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Resumo

Problemas de otimização são encontrados em diversos setores da produção industrial,
buscando em geral minimizar os custos e maximizar os lucros. No contexto das Cidades
Inteligentes, se torna prioridade a transparência para o cidadão e uma logística efetiva de
transporte de pessoas e bens de consumo, motivando uma série de propostas acadêmicas
para o tema. O estudo desses problemas é essencial para se manter a competitividade de
cadeias produtivas, também sendo um desafio a tarefa de encontrar uma solução de boa
qualidade em um tempo computacional baixo. De forma específica, a logística têm sido
bastante estudada devido a seu grande número de aplicações práticas e, neste sentido, este
trabalho explora o estudo de dois problemas de transportes. O Problema de Caminho
com Coleta de Prêmios, consiste em encontrar um (s, t)-caminho que minimiza a soma
dos pesos de suas arestas (tempo total de transporte) menos o prêmio total dos nós em
tal caminho. Por sua vez, para o Problema de Roteamento de Veículos para o Transporte
de Funcionários, deve-se minimizar os custos de transporte e, respeitar em contrapartida,
as restrições de qualidade de serviço para os funcionários. Ambos os problemas estão
presentes no núcleo de diversas aplicações relevantes em áreas como Telecomunicações,
Transporte Público e Manutenção de Equipamentos. Neste trabalho serão exploradas
diferentes técnicas de resolução que vão desde métodos exatos até heurísticas inteligentes.

Palavras-chave: Coleta de Prêmios; Roteamento de Veículos; Treewidth.



Abstract

Optimization problems are found in different sectors of industrial production where it is
desired to minimize costs and maximize profits. In the context of Smart Cities, trans-
parency for citizens, and effective logistics for the transportation of people and consumer
goods becomes a priority, motivating a series of academic proposals on the subject. The
study of these problems is essential for maintaining the competitiveness of supply chains;
however, the task of finding a good quality solution in a short computational time is chal-
lenging. At this point, logistics have been extensively studied due to their large number
of practical applications and, in this sense, this work explores the study of two trans-
portation problems. The Prize-Collecting Path Problem consists of finding a (s, t)-path
that minimizes the sum of its edge weights (total transportation time) minus the total
prize collected on nodes of that path. In turn, for the Vehicle Routing Problem for Trans-
portation of Employees, the overall costs should be minimized according to the quality
of service constraints defined for the employees. Both problems are present at the core
of several relevant applications in areas such as Telecommunications, Public Transporta-
tion, and Equipment Maintenance. In this work, different resolution techniques will be
explored, ranging from exact methods to intelligent heuristics.

Keywords: Prize-collecting; Vehicle Routing Problem; Treewidth.
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Chapter 1

Introduction

In recent years, the theme of Smart Cities has been developed actively and often is

treated as a multidisciplinary topic. At this point, the area gathers researchers from

Humanities, Urban Planning, Transportation Engineering, and Computer topics such as

the Internet of Things (IoT), Computational Intelligence for Decision Making, and Multi-

agent systems. A smart city can be defined as a city that incorporates information and

communication technologies to enhance the quality and performance of public services.

In general, these services are present in important sectors like transportation, governance,

security, communication, energy, and sustainability, which, in turn, represent a major

expense for the economy. In transportation, for example, logistics costs corresponded to

about 12.6% of Brazil’s GDP in 2016, according to data from ILOS (Instituto de Logística

e Supply Chain). The study also concluded that the transportation costs related to cargo

freight represented between half and two-thirds of the overall logistics costs. In order to

minimize these operational costs, the application of intelligent techniques has been used

to solve such problems. In contrast, another market trend in the industry is to maximize

the profits by establishing an appropriate level of service for customers and employees,

also known as Quality of Service (QoS).

In the context of public transportation, there are also several issues to note, such

as long waiting times, poor road quality, or low-quality service. In [48], some data on

school transportation in Santa Catarina were collected over the period 2001-2011, and

it was observed that the average time spent by students traveling between home and

school increased from 25.1% to 36.7% for men and 18.8% to 29.2% for women. Other

studies confirm the problems related to transportation in large cities; in [45], the results

indicated that the average speed of traffic in the city of São Paulo in rush hours was

only 19.30 km/h. Moreover, the average time spent daily by residents in traffic is about
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2h42min, which represents an average of 27 days a year trapped in urban traffic. To work

around these problems, some solutions may be adopted: for the citizens, reducing car

dependency or adoption of mechanisms of carpooling; for the government, the increase

of political support for sustainable transport or the optimization of public transport in

suburban areas.

About transportation systems, another current trend to solve these problems is the

combination of logistics with computational intelligence. In this sense, several trans-

portation problems in Smart Cities have been addressed, such as variations of the classic

Shortest Path Problem (SPP), as well as Vehicle Routing Problems (VRPs). Both prob-

lems are typical themes in combinatorial optimization and have been extensively studied

in the last 50 years [31]. For the VRP, a fleet of vehicles located in a depot is selected

to compose a set of routes that meets the demand of a geographically distributed set of

customers in order to minimize specific criteria such as time, distance or operating costs.

The class of problems involving vehicle routing has many practical applications, being

the product distribution the best-known case. However, PRV’s can also be found in the

context of collecting (waste management; agricultural supply chains; mining) and in the

service sector (gas or water meter inspection; periodic maintenance of elevators and fire

extinguishers). The distribution network does not necessarily have to be made up of

roads or streets. It may consist of railways, power lines or rivers, that is, where there

is a set of moving objects (trucks, trains, boats, and even pedestrians) who must visit

a set of locations. All of these examples illustrate the broad applicability and economic

importance of VRP.

In this work, two logistics problems in smart cities are discussed. The first one is

the Prize-collecting Path Problem (PCP), a variation of the SPP, which is relevant in the

sense of the transportation of vital resources, confidential data, and troops. The last one

is the Vehicle Routing Problem for Transportation of Employees (VRPTE), a practical

application of a logistic problem for an energy industry in Brazil.

1.1 Objective

The main objective of this work is to present relevant contributions to solve logistic

problems in the area of smart cities. Besides, the specific objectives for the PCP are:

• A NP-completeness proof for the problem;
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• Development of a study of the complexity for specific graph classes;

• Presentation of an FPT-algorithm for bounded treewidth graphs based on a dynamic

programming.

On the other hand, the particular objectives for the VRPTE are the following:

• A concisely introduction for a new practical problem in the logistics field;

• Development of an efficient heuristic to solve the problem in a reasonable time;

• Formulation of a nonlinear mathematical model to validate the problem;

• Creation of a module to generate instances according to the characteristics of the

real scenario;

• Development of a novel visualization system based on the integration of the routing

module with the OpenStreetMaps.



Chapter 2

Prize Collecting Path Problem

Recent world events such as terrorist attacks and natural disasters have demonstrated

the need to consider vulnerabilities which disrupt network infrastructures. This kind

of infrastructure is typically used to lead electricity, water, troops, or vital resources to

specific locations, so the reliability of the system is essential to prevent or reduce further

damage in the network. In this way, the Network Interdiction problem can be thought of

as a competition of two agents, a leader, and a follower. The leader has a fixed budget

that is used to deteriorate critical parts of the network; an action called an interdiction. In

turn, the follower agent solves an optimization problem in the interdicted network. In this

work, the Prize Collecting Path (PCP), a lower-level problem of an interdiction bilevel

network, is introduced, and some theoretical aspects, as well as, optimization techniques

are discussed.

2.1 Introduction

Let G = (V,A) be a directed and connected graph, where V is the set of nodes, and A

is the set of arcs. We assume that there exist n nodes and m arcs. Associated with the

set of nodes there is a prize function p : V → R>0. Likewise, associated with the set

of arcs, there is a transportation time function t : A → R>0. Node s ∈ V and t ∈ V

correspond, respectively, to source and target node. Let Pst be the set of all (s, t)-paths

in G connecting s and t. The Prize Collecting Path problem consists on finding a (s,

t)-path that minimizes the total transportation time cost minus the total prize of the

nodes belonging to the (s, t)-path. PCP can also be defined as the following 0-1 integer

programming problem:
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min
∑

(ij)∈A

tijxij −
∑
j∈V

pjzj (2.1)

s.t x ∈ Pst, 0 ≤ xij ≤ 1 (2.2)

Variables are represented by the binary vectors x ∈ {0, 1}|A| and z ∈ {0, 1}|V |; such
that xij = 1 if arc (ij) ∈ A is used by a (s, t)-path and xij = 0 otherwise, and zi = 1

if node i ∈ V is visited by a (s, t)-path, and zi = 0 otherwise. A feasible (s, t)-path is

induced by a vector x that belongs to the following set:

Pst =


x ∈ {0, 1}|A|

∣∣∣∣∣∣∣∣∣∣∣∣∣

∑
(sj)∈δ+(s)

xsj = 1∑
(jh)∈δ+(t)

xjh −
∑

(kj)∈δ−(j)

xkj = 0,∀j ∈ V \ {s, t}∑
(jt)∈δ−(t)

xjt = 1


(2.3)

For a given vector x ∈ Pst, variables z are related as follows:

zj ≤
∑

(ij)∈δ−(j)

xij,∀j ∈ V \ {s, t} (2.4)

zs ≥ 1 (2.5)

zt ≥ 1 (2.6)

A natural extension of the Steiner Tree problem is closely related to PCP. Given an

undirected and connected graph with prizes associated to the set of nodes and weights

associated to the set of edges, the Prize Collecting Steiner Tree problem (PCST) consists

of finding a subtree which minimizes the sum of the weights of its edges plus the prizes

of the nodes not spanned. Although the PCST have been introduced by [4], a variation

was firstly considered by [47]. Besides, the PCP objective function (Equation 2.1) is the

minimization version of the objective function of Net-Worth problem presented in [25].
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Optimization techniques to solve PCST consists of approximation algorithms and

hybrid heuristics combined with reduction tests and preprocessing procedures. A 2-

approximation algorithm was proposed by [20] and some improvements for the approx-

imation ratio and running time can be seen in [25]. In [8], a multi-start local search

heuristic that consists on generate initial solutions through a primal-dual approximation

algorithm was developed. A Path relinking was used to improve solutions in the local

search phase, and a heuristic based on Variable Neighborhood Search was utilized as a

post-optimization procedure. An integer programming formulation using cutting planes

algorithms to obtain lower bounds was described in [37]. To identify vertices and edges

that are guaranteed not to be in any optimal solution, some reduction tests were devel-

oped.

In [10], seven variations of PCSTP were presented. Four of these were shown to be

solvable in O
(
m+log n

)
time and for one case was provided a O

(
m
)
algorithm which com-

bines existent techniques of other optimization problems. Also, some reduction tests were

proposed to reduce the instance input size. Exacts approaches include Branch-and-cut

algorithms for a PCSTP with budget and quota constraints [55] and a Non-Delayed Relax-

and-Cut algorithm that use Dual Lagrangian information of feasible solutions provided by

a Lagrangian heuristic [11]. Recently, a matheuristic based on clustering algorithm and

preprocessing procedures was proposed by [1]. Finally, some results for parameterized

complexity to different variants of Steiner Tree problems are presented in [26, 18, 40].

In this work, the complexity behavior of the problem is analyzed. For some cases

is proved that PCP is NP-complete, these results lead to the generation of new sets of

benchmark instances that are computationally hard according to natural characteristics

of the problem. Besides, a polynomial-time algorithm is described for bounded treewidth

graphs, and a mathematical formulation is introduced to solve general instances of PCP.

2.2 NP-completeness

Definition 1 Given a graph G, a (s, t)-hamiltonian path is a simple path between two

nodes (source and target) that visits each node exactly once. The (s, t)-Hamiltonian Path

problem (HP) determines whether a given graph contains a Hamiltonian path starting in

s and finishing in t.

Theorem 2.2.1 HP ∝ PCP.
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Proof. Given a graph G = (V,E) where V is the set of nodes and E is the set of edges.

Let nodes {s, t} ∈ V , represents the source and target nodes, respectively. We construct

an instance G′ of PCP as follows: (i) set G′ = G; (ii) for each edge e of G′ we associate

a transportation time te of value 1; and (iii) for each node v of G′ we assign a prize pv of

value 2 (ps = pt = 0).

(⇒) Since Hamiltonian path visits all nodes of a graph, all possible (s, t)-hamiltonian

paths in G is composed by |V | nodes and |V | − 1 edges, such way in G′ the sum of

transportation time for edges of these paths is equal |V | − 1 and the sum of prizes for

nodes is 2 · (|V |− 2). Thus such (s, t)-hamiltonian paths have cost according to Equation

2.1 equal to −|V |+ 3 in G′.

(⇐) Let p ∈ Pst be a solution of PCP with −|V |+ 3 cost in G′ and Ip = V (p)\{s, t}.
Since all paths in Pst are simple path, i.e., each node is visited just once. For each node

v ∈ Ip, there is exactly one incoming edge ei ∈ E used in p. As any node v ∈ Ip has prize
pv = 2, then each node v contribute with (tei−pv) = −1 in PCP objective function. Hence

p has cost −|Ip| + 1, once t has no prize associated. Consequently −|Ip| + 1 = −|V | + 3

and |Ip| = |V | − 2 which implies that path p is hamiltonian in G.

Corollary 2.2.2 PCP is NP-hard.

Proof. Follows from Theorem 2.2.1 and the fact that Hamiltonian Path problem is NP-

complete [28].

2.3 Tractability

2.3.1 Shortest Path with Arbitrary Weights

Definition 2 Given an acyclic digraph D = (V,A) where V is the set of nodes and E is

the set of arcs. Let nodes {s, t} ∈ V , represents the source and target nodes, respectively.

For each arc a ∈ A there is an arbitrary weight wa (not necessarily higher than zero). The

Shortest Path with Arbitrary Weights problem (SPAW) is about to determine the shortest

simple path from s to t in G.

Theorem 2.3.1 PCP ∝ SPAW.

Proof. Given a graph G = (V,E) where V (G) is the set of nodes and E(G) is the set of

edges. Let {s, t} ∈ V (G) be nodes representing the source and target vertices, respectively.
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Each edge e ∈ E(G) has an associated transportation time te, and every node v ∈ V (G)

has an assigned prize pv, where ps = pt = 0.

From G we construct an instance G′ of SPAW as follows: (i) set G′ = G; (ii) each

undirected edge e = (u, v) ∈ E(G) is converted in two arcs a1 = (u, v), a2 = (v, u) ∈ E(G′)

of opposite ways, where the weights wai of ai (i ∈ {1, 2}) is defined by (te − ph(e)), where

ph(e) is the prize assigned to the head node of ai.

(⇒) Let p = s, v1, v2, . . . , vk, t ∈ Pst be a solution of PCP in G. The cost for path p

in G, according to Equation 2.1, is ∑
e∈E(p)

te −
∑
v∈V (p)

pv.

