common, we explore the Leaf_Merge and Edge_Merge movements. Otherwise, if Ti and

Tj have exactly one common color, we only analyze the 2Edge_Merge movement. The

4.2 Heuristic approach 68

three neighborhoods are described bellow:

Leaf_Merge: This neighborhood considers all solutions that can be reached from

merging trees Ti and Tj using a leaf vertex from a tree Tk, where i �= k �= j. More

specifically, we look for a leaf vertex v of some tree Tk = (VTk
, ETk

), and vertices ui ∈ VTi

and uj ∈ VTj
, where {v, ui} and {v, uj} are edges of the graph. Then, if the colors of

{v, ui} and {v, uj} are not present in ETi
∪ ETj

, a new combined rainbow tree Tij is

created by removing vertex v from Tk and connecting trees Ti and Tj using the edges

{v, ui} and {v, uj}. Figure 4.4 shows a forest composed of three rainbow trees with

vertices VTi
= {6, 7}, VTj

= {8, 9, 10} and VTk
= {1, 2, 3, 4, 5}. Dashed lines represent

edges that do not belong to the forest but belong to the set of edges of the graph. Node 2

may be removed from Tk and the trees Ti and Tj may be combined using the edges {2, 7}
and {2, 10}. The combined tree is pictured in Figure 4.5.

Figure 4.4: A rainbow forest with three rainbow trees

Edge_Merge: Similar to Leaf_Merge, this neighborhood considers all solutions that

can be reached from merging trees Ti and Tj by directly connecting them. We first look for

an edge eij = {ui, uj} in G between the trees Ti and Tj, such that ui ∈ VTi
, uj ∈ VTj

, and

create the combined tree Tij. Note that the color of eij is already represented in ETi
∪ETj

by another edge, denoted e (or else Ti or Tj could be enlarged during the construction

phase). Thus, in order to reach a feasible rainbow structure Tij, we try to swap edge

e ∈ ETi
∪ETj

for another one e� with a color not present in the combined tree, such that,

if e� is added then one of the trees (Ti or Tj) would have a cycle containing both e and e�.

4.2 Heuristic approach 69

Figure 4.5: A rainbow forest with two rainbow trees after Leaf_Merge

Figure 4.6 shows a forest composed of two rainbow trees with vertices VTi
= {1, 3, 4} and

VTj
= {2, 5, 6, 7}. The edge {4, 7} connects Ti and Tj. In order to combine the trees, edge

{5, 7}, that has the same color of edge {4, 7}, is swapped by edge {2, 7}, which has a color

not present in the solution and which, if added, creates a cycle in the tree Tj containing

both {2, 7} and {5, 7}. The combined tree is shown in Figure 4.7

Figure 4.6: A rainbow forest with two rainbow trees

2Edge_Merge: Let ei ∈ Ei and ej ∈ Ej be the edges with the same color in Ti

and Tj, respectively. The 2Edge_Merge neighborhood considers all solutions that can

be reached from the current one by combining trees Ti and Tj using two different edges

e1ij = {u1
i , u

1
j} and e2ij = {u2

i , u
2
j}, such that u1

i , u
2
i ∈ VTi

and u1
j , u

2
j ∈ VTj

. We specifically

look for edges e1ij and e2ij, with colors not present in ETi
∪ETj

, that will form a cycle with

4.2 Heuristic approach 70

Figure 4.7: A rainbow forest with one rainbow tree after Edge_Merge

one of the edges with the same color (ei or ej). In this way, the combined rainbow tree

Tij is created by removing the cycle edge ei (or ej), and connecting Ti and Tj through

edges e1ij and e2ij. Figure 4.8 shows a forest composed of two rainbow trees with vertices

VTi
= {3, 5, 7}, VTj

= {1, 2, 4, 6} and edges {5, 7} and {2, 4} with the same color. If we

connect Ti and Tj through edges {1, 3} and {2, 7}, a cycle is created which contains the

edges {1, 3}, {3, 7}, {2, 7}, {2, 4} and {1, 4}. Next, edge {2, 4} is removed and the trees

Ti and Tj are combined using the edges {1, 3} and {2, 7} as shown in Figure 4.9.

