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Resumo

Nesta tese, desenvolvem-se e apresentam-se contribuições para problemas de otimização
em redes. A primeira e principal contribuição aborda dois aspectos diferentes do problema
de polarização em redes sociais, de interação e de comunicação. Primeiro, uma abordagem
probabilística é usada para derivar uma nova e melhor medida para o fenômeno da po-
larização. Em seguida, um novo problema de otimização é definido, abordando a questão
da redução de polarização usando adições mínimas de arestas, de acordo com o princípio
de intervenções externas mínimas. Prova-se que o problema é NP-difícil e formulações de
programação inteira e heurísticas são propostas para resolvê-lo. Além disso, cinco outras
contribuições são desenvolvidas nesta tese, correspondendo a abordagens para problemas
de otimização representados em grafos e redes. A segunda contribuição aborda uma vari-
ante tipo Steiner do problema do caixeiro-viajante. A terceira descreve uma abordagem
para calcular uma combinação ótima de métodos de verificação e validação que cobre as
características de qualidade do software. A quarta contribuição apresenta um método
para visualizar grandes grafos de histórico de commits, minimizando o número de nós
exibidos e preservando a estrutura do grafo. O quinto tema tratado propõe um algoritmo
que identifica o grau do polinômio implícito ótimo para ajustar curvas e superfícies. O
sexto tema apresenta uma abordagem que deduz a estrutura de vizinhança e regras para
um autômato celular baseado em redes regulares que aproxima o comportamento de certos
tipos de tumores. Abordagens exatas (como programação inteira e algoritmos tratáveis
por parâmetro fixo) e heurísticas (como GRASP, reconexão de caminhos e busca iterada
gulosa) são usadas para resolver os problemas de otimização mencionados acima. Juntos,
estes problemas abrangem uma ampla gama de áreas da Ciência da Computação, como
análise de redes, roteamento e logística, engenharia de software e visão computacional.

Palavras-chave: Otimização em redes, otimização combinatória, métodos exatos, heurís-
ticas, polarização, problema de roteamento, problema de Steiner, problema de cobertura,
ajuste de curvas e superfícies, programação inteira, GRASP, reconexão de caminhos.



Abstract

In this thesis, we develop and present a number of contributions to network optimiza-
tion problems. The first and major contribution addresses two different aspects of the
polarization problem in social, interaction, and communication networks. First, a pro-
babilistic approach is used to derive a new and improved measure of the polarization
phenomenon. Next, a new optimization problem is defined, addressing the issue of po-
larization reduction using minimal edge additions in order to cope with a principle of
minimal external interventions. The NP-hardness of the problem is proved, and inte-
ger programming formulations and heuristics are proposed to solve it. In addition, five
other contributions are developed in this thesis, corresponding to approaches to optimiza-
tion problems represented on graphs and networks. The second contribution addresses
the Steiner traveling salesman problem. The third describes an approach for computing
an optimal combination of verification and validation methods that covers the software
quality characteristics. The fourth introduces a method to visualize large commit history
graphs, minimizing the number of displayed nodes and preserving the structure of the
graph. The fifth proposes an algorithm that identifies the optimum implicit polynomial
degree for fitting curves and surfaces. The sixth presents an approach that deduces the
neighborhood structure and rules for a regular, network-based cellular automaton that
approximates the behavior of certain types of tumors. Exact approaches (such as integer
programming and fixed-parameter tractable algorithms) and heuristics (such as GRASP,
path-relinking, and iterated greedy) are used to solve the above-mentioned optimization
problems. Altogether, they cover a broad range of areas of Computer Science, such as
network analysis, routing and logistics, software engineering, and computer vision.

Keywords: Network optimization, combinatorial optimization, exact methods, heuris-
tics, polarization, routing, Steiner problem, set covering problem, curve and surface fitting,
integer programming, GRASP, path-relinking.



Contents

1 Introduction 1

1.1 Combinatorial optimization problems . . . . . . . . . . . . . . . . . . . . . 1

1.2 Solution approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Contributions to network optimization problems . . . . . . . . . . . . . . . 4

1.4 Contributions to other optimization problems . . . . . . . . . . . . . . . . 6

1.5 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.6 List of publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.6.1 Full papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.6.2 Extended abstracts . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.6.3 Abstracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Polarization issues in social networks 10

2.1 A new measure of network polarization . . . . . . . . . . . . . . . . . . . . 11

2.2 Balanced edge addition to reduce polarization . . . . . . . . . . . . . . . . 12

2.2.1 Complexity and integer programming approaches . . . . . . . . . . 12

2.2.2 Heuristic solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 The Steiner travelling salesman problem 16

4 Combining verification and validation methods to improve software quality 18

5 Optimizing the visualization of commit history graphs 20

6 A two-stage heuristic for curve and surface fitting 23



Contents viii

7 Modelling tumor growth using regular graphs and cellular automata 25

8 Concluding remarks 27

References 31

Appendix A -- An empirical investigation of network polarization 35

Appendix B -- Polarization reduction by minimum-cardinality balanced edge additions 48

Appendix C -- An iterated greedy heuristic for the Min-CBEAP 69

Appendix D -- A GRASP heuristic using path-relinking and restarts for the STSP 74

Appendix E -- A GRASP with restarts heuristic for the STSP 92

Appendix F -- An efficient algorithm for combining V&V methods 103

Appendix G -- An approach for monitoring and visualizing distributed repositories 121

Appendix H -- Curve and surface fitting by implicit polynomials 156

Appendix I -- Tumor growth modelling by cellular automata 167



Chapter 1

Introduction

In this chapter, general optimization problem and the specific class of combinatorial op-

timization problems are introduced. The most frequently used solution approaches are

discussed. The optimization problems covered in this thesis are presented, together with

the solution approaches used to solve each of them and the associated publications.

1.1 Combinatorial optimization problems

An optimization problem is defined in the following way:

Definition 1 Given a set F and a function f : F → R, an optimization problem seeks:

• an element x∗ ∈ F such as that f(x∗) ≤ f(x) ∀x ∈ F (minimization); or

• an element x∗ ∈ F such as that f(x∗) ≥ f(x) ∀x ∈ F (maximization).

The element x∗ in Definition 1 is named a global optimum, f is the objective function

(selection criterion), and F is the set of feasible solutions.

In the case of a combinatorial optimization problem, the set F of feasible solu-

tions is required to be finite or countably infinite.

A typical network optimization problem is an optimization problem defined over

the structure of a graph or a network. The optimization may refer to the minimization

or the maximization of the number of elements in some type of subset of nodes or edges,

or to the cost of these elements. Nodes may represent e.g. sites in the Internet, cities

in a map, or users in a social network. In this thesis, several contributions to network

optimization problems are presented.
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Four examples of typical network optimization problems are presented below:

Shortest path problem:

Let G = (V,A) be a directed graph, where V is the set of nodes and A is the set of

arcs. The origin s and destination t are two special nodes in V . For every pair of nodes

i, j ∈ V that are directly connected, let dij be the length of arc (i, j) ∈ A. Furthermore,

let Pst be a path from s to t in G defined as a sequence of nodes i1, i2, . . . , iq−1, iq with

i1 = s and iq = t. The length of path Pst is given by f(Pst) =
∑q−1

k=1 dik,ik+1
.

In the case of the shortest path problem, the feasible solutions set F is formed by all

subsets of A that correspond to paths from s to t in G. The objective of the shortest

path problem is to find a path P ∗ ∈ F that minimizes the objective function f(P ) over

all paths P ∈ F from s to t in G [14]. �

Minimum spanning tree problem

Let G = (V,E) be a graph, where V is the set of nodes and E is the set of edges.

Let dij be the weight associated with each edge (i, j) ∈ E. In addition, let T = (V,E ′)

be a spanning tree of graph G, i.e., a connected subgraph of G with the same node set

V and with exactly |V | − 1 edges in set E ′ ⊆ E. The total weight of tree T is given by

f(T ) =
∑

(i,j)∈E′ dij.

In the case of the minimum spanning tree problem, the set of feasible solutions F is

formed by all subsets of edges that correspond to spanning trees of G. The objective of the

minimum spanning tree problem is to find a spanning tree T ∗ ∈ F such that f(T ∗) ≤ f(T )

for all T ∈ F . [30, 40]. �

Maximum clique problem

Let G = (V,E) be a graph, where V is the set of nodes and E is the set of edges. A

clique is a subset C ⊆ V such that (i, j) ∈ E for every pair i, j ∈ C with i 6= j. The size

f(C) of a clique C is defined to be its cardinality, i.e. f(C) = |C|.

In the case of the maximum clique problem, the feasible solutions set F is formed by

all subsets of V in which all nodes are pairwise adjacent. The objective of the maximum

clique problem is to find a clique C∗ ∈ F such that f(C∗) ≥ f(C) for every C ∈ F [29].

�

Traveling salesman problem

Let G = (V,E) be a graph, where V is the set of nodes and E is the set of edges.

For every pair of nodes i, j ∈ V connected by an edge (i, j) ∈ E, let dij be the nonneg-
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ative length of that edge. Furthermore, let H be a Hamiltonian cycle in G, i.e., a cycle

(i1, i2), (i2, i3), . . . , (in−1, in), (in, i1) where (in, i1) ∈ E, (ik, ik+1) ∈ E for k = 1, . . . , n− 1,

and ij 6= ik for every j 6= k ∈ V , therefore visiting every node exactly once. The total

length of this cycle is given by f(H) =
∑n−1

k=1 dik,ik+1
+ din,i1 .

In the case of the traveling salesman problem, the feasible solution set F is formed

by all subsets of edges corresponding to Hamiltonian cycles in G. The objective of the

traveling salesman problem is to find a Hamiltonian cycleH∗ ∈ F such that f(H∗) ≤ f(H)

for all H ∈ F [29]. �

1.2 Solution approaches

Exact methods for solving optimization problems are those that are guaranteed to pro-

duce, in a finite time, a global optimum and a proof of its optimality, in case one exists,

or otherwise show that no feasible solution exists. For many combinatorial optimization

problems such as the shortest path and the minimum spanning tree problems, there exist

efficient exact algorithms running in polynomial time. However, efficient exact algorithms

are not known (and are unlikely to exist) for a broad class of optimization problems clas-

sified as NP-hard [18]. These problems are often referred to as intractable. Examples of

such problems are the maximum clique and the traveling salesman problems. Exact me-

thods for solving these problems are, typically, integer programming techniques or other

enumerative procedures running, in general, in superpolynomial-time. Developments in

polyhedral theory, combined with efficient algorithm design and advances in computer

hardware, have made it possible to solve even large instances of some NP-hard problems.

Methods such as branch-and-bound and branch-and-cut are routinely applied to exactly

solve these instances in affordable computational time. Such strategies are specially sui-

table for real-life, limited-size instances of NP-hard problems.

However, even though the size of the problems that can be exactly solved to optimality

has been always increasing due to algorithmic and technological developments, there are

problems (or problem instances) that are not amenable to be solved by exact methods.

Other approaches, based on different paradigms, are needed to tackle such hard and large

optimization problems [43].

Opposed to exact methods, approximate methods (or, simply, heuristics) provide fea-

sible solutions that are not necessarily optimal. Approximate methods usually run faster

than exact methods. As a consequence, they are capable of handling larger problem in-



1.3 Contributions to network optimization problems 4

stances than exact methods. Very often, heuristics are among the most efficient strategies

to handle in practice hard, intractable combinatorial optimization problems. A heuristic

is, essentially, any algorithm that provides a feasible solution for a given problem, without

necessarily providing a guarantee of performance in terms of solution quality or computa-

tional time. They are usually faster than exact methods and provide good, near-optimal

solutions in reasonable running times.

The contributions of this thesis make use of exact and heuristic approaches for solving

the combinatorial optimization problems that are presented and discussed in the next

chapters and appear in the publications in the appendices.

1.3 Contributions to network optimization problems

The major contribution of this work came and evolved from discussions and concerns of the

author and his advisor about the growing polarization of society, the lack of dialogue across

groups with different political sympathies, and the total absence of debate in the face of

the increasing subjectivity of the people and the media. These concerns led them to set

out to study the polarization process happening in front of them and to propose analytical

tools to model and resolve issues in social and polarized networks. These contributions will

be described in the next chapter. The other subjects and problems treated in the thesis

followed naturally from their agenda of research on metaheuristics and exact algorithms

for combinatorial optimization problems, as well as from some collaborations with other

authors.

A number of contributions to the solution of network optimization problems are first

reported in this thesis.

1. The first, and certainly major, contribution addresses two different aspects of the po-

larization problem in networks. Polarization refers to the division into sharply contrasting

groups or sets of opinions or beliefs [38]. The research is driven by a minimal intervention

principle, according to which the strategy to reduce polarization should preserve as much

as possible the original structure of the network.

First, a new measure of the polarization phenomenon in networks is presented [24].

The distribution of this measure over the nodes is used for evaluating the strength of

polarization of groups of nodes or entire networks, and to estimate the impacts of inter-

ventions on polarization. An intervention can be seen as any externally-induced process

that modifies the structure of the network, such as a manipulation that adds or removes
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nodes or edges of the network. The process of removing nodes or edges may be contro-

versial, because it can be associated with the permanent exclusion or deletion of elements

(e.g., users, sites, or posts) from a social network. This exclusion is often interpreted as

an aggression against freedom of expression in digital environment. On the other hand,

the addition of edges can be easily associated with friendship or post recommendations,

that are able to connect nodes from different groups, and are more easily acceptable as

externally induced changes in the network.

Next, a new optimization problem is defined addressing the issue of polarization re-

duction using edge additions [20]. The new problem consists in the minimization of the

number of edges to be added to a polarized graph in order that any node in a proper

node subset A can reach some node not in A by a path with a limited number of edges.

This is named the Minimum-Cardinality Balanced Edge Addition Problem (MinCBEAP).

The NP-completeness of MinCBEAP is proved by using a reduction from the Minimum-

Cardinality Bounded-Eccentricity Edge Addition Problem, which in turn is NP-complete

due to a reduction from the set covering problem.

In order to solve MinCBEAP, three integer programming formulations are proposed.

All these formulations are applied after a specific instance transformation that reduces the

number of nodes in the network. A restarted iterated greedy heuristic is also developed

for solving MinCBEAP.

2. The second contribution refers to the selection of optimal routes in the Steiner

traveling salesman problem (Steiner TSP), an essential practical modification of the ori-

ginal traveling salesman problem (TSP). Instead of searching for a Hamiltonian cycle

visiting all nodes, a minimum-weight closed walk is requested that visits all required

nodes.

A GRASP heuristic is proposed [22, 23] for solving the Steiner TSP, using a ran-

domized extension of the nearest neighbor search algorithm in the construction phase. A

variable neighborhood descent (VND) strategy exploring a reduced 2-opt neighborhood

is used to optimize the best-improving local search scheme. Backward path-relinking and

restart strategies are used to improve the efficiency of the GRASP algorithm.

3. The third contribution consists of an algorithm for solving specific instances of the

set covering problem that arise from quality management tasks. The relation between

software product quality characteristics and the verification and validation methods can be

modeled as a bipartite graph [34], and finding the set of methods that properly addresses

all quality characteristics can be seen as a set covering problem.
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Although the set covering problem is hard to be solved [29], a fixed-parameter tractable

algorithm (FPT-algorithm) [16] can solve in reasonable computational time instances with

specific characteristics, where the size of some parameter of the input is fixed. FPT-

algorithms are exponential in the size of this fixed parameter, while polynomial in the

size of the rest of the input. In this case, the number of quality characteristics to be

covered is considered as a fixed and small parameter. Following this strategy, an exact

and efficient approach is developed for a specific group of instances of this problem.

4. The fourth contribution is related to an optimization problem that arises when vi-

sualizing commit history graphs (CHG) in a version control system [10]. Many of the

commit nodes in CHG are unnecessary for comprehending the evolution of the project in

time. Therefore, an optimal visualization (i.e., with the minimum number of nodes) that

reflects the structure of the commit graph must be found.

In this problem, there are no clearly established criterion for deciding which solution

will be considered as feasible, that is, the set F must be first defined. To achieve it, a

modelling process is driven, identifying two common node structures that can be auto-

matically collapsed: sequential and parallel, decreasing the number of commit nodes. An

efficient iterative algorithm is described, which is able to benefit from both sequential and

parallel collapsing strategies.

The above contributions correspond to optimization problems represented on graphs

and networks. These networks may represent polarized groups of nodes, transportation

routes, relations between software quality methods and characteristics, or topologies of

the commit history of a project in version control systems. Either exact algorithms or

heuristics are used to solve these optimization problems.

1.4 Contributions to other optimization problems

In addition to the previously described contributions to network optimization problems,

the thesis offers other research contributions:

5. The fifth contribution addresses a problem that combines discrete and continuous

optimization. Implicit polynomials [21] are used to obtain a compact representation of

sets of bi- or three-dimensional observations. While most existing algorithms assume the

knowledge of the degree of the implicit polynomial that best represents the points, a two-

stage algorithm that is able to find the optimum degree is developed. In the first stage,
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it is assumed that the degree of the polynomial is fixed. A subproblem is solved using

a continuous-space heuristic that finds a near-optimal solution of the fitting problem for

that degree. In the second stage, the optimum degree is selected from a discrete set of

possible values. A heuristic adaptive fitting algorithm is obtained.

6. The sixth contribution regards the use of a cellular automaton that approximates the

behavior of certain types of tumors [26]. The automaton is used with the aim of studying

the tumor growth in a new manner, more realistic and closer to the reality, where the

tumor is neither perfectly regular nor circular. The cellular automaton employs a lattice in

the form of a regular network and is defined from a continuous deterministic differential

equation model. The neighborhood structure of the regular network is deduced, and

specific rules for updating the states of the nodes are inferred from the continuous model

using different model settings.

1.5 Structure of the thesis

This work is organized as follows. Chapter 2 presents the contributions to polarization

problems in social, interaction, and communication networks. Chapter 3 addresses the

Steiner traveling salesman problem. Chapter 4 describes an approach for computing

an optimal combination of verification and validation methods that covers the software

quality characteristics. Chapter 5 introduces a method to visualize large commit history

graphs, minimizing the number of displayed nodes and preserving the structure of the

graph. Chapter 6 proposes an algorithm that identifies the optimum implicit polynomial

degree for fitting curves and surfaces. Chapter 7 presents an approach that deduces

the neighborhood structure and rules for a regular-network based cellular automaton.

Concluding remarks are drawn in the last chapter.

1.6 List of publications

The complete list of full articles, extended abstracts, and short abstracts in conference

proceedings that resulted from the research developed in this thesis is presented below.
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Chapter 2

Polarization issues in social networks

Polarization is a widely known phenomenon that has been discussed by politicians, media,

and researchers in recent years [37, 47]. This subject has also attracted the attention of

thinkers throughout history.

Since the 19th century, John Stuart Mill, an important philosopher and political

theorist, claimed that dialogue across lines of political difference is a key prerequisite for

sustaining a democratic citizenry [35]. Hannah Arendt also asseverated that debate is

irreplaceable for forming enlightened opinions that reach beyond the limits of one’s own

subjectivity to incorporate the standpoints of others [2]. More recently, several world

leaders have often expressed concern about polarization problems caused by social media

[3, 48]. From sociologists to economists, many are interested in studying the behavior and

interactions in social networks that rule the opinion formation process.

According to the Oxford Dictionaries, polarization is the division into sharply con-

trasting groups or sets of opinions or beliefs [38]. Among the negative effects caused by

polarization, we can mention the proliferation of fake news and the rise of extremism and

intolerance.

Recently, the causes of the proliferation of flat-earth believers, i.e., people who believe

that the Earth is actually flat, were investigated by Landrum [31], revealing the role of

the video-sharing platform YouTube on this proliferation. This work showed that the

algorithms the platform uses to guide people to topics that might interest them makes

it easier for a user to end up in a misinformation echo chamber. The study concludes

that the most effective instrument to combat disinformation is to provide users of the

platform with quality and plural information when watching videos on some subject,

thereby breaking the polarization and the isolation of these groups.
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2.1 A new measure of network polarization

In the article reproduced in Appendix A, Interian and Ribeiro [24] proposed and explored

a new strategy for measuring the polarization phenomenon in networks. Considering that

the nodes of a network are partitioned into a number of groups, the homophily of any

node of the network is defined as the ratio between the number of its successors that

belong to the same group and the total number of its successors. The distribution of the

homophily over the network is used as an indicator of polarization.

Next, a probabilistic approach is used to define a new and improved polarization

measure, which is based on the calculation, for each node, of the probability (p-value) of

observing a number of “same-type successors” that is greater than or equal to the actual

number of same-type successors observed for this node. A statistical test evaluates the

significance of the homophily values for each node of the network. A one-tailed test is

used, because the possible presence of heterophily (the opposite of homophily) in some

nodes is irrelevant for evaluating the strength of polarization.

The distribution of the obtained p-values is used for evaluating the strength of polar-

ization of the network. The empirical distribution function of the p-values can be used to

compare, in a more informative way, the polarization of different groups of nodes and even

of entire networks. Several real-life networks from different sources have been employed

as case studies to illustrate the usefulness of the proposed tools.