In G′, the cost of p is defined by ∑
a∈A(p)

wa

that is equivalent to ∑
e∈E(p)

(te − ph(e))

which, by additivity, is equal to ∑
e∈E(p)

te −
∑
e∈E(p)

ph(e).

As source and target nodes have null prizes, then p has the same cost in both problems.

(⇐) By construction, any (s, t)-path p of G′ is also an (s, t)-path of G, and as shown

previously, p has the same cost in both instances. Figure 2.1 illustrates the entire process

for a generic graph.

By Theorem 2.2.1 and Theorem 2.3.1 HP ∝ PCP ∝ SPAW. From that, it is possible

to get a mapping of the complexity of the PCP problem, providing sufficient conditions

for the problem becomes polynomial or NP-hard. Figure 2.2 illustrates the relation of

complexity between the problems. More precisely, Theorem 2.2.1 and Theorem 2.3.1

implies the following corollaries.

Corollary 2.3.2 For any graph class C such that HP on C is NP-hard, the PCP problem

on C is also NP-hard.
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Figure 2.1: Example of transformation between PCP and SPAW instances

Figure 2.2: Mapping of complexity for PCP problem

Corollary 2.3.3 Any instance I of PCP can be solved in polynomial time whether the

instance g(I) of SPAW can be solved in polynomial time, where g returns a digraph con-

structed as described in the proof of Theorem 2.3.1.

Corollary 2.3.4 PCP can be solved in polynomial time when the input G does not contain

cycles C = v1, v2, . . . , vk such that
∑

(te−pvj) < 0 for any e = vi, vj, 1 ≤ i ≤ k, j = ((i+1)

mod (k + 1)).

Proof. Follows from Lemma 2.3.3 and the result for the minimum path of graphs with no

negative cycles.

Now, we study the complexity of the problem for particular graph classes.

2.3.2 Grid graphs

Given that Minimum Path, Hamiltonian Path, and Longest Path are polynomial on Rect-

angular Grid graphs [14, 29]. We will analyze the complexity of PCP on Rectangular Grid
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graphs.

Definition 3 [24] Let G∞ be the infinite graph whose vertex set consists of all points

of the plane with integer coordinates and in which two vertices are connected if and only

if the Euclidean distance between them is equal 1. A Grid graph is a node-induced finite

subgraph of the infinite grid. It is a rectangular grid if its set of nodes is the product of

two intervals.

Lemma 2.3.5 [24] Hamiltonian Path problem on Grid graphs is NP-complete.

Corollary 2.3.6 (s, t)-Longest Path problem on Grid graphs is NP-complete.

Theorem 2.3.7 PCP on Rectangular Grid graphs is NP-complete

Proof. This proof uses a reduction from (s, t)-Longest Path problem on Grid graphs. Let

G be an instance of (s, t)-Longest Path. As shown in [24] this problem remains NP-hard

even when a grid embedding of G is known. Given such embedding, we can recognize in

polynomial time the set V ′ of vertices and the set E ′ of edges to add in G in order to

make it a rectangular grid.

Set H = (V ∪ V ′, E ∪E ′). Adding time equal to 1 for every edge in E, prize equal to

2 for each node in V , prize 0 for any node in V ′ and time equal to |E| + 1 for any edge

in E ′, we obtain a rectangular graph H such that G has an (s, t)-longest path of size k if

and only if H has a prize collecting path of cost −k. Figure 2.3 gives an example of the

process for an arbitrary graph.

Figure 2.3: An example of NP-completeness for grid graphs
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2.4 An Algorithm for Graphs with Bounded Treewidth

The solution for many real problems frequently requires an algorithmic approach. Some-

times both input data and the frequency of access are significant; therefore, efficient

algorithms are required (generally of polynomial time). The NP-completeness theory

was developed to determine which problems probably cannot be solved by polynomial

algorithms. However, since many NP-hard problems need to be solved in practice, one

possibility is to explore approximation algorithms or heuristics instead of exact algorithms.

A recent alternative for the tractability of these problems is to resort to analysis

through the Parametrized Complexity theory. This theory studies the existence of algo-

rithms whose exponential complexity depends only on specific aspects of the input data;

such algorithms are called Fixed-Parameter Tractable (FPT). Formally, given an NP-hard

problem π and a parameter k of the problem, π is treatable by a fixed parameter regard-

ing k, if the problem can be solved at execution time f(k) · nO(1), where f is an arbitrary

function. The complexity class corresponding to these problems is defined as FPT . Note

that the parameter is an input data that is isolated for further analysis. Since the analy-

sis and development of FPT -algorithms are dependent on the parameter in question, the

researcher needs to identify parameters that make sense in practice.

In the next sections, a dynamic programming FPT-algorithm that take advantage of

a tree structure is presented, to solve the PCP in an effective way for some graph classes.

At first, the notion of tree-likeness is introduced using approaches of graph decomposition

and treewidth. Moreover, the algorithm is formally described, and a practical example is

detailed to improve the understanding of the concepts.

2.4.1 Bounded Treewidth graphs

Trees are one of the most useful classes of graphs. A tree is defined as a connected acyclic

graph, i.e., a graph which any pair of vertices are connected strictly by one path. This

kind of structure is seen in several areas such as molecular evolution, computer science,

and the study of electrical circuits. Specifically, in computer science, trees are often used

because its simple design enables the development of efficient algorithms. In fact, several

NP-hard problems are polynomially solvable on trees (e.g. colourability, independent set

[19], hamiltonian path [23], maximum cut [5] and graph isomorphism [17]).

There are distinct ways to determine the tree-likeness of a graph. Some parameters

trying to measure this aspect were proposed; most of them include the number of cycles,
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the amount of vertices removal to turn a graph into acyclic or the bounded-size parts

connected in a tree-like way. Nevertheless, these indicators are not sufficient to provide a

satisfactory abstraction of the concept of tree-likeness, as can be seen in Figure 2.4. In

the next sections, a new approach to deal with tree-like nature on graphs is introduced,

the so-called treewidth.

Figure 2.4: Tree-likeness metrics with different results.

2.4.1.1 Graph decomposition and treewidth

Graph decomposition is a quite popular technique in structural graph theory and has

been the subject of research for the solution of several optimization problems. A decom-

position H = {X1, X2, . . . , XI} of a graph G = (V,E) is a collection of I edge-disjoint

subgraphs, such that every edge e ∈ E belongs to at least one subgraph Xi. For simplicity

and convenience, in this work, each subgraph in the decomposition will be called a bag.

Decomposition can be defined as a path decomposition if the following conditions hold:

1. (node coverage)
I⋃
i=1

Xi = V , i.e., each vertex belongs to at least one bag;

2. (edge coverage) for every edge uv ∈ E, there is at least one bag Xi that contains u

and v;

3. (coherence) for 1 ≤ i ≤ i′ ≤ i′′ ≤ I, Xi ∩ Xi′′ ⊆ Xi′ , i.e., all bags including any

vertex v form a contiguous subsequence of the whole sequence.
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In this way, coverage conditions 1 and 2 ensures that all nodes and edges of G are

present in the decomposition graph and, moreover, as a consequence of the coherence

condition, the subgraph connecting all bags that include any vertex v must be a connected

path. Through these statements, the width w of a path decomposition can be defined as

the size of the largest bag minus one1, that is, w(H) = max1≤i≤I |Xi|−1. In this context, a

pathwidth pw of a graph is the minimum width between all possible path decompositions.

The pathwidth can also be seen as the vertex separation number of a graph [30]. In

fact, the aspect of separation is strictly related to pathwidth. Given two consecutive bags

Xi and Xi+1 and the set Si,i+1 = Xi ∩ Xi+1, also known as separator, two connected

components Ci =
i⋃

c=1

Xc and Ci+1 =
I⋃

c=i+1

Xc are created, by splitting the vertices in V.

On the whole, every bag Xi separates vertices in the bags before i with the vertices of

the bags following after i. It is worthwhile to mention that the order of a separation is

defined as |Si,i+1| and that any path from Ci to Ci+1, must include at least one vertex of

the separator set Si,i+1. In this way, a path decomposition of width w is a sequence of

separations of order at most w.

Figure 2.5: A graph and its path decomposition of width 3 in which dashed vertices c and
e are separators induced by bags X2 and X3.

Since the separators behave like a cut-set, the original problem can be split into de-

pendent sub-problems of limited size, which helps the development of efficient algorithms,

especially those which work with the divide-and-conquer paradigm. So, the general idea

behind decomposition is to break large structures into small pieces, in order to exploit

this separator attribute exclusively. Figure 2.5 shows an example for some of the previous

properties.

As mentioned earlier, the natural structure of the trees helps to make many hard

problems easy to solve. In this regard, path decompositions can be seen as a special case
1The subtraction is just to ensure that the pathwidth of a graph with one edge is 1, not 2
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of tree decomposition. Similar previous conditions are applied to decomposition graph,

but a tree is used to connect the bags instead of a path. Formally, a tree decomposition

of a graph G = (V,E) is a pair H = (T,B), where T is a tree whose for each node (a.k.a.

bag) a function B associates a set of vertices of G, such that:

1. (node coverage)
I⋃
i=1

Xi = V , i.e., each vertex belongs to at least one bag;

2. (edge coverage) for every edge uv ∈ E, there is a bag Xi that contains u and v;

3. (coherence) for every vertex v ∈ V , the bags containing v form a connected subtree.

Particularly, as in path decompositions, the coverage of nodes and edges are kept

whereas a new coherence condition is introduced. Since each graph has a tree decomposi-

tion, the crucial question is whether there is a decomposition in which all bags are small.

In order to evaluate this point, metrics like treewidth must be used. In this sense, the

width for tree decompositions remains as in path decomposition, that is, max1≤i≤I |Xi|−1.

Likewise, the treewidth is still defined as the minimum width between all feasible decom-

positions.

Class Description Treewidth

Tree two vertices are connected by exactly one path 1

Cycle some number of vertices connected in a closed chain 2

Cactus any two simple cycles contain at most one vertex in com-
mon

2

Series-parallel k4-minor-freea 2

Outerplanar has a crossing-free embedding in the plane such that all
vertices are on the same face

2

Pseudoforest every connected component has at most one cycle 2

Halin is formed by embedding a tree that has no degree-2 ver-
tices in the plane and connecting its leaves by a cycle
that crosses none of its edges

3

aG is a minor of H if G can be obtained from H by a series of vertex deletions, edge deletions and/or
edge contractions (replacing two adjacent vertices u,v by a vertex that is adjacent to all neighbors of u
or v)[16].

Table 2.1: A short list of graph classes with constant bounded treewidth

Determining whether a graph has treewidth at most an integer w is NP-complete,

however, it is important to note that, if w is a fixed constant, the problem is solved in
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polynomial-time [3]. For this decision problem, some linear [6] and approximation [15, 7]

algorithms were proposed. Moreover, fortunately, there are several classes of graphs,

which are important in practice, and they have been proved to have constant bounded

treewidth. The best-known classes are described in Table 2.1.

2.4.2 A FPT-algorithm for bounded treewidth graphs

In the next sections, a new FPT-algorithm that takes advantage of graphs with constant

bounded treewidth will be introduced. Thus, a useful canonical structure for dynamic

programming algorithms is presented, as well as all steps for the proposed algorithm.

2.4.2.1 Extended Nice Tree Decomposition

In order to improve the design of the algorithm, it is more convenient to deal with nice

decompositions. A tree decomposition is nice if every bag is one of the following types:

Leaf: a bag i with no children, i.e., |Xi| = 1;

Introduce: a bag i with exactly one child j such that Xi = Xj ∪ {v} for some vertex

v ∈ V ;

Forget: a bag i with one child j such that Xi = Xj\{v} for some vertex v ∈ V ;

Join: a bag i with two children j, k such that Xi = Xj = Xk.

Nice decompositions offer a simple way to build iteratively the original graph G by

adding (introduce) or removing (forget) one vertex at a time. A tree decomposition of

width w and n bags can be turned into a nice tree decomposition of width w and O(wn)

nodes in time O(w2n). Figure 2.6 illustrates, in detail, a nice decomposition for a graph.

Moreover, an extended version of nice tree decompositions, which includes a new type

of bag, is shown. It becomes necessary since whenever a vertex v is introduced in a

bag, all incident edges to v are inevitably included in the partial solution. Once a path

characterizes the PCP solution, each node has a degree at most two, then the particular

case quoted above should be avoided. In this regard, a new type of bag called "introduce

edge" is presented. This adjustment enables the inclusion of edges, one by one, which

often helps the execution of the algorithm. Formally, introduce edge bags are defined as

follows:
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Figure 2.6: A graph and its tree and nice decomposition of treewidth 2. Dashed nodes b
and d are separators induced by root bag and his child.

Introduce edge: a bag i, labeled with an edge uv ∈ E such that u, v ∈ Xi and with

one child j such that Xi = Xj.

For the proposed algorithm, each edge in E must be introduced precisely once in

the whole decomposition. This extended version for nice tree decompositions can be

implemented in time wO(1) through a single top-down approach.

2.4.2.2 A Dynamic Programming approach

In order to develop efficient algorithms based on the divide-and-conquer paradigm, it is

essential to understand the structure of the problem. Therefore, the proposed algorithm

uses the properties of trees to exploit small separators in graphs with constant bounded

treewidth for its tree decomposition. In this way, to design a dynamic programming for

tree decompositions, some questions should be taken into account:

• what are the crucial pieces of information about the partial solutions of the problem?

• are there data structures to store these pieces of information efficiently?

• is it possible to obtain the solution from the set of records at the root of the tree

decomposition?
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• is there a quick way to compute the records for each type of bag of a nice tree

decomposition?

Bearing these questions in mind, all the components of the proposed algorithm will

be presented in details.

Preprocessing procedure

Given a graph G and terminals vertices s and t, the PCP objective is to find a (s, t)-path

p that minimizes the difference between total transportation time cost and the total prize

of the nodes belonging to p. In advance, a preprocessing is fundamental to generate the

input data for the algorithm. In this sense, the process can be described in four steps:

Step I from the original graph G, is built an instance G′ of a SPAW problem;

Step II a procedure is performed on G′ to identify whether it admits a tree decomposition

T of treewidth at most w;

Step III the tree T is converted into an extended nice tree decomposition T ′ of G′;

Step IV an arbitrary terminal is included for each bag Xi ∈ T ′.

The strategy to convert the original graph in a SPAW instance is detailed in Theorem

2.3.1 and can easily be implemented in a O(V )-time. The following step is characterized by

the construction of a tree decomposition of treewidth at most w. As mentioned earlier,

the problem of determining the treewidth of a graph is NP-hard. However, the main

interest is to work just on graphs with constant and small treewidth, since there are

several effective algorithms in the literature for such graphs. Next, in the third step, an

extended version for a nice tree decomposition (i.e. including introduce edge bags) is

built through a simple method that runs in polynomial time. Finally, a random terminal

s or t is chosen and added for each bag in the tree decomposition to help the definition

of the state of the dynamic programming.