Figure 4.8: A rainbow forest with two rainbow trees

Figure 4.9: A rainbow forest with one rainbow tree after 2Edge_Merge

The local search phase of the proposed method is performed with a Variable Neighbor-

4.3 Computational experiments 71

hood Descent (VND) heuristic [18]. The method sequentially explores the family of neigh-

borhoods N in the following increasing-complexity order: Leaf_Merge (N1), Edge_Merge

(N2) and 2Edge_Merge (N3). We denote as Nk(F) the set of forests (solutions) that are

neighbors of F on neighborhood Nk. Algorithm 4.2 illustrate the VND with a best im-

provement strategy in which the explored solution F � replaces F if |F �| < |F | (line 4).

In this case, the search is reinitialized from the first neighborhood (N1 =Leaf_Merge).

On the other hand, if |F �| = |F |, then the neighborhood index is increased (line 8). The

local search halts when all three neighborhoods have been explored without improving

the current solution F .

Algorithm 4.2: VND
Input: Forest F and family of neighborhoods N1=Leaf_Merge,

N2 =Edge_Merge and N3 =2Edge_Merge.
Output: Forest F after exploring the movements.

1 k ← 1
2 repeat
3 F � ← best neighbor of F in Nk(F)
4 if |F �| < |F | then
5 F ← F �

6 k ← 1

7 else
8 k ← k + 1

9 until k > 3

4.3 Computational experiments

In this section, the results obtained by the proposed modified mathematical formulation

and the GRASP metaheuristic are presented (all results are available online 3). We analyze

the same set of instances used in [7]. These instances are divided into two groups: small

scenarios and large scenarios. Small scenarios have instances that correspond to graphs

with number of vertices ranging from 20 to 50, and densities varying between 0.1, 0.2

and 0.3. The number of colors is always smaller than the number of vertices and varies

between 3 and 18. On the other hand, large scenarios have instances that correspond to

graphs with number of vertices ranging from 100 to 400, and densities varying between

0.1, 0.2 and 0.3. The number of colors varies between 5 and 30.

The computational experiments in [7] were carried out on a Intel Xeon X5675 processor
3www.ic.uff.br/~yuri/files/SFR.zip

4.3 Computational experiments 72

running at 3.07 GHz with 96 GB of RAM using IBM ILOG CPLEX 12.5. In contrast,

our tests were executed on an Intel (R) Core i5-4460S CPU @ 2.90GHz, with 8 GB of

RAM using a 64-bit Linux and all methods were programmed in C++ language. The

IBM ILOG CPLEX 12.6 was used with a single thread of execution and 10800 seconds as

time limit. All other CPLEX parameters were left to their default values. Using the data

provided by the cross-platform processor benchmark Geekbench 3 [39], the performance

ratio between their computer and ours is 1.033, so we consider them as similar machines.

4.3.1 Results of the heuristic

We compare in this section the performances of the GRASP method and the multi-start

greedy heuristic presented in [7], denoted MS. Tables 4.1 and 4.2 present the results

obtained for small and large scenarios respectively. The number of iterations of the

GRASP method has been fixed at 100 for each instance and each one was executed 10

times. In these tables, each line presents average statistics over five instances. The first

four columns report the group identification (ID), number of vertices (n), number of

edges (m) and number of colors (l) respectively. Columns MS, time and gap present,

for the multi-start heuristic proposed in [7], the average number of rainbow trees found,

the average execution time in seconds and the gap between the results obtained by exact

algorithms and the results obtained by the heuristic, respectively. The next three columns

display the same information as the previous three columns, but for the proposed GRASP

heuristic. Moreover, if a solution (or time) is strictly better than the previous bound (or

time), it is represented in boldface.

In small scenarios (Table 4.1), the GRASP procedure was able to find solutions strictly

better than those obtained by MS in 55.6% of the groups of instances, equal solutions

for 33.3% of the groups and worse solutions in 11.1% of the groups of instances. Using a

similar computing power (as it was shown at the beginning of this section), these results

show that the GRASP heuristic was able to find good quality results faster than the MS

heuristic (89.5% faster times).