The case studies included the network of books about U.S. politics sold by Ama-

zon.com; the network of political blogs that emerged during the 2004 U.S. presidential

election; the World trade network built using information about bilateral trade data be-

tween countries; and the network of interactions between characters of the novel “A Song

of Ice and Fire”, also called “Game of Thrones”. Strong polarization is observed on most

case studies.

The approach proposed in the article in Appendix A is generic and may be applied to

a variety of real networks and situations. In particular, the p-value distributions can be

used to estimate the impacts of interventions in the polarization of the nodes of a network.

An intervention can be seen as any externally-induced process that modifies the structure

of the network, such as a fact-checking campaign, a marketing campaign, a regulatory

action or some direct manipulation that adds or removes nodes or edges of the network.

The investigation of the impact of external interventions is relevant in a world charac-

terized by extreme political and ideological polarization. In the next section, we introduce
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an optimization problem associated with the idea of carrying out direct interventions in

a network with the goal of reducing its polarization. This line of research is driven by

a minimal intervention principle, according to which we aim to reduce polarization with

minimal interventions that preserve, as much as possible, the original structure of the

network.

2.2 Balanced edge addition to reduce polarization

Interian and Ribeiro showed in [24], the article reproduced in Appendix A, that in order

to reduce polarization, networks can be treated by external interventions consisting of

the addition or the removal of vertices and edges. The process of adding new vertices is

often difficult to be performed in real networks. On the other hand, removing vertices or

edges may be controversial, because it can be interpreted as the permanent exclusion or

deletion of elements (e.g., users, sites, or posts) from a social network. This exclusion is

often interpreted as an aggression against freedom of expression in digital environment.

2.2.1 Complexity and integer programming approaches

In the paper reproduced in Appendix B, Interian, Moreno and Ribeiro [20] introduced a

new optimization problem addressing the issue of polarization reduction by edge additions.

The new problem consists in the minimization of the number of edges to be added to a

polarized graph G = (V,E), in order that any vertex in a proper vertex subset A ⊂ V

could reach some vertex of V \A in the resulting graph by a path with at most D edges.

The parameter D provides an upper bound to the number of edges in a path from any

vertex in A to some (closest) vertex in V \ A. This problem was named the Minimum-

Cardinality Balanced Edge Addition Problem (MinCBEAP).

Parameter D has a central role in ensuring the reduction of the level of polarization

of the network. In the specific case when D = 1, the problem is easy to solve. Typically,

D takes very small values: 2, 3, or maybe 4. This guarantees that every vertex in the set

A ⊂ V will have a “way out” from the set in a small number of steps. In practice, this

means that every vertex has a fast way to access information from outside the group.

Interian, Moreno and Ribeiro [20] also showed that MinCBEAP is NP-complete for

any D ≥ 2 by using a reduction from the Minimum-Cardinality-Bounded-Eccentricity

edge addition problem (MCBE), which in turn is NP-complete due to a reduction from

the Set Covering problem.
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Three integer programming formulations of MinCBEAP are developed in the article

reproduced in Appendix B. The first and most general formulation uses the Miller-Tucker-

Zemlin constraints to avoid cycles [36]. This formulation has integer and binary variables,

and a quadratic number of variables and constraints.

The second formulation is a modification of the model proposed in [13] that solves

the linear feasibility problem associated to MCBE. In this formulation, all variables are

binary. The number of variables and constraints is also quadratic.

The third formulation proposed in this work is eventually the most efficient one. In this

formulation, we take into account the fact that the current distance between some specific

vertices on the graph can not increase after the addition of the new edges. A detailed

description of this formulation can be found in the paper reproduced in Appendix B. All

variables are binary. The number of variables and constraints is O(nD), with n = |A|.

Computational results are presented and discussed for both randomly generated and

real-life instances. On the real-life instances, we showed that polarization can be reduced

to the desired threshold by the addition of a few edges, as established by the minimum

intervention principle that guided the problem formulation.

The political books instance from Interian, Moreno and Ribeiro [20] was used to

illustrate the solution of problem MinCBEAP. The number of edge additions needed to

solve the MinCBEAP problem for conservative and liberal groups is equal to one and

two, respectively, as shown in Table 5 of [20]. This implies that there is one vertex (let

it be vc1) in the conservative group that will be connected to some vertex from the liberal

group, and that there are two vertices (let’s say vl1 and vl2) in the liberal group that will

be connected to vertices in the conservative group. Consequently, the solution for the

entire graph has two edges: those connecting vl1 and vl2 to two vertices from conservative

group, one of which is vc1. This solution is shown in Figure 2.1, with conservative and

liberal groups being represented by red and blue vertices, respectively.

In practice, this solution may be interpreted as a recommendation, for a reader that

already bought some book vi about politics, of buying another book vj of different ideo-

logical orientation, corresponding to the edge (vi, vj) added to the graph.

An interesting conclusion is that in strongly polarized groups, there is often some easy

way of spreading polarization-breaking information by the addition of few edges. This is

a consequence of the fact that the higher is the density of a polarized group of vertices in

a network, the smaller is the number of edges in the optimal solution.
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(a)

(b)

Figure 2.1: Political books instance and its solution. (a) Original political books instance
with vertex colors representing conservative (red), neutral (green), and liberal (blue)
groups in terms of ideological orientation. (b) Political books instance with two new
orange edges representing the solution of problem MinCBEAP for conservative and liberal
groups.
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2.2.2 Heuristic solution

The integer programming formulations developed in the article reproduced in Appendix B

and mentioned in the previous section were unable to solve large MinCBEAP instances

with more than 2000 vertices. Therefore, a restarted iterated greedy heuristic was develo-

ped and introduced in the article by Interian and Ribeiro [25] reproduced in Appendix C

for solving large MinCBEAP instances. The iterated greedy heuristic is especially suitable

for optimization problems without weights, in which the objective function is related to

the cardinality of the solution. Local search procedures often do not perform satisfactorily

in the context of optimization problems with such characteristics.

An iterated greedy heuristic starts from a greedy or a semi-greedy candidate solution,

and generates a sequence of solutions using two main phases: destruction and reconstruc-

tion. During the destruction phase, some edges are removed from the current solution.

The reconstruction procedure applies a greedy construction heuristic to reconstruct a

complete solution [44].

In the Restarted Iterated Greedy (RIG) variant, an external loop is added to the ori-

ginal iterated greedy heuristic [44]. Instead of starting with a completely greedy solution,

a semi-greedy solution is used and the iterated greedy construction is embedded into a

multi-start procedure.

The polarization reduction methodology proposed in this work could be useful to

decrease the intransigence and inflexibility in social and communication networks on dif-

ferent points of view on issues such as politics, traditions, and customs. Nowadays, issues

such as capital punishment, abortion and extremist political ideologies cause a deep divi-

sion in society. There is an almost total absence of dialogue between groups with different

worldviews, which certainly can not explain, by themselves, the complexity of the real

world. A minimal regulation of the social networks, such as proposed by the minimum

intervention principle – which is completely opposed to any idea of censorship –, can con-

tribute to giving to their users the opportunity to get out of the echo chambers created

and reinforced by polarization.



Chapter 3

The Steiner travelling salesman problem

The traveling salesman problem (TSP) is one of the fundamental combinatorial optimiza-

tion problems [18, 49] and has numerous real-life applications in transportation, logistics,

vehicle routing, genome sequencing, and other areas. Given a set of nodes and the dis-

tances between them, it consists in finding the shortest route that visits each node exactly

once and returns to the first. Its decision version is proven to be NP-complete by a re-

duction from the Hamiltonian cycle problem [18].

However, in many practical applications, it is more frequent to find the following

variant of the TSP. A set VR ⊆ V of required nodes is given. Instead of searching for

a Hamiltonian cycle visiting all nodes, a minimum-weight closed walk is requested that

visits only the required nodes. Thus, nodes can be visited more than once and edges may

be traversed more than once. The so-called Steiner traveling salesman problem (Steiner

TSP) was first proposed in [11, 17], where its NP-hardness was also proved. The Steiner

TSP is specially suitable to model network design [6], package delivery [49, 50], and

routing [32] problems.

Most studies on the Steiner TSP focus on integer programming formulations and

valid inequalities. The articles by Interian and Ribeiro [22, 23], reproduced in Appen-

dices D and E, respectively, proposed an heuristic approach for solving Steiner TSP. In

these articles, a GRASP heuristic with path-relinking and restarts was developed for

solving the Steiner Traveling Salesman Problem.

The algorithm used in the construction phase is a randomized extension of the nearest

neighbor heuristic for the Traveling Salesman Problem. A variable neighborhood descent

(VND) strategy exploring a reduced 2-opt neighborhood is used to optimize the best

improving local search scheme. Backward path-relinking and restart strategies are used
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to improve the efficiency of the GRASP algorithm.

Extensive computational results for a set of previously used instances are reported.

It is shown that pure GRASP results are substantially improved by GRASP with path-

relinking, and that GRASP with path-relinking results are slightly (but also systemati-

cally) improved when a restart strategy is used [22].

In addition, we also genetared and considered a set of larger test instances derived from

real-life graphs for future benchmarking purposes. Since neither optimal values nor even

upper bounds have been previously reported for these instances, the solutions obtained

by the GRASP with path-relinking and restarts heuristic cannot be directly compared

with other previous solutions.

As a step towards avoiding this difficulty and facilitating the research on this problem,

we made all test instances and their best known solution values available at a public URL.

It is hard to underestimate the importance of data sharing for the progress of science,

but to a much greater extent this applies to computer science. Many of the published

studies are irreproducible simply due to lack of access to instances or data sets. Recently,

platforms like Mendeley Data have emerged to help researchers to store, share, publish

and find data for their investigations. Unlike classical scientific venues (journals and

conferences) that publish papers describing scientific methodologies and results, these

data sharing tools offer an efficient way to provide access to benchmark instances for a

large scope of fields and problems.



Chapter 4

Combining verification and validation me-
thods to improve software quality

Verification is used to ensure that the software product is built in the correct way, comply-

ing with the previously defined specifications [7]. On the other hand, validation guarantees

that the product is adherent to the user needs [7].

An appropriate combination of verification and validation (V&V) methods is im-

portant to improve software quality control throughout the development process and to

reduce costs. There are eight well defined software product quality characteristics in the

ISO 25010 standard [27]. There are dozens or even hundreds of V&V methods that have

been proposed over the years.

Mendoza et al. [34], in the article reproduced in Appendix F, proposed a novel algo-

rithm that efficiently combines V&V methods in order to properly cover a set of quality

characteristics. The algorithm obtains an optimal combination with the smallest number

of methods covering all the software quality characteristics in reasonable computational

time.

The relation between the characteristics and the methods can be modeled as a bi-

partite graph. The methods and the characteristics are both disjoint independent sets.

An edge between a method m and a quality characteristic c indicates that m covers c,

that is, if m is used properly for V&V, then c will be satisfied. Therefore, finding a set

of methods that together properly addresses all quality characteristics of interest can be

seen as a set covering problem (SCP) [29].

SCP is a classic NP-hard problem in the computational complexity area, whose de-

cision version belongs to Karp’s list of 21 NP-complete problems [29]. This means that



4 Combining verification and validation methods to improve software quality 19

when the number of methods or quality characteristics increase, the performance of an

algorithm that aims to combine them in an optimal way would drastically decrease.

Although set covering is considered hard to be solved, an FPT-Algorithm (fixed-

parameter tractable algorithm) that effectively solves the problem is proposed through

the theoretical framework of Parameterized Complexity [16], considering the number of

quality characteristics k to be covered as a fixed, and small, parameter. The FPT-

algorithm sacrifices the execution time, which can be exponential, but guarantees that the

exponential dependency is restricted to the parameter k, which means that the problem

can be solved efficiently for small values of this fixed parameter.

The algorithm proposed in [34] runs in time O(f(k) × n), where k is the number of

quality characteristics, n is the number of methods, and f(k) is some function of k. It is

also shown that f(k) has a closed-form expression, and that for k = 8, f(k) is bounded

by 3 × 105. Since the number of quality characteristics k is currently fixed, and will not

increase significantly in time, it is possible in this case to consider f(k) as a constant.

This implies that the algorithm is efficient in the sense that it depends linearly on n.

Computational experiments show that the algorithm is capable of solving all the

proposed instances in less than one second. The proposed algorithm provides the optimal

combination of V&V methods that cover a set of chosen quality characteristics to be

considered when developing a software product. The algorithm can be applied to instances

of different sizes, making this approach scalable, i.e., suitable for larger case studies, with

more V&V methods. Companies may choose to complement the minimum set of V&V

methods we provided with others to further assure the quality of the product. In practice,

other factors, such as the cost of applying each method, should be considered when taking

the final decision.



Chapter 5

Optimizing the visualization of commit
history graphs

Distributed version control systems have become more and more frequent during the

software development process. Such systems bring more flexibility, but also increasing

complexity to manage and monitor multiple repositories, as well as their branches [8, 12,

39].

Cesario, Interian, and Murta [10], in the article reproduced in Appendix G, proposed

an approach to assist developers and repository administrators in identifying and visual-

izing dependencies among clones of distributed repositories. It allows understanding what

is going on around one’s clone and visualizing the relationships between existing clones.

The tool called DyeVC that implements the approach was evaluated over open source

projects, showing how they could benefit from using the above-mentioned features.

DyeVC collects information about different repositories and presents it visually to

the user. One of the main visualizations that the user can take advantage of is the

representation of the commit history graph (CHG). Formally, the CHG is a directed

acyclic graph. Each of its nodes represents a known commit in the topology. There is an

arc between two commits if and only if they are in a parent-child relationship, that is,

commit A is parent of commit B if B is based on A. Additionally, a color is assigned to

each commit reflecting the information about the presence or absence of this commit in

the local repository and the peers’ repositories.

The initial commit is usually unique, and in this case it is the only node without

a parent. There may be commits with more than one parent, because of the non-fast-

forward merge operations. Commits also may have more than one child.
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The visualization of CHG can easily have thousands of nodes, one for each commit in

the topology. Nevertheless, despite the high number of nodes, the user is often interested

in understanding the structure of the project’s commit history.

Many of the commit nodes in CHG are unnecessary for comprehending the evolution

of the project in time. For instance, a linear sequence of 20 commit nodes that are ordinary

revisions and that belong to all clones (i.e., all have the same color) could be collapsed

in the visualization into just one single node. The following question arises: is there an

optimal (with the minimum number of nodes) visualization that reflects the structure of

the commit graph?

In this case, we are facing an optimization problem that is not completely defined:

the number of nodes that are showed to the user is minimized, but there is no clearly

established criteria for deciding which solution will be considered as feasible. This kind of

problem is extremely common in practical applications of optimization methods. There-

fore, modelling is necessary to formally define which solution will be considered as valid,

i.e., define the conditions or restrictions that the solution graph must satisfy.

Modelling consists in the identification of two common node structures that can be

automatically collapsed: sequential and parallel [10]. The former contains a sequence of

commits of the same type, where each of them has just one successor and one ancestor,

that is, simple paths. This kind of structure can be collapsed, because it does not represent

any additional information besides the fact that some sequential work was performed. On

the other hand, the latter contains one fork node and one merge node, with at most one

(regular or collapsed) 2-degree node in each branch, between the fork and the merge nodes.

This parallel structure represents a simple logical ramification in the project history that

separates the work in two branches that are then joined again.

Note that collapsing parallel structures may lead to new sequential structures, and

vice-versa. Cesario, Interian, and Murta [10], in the article reproduced in Appendix G,

described an iterative algorithm that works in phases to benefit from both sequential and

parallel collapse strategies. This algorithm is efficient because it performs a small number

of iterations, each of them running in linear time.

To measure the impact of automatic collapsing algorithm on real-life repositories,

several computational experiments were executed. With only two iterations of the algo-

rithm, where each iteration applies sequential and parallel collapses, the number of nodes

is reduced by an average of 73% compared to the original commit history graph. In some

cases, the reduction in the number of nodes surpassed 90%.
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Using this method, significantly lower running times and memory consumption values

are obtained during the visualization, compared with values before the automatic collaps-

ing. It was possible to visualize repositories with tens of thousands of nodes, which could

not be represented before, without the application of the collapsing algorithm.



Chapter 6

A two-stage heuristic
for curve and surface fitting

The problem of 2D and 3D object representation arises in different computer science

areas. Modelling, 3D reconstruction and recognition tasks depend totally on a good

representation of the observed objects. However, it is usual to receive noised or incomplete

real world data. The models are obtained from images, videos, 3D scanners and other

capture devices [19]. The nature of this devices allow to obtain a finite and discrete

amount of data from the original object, commonly as a point set. The process of finding

a model that better fits the observations is the goal of a lot of research work in recent

years [4, 51].

An implicit polynomial (IP) model [45] is used to obtain a compact representation of

sets of bi- or three-dimensional observations, appearing as a powerful tool for modelling

real objects when compared to other representation types. An implicit polynomial can

represent a curve (2D), or a surface (3D). Most existing IP fitting algorithms assume the

knowledge of the degree of the implicit polynomial that best represents the points. In the

paper by Interian et al. [21] reproduced in Appendix H, an IP fitting problem of finding

the optimum degree needed for representing the data set is addressed.

This problem combines discrete and continuous optimization in the following way.

The task of identifying the optimum degree needed for representing the data set is a

non-trivial discrete optimization problem, since the degrees are represented by integer

numbers. A too small implicit polynomial degree does not allow to represent complex

objects; at the same time, the greater the degree, the higher the possibility of overfitting.

Moreover, the problem of finding the implicit polynomial of some fixed degree that best

fits the points is a continuous problem, since the coefficients of the polynomials can take
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any real value.

To solve the problem, a two-stage heuristic is proposed by Interian et al. [21]. Ini-

tially, it is assumed that the degree of the polynomium is a fixed integer g. The fixed

degree fitting algorithm solves a subproblem using a continuous-space heuristic that finds

a near-optimal solution of the fitting problem for the degree value equal to g. Two

metaheuristics designed specifically for continuous problems are used: Particle Swarm

Optimization (PSO) and Differential Evolution (DE).

Next, the optimum degree is selected from a (discrete) set of allowed degrees. Since the

zero set of any odd degree polynomial is always unbounded [46], the proposed algorithm

only uses even degrees. Additionally, the advantage of having a compact representation

of the object is lost when very high degrees are used. Therefore, the set of feasible

degrees contains only even integers, bounded by some constant n, which depends on

several factors, such as the problem dimension (2D or 3D). The proposed algorithm is

based on the idea of gradually increasing the degree, while there is an improvement in the

smoothness of the solutions.

As a result, a heuristic adaptive fitting algorithm is obtained. This algorithm is better

than the others existing [5], not only because it can automatically find the required degree

of the implicit polynomial, but also because it can improve the quality of the solutions

obtained by other fitting algorithms, such as the classical linear and 3L.

The experiments confirm the validity of the approach for the selected 2D and 3D data

sets. The fits obtained by the proposed algorithm are interpretable. Additionally, the

results for specifically generated noisy data sets indicate that the proposed algorithm is

not very sensitive to noise, which allows it to be used for recognition tasks.



Chapter 7

Modelling tumor growth using regular
graphs and cellular automata

Tumor growth is a complex process that requires mathematical and computational mod-

eling approaches for studying real-life cancer behavior. Cell-based and cell-centered ap-

proaches for the study of biological soft tissues, and particularly tumors, have been widely

used, with cellular automata (CA) being one of the most successful models. Cellular au-

tomata models have been used to investigate avascular tumor growth [15, 28], tumor cell

invasion [1], and tumor interactions with various environmental factors [42].

In the article by Interian et al. [26] reproduced in Appendix I, cellular automata are

used for studying the process of tumor growth, approximating the behavior of certain

types of tumors, specially in the avascular stage. The automaton is used with the aim of

studying tumor growth in a new manner, more realistic and closer to the reality, where the

tumor is neither perfectly regular nor circular. The cellular automaton employs a lattice

in the form of a regular graph and is defined from a continuous deterministic differential

equation model developed in [41]. The neighborhood structure of the regular graph is

deduced, and specific rules for updating the states of the nodes are inferred from the

continuous model using different model settings.

In this work, a simple two-state cellular automaton is considered, where the state

0 represents a normal cell and the state 1 represents a tumoral cell. The automaton is

defined in a square lattice represented by a regular graph. First, from the differential

equation model, it is known that the increments of the tumor cell coordinates should be

similar, for some fixed moment of time, in all directions. Then, an appropriate neigh-

borhood structure is determined using the fact that the influence zone (neighbors) of any

cell c must have cells with the same distance to c, leading to a well known von Neumann
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neighborhood.

To infer the behavior of the CA from the continuous model, a new stochastic rule is

created [26]. The rule, also called transition function, receives a current state of some

cell c and its neighbors, and returns the state of c in the next moment of time. Since the

rule is stochastic, it also depends on a random variable that expresses the probability of

appearance of a new tumor cell during a time unit step.