Formal definition

Let T be an extended nice tree decomposition (see Step III), p be a path connecting the

terminal vertices and Vi be the union of all bags in the subtree Ti ⊆ T rooted at the bag

Xi. A segment of the path p in Ti (a.k.a. partial solution) is a forest F . Moreover, let K

be the set of terminal vertices and u∗ be an arbitrary terminal of K. In regard to Step
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IV of the preprocessing, all bags Xi must own a terminal u∗ in such a way that every

connected component of F intersects Xi.

For each bag Xi ∈ T , the essential information of all partial solutions is stored in a

function c[Ti, X, P ] by keeping, for each subset X ⊆ Xi and every partition P of X, the

minimum objective value of a forest F in Gi such that:

• {K ∩ Vi} ⊆ V (F ), i.e., each terminal vertex in subgraph Gi must be in forest F ;

• Xi ∩ V (F ) = X, i.e., vertices of Xi\X are untouched by forest F ;

• forest F has exactly q connected components C1, C2, . . . , Cq in such a manner that,

∀w ∈ {1, . . . , q}, Pw = V (Cw) ∩Xi, i.e., the intersections of connected components

with the vertices of bag Xi form the partitions P of X.

Every time a new vertex is introduced or partial solutions are joined, different con-

figurations of partitions become available; thereby, it is fundamental to keep updated

all the pieces of information about partial solutions. Furthermore, it is worth mention-

ing that, given the Step IV in the preprocessing, the optimal solution value is given by

c[r, {u∗}, {{u∗}}], where r is the root bag of the tree decomposition T . Finally, if no

compatible forest F can be found, c[Ti, X, P ] = +∞. Figure 2.7 provides more details

about the procedure.

Recursive formulas for bag types

As previously mentioned, one of the most critical aspects for the development of an

efficient dynamic programming algorithm is to compute, in a quick way, the recursive

function for each type of bag in a tree decomposition. In this sense, all values are stored

in a way that they can be quickly recovered in order to avoid unnecessary computations.

Leaf: According to Step IV, a bag i is a leaf node, if and only if, Xi = {u∗}. Once u∗

is a terminal, this unique vertex must be in the partial solution; otherwise, if this

condition is not satisfied, it is an infeasible case. Hence,

c[Ti, X, P ] =

{
0 , if v ∈ X;

+∞ , if v /∈ X.

Introduce vertex: Let i be an introduce vertex bag with a child i′ such that Xi = Xi′ ∪
{v} for any v /∈ Xi′ . Since vertex v is introduced at this moment, no adjacent edges
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Figure 2.7: In the first part, there is a bag X11 and its connected subtree induced on tree
T . Next, a partial solution, a subset X of X11 and its respective partition is presented.

were added yet and consequently, v is isolated in Gi. In this way, if vertex v belongs

to the partial solution, it is inserted as a singleton on its connected component.

Conversely, if v is not a part of path p, the partial solution needs to be preserved

and remains the same value of the child bag. Finally, if v is a terminal and is not

included in the solution, the case is infeasible. Thereby, the recursive formula for

introduce vertex bags can be described as follows:

c[Ti, X, P ] =


c[Ti′ , X\{v}, P\{{v}}] , if v ∈ X;

c[Ti′ , X, P ] , if v /∈ X ∧ v /∈ K;

+∞ , if v /∈ X ∧ v ∈ K.

Forget: Let i be a forget bag with a child i′ such that Xi = Xi′\{v} for any v ∈ Xi′ . For

each set X ⊆ Xi and partition P = {P1, P2, . . . , Pq} of X, two possible situations

must be taken into account: (1) if v is used in a partition of a subset of Xi′ , it

should be included to one of the connected components of P and (2) if v is not

included, the same partition of X should be considered. Otherwise, when v is

forgotten in partitions P ′ for computing recursive formulas of Xi, multiple values

of the same partition arise and the configuration with the smallest value must be
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kept. Therefore, the recursive formula for forget bags can be defined as follows:

c[Ti, X, P ] = min
{

min
P ′

c[Ti′ , X ∪ {v}, P ′], c[Ti′ , X, P ]
}
,

where the inner minimum is taken over all partitions P ′ of X∪{v} that are obtained
from P by adding v to one of the existing blocks. An enlightening example is given

by the bag Xi = {x, y, z} and its child Xi′ = {v, x, y, z}. Let X = {y, z} be a

subset of Xi and P = {{y}, {z}} a possible partition of X. To compute the c value

for X and P , the partitions P ′ of Xi′ should be noticed. In this way, let consider

partitions P ′1 = {{v, y}, {z}}, P ′2 = {{y}, {v, z}} and P ′3 = {{y}, {z}} of P ′. Once

v is forgotten, the same configuration {{y}, {z}} is seen for P ′1, P ′2 and P ′3, but just

the partition with the smallest value is considered.

Introduce edge: Let i be an introduce edge bag which introduces an edge uv and let

i′ be the child of t. For each set X ⊆ Xi and partition P = {P1, P2, . . . , Pq} of

X, some different situations must be noticed. If one of the vertices u or v is not

included in the partial solution, the partition remains the same. An equivalent

result is expected when u and v are both in X but are not in the same connected

component of P . Hence,

c[Ti, X, P ] =


c[Ti′ , X, P ] , if u ∈ X ∧ v ∈ X, but

not in same block;

c[Ti′ , X, P ] , if u /∈ X ∨ v /∈ X.

For the case where u and v are both in X and in the same connected component,

some points must be taken into account. (1) If edge uv is not in the solution, the

same partition P at Ti′ should be considered. (2) When the edge uv is picked to

the solution, the connected component of u and v in P is retrieved from merging

two connected components of smallest values, one containing u and the second

containing v. Thus, if u ∈ X ∧ v ∈ X, but in the same block, then

c[Ti, X, P ] = min
{

min
P ′

c[Ti′ , X, P
′], c[Ti′ , X, P ]

}
.

Join: Let i be a join bag with children i1 and i2 in such a way that Xi = Xi1 = Xi2 . For

this case, two partial solutions, one deriving from Gi1 and other from Gi2 , are merged

in one. However, this merging process can result in multiple partitions of different

weight and, among them, the partition of minimum value is kept. Furthermore, this

join operation can create cycles, as can be seen in Figure 2.8. The cycles can be

easily avoided through the use of an auxiliary structure. Given a partition P of X,
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GF is a forest with a vertex set X, such that the set of connected components in

GF is P . For each block of P there is a tree in GP with the same vertex set, i.e.,

a partition P = {Pi1 , Pi2 , . . . , Piq} of X is an acyclic merge of partitions Pi1 and

Pi2 if the merge of two forests Gi1 and Gi2 is a forest whose family of connected

components is exactly P. Hence,

c[Ti, X, P ] = min
Pi1 ,Pi2

c[Ti1 , X, Pi1 ], c[Ti2 , X, Pi2 ].

where in the minimum we consider all pairs of partitions Pi1 , Pi2 , such that P is an

acyclic merge of them.

Figure 2.8: An example of cycles generated by the merging process.

These descriptions conclude the description of the recursive formulas for the values

of c. Recall that every bag of the decomposition has size at most k + 2. Hence, the

number of states per node is at most 2k+2 · (k + 2)k+2 = kO(k), since for a bag i there are

2|Xi| subsets X ⊆ Xi and at most |X||X| partitions of X. The computation of a value

for every state requires considering at most all the pairs of states for some other nodes,

which means that each value can be computed in time (kO(k))2 = kO(k). Thus, up to a

factor polynomial in k, which is anyhow dominated by the O-notation in the exponent,

for every node the running time of computing the values of c is kO(k).

2.5 Conclusion and future works

In this work, an optimization problem, the Prize-Collecting Path, is presented. A NP-

hardness proof is discussed, and the complexity behavior is analyzed for some graph

classes of the problem. In some cases, the PCP was proved to be NP-complete which, in



2.5 Conclusion and future works 22

turn, will lead to the generation of new sets of benchmark instances. The summary of

the results can be seen in Table 2.2.

Complexity
NP-c Poly

Bipartite Tree
Grid Cactus

Complete Halin
Chordal Chordal ∩ Bounded clique
Planar Outerplanar
Split Series parallel

Table 2.2: Complexity of PCP for some graph classes

Also, a polynomial FPT-algorithm is described for graphs with bounded treewidth,

and a mathematical formulation is introduced to solve general instances of PCP. The

ongoing investigation will consist of the implementation of the proposed FPT-algorithm

for graphs with bounded treewidth and the generation of new sets of benchmark instances

that are computationally hard according to natural characteristics of the problem.



Chapter 3

Vehicle Routing Problem for Transporta-
tion of Employees

3.1 Introduction

Practical applications involving employees transportation often need to handle several

aspects during the optimization process, including the capability to deal with different

business models depending on strategic decisions that better suit the company and its

employees. These decisions also need to be made fast, due to the dynamic nature of

the variables involved in the decision making, e.g., traffic and environmental conditions,

employees work schedule, production management, and operational decisions. In order

to both consider the interests of the company and the employees, a Logistics Service

Level Agreement (LSLA) can be devised [21, 39]. The LSLA includes non-computational

services such as pickup/delivery logistics and the desired quality-of-service (QoS) rules

for transportation (waiting times, maximum route length, time window preferences, and

other quality indicators for the users).

Similar LSLA approaches considering transportation and customer satisfaction opti-

mization are being systematically studied for public transportation services [54], drone

delivery services [27] and also transportation considering real-time traffic information

[35]. Most of these transportation problems involve not only one-way deliveries, but also

pickups, creating a set of routes with desired QoS such as maximum route length/time,

delivery/pickup sequences, battery quality control (or electric vehicles) and time-window

preferences.

As a practical application, the problem studied in this work includes several QoS

constraints while minimizing routing distances. This kind of problem can be seen as
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an extension of the challenging Vehicle Routing Problem (VRP), which is known to be

NP-Hard [12], i.e., there is no known algorithm capable of finding optimal solutions in

polynomial time. As a consequence, approximation methods such are often employed

to find near-optimal solutions in a reasonable time, since the high computational effort

required by exact methods is impracticable. For real-life VRP applications, the resolution

becomes even harder, as in general, the considered problems usually involve large-scale

instances [22].

In this context, this paper deals with a practical industrial problem involving employ-

ees transportation in some Brazilian cities, as well as, the minimization of operational

costs, the achievement of QoS requirements and visualization of the routes. The study

case is about an energy company, with several operational units, which offers transporta-

tion to their employees, taking them from their residences to the workplace and, at the

end of the expedient, bringing them back to their respective residences. Therefore, the

company is responsible for hiring vehicles and also to define the routes that each one must

go through.

This transportation service problem can be seen as a VRP variant with multiple at-

tributes, but it is also possible to find characteristics of the School Bus Routing Problem

(SBRP) or School Bus Routing and Scheduling Problem [42]. The SBRP aims to plan a

schedule for a fleet of school buses in which, each vehicle, collects students at geographi-

cally dispersed bus stops and delivers them to their respective schools. Several constraints

must be satisfied, such as the maximum capacity of a bus, the maximum travel time of

a student and the time window of a school. This class of problems consists of different

sub-problems that involve data preparation, selection of bus stops, generation of bus lines,

school bell time adjustment, and the buses scheduling. The SBRP resolution can involve

one or more sub-problem depending on the variant. Besides, many objectives can be

found. The most common are minimizing of the number of buses [34], the travel distance

[46] or total cost [52]

Recently, a similar problem involving a bus transport service for employees of a com-

pany was solved as an SBRP [32]. In this way, the Vehicle Routing Problem for Trans-

portation of Employees (VRPTE) addressed in this paper, can be treated as an SBRP

case, since the company offers transportation to its employees, taking them from their

residences to the workplace and vice versa. In VRPTE, similar decisions like the ones in

SBRP have to be made, of which may be mentioned: bus stops definition; fleet size and

mix; vehicles scheduling and vehicle routing. It is worth to note that, for this VRPTE
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variant, the bus stops are previously known and hence, an input data.

Since the company does not own the fleet of vehicles necessary to transport their em-

ployees, a third-party company is hired to provide the transportation service. In general,

several types of contracts with different vehicle types are made with the providers. Each

lease agreement has its data set, and each vehicle type may belong to a single type of

contract. The transportation system must assist in the choice of vehicles and the planning

of their routes through an optimizer module. The objective of this module is to determine

the best fleet composition for the VRPTE, as well as the set of routes that minimizes the

contract costs.

This work proposes an algorithm based on the Iterated Local Search (ILS) meta-

heuristic [36], with composes several local search strategies, specially designed to improve

different aspects of a VRPTE solution. A mathematical programming model is also pro-

posed based on mixed-integer non-linear programming (MINLP) to present the problem

constraints and the LSLA evaluation process formally. Finally, an extensive set of in-

stances inspired by real application data is given as a benchmark for the evaluation of the

algorithm.

This chapter is organized as follows. Section 3.2 details the VRPTE, including the

Logistic SLA requirements and a Mathematical Programming Model. In Section 3.3, the

proposed metaheuristic is presented in details. Finally, Section 3.4 describes computa-

tional results on real scenarios and Section 3.5 concludes the work.

3.2 Problem definition

The VRPTE deals with two types of expedients: single-shift and multi-shift, being that

the majority of the operational units have staffs in both schemes. In this way, each unit

has two different scenarios related to their expedient types. In single-shift, each vehicle

only performs one round-trip per workday. The passengers are arranged in working groups

according to the location of their residences. All passengers in a group must board and

land together at predetermined bus stops on the round-trips. For each group, two bus

stops are associated, which in turn will be defined as places of boarding and landing by

the routing module. The outward route of a vehicle is determined by a sequence of bus

stops (a.k.a., boarding points), finishing at the workplace.

On the other hand, the return route starts at the workplace and must have the

bus stops of each group in the reverse sequence of the outward route (a.k.a., landing
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points). No outward route, from the first bus stop, must exceed the maximum time and

the maximum distance predetermined. Such limits may be different for return routes.

Finally, routes should be radial relative to the workplace, i.e., it is undesirable for a

vehicle during its trip to approach regions previously visited.

In multi-shift, there are different working teams, and each passenger belongs only

to a specific one. For each workday, passengers of these teams are transported to the

workplace and, at the end of the shift (e.g. morning, afternoon and night), are led to

their respective residences. Passengers are grouped into bus stops according to the place

of their residences, regardless of the working team to which they belong. Typically, each

group contains only one passenger.

Moreover, in both scenarios, vehicles should perform boarding and landing of passen-

gers at bus stops which, usually, are coincident and located near the employee’s residence

addresses. In these cases, there is no practical distinction between a boarding point and a

landing point. It is noteworthy that, even in a typical scenario, the case described above

does not exclude the possibility of having groups with more than one passenger and bus

stops located in different geographic coordinates. The same definitions for round-trip

routes and the maximum limits for time and distance in the single-shift scenario are

applied to multi-shift, as well as the desirable radial characteristic of these routes.