A similar behavior was presented by the GRASP for large scenarios (Table 4.2). In

this table we denote as "—" the gap for graphs with more than 100 vertices, because there

are no results found by exact methods. In large scenarios, the GRASP procedure was

able to find solutions strictly better than those obtained by MS in 83.3% of the groups of

instances and worse solutions for 13.9%. This behavior is especially clear for the groups

of instances with 300 and 400 vertices, which our method achieved better bounds in 17

4.3 Computational experiments 73

ID n m l MS time gap GRASP time gap
1 20 39 3 7.0 0.10 0.4 6.6 0.01 0.0
2 6 4.8 0.10 0.6 4.8 0.01 0.6
3 11 2.8 0.13 0.6 2.6 0.01 0.4
4 20 58 3 6.4 0.13 0.8 5.8 0.01 0.2
5 6 3.6 0.15 0.4 3.4 0.01 0.2
6 12 2.0 0.05 0.0 2.0 0.01 0.0
7 20 77 4 4.4 0.11 0.4 4.2 0.00 0.2
8 7 3.0 0.07 0.0 3.0 0.01 0.0
9 13 2.0 0.06 0.0 2.0 0.01 0.0
10 30 74 4 8.8 0.20 0.4 8.6 0.02 0.2
11 7 5.4 0.25 0.4 5.8 0.02 0.8
12 13 3.4 0.16 0.4 3.4 0.03 0.4
13 30 117 4 7.4 0.33 0.6 7.0 0.02 0.0
14 7 4.4 0.27 0.2 4.2 0.02 0.0
15 14 3.0 0.49 0.4 2.8 0.02 0.2
16 30 161 4 6.4 0.32 0.0 6.4 0.01 0.0
17 8 4.0 0.12 0.0 4.0 0.02 0.0
18 15 2.2 0.39 0.2 2.0 0.03 0.0
19 40 118 4 12.0 0.29 1.8 11.0 0.04 0.8
20 7 7.4 0.41 1.0 7.2 0.04 0.8
21 14 4.0 0.51 0.8 4.6 0.05 1.4
22 40 196 4 9.8 0.48 1.0 9.0 0.03 0.2
23 8 5.2 0.43 0.2 5.2 0.04 0.2
24 16 3.2 0.33 0.2 3.0 0.06 0.0
25 40 274 5 7.0 0.22 0.0 7.0 0.03 0.0
26 9 5.0 1.00 1.0 4.2 0.01 0.2
27 17 3.0 0.21 0.0 3.0 0.06 0.0
28 50 173 4 14.6 0.35 2.2 13.6 0.07 1.2
29 8 9.2 0.46 1.2 9.8 0.08 1.8
30 15 5.4 0.54 1.0 5.6 0.10 1.2
31 50 295 5 9.8 0.55 0.8 9.4 0.06 0.4
32 9 6.0 0.84 1.0 6.0 0.06 1.0
33 17 4.0 1.11 1.0 3.0 0.09 0.0
34 50 418 5 9.0 0.59 0.0 9.0 0.05 0.0
35 9 6.0 1.19 1.0 5.4 0.04 0.4
36 18 3.2 0.67 0.2 3.0 0.11 0.0
Avg. 5.7 0.38 0.6 5.5 0.04 0.4