In some cases, the closed-form of the specific stochastic rule is obtained analyzing

the relationship between the tumor radius growth speed and the radius itself, making it

possible to identify the average number of new tumor cells created from one tumor cell

per unit of time, for each radius value. In other cases, a closed-form expression can not

be found for the referred relationship, making it necessary to use numerical methods.

To evaluate the performance of the model, the evolution of the tumor radius with time

for several runs of the discrete CA model was compared with the continuous model. The

differences in the tumor radius between the models are small and are actually due to their

different nature. The consistency of the model was also evaluated using the coefficient

of variation of the tumor radius variable. Validation tests confirmed that the CA model

accurately captures the hypothesis of the described phenomena.

The methodology exposed in this work can be applied to other continuous models in

order to represent the growth processes in a nonidealized and nondeterministic way.



Chapter 8

Concluding remarks

The academic formation of the author of this thesis began at Universidad de La Habana,

an institution with 290 years of history, where he obtained a bachelor degree (five years of

studies) in Computer Science with a work titled “Classification of molecules represented

by graphs” in 2011. Next, he earned a master degree in Mathematics, in the area of

Optimization, with a dissertation titled “Curve and surface fitting by implicit polynomials”

in 2015.

The author was accepted as a PhD student at Universidade Federal Fluminense in

2015 with a CNPq doctorate scholarship, where he found a very favorable environment to

continue his graduate studies in Computer Science. The excellence of the faculty of the

Institute of Computing greatly contributed to this, as well as the inauguration between

2014 and 2016 of the two new buildings of the Institute, which considerably improved the

infrastructure used for research.

During the first year of the doctoral studies, the author took six graduate courses,

achieving 9.4 out of a maximum of 10.0 grade point average: Computer Systems, Treat-

ment of Uncertainty, Graph Theory, Computational Intelligence, Optimization in Graphs,

and Supervised Research.

During the very first year of the doctorate, the author developed and completed joint

collaborations with his advisor and two professors of the Institute of Computing. Together

with professor Anselmo A. Montenegro, the study of implicit polynomial fitting problem

emerged as a continuation of the author’s master dissertation, leading to the publication

of the article Interian, Otero, Ribeiro and Montenegro [21], “Curve and surface fitting by

implicit polynomials: Optimum degree finding and heuristic refinement”, which appears

in Appendix H. In addition, in collaboration with professor Reinaldo Rodríguez-Ramos
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(one of the most cited scientists from Universidad de La Habana, who was visiting the

Institute of Computing) and other co-authors, we worked on a research project that lead

to the article Interian, Rodríguez-Ramos, Valdés-Ravelo, Ramírez-Torres, Ribeiro and

Conci [26], “Tumor growth modelling by cellular automata”, presented in Appendix I.

Both papers appeared in 2017.

In parallel, the author and his advisor, professor Celso C. Ribeiro, began to have some

concerns when observing the increasing polarization of society, the lack of dialogue across

groups with different political sympathies, and the total absence of debate in the face of

the increasing subjectivity of the people and the media. These concerns led them to set

out to study the polarization process happening in front of them, investigation that led

to the major contribution of this doctoral thesis.

As a direct result of this work, we developed a framework for measuring the polar-

ization phenomenon and evaluating the strength of polarization of groups of nodes, or of

entire networks, and to estimate the impacts of external interventions on the polariza-

tion of a network. The paper Interian and Ribeiro [24], “An empirical investigation of

network polarization”, presented in Appendix A, condensed this research and was pub-

lished in the highly cited Elsevier’s journal Applied Mathematics and Computation, in

2018. Another paper by Interian, Moreno and Ribeiro [20], “Polarization reduction by

minimum-cardinality balanced edge additions: Formulations, complexity, and integer pro-

gramming approaches”, which appears in Appendix B, addressed a practical solution of

the polarization problem using the strategy of connecting people with different points of

view. This article was completed and submitted to Springer’s Journal of Combinatorial

Optimization.

The author and his advisor participated at several meetings, workshops and confe-

rences presenting their research methods and results, as enumerated in the first chapter of

this thesis. In particular, the subject of this research was presented as an invited plenary

lecture at the 13th Metaheuristics Intenational Conference (MIC 2019) in July 2019 with

the title “Polarization reduction by minimum edge additions”, illustrating the relevance

of the subject for the optimization and metaheuristics communities. In this lecture, in

particular, we used as a driving motivation the existing polarization – sometimes hidden,

sometimes explicit – in the optimization community between researchers more biased

towards metaheuristics and others that rely exclusively on exact methods.

During the time he was involved with the research on polarization issues, the author

continued his interactions with other professors of the Institute of Computing of Universi-
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dade Federal Fluminense. In collaboration with professor Leonardo Murta, he published

the article Cesario, Interian and Murta [10], “DyeVC: an approach for monitoring and

visualizing distributed repositories”, which appears in Appendix G. One of the main

contributions of this article addresses the visualization of commit history graphs. This

article is related to the master’s dissertation “Awareness over distributed version control

systems” [9] of Cristiano Cesário presented at Universidade Federal Fluminense in 2015,

for which the main contribution of the author was to propose and develop the algorithm

for optimal graph visualization.

Together with professors Uéverton Souza and Leonardo Murta, the study of verifi-

cation and validation methods led to a novel algorithm that efficiently combines these

methods in order to properly cover a set of quality characteristics. This algorithm was

the result of a collaboration that culminated with the master’s dissertation “Combining

verification and validation methods to cover software quality characteristics” [33] of Isela

Mendoza at Universidade Federal Fluminense in 2018, and appeared in the article Men-

doza, Souza, Kalinowski, Interian and Murta [34], “An Efficient Algorithm for Combining

Verification and Validation Methods”, which appears in Appendix F.

Altogether, this research and these publications cover a broad range of areas of Com-

puter Science, such as network analysis, routing and logistics, software engineering, and

computer vision. Exact approaches (such as integer programming and fixed-parameter

tractable algorithms) and heuristics (such as GRASP, path-relinking and iterated greedy)

are used to solve the optimization problems, showing that there is no universal technique

to solve all kinds of problems. Instead, each of them must be treated differently, exploiting

its own characteristics.

The publication of test problems and algorithm parameters should be encouraged by

journal editors and they all should be made available to other researchers to support their

investigations. In other cases, test data are available, but not the detailed results obtained

in computational experiments. As a result, many times previously published algorithms

can not be even even compared with new approaches, simply due to lack of access to test

instances, algorithm parameters, and detailed results obtained in computational experi-

ments. We experienced such difficulties, as reported in Section 5 of article Interian and

Ribeiro [22], reproduced in Appendix D. Recently, Mendeley Data – and other reposi-

tories – has emerged to assist researchers to store, share, publish and find data for their

investigations. Unlike classical scientific venues (such as journals and conferences) that

publish papers describing scientific methodologies and results, these data sharing tools
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offer an efficient way to provide access to benchmark instances for a large scope of fields

and problems. As an example, our data set “Polarization case studies” [24] providing the

data used in the computational experiments reported in our articles [20, 24] has had 185

views and 48 downloads since its recent publication in 2018.

Finally, the author considers that the main contribution of this thesis, regarding

polarization evaluation and reduction, could be a useful tool to decrease the intransigence

and inflexibility in social and communication networks on different points of view on issues

such as politics, traditions, and customs. In particular, issues such as capital punishment,

abortion and extremist political ideologies cause a deep division in society. Today, we

observe an almost total absence of dialogue between different worldviews, that certainly

can not explain, by themselves, the complexity of the real world. A minimal regulation

on social networks, such as proposed by the minimum intervention principle – which

guided part of this research and is completely opposed to any idea of censorship –, can

contribute to giving to their users the opportunity to get out of the echo chambers created

and reinforced by polarization. After all, quoting Hannah Arendt [2], “I form an opinion

by considering a given issue from different viewpoints, by making present to my mind the

standpoints of those who are absent. The more people’s standpoints I have present in my

mind while I am pondering a given issue, . . . the more valid my final conclusions.”
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This paper proposes and explores a new quantitative characterization of the polarization 

phenomenon in networks. New tools for evaluating the polarization of a network are pre- 

sented. We first characterize the homophily of each node individually. We depart from the 

definition of a new measure of the homophily of the nodes of a network and we consider 

the homophily distribution over the nodes as a primary indicator of the strength of po- 

larization. Next, to address the polarization of the network as a whole, a probabilistic ap- 

proach is developed. The approach is based on the straightforward computation of empir- 

ical cumulative distribution functions of sampled data from the network. These empirical 

distributions provide a more insightful understanding of the status of the network. They 

may be used not only to compare the polarization of groups of nodes or entire networks, 

but also to estimate the impacts of external interventions in terms of node polarization. 

The usefulness of the approach is illustrated on several case studies associated with real- 

life data sets from different sources. 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

Polarization is a widely known phenomenon that has been discussed by politicians, media, and researchers in recent 

years [1,2] . This subject has also attracted the attention of thinkers throughout history. 

Since the 19th century, Mill, an important philosopher and political theorist, claimed that dialogue across lines of political 

difference is a key prerequisite for sustaining a democratic citizenry [3] . Arendt also asseverated that debate is irreplaceable 

for forming enlightened opinions that reach beyond the limits of one’s own subjectivity to incorporate the standpoints 

of others [4] . More recently, several world leaders have often expressed concern about polarization problems caused by 

social media [5,6] . From sociologists to economists, many are interested in studying the behavior and interactions in social 

networks that rule the opinion formation process. 

According to the Oxford Dictionaries, polarization is the division into sharply contrasting groups or sets of opinions or beliefs 

[7] . 

It is not a widely accepted fact that social media increase polarization. Although there are many arguments support- 

ing this thesis [8,9] , there are also opposing views [10] . However, it is known that social networks and mass media, like 

newspapers and blogs, are the place where this phenomenon manifests itself in a more strong way. Even if social and mass 

media do not contribute to increase polarization in modern societies, it is important to identify the mechanisms by which 

polarization arises, as well as the characteristics and the peculiarities of polarized networks. 
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Fig. 1. Network of political blogs during the 2004 U.S. presidential election. Democratic and republican blogs are represented by blue and red circles, 

respectively. It is clear that this network is strongly polarized, since there are a huge number of edges connecting democratic blogs among themselves, a 

huge number of edges connecting republican blogs as well, and relatively few edges connecting a democratic blog and a republican blog. (For interpretation 

of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Polarization is closely related to homophily (from Ancient Greek: homo = “self ” and philia = “love”, love to oneself), 

the tendency of individuals to associate with others that are similar to themselves. To avoid misunderstandings, we regard 

polarization as an extreme expression of homophily. 

Homophily, also called assortativity [11,12] , has been widely studied by researchers. Several measures and models exist 

to characterize homophily. However, most of the work in the literature make use of a single numerical measure to define 

the homophily of some network in a given moment of time. An assortativity coefficient is proposed in [12] and applied to 

several networks, showing that homophily is a universal phenomenon. The probability of creating a new link between two 

individuals as a function of their similarity is studied in [13] . The inbreeding homophily measure that reflects the amount of 

bias towards same-type relationships is mentioned in [14] . The Pearson correlation coefficient is used in [11] as a measure 

of the preference of high-degree nodes to attach to other high-degree nodes. 

The characterization and the properties of polarized networks are very helpful to provide a better understanding of 

the behavior of individuals and societies. In addition, they can also help policymakers to define policies based on these 

characteristics. Although quantitative methods are often difficult to use in real-life situations because they tackle models 

that are abstractions of concrete cases, they are very useful in moderation systems used to detect suspicious events or 

users, as well as for economists and marketing experts when dealing with social and complex networks [15] . 

In this work, we develop tools that can be used for evaluating the polarization of a network in a more deep way than 

that offered by single valued measures. We first characterize the homophily of each node individually and, then, the polar- 

ization of the network as a whole. Section 2 introduces some real-life test instances that will be used as case studies. The 

homophily of each node is defined in Section 3 and we consider the distribution of the homophily values over the nodes 

of the network as a primary indicator of the strength of polarization, which is analyzed and illustrated with some case 

studies. The probability of a node to be influenced by homophily is derived in Section 4 as an improved measure of net- 

work polarization. This new measure is used to assess the statistical relevance of the homophily value. Section 5 develops 

a probabilistic approach to compare the polarization of groups of nodes or entire networks. The approach is based on the 

straightforward computation of empirical cumulative distribution functions of sampled data from the network, which pro- 

vide a more insightful understanding of the status of the network. The usefulness of the approach is illustrated on several 

case studies associated with real-life data sets. Concluding remarks are drawn in the last section. 

2. Case studies 

We consider as case studies a number of test data sets selected from very different sources. We assume that some of 

them may be polarized to some extent. 

• Books – A network of books about U.S. politics sold by Amazon.com [16] . Edges between books represent frequent cop- 

urchasing of those books by the same buyers. Most of the books are classified as conservative or liberal, and a small 

number of them as neutral. 

• Blogs – A network of political blogs that emerged during the 2004 U.S. presidential election [17] . Blogs are divided 

into two groups: republican and democratic. Fig. 1 represents democratic and republican blogs by blue and red circles, 

respectively [18] . 

• Trade – A world trade network, built using information about bilateral trade data between countries. The data compiled 

by Aller et al. [19] was obtained from the United Nations COMTRADE database. We consider that two countries are 

connected by an edge if the amount of trade between them is at least 5% of the total traded by any two countries. In 

other words, we discard the edges that do not represent a significant trade for either country. We analyzed two groups 
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Fig. 2. Range of variation of the homophily value. The extreme case h i (v ) = 0 corresponds to the absence of polarization (heterophily). As the homophily 

value increases it reaches the other extreme case h i (v ) = 1 , which corresponds to extreme polarization. 

of countries: those that formerly belonged to Eastern bloc (full COMECON members in 1990) and those who were part 

of Western bloc (NATO members in 1990, mainly the same countries that participated in the Marshall Plan). Most of the 

available data refers to 2010 and we analyze whether there are still strong ties between countries in both groups, about 

20 years after the end of the Cold War. 

• Game of Thrones – A network of interactions between characters of the well known novel “A Song of Ice and Fire”, 

sometimes called “Game of Thrones” (GoT), by the name of the first book and the television series. A more detailed 

description of this instance can be found in [20] . Characters are classified according to the house (clan) to which they 

belong or of which they are vassals. There is also a classification of the characters according to their gender (to see the 

role of gender in network organization, see [21] ). 

All data for these four case studies are available in [22] . 

3. Node homophily 

Let G = (V, A ) be a directed graph, where V = { v 1 , v 2 , . . . , v n } is the set of nodes and A = { a 1 , a 2 , . . . , a m 

} ⊆ V × V is the 

set of arcs. Moreover, let A = { A 1 , A 2 , . . . , A q } be a set of node groups defined on V , i.e., each A i ⊆ V for any i = 1 , . . . , q . Each 

node v ∈ V has an associated state S(v ) = { i = 1 , . . . , q : v ∈ A i } , that reflects the set of groups to which node v belongs. 

The groups may be interpreted as communities (as in social networks) or classes defined by some criterion. In case the 

groups define a partition of the node set V , i.e., A 1 ∪ A 2 ∪ · · · ∪ A q = V and A i ∩ A j = ∅ for any i, j = 1 , . . . , q : i � = j, each node 

belongs to one single group and its state is also referred to as its type. 

For any node v ∈ V, we denote by N (v ) the set of successors of v in G . We consider that any successor u ∈ N (v ) wins 

influence on v (and, therefore, v is influenced by u ), in the sense that v receives information from u . 

The cardinality of N (v ) is the out-degree d(v ) of node v . For any group A i ∈ S(v ) , the successors of v that belong to A i 

form the set N i (v ) = N (v ) ∩ A i ⊂ N (v ) . The cardinality of N i (v ) is the i -degree d i (v ) of node v . The homophily of any node 

v ∈ V, with d(v ) > 0 , with respect to any group A i , for i = 1 , . . . , q, is defined by 

h i (v ) ≡
d i (v ) 
d(v ) 

. (1) 

In other words, the homophily of a node v ∈ V with respect to a group A i , for i = 1 , . . . , q, is the ratio between the 

number of successors of v that belong to the same group A i as v and the number of successors of v . Of course, this definition 

only makes sense if d(v ) > 0 . The value of the homophily is a real number in the [0,1] interval, where 0 suggests heterophily 

(preference for the opposite), while 1 indicates extreme homophily. If a node v belongs to only one group, i.e., | S(v ) | = 1 

and S(v ) = { i } for some i = 1 , . . . , q, then the index i can be omitted and we denote h (v ) = h i (v ) . 
The homophily measure h i (v ) is similar to the homophily index H i defined by Currarini et al. [14] , which denotes the 

average i -degree of the nodes in A i , divided by the average degree of all nodes in this same group. Following our notation, 

H i = 

∑ | A i | 
j=1 

d i (v j ) ∑ | A i | 
j=1 

d(v j ) 
. (2) 

The newly proposed node homophily measure h i (v ) is more useful to fully describe the polarization of a network than 

the single value H i . Therefore, we will use the h i (v ) values for a node-centered homophily analysis of the network. 

Let w i = | A i | / | V | be the fraction of the nodes of the graph G that belong to group A i , for i = 1 , . . . , q . If h i (v ) is close to w i 

for a node v ∈ V, then d i (v ) ≈ w i d(v ) , i.e., d i (v ) is proportional to the number of nodes in group A i . This means that if we 

randomly choose a node u from among the successors of v , then the probability that u belongs to A i is approximately w i , 

which is the same probability that a randomly selected node of the network belongs to A i . In this case, we say that node v 
is balanced . 

In case d i (v ) is much greater than w i d(v ) , then the homophily of v is much larger than w i and there is polarization of 

v . Finally, if d i (v ) is significantly smaller than w i d(v ) , then we are in the presence of heterophily. Fig. 2 illustrates these 

concepts and the range of variation of the homophily value. 

This analysis can be made for each node in the network. Therefore, the distribution of the homophily over the nodes 

of the network (or over some subset of them, such as one of the groups A 1 , A 2 , . . . , A p ) can be used to characterize its 

polarization. 
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Fig. 3. Histogram representing the distribution of homophily values over the nodes of the political blogs network. The vertical axis indicates the number 

of occurrences of the homophily values in each interval of the horizontal axis. 

Fig. 4. Histogram that represents the distribution of homophily values over the male character nodes of the Game of Thrones network. The vertical axis 

indicates the number of occurrences of the homophily values in each interval of the horizontal axis. 

The distribution of the homophily values over the nodes of the network can be represented by a histogram, with the 

frequency of occurrences in each interval displayed in the vertical axis. Fig. 3 shows the case for the political blogs data 

set [17] . In this network, both groups (republican-affiliated and democrat-affiliated) form a partition of the node set and are 

of similar size ( w republican = 0 . 491 and w democrat = 0 . 509 ). Homophily values in the histogram are mostly clustered near the 

value 1, far from 0.5. Therefore, the neighborhoods of a significant number of nodes of this network are mainly formed by 

same-type nodes, indicating polarization. 

Next, as a second example, we consider the case of homophily by gender in the Game of Thrones network. There are 

two groups in this network, formed by male and female characters. We analyze the homophily values exclusively for the 

male characters. We are interested in knowing if male characters are more prone to interact with other male characters 

or not. Fig. 4 illustrates the occurrences of the homophily values in this network. If the network is not polarized, then the 

homophily values should average approximately w males = 0 . 757 , corresponding to the proportion of male characters in the 

node set V . Although we observe some clusterization of the histogram around this value, there is also a concentration of 

nodes with a high homophily value leaning towards 1, in the right extremity of the histogram. We abstain for now from 

assuming any further hypothesis in this case, and we return to this example in the next section. 
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Fig. 5. Example of a graph with five black and five grey nodes for which high values of the homophily measure for some specific nodes do not necessarily 

indicate polarization. For example, the fact that h (v 3 ) = 1 does not indicate “polarization” of node v 3 . 

4. Polarization test 

We note that although the homophily values are relevant, they may somehow be incomplete. Let us consider the graph 

in Fig. 5 , with five black and five grey nodes. Each edge represents two arcs, one in each direction. The number of arcs be- 

tween same-type nodes is equal to the number of arcs between different-type nodes. Therefore, this graph is not polarized. 

However, many nodes of the graph have different numbers of black and grey neighbors. In this example, both nodes v 1 
and v 2 have two same-type neighbors and one neighbor of the other type. Therefore, h (v 1 ) = h (v 2 ) = 

2 
3 . Since v 3 has only 

one neighbor, h (v 3 ) = 1 . The homophily value can be high for some nodes simply by chance, either because of their small 

degrees, or because it is impossible to divide an odd number by two, often lacking a greater meaning. 

Therefore, “high” homophily values for some specific nodes do not necessarily indicate polarization. 