3.2.1 Formal definition

Given a complete graph G = (V,A), consider a set of vertex V = {0, 0′, 1, 2, . . . , P} is

the set of P + 2 vertices and A = {(i, j) : i, j ∈ V, i 6= j} is the set of arcs. Let 0 be

an artificial vertex, called virtual depot, used as starting point for all routes in solution,

while the vertex 0′ represents the workplace. The set V ′ = V \ {0, 0′} defines the P bus

stops, while A′ = A \ A0 where A0 = {(0, i) : i ∈ V ′} ∪ {(i, 0) : i ∈ V ′} is a set of zero

cost arcs, i.e., di0 = d0i = 0. In this way, each working group comprises of two bus stops

described by consecutive vertices p and p + 1, from which must be assigned, in the best

way, as boarding and landing points of a round trip. Moreover, the number of passengers

associated with bus stops p, p+ 1 ∈ V ′ for a working team t ∈ T from the same group is

represented by qtp, where |T | = 1 for single-shift scenario and |T | > 1 for multi-shift.

Each team t ∈ T works in one of the B shifts of the E workdays in a month. It is

important to remark that a team can work in different shifts but not in a consecutive

way and, also, all employees must be in the same number of shifts per month. Since the

work schedule for working teams regularly repeats in a month, the routing module only



3.2 Problem definition 27

defines the routes and the operational costs for a single scale, i.e., just while the schedule

does not repeat. Hence, in order to determine the final cost of a contract in a month, it

is necessary to add in the cost function a normalization factor α which is defined as E·B
T

.

In order to transport the employees, the company hires third-party logistics providers

who own a heterogeneous fleet of vehicles, i.e., a fleet composed of different types of

vehicles. In this sense, for each type m ∈M , Km is the number of available vehicles, Qm

is the number of seats available in a vehicle and Pm is the maximum number of passengers

that can be transported per vehicle. Once the fleet used do not belong to the company,

a contract Cb
m must be signed with the third-party provider for each type of vehicle. The

definition for all b types of contracts and the monthly costs associated with each one are

as follows:

• Fixed and variable costs (C1
m): Each used vehicle has a fixed cost of contracting

and a variable cost linked to the distance traveled.

C1
m = α · (Fm · um + Vm ·

Km∑
k

dtk)

where um is the number of vehicles used to transport the employees, Fm is the fixed

cost per vehicle used, Vm is the variable cost per vehicle and dtk is the sum of the

distances traveled on the outward and return trip for each vehicle k ∈ Km used

in a shift. Finally, α defines a constant factor to normalize the contractual cost

according to the monthly work schedule.

• Individual franchise (C2
m): Each used vehicle has a fixed cost Fm, which allows

it to travel up to a maximum hired distance Kmax
m per shift. A variable cost Vm is

applied to the travel distance that exceeds the maximum hired distance.

C2
m = α · [Fm · um + Vm ·

um∑
v

max(0, dtk −Kmax
m )]

• Total franchise (C3
m): Each used vehicle has a fixed cost Fm and, in turn, all

available type of vehicles contributes with a constant distance Kmax
m to compose the

total franchise per shift. A variable cost Vm is applied to the travel distance that

exceeds the total franchise.

C3
m = α · [Fm · um + Vm ·max(0,

Km∑
k

dtk − (Kmax
m · um))]

Regardless of the contract type, for each arc (i, j) ∈ A, there is a variable quota per
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distance traveled defined by variable Vm. For franchise agreements, the variable quota is

applied only if the total travel distance exceeds, for each vehicle in C2
m and for all vehicles

of the same type in C3
m, the total franchise Kmax

m in a shift. Finally, the objective is to

determine the best fleet composition, as well as the set of routes that minimizes the sum

of fixed and variable costs. The logistic SLA for the problem must respect the following

QoS constraints:

• every route Rt consists of two trips (Rt = R∪R̄) associated with the same vehicle. In

this way, the outward trip R begins on the boarding of the first group of passengers

and ends at the workplace (i1 = 0, i|R| = 0′ and {i2, . . . , i|R|−1} ⊆ V ′). In turn, the

return trip R̄ is in reverse order of visits, i.e., starts at the workplace and ends at the

landing of the last group of passengers (i1 = 0′, i|R̄| = 0 and {i|R̄|−1, . . . , i2} ⊆ V ′);

• all routes should be radial relative to the workplace, i.e., it is undesirable for a

vehicle during its trip to approach regions previously visited;

• the transport of a group of passengers of the same team, associated with a bus stop,

must be performed integrally and exclusively by the same vehicle in the work sched-

ule, i.e. the vehicle must carry all passengers from the bus stop, being forbidden

the boarding/landing fractioned in the scale;

• the maximum number of passengers of a vehicle must be respected;

• each bus stop belongs only to one trip (outward or return).

Finally, it is worth noting the distance and time asymmetry between vertices, i.e.,

dij is not necessarily equal to dji,∀i, j ∈ V \{0}, as well as, lij can be different from

lji,∀i, j ∈ V \{0}.

3.2.2 Mathematical model

In the following, a new MINLP is presented for the VRPTE. The model works with the

decision variables as follows:

xtk
ij ∈ B number of times that the directed arc (i, j) is visited by vehicle k in a outward

trip to attend a working team t

x̄tk
ij ∈ B number of times that the directed arc (i, j) is visited by vehicle k in a return

trip to attend a working team t
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ytk ∈ B define if a vehicle k is dispatched to attend a working team t

zk ∈ B indicate if a vehicle k is used in any route

wm ∈ B denote if a vehicle of type m is dispatched

um ∈ Z number of vehicles of type m in solution

dtk ∈ R distance traveled per shift for a vehicle k

qt
p ∈ Z number of passengers collected in bus stop p for a working team t

cbm ∈ B denote if a contract of type b is active for a vehicle of type m

Cm ∈ R sum of operational costs for a vehicle of type m

The formulation for the VRPTE is then given by the following model:

min
∑
m∈M

Cm (3.1)

s.t.

∑
m∈M

Km∑
k=1

∑
j∈V ′\{p,p+1}

1∑
∆=0

xtkj,i+∆ = 1, ∀i ∈ V ′|i mod 2 = 1, ∀t ∈ T |qti > 0 (3.2)

∑
j∈V ′\{i}

xtkji −
∑

(i,j)∈A
xtkij = 0, ∀i ∈ V ′,∀t ∈ T,∀m ∈M,∀k ∈ Km (3.3)

∑
(j,i)∈A

x̄tkji −
∑

j∈V ′\{i}
x̄tkij = 0, ∀i ∈ V ′,∀t ∈ T,∀m ∈M,∀k ∈ Km (3.4)

∑
j∈V ′

xtk0,j = ytk, ∀t ∈ T, ∀m ∈M,k ∈ Km (3.5)

∑
j∈V ′

xtkj,0′ = ytk, ∀t ∈ T,∀m ∈M,k ∈ Km (3.6)

∑
i∈V ′

∑
(j,i)∈A′

qit · xtkji ≤ Pm · ytk, ∀t ∈ T,∀m ∈M,k ∈ Km (3.7)

ytk ≥ yt,k+1, ∀t ∈ T,∀m ∈M,k ∈ {1, . . . |Km| − 1} (3.8)∑
(i,j)∈A(S)

xtkij ≤ (|S| − 1) · ytk, ∀t ∈ T,∀m ∈M, ∀k ∈ Km, S ⊆ V ′ (3.9)

∑
(i,j)∈A

dij · xtkij ≤ D · ytk, ∀t ∈ T,∀m ∈M,k ∈ Km (3.10)

∑
(i,j)∈A

lij · xtkij ≤ L · ytk, ∀t ∈ T,∀m ∈M,k ∈ Km (3.11)

∑
(i,j)∈A

dij · x̄tkij ≤ D̄ · ytk, ∀t ∈ T,∀m ∈M,k ∈ Km (3.12)

∑
(i,j)∈A

lij · x̄tkij ≤ L̄ · ytk, ∀t ∈ T,∀m ∈M,k ∈ Km (3.13)

1∑
∆=0

(xtk0,i+∆ − x̄
tk
i+∆,0) = 0, ∀i ∈ V ′, i mod 2 = 1, ∀t ∈ T, (3.14)

∀m ∈M,∀k ∈ Km
1∑

∆=0

(xtki+∆,0′ − x̄tk0′,i+∆) = 0, ∀i ∈ V ′, i mod 2 = 1, ∀t ∈ T, (3.15)

∀m ∈M,∀k ∈ Km
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1∑
∆1=0

1∑
∆2=0

(xtki+∆1,j+∆2
− x̄tkj+∆1,i+∆2

) = 0, ∀i, j ∈ V ′, i mod 2 = 1, j mod 2 = 1, (3.16)

i 6= j,∀t ∈ T,∀m ∈M,∀k ∈ Km

wm ≥
Km∑
k=1

ytk, ∀t ∈ T,∀m ∈M (3.17)

zk ≥ ytk, ∀t ∈ T,∀m ∈M,k ∈ Km (3.18)

Km∑
k=1

zk = um, ∀m ∈M (3.19)

∑
t∈T

∑
i,j∈V

(dij · xtkij + dji · x̄tkji ) = dtk, ∀m ∈M,∀k ∈ Km (3.20)

3∑
b=1

cbm = wm, ∀m ∈M (3.21)

Fm · um + α · Vm ·
Km∑
k=1

dtk −M · (1− cbm) ≤ Cm, ∀m ∈M |b = 1 (3.22)

dtk −Kmax
m ≤ d̄rk,2, ∀m ∈M,k ∈ Km (3.23)

Fm · um + α · Vm ·
Km∑
k=1

d̄r
k,2 −M · (1− cmb ) ≤ Cm, ∀m ∈M |b = 2 (3.24)

Km∑
k=1

dtk −Kmax
m ≤ d̄rk,3, ∀m ∈M (3.25)

Fm · um + α · Vm · d̄rk,3 −M · (1− cbm) ≤ Cm, ∀m ∈M |b = 3 (3.26)

∑
t∈T

∑
m∈M

Km∑
k=1

n∑
i=1

(xtk2·i,2·i−1 + xtk2·i−1,2·i) = 0, (3.27)

∑
t∈T

∑
m∈M

Km∑
k=1

n∑
i=1

(x̄tk2·i,2·i−1 + x̄tk2·i−1,2·i) = 0, (3.28)

∑
t∈T

∑
m∈M

Km∑
k=1

∑
i∈V ′

(xtk0′i + x̄tki0′ ) = 0, (3.29)

xtkij ∈ B, ∀t ∈ T,∀m ∈M,∀k ∈ Km, ∀(i, j) ∈ A (3.30)

x̄tkij ∈ B, ∀t ∈ T,∀m ∈M, ∀k ∈ Km, ∀(i, j) ∈ A (3.31)

xtk0′,i ∈ B, ∀t ∈ T,∀m ∈M, ∀k ∈ Km, ∀i ∈ V ′ (3.32)

x̄tki,0′ ∈ B, ∀t ∈ T,∀m ∈M, ∀k ∈ Km, ∀i ∈ V ′ (3.33)

ytk ∈ B, ∀t ∈ T,∀m ∈M, ∀k ∈ Km (3.34)

zk ∈ B, ∀m ∈M, ∀k ∈ Km (3.35)

wm ∈ B, ∀m ∈M (3.36)

um ∈ Z, ∀m ∈M (3.37)

dtk ≥ 0, ∀m ∈M,∀k ∈ Km (3.38)

d̄t
k,2 ≥ 0, ∀m ∈M,∀k ∈ Km (3.39)

d̄t
k,3 ≥ 0, ∀m ∈M (3.40)

qit ≥ 0, ∀i ∈ V ′, ∀t ∈ T (3.41)

cbm ∈ B, ∀m ∈M,∀b ∈ {1, . . . , 3} (3.42)

Cm ≥ 0, ∀m ∈M (3.43)

The objective function (3.1) seeks to minimize the sum of all contractual costs. Con-

straints (3.2) ensure that just one of the bus stops associated with a working group is

used in an outward trip. Constraints (3.3-3.6) assure the flow conservation conditions
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for all routes. Constraints (3.7) guarantee that the maximum number of passengers per

vehicle is respected. Constraints (3.8) impose symmetry breaking rules to allow vehicle

k + 1 only be used if vehicle k is dispatched. Constraints (3.9) generalize the subtour

elimination constraints and ensures that the solution is cycle free. Constraints (3.10-3.13)

enforce that a maximum distance and time is considered for outward and return trips.

Constraints (3.14-3.16) guarantee the consistency of the routing plan. Constraints (3.17)

and (3.18) link variables y with variables w and z, respectively. Constraints (3.19) de-

fine the number of vehicles dispatched in solution, while constraints (3.20) determine the

distance traveled per vehicle. Constraints (3.21) denote an active lease contract for a

specific type of vehicle. Constraints (3.22), (3.24) and (3.26) are, respectively, the con-

tractual costs for agreements of type “fixed and variable”, “individual franchise”and “total

franchise”. Constraints (3.23) and (3.25) compute the residual distance according to the

type of contract. Constraints (3.27) and (3.28) guarantee that both bus stops associated

with a working group are on trips of opposite directions. Finally, constraints (3.29) avoid

an outward trip to start in the workplace, as well as also forbid a return trip to end in

the workplace.

3.3 Methodology

Based on the VRPTE characteristics, a routing module considering all attributes was de-

veloped. This module was then incorporated into the transportation system by developing

the communication interface between the optimization module and the current system.

It should be noted that the task of solving VRPTE is not trivial since its optimization

version is NP-Hard, i.e., there is no known algorithm able to find optimal solutions in

polynomial time [33]. As a consequence, approximation methods are often used to solve

the problem, since the high computational effort required for its resolution becomes im-

practical, in many cases, to use exact methods. In this context, metaheuristics appear as

alternatives to the exact methods by obtaining generally good quality solutions in a sig-

nificantly shorter time. The proposed routing module consists of developing a multi-start

hybrid heuristic based on the Iterated Local Search (ILS) metaheuristic [36], which in

local search uses a Randomized Variable Neighborhood Descent (RVND) procedure [51].

Some works in literature use this method for dealing with VRP with several types of

attributes [53, 49, 41, 9], mainly for heterogeneous fleet [44].

Algorithm 3.1 presents all procedures required to the ILS. In an ILS-based algorithm,

four procedures must be defined: (i) BuildInitialSolution (line 2), which provides
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Algoritmo 3.1: Iterated Local Search
1 begin
2 s0 ← BuildInitialSolution()
3 s∗ ← LocalSearch(s0)
4 while stopping criterion is not satisfied do
5 s′ ← Perturbation(s∗)
6 s

′∗ ← LocalSearch(s′)
7 s∗ ← AcceptanceCriterion(s∗, s′∗)

8 return s∗

initial solutions to the problem; (ii) LocalSearch (lines 3 and 6), essential to explore the

solution space effectively; (iii) Perturbation (line 5), which modifies the current solution

so that new region in solution space is explored, and (iv) AcceptanceCriterion (line 7),

responsible for determining which solution will be used during the next perturbation

phase.