Table 4.1: Heuristic results on small scenarios

4.3 Computational experiments 74

ID n m l MS time gap GRASP time gap
37 100 595 5 24.80 0.73 4.80 24.60 0.62 4.60
38 10 11.80 1.15 1.80 14.00 0.58 4.00
39 19 7.20 1.45 1.80 9.00 0.94 4.60
40 100 1090 6 15.60 1.52 0.60 15.00 0.26 0.00
41 11 10.20 2.00 1.20 9.40 0.42 0.40
42 21 6.20 2.64 1.20 5.00 0.58 0.00
43 100 1585 6 15.20 1.27 0.20 15.00 0.30 0.00
44 11 9.20 2.11 0.20 9.00 0.37 0.00
45 21 5.60 4.50 0.60 5.00 0.65 0.00
46 200 2190 6 43.60 3.47 — 44.00 8.49 —
47 12 18.60 5.05 — 21.80 7.24 —
48 23 13.20 7.62 — 13.20 7.63 —
49 200 4180 7 27.00 12.63 — 25.20 0.86 —
50 13 16.60 16.96 — 15.00 2.17 —
51 25 10.40 23.29 — 8.00 3.43 —
52 200 6170 7 26.20 25.26 — 25.00 0.06 —
53 13 15.20 25.50 — 15.00 2.73 —
54 26 9.00 45.37 — 8.00 5.05 —
55 300 4785 7 54.80 12.32 — 51.00 32.02 —
56 13 26.40 19.26 — 25.20 23.55 —
57 25 18.00 28.99 — 15.20 26.98 —
58 300 9270 7 41.80 50.44 — 38.00 4.17 —
59 14 22.00 82.13 — 20.00 0.30 —
60 27 14.20 96.14 — 11.00 9.54 —
61 300 13755 7 39.20 125.62 — 38.00 6.93 —
62 14 21.00 203.72 — 20.00 0.33 —
63 28 11.80 177.91 — 11.00 17.86 —
64 400 8380 7 79.20 43.33 — 75.20 156.11 —
65 14 31.80 69.59 — 27.00 22.15 —
66 27 22.80 97.05 — 15.60 52.62 —
67 400 16360 7 60.60 176.52 — 50.00 0.23 —
68 14 28.40 279.07 — 24.40 17.60 —
69 28 17.00 306.68 — 14.00 24.26 —
70 400 24340 8 45.20 247.19 — 45.00 17.26 —
71 15 26.00 857.59 — 25.00 0.65 —
72 30 14.40 718.85 — 19.40 36.50 —
Avg. 23.89 104.86 — 22.39 13.65 —

Table 4.2: Heuristic results on large scenarios

4.3 Computational experiments 75

(out of 18) groups. Note that the MS heuristic presented a rapid increase in time as the

size of the instances increases, while the computational time of the GRASP heuristic does

not increase so fast as can be seen in Table 4.2. This leads to a GRASP method 87%

faster than the MS heuristic to deal with large instances.

4.3.2 Results of the exact method

As discussed in [7], a good upper bound for the maximum number of connected compo-

nents in a rainbow forest would help to decrease the number of variables and constraints

used in the formulation. The results obtained by the heuristics could be used as an upper

bound for the number of rainbow trees in a forest, and consequently, for the number of

non-trivial rainbow trees.

Experiments were developed to compare the computational results obtained by our

formulation (ILPM) and our bounded formulation (denoted as ILPB). This last formula-

tion is based on ILPM and uses, as an upper bound for the number of non-trivial rainbow

trees in the forest, the minimum between the theoretical bound � n
2
� and the value obtained

by the GRASP heuristic, which may be higher than the theoretical bound depending on

the characteristics of the graph.

Table 4.3 shows the computational results of the proposed formulations ILPM and

ILPB for small scenarios. The first four columns give the same information as described

in Tables 4.1 and 4.2. Columns 5 and 6 present, respectively, the average number of

rainbow trees found and average execution time in seconds obtained by the formulation

reported in [7], denoted in this work as ILP. The numbers in subscript indicate the number

of instances not solved to optimality within 10800 seconds. Similarly, columns 7 and 8,

and columns 9 and 10 present the same information as columns 5 and 6, for the modified

and bounded formulations, respectively. Again, if a solution (or time) is strictly better

than the previous bound (or time), it is represented in boldface.

The results show that the formulation ILPM was able to solve 8 more instances than

the formulation presented in [7]. Moreover, ILPM obtained faster average execution times

than ILP (621.92 and 1332.29 seconds, respectively) for the small scenario instances. The

best results were obtained by the ILPB formulation which uses the results of the GRASP

heuristic as bounds for the number of non-trivial trees. It was able to solve 11 more

instances than ILP, and 3 more instances than ILPM . Furthermore, the execution times

to solve the instances were faster than the ones from formulations ILPM , except for the

groups of instances with ID 13, 28 and 36. In these groups, the formulation ILPM had a