In order to avoid the misuse of the raw homophily values we propose to use the binomial test to assess the statistical 

significance of d i (v ) and d(v ) values as indicators of the polarization of node v . 
Two definitions are relevant to establish whether a network is polarized or not. We assume that the networks considered 

in this work are such that, whenever a new arc (v , u ) originating from node v is added to the graph, there is a probability 

p i ∈ [0, 1] that arc (v , u ) is formed by same-type neighbors, where p i depends only on the group A i , i = 1 , . . . , q, to which 

node v belongs to. More formally: 

Definition 4.1 (Linking probability) . Let G = (V, A ) be a directed graph with a set A = { A 1 , A 2 , . . . , A q } of node groups defined 

on V , with A i ∩ A j = ∅ for any i, j = 1 , . . . , q : i � = j. We say that p i ∈ [0, 1] is the linking probability of group A i if, for each 

v ∈ A i and for any arc (v , u ) that is added to the graph, the probability that node u also belongs to A i is equal to p i . 

We observe that the linking probability p i is the same for all nodes in group A i . The concept of linking probabilities 

can be illustrated and better understood with some examples. Consider e.g. the case of the political blogs in the internet, 

associated with some ideological or political groups that establish new hyperlinks reflecting the information sources that 

exert influence on them. If a blog is biased to some extent, it is more likely (i.e., it happens with higher probability) to 

establish links with other same-type blogs. If we consider the trade network, we should expect that countries often establish 

commercial ties with other countries that are ideologically more similar to themselves. Therefore, we made the assumption 

that, in each case, there is a linking probability of establishing a same-type link from any node of a given group, and this 

probability is somehow related to the strength of the bias of this group. 

Definition 4.2 (Balanced graph) . A directed graph G = (V, A ) with a set A = { A 1 , . . . , A q } of node groups defined on V , with 

A i ∩ A j = ∅ for any i, j = 1 , . . . , q : i � = j, is said to be balanced if, for each A i , the linking probability p i is equal to w i , where 

w i = | A i | / | V | . 
Now, let G = (V, A ) be a directed graph with a set A = { A 1 , A 2 , . . . , A q } of node groups defined on V , with A i ∩ A j = ∅ for 

any i, j = 1 , . . . , q : i � = j. Moreover, let v ∈ V be a node of type i ∈ { 1 , . . . , q } with n = d(v ) successors and p i be the linking 

probability of group A i , i = 1 , . . . , q . Then, the number d i (v ) of same-type successors of v follows a binomial distribution 

with parameters n and p i : 

P (d i (v ) = k ) = 

(
n 

k 

)
· p k i (1 − p i ) 

n −k . 

We observe that if G = (V, A ) is a balanced graph, then arcs are formed indistinctly: in other words, the probability that 

a successor of node v ∈ A i be a same-type node is w i = | A i | / | V | . Therefore, the null hypothesis for the binomial test is 

H 0 : p i = w i . 

The alternative hypothesis is 

H 1 : p i > w i 

and, therefore, G is not a balanced graph. Consequently, node v is polarized to some extent. 
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Fig. 6. Histogram that represents the distribution of p -values over the nodes of the political blogs network. The vertical axis indicates the number of 

occurrences of the p -values in each interval of the horizontal axis. 

We do not consider the case p i < w i , since in typical networks it is not expected to find a significantly large number 

of arcs with different-type extremities. Even if for some node we find a disproportionately large number of such inter- 

group arcs, and a too small number of intra-group arcs, the goal of the p -value measure is to evaluate the strength of the 

polarization of that node. Therefore, we consider that the possible presence of heterophily in some nodes is irrelevant to 

our analysis. Consequently, the one-tailed binomial test applies in this case. 

If we choose some level of significance, such as 5%, we can decide if the null hypothesis is rejected by calculating the 

probability p -value (v ) of observing a number of same-type successors that is greater than or equal to d i (v ) . If p -value (v ) 
is less than or equal to the significance level, then the null hypothesis should be rejected. If p -value (v ) is greater than the 

significance level, then the null hypothesis cannot be rejected. 

In the example of Fig. 5 , the probability of having two or more same-type neighbors among three nodes is 0.5. Therefore, 

we cannot reject the null hypothesis at the 5% significance level. There is not enough information to conclude that the bias 

we observe is due to polarization and not to chance. However, if instead there was a node with 30 successors, with 20 of 

them having its same type, then the p -value would be approximately 0.04937 and we could reject the null hypothesis at 

the 5% level. 

Therefore, we can see that two nodes with the same homophily measure 2/3 computed by Eq. (1) can have very different 

probabilities of being truly influenced by homophily. The homophily measure h (.) shows that some bias is present, but the 

p -value is a stronger measure that indicates how significant the observed bias is. 

This is partially explained by the fact that the measure h (v ) summarizes two informative variables in a single one, 

normalizing the number of same-type successors by dividing it by the total number of successors, thus losing usable infor- 

mation. 

4.1. Distribution of p-values 

Given the null hypothesis, it is well known [23] that the p -values are uniformly distributed in the interval [0,1]. Since 

the number of nodes in real-life networks is finite and some node degrees are small, the p -value distribution may be not 

perfectly uniform. Given their interpretation, the occurrence of small p -values indicate that the network is unbalanced. 

Therefore, a significant concentration of p -values towards zero means that the graph is polarized. 

Fig. 6 shows the distribution of p -values over the nodes of the political blogs data set [17] . The values are mostly clustered 

close to zero, indicating polarization. 

In contrast, Fig. 7 illustrates the distribution of p -values for the male characters of the Game of Thrones network, which 

is much more uniform than the precedent. The complete absence of small p -values (lower than any of the commonly used 

significance levels, such as 5% or even 10%) is striking, meaning that there is no statistically relevant homophily values that 

justify the rejection of the null hypothesis, therefore indicating the absence of polarization. 

4.2. Evaluating the homophily of a network 

The distribution of p -values summarizes the information about polarization of some group of nodes or network. In ad- 

dition to the p -value histograms, we can present this information by choosing some values for the significance level α and 

counting the number of nodes (or the fraction of nodes) whose p -values are smaller than each value of α. A large fraction 
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Fig. 7. Histogram that represents the distribution of p -values over the male character nodes of the Game of Thrones network. The vertical axis indicates 

the number of occurrences of the p -values in each interval of the horizontal axis. 

Table 1 

Fraction (in percent) of the nodes in each group whose p -value is below the 

significance level α, corresponding to the more polarized nodes. 

Instance name Group Significance level, α

0.01 0.02 0.05 0.10 

Political books Conservative 40.8 49.0 73.5 73.5 

Liberal 53.5 69.8 81.4 83.7 

Neutral ( ∗) 0.0 0.0 15.4 23.1 

All groups 41.0 51.4 69.5 71.4 

Political blogs Republican 53.8 57.4 62.3 68.6 

Democratic 44.2 48.5 53.2 58.5 

All groups 49.2 53.1 57.9 63.8 

World trade Eastern bloc 60.0 68.0 76.0 80.0 

Western bloc 68.8 75.0 81.3 87.5 

Game of Thrones (houses) Stark-Arryn 25.0 58.3 62.5 79.2 

Lannister 41.7 50.0 54.2 66.7 

Game of Thrones (gender) Male ( ∗) 0.0 0.0 0.0 0.0 

Female ( ∗) 0.0 0.0 0.0 7.7 

All groups ( ∗) 0.0 0.0 0.0 1.9 

of nodes with p -values smaller than the significance level α corresponds to a large number of polarized nodes. The higher 

the former is, the more polarized the network is. 

Table 1 shows the fraction of the nodes of the network that satisfy this condition for the most common significance level 

values 1%, 2%, 5%, and 10%. If the groups cover the entire set of nodes, then every node in V has an associated p -value. In 

this case, we also show the ‘all groups’ row, that contains the fraction p -values that are smaller than the significance level 

α in the whole network. 

We observe that, in most cases in this table, a substantial part of the network is polarized. The only exceptions are 

the groups in the instance corresponding to gender classification in the Game of Thrones network and the small neutral 

group in the political books network (both marked with an ‘ ∗’). This means, for the case of the Game of Thrones network, 

that there is no gender assortativity over the characters, and this can be interpreted as the absence of any sexist pose of the 

author. Similarly, for the case of the political books network, buyers of neutral books often buy books of different tendencies 

besides the neutral ones. 

5. Comparing polarized groups and networks 

We have shown that the p -values are a good indicator of how likely it is to observe polarization and that smaller p -values 

point to more polarization. In this section, we use the tools proposed in this work to compare the strength of polarization of 

groups and networks. In order to compare two groups of nodes in terms of their polarization, we make use of the empirical 

distribution function [24] of the p -values over the nodes. 
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Table 2 

Probability that the p -value of some group X be smaller than the p -value of another 

group Y . 

Instance name X Y P ( p -value( X ) < 

p-value( Y )) 

Political books Liberal Conservative 0.575 

Conservative Liberal 0.425 

Political blogs Republican Democratic 0.567 

Democratic Republican 0.432 

World trade Eastern bloc Western bloc 0.435 

Western bloc Eastern bloc 0.565 

Game of Thrones (houses) Stark-Arryn Lannister 0.536 

Lannister Stark-Arryn 0.453 

Game of Thrones (gender) Male Female 0.449 

Female Male 0.538 

The empirical distribution function (CDF) of a sample X 1 , . . . , X n of a real-valued random variable X is defined as 

F n (x ) = 

1 

n 

·
i = n ∑ 

i =1 

1 · { X i ≤ x } , ∀ x ≥ 0 . (3) 

The empirical distribution function F n ( x ) of the random sample of size n is an estimator of the unknown distribution 

function F X ( x ) of the random variable X . This estimator has good statistical properties: it is unbiased and consistent, among 

other properties [24] . 

In the following, we explore this concept for comparing the polarization of groups of nodes in the same network, as well 

as the polarization of two different networks. 

5.1. Statistical comparison of p-values 

For each pair of groups X and Y of the networks considered in our case studies, Table 2 displays the probability P ( p - 

value( X ) < p -value( Y )) that p -value( x ) of a randomly selected node x ∈ X be smaller than p -value( y ) of a randomly selected 

node y ∈ Y . 

To compute P ( p -value( X ) < p -value( Y )), we simply divide the number of pairs of nodes ( x , y ): x ∈ X , y ∈ Y such that p - 

value( x ) < p -value( y ) by the total number | X | · | Y | of pairs ( x , y ): x ∈ X , y ∈ Y . Considering e.g. the case of the political books, let 

X be the set formed by 43 liberal books and Y be the set of 49 conservative books, amounting to 43 × 49 = 2107 ( x , y ) pairs. 

Since there are 1212 ( x , y ) pairs with p -value( x ) < p -value( y ), then P ( p -value( X ) < p -value (Y )) = 

1212 
2107 = 0 . 575 . Probabilities in 

the same instance do not necessarily add up to one, since there are pairs ( x , y ): x ∈ X , y ∈ Y of nodes with p -value (x ) = p- 

value( y ). 

For any of the instances in Table 2 , we observe that P ( p -value( X ) < p -value( Y )) � = P ( p -value( Y ) < p -value( X )). In principle, we 

could take the fact that P ( p -value( X ) < p -value( Y )) > P ( p -value( Y ) < p -value( X )) as an indication that group X is more polarized 

than group Y . However, we do not know a priori whether this lack of symmetry is sufficient or conclusive to compare the 

strength of polarization of the two groups X and Y . This issue will be addressed in the next section. 

5.2. Comparing the polarization of two groups 

In this section, we present and discuss the empirical distribution functions of the p -values associated to the groups in 

which some of our data sets are clustered. 

Fig. 8 displays the p -value empirical CDFs (3) for the nodes of the groups representing conservative and liberal books. 

We observe that the conservative books p -value CDF first-order stochastically dominates [25] the liberal books p -value CDF, 

i.e., conservative books are less likely to be polarized. However, both groups are extremely polarized, since more than 70% 

of the p -values are below the 0.1 threshold. In fact, the CDF at 0.1 is approximately 0.735 for the conservative books and 

approximately 0.837 for the liberal books. 

Similarly, Fig. 9 shows the p -value empirical CDFs for the nodes of the groups representing democratic and republican 

political blogs. In this case, the democratic blogs appear to be somewhat less polarized than the republican blogs although, 

once again, both are strongly polarized. 

Fig. 10 compares the p -value CDFs of the two largest clans in the Game of Thrones network. There is no first-order 

stochastic dominance between them. However, most of the Lannister p -value CDF is below the Stark-Arryn p -value CDF, 

indicating more polarization on the Stark-Arryn clan, as already indicated by Table 2 . 

Finally, Fig. 11 presents the p -value CDFs for the gender groups in the Game of Thrones network. Although the values 

P ( p -value( X ) < p -value( Y )) and P ( p -value( Y ) < p -value( X )) in Table 2 are different for this instance, we do not observe first- 

order stochastic dominance. Instead, we observe that the plots are much closer to uniform distributions (corresponding 
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Fig. 8. Polarization in the network of conservative and liberal books: comparison of the p -value cumulative distribution functions. Both groups are ex- 

tremely polarized, although the conservative books group less likely to be polarized. 

Fig. 9. Polarization in the network of democratic and republican blogs: comparison of the p -value cumulative distribution functions. Both groups are 

extremely polarized, although the democratic blogs appear to be somewhat less polarized than the republican blogs. 

to straight lines through the origin) and the p -vales are greater than those in the previous figures, corresponding to the 

expected absence of polarization. 

5.3. World trade case study 

It is well established that there was very little trade between countries in the West and East countries before the nineties. 

We can use the tools proposed in this work to analyze how things have changed ever since. 

We summarize in tabular form some relevant p -value information for the World trade network. We use this particular 

representation to explicitly represent p -values in order to show the five most open and the five least independent economies 

in 2010, with regard to these groups. Table 3 presents the results. 

The results indicate that, in 2010, Russia and Ukraine remained commercially intertwined with other former Soviet Union 

states. Cuba and Vietnam, which were on the periphery of the Eastern bloc, no longer have any relevant commercial links 

with other former COMECON states. In the Western bloc, United States and Canada have more diversified economies, in the 

sense that they do not depend on other countries from the same group. 
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Fig. 10. Polarization in the Lannister and Stark-Arryn clans in the Game of Thrones network: comparison of the p -value cumulative distribution functions. 

Most of the Lannister p -value CDF is below the Stark-Arryn p -value CDF, indicating more polarization on the Stark-Arryn clan. 

Fig. 11. Polarization by gender in the Game of Thrones network: comparison of the p -value cumulative distribution functions. There is no first-order 

stochastic dominance between the two plots, that are much closer to uniform distributions, corresponding to the expected absence of polarization. 

5.4. Comparing the polarization of two networks 

In the same way as we compared the polarization of two groups of nodes in Section 5.2 , in some situations it is possible 

to compare the polarization of two different networks. In this case, it is required that the groups define a partition of the 

node set corresponding to each network: every node should belong to exactly one group and the p -value CDFs can be 

computed for each entire network. 

The usefulness of this type of comparison can be illustrated with practical and realistic applications in two scenarios. 

First, consider a social network that is subject to some intervention (such as a marketing campaign) or, alternatively, severely 

modified by some external circumstances. If complete information on the network before and after the intervention (or 

external circumstance) is available, the p -value CDF provide a tool to compare the polarization of the networks representing 

the two states of the same physical entity, before and after the intervention (or external circumstance) and to evaluate its 

impacts. A second interesting scenario of application involves the comparison of the polarization of two different networks 

that represent collective behavior of the same group of people, such as two different social networks in the same country 

at the same time. 

To illustrate this application, once again we consider the political books data set. Its node set V is partitioned into 

three groups: A conservative , A liberal , and A neutral . Their average different-type out-degrees are, respectively, d conservative = 0 . 94 , 
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Table 3 

Openness of economies in terms of their p -values. The table 

presents the countries with the five largest and the five lowest 

p -values for each bloc. 

Bloc Feature Country p -value 

East Smaller p -values Russia 3 . 681 × 10 −11 

Ukraine 1 . 459 × 10 −6 

Lithuania 1 . 106 × 10 −5 

Moldova 6 . 073 × 10 −5 

Latvia 1 . 084 × 10 −4 

Larger p -values Turkmenistan 0.118 

Azerbaijan 0.155 

Mongolia 0.194 

Cuba 1.0 0 0 

Vietnam 1.0 0 0 

West Smaller p -values Iceland 5 . 126 × 10 −7 

Norway 5 . 483 × 10 −6 

Germany 4 . 514 × 10 −5 

Luxembourg 8 . 619 × 10 −5 

Denmark 2 . 265 × 10 −4 

Larger p -values Greece 0.017 

Turkey 0.022 

Italy 0.059 

Canada 0.491 

USA 0.563 

Fig. 12. Comparison of the p -value cumulative distribution functions of the original and treated political books instances with three levels of intervention. 

The strength of polarization decreases as the intervention level increases. 

d liberal = 0 . 84 , and d neutral = 4 . 5 , with the overall average of different-type out-degrees being 1.30 and the average node 

degree being 8.40. This instance was previously shown to be strongly polarized in Section 5.2 . 

We assume now that this network is subject to some intervention and additional arcs connecting different-type nodes 

are inserted. Fig. 12 displays the p -value CDFs of the results observed by the simulation of three levels of intervention: with 

a low-level intervention, one new arc connecting each node to a randomly selected different-type node is added to the 

network. In the case of medium- or high-level interventions, the network is treated by the addition of two or three new 

arcs in each case, respectively. 

We observe that as the level of the intervention increases and more arcs connecting nodes of different groups are added, 

the p -values CDF quickly becomes more uniform and the network becomes balanced, eliminating polarization. Considering 

e.g. the medium level intervention, the overall average of different-type out-degrees raises to 3.30 and the average node 

degree to 10.40. Since the fraction 2/10.40 ≈ 19.2% of new arcs in the resulting network is relatively low, we observe that 

a medium-level intervention might be sufficient to eliminate polarization. These results show that the p -value CDF is a 

powerful tool not only to evaluate the polarization of actual networks, but also the impact of interventions. 
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6. Discussion and concluding remarks 

In this study, we proposed and explored a new quantitative characterization of the polarization phenomenon in networks. 

First, we defined the homophily of the node of a network and we analyzed the distribution of the homophily in a directed 

graph as a primary indicator of polarization. 

Next, we used a probabilistic approach to define a new and improved polarization measure, which is based on the 

calculation, for each node, of the probability ( p -value) of observing a number of same-type successors that is greater than 

or equal to the actual number of same-type successors observed for this node. We used the distribution of the obtained 

p -values for evaluating the strength of polarization of the network. The empirical distribution function of the p -values can 

be used to compare, in a more informative way, the polarization of different groups of nodes and even of entire networks. 

Several real-life networks from different sources have been used as case studies to illustrate the usefulness of the proposed 

tools. 

The approach proposed in this work is generic and may be applied to a variety of real networks and situations. In 

particular, the p -value distributions can be used to estimate the impacts of interventions in the polarization of the nodes of 

a network. Also, the tool developed in this work could be applied into the identification of influential spreaders in networks 

[15] and for the promotion of collective cooperation within a regular cooperation network [26] . 

We consider that these tools are relevant in a world characterized by extreme political and ideological polarization. 
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nication networks, which is a relevant problem in a world characterized by
extreme political and ideological polarization.

Keywords Polarization · Minimum-cardinality balanced edge addition
problem · Polarized networks · Complexity · Integer programming

1 Motivation

The issue of polarization has been discussed by politicians, media, and re-
searchers [8,25]. This subject has also attracted the attention of thinkers
throughout history. John Stuart Mill, an important philosopher and politi-
cal theorist, claimed that dialogue across lines of political difference is a key
prerequisite for sustaining a democratic citizenry [16]. Hannah Arendt also
asseverated that debate is irreplaceable for forming enlightened opinions that
reach beyond the limits of one’s own subjectivity to incorporate the stand-
points of others [4]. From sociologists to economists, many are interested in
studying the behavior and interactions in social networks that rule the opinion
formation process.

According to the Oxford Dictionaries, polarization is the division into
sharply contrasting groups or sets of opinions or beliefs [7]. Academic arti-
cles, newspapers, and the media in general constantly report the growth of
fake news, misinformation spreading, and polarization of increasingly isolated
groups of individuals. These phenomena are closely interrelated with each
other. Fake news spread faster in polarized networks or groups [24]. At the
same time, fake and tendentious news can accentuate polarization within al-
ready existing echo chambers in the social networks.

Recently, the causes of the proliferation of flat-earth believers, i.e., people
who believe that the Earth is actually flat, were investigated by Landrum [14],
revealing the role of the video-sharing platform YouTube on this prolifera-
tion. This work showed that the algorithms the platform uses to guide people
to topics that might interest them makes it easier for a user to end up in
a misinformation echo chamber. The study concludes that the most effective
instrument to combat disinformation – i.e., false information spread deliber-
ately to deceive – is to provide (or even “to flood”) users of the platform with
quality information, to ensure that the public also receives accurate, scientific
or simply plural information when watching videos on some subject.