3.3.1 Constructive algorithm

The constructive procedure used to create the initial solution was adapted from exist-

ing methods in the literature, taking into consideration the multi-start characteristic of

the proposed algorithm. In this sense, the constructive procedure uses a greedy inser-

tion method with a random starting point to generate diversified initial solutions for the

algorithm.

The procedure is composed of three distinct phases and is presented in Algorithm

3.2. The first phase (lines 2-12) consists of transporting the larger groups of passengers,

which in turn can only be led by a single-vehicle type, in general, the one with the highest

capacity. For each multi-start iteration, the initial solution s is reinitialized (line 2),

i.e., all variables associated with the solution are reset to their respective default values.

In order to diversify the built solution, a working group is randomly selected, and the

assignment for bus stops associated with the respective group is inverted, i.e., boarding

points become landing points and vice versa (line 3). Then, for each team, a list composed

of groups served exclusively by a vehicle type is created (lines 5-8). Finally, the list is

shuffled (line 9) and each of its groups is added iteratively to the solution (lines 10-12),

creating new routes.

The second phase adds to the solution vehicle types not yet used for passengers trans-

portation, in order to ensure that the constructive algorithm respects all signed contracts.
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Algoritmo 3.2: BuildInitialSolution
Data: Solution s, Groups G, List LG, List LT

1 begin
// PHASE 1

2 s← Reinitialize()
3 s← InvertPoints()
4 foreach Team t ∈ T do
5 LG← Reinitialize()
6 foreach Group g ∈ Team t do
7 if Group g is served by Type h then
8 LG← LG+ (g, h)

9 LG← Shuffle(LG)
10 foreach Group g ∈ LG do
11 s← CreateRoute(g, h)
12 Groups G← G− {g}

// PHASE 2
13 foreach Team t ∈ T do
14 LT ← CheckNonUsedTypes()
15 LT ← Shuffle(LT )
16 foreach Type h ∈ LT do
17 faça
18 Group g ← Random(G)
19 enquanto Group g is unfeasible by capacity
20 s← CreateRoute(g, h)
21 G← G− {g}

// PHASE 3
22 foreach Team t ∈ T do
23 while G 6= ∅ do
24 Group g ← Random(G)
25 foreach Route r in Team t do
26 if insertion of Group g is feasible then
27 cost← EvaluateInsertion(g, r)
28 if cost < bestCost then
29 bestCost← cost
30 Route r∗ ← r

31 s← InsertionInRoute(g, r∗)
32 G← G− {g}

33 return s

Firstly, all types of vehicles not yet used, are added to a list (line 14), which in turn is

shuffled to provide diversification (line 15). Then, for each type of vehicle in the list (line

16), a group is randomly selected (line 18), and a feasibility check is performed on the



3.3 Methodology 34

creation of a new route (line 19); if the operation is not feasible, a new group is selected.

Finally, a new route is created using the group and type of vehicle previously chosen (lines

20-21).

The third phase comprises the insertion of remaining groups not yet served. In this

way, a group is randomly selected (line 24) and added to the best existing route (lines

31-32), using the Cheapest Feasible Insertion Criterion (MCFIC) as evaluation method.

The MCFIC is denoted by g(k, r) = (crik + crkj − crij) and determines, for a working team,

the insertion cost g between the bus stop k and each pair of adjacent bus stops i and j

already included in a route r.

3.3.2 Local search

Local search is an iterative process that explores the neighborhood of a solution to obtain

a better one. For the routing module, the local search is performed by an RVND-based

procedure, which is an extension of the Variable Neighborhood Descent (VND) method.

VND is an iterative method that systematically applies a set of neighborhood structures

in order to improve the current solution of a given problem. The method is based on the

principle that, in general, the local optima of distinct neighborhoods are relatively close

to each other. Unlike VND, where the application order of neighborhoods is specified

deterministically, for RVND the order is randomly defined. This random approach has

been shown through empirical tests that, on average, can produce better results than the

deterministic version.

Algoritmo 3.3: Local search procedure
Data: Structure s, List NL

1 begin
2 NL ← Initialize()
3 while NL 6= ∅ do
4 N (h) ←Random(NL)
5 s′ ←BestNeighbor(s, N (h))
6 if f(s′) < f(s) then
7 s← s′

8 NL ←Reinitialize()
9 else

10 NL ← NL− {N (h)}

11 return s

The pseudocode for the RVND is shown by Algorithm 3.3. LetNL = {N 1,N 2, . . . ,N x}
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be a list composed of x neighborhood structures associated with the movements described

later in this section (line 2). At each iteration of the main loop (lines 3-10), a neighbor-

hood N (h) ∈ NL is randomly chosen (line 4), and the best neighbor is defined (line 5).

If the solution is improved, NL is reset with all neighborhoods (line 8); otherwise, N (h)

is removed from NL (line 10). The NL list is composed of intra-route and inter-route

neighborhoods, which are exhaustively evaluated. However, it is worth noting that in

these neighborhoods the costs and the feasibility are evaluated at constant time O(1).

3.3.2.1 Intra-route neighborhoods

Eight intra-route neighborhood structures were applied to improve the transportation

cost in a single route. It is important to remark that in the intra-route structures, it

is not necessary to check if the maximum number of passengers is exceeded since these

movements only change the visiting order of the bus stops. Therefore, the number of

passengers remains constant on the route. The cost of the new solution obtained by the

application of the neighborhood is calculated, taking into account the distance traveled in

the route. In order to know if the new route is feasible, it must be verified if the maximum

distances and the maximum times are respected. The neighborhood structures, as well

as the cost calculations for the new routes, are shown below.

• N 1 - Exchange : Permutation between two working groups.

• N 2 - Reinsertion : One working group is removed and inserted in another position

of the route.

• N 3 - Or-opt2 : Two adjacent working groups are removed and inserted sequentially

in another position of the route.

• N 4 - Or-opt3 : Three adjacent working groups are removed and inserted sequen-

tially in another position of the route.

• N 5 - 2-opt : Two nonadjacent arcs are deleted, and another two are added in such

a way that a new route is generated.

• N 6 - Split : A route r1, belonging to a working team t, is split into smaller routes for

the solution s. For this purpose, letH ′ = {2, . . . , t} be a subset ofH composed by all

vehicles available under contract, except those with the least maximum number of

passengers. In Figure 3.1, a route r1 ∈ s associated with a vehicle k ∈ H ′ is randomly

selected. Then, while r1 is not empty, the working groups of r1 are sequentially
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transferred to a new route r′ /∈ s associated with a vehicle k′ ∈ {1, . . . , k − 1}, so
that the maximum number of passengers is respected. The new routes generated

r2 and r3 are added to the solution s whereas the route r1 is removed. It is worth

mentioning that the route r1 is only split if vehicles are available.

Figure 3.1: Intra-route neighborhood Split

• N 7 - Trade : Trade the order of boarding and landing for two bus stops of the same

group.

• N 8 - Upgrade : A different type of vehicle with lower cost is assigned to an existing

route. The sequence of bus stops remains unchanged in route; however, the vehicle

used for the transportation of the passengers is changed. In this case, no calculation

of distance or time is required. The cost of the solution is recalculated, taking into

account the fixed and variable costs associated with the new type of vehicle selected.

The pseudocode for the neighborhoods N 1 to N 5, which have a similar structure, is

shown in Algorithm 3.4. The parameters of the algorithm are the current solution s and

the neighborhood η to be evaluated. At first, for each route in solution s, all pairs of

distinct working groups i and j or subset of consecutive groups are evaluated (lines 2-4).
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The number of consecutive groups changes according to the neighborhood considered and

can be 1, 2, or 3 working groups.

The computeMovement method defines the value of the neighboring solution by ap-

plying the η movement (line 5). If the movement is feasible and, at the same time, lead to

a better quality solution than the current iteration solution (s̄), the solution s̄ is updated

(lines 6-8). The movement is feasible if it satisfies the distance and maximum time con-

straints of the route. At the end of the algorithm (lines 9 - 11), the best of all neighboring

solutions found is returned.

Algoritmo 3.4: Intra-route procedure (s, η)
Data: Solution s, Neighborhood η

1 begin
2 foreach Route r1 ∈ s do
3 foreach Group i ∈ r1 (or subset of consecutive groups r1) do
4 foreach Group j ∈ r1 (or subset of consecutive groups r1) do
5 s′ ← computeMovement(s, r1, i, j, η)
6 if s′ is feasible and f(s′) < f(s̄) then
7 f(s̄)← f(s′)
8 s̄← s′

9 if f(s̄) < f(s) then
10 s← s̄

11 return s

3.3.2.2 Inter-route neighborhoods

In order to reduce transportation costs between routes of the same workday, six inter-

route neighborhood structures were implemented. As these structures involve more than

one route, it is necessary to verify the feasibility of the maximum number of passengers

on those routes. The neighborhoods are defined as follows.

• N 9 - Swap(1,1): Permutation between a working group k from a route r1 and a

group l, from a route r2.

• N 10 - Swap(2,1): Permutation of two adjacent working groups, k and l, from a

route r1 by a group k′ from a route r2.

• N 11 – Swap(2,2): Permutation between two adjacent working groups, k and l,

from a route r1 by another two adjacent groups k′ and l′, belonging to a route r2.
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• N 12 – Shift(1,0): A working group k is transferred from a route r1 to a route r2.

• N 13 – Shift(2,0): Two adjacent working groups, k and l, are transferred from a

route r1 to a route r2.

• N 14 – Join : Two routes are concatenated in a new route. In Figure 3.2, two routes

r1 and r2 are randomly selected. Both routes must be associated with a vehicle,

which in turn is not the one with the largest available capacity. Hence, a new

route r3 is created, and a lower cost vehicle with enough capacity to transport the

groups from routes r1 and r2 is selected. In this way, the groups of the route r1 are,

sequentially, transferred to route r3, followed by the groups of the route r2. The

routes r1 and r2 are removed and the new route r3 is added to the current solution.

Figure 3.2: Intra-route neighborhood Join

The pseudocode of the algorithm for inter-route neighborhood structures, N 9 to N 14,

is described in Algorithm 3.5. The parameters of the algorithm are the current solution

s and the neighborhood η to be evaluated. Initially, for each distinct pair of routes r1

and r2, the algorithm explores feasible movements. In this way, a working group (or a

subset of consecutive groups) of the route r1 is selected to have its movement evaluated
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in case it is shifted or swapped by another group (or a subset of consecutive groups) of

route r2 (lines 6-7). The behavior of the procedure computeMovement is similar to the

same method presented in the intra-route procedure.

Algoritmo 3.5: Inter-route procedure (s, η)
Data: Solution s, Neighborhood η

1 begin
2 for r1 ← 1 until r do
3 for r2 ← 1 until r (or r2 ← r1 + 1 until r for Swap(1, 1)) do
4 if (r1 6= r2) then
5 foreach Group i ∈ r1 (or subset of consecutive groups of r1) do
6 foreach Group j′ ∈ r2 (or subset of consecutive groups of r2)

do
7 s′ ← computeMovement(s, η)
8 if (f(s′) < f(s̄) e s′ is feasible) then
9 f(s̄)← f(s′)

10 s̄← s′

11 if f(s̄) < f(s) then
12 s← s̄

13 return s

3.3.3 Perturbation mechanisms

Four perturbation mechanisms based on inter-period neighborhood structures were de-

veloped. It is important to note that all neighborhoods do not take into account the

improvement of the quality of the solution. At each execution of the perturbation pro-

cedure, one of the following structures is randomly selected and executed maxPerturb

times: Swap(1, 1), Shift(1, 0), Shift(2, 0) and Trade.

3.3.4 Proposed algorithm

Algorithm 3.6, presents the pseudocode for the developed algorithm. In each of the

MaxIterMS iterations (lines 3 - 13), a solution is generated using the constructive heuris-

tic (line 5). Next, the LocalSearch is applied to refine the current solution (line 7). After

the local search, a post-optimization method is executed (line 8). It consists of two steps,

the first run through the routes and performs the trade of bus stops of the same working

group if the total travel distance is decreased. The second step is to optimize the use of

vehicles by changing, wherever possible, the vehicle type associated with the route by a
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lower-cost one since the number of available seats is enough. If the current solution is

improved, the iterator iterILS is reset (line 11). Finally, the best solution is perturbed

(line 12) and iterator iterILS is incremented (line 13).

Algoritmo 3.6: MILS-RVND algorithm
Data: MaxIterMS,MaxIterILS, T imeLimit,MaxPerturb

1 begin
2 f(s∗)←∞
3 for iterMS ← 0 until (MaxIterMS | TimeLimit) do
4 iterILS ← 0
5 s← BuildInitialSolution()
6 for iterILS ← 0 until MaxIterILS do
7 s← LocalSearch(s)
8 s← PostOptimization(s)
9 if f(s) < f(s∗) then

10 s∗ ← s
11 iterILS ← 0

12 s← Perturb(s∗, MaxPerturb)
13 iterILS ← iterILS + 1

14 return s∗

3.4 Experiments with real scenarios

In this section is presented the numerical results for the VRPTE. The proposed algorithm

was coded in C++, and computational tests were performed on an Intel Core i7 3.40 GHz

PC with 16 GB of RAM running Ubuntu 14.04 OS with just one thread.

3.4.1 New benchmark set

A set of 432 artificial instances were generated based on highly realistic scenarios1 and

divided into six datasets according to the number of passengers. More details about the

characteristics of each dataset can be seen in Table 3.1. Due to confidentiality terms, the

real data has been preserved, and a new dataset generator was designed and implemented

based on characteristics of the real scenarios. Thus, since all instances must be similar to

the workload of the company, the number of workdays is set to 30. In the same direction,

the number of shifts per day is equal to three, and the number of working teams is fixed

to either one (single-shift) or five (multi-shift).
1Real data is confidential, but the company provided approximate values for the instance parameters.
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Moreover, based on the practical application, all maps dimensions ranges from five

to 100 kilometers. Finally, the number of working groups varies from 10% of the number

of passengers to one passenger per group. As mentioned in Section 3.2, is usual in real

scenarios, the situation where a group has nearly one passenger.

Table 3.1: Basic characteristics for datasets

Dataset
Number of Number of Number of Groups
Instances Passengers Min Max

i100 72 100 10 100
i250 72 250 25 250
i500 72 500 54 497
i750 72 750 75 740
i1000 72 1000 111 998
i1500 72 1500 152 1500

432 - 10 1500

Two functions of probability distributions define the positioning for each bus stop [43].

In the former function, the continuous uniform distribution generates random floating-

point values in an interval [a,b) with constant probability density. This distribution, also

known as rectangular, produces random coordinates distributed evenly on the cartesian

plane and is described by function p where p(x) is equal 1
b−a for a < x < b, and 0 otherwise.