4.3 Computational experiments 76

ID n m l ILP[7] time ILPM time ILPB time
1 20 39 3 6.6 2.94 6.6 0.27 6.6 0.26
2 6 4.2 3.74 4.2 0.60 4.2 0.33
3 11 2.2 1.1 2.2 0.28 2.2 0.10
4 20 58 3 5.6 3.9 5.6 0.46 5.6 0.22
5 6 3.2 2.14 3.2 0.54 3.2 0.07
6 12 2.0 1.21 2.0 0.29 2.0 0.05
7 20 77 4 4.0 2.3 4.0 0.12 4.0 0.08
8 7 3.0 1.63 3.0 0.42 3.0 0.09
9 13 2.0 1.63 2.0 0.33 2.0 0.05
10 30 74 4 8.4 129.42 8.4 18.53 8.4 17.60
11 7 5.0 204.63 5.0 4.50 5.0 2.93
12 13 3.0 8.02 3.0 2.00 3.0 0.26
13 30 117 4 6.8(1) 2199.73 6.8 15.34 6.8 31.73
14 7 4.2 16.72 4.2 1.92 4.2 0.29
15 14 2.6 51.51 2.6 2.06 2.6 0.21
16 30 161 4 6.4 36.88 6.4 1.15 6.4 0.41
17 8 4.0 17.27 4.0 3.66 4.0 0.25
18 15 2.0 18.84 2.0 2.91 2.0 0.17
19 40 118 4 10.2 2283.43 10.2 1172.35 10.2 459.09
20 7 6.4(2) 4711.31 6.4(1) 2195.53 6.4 974.10
21 14 3.4(2) 4348.36 3.2 127.95 3.2 79.00
22 40 196 4 8.8 2336.74 8.8 56.88 8.8 29.56
23 8 5.0 121.37 5.0 12.19 5.0 1.07
24 16 3.0 82.75 3.0 7.91 3.0 0.49
25 40 274 5 7.0 89.99 7.0 8.25 7.0 1.28
26 9 4.0 86.37 4.0 10.65 4.0 0.95
27 17 3.0 139.92 3.0 13.70 3.0 1.18
28 50 173 4 12.6(4) 8994.51 12.4(3) 7458.11 12.4(3) 7471.59
29 8 9(4) 10652.42 8(2) 4503.49 8(1) 3228.25
30 15 4.8(3) 6536.58 4.4(2) 4365.42 4.4(2) 4326.28
31 50 295 5 9.0 618.57 9.0 23.19 9.0 7.88
32 9 5.2(1) 2318.95 5.2(1) 2195.44 5.0 8.73
33 17 3.0 1009.18 3.0 51.76 3.0 2.21
34 50 418 5 9.0 294.84 9.0 20.60 9.0 5.38
35 9 5.0 295.96 5.0 33.08 5.0 3.80
36 18 3.0 337.71 3.0 77.09 3.0 326.61
Avg. 5.2(17) 1332.29 5.1(9) 621.92 5.1(6) 471.74

Table 4.3: Exact results on small scenarios

4.4 Conclusions 77

ID n m l ILPM time ILPB time
37 100 595 5 20.20(5) 10800.00 20.00(5) 10800.00
38 10 10.00 2559.58 10.00 664.32
39 19 5.40 2595.84 5.40 822.59
40 100 1090 6 15.40(1) 4063.68 15.00 151.28
41 11 9.00 2926.83 9.00 472.79
42 21 9.80(4) 9585.06 5.00 1021.46
43 100 1585 6 15.00 3870.17 15.00 546.14
44 11 26.20(1) 6749.52 9.00 2028.07
45 21 43.40(4) 9152.80 5.00(1) 2500.75

Avg. 17.16(15) 5811.50 10.24(6) 2498.14

Table 4.4: Exacts results on large scenarios with 100 vertices

slightly better performance, using less time than formulation ILPB (3.56 % faster).

Table 4.4 shows the results obtained by models ILPM and ILPB on large scenarios

for graphs with 100 vertices. For these instances, the formulation proposed in [7] was

reportedly not able to solve any instance. In this set of instances, ILPM and ILPB were

able to solve 30 and 39 instances respectively. The exact approach quickly becomes not

exploitable for instances of dimension greater than 200. Formulations ILP and ILPM were

not able to solve any of these instances, however the bounded formulation ILPB reached

the optimal solution in instance Rand_200_4180_79_7.rnd (optimal value 25 and time

7594.35 seconds).

4.4 Conclusions

In this chapter, methods were developed for obtaining exact and heuristic solutions for

the Rainbow Spanning Forest problem. A GRASP heuristic was developed which has

obtained better results both in terms of quality and computational time than the MS

heuristic presented in [7]. A modified formulation was also proposed by considering only

the non-trivial connected components in the forest. The computational results show the

effectiveness of this modified formulation, capable of solving 38 more instances (8 in small

scenarios and 30 in large scenarios) than the formulation previously presented in [7] within

the time limit of 3 hours. Moreover, this modification enables to improve the bounds for

unsolved instances and to reach shorter computational times. All these results were also

presented by us in [35].