Interian and Ribeiro [13] have shown that many case-study real-world net-
works are extremely polarized. A polarized network is divided into two or
more strongly connected groups, with few edges between vertices belonging to
different groups. Communication between different groups is weak: there are
many vertices for which all or most of its neighbors belong to the same group.
In practice, this corresponds to a situation where, most of the time, only same-
group vertices communicate to each other and most of the information that
a vertex can receive comes from inside the same group to which it belongs.
These groups may correspond to large cliques or quasi-cliques [1,2,22,23,26,
27].
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Interian and Ribeiro also showed in [13] that in order to reduce polariza-
tion, networks can be treated by external interventions. An intervention can
be seen as any externally-induced process that modifies the structure of the
network, such as a fact-checking campaign, a marketing campaign, a regula-
tory action or some direct manipulation that adds or removes vertices or edges
of the network. The process of adding new vertices is often difficult to be per-
formed in real networks. On the other hand, removing vertices or edges may
be controversial, because it can be interpreted as the permanent exclusion or
deletion of elements such as users, sites, or posts from a social network. This
kind of intervention has been widely used in moderation systems for inspecting
or removing objectionable content at the discretion of the moderator and such
exclusions are often seen as aggressions against freedom of expression in the
digital environment.

Suppose that we have a network formed by a set of vertices V partitioned
into disjoint subsets V1, V2, . . . , Vk. Two vertices that belongs to the same sub-
set Vi are called same-type vertices, while two vertices that belong to different
subsets Vi and Vj , i 6= j, are called different-type vertices. We consider the ad-
dition of edges between different-type vertices of the network as a less invasive
treatment method. A typical example of the use of this kind of treatment in
real networks is the suggestion of new friendship relations in social networks.
By adding edges between vertices of different groups, a super-graph containing
the original graph is built. There are more connections between different-type
vertices inside this super-graph and, consequently, inter-group communication
is improved.

A new optimization problem addressing the issue of polarization reduc-
tion by edge additions is presented in this work. Other optimization prob-
lems have already used the idea of adding edges to a graph with the goal of
improving specific performance measures. Constant-factor approximation al-
gorithms were developed in [6] for the problem of adding k shortcut edges
to the graph in order to minimize its diameter. A game that models the
creation of a network by selfish agents that benefit from shortest paths to
all destinations is analyzed in [9], considering that the agents pay for the
links they establish. Two variants of the diameter minimization problem are
studied in [15]: the minimum-cardinality-bounded-diameter and the Bounded-
cardinality-minimum-diameter edge addition problems, where it is shown that
both problems are NP-hard even if the value of the diameter is fixed to 2.
Improved approximation ratios of O(log n) and 2 were proposed in [5] for both
problems, respectively. Some results were also extended to the edge-weighted
versions of the problems.

Other works in the area of analysis of social networks explored the idea of
adding edges to a graph in order to improve its ability to disseminate infor-
mation. A problem addressing the minimization of the average shortest path
distance between all pairs of vertices was studied in [20], adding a limited num-
ber of additional “ghost edges” with the objective of improving the network
efficiency of information propagation. This approach prioritizes the shortest
path distance between each pair of vertices, while in the present work the con-
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nectivity between groups of vertices that represent different opinions, ideas, or
beliefs is analyzed.

A measure called characteristic path length was minimized in [19]. The
characteristic path length is another name for the average shortest path dis-
tance between all pairs of vertices. Some properties of the problem are proved
and methods for computing the utility of all candidate edges in large graphs
are described and evaluated.

Another edge recommendation problem was introduced in [11]. In this case,
the goal of the recommendation is to reduce the “controversy score” of the
graph, using a metric based on random walks. The controversy score relies
on how controversial a topic is or, in other words, on how much polarization
it generates. The probability of acceptance of the recommended edge is also
evaluated.

In this article, we propose the minimal intervention principle, which con-
sists in assuming that the lowest number of changes should be made in the
original network in order to attend any proposed condition for polarization re-
duction. We formulate the minimum-cardinality balanced edge addition prob-
lem and discuss integer programming formulations for its solution. This work
is organized as follows. In the next section, we present the problem formulation
and its complexity. Integer programming models are presented in Section 3.
Computational results on randomly generated and real-life instances are dis-
cussed in Section 4. Concluding remarks are drawn in the last Section 5.

2 Problem formulation and complexity

Let G = (V,E) be a graph defined by a set V = {v1, . . . , vn} of vertices and a
set E ⊆ V × V of edges. We use the term group to refer to any subset of the
vertex set V .

We assume that graph G is polarized to some extent and it is necessary to
solve the issue of insufficient communication between the groups. The reduc-
tion of the polarization in a polarized graph can be treated and formulated as
a mathematical optimization problem is discussed next.

2.1 Minimum-cardinality balanced edge addition problem

Interian and Ribeiro [13] observed that, in many graphs, there may be an im-
portant number of vertices that are not connected to other groups, i.e., there
may be only intra-group edges adjacent to these vertices. Consider, for exam-
ple, a network of books about U.S. politics sold by Amazon.com [18]. Edges
between books represent frequent copurchasing of those books by the same
buyers. Most of the books are classified as conservative or liberal, and a small
number of them as neutral. There are 105 vertices in this instance and 56 of
them are adjacent only to neighbors of the same group, as shown in Figure 1.
Another example is that of a network of political blogs that emerged dur-
ing the 2004 U.S. presidential election [3]. Blogs are divided into two groups:
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republican and democratic. Among the 1065 non-isolated vertices in this in-
stance, there are 572 blogs with links exclusively to blogs of the same political
orientation, as shown in Figure 2.

Fig. 1: Network of books about U.S. politics sold by Amazon.com. Red, green,
and blue vertices represent, respectively, conservative, neutral and liberal
books.

Fig. 2: Network of political blogs during the 2004 U.S. presidential election.
Red and blue vertices represent republican and democratic blogs, respectively.

In practice, it can be unrealistic to add an expressive number of edges for
each vertex, since this kind of intervention should be minimal. We refer to this
assumption as the minimal intervention principle. These statement led us to
consider the following optimization problem, in which we seek to minimize the
number of edges to be added to a polarized graph in order that any vertex in
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a proper vertex subset A ⊂ V can reach some vertex of V \A in the resulting
graph by a path with a limited number of edges. If we denote by dG(v, V ′) the
minimum number of edges in a path from a vertex v of graph G to any vertex
in V ′ ⊆ V , then this problem can be formulated as:

Minimum-cardinality Balanced Edge Addition Problem (MinCBEAP)
Instance: Graph G = (V,E), subset A ⊂ V , integer D.
Goal: Find a minimum-cardinality set E′ ⊆ (V × V ) \ E such that

dG′=(V,E∪E′)(v, V \A) ≤ D, ∀v ∈ A.

Given an integer L as an additional parameter, the decision version of
MinCBEAP amounts to the question: “Is there a set E′ ⊆ (V × V ) \ E with
at most L edges such that dG′=(V,E∪E′)(v, V \A) ≤ D, ∀v ∈ A?”

To prove that MinCBEAP is NP-complete, we first define the eccentricity
ε(v) of a vertex v ∈ V as the longest of the shortest paths in G from v to all
other vertices in V [12].

Bearing this definition in mind, we introduce the Minimum-cardinality-
bounded-eccentricity edge addition problem [6] (MCBE), which consists in
reducing the eccentricity of some vertex v by adding edges to the graph the
vertex belongs. More formally, its decision version can be stated as:

Minimum-cardinality-bounded-eccentricity edge addition prob-
lem (MCBE)

Instance: Graph G = (V,E), source vertex s ∈ V , integer p, integer B.
Question: Is there a supergraph G′ = (V,E ∪ E′) of G with E′ ⊆ (V ×

V ) \ E such that |E′| ≤ p and εG′(s) ≤ B?

Lemma 1 There is a concise certificate for MCBE with all edges incident to
vertex s.

Proof Let E′ be any concise certificate for MCBE. Consider the shortest-path
tree T in graph G′ = (V,E∪E′) rooted at s. Each edge in the tree is traversed
in the direction of the shortest path to s. Any edge (u, v) in E′∩T used in this
direction can be replaced by edge (u, s), since all vertices that use edge (u, v)
in their shortest paths to s will not have their their distance to s increased,
therefore creating a new concise certificate with all edges incident to the source
vertex s.

Although the NP-completeness of MCBE has been suggested by some
authors [6][21], to the best of our knowledge a formal proof does not exist.
We give a proof using a polynomial reduction from the set covering problem
[10]:

Set covering problem (SC)
Instance: Collection C = {S1, . . . , Sm} of subsets of a finite set S =

{x1, . . . , xn}, integer k.



Polarization reduction by minimum-cardinality balanced edge addition 7

Question: Is there a cover C ′ ⊆ C such that each element of S belongs to
at least one member of C ′ and |C ′| ≤ k?

Theorem 1 MCBE is NP-complete.

Proof MCBE is in NP, since for any of its instances defined by a graph G =
(V,E), a source vertex s ∈ V , and integers p and B, the eccentricity of the
source vertex s in a supergraph G′ = (V,E ∪ E′) of G can be calculated in
polynomial time, where E′ ⊆ (V × V ) \ E.

We show that any instance of set covering problem can be transformed into
an instance of MCBE with B = 2. Consider an instance of the set covering
problem defined by subsets S1, . . . , Sm, with |S1∪. . .∪Sm| = n, and by an inte-
ger k that indicates the size of the target cover C ′. Build an instance of MCBE
as follows. Let G be a graph with vertex set V = {u1, . . . , um, v1, . . . , vn, s, s′}.
There is an edge between vertices uj and vi if element xi belongs to Sj . Vertices
s and s′ are connected and vertex s′ is connected with vertices u1, . . . , um. In
addition, set B = 2 and p = k.

Figure 3 illustrates an example of the construction of an instance of MCBE
with B = 2 and p = 3. Note that ε(s) = 3 and let E′ ⊆ (V × V ) \ E be a
set with at most p edges such that ε(s) ≤ 2 in G′ = (V,E ∪ E′), i.e., E′ is a
concise certificate for MCBE for this instance.

Fig. 3: Example of instance used in the proof of the NP-completeness of MCBE.
The concise certificate E′ = {(s, v1), (s, v2), (s, u3)}, highlighted in blue, is
replaced by the certificate E = {(s, u1), (s, u3)}, with edges (s, v1) and (s, v2)
replaced by edge (s, u1).

The distance from vertex s to any vertex v1, . . . , vn in G is greater than 2.
From Lemma 1, without loss of generality, we may pick the certificate E′ in
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such a way that all its edges are incident to s. The other extremities of the
edges in E′ necessarily belong to either {v1, . . . , vn} or {u1, . . . , um}.

To build another set E with at most p edges such that all of them are
incident to {u1, . . . , um}, we replace every edge (s, vi), i = 1, . . . , n, in E′ by
an edge (s, uj) in E, with j : xi ∈ Sj . E remains a concise certificate for
MCBE, because the distance from s to vertex vi in G = (V,E ∪E) is still less
than 3 for any i = 1, . . . , n for which there is an edge (s, vi) ∈ E′. Therefore,
ε(s) in G is also at most 2.

To conclude, we note that for each vertex vi there is a vertex uj such that
there is an edge in E from s to uj , because vi is at most at distance 2 from s
in G. In consequence, the edges in E are incident to at most k vertices, each
one associated with a set Sj . These k sets represent a concise certificate for
the set covering instance.

In order to prove the NP-completeness of MinCBEAP, a polynomial trans-
formation from MCBE is used:

Theorem 2 MinCBEAP is NP-complete.

Proof The problem is in NP, since the distance from any vertex v ∈ A to any
vertex in V \A can be calculated in polynomial time.

Now, consider an instance of MCBE defined by graph G, vertex s and
integers p and B, and build an instance of MinCBEAP by setting A = V \{s}
as the proper vertex subset of V . Then, V \A = {s}. Set D = B and L = p.

Let E′ ⊆ (V ×V )\E be a set with at most L edges such that all vertices in
A are at a distance of at most D from s in G′ = (V,E∪E′), i.e., E′ is a concise
certificate to MinCBEAP. Then, adding E′ to G reduces the eccentricity of s
to at most B = D using at most p = L edges, since the graph G′ = (V,E∪E′)
is undirected. Consequently, E′ is also a concise certificate to MCBE.

Exact integer programming approaches for the Minimum-cardinality bal-
anced edge addition problem are developed in the next section.

3 Integer programming formulations

Given a non-oriented graph G = (V,E), a vertex subset A ⊂ V , and a non-
negative integer D, the optimization version of MinCBEAP amounts to finding
a minimum cardinality set SG ⊆ (V ×V )\E such that dG′=(V,E∪SG)(v, V \A) ≤
D, ∀v ∈ A.

3.1 Instance transformation

There are no edges in an optimal solution SG to MinCBEAP with both ex-
tremities in V \A, because adding edges with both extremities in V \A would
not affect the distance from any vertex in A to those in V \A.

The following proposition holds:
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Proposition 1 Let SG be a solution to MinCBEAP. Let (u, v) ∈ SG be an
edge with u ∈ A and v ∈ V \A. Then, (SG\{(u, v)})∪{(u,w)}, with w ∈ V \A
and w 6= v, is also a solution to MinCBEAP.

Proof Replacing edge (u, v) by edge (u,w) does not change the distance from
any vertex in A to set V \A.

Given a non-oriented graph G = (V,E), a source vertex s, and a non-
negative integer B, the optimization version of MCBE amounts to finding a
minimum cardinality set SH ⊆ (V × V ) \ E such that εG′=(V,E∪SH)(s) ≤ B.

Then, consider the following transformation from an instance of MinCBEAP
defined on graph G = (V,E), as illustrated in Figure 4a, that creates an in-
stance of MCBE on graph H = (VH , EH), as illustrated in Figure 4b. In the
transformed MCBE instance, VH = A ∪ {v′}, s = v′, and B = D, with the
dummy vertex v′ representing the collapsed set V \ A. Furthermore, for any
vertex u ∈ A such that there is an edge between u and some vertex v ∈ V \A
in G, then there is an edge between u and v′ in H. We also observe that while
the number of vertices in G = (V,E) is |V |, there are only |A|+ 1 vertices in
the graph H = (VH , EH) that defines the MCBE instance.

(a) Instance of MinCBEAP on G = (V,E)
(b) Transformed instance of MCBE on H =
(VH , EH)

Fig. 4: Instance transformation.

We make use of this transformation to find a solution for the transformed
instance of MCBE, which is then used to obtain a solution for the original
instance of MinCBEAP. Let SH be an optimal solution for the transformed
MCBE instance. A solution SG for the original instance of MinCBEAP can be
obtained as follows. Let e = (u, v) ∈ SH . If both u, v ∈ A, then edge e = (u, v)
also belongs to SG. In case one of the extremities – say, extremity v – of edge
e coincides with v′ /∈ A, then we chose at random a vertex w ∈ V \ A, and
substitute edge e = (u, v′) in SH by edge e′ = (u,w) in SG. Therefore, by
construction, the solution SG obtained for MinCBEAP has |SG| = |SH |.
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3.2 First ILP formulation

Any optimal solution SH to problem MCBE can be seen as an oriented span-
ning tree of the graph H ′ = (VH , EH ∪ SH) rooted at vertex v′. The distance
from any vertex in the tree to vertex v′ should be at most D. The arcs of the
oriented spanning tree indicate the paths from each vertex to the root v′.

This formulation makes use of a variant of the Miller-Tucker-Zemlin con-
straints to avoid cycles [17]. They create an arborescence in which each vertex
v is labeled with an integer dv. The root is labeled with dv′ = 0 and the
vertices in any tree arc (v1, v2) are labeled with dv1 > dv2 .

The edges in the optimal solution are those associated with arcs that belong
to the oriented spanning tree and not to EH .

For each vertex u 6= v, we define the following decision variable:

xuv =

{
1, if arc (u, v) ∈ A× (A ∪ {v′}), belongs to the oriented spanning tree,
0, otherwise.

The integer variable dv indicates the label of vertex v ∈ VH . The formula-
tion makes use of weights defined as wuv = 0 if the associated edge (u, v) ∈ EH ,
wuv = 1 otherwise:

min
∑

u∈A

∑

v∈A∪{v′}
wuvxuv (1)

subject to:
∑

v∈A∪{v′},v 6=u

xuv = 1, ∀u ∈ A (2)

xuv + xvu ≤ 1, ∀u, v ∈ A, (3)

du ≥ xuv + dv − (1− xuv)D, ∀u ∈ A,∀v ∈ A ∪ {v′}, u 6= v (4)

du ≤ D, ∀u ∈ A (5)

du ≥ 1, ∀u ∈ A (6)

dv′ = 0, (7)

du = 1, ∀u ∈ A, v′ ∈ NH(u) (8)

xuv′ = 1, ∀u ∈ A, v′ ∈ NH(u) (9)

xuv ∈ {0, 1}, ∀(u, v) ∈ A× (A ∪ {v′}) (10)

dv ∈ {0, ..., D}, ∀u ∈ A ∪ {v′}, (11)

with NH(u) = {v ∈ A ∪ {v′} : (u, v) ∈ EH}.
The objective function (1) minimizes the number of edges, since the weights

of edges in EH are zero. Constraints (2) indicate that an arc must come out
from every vertex of A, tracing the path (i.e., the last vertex before) to vertex
v′. Constraints (3) enforce that there is at most one arc between any pair of
vertices. Constraints (4) ensure that if xuv = 1, i.e., arc (u, v) belongs to the
oriented spanning tree, then du > dv. On the other hand, if xuv = 0, i.e.,
arc (u, v) does not belong to the oriented spanning tree, then the constraint
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becomes du ≥ dv −D and is satisfied for any du, dv ∈ {0, . . . , D}. Constraints
(5) and (6) indicate, respectively, upper and lower bounds to the vertex labels.
Constraint (7) sets the label of vertex v′ to zero. Constraints (8) set to one
the labels of the vertices of A that are adjacent to v′, while constraints (9) set
to one the variables associated with the vertices of A that are adjacent to v′.
Constraints (10) and (11) are the integrality requirements.

We observe that although the model can be solved without constraints (8)
and (9), they are added to accelerate the solution process.

3.3 Second ILP formulation

We recall that our formulation addresses the transformed instance of MCBE
on graph H = (VH , EH), with v′ being the dummy vertex. From Lemma 1,
we know that there is always a solution SH with all edges having v′ as one of
the extremities. Therefore, the problem can be solved by considering only this
particular subset of solutions and deciding, for each vertex u, if edge (u, v′)
should be added to the graph.

Demaine and Zadimoghaddam [6] proposed a model solving the linear fea-
sibility problem associated to the MCBE. The adaptation of this model to an
optimization problem is described next. The following decision variabes are
defined:

yu =

{
1, if there is an edge between vertex u ∈ VH and v′,
0, otherwise;

tuv =

{
1, if the shortest path from vertex v ∈ VH to v′ makes use of edge (u, v′),
0, otherwise.

If the distance between v and v′ is greater than D, then a path from v
will reach v′ using any of the vertices that are at a distance from v′ that is
smaller than D. Moreover, as noted in [6], vertex v can not use edge (u, v′) if
the distance between v and u is greater than D:

min
∑

u∈VH :(u,v′)/∈EH

yu (12)

subject to:

tuv ≤ yu, ∀u, v ∈ A (13)∑

u:dist(u,v)<D

tuv = 1, v ∈ A, dist(v, v′) > D (14)

yu ∈ {0, 1}, ∀u ∈ A ∪ {v′} (15)

tuv ∈ {0, 1}, ∀u, v ∈ A ∪ {v′} (16)

The objective function (12) minimizes the number of edges adjacent to
vertex v′ to be added. Constraints (13) indicate that if vertex vj reaches v′

using edge (vi, v
′), then vertex vi must be counted in the objective function.
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Moreover, constraint (14) expresses that if the distance between vj and v′ is
greater than D, then vertex j reaches v′ using exactly one of the vertices that
are at a distance to v′ that is smaller than D. Constraints (15) and (16) are
the integrality requirements.

3.4 Third ILP formulation

In this formulation based only on 0-1 variables, we also make use of Lemma
1 that establishes that there is always a solution to MCBE with all edges
incident to the source vertex v′. In addition to the variables

yu =

{
1, if there is an edge between vertex u ∈ VH and v′,
0, otherwise;

already used in the previous formulation, we also define

dvk =

{
1, if there is an path of size k from vertex v to vertex v′,
0, otherwise.

The problem may then be formulated as:

min
∑

(u,v′)/∈EH

yu (17)

subject to:

D∑

k=1

duk = 1, ∀u ∈ A (18)

du0 = 0, ∀u ∈ A (19)
D∑

k=1

dv′k = 0, (20)

dv′0 = 1, (21)

duk ≤
∑

v∈NH(u)

dvk−1, ∀u ∈ A, k ∈ {2, ..., D} (22)

du1 = yu, ∀u ∈ A, v′ /∈ NH(u) (23)

du1 = 1, ∀u ∈ A, v′ ∈ NH(u) (24)

yu = 0, ∀u ∈ A, v′ ∈ NH(u) (25)

yu ∈ {0, 1}, ∀u ∈ A ∪ {v′} (26)

dvk ∈ {0, 1}, ∀u ∈ A ∪ {v′},∀k ∈ {0, ..., D} (27)

The objective function (17) minimizes the number of edges adjacent to
vertex v′ to be added. Constraints (18) and (19) indicate that 1 ≤ dist(u, v′) ≤
D, ∀u ∈ A. Moreover, constraints (20) and (21) express that the distance from
vertex v′ to itself is zero. Constraints (22) indicate that if the distance from
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vertex u ∈ A to vertex v′ is k ≥ 2, then the distance from one of its adjacent
vertices to v′ must be k − 1. Constraints (23) ensure that for each vertex u
that is not adjacent to v′ in H, then its distance to v′ will become equal to
1 in H ′ = (VH , EH ∪ SH) if there is an edge between u and v′ in the optimal
solution. Constraints (24) and (25) fix the variables of the vertices adjacent to
v′ in H. Constraints (26) and (27) are the integrality requirements.