The latter function, well-known as Gaussian distribution, is a symmetric distribution

in which most-frequent values are concentrated around the mean and the values with

lowest frequency taper off equally in both directions. The probability density function for

Gaussian distribution is defined as p(x) = 1
σ
√

2π
e
−(x−µ)2

2σ2 , where µ and σ are, respectively,

the mean and standard deviation of the distribution. This function creates clusters in such

a way that the mean defines the location for centroid whereas the standard deviation

measures the variation around the average (centroid), i.e., the coefficient of dispersion

(D = σ2/µ). When the standard deviation is low, the cluster is dense, concentrating the

bus stops within a smaller area, similar to regions of high demographic density; otherwise,

the cluster is sparse, suchlike the distribution of residents in planned cities.

Based on the above functions, the generator determines two types of positioning

for bus stops: randomized (continuous uniform distribution) or cluster-based (Gaussian

distribution). For the last one, the number of clusters is chosen exclusively between one

or five and their respective centroids are arbitrarily positioned in regions away from the

axes, in order to avoid a high concentration of bus stops at peripheral regions. Thus, the

concentration for clusters is determined according to the coefficient of dispersion. Note

that, due to QoS constraints, the bus stops associated with the same working group are at
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most 200 meters away. Likewise, the travel distance between bus stops i and j is defined

by cij and is asymmetric in such a way that cji = [cij − 0.5, cij + 0.5], i.e., the outward

and return distance differ no more than 500 meters.

The location of the workplace can be defined as follows. Let S be the set of points

corresponding to the location of all bus stops in an instance. The convex hull is the set of

all convex combinations of points in S, i.e., the smallest convex polygon that encloses all

points. In this sense, the workplace can be positioned in three ways: centralized, inside,

or outside the polygon. When centralized, the workplace is defined as a centroid of the

convex hull and is obtained in a O(n) time operation, whereas, for the other cases, it is

randomly positioned inside or outside the polygon. Moreover, it is important to highlight

that the Monotone Chain algorithm [2], which has a time complexity of O(n log n) in the

worst case, was used to compute the convex hull.

For each bus stop i and j, the distance dij is computed by
√

(xj − xi) + (yj − yi)
where x and y are the coordinates of the points in the cartesian plane. The maximum

distance for a trip is randomly chosen between dmin and dmax, which are, respectively, the

minimum and maximum distance from the workplace to an extreme point of the convex

hull. On the other hand, for each roadway, the traveling time tij is calculated according

to the average road speed sij which, in turn, is arbitrarily selected in a range from smin

to smax. In this sense, smin and smax are the minimum and maximum average speed in

km/h for all roadways and assume, respectively, the values 10 and 50, estimated through

previous studies of mobility in a Brazilian metropolis [45]. Finally, the traveling time can

be computed by dij
sij

, whereas the maximum travel time is randomly selected in an interval

from dmin
smin

to dmax
smin

.

Category
Fixed cost (R$) Variable cost

Type Number of
Min Max Min Max seats

Car 1500 2500 1.5 2.5 I 5

Minivan 3500 6000 3.0 4.0
I 7
II 8

Van 6000 9000 3.5 4.5
I 12
II 16
III 20

Microbus 8000 11000 4.0 5.5
I 22
II 27

Bus 12000 18000 4.5 6.0
I 32
II 42
III 55

Table 3.2: List of categories for all type of vehicles

Due to the lack of a fleet of vehicles, third-party transportation companies are re-
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sponsible for meeting the demand through three types of vehicle lease agreements. In

this way, each contract is linked to a specific type of vehicle which must belong to one

of the categories described in Table 3.2. Each contract is generated arbitrarily following

the restrictions of the category of vehicles linked to the respective lease agreement. The

number of contracts created by instance is defined according to the sum of available seats

for all lease agreements which, in turn, must be five to six times the number of passengers.

3.4.2 Analysis

Tables 3.3-3.8 present detailed results for each dataset. On these tables, column Instance

depicts the name of the instance, in the following format: (dataset)n(number of groups

)_(instance ID). The following values depend on the number of executions, which

was set to 30. Column BKS Cost (R$) presents the best-known solution cost for the

instance; column Avg Cost (R$) presents the average solution cost for the instance;

column St. Dev. Cost (R$) presents the standard deviation for solution cost on each

instance; column Avg Gap (%) presents the average gap on each instance, where the

gap is calculated as gap = 100 · (avg cost −BKS)/ BKS; column Avg TB (s) presents

the average time (on 30 executions) to reach the best-known solution for the instance. In

order to provide real-time decisions, a strict time limit of 60 seconds was imposed as the

stopping criteria for the optimization process . The time limit for reach the BKS solution

was extended for 300 seconds.

On Table 3.3, with 100 passengers and ordered by Avg TB, the first 16 instances with

the smaller number of groups and few other instances present a zero standard deviation

and zero gaps over the BKS, indicating a very stable search behavior. The most significant

gap is 7.86% for instance 16 (number of groups 89), although the average gap for this

dataset was superficial, around 0.91%. The average time to reach the best-known solution

was 114 seconds.

On Tables 3.4-3.8, ranging from 250 to 1500 passengers, a similar behavior can be

found, with increasing average gaps (ranging from 2.4%, 3.9%, 4.2%, 4.3% and 4.8%,

respectively) as the number of passengers and groups are increased. As expected, due to

the time limit set to 300 seconds, an average TB of 150 seconds is found on most classes.

In a preliminary phase, customers are clustered in groups according to QoS constraints

related to the distance between their residences and the respective bus stop associated

with the round-trip. Although this step is not in the scope of the proposed methodology, it

directly affects the performance of the algorithm. This behavior can be seen in Table 3.3,
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Table 3.3: Numerical results for dataset i100
Instance BKS Avg St. Dev. Avg Avg

Cost (R$) Cost (R$) Cost (R$) Gap (%) TB (s)
i100n10_38 59826.60 59826.601 0.000 0.0 0.0
i100n10_39 33066.92 33066.921 0.000 0.0 0.0
i100n14_41 28729.99 28729.998 0.000 0.0 0.0
i100n17_6 36052.92 36052.921 0.000 0.0 0.1
i100n13_57 14276.99 14276.999 0.000 0.0 0.2
i100n11_56 56735.75 56735.753 0.000 0.0 0.3
i100n13_60 44397.79 44397.796 0.000 0.0 0.3
i100n15_4 33929.00 33929.000 0.000 0.0 0.4
i100n12_24 18655.00 18655.000 0.000 0.0 0.4
i100n17_37 71974.22 71974.226 0.000 0.0 0.6
i100n22_23 23045.31 23045.314 0.000 0.0 1.1
i100n14_20 28852.00 28852.000 0.000 0.0 1.1
i100n17_5 45888.19 45888.199 0.000 0.0 1.6
i100n18_3 32628.99 32628.998 0.000 0.0 15.2
i100n16_22 19444.46 19444.466 0.000 0.0 25.9
i100n17_58 16847.69 16847.699 0.000 0.0 27.9
i100n18_55 37868.02 37875.401 40.412 0.0 47.3
i100n95_31 57334.30 57363.333 37.346 0.0 55.6
i100n49_29 65197.71 65197.714 0.000 0.0 65.9
i100n87_70 47743.83 47744.856 0.849 0.0 75.6
i100n22_59 30067.20 30068.426 4.647 0.0 110.0
i100n27_19 33211.53 33234.842 50.021 0.0 114.0
i100n56_8 68942.90 70938.717 737.407 2.8 121.1
i100n26_42 47418.30 47418.482 0.506 0.0 121.6
i100n61_26 89368.56 89386.111 18.258 0.0 123.1
i100n90_71 71649.25 72446.783 314.469 1.1 123.9
i100n87_72 53515.78 54228.305 211.920 1.3 126.8
i100n28_2 80767.27 80875.551 119.295 0.1 131.6
i100n64_43 85562.59 87623.287 976.888 2.4 133.3
i100n47_65 62547.53 62725.173 95.806 0.2 133.4
i100n84_15 37424.00 38133.164 397.918 1.8 137.5
i100n51_25 34564.42 34583.466 12.589 0.0 137.8
i100n61_9 43055.99 44414.131 647.015 3.1 138.6
i100n58_44 138320.56 139237.397 537.650 0.6 139.4
i100n85_17 51583.38 53534.188 1092.349 3.7 140.9
i100n54_11 40538.00 40750.749 40.469 0.5 141.7
i100n95_50 130825.72 134684.467 1619.179 2.9 143.2
i100n62_61 132082.68 132675.879 309.067 0.4 144.1
i100n50_12 45871.39 46122.928 170.273 0.5 144.5
i100n52_28 13506.00 13506.000 0.000 0.0 146.2
i100n51_66 54139.84 54504.706 199.927 0.6 147.5
i100n86_35 55108.16 56139.510 568.112 1.8 148.2
i100n92_51 71101.24 72128.317 400.443 1.4 148.4
i100n89_16 37815.23 40788.676 969.590 7.8 148.9
i100n63_47 61404.10 62873.789 670.429 2.3 150.1
i100n90_13 72540.53 75225.686 989.684 3.7 150.7
i100n85_68 87946.08 88123.433 110.410 0.2 153.6
i100n87_18 41009.99 41135.729 478.494 0.3 154.8
i100n58_10 45783.01 45819.105 42.691 0.0 157.2
i100n62_46 44201.99 45067.998 804.252 1.9 158.6
i100n84_14 91168.00 94266.647 1051.648 3.3 158.8
i100n82_53 47870.15 48545.492 524.037 1.4 159.0
i100n54_48 80584.55 81814.195 625.069 1.5 160.1
i100n49_7 62403.46 63835.854 730.230 2.2 161.8
i100n91_49 97483.26 99022.463 866.947 1.5 161.9
i100n89_32 81654.71 82515.664 381.488 1.0 162.3
i100n91_67 28038.34 28039.792 0.822 0.0 163.4
i100n91_52 59722.14 61392.038 913.036 2.7 163.8
i100n95_33 18608.00 18608.000 0.000 0.0 164.2
i100n22_40 38278.36 38278.367 0.000 0.0 165.5
i100n47_45 50551.05 51501.376 471.774 1.8 167.4
i100n100_54 58238.38 59116.356 410.116 1.5 168.1
i100n58_30 41905.49 41955.808 32.115 0.1 170.0
i100n27_21 15513.94 15809.937 64.695 1.9 170.5
i100n62_27 18295.00 18411.872 105.085 0.6 172.8
i100n53_63 34478.50 35114.549 360.464 1.8 181.9
i100n89_69 174937.94 174939.856 1.207 0.0 183.1
i100n92_34 18342.43 18346.818 2.929 0.0 185.1
i100n100_36 42887.84 43167.253 168.466 0.6 186.0
i100n48_64 93737.43 93747.682 7.311 0.0 249.4
i100n59_62 183123.29 183405.423 144.048 0.1 283.8
Average - - - 0.912 114.7
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Table 3.4: Numerical results for dataset i250
Instance BKS Avg St. Dev. Avg Avg

Cost (R$) Cost (R$) Cost (R$) Gap (%) TB (s)
i250n246_88 97846.00 103233.188 2011.395 5.5 112.5
i250n35_127 115394.57 115986.211 415.656 0.5 117.8
i250n213_124 94810.12 96334.774 803.128 1.6 118.9
i250n38_74 94261.63 95760.172 564.205 1.5 124.3
i250n135_99 33844.83 35122.248 633.854 3.7 126.9
i250n143_100 24590.00 24963.967 701.446 1.5 128.2
i250n139_137 111310.36 113477.925 1100.208 1.9 129.0
i250n156_82 110634.73 112918.778 1377.711 2.0 130.3
i250n142_81 104478.09 105736.207 795.179 1.2 131.4
i250n207_108 66416.71 68201.774 923.780 2.6 132.9
i250n68_114 95334.851 97571.375 906.992 2.3 133.1
i250n132_117 88974.00 90537.019 996.417 1.7 133.9
i250n37_78 69629.99 69629.992 0.000 0.0 135.6
i250n63_111 83411.99 85126.396 781.745 2.0 135.8
i250n210_85 150153.59 155428.864 2250.437 3.5 136.6
i250n35_110 95459.21 96148.016 371.050 0.7 136.8
i250n151_84 87932.00 92481.159 1668.226 5.1 136.8
i250n58_112 82132.73 83715.843 778.739 1.9 137.6
i250n212_103 108995.69 110832.594 777.877 1.6 139.0
i250n67_128 165031.35 166132.574 549.394 0.6 139.9
i250n210_121 251596.96 256121.246 2249.147 1.7 140.2
i250n146_115 185776.57 190139.446 1881.044 2.3 140.4
i250n153_79 149845.75 152805.769 1417.238 1.9 140.5
i250n250_125 120773.12 126332.538 2064.979 4.6 141.2
i250n46_76 85090.92 86314.022 536.693 1.4 142.2
i250n214_105 28765.09 31925.056 1895.074 10.9 142.9
i250n229_143 165933.23 169576.746 1608.978 2.1 143.1
i250n115_116 147822.35 150968.927 1504.120 2.1 143.8
i250n209_126 170273.98 174710.648 2135.595 2.6 144.4
i250n130_138 98745.39 102243.098 1200.552 3.5 145.1
i250n52_91 74302.87 75291.543 445.944 1.3 145.2
i250n56_109 114149.13 115878.716 891.853 1.5 145.3
i250n64_93 30262.99 31756.998 506.513 4.9 145.5
i250n25_96 35364.41 35971.145 261.761 1.7 145.9
i250n151_133 237409.14 240192.527 1241.197 1.1 145.9
i250n132_101 62349.54 64037.452 851.067 2.7 146.1
i250n60_132 74946.79 76850.528 618.872 2.5 146.5
i250n125_80 119281.25 121539.301 1177.010 1.8 146.7
i250n226_107 143843.95 146099.222 1171.341 1.5 146.8
i250n53_113 98885.77 100045.666 739.130 1.1 146.9
i250n208_90 124985.91 130871.894 1948.833 4.7 147.5
i250n40_75 76360.54 76827.654 460.437 0.6 148.9
i250n31_94 27167.00 27167.000 0.000 0.0 149.0
i250n115_83 104423.09 107958.163 1475.016 3.3 151.0
i250n239_139 293156.37 298051.838 2016.749 1.6 151.8
i250n148_102 60570.32 62231.233 731.484 2.7 153.4
i250n228_122 283032.25 288741.865 3434.015 2.0 153.7
i250n56_77 81216.44 82964.172 833.878 2.1 154.7
i250n46_95 64901.90 66174.122 457.741 1.9 155.0
i250n241_106 35860.28 37987.072 1208.664 5.9 155.5
i250n226_141 65675.17 68786.386 1415.620 4.7 156.2
i250n63_130 25881.99 26402.815 201.911 2.0 156.2
i250n120_134 163651.56 167157.774 963.349 2.1 156.3
i250n37_73 79491.89 79811.672 203.183 0.4 157.2
i250n31_131 46431.33 46588.677 96.254 0.3 157.8
i250n126_118 90193.10 90994.920 621.010 0.8 159.7
i250n117_97 90331.46 92732.402 979.084 2.6 160.3
i250n208_86 196490.37 201828.720 1910.416 2.7 161.4
i250n148_120 134288.50 138375.138 1583.798 3.0 163.0
i250n238_123 129039.78 131766.794 1470.426 2.1 164.0
i250n236_87 111311.41 113791.340 1317.243 2.2 164.8
i250n244_142 44227.87 45997.344 772.951 4.0 166.8
i250n131_119 122259.65 125190.344 1081.034 2.3 167.8
i250n67_92 58882.76 60733.811 724.501 3.1 169.0
i250n240_104 128824.56 131996.695 1295.471 2.4 170.5
i250n160_136 44708.49 46224.710 860.285 3.3 170.9
i250n148_135 49107.00 52198.110 1267.957 6.2 174.0
i250n133_98 116417.63 119051.986 889.485 2.2 176.1
i250n238_89 94996.80 100546.491 1532.034 5.8 177.5
i250n41_129 31669.99 32246.463 373.890 1.8 179.4
i250n245_140 280559.87 289562.754 2443.825 3.2 179.7
i250n219_144 284901.74 284903.627 0.975 0.0 295.0
Average - - - 2.496 150.1
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Table 3.5: Numerical results for dataset i500
Instance BKS Avg St. Dev. Avg Avg