Chapter 5

Conclusions

In this thesis, exact and heuristic methods were developed to obtain solutions to hard

problems in graphs. We elaborated different strategies to decompose and preprocess in-

stances of the Minimum d-Branch Vertices problem and the Rainbow Cycle Cover prob-

lem. The obtained results show that preprocessing the instances brings great benefits to

the exact resolution of these problems. Prefixing variables and reducing the size of the

analyzed instances allowed to reduce the computational time used to solve them. Also

valid inequalities and cuts were created that improved the computational time to find

solutions to the developed models.

We developed mathematical models, considering the particular characteristics of each

problem, that improved the results obtained so far for these problems. We defined the

concept of co-classes of a graph and we used it to reduce the size of the instances and

to create cuts and valid inequalities for the models. The obtained experimental results

showed that using the concept of co-classes positively impacted the resolution effectiveness

of the models.

Different types of integration between heuristic and exact methods were implemented.

We used the results of heuristics to be upper bounds for the exact method in the Minimum

d-Branch Vertices problem, and to reduce the number of variables and restrictions of

the model of the Rainbow Spanning Forest problem. Experimental results showed that

using heuristics to reduce the number of variables and/or inequalities of the model had a

positive impact. We have also proposed a hybrid method to address the Rainbow Cycle

Cover problem that turned out to be effective for larger instances.

In general, our heuristics obtained very good quality solutions and used less com-

putational time than heuristics of previous works. Moreover, our exact methods found

5 Conclusions 79

solutions and new bounds for several unsolved instances, spending less computational

time than previous methods.

Our future research will be oriented to the development of other strategies for the

resolution of models, such as polyhedral analysis and column generation method. Also,

we will study problems on rainbow paths, as well as the task of developing a fully heuristic

method to solve the Rainbow Cycle Cover problem.

References

[1] Akgün, İ.; Tansel, B. Ç. Min-degree constrained minimum spanning tree problem:
New formulation via Miller–Tucker–Zemlin constraints. Computers & Operations
Research 37, 1 (2010), 72–82.

[2] Alexeev, B. On lengths of rainbow cycles. Journal of Combinatorics 13, 4 (2006),
R105.

[3] Bastos, L.; Ochi, L. S.; Protti, F.; Subramanian, A.; Martins, I. C.;
Pinheiro, R. G. S. Efficient algorithms for cluster editing. Journal of Combinatorial
Optimization 31, 1 (2016), 347–371.

[4] Blum, C.; Puchinger, J.; Raidl, G. R.; Roli, A. Hybrid metaheuristics in
combinatorial optimization: A survey. Applied Soft Computing 11, 6 (2011), 4135–
4151.

[5] Boschetti, M. A.; Maniezzo, V. Combining exact methods and heuristics. Wiley
Encyclopedia of Operations Research and Management Science (2011).

[6] Brualdi, R. A.; Hollingsworth, S. Multicolored forests in complete bipartite
graphs. Discrete Mathematics 240, 1-3 (2001), 239–245.

[7] Carrabs, F.; Cerrone, C.; Cerulli, R.; Silvestri, S. The rainbow spanning
forest problem. Soft Computing (2017), 1–12.

[8] Carrabs, F.; Cerrone, C.; Cerulli, R.; Silvestri, S. On the complexity of
rainbow spanning forest problem. Optimization Letters (2018), 1–12.

[9] Carrabs, F.; Cerulli, R.; Gaudioso, M.; Gentili, M. Lower and upper bounds
for the spanning tree with minimum branch vertices. Computational Optimization
and Applications 56, 2 (2013), 405–438.

[10] Carraher, J. M.; Hartke, S. G.; Horn, P. Edge-disjoint rainbow spanning
trees in complete graphs. European Journal of Combinatorics 57 (2016), 71–84.

[11] Cerulli, R.; Gentili, M.; Iossa, A. Bounded-degree spanning tree problems:
models and new algorithms. Computational Optimization and Applications 42, 3
(2009), 353–370.