We now observe that the following property holds:

Proposition 2 Let SH be an optimal solution of the MCBE problem defined
by a graph H = (VH , EH), a source vertex v′ and a constant D, and let u ∈ VH ,
u 6= v′ be a vertex. If dH(u, v′) = d ≤ D, then dH′=(VH ,EH∪SH)(u, v

′) ≤ d.

Proof Since H ′ = (VH , EH ∪ SH) is a supergraph of H = (VH , EH), then it
contains all paths from u to v′ that already exists in H. Consequently, the
distance from vertex u to v′ can not increase in H ′.

In other words, all vertices u 6= v′ with d(u, v′) ≤ D can not be, in the
optimal solution, at a distance greater than their current distance to v′.

Therefore, constraints (18) can be replaced by the constraints below in an
improved formulation:

D∑

k=1

duk = 1, ∀u ∈ A, d(u, v′) > D (28)

d(u,v′)∑

k=1

duk = 1, ∀u ∈ A, d(u, v′) ≤ D (29)

D∑

k=d(u,v′)+1

duk = 0, ∀u ∈ A, d(u, v′) ≤ D, (30)

where constraints (28), (29) and (30) make use of the additional information
about the distances from vertex v′ to all other vertices in graph H.

Table 1 compares the three formulations in terms of their number of vari-
ables and constraints, where n = |VH |.

Table 1: ILP formulations: number of variables and constraints.

Variables Constraints All variables binary?
First formulation O(n2) O(n2) No
Second formulation O(n2) O(n2) Yes
Third formulation O(nD) O(nD) Yes

4 Numerical results

The models were implemented and tested using version 12.7.1 of the CPLEX
solver on an Intel Core i7 machine with a 3.2 GHz processor and 8 GB of
RAM, running under the Windows 10 operating system.
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4.1 Ramdomly generated test problems

Several experiments were performed to assess the performance of the integer
programming models presented in the previous section. We created two set
of instances: small and medium sized instances. The instances were generated
as random graphs with two parameters: the number of vertices n and the
number of randomly generated edges m inside the set A. The parameter D of
the problem was set to 2, which is a reasonable target in practice. The instances
are named indicating the values of n and m. For example, the instance named
“inst 200v 4x” has n = 200 vertices and m = n× 4 = 800 edges in set A.

Tables 2 and 3 contain the experimental results for the small and medium
instances, respectively. For each instance and formulation, the tables display
the number of added edges in the best solution found by the solver, the run-
ing time in seconds, and an indication whether the instance was solved to
optimality or not within a time limit of 3600 seconds.

Table 2 shows that the third formulation outperforms the others, solving
to optimality all small instances instances with up to 1000 vertices in much
smaller running times.

Table 3 reports the same experimental results for the second and third
formulations for the medium-sized instances, but exclusively for those where
the number of edges is four or eight times the number of vertices, because
for them the optimal solution is not quickly reached. The third formulation
obtains better results when the number of vertices increases. We also observe
that the memory space requirements of the second formulation increase very
quickly with the number of vertices, making it impractical on a machine with
a limited amount of memory space: not even feasible solutions were found for
the instances with 5000 or more vertices due to memory limitations.

Table 4 illustrates the variation of the linear relaxation gap for the instances
with 1000 and 2000 vertices with the increase in the number of edges. For the
same instances, Figure 5 displays the evolution of the absolute gap when the
number of edges increases. We observe that the largest absolute gap values are
reached when the number of edges is 5 or 6 times greater than the number of
vertices. For the same instances, the third – and best – formulation takes the
longest times to reach the optimum. Therefore, instances with these densities
seem to be the hardest to be solved by integer programming techniques.

Another observation that can be drawn from Table 4 is that the higher is
the density of each of the polarized groups of vertices in a network, the smaller
is the number of edges that should be added in the optimal solution, which
makes these problems easier to be solved in practice.
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Table 3: Results for medium-sized instances.

Instance
Second formulation Third formulation

Edges Time (s) Solved? Edges Time (s) Solved?
inst 3000v 4x 286 3776.23 (no) 280 3600.78 (no)
inst 3000v 8x 118 3723.63 (no) 115 3600.71 (no)
inst 4000v 4x 384 3963.45 (no) 373 3600.53 (no)
inst 4000v 8x 157 4176.90 (no) 153 3600.59 (no)
inst 5000v 4x - - (no) 472 3600.57 (no)
inst 5000v 8x - - (no) 200 3600.57 (no)
inst 6000v 4x - - (no) 573 3600.42 (no)
inst 6000v 8x - - (no) 240 3600.32 (no)
inst 7000v 4x - - (no) 674 3600.56 (no)
inst 7000v 8x - - (no) 278 3600.46 (no)
inst 8000v 4x - - (no) 766 3600.62 (no)
inst 8000v 8x - - (no) 306 3600.47 (no)
inst 9000v 4x - - (no) 863 3600.66 (no)
inst 9000v 8x - - (no) 368 3600.49 (no)
inst 10000v 4x - - (no) 976 3600.86 (no)
inst 10000v 8x - - (no) 398 3600.72 (no)

4.2 Real networks and interpretation

We also applied the solution approach proposed in Section 2 to the two in-
stances recovered from Interian and Ribeiro [13] that appear in Figures 1 and 2:
books and blogs, respectively. The third formulation of problem MinCBEAP
described in Section 3 was solved for both instances.

Table 5 shows the results. We note that the number of edges in the solution
that solves optimally each instance is very small in each case. The intervention
associated with the addition of these edges to the graph represents, indeed, a
small increase of less than 1% in the number of edges. This fact reflects the
minimum intervention principle proposed in the problem formulation, showing
that polarization can be reduced by small modifications in the structure of the
graph.

These results also illustrate that edge additions make it possible to break
the isolation of polarized groups by providing them with more plural informa-
tion coming from other groups, as noticed in [14].

5 Concluding remarks

In this work, we introduced the Minimum-Cardinality Balanced Edge Addi-
tion Problem as a strategy for reducing polarization in real-world networks.
We proved the NP-completeness of its decision version. We also proposed three
new integer linear formulations for the optimization version, discussing com-
putational results on both randomly generated and real-life instances. On the
real-life instances, we showed that polarization can be reduced to the desired
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Table 4: Linear relaxation gap on the instances with 1000 and 2000 vertices.

Instance name
Third formulation Third formulation, LP relaxation

Gap =
x−dye

xEdges Time (s) Solved? Edges Time (s) Solved?
inst 1000v 1x 362 0.057 yes 362 0.027 yes 0
inst 1000v 2x 197 0.148 yes 196.29 0.034 yes 0
inst 1000v 3x 130 15.463 yes 127.44 0.043 yes 0.015
inst 1000v 4x 97 9.488 yes 93.84 0.041 yes 0.031
inst 1000v 5x 72 779.852 yes 66.79 0.058 yes 0.069
inst 1000v 6x 59 3600.98 (no) 53.41 0.053 yes 0.085
inst 1000v 7x 47 574.383 yes 42.36 0.064 yes 0.085
inst 1000v 8x 38 51.265 yes 34.42 0.041 yes 0.079
inst 1000v 9x 33 144.737 yes 30.14 0.029 yes 0.061
inst 1000v 10x 27 3.942 yes 24.05 0.029 yes 0.074
inst 1000v 11x 23 0.408 yes 21.07 0.044 yes 0.043
inst 1000v 12x 17 0.102 yes 15.89 0.026 yes 0.059
inst 1000v 13x 15 0.120 yes 13.80 0.023 yes 0.067
inst 1000v 14x 13 0.125 yes 12.57 0.024 yes 0
inst 1000v 15x 10 0.078 yes 9.53 0.023 yes 0
inst 1000v 16x 12 0.129 yes 10.62 0.024 yes 0.083
inst 2000v 1x 702 0.110 yes 702 0.056 yes 0
inst 2000v 2x 390 0.329 yes 388.74 0.099 yes 0.003
inst 2000v 3x 253 3603.000 (no) 247.14 0.195 yes 0.020
inst 2000v 4x 186 3601.790 (no) 175.42 0.224 yes 0.054
inst 2000v 5x 140 3601.060 (no) 127.42 0.273 yes 0.086
inst 2000v 6x 117 3600.940 (no) 104.79 0.205 yes 0.103
inst 2000v 7x 94 3601.130 (no) 84.51 0.146 yes 0.096
inst 2000v 8x 78 3601.030 (no) 69.77 0.132 yes 0.103
inst 2000v 9x 58 3601.710 (no) 52.59 0.099 yes 0.086
inst 2000v 10x 50 459.184 yes 45.72 0.078 yes 0.080
inst 2000v 11x 46 3433.460 yes 40.89 0.084 yes 0.109
inst 2000v 12x 38 6.289 yes 35.41 0.069 yes 0.053
inst 2000v 13x 32 4.755 yes 29.50 0.071 yes 0.063
inst 2000v 14x 25 0.507 yes 23.12 0.069 yes 0.040
inst 2000v 15x 22 0.469 yes 20.73 0.072 yes 0.045
inst 2000v 16x 19 0.137 yes 17.84 0.067 yes 0.053

Table 5: Results for real-life instances.

Instance name Group Vertices Edges
ILP Model 3

Solution Time Solved

books
Conservative 50 420 1 0.006 yes
Liberal 44 376 2 0.018 yes
Neutral 14 44 0 0.014 yes

blogs
Republican 637 9352 8 0.048 yes
Democratic 589 8805 17 0.014 yes

threshold with the addition of a few edges, as established by the minimum
intervention principle that guided the problem formulation.

Another interesting conclusion is that in strongly polarized groups, there
is often some easy way of spreading polarization-breaking information. This is
a consequence of the fact that the higher is the density of a polarized group
of vertices in a network, the smaller is the number of edges in the optimal
solution, as previously observed in Section 4.1 from the results in Table 4.
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Fig. 5: Variation of the absolute linear relaxation gaps with the increase in
the number of edges: on horizontal axis, the ratio m/n between the number
of edges and vertices in set A.

This study also shows that by using edge additions, completely isolated
groups mentioned by Landrum [14] can start receiving more plural information,
i.e., information coming from more that one group. Therefore, as suggested,
disinformation can be broken by providing users a way to encounter diverse
views of those practiced by members of the same groups they are trapped in.

Future work involves the study of graph properties that might lead to
improvements in the efficiency of exact approaches, as well as the development
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of heuristic methods for handling hard instances that can not be solved by
exact methods.

The minimum intervention principle that guided the approach proposed in
this work and the exact methods developed here constitute an effective strategy
for tackling polarization problems in real social, interaction, and communica-
tion networks. They make it possible to build concrete tools and strategies to
address polarization issues in practice, since this is a relevant problem in a
world characterized by extreme political and ideological polarization.
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rinterian@ic.uff.br, celso@ic.uff.br

Abstract

The Minimum-Cardinality Balanced Edge Addition Problem (MinCBEAP) appears in the context
of polarized networks as a strategy to reduce polarization by external interventions using the mini-
mum number of edges. We show that every instance of MinCBEAP can be reduced to an instance of
the Minimum-Cardinality-Bounded-Eccentricity Edge Addition Problem (MCBE). A restarted iter-
ated greedy heuristic is developed for solving MinCBEAP via the transformed MCBE. Preliminary
computational results are reported.

1 Problem statement

According to the Oxford Dictionaries, polarization is the division into sharply contrasting groups or sets
of opinions or beliefs [1]. Academic articles, newspapers, and the media in general constantly report
the growth of fake news, misinformation spreading, and polarization. These phenomena are closely
interrelated with each other. Fake news spread faster in polarized networks or groups [6]. At the same
time, fake and tendentious news can accentuate polarization within already existing echo chambers in
the social networks.

Interian and Ribeiro [3] showed that many case studies real-world networks are extremely polarized.
A polarized network is divided into two or more strongly connected groups, with few edges between
vertices belonging to different groups. Most of the time, only same-group vertices communicate to each
other and most of the information that a vertex can receive comes from inside the same group to which
it belongs.

In order to reduce polarization, networks can be treated by external interventions consisting of the
addition or the removal of vertices and edges. In this work, we address a new optimization problem that
treats the issue of polarization reduction by edge additions. Given a graph G = (V,E) and a subset of
(polarized) vertices A ⊂ V , we seek a minimum-cardinality set of edges E′ ⊆ V ×V \E to be added to
G such that all vertices that are not in A can be reached from any vertex in a A by paths with at most D
edges, whereD is a problem parameter. The decision version of our optimization problem can be cast as:

Minimum-Cardinality Balanced Edge Addition Problem (MinCBEAP):
Instance: Graph G = (V,E), subset A ⊂ V , integer D, integer L.
Goal: Is there a set E′ ⊆ (V ×V )\E with cardinality |E′| ≤ L such that dG′=(V,E∪E′)(v, V \A) ≤

D, ∀v ∈ A?

In the above formulation, dG′=(V,E∪E′) denotes the number of edges in a shortest path from v ∈ A
to the closest vertex in V \A in G′ = (V,E ∪ E′).

Given a graph G = (V,E), the eccentricity ε(v) of a vertex v ∈ V is the longest of the shortest paths
in G from v to all other vertices in V \ {v}, see [2]. Any instance of MinCBEAP can be reduced to an
instance of the Minimum-Cardinality-Bounded-Eccentricity Edge Addition Problem (MCBE):

Minimum-cardinality-bounded-eccentricity edge addition problem (MCBE):
Instance: Graph G = (V,E), source vertex s ∈ V , integer B, integer p.
Question: Is there a supergraph G′ = (V,E ∪ E′) of G with E′ ⊆ (V × V ) \ E such that |E′| ≤ p

and εG′(s) ≤ B?
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Interian and Ribeiro [4] showed that MCBE is NP-complete. They also showed that MinCBEAP is
NP-complete for D greater than or equal to 2, using a polynomial transformation from MCBE.

We propose in the following an efficient iterated greedy heuristic for approximately solving
MinCBEAP using a transformation to MCBE. This article is organized as follows. In Section 2, we
describe the polynomial transformation from an instance of MinCBEAP to one of MCBE and the iter-
ated greedy heuristic. In Section 3, some preliminary computational results are presented.

2 Iterated greedy heuristic

We propose the following transformation of an instance of MinCBEAP into an instance of MCBE. Con-
sider an instance of the optimization version of MinCBEAP defined by a graph G = (V,E), a subset
A ⊂ V , and an integer D. To build the corresponding optimization instance of MCBE, consider a graph
Ḡ = (V̄ , Ē) and an integer B = D. Let V̄ = A ∪ {s}, where s is the source vertex representing the set
V \A, in such a way that if there is an edge (u, v) ∈ E with u ∈ A and v ∈ V \A, then there will be an
edge (u, s) ∈ Ē.

The MCBE instance is solved after the problem transformation. Let SH ⊆ (V̄ ×V̄ )\Ē be the optimal
solution of MCBE for the instance defined by Ḡ = (V̄ , Ē). This solution is transformed to a solution
SG ⊆ (V × V ) \ E of the original MinCBEAP instance as follows. Consider any edge (u, v) ∈ SH . If
both u, v ∈ A, then the edge (u, v) also belongs to SG. Otherwise, in case the source s /∈ A coincides
e.g. with extremity u of edge (u, v), then edge (w, v) is placed in SG, where w is a randomly generated
vertex from V \ A. Following this strategy, we obtain a solution SG that solves MinCBEAP satisfying
|SH | = |SG|.

The heuristic proposed in this work is based on the following lemma (the proof is omitted here due
to space limitations):

Lemma 2.1. There is a solution S∗ ⊆ (V × V ) \ E for MCBE such that all edges in S∗ are incident to
the source vertex s.

Therefore, the set of candidate edges to be inserted in the solution can be restricted to those incident
to vertex s. The problem is then reduced to determining a subset X∗ ⊆ V \ {s} of vertices such that for
every vertex v ∈ X∗ there is an edge {v, s} ∈ S∗. In the algorithm, the solution S∗ will be represented
by the corresponding subset X∗ of vertices, where |S∗| = |X∗|.

The cost of a solution to MCBE is given by the cardinality |X| of the set X . It is well known
that local search procedures often do not perform satisfactorily in the context of optimization problems
without weights, in which the objective function is related to the cardinality of the solution, due to the
lack of gradient information and to the exponential size of neighborhoods based on cardinality improv-
ing. In order to overcome this barrier, we propose in the following an iterated greedy heuristic [7] for
MCBE, which is solely based on the repeated, successive application of destruction and reconstruction
procedures, without appealing to local search.

In summary, iterated greedy starts from a greedy or a semi-greedy candidate solution, and generates
a sequence of solutions using two main phases: destruction and reconstruction. During the destruction
phase, some edges are removed from the current solution. The reconstruction procedure then applies a
greedy constructive heuristic to reconstruct a complete candidate solution. If the cardinality of the newly
constructed solution is less than the cardinality of the incumbent solution, then the latter is updated. The
heuristic iterates over these steps until some stopping criterion is met [7].

One important building block of the iterated greedy heuristic is the semi-greedy (or greedy random-
ized) algorithm. There is a number p(v) of non-solved neighbors associated with each vertex v ∈ V ,
that is, the number of neighbors of v that are still at a distance greater than B from the source vertex
s. At each step, this algorithm adds one random vertex from a restricted candidate list (RCL) to the
initially empty solution set X . The RCL is formed by all vertices w ∈ V \ {s} that satisfy the condition
(1 − α)pmax ≤ p(w) ≤ pmax, where pmax = max{p(v) : v ∈ V \ {s}} and α is the greediness
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parameter of the semi-greedy algorithm. We recall that α = 0 corresponds to a purely greedy criterion,
while α = 1 corresponds to a completely random selection of the next vertex from V \ {s}.

Algorithm 1 shows the pseudo-code of the proposed iterated greedy heuristic. In line 1, the best
solution X∗ and its cardinality f∗ are initialized. The while loop in lines 2–16 performs a new iteration
while a stopping criterion is not met. The semi-greedy algorithm is applied in line 3 to build a solution
X using the greediness parameter α. This solution is improved by performing a sequence of destruction-
reconstruction phases in lines 4–12, until kmax iterations without any improvement are executed. The
destruction phase is applied in line 7, by randomly removing a fraction β of the vertices in X . Next, the
resulting solution is reconstructed by a greedy deterministic algorithm in line 8, which corresponds to
the semi-greedy algorithm with α = 0. If the cardinality of the newly reconstructed solution X ′ is less
than the cardinality of the incumbent X , then the latter is updated in line 10. If the solution obtained
after the sequence of destruction-reconstruction iterations is better than the best known solutionX∗, then
the best solution X∗ and its cardinality f∗ are updated in line 14. In line 17, the best solution found X∗

is returned.

Algorithm 1 Restarted Iterated Greedy for MCBE
Parameters: α, β, kmax

Input: G = (V,E)
Output: X∗

1: X∗ ← V ; f∗ ← |V |;
2: while stopping condition is not met do
3: X ← SemiGreedy(G,α);
4: i← 0;
5: while i ≤ kmax do
6: i← i+ 1;
7: X ′ ← PartialDestruction(G,X, β);
8: X ′ ← GreedyReconstruction(G,X ′);
9: if |X ′| < |X| then;

10: X ← X ′; i← 0;
11: end if;
12: end while;
13: if |X| < f∗ then
14: X∗ ← X; f∗ ← |X|;
15: end if;
16: end while;
17: return X∗;

In the above algorithm, an external loop was added to the iterated greedy heuristic originally de-
scribed by Ruiz and Stützle [7]. Instead of starting with a completely greedy solution, we start with a
semi-greedy solution and the iterated greedy construction can be embedded in a multi-start procedure.
This hybrid variant was named Restarted Iterated Greedy (RIG) by Pinto et al. [5].

3 Preliminary numerical results

We generated 13 random graph instances with different number of vertices. The number of edges in
each instance was fixed as 8 times the number of vertices. The maximum length of the connecting paths
was fixed as D = 2. The greediness parameter of the restarted iterated greedy was set at α = 0.1, the
fraction of the solution to be destructed at β = 50%, the number of iterations without improvement at
kmax = 100, and the time limit of 3600 seconds as the stopping criterion for the heuristic.