Cost (R$) Cost (R$) Cost (R$) Gap (%) TB (s)
i500n496_193 392826.06 402318.098 4115.552 2.4 116.6
i500n428_176 194569.57 199266.181 2207.929 2.4 121.0
i500n120_163 129388.29 132526.018 1643.092 2.4 125.7
i500n117_201 57160.00 59800.690 1376.427 4.6 127.9
i500n471_212 525443.43 532294.552 4345.211 1.3 132.0
i500n255_206 298393.59 302872.957 2444.850 1.5 132.1
i500n94_147 158208.00 162124.389 1683.061 2.4 132.1
i500n260_170 191448.64 195768.710 2293.806 2.2 132.4
i500n285_188 290745.18 297546.269 3139.201 2.3 133.1
i500n314_190 150353.01 156887.532 2475.801 4.3 133.7
i500n114_204 117677.82 120856.839 1261.334 2.7 133.7
i500n92_165 51039.00 56140.311 1677.905 9.9 135.0
i500n412_194 467706.75 477714.865 4697.403 2.1 135.1
i500n424_161 169356.00 184049.806 4596.633 8.6 138.1
i500n490_213 87929.00 96283.326 2526.187 9.5 138.6
i500n239_171 57376.00 62339.810 2119.512 8.6 139.5
i500n421_215 233532.75 239694.381 2489.706 2.6 139.8
i500n453_195 198958.98 202345.829 2660.219 1.7 140.9
i500n470_158 292161.37 301773.896 4376.617 3.2 141.4
i500n314_173 122108.36 126112.401 2012.775 3.2 141.5
i500n236_153 164149.15 172900.088 3751.514 5.3 142.1
i500n249_151 208232.03 211812.667 1866.708 1.7 143.6
i500n76_150 132556.01 135624.616 1165.628 2.3 144.1
i500n450_196 203268.00 214425.851 4069.588 5.4 144.7
i500n88_167 97371.45 100527.419 861.380 3.2 145.7
i500n68_149 145536.82 148689.907 1350.303 2.1 145.8
i500n60_181 202134.07 205503.442 1726.512 1.6 145.8
i500n302_210 203294.23 207964.574 2050.909 2.2 146.0
i500n54_184 143283.29 145736.214 1073.517 1.7 146.7
i500n283_191 191543.68 200210.797 3495.234 4.5 146.9
i500n71_200 176799.79 179969.926 1269.810 1.7 148.5
i500n109_183 154128.76 156524.781 1470.650 1.5 148.9
i500n105_185 166600.42 171812.397 1791.500 3.1 149.9
i500n277_187 340644.28 348437.826 3646.622 2.2 150.1
i500n464_198 254342.54 265668.973 4148.769 4.4 150.3
i500n302_189 182106.00 192202.953 4008.417 5.5 151.1
i500n69_148 143294.79 146640.847 1498.307 2.3 152.1
i500n435_160 190485.29 196199.490 2374.991 3.0 152.6
i500n124_202 58838.00 61296.216 1259.436 4.1 153.5
i500n98_168 75428.78 78781.701 1498.615 4.4 155.2
i500n281_152 238348.40 246034.580 3525.362 3.2 155.3
i500n466_175 212269.90 217262.078 2666.093 2.3 155.5
i500n417_214 86564.46 90579.037 2076.344 4.6 156.0
i500n469_159 199342.71 211810.755 3488.388 6.2 156.5
i500n300_172 66309.00 70755.590 2176.696 6.7 156.8
i500n489_178 76428.99 83336.907 2489.020 9.0 157.2
i500n413_157 254066.34 266799.214 3475.600 5.0 157.5
i500n80_146 174841.46 178490.259 1244.109 2.0 158.7
i500n235_156 171461.48 177653.982 2213.543 3.6 159.4
i500n248_174 111827.71 115655.593 1925.454 3.4 160.2
i500n125_182 273394.81 277662.963 2153.558 1.5 161.0
i500n414_179 133567.04 140418.216 2368.510 5.1 161.4
i500n278_209 190607.34 201994.065 3841.761 5.9 162.2
i500n314_169 211096.59 217306.381 2162.810 2.9 163.3
i500n446_177 75599.37 83612.566 3520.655 10.6 164.0
i500n116_145 186374.14 191676.760 2328.638 2.8 164.4
i500n470_216 254543.89 263913.395 4351.971 3.6 164.9
i500n119_199 196056.34 199581.626 1577.939 1.7 166.0
i500n257_155 180627.01 185420.707 2362.331 2.6 168.1
i500n497_180 109297.14 116633.252 3312.330 6.7 169.7
i500n238_207 80400.00 84978.902 2131.388 5.6 169.7
i500n240_192 210607.96 217512.721 2977.767 3.2 170.2
i500n230_205 246899.71 250260.776 1997.169 1.3 171.1
i500n443_162 201071.14 216036.654 7034.093 7.4 174.3
i500n75_186 139522.98 141337.733 1338.323 1.3 175.2
i500n57_203 99352.44 103733.546 1713.082 4.4 178.1
i500n491_211 455518.18 462251.110 4544.743 1.4 178.6
i500n75_164 110174.26 113933.215 1426.570 3.4 179.4
i500n250_154 143392.01 153320.717 3385.355 6.9 182.3
i500n94_166 48839.00 50615.049 1023.652 3.6 184.2
i500n230_208 65244.99 69357.230 1957.429 6.3 184.6
i500n484_197 238082.85 248468.354 5079.207 4.3 192.5
Average - - - 3.913 152.7
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Table 3.6: Numerical results for dataset i750
Instance BKS Avg St. Dev. Avg Avg

Cost (R$) Cost (R$) Cost (R$) Gap (%) TB (s)
i750n642_229 349930.62 360897.876 4551.591 3.1 112.4
i750n197_236 222012.64 225833.640 1369.165 1.7 115.2
i750n200_220 201908.98 207947.626 3074.242 2.9 122.8
i750n151_222 225919.89 230980.595 3038.368 2.2 127.2
i750n672_251 262371.59 270613.763 3671.150 3.1 127.6
i750n618_230 339914.56 348644.475 3904.885 2.5 127.7
i750n623_270 315107.75 324900.441 5135.637 3.1 127.7
i750n393_279 115588.29 121796.139 2668.283 5.3 130.9
i750n103_256 214103.71 219310.752 2045.595 2.4 130.9
i750n82_276 122865.13 125954.585 1449.926 2.5 132.3
i750n112_258 248083.32 253847.189 2290.119 2.3 133.1
i750n206_274 81311.42 88680.176 3449.549 9.0 134.4
i750n365_246 147198.68 154379.878 2810.552 4.8 134.6
i750n145_237 70431.00 77147.174 2536.574 9.5 135.5
i750n709_283 508411.46 520053.717 5063.670 2.2 135.8
i750n623_285 157158.00 169608.063 3998.861 7.9 135.9
i750n618_232 274691.00 293891.032 7698.585 6.9 136.4
i750n114_235 185984.45 189453.729 1817.036 1.8 137.6
i750n720_249 110663.61 124235.448 5515.759 12.2 138.2
i750n457_242 328967.28 337624.741 3859.204 2.6 138.4
i750n674_266 605454.93 626043.029 8213.319 3.4 138.5
i750n110_272 290089.78 295890.989 1916.940 2.0 139.2
i750n625_269 298970.59 312270.832 5881.748 4.4 140.0
i750n185_217 270848.09 276575.565 2762.858 2.1 140.7
i750n739_233 293983.06 308698.427 6343.748 5.0 141.1
i750n637_252 208952.82 218214.791 4093.392 4.4 142.8
i750n205_254 403614.71 428751.286 6835.381 6.2 143.2
i750n399_244 79747.00 86490.984 2978.753 8.4 145.6
i750n351_260 440280.62 451567.286 5120.073 2.5 146.8
i750n694_265 538233.12 555521.423 7214.145 3.2 146.8
i750n402_281 249623.34 262246.688 4563.741 5.0 147.1
i750n351_282 266050.93 278613.854 4082.782 4.7 147.9
i750n368_223 308710.90 320108.993 4304.928 3.6 148.2
i750n185_255 234509.89 241570.149 2575.853 3.0 148.4
i750n458_261 246020.98 255374.003 4312.071 3.8 148.6
i750n713_286 190711.71 205593.112 5944.904 7.8 151.6
i750n425_278 466528.81 476717.062 3746.441 2.1 153.0
i750n439_259 466023.25 478671.443 5782.316 2.7 153.2
i750n388_245 174170.50 179719.179 2834.437 3.1 153.3
i750n154_240 110682.67 117262.000 2385.579 5.9 154.5
i750n475_228 245757.18 266313.614 8501.002 8.3 154.8
i750n354_226 258863.57 266118.422 3928.250 2.8 155.3
i750n669_268 263448.34 283131.299 7937.474 7.4 155.3
i750n451_224 308879.31 317699.541 3681.249 2.8 156.2
i750n434_227 265142.18 274216.342 3320.892 3.4 156.3
i750n141_271 270870.40 274518.135 1484.983 1.3 156.3
i750n121_253 293086.31 298947.909 2545.104 2.0 156.5
i750n460_241 285799.25 293983.069 2934.032 2.8 156.6
i750n740_234 259783.98 278498.658 6920.227 7.2 157.5
i750n617_247 358842.21 365524.335 2981.231 1.8 158.7
i750n103_275 131943.79 136418.559 1869.622 3.3 158.8
i750n648_287 300810.53 310650.515 4472.940 3.2 159.1
i750n389_263 304099.40 314084.838 3458.338 3.2 159.6
i750n734_248 386491.90 393817.555 4205.486 1.8 162.0
i750n76_239 82227.71 86953.467 1672.371 5.7 162.7
i750n380_264 309256.18 324877.530 5778.394 5.0 162.8
i750n392_243 90860.00 99568.053 4323.627 9.5 164.7
i750n151_221 217885.81 224059.244 2648.043 2.8 165.5
i750n438_277 440442.75 451884.111 3763.757 2.5 168.4
i750n709_284 595658.18 616878.502 9248.193 3.5 168.4
i750n733_288 312539.28 321705.511 3756.546 2.9 168.5
i750n166_257 217703.90 226227.364 2839.961 3.9 170.1
i750n210_273 97699.36 104707.278 2394.894 7.1 170.8
i750n634_250 104740.99 113798.427 4274.314 8.6 172.0
i750n693_231 293846.09 300624.746 4423.161 2.3 172.5
i750n75_219 203575.87 209222.245 2361.568 2.7 172.9
i750n385_225 236057.98 243751.849 2745.052 3.2 173.1
i750n202_238 69539.00 74616.264 2388.051 7.3 173.5
i750n125_218 289212.31 293642.917 2352.335 1.5 176.4
i750n345_280 99804.99 104618.038 2472.821 4.8 180.1
i750n726_267 322078.21 329211.243 3452.877 2.2 180.8
i750n420_262 236202.00 245042.964 3745.630 3.7 185.2
Average - - - 4.236 150.5
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Table 3.7: Numerical results for dataset i1000
Instance BKS Avg St. Dev. Avg Avg