[12] Coelho, V.; Grasas, A.; Ramalhinho, H.; Coelho, I.; Souza, M.; Cruz,
R. An ILS-based algorithm to solve a large-scale real heterogeneous fleet VRP with
multi-trips and docking constraints. European Journal of Operational Research 250,
2 (2016), 367–376.

References 81

[13] Dantzig, G. B.; Ramser, J. H. The truck dispatching problem. Management
science 6, 1 (1959), 80–91.

[14] Dijkstra, E. W. A note on two problems in connexion with graphs. Numerische
mathematik 1, 1 (1959), 269–271.

[15] Dupin, N.; Talbi, E.-G. Matheuristics for the discrete unit commitment problem
with min-stop ramping constraints. In Matheuristics 2016 - Proceedings of the Sixth
International Workshop on Model-based Metaheuristics (Brussels, Belgium, 2016),
pp. 72–83.

[16] Garey, M. R.; Johnson, D. S. Computers and intractability. a guide to the theory
of NP-completeness. a series of books in the Mathematical Sciences, 1979.

[17] Gargano, L.; Hell, P.; Stacho, L.; Vaccaro, U. Spanning trees with bounded
number of branch vertices. In International Colloquium on Automata, Languages,
and Programming (Berlin, Heidelberg, 2002), Springer, pp. 355–365.

[18] Hansen, P.; Mladenovic, N. Variable neighbourhood search: Principles and
applications. European Journal of Operational Research 120 (2001), 449–467.

[19] Hassin, R.; Monnot, J.; Segev, D. Approximation algorithms and hardness
results for labeled connectivity problems. Journal of Combinatorial Optimization 14,
4 (2007), 437–453.

[20] Kano, M.; Li, X. Monochromatic and heterochromatic subgraphs in edge-colored
graphs-a survey. Graphs and Combinatorics 24, 4 (2008), 237–263.

[21] Krumke, S. O.; Wirth, H.-C. On the minimum label spanning tree problem.
Information Processing Letters 66, 2 (1998), 81–85.

[22] Lai, X.; Zhou, Y.; He, J.; Zhang, J. Performance analysis of evolutionary
algorithms for the minimum label spanning tree problem. IEEE Transactions on
Evolutionary Computation 18, 6 (2014), 860–872.

[23] Land, A. H.; Doig, A. G. An automatic method of solving discrete programming
problems. Econometrica: Journal of the Econometric Society (1960), 497–520.

[24] Landete, M.; Marín, A.; Sainz-Pardo, J. L. Decomposition methods based
on articulation vertices for degree-dependent spanning tree problems. Computational
Optimization and Applications 68, 3 (2017), 749–773.

[25] Leggieri, V.; Haouari, M.; Triki, C. The steiner tree problem with delays: A
compact formulation and reduction procedures. Discrete Applied Mathematics 164
(2014), 178–190.

[26] Li, X.; Zhang, X. On the minimum monochromatic or multicolored subgraph
partition problems. Theoretical Computer Science 385, 1-3 (2007), 1–10.

[27] Lourenço, H. R.; Martin, O. C.; Stützle, T. Iterated local search: Framework
and applications. In Handbook of Metaheuristics. Springer, 2010, pp. 363–397.

References 82

[28] Maniezzo, V.; Stützle, T.; Voß, S. Matheuristics, volume 10 of annals of
information systems, 2010.

[29] Marín, A. Exact and heuristic solutions for the minimum number of branch vertices
spanning tree problem. European Journal of Operational Research 245, 3 (2015), 680–
689.

[30] Martın, B.; Sánchez, Á.; Beltran-Royo, C.; Duarte, A. A matheuristic ap-
proach for solving the edge-disjoint paths problem. In Matheuristics 2016 - Proceed-
ings of the Sixth International Workshop on Model-based Metaheuristics (Brussels,
Belgium, 2016), p. 25.

[31] Martinez, L. C.; Da Cunha, A. S. The min-degree constrained minimum span-
ning tree problem: Formulations and branch-and-cut algorithm. Discrete Applied
Mathematics 164 (2014), 210–224.

[32] Melo, R. A.; Samer, P.; Urrutia, S. An effective decomposition approach
and heuristics to generate spanning trees with a small number of branch vertices.
Computational Optimization and Applications (2015), 1–24.

[33] Merabet, M.; Molnar, M. Generalization of the Minimum Branch Vertices Span-
ning Tree Problem. Tese de Doutorado, Nanyang Technological University, Singapore,
2016.