Table 1 shows preliminary results for the random instances, including the number of vertices
|X∗| = |S∗| in the best solution found and the running time in seconds. We are currently develo-
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ping a mixed integer programming (MIP) approach for exactly solving small- and medium-size instance
of MCBE. Preliminary results obtained by the MIP approach make it possible to identify the optimality
of the solutions found by the restarted iterated greedy heuristic for the instances with up to 1000 vertices.

Instance |A| |X∗| Time (s) Solved?
inst 100v 8x 100 3 0.32 yes
inst 200v 8x 200 7 0.64 yes
inst 500v 8x 500 20 0.19 yes
inst 1000v 8x 1000 38 246.08 yes
inst 2000v 8x 2000 81 3610.24 (no)
inst 3000v 8x 3000 121 3609.47 (no)
inst 4000v 8x 4000 160 3609.60 (no)
inst 5000v 8x 5000 209 3606.40 (no)
inst 6000v 8x 6000 253 3614.21 (no)
inst 7000v 8x 7000 292 3621.25 (no)
inst 8000v 8x 8000 331 3617.79 (no)
inst 9000v 8x 9000 392 3638.78 (no)
inst 10000v 8x 10000 426 3644.16 (no)

Table 1: Results for the restarted iterated greedy heuristic.
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Abstract

The traveling salesman problem (TSP) is one of the most studied problems in combinatorial optimization.
Given a set of nodes and the distances between them, it consists in finding the shortest route that visits each
node exactly once and returns to the first. Nevertheless, more flexible and applicable formulations of this
problem exist and can be considered. The Steiner TSP (STSP) is a variant of the TSP that assumes that only
a given subset of nodes must be visited by the shortest route, eventually visiting some nodes and edges more
than once. In this paper, we adapt some classical TSP constructive heuristics and neighborhood structures to
the STSP variant. In particular, we propose a reduced 2-opt neighborhood and we show that it leads to better
results in smaller computation times. Computational results with an implementation of a GRASP heuristic
using path-relinking and restarts are reported. In addition, ten large test instances are generated. All instances
and their best-known solutions are made available for download and benchmarking purposes.

Keywords: Steiner traveling salesman problem; traveling salesman problem; GRASP; path-relinking; restarts

1. Introduction

The traveling salesman problem (TSP) is one of the fundamental combinatorial optimization prob-
lems (Garey and Johnson, 1979; Zhang et al., 2015) and has numerous real-life applications in
transportation, logistics, vehicle routing, genome sequencing, and other areas. In its undirected
version it consists in, given a set of nodes and the distances between them, find the shortest route
that visits each node exactly once and returns to the first city. Mathematically, the TSP can be
defined as follows (Cornuéjols et al., 1985). Given a graph G = (V, E ) and a function w : E → R
that associates a weight w(e) to each edge e ∈ E , the goal is to find a Hamiltonian cycle of minimum
total weight (or cost). The TSP is NP-hard, since its decision version is proven to be NP-complete
by a simple reduction from the Hamiltonian cycle problem (Garey and Johnson, 1979).

However, in many practical applications it is more frequent to find the following variant of the
TSP. A set VR ⊆ V of required nodes is given. Instead of searching for a Hamiltonian cycle visiting
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Fig. 1. Instance of Steiner TSP with nine nodes: the six required nodes are darkened.

all nodes, a minimum-weight closed walk is requested that visits only the required nodes. Since
only a walk is sought, nodes can be visited more than once and edges may be traversed more than
once. The so-called Steiner TSP (STSP, for short) was first proposed in Cornuéjols et al. (1985) and
Fleischmann (1985), where its NP-hardness is also proved. The Steiner TSP is specially suitable to
model network design (Borne et al., 2013), package delivery (Zhang et al., 2015, 2016), and routing
(Letchford et al., 2013) problems. All of them are typically modeled using sparse graphs. Figure 1
illustrates an instance of the Steiner TSP with nine nodes, six of which are required.

Most studies on the Steiner TSP focus on integer programming formulations and valid inequal-
ities. The STSP is solved efficiently (in linear time) for series-parallel graphs in Cornuéjols et al.
(1985). Compact, polynomial size integer programming formulations of the TSP are extended to
the STSP in Letchford et al. (2013). An extension of the Steiner TSP that adds penalties to the
nodes not visited by the cycle is proposed in Salazar-González (2003). A network design problem
consisting of multiple Steiner TSPs with order constraints is studied in Borne et al. (2013), using an
integer linear programming formulation and a branch-and-cut algorithm. An extension of the STSP
in which the edge traversal costs are stochastic and correlated is studied in Letchford and Nasiri
(2015). An online algorithm is proposed in Zhang et al. (2015, 2016) to solve another extension of
the STSP considering real-time edge blockages.

This paper is organized as follows. In the next section, adaptive greedy constructive heuristics
for the Steiner TSP are presented. Section 3 reports local search strategies that are explored by
the GRASP with path-relinking heuristic presented in Section 4. Computational experiments are
reported in Section 5 and extended in Section 6, where an improved strategy exploring periodical
restarts is developed. In addition, ten large test instances are generated and their best-known
solutions are made available for download and benchmarking purposes in Section 7. Concluding
remarks are drawn in the last section.

2. Greedy algorithms for the Steiner TSP

The following strategy can be applied as a heuristic for the Steiner TSP (Letchford et al., 2013).
First, the instance of the STSP is reduced to a TSP instance in a complete graph defined by the
set of required nodes, in which the new distances correspond to the shortest paths between every

C© 2017 The Authors.
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pair of required nodes in the original graph. Next, any exact or heuristic algorithm is used to solve
the TSP in this new, complete graph. Finally, the solution of the TSP is converted into an STSP
solution by expanding every edge by the corresponding shortest path between the two consecutive
required nodes. However, if the original STSP instance is a sparse graph, the conversion to a
standard TSP instance significantly increases the number of edges, some of which may never be
used.

Therefore, instead of using a complete graph formed by the required nodes, we will use the original
graph for searching a minimum-weight closed walk. We use a straightforward adaptation of the
nearest neighbor TSP adaptive greedy heuristic (see, e.g., Resende and Ribeiro, 2016, Chapter 3) to
the STSP described in Algorithm 1, which builds the solution greedily by choosing at each iteration
the closest required node to the last node added to the walk.

The algorithm starts in line 1 by arbitrarily selecting any initial node i ∈ VR to start the walk.
The set of required nodes N already visited by the walk is initialized in line 2. The partially built
walk P is initialized in line 3. The currently visited required node current is set in line 4. The loop in
lines 5–11 is performed until all required nodes have been visited. At each iteration, the node next
to be visited is set to the closest among all yet unvisited required nodes. The shortest path P ′ from
current to next is computed in line 7. The partially built walk P is updated in line 8 by appending the
shortest path P ′ to it. The set of already visited required nodes N and the current node are updated
in lines 9 and 10, respectively. Finally, after completing the loop, the shortest path from current to
the initial node i is appended to the walk in lines 12 and 13. The result is returned in line 14.

Algorithm 1. Nearest neighbor adaptive greedy heuristic for STSP

1: Select initial required node i ∈ VR;
2: N ← {i};
3: P ← {i};
4: current ← i;
5: while N �= VR do
6: next ← closest node to current among all those in VR \ N ;
7: P ′ ← shortest path from current to next;
8: P ← P ⊕ P ′;
9: N ← N ∪ {next};

10: current ← next;
11: end while;
12: P ′ ← shortest path from current to initial node i;
13: P ← P ⊕ P ′;
14: return P .

In the case of the Steiner TSP, the greedy criterion is the choice of the nearest required node
to be visited. Algorithms that add randomization to a greedy or adaptive greedy algorithm are
called semigreedy or randomized greedy algorithms. Randomization is an important feature in the
implementation of effective heuristics. Semigreedy algorithms act by replacing the deterministic
greedy choice of the next element to be incorporated into the solution under construction by the
random selection of an element from a restricted set of best candidate elements, called the restricted
candidate list (RCL).

C© 2017 The Authors.
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Fig. 2. 2-Opt move for STSP.

A simple quality-based scheme is used to define an RCL. Let gmin = min{gi : i ∈ VR \ N and gi
is the shortest path from current to node i} and gmax = max{gi : i ∈ VR \ N and gi is the shortest
path from current to node i}. Furthermore, let α be such that 0 ≤ α ≤ 1. The RCL is formed by all
yet unselected required nodes i ∈ VR \ N satisfying gmin ≤ gi ≤ gmin + α(gmax − gmin).

3. Local search

Local search procedures are used to iteratively improve the quality of an initial solution, usually
obtained by a constructive heuristic. First-improving (FI) and best-improving (BI) strategies are
proposed and compared in terms of their performance. Efficient objective function updates are
used, without the need of recalculating the objective function values from scratch: the previous
walk weight is used in order to find the weight of the walk obtained after the changes performed
during each local search iteration.

3.1. Neighborhood structure

The 2-opt neighborhood is the most commonly used neighborhood structure for the TSP problem
and consists in replacing any pair of nonadjacent edges of the current solution by the unique pair
of new edges that recreates a cycle.

The following property holds: Let W = (v1, . . . , vi, . . . , v j, . . . , vm) be any optimal solution of
the Steiner TSP. Then, the subpath (vi, . . . , v j ) is also a shortest path between the required nodes
vi and v j . This is true because if this subpath was not the shortest, then W would not be optimal.
Therefore, it is not necessary to investigate moves that involve changes in the order in which the
nonrequired nodes are visited. Then, the problem amounts to determining the order in which the
required nodes should be visited and then finding the shortest path between any pair of consecutive
required nodes in the walk.

In consequence, we explore a 2-opt neighborhood for the STSP that is formed by all moves that
replace the paths between two pairs of consecutive required nodes in the walk by the two unique
pairs of shortest paths that reconnect a closed walk, as illustrated in Figure 2.
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3.2. Reduced 2-opt neighborhood

A reduced 2-opt neighborhood can be defined in order to take advantage of the problem structure.
In fact, convergence can be faster if only a few, promising moves in the neighborhood are considered.

We implement this idea in the following way. For each required node v, let I(v) be the set formed
by all required nodes that are reachable from v by a shortest path that does not visit any other
required node. In other words, I(v) represents the set of required nodes that are closer to v, in the
sense that they necessarily belong to paths to farther nodes.

Using this auxiliary data structure, we restrict the 2-opt moves to pairs of consecutive required
nodes (v1, v2) and (w1, w2) satisfying the condition that w1 ∈ I(v1); see Figure 2.

3.3. First-improving versus best-improving local search

In a first-improving local search strategy, the algorithm moves from the current solution to any
neighbor with a better value for the objective function. In contrast, in a best-improving local search
strategy, the algorithm always moves from the current solution to the best of its neighbors. This
implies that the time consumed by each iteration will be longer, but also that a better solution will
result at the end of the iteration. Both strategies will be considered and compared using the 2-opt
and restricted 2-opt neighborhoods.

4. GRASP with path-relinking heuristic

GRASP (which stands for greedy randomized adaptive search procedures) is a multistart metaheuristic
in which each iteration consists of two main phases: construction and local search. The first phase
is the construction of a feasible solution, usually by a greedy randomized algorithm. Once a
feasible solution is obtained, its neighborhood is investigated until a local minimum is found
during the second phase of local search. The best overall solution is kept as the result. The reader is
referred to Resende and Ribeiro (2016) for a complete account of GRASP. Annotated bibliographies
of GRASP appeared in Festa and Resende (2009a, 2009b). A recent application of GRASP appeared
in Ferone et al. (2016).

We used the adaptive greedy randomized heuristic presented in Section 2 and the local search
strategies described in Section 3 to customize a GRASP with path-relinking heuristic for the Steiner
TSP.

Path-relinking is an intensification strategy that explores trajectories connecting elite solutions
produced by metaheuristics. Path-relinking is usually carried out between two solutions: one is the
initial solution Si, while the other is the guiding solution Sg. A path that connects these solutions is
constructed in the search for better solutions. Local search may be applied to the best solution in
the path, since there is no guarantee that this solution is locally optimal. In the context of GRASP,
path-relinking may be used to connect solutions obtained after the local search step with elite
solutions produced during previous iterations, providing a sort of memory mechanism.

More specifically, in the context of the STSP, path-relinking attempts to preserve common char-
acteristics of good walks, that is, common subpaths. As explained below, path-relinking matches
the positions of the largest common subpath to the initial and guiding solutions and then swaps the
positions of nodes that do not belong to this common subpath.

C© 2017 The Authors.
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We first observe that any solution of the STSP has no unique representation as a sequence
of the visited required nodes, since any closed walk can start from different nodes and can be
traversed in two directions (forward and backward). Therefore, the representation of the initial and
guiding solutions must be adjusted to facilitate the operation of relinking them. With this purpose,
before applying path-relinking, we adjust the representations of the initial and guiding solutions by
detecting the largest common subpath wl = (vi . . . v j ) between them.

In our implementation, we choose to detect the largest (or longest) common subpath, instead
of the longest common subsequence, in order to prioritize consecutive sequences of nodes in both
solutions. This problem is known as the largest (or longest) common substring problem and can be
solved in O(n) time and space (Hui, 1992).

The guiding solution Sg and the initial solution Si are oriented in the same direction according
with wl . Next, the initial nodes of the walks associated with Sg and Si are made to coincide with the
initial node vi of wl .

To move from the initial to the guiding solution, path-relinking considers a restricted neighbor-
hood. Each move in this restricted neighborhood involves the swap of two required nodes in the
walk corresponding to the current solution that are not in the same positions as they are visited
in the guiding solution. In addition, each move should place at least one of the two involved nodes
in the appropriate position corresponding to the order in which it will be visited in the guiding
solution. After two required nodes are swapped, the shortest paths from their predecessors and
to their successors are updated. Since at least one node is placed in the appropriate position of
the guiding solution at each iteration, path-relinking will take at most as many iterations as the
number of required nodes that were misplaced in the initial solution with respect to the guiding
solution.

Algorithm 2 presents the pseudocode of path-relinking from the initial solution Si to the guiding
solution Sg. The current solution S and the best solution S∗ are initialized in line 1. The cost f ∗ of
the best solution found by path-relinking is initialized in line 2. The loop in lines 3–10 is performed
until the current solution reaches the guiding solution. S′ is set to the best solution in the restricted
neighborhood of the current solution S in line 4. The best solution S∗ found by path-relinking and
its cost f ∗ are updated in lines 6 and 7, respectively, if the new solution S′ improved the previous
best. The current solution is updated in line 9 and a new path-relinking iteration resumes. The best
solution found by path-relinking is returned in line 11.

Algorithm 2. Path-relinking algorithm for STSP

1: S, S∗ ← Si;
2: f ∗ ← cost(Si);
3: while S �= Sg do
4: S′ ← best solution in the restricted neighborhood of S;
5: if cost(S′) < f ∗ then
6: S∗ ← S′;
7: f ∗ ← cost(S′);
8: end if;
9: S ← S′;

10: end while;
11: return S∗.
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Fig. 3. Three iterations of path-relinking applied to initial and guiding solutions of the Steiner TSP instance in Figure 1:
the six required nodes are darkened.

Figure 3 illustrates the application of path-relinking to the Steiner TSP instance described in
Figure 1. The graph has six required nodes and three nonrequired nodes. The cost of the initial
solution is 14, while that of the guiding solution is 19. The guiding solution is reached after three
path-relinking iterations and the cost of the best solution found along them is 13.

The pseudocode in Algorithm 3 summarizes the main steps of the proposed GRASP with path-
relinking (GRASP + PR) heuristic, following the same structure proposed in (Resende and Ribeiro,

C© 2017 The Authors.
International Transactions in Operational Research C© 2017 International Federation of Operational Research Societies



1314 R. Interian and C.C. Ribeiro / Intl. Trans. in Op. Res. 24 (2017) 1307–1323

2016, Section 9.3). The set of elite solutions is initialized in line 1. The loop in lines 2–12 is performed
until some stopping criterion is satisfied. An initial solution is built in line 3 by the greedy randomized
constructive heuristic described in Section 2. A local search procedure is used in line 4 to improve
the solution obtained at the end of the construction phase. Except for the first iteration, when the
elite set is still empty, lines 6–9 amount to the application of path-relinking. Line 6 randomly selects
an elite solution S′ from the elite set E . The representation of solution S is adjusted considering the
selected elite solution S′. Backward path-relinking is applied from the initial solution Si = S′ to the
guiding solution Sg = S. Local search is applied in line 9 to the solution obtained by path-relinking.
The elite set E is updated with the new solution S in line 11. The best elite solution is returned in
line 13.

Algorithm 3. GRASP+PR algorithm for STSP

1: E ← ∅;
2: while stopping criterion not satisfied do
3: S ← RandomizedGreedy;
4: S ← LocalSearch(S);
5: if |E | > 0 then
6: Select solution S′ at random from E ;
7: S ← AdjustRepresentation(S, S′)
8: S ← PathRelinking(S, S′);
9: S ← LocalSearch(S);

10: end if;
11: UpdateEliteSet(S, E );
12: end while;
13: Return the best solution S in E .

5. Computational experiments

Several experiments were performed to assess the performance of the algorithms presented above
and their variants. The algorithms were implemented in C# programming language and compiled
by Roslyn, a reference C# compiler, in an Intel Core i5 machine with a 2.9 GHz processor and 8
GB of random-access memory, running under the Windows 10 operating system.

We considered the same test problems used by Letchford et al. (2013), as well as Letchford and
Nasiri (2015) and Zhang et al. (2015, 2016), created by a random generator described in Letchford
et al. (2013). This generator was designed to create graphs that resemble real-life road networks.
It creates connected sparse graphs and a fraction of required nodes is specified for each instance.
In addition to graphs from Letchford et al. (2013), we considered some larger instances with up
to 300 nodes. Altogether, ten sparse weighted graphs with 50 to 300 nodes were used to assess the
performance of the heuristics. Each graph generated two instances: one with �N

3 � required nodes
and another with � 2·N

3 � required nodes, where N is the total number of nodes, corresponding to 20
different instances. We observe that individual optimal values for each of these instances have not
been previously reported in Letchford et al. (2013).
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Table 1
Greedy randomized heuristic: average and best value over 100 runs

1/3 of required nodes 2/3 of required nodes

α = 0.10 α = 0.05 α = 0.10 α = 0.05

Nodes Average Best Average Best Average Best Average Best

50 944.63 813 947.48 814 1207.51 979 1213.34 1031
75 1068.80 848 1055.51 848 1308.21 1125 1309.49 1094
100 1070.02 959 1070.26 947 1607.99 1375 1599.44 1299
125 1436.82 1275 1425.84 1228 1929.31 1627 1911.41 1623
150 1410.76 1151 1403.36 1230 2110.56 1875 2102.40 1899
175 1642.85 1379 1615.89 1411 2248.23 1970 2265.40 1913
200 1759.45 1512 1765.95 1445 2615.95 2369 2614.78 2354
225 1826.48 1610 1845.74 1604 2817.25 2524 2844.12 2522
250 2045.90 1769 2041.03 1804 3022.70 2748 2988.79 2723
300 2186.87 1907 2226.41 1991 3242.32 2952 3264.87 2977

5.1. Selecting the quality measure for the RCL

In order to compare the effect of the value of α in the quality-based scheme used to define an
RCL, we ran the randomized nearest neighbor constructive heuristic with α = 0.1 and α = 0.05.
The greedy randomized algorithm was applied to all instances. Average and best values over 100
runs are presented in Table 1. As for all tables that follow, the best solution values found for each
instance are depicted in boldface.

Although for the instances with one-third of required nodes quality-based constructive heuristic
with α = 0.10 found slightly more better solutions, the randomized heuristic with α = 0.05 found
significantly more better solutions for the instances with two-thirds of required nodes. We observe
that the use of a better constructive method for building the initial solutions is likely to improve the
quality of the solutions produced by the GRASP heuristic.

5.2. Comparing the local search variants

The solutions obtained by the greedy randomized construction algorithm can be refined either
by first-improving (FI) or by best-improving (BI) local search strategies. In this experiment, we
considered 100 iterations of the pure GRASP (without path-relinking) heuristic using the 2-opt
neighborhood structure. The results can be seen in Table 2.

GRASP with best-improving LS clearly outperformed GRASP with the first-improving LS strat-
egy, since substantially better solution values were reached.

5.3. Reduced 2-opt neighborhood

We now address the benefits of using the reduced 2-opt neighborhood, designed specifically for
this problem. Preliminary computational experiments have shown that the use of this reduced
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Table 2
First-improving versus best-improving local search, 100 GRASP iterations

1/3 of required nodes 2/3 of required nodes

Nodes FI BI FI BI

50 789 789 979 978
75 830 830 1049 1035
100 931 934 1280 1239
125 1188 1171 1489 1496
150 1152 1110 1699 1643
175 1325 1286 1759 1743
200 1375 1338 2051 1976
225 1470 1442 2202 2094
250 1589 1515 2313 2224
300 1798 1717 2603 2409

FI, first-improving; BI, best-improving.