Cost (R$) Cost (R$) Cost (R$) Gap (%) TB (s)
i1000n584_315 103846.10 120798.492 7148.908 16.3 118.0
i1000n201_308 213939.17 222094.870 2897.508 3.8 120.0
i1000n213_312 169773.57 177833.598 3733.112 4.7 120.0
i1000n831_301 494790.71 518018.760 9675.074 4.6 121.3
i1000n196_289 330957.46 340336.775 4356.152 2.8 122.6
i1000n628_351 151414.06 164311.857 5184.798 8.5 125.8
i1000n174_293 302896.40 308517.227 2952.849 1.8 126.6
i1000n174_347 240430.06 251517.534 3938.317 4.6 128.1
i1000n532_336 401316.12 420284.726 9049.702 4.7 129.6
i1000n226_291 274275.15 286317.724 5530.707 4.3 130.9
i1000n134_307 223772.10 228042.591 2209.834 1.9 131.0
i1000n500_299 378615.46 391221.910 5833.482 3.3 131.3
i1000n140_309 84300.00 87955.863 2030.279 4.3 134.5
i1000n111_326 338258.40 346208.621 2811.455 2.3 135.0
i1000n172_327 311506.96 318961.016 2731.940 2.3 135.1
i1000n922_337 753397.31 788132.052 14877.907 4.6 135.3
i1000n590_295 430717.90 445341.073 8080.990 3.3 136.5
i1000n984_339 369521.43 391176.174 9314.094 5.8 137.2
i1000n922_302 497321.65 509489.736 6302.289 2.4 137.2
i1000n504_334 313249.96 322207.748 4237.556 2.8 137.7
i1000n277_310 113283.00 119569.906 3690.949 5.5 138.6
i1000n469_352 143174.00 147953.315 2604.713 3.3 138.9
i1000n894_342 564665.93 582290.208 9825.743 3.1 139.7
i1000n829_305 367000.15 375598.095 5367.534 2.3 140.8
i1000n911_357 165790.98 182893.003 8225.754 10.3 141.0
i1000n938_304 343192.06 364186.733 10365.687 6.1 141.7
i1000n852_355 684743.75 702376.333 7562.330 2.5 142.0
i1000n569_314 346481.78 356266.455 4800.690 2.8 143.4
i1000n480_300 281973.00 292542.203 5762.274 3.7 143.8
i1000n851_340 361945.78 379256.095 7010.054 4.7 144.2
i1000n494_317 195202.54 205262.722 3266.548 5.1 144.2
i1000n555_331 560741.75 580139.314 6425.428 3.4 144.4
i1000n146_294 307259.56 313875.931 3411.633 2.1 146.5
i1000n887_321 164279.70 178613.976 9683.670 8.7 146.8
i1000n265_329 319232.00 325411.745 3376.147 1.9 146.8
i1000n506_296 444190.53 455723.187 4506.744 2.5 146.9
i1000n460_354 344788.46 358597.414 4486.500 4.0 147.7
i1000n877_319 446957.03 456934.431 4621.502 2.2 147.7
i1000n231_343 372888.56 385692.411 5048.428 3.4 149.2
i1000n470_318 221216.76 230454.639 3874.001 4.1 150.3
i1000n895_324 323030.78 334804.641 5200.211 3.6 152.5
i1000n135_345 98958.17 104917.128 2775.538 6.0 154.2
i1000n998_360 382422.75 397535.757 5795.342 3.9 154.5
i1000n483_349 531910.50 539716.214 4056.568 1.4 154.6
i1000n833_322 129730.00 152690.573 7739.423 17.6 155.9
i1000n551_313 359995.93 369863.454 4673.647 2.7 157.0
i1000n893_356 866952.68 887793.985 8098.567 2.4 157.1
i1000n874_338 718579.31 739422.425 9786.524 2.9 157.6
i1000n877_358 158135.62 168536.455 5018.141 6.5 158.0
i1000n470_316 96261.47 103961.326 3928.521 7.9 159.2
i1000n887_303 371910.03 390455.277 7923.368 4.9 159.3
i1000n935_323 267255.96 275399.639 4539.150 3.0 159.5
i1000n202_290 352864.90 363238.371 3185.720 2.9 160.3
i1000n136_348 190323.39 194992.238 2549.237 2.4 160.9
i1000n495_350 579323.06 592588.964 4792.853 2.2 161.6
i1000n640_353 330879.59 341319.495 3698.120 3.1 162.0
i1000n178_344 365239.43 373580.427 4594.822 2.2 162.8
i1000n231_325 393177.56 407441.378 5465.008 3.6 163.0
i1000n844_320 386959.56 403380.709 5444.793 4.2 163.2
i1000n520_298 315002.96 333447.651 8190.985 5.8 163.9
i1000n524_332 615773.12 644944.514 11615.810 4.7 165.0
i1000n130_292 291243.37 296381.357 2611.441 1.7 166.9
i1000n593_297 347089.65 357382.481 6305.732 2.9 166.9
i1000n578_333 333311.31 352112.691 5834.845 5.6 167.5
i1000n983_341 420938.59 437363.160 6630.649 3.9 167.9
i1000n971_306 399629.03 416300.512 6873.460 4.1 168.2
i1000n157_328 312533.21 319860.982 3688.713 2.3 169.6
i1000n133_311 100201.65 106278.427 2455.938 6.0 170.1
i1000n143_346 103527.00 108346.125 2371.819 4.6 170.6
i1000n607_335 375781.53 396860.935 6236.309 5.6 171.5
i1000n138_330 315405.37 325317.651 4452.980 3.1 173.7
i1000n834_359 321677.37 328162.808 3516.884 2.0 191.2
Average - - - 4.304 148.7
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Table 3.8: Numerical results for dataset i1500
Instance BKS Avg St. Dev. Avg Avg

Cost (R$) Cost (R$) Cost (R$) Gap (%) TB (s)
i1500n1436_392 588057.68 602547.631 6616.289 2.4 105.8
i1500n1237_428 855928.25 878306.956 9205.395 2.6 113.7
i1500n359_417 159624.00 171944.324 4791.510 7.7 117.8
i1500n1382_394 220386.98 235760.914 8181.773 6.9 120.8
i1500n810_422 689613.06 723101.762 8381.196 4.8 124.8
i1500n1500_412 527732.18 566396.079 15419.807 7.3 126.0
i1500n701_371 492255.96 510164.636 8958.454 3.6 126.5
i1500n154_419 268512.43 283117.558 4970.388 5.4 127.8
i1500n164_361 454355.56 462039.728 5065.846 1.6 129.1
i1500n175_416 387083.71 399209.988 5198.811 3.1 129.6
i1500n231_381 127321.99 139893.551 4820.481 9.8 130.2
i1500n776_405 509448.59 536708.126 7827.955 5.3 135.1
i1500n720_403 697186.31 711523.693 7736.403 2.0 136.1
i1500n249_363 395976.46 416172.947 7857.249 5.1 136.6
i1500n1268_414 586186.62 621043.946 10670.764 5.9 136.7
i1500n1449_432 568523.56 583058.077 8141.843 2.5 138.0
i1500n395_420 520826.84 530796.090 4703.471 1.9 140.0
i1500n1409_431 605039.18 623692.396 8491.025 3.0 140.1
i1500n894_407 632259.93 660261.948 10883.564 4.4 140.3
i1500n822_385 553996.75 571324.685 8238.134 3.1 141.2
i1500n1282_373 627133.31 649269.662 10477.017 3.5 141.3
i1500n1416_410 978566.50 1010568.375 14204.618 3.2 142.2
i1500n780_369 468106.21 494165.208 9326.483 5.5 142.8
i1500n1257_413 620087.50 649426.166 13020.993 4.7 143.2
i1500n1476_411 496764.03 560999.112 23523.234 12.9 143.9
i1500n875_421 951573.87 982254.750 12209.598 3.2 144.0
i1500n1456_391 649861.18 664270.373 7923.973 2.2 145.9
i1500n1465_396 442565.12 453877.520 6436.416 2.5 147.7
i1500n1334_429 248781.09 272216.998 11553.349 9.4 149.1
i1500n322_379 348538.87 361334.776 4095.052 3.6 150.7
i1500n1496_395 375608.06 392078.683 7585.180 4.3 150.8
i1500n330_382 135038.00 147465.248 4252.332 9.2 151.2
i1500n745_367 554962.31 589578.575 12593.826 6.2 151.6
i1500n947_390 312968.53 336837.905 9203.090 7.6 151.8
i1500n1264_393 197082.98 221713.684 11296.639 12.4 152.2
i1500n1458_377 534376.25 587854.435 14675.563 10.0 153.7
i1500n1274_430 265470.90 279450.413 7447.223 5.2 154.3
i1500n837_386 560770.00 571439.375 5435.250 1.9 156.6
i1500n760_406 473239.06 500158.032 9756.454 5.6 156.7
i1500n1372_427 1031352.37 1064228.810 12176.147 3.1 157.0
i1500n352_401 543289.68 554404.050 4700.135 2.0 157.1
i1500n833_423 201776.46 218292.802 8593.518 8.1 157.2
i1500n302_384 257955.06 268023.242 5206.117 3.9 157.6
i1500n1299_375 547669.68 574942.706 14507.250 4.9 157.7
i1500n720_388 154442.00 165817.908 7115.172 7.3 159.6
i1500n195_415 372204.25 382577.646 5017.059 2.7 159.8
i1500n169_383 145354.00 154978.936 4136.897 6.6 160.1
i1500n833_408 588760.43 609885.806 10095.182 3.5 160.2
i1500n152_365 434991.78 450059.665 6491.701 3.4 160.4
i1500n403_380 371117.71 382428.509 4718.174 3.0 161.1
i1500n1473_378 598230.50 620545.158 11196.337 3.7 161.6
i1500n953_370 479559.31 504452.775 10402.167 5.1 162.1
i1500n1443_409 1122089.62 1156107.254 15673.498 3.0 165.5
i1500n319_366 453851.31 463969.569 5655.177 2.2 166.0
i1500n902_426 605301.81 630999.908 10371.279 4.2 166.5
i1500n764_424 213537.98 224803.192 6727.560 5.2 167.0
i1500n809_425 550661.50 562254.629 7074.753 2.1 167.1
i1500n411_397 650765.62 659628.998 5706.160 1.3 167.3
i1500n773_389 255295.45 264612.906 4943.827 3.6 169.1
i1500n157_364 430385.93 444923.858 5210.977 3.3 169.3
i1500n1444_376 555882.43 592756.298 17051.777 6.6 169.6
i1500n861_372 480640.71 506534.439 9809.659 5.3 170.7
i1500n926_387 201040.98 219575.299 6726.582 9.2 170.7
i1500n281_362 514404.53 526532.410 7058.332 2.3 170.9
i1500n951_404 828581.87 876753.937 16124.919 5.8 171.6
i1500n241_399 431769.37 450623.064 7039.546 4.3 172.2
i1500n298_402 478027.06 499608.966 7794.579 4.5 173.7
i1500n358_398 629980.31 649244.575 7280.632 3.0 175.6
i1500n910_368 562545.00 590334.589 11127.738 4.9 177.0
i1500n393_400 438174.28 462404.352 10895.204 5.5 178.1
i1500n1309_374 761489.00 794780.081 12688.487 4.3 179.3
i1500n173_418 132383.98 141090.670 4198.966 6.5 195.2
Average - - - 4.852 151.9
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where instances with smaller group sizes tend to be solved much faster than the others.

A Pearson Correlation test was performed on Table 3.9, indicating a strong correlation

between group count and average TB for 100 passenger instance class. For dataset i100, a

p-value of 2.67× 10−11 was obtained on Pearson Correlation test, showing a correlation

value of 0.6870 for the number of groups and the average time to reach the best solution.

It is worth mentioning that this correlation does not occur in the other instance classes

with more groups because a slightly more significant number of groups already pushes

the average TB over the maximum time limit. Column Uniform TB indicates the result

of a Kolmogorov-Smirnov test [13], checking if the TB values (time to best) belong to a

uniform distribution between the minimum (zero) and maximum times (time limit set to

300). Only for the dataset i100, it was possible to discard the null hypothesis, indicating

that this is not a uniform distribution.

Table 3.9: Summary for results on each dataset
Dataset Avg Avg Avg Cost Pearson Uniform TB

Gap (%) TB (%) Coef. Var. (%) Correlation p-value
i100 0.912 114.7 0.437 0.687 < 2.2× 10−16

i250 2.496 150.1 1.111 - ≥ 0.05
i500 3.913 152.7 1.574 - ≥ 0.05
i750 4.236 150.5 1.676 - ≥ 0.05
i1000 4.304 148.7 1.808 - ≥ 0.05
i1500 4.852 151.9 1.959 - ≥ 0.05

Figure 3.3 also indicates that the TB value (time to best) tends not to follow a uniform

distribution for dataset i100, that comprises the smaller number of groups. The situation

is very different for bigger datasets, where time to best is uniformly distributed between

0 and the maximum time limit of 300 seconds (see Figure 3.4 for dataset i250).

3.4.3 Visualization of routes

The cost between a given pair of nodes is usually modeled by a simplification of the

reality, considering the Euclidean distance of two points or a time to move through a

given distance in a constant speed. However, route planning can become a hard task

when access ways, and street directions are also considered. Several tools are found with

the aim of solving distinct problems related to route planning, acquisition of geographic

informations, route visualization, and real-time navigation. Among the existing services,

the module developed in this paper also focused on the presentation of the route for users,

data collection and route planning2.
2This visualization service integration was developed using open-source libraries, as an alternative to

the existing proprietary system on the company.
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Figure 3.3: ECDF versus theoretical CDF (in red) for Instance i100. Dotted line indicates
the maximum difference between the empirical and theoretical distributions. Time to Best
TB does not form a uniform distribution over the available execution time.
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Figure 3.4: ECDF versus theoretical CDF (in red) for Instance i250. Dotted line indicates
the maximum difference between the empirical and theoretical distributions. Time to Best
TB forms a uniform distribution over the available execution time.

In order to provide route visualization easily, a novel system which integrates the

mentioned services is developed and incorporated to the routing module. The service is
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implemented through the Open Source Routing Machine (OSRM). In turn, the OSRM

acts on routing planning using an algorithm based on Contraction hierarchies [38], which

uses open data provided by users of OpenStreetMap. Some techniques are used to improve

the performance of routing for the shortest path using precomputed versions of the graph.

Figure 3.5 depicts an artificial instance involving the transportation of employees to a

workplace in Niteroi. The idea is to illustrate the output of the system when Euclidean

data is considered. The tool is an extension of the previous work on the cvrp-draw

library [50] 3.

Figure 3.5: Outward route visualization for an instance. The green and red markers
denote, respectively, a fake starting point and the workplace, while the yellow markers
represent the pickup bus stops.

3.5 Conclusions

In this paper is presented an optimization module for dealing with a Vehicle Routing

Problem for Transportation of Employees (VRPTE) of an energy industry, which can be

seen as a School Bus Routing Problem (SBRP) variant considering real-time decisions.

Additionally, Quality of Service (QoS) demands denoted by the company are formulated as

a Logistic Service Level Agreement (LSLA), imposing restrictions such as time constraints

for picking up/delivering employees; a restriction to impose the same order of pickups and

deliveries in outward and return routes; and a radial constraint for avoiding passengers

to be “upset" by getting close to the company and then having to wait for more pickups.

It is also proposed an integration of the routing module with a system based on the tools

Open Source Routing Machine and OpenStreetMaps, in order to develop a free of charge

visualization mechanism for present graphically the solutions.
3cvrp-draw on GitHub: https://github.com/hugbro/cvrp-draw
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The developed heuristic is based on the state-of-the-art ILS-RVND algorithm that

managed to solve several vehicle routing problems with a heterogeneous fleet in the lit-

erature. The computational performance of the algorithm is tested on instances created

artificially by a novel dataset generator based on real data provided by the company. Nu-

merical experiments with the proposed algorithm indicated that it was capable of finding

reasonable solutions that minimized operational costs for a significant number of employ-

ees (up to 1500). Future perspectives include validating the mathematical programming

model and accelerating the algorithm within the given time limit.



Chapter 4

Conclusions

In this work, two different logistics problems were presented, both associated with appli-

cations in smart cities. For the Prize-Collecting Path Problem, a new NP-completeness

proof was introduced, as well as an in-depth analysis was performed to understand some

aspects for special graph classes. Moreover, a polynomial FPT-algorithm for graphs with

bounded treewidth was presented. The ongoing investigations will consist of the develop-

ment of the proposed algorithm and the generation of datasets based on the complexity

of the analyzed graph classes.

At the same time, for the Vehicle Routing Problem for Transportation of Employees,

a multi-start ILS-RVND algorithm was developed to solve a logistic problem in an energy

industry. A mathematical model was formulated, and a new dataset generator, based on

characteristics of real scenarios, was proposed. In order to investigate the performance

of the algorithm, numerical experiments were performed for each dataset. The results

indicated the capacity of the algorithm in finding good solutions in a reasonable time.

Future works will lead to the improvement of the visualization module for routes, and the

development of new neighborhoods to be incorporated into the local search phase of the

algorithm.
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