[34] Moreno, J.; Frota, Y.; Martins, S. An exact and heuristic approach for the
d-minimum branch vertices problem. Computational Optimization and Applications
71, 3 (2018), 829–855.

[35] Moreno, J.; Martins, S.; Frota, Y. A new approach for the rainbow spanning
forest problem. Soft Computing (2019), 1–10.

[36] Moreno, J.; Martins, S.; Frota, Y. A note on the rainbow cycle cover problem.
Networks 73, 1 (2019), 38–47.

[37] Padberg, M.; Rinaldi, G. A branch-and-cut algorithm for the resolution of large-
scale symmetric traveling salesman problems. SIAM review 33, 1 (1991), 60–100.

[38] Pirkwieser, S.; Raidl, G. R. Multiple variable neighborhood search enriched
with ilp techniques for the periodic vehicle routing problem with time windows. In
International Workshop on Hybrid Metaheuristics (2009), Springer, pp. 45–59.

[39] Primate Labs. Geekbench 3. https://www.geekbench.com/geekbench3. [Online;
accessed 16-May-2018].

[40] Puchinger, J.; Raidl, G. R. Combining metaheuristics and exact algorithms
in combinatorial optimization: A survey and classification. In International Work-
Conference on the Interplay Between Natural and Artificial Computation (2005),
Springer, pp. 41–53.

[41] Resende, M. G.; Ribeiro, C. C. Optimization by GRASP: Greedy randomized
adaptive search procedures. Springer, 2016.

References 83

[42] Sastry, K.; Goldberg, D. E.; Kendall, G. Genetic algorithms. In Search
methodologies. Springer, 2014, pp. 93–117.

[43] Schmidt, J. M. A simple test on 2-vertex-and 2-edge-connectivity. Information
Processing Letters 113, 7 (2013), 241–244.

[44] Schmidt, J. M. A simple test on 2-vertex-and 2-edge-connectivity. Information
Processing Letters 113, 7 (2013), 241–244.

[45] Silva, D. M.; Silva, R. M.; Mateus, G. R.; Gonçalves, J. F.; Resende,
M. G.; Festa, P. An iterative refinement algorithm for the minimum branch vertices
problem. In International Symposium on Experimental Algorithms (2011), Springer,
pp. 421–433.

[46] Silva, R. M.; Silva, D. M.; Resende, M. G.; Mateus, G. R.; Gonçalves,
J. F.; Festa, P. An edge-swap heuristic for generating spanning trees with minimum
number of branch vertices. Optimization Letters 8, 4 (2014), 1225–1243.

[47] Silvestri, S.; Laporte, G.; Cerulli, R. The rainbow cycle cover problem.
Networks 68, 4 (2016), 260–270.

[48] Silvestri, S.; Laporte, G.; Cerulli, R. A branch-and-cut algorithm for the
minimum branch vertices spanning tree problem. Computers & Operations Research
81 (2017), 322–332.

[49] Skiena, S. S. The algorithm design manual: Text, vol. 1. Springer Science &
Business Media, 1998.

[50] Sundar, S.; Singh, A.; Rossi, A. New heuristics for two bounded-degree spanning
tree problems. Information Sciences 195 (2012), 226–240.

[51] Suzuki, K. A necessary and sufficient condition for the existence of a heterochro-
matic spanning tree in a graph. Graphs and Combinatorics 22, 2 (2006), 261–269.

[52] Taillard, E. Tabu search. In Metaheuristics. Springer, 2016, pp. 51–76.

[53] Toth, P.; Tramontani, A. An integer linear programming local search for ca-
pacitated vehicle routing problems. In The vehicle routing problem: Latest advances
and new challenges. Springer, 2008, pp. 275–295.

[54] Vilar Jacob, V.; Arroyo, J. E. C. ILS Heuristics for the Single-Machine Schedul-
ing Problem with Sequence-Dependent Family Setup Times to Minimize Total Tar-
diness. Journal of Applied Mathematics 2016 (2016).

[55] Zhang, X.; Zhang, Z.-B.; Broersma, H.; Wen, X. On the complexity of edge-
colored subgraph partitioning problems in network optimization. Discrete Mathe-
matics and Theoretical Computer Science 17, 3 (2016), 227.