Table 3
2-opt versus reduced 2-opt neighborhoods, 100 GRASP iterations

1/3 of required nodes 2/3 of required nodes

2-Opt neighborhood Reduced 2-opt 2-Opt neighborhood Reduced 2-opt

Nodes Value Seconds Value Seconds Value Seconds Value Seconds

50 789 0.204 789 0.171 978 0.484 978 0.36
75 830 0.469 830 0.375 1035 1.078 1045 0.985
100 934 0.766 919 0.672 1239 2.359 1208 1.610
125 1171 1.313 1166 1.093 1496 4.454 1469 2.921
150 1110 2.015 1121 1.703 1643 7.468 1615 4.703
175 1286 3.016 1272 2.281 1743 11.313 1719 6.687
200 1338 4.343 1304 3.235 1976 17.469 1925 9.187
225 1442 5.610 1415 4.140 2094 24.891 2047 12.828
250 1515 7.656 1539 5.578 2224 32.546 2170 15.297
300 1717 11.531 1687 7.328 2409 55.718 2285 26.578

neighborhood led to some target objective function values much faster than the use of the entire
2-opt neighborhood. These empirical observations were explored by the implementation of an
alternative VND (variable neighborhood descent) local search procedure. First, only moves in the
reduced 2-opt neighborhood are applied. The full neighborhood is explored only after a local
minimum is obtained in the reduced 2-opt neighborhood.

Table 3 illustrates the efficiency of the VND approach when compared with the classic use of
the full 2-opt neighborhood. It presents the solution values and computation times in seconds
for 100 iterations of the pure GRASP (without path-relinking) heuristic using both pure 2-opt
neighborhood and VND approach for local search. In both cases, local search was implemented
following a best improvement strategy.

The VND local search strategy starting by the reduced 2-opt neighborhood led to the best
solutions for 17 out of the 20 test problems. In addition, its computation times have been significantly
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Table 4
GRASP versus GRASP+PR, 200 pure GRASP iterations, instances with one-third of required nodes

Greedy (α = 0) GRASP (200 iterations) GRASP + PR (same running time)

Nodes Value Value Seconds Value Seconds Iterations

50 906 789 0.359 789 0.359 207
75 1181 830 0.782 830 0.797 191
100 1030 919 1.406 919 1.406 191
125 1306 1145 2.343 1148 2.344 188
150 1429 1121 3.469 1108 3.469 191
175 1606 1272 4.828 1272 4.828 193
200 1595 1295 6.500 1295 6.500 187
225 1625 1416 8.594 1401 8.609 195
250 1956 1531 10.859 1491 10.860 186
300 2030 1693 15.750 1657 15.797 191

smaller for all instances. As an example, in the case of the largest instance with two-thirds of required
nodes, the time taken by 100 GRASP iterations using the VND local search strategy amounted
to only 47.8% of the time taken when exclusively the complete 2-opt neighborhood was used. The
GRASP heuristic using the VND local search strategy performed better both in terms of solution
quality and computation times.

5.4. Probabilistic choice of α

We have already shown in Section 5.1 that although choosing α = 0.05 most often leads to better
results than α = 0.10 for the greedy randomized heuristic proposed for the STSP, for some instances
the latter was a better choice than the former. Different probabilistic strategies were considered in
Prais and Ribeiro (2000) for the choice of the RCL parameter α, in contrast with the commonly used
choice of fixing its value (see also Resende and Ribeiro, 2016). It was shown that a randomly chosen
α from a decreasing nonuniform discrete probability distribution offers a good compromise between
the running time of the algorithm and the quality of the solutions produced by the randomized
heuristic. We relied on this work to sustain that it could be a good choice, in addition to the
previously used appropriate value α = 0.05, to consider also other higher values for this parameter
with smaller probabilities of being chosen at each iteration. Therefore, in the following experiments,
we used α = 0.05 with a probability 70% and the values α = 0.10 and α = 0.20 with probabilities
20% and 10%, respectively.

5.5. Path-relinking

In this section, we address the impact of path-relinking in the search process. Tables 4 and 5 show
the lengths of the solutions produced by the nearest neighbor adaptive greedy heuristic for the pure
GRASP heuristic running for 200 iterations (together with its running time in seconds), and by
the GRASP with backward path-relinking running by the same time taken by 200 pure GRASP
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Table 5
GRASP versus GRASP + PR, 200 pure GRASP iterations, instances with two-thirds of required nodes

Greedy (α = 0) GRASP (200 iterations) GRASP + PR (same running time)

Nodes Value Value Seconds Value Seconds Iterations

50 1356 978 0.750 978 0.750 179
75 1204 1031 1.781 1029 1.782 183
100 1290 1211 3.484 1193 3.485 182
125 1915 1450 6.297 1427 6.313 196
150 1847 1615 9.812 1567 9.844 184
175 2085 1704 14.640 1667 14.641 191
200 2484 1952 19.828 1895 19.828 177
225 2549 2024 27.266 1973 27.281 191
250 2523 2165 35.078 2080 35.172 182
300 2759 2308 62.328 2219 62.609 193

Fig. 4. Time-to-target plot for 200-node instance with one-third of required nodes and target value set to 1330.

iterations. The randomized heuristic used in the construction phase of both pure GRASP and
GRASP with path-relinking algorithms uses the probabilistic criterion for the choice of α discussed
in Section 5.4. The local search phase of both pure GRASP and GRASP with path-relinking
algorithms was implemented using the best improvement VND strategy starting by the reduced
2-opt neighborhood. Path-relinking used elite sets formed by at most ten elements.

Path-relinking considerably improved GRASP performance, leading to better solutions for all
but one instance in the same running time and fewer iterations than the pure GRASP heuristic.
Time-to-target plots for GRASP and GRASP with path-relinking (GRASP+PR) algorithms for
200-node instances are shown in Figures 4 and 5. The target values are 1330 and 2000 for the
instances with one-third and two-thirds of required nodes, respectively. Each algorithm was run
200 times. The plots in these figures provide empirical evidence that algorithm GRASP + PR
outperforms GRASP for these instances and target values.
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Fig. 5. Time-to-target plot for 200-node instance with two-thirds of required nodes, and target value set to 2000.

Table 6
Restart strategies for 1000 iterations, instances with one-third of required nodes

No restarts Restart(100) Restart(200)

Nodes Value Seconds Value Seconds Value Seconds

50 789 1.75 789 1.71 789 1.70
75 830 4.03 830 4.06 830 4.04
100 919 7.23 919 7.20 919 7.18
125 1143 12.37 1143 12.26 1143 12.20
150 1105 19.07 1105 18.51 1105 18.32
175 1272 26.73 1272 27.01 1272 27.78
200 1295 36.28 1295 35.62 1295 35.59
225 1377 47.03 1384 48.95 1389 47.71
250 1489 62.23 1487 59.00 1498 60.50
300 1648 88.51 1629 85.95 1645 86.46

6. Restart strategies for GRASP with path-relinking

Resende and Ribeiro (2011) have shown that restart strategies are able to reduce the running time
to reach a target solution value for many problems. We apply the same type of restart(κ) strategy in
which the elite set is emptied and the heuristic restarted from scratch after κ consecutive iterations
have been performed without improvement in the best solution found. We evaluate the performance
of the restart strategies for the Steiner TSP for κ = 100 and κ = 200. Computational results for
the restart strategies for STSP are displayed in Tables 6 and 7, showing that they contribute to find
better solutions in the same number of iterations, mainly when the problem size increases.

Figure 6 depicts time-to-target plots for the restart(200) strategy, compared to the original strategy
without restarts, for the 200-node instance with two-thirds of required nodes and the target value
set to 1900.

As previously observed in Resende and Ribeiro (2011, 2016), the effect of restart strategies can
be mainly noted in the longest runs. Considering the 200 runs for the 200-node instance with the
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Table 7
Restart strategies for 1000 iterations, instances with two-thirds of required nodes

No restarts Restart(100) Restart(200)

Nodes Value Seconds Value Seconds Value Seconds

50 978 4.03 978 3.96 978 3.95
75 1029 9.46 1029 9.45 1029 9.26
100 1193 18.95 1193 18.73 1193 18.43
125 1421 33.04 1417 33.93 1420 33.09
150 1565 53.39 1564 53.04 1562 52.23
175 1657 77.25 1665 76.84 1652 76.23
200 1883 105.53 1885 105.68 1867 105.20
225 1941 148.96 1953 144.68 1928 142.26
250 2054 173.68 2073 175.01 2035 176.04
300 2203 304.40 2192 310.03 2205 296.76

Fig. 6. Time-to-target plot for 200-node instance with two-thirds of required nodes and target value set to 1900.

target value set to 1900, they are associated with the column corresponding to the fourth quartile of
Table 8. Entries in this quartile correspond to those in the heavy tails of the runtime distributions.
The restart strategies in general do not affect too much the other quartiles of the distributions,
which is a desirable characteristic. Compared to the no restart strategy, the restart(200) strategy
was able to reduce not only the average running time in the fourth quartile, but also in the third and
second quartiles. Consequently, strategy restart(200) performed the best among those tested, with
the smallest average running times over the 200 runs.
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Table 8
Summary of computational results for each restart strategy for the 200-node instance: 200 independent runs were executed
for each strategy. Each run was made to stop when a solution as good as the target solution value 1900 was found. For
each strategy, the table shows the distribution of the running times by quartile. For each quartile, the table gives the
average running times in seconds over all runs in that quartile. The average running times over the 200 runs are also given
for each strategy.

Average running times in quartile (seconds)

Strategy 1st 2nd 3rd 4th Average

Without restarts 3.648 9.915 17.952 37.355 17.218
Restart(100) 2.933 8.466 17.067 37.509 16.494
Restart(200) 2.955 8.093 15.410 34.878 15.334

Table 9
Larger instances: description and numerical results for 1000 iterations of the GRASP heuristic using restarts and path-
relinking

Instance name Nodes Edges Required nodes Solution value Time (seconds)

euroroad05 1174 1417 58 31,571 147.5
euroroad10 1174 1417 117 49,975 354.9
euroroad15 1174 1417 176 58,016 684.6
euroroad20 1174 1417 234 71,967 1162.0
isprouters05 2113 6632 105 20,258 1030.5
isprouters10 2113 6632 211 37,486 3360.7
isprouters15 2113 6632 316 51,571 6850.6
rome05 3353 8870 167 481,048 1893.5
rome10 3353 8870 335 622,491 5196.2
rome15 3353 8870 502 795,535 8494.4

7. Results for larger instances

We have also created a set of ten substantially larger test instances for future benchmarking purposes.
These instances were created from tree sparse graphs:

� street network of the city of Rome (Storchi et al., 1999);� main roads between European cities (Rossi and Ahmed, 2015); and� network of main Internet service providers at global level (Spring et al., 2002).

For each of the above graphs, we created several different instances with different number of
required nodes, randomly chosen from the set of vertices of the graph. The number of nodes, edges,
and required nodes, together with the walk lengths and the running times in seconds obtained by the
GRASP heuristic using restarts and path-relinking, are presented in Table 9. All data are available
from http://www2.ic.uff.br/∼rinterian/instances/allinstances.html.
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8. Concluding remarks

In the STSP, one seeks a minimum-weight closed walk that visits a subset of required nodes. Since
only a walk is sought, nodes can be visited more than once and edges may be traversed more than
once.

In this paper, we developed a GRASP with path-relinking and restarts for solving the STSP.
The algorithm used in the construction phase is a randomized extension of the nearest neighbor
heuristic for the TSP. A VND strategy exploring a reduced 2-opt neighborhood is used to optimize
a best-improving local search scheme. Path-relinking and restart strategies are used to improve the
efficiency of the GRASP algorithm.

Extensive computational results for a set of instances previously used in the literature are reported.
In addition, we also considered a set of larger test instances derived from real-life graphs. Since
neither optimal values nor even upper bounds have been previously reported for these instances, the
solutions obtained by the GRASP with path-relinking and restarts heuristic proposed in this work
cannot be directly compared to other solutions.

As a step toward avoiding this difficulty and facilitating the research on this problem, we made
all test instances considered in this paper available at the URL http://www2.ic.uff.br/�rinterian/
instances/allinstances.html together with their best-known solution values. This website will be
updated with information provided by other researchers working on this problem with optimal
values, lower and upper bounds for these and other benchmarking instances.

References

Borne, S., Mahjoub, A.R., Taktak, R., 2013. A branch-and-cut algorithm for the multiple Steiner TSP with order
constraints. Electronic Notes in Discrete Mathematics 41, 487–494.
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Abstract

Given a set of nodes and the distances between them, the traveling salesman problem (TSP)
consists in finding the shortest route that visits each node exactly once and returns to the first. The
Steiner traveling salesman problem (STSP) is a variant of the TSP that assumes that only a given
subset of nodes must be visited by a shortest route, eventually visiting some nodes and edges more
than once. In this paper, we extend some classical TSP constructive heuristics and neighborhood
structures to the STSP variant. In particular, we propose a reduced 2-opt neighborhood and we
show that it leads to better results in smaller computation times. Computational results with an
implementation of a GRASP heuristic using path-relinking and restarts are reported. In addition, a
set of test instances and best known solutions is made available for benchmarking purposes.

1 Introduction

The traveling salesman problem (TSP) is one of the fundamental combinatorial optimization problems
[4, 12] and has numerous real-life applications in transportation, logistics, vehicle routing, genome se-
quencing, and other areas. Given a set of nodes and the distances between them, it consists in finding the
shortest route that visits each node exactly once and returns to the first. Mathematically, the TSP can be
defined as follows [2]. Given a graph and a function that associates a weight

to each edge , the goal is to find a Hamiltonian cycle of minimum total weight (or cost).
The traveling salesman problem is NP-hard, since its decision version is proven to be NP-complete by a
simple reduction from the Hamiltonian cycle problem [4].

However, in many practical applications it is more frequent to find the following variant of the TSP.
A set of required nodes is given. Instead of searching for a Hamiltonian cycle visiting all nodes,
a minimum-weight closed walk is requested that visits only the required nodes. Since only a walk is
sought, nodes can be visited more than once and edges may be traversed more than once. The so-called
Steiner traveling salesman problem (Steiner TSP, or STSP) was first proposed in [2, 3], where its NP-
hardness is also proved. The Steiner TSP is specially suitable to model network design [1], package
delivery [12, 13], and routing [7] problems. All of them are typically modeled using sparse graphs.

Most studies on the Steiner TSP focus on integer programming formulations and valid inequalities.
The STSP is solved efficiently (in linear time) for series-parallel graphs in [2]. Compact, polynomial
size integer programming formulations of the TSP are extended to the STSP in [7]. An extension of
the Steiner TSP that adds penalties to the nodes not visited by the cycle is proposed in [11]. A network
design problem consisting of multiple Steiner TSPs with order constraints is studied in [1], using an
integer linear programming formulation and a branch-and-cut algorithm. An extension of the STSP in
which the edge traversal costs are stochastic and correlated is studied in [6]. An online algorithm is
proposed in [12, 13] to solve another extension of the STSP considering real-time edge blockages.

This paper is organized as follows. In the next section, adaptive greedy constructive heuristics for
the Steiner TSP are presented. Section 3 reports on local search strategies that are explored by the
GRASP with path-relinking heuristic presented in Section 4. Computational experiments are reported
in Section 5 and extended in Section 6, where an improved strategy exploring periodical restarts is
developed. Concluding remarks are drawn in the last section.
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2 Greedy algorithms for the Steiner TSP

The following strategy can be applied as a heuristic for the Steiner TSP [7]. First, the instance of the
STSP is reduced to a TSP instance in a complete graph defined by the set of required nodes, in which the
new distances correspond to the shortest paths between every pair of required nodes in the original graph.
Next, any exact or heuristic algorithm is used to solve the TSP in this new, complete graph. Finally, the
solution of the TSP is converted into an STSP solution by expanding every edge by the corresponding
shortest path between the two consecutive required nodes.

However, if the original STSP instance is a sparse graph, the conversion to a standard TSP instance
significantly increases the number of edges, some of which may never be used. Therefore, instead of
using a complete graph formed by the required nodes, we shall use the original graph for searching a

minimum-weight closed walk. We use a straightforward adaptation of the nearest neighbor TSP adaptive
greedy heuristic (see e.g. Chapter 3 of [10]) to the STSP described in Algorithm 1, which builds the
solution greedily by choosing at each iteration the closest required node to that previously added to the
walk.

The algorithm starts in line 1 by arbitrarily selecting any initial node to start the walk. The
set of required nodes already visited by the walk is initialized in line 2. The partially built walk is
initialized in line 3. The currently visited required node is set in line 4. The loop in lines 5 to
11 is performed until all required nodes have been visited. At each iteration, the node to be visited
is set to the closest among all yet unvisited required nodes. The shortest path from to
is computed in line 7. The partially built walk is updated in line 8 by appending the shortest path
to it. The set of already visited required nodes and the current node are updated in lines 9 and 10,
respectively. Finally, after completing the loop, the shortest path from to the initial node is
appended to the walk in lines 12 and 13. The result is returned in line 14.

Algorithm 1 Nearest neighbor adaptive greedy heuristic for STSP.

1: Select initial required node ;
2: ;
3: ;
4: ;

5: while do
6: closest node to among all those in ;
7: shortest path from to ;
8: ;
9: ;
10: ;
11: end while;
12: shortest path from to initial node ;
13: ;
14: return .

In the case of the Steiner TSP, the greedy criterion is the choice of the nearest required node to be
visited.

Algorithms that add randomization to a greedy or adaptive greedy algorithm are called semi-greedy or
randomized greedy algorithms. Randomization is an important feature in the implementation of effective
heuristics. Semi-greedy algorithms act by replacing the deterministic greedy choice of the next element

to be incorporated into the solution under construction by the random selection of an element from a
restricted set of best candidate elements, called the restricted candidate list (RCL).

A simple quality-based scheme is used to define a restricted candidate list. Let
and is the shortest path from to node and and

is the shortest path from to node . Furthermore, let be such that . The RCL is
formed by all yet unselected required nodes satisfying .
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3 Local search

Local search procedures are used to iteratively improve the quality of an initial solution, usually obtained

by a constructive heuristic. First-improving and best-improving strategies are proposed and compared in
terms of their performance. Efficient objective function updates are used, without the need of recalculat-
ing the objective function values from scratch: the weight of the previous walk is used in order to find
that of the walk obtained after the changes performed during each iteration.

3.1 Neighborhood structure

The 2-opt neighborhood is the most commonly used neighborhood structure for the TSP problem and
consists in replacing any pair of nonadjacent edges of the current solution by the unique pair of new
edges that recreates a cycle.

The following property holds: Let be any optimal solution of the
Steiner TSP. Then, the subpath is also a shortest path between the required nodes and .
This is true because, if this subpath was not the shortest, then would not be optimal. Therefore, it
is not necessary to investigate moves that involve changes in the order in which the non-required nodes
are visited. Then, the problem amounts to determining the order in which the required nodes should be
visited and then finding the shortest path between any pair of consecutive required nodes in the walk.

In consequence, we explore a 2-opt neighborhood for the STSP that is formed by all moves that
replace the paths between two pairs of consecutive required nodes in the walk by the two unique pairs of
shortest paths that reconnect a closed walk.

3.2 Reduced 2-opt neighborhood

A reduced 2-opt neighborhood can be defined in order to take advantage of the problem structure. In

fact, convergence can be faster if only a few, promising moves in the neighborhood are considered.

We implement this idea in the following way. For each required node , let be the set formed
by all required nodes that are reachable from by a shortest path that does not visit any other required
node. In other words, represent the set of required nodes that are closer to , in the sense that they
necessarily belong to paths to farther nodes.

Using this auxiliary data structure, we restrict the 2-opt moves to pairs of consecutive required nodes
and satisfying the condition that .

4 GRASP with path-relinking heuristic

GRASP (which stands for greedy randomized adaptive search procedures) is a multi-start metaheuristic,

in which each iteration consists of two main phases: construction and local search. The first phase is the
construction of a feasible solution, usually by a greedy randomized algorithm. Once a feasible solution
is obtained, its neighborhood is investigated until a local minimum is found during the second phase
of local search. The best overall solution is kept as the result. The reader is referred to Resende and
Ribeiro [10] for a complete account of GRASP.

We used the adaptive greedy randomized heuristic presented in Section 2 and the local search strate-
gies described in Section 3 to customize a GRASP with path-relinking heuristic for the Steiner TSP.

Path-relinking is an intensification strategy that explores trajectories connecting elite solutions pro-
duced by metaheuristics. Path-relinking is usually carried out between two solutions: one is the initial
solution , while the other is the guiding solution . A path that connects these solutions is con-

structed in the search for better solutions. Local search may be applied to the best solution in the path,
since there is no guarantee that this solution is locally optimal. In the context of GRASP, path-relinking
may be used to connect solutions obtained after the local search step with elite solutions produced during
previous iterations, providing a sort of memory mechanism.
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More specifically, in the context of the STSP, path-relinking attempts to preserve common character-

istics of good walks, i.e. common subpaths. As explained below, path-relinking matches the positions
of the largest common subpath to the initial and guiding solutions and then swaps the positions of nodes
that do not belong to this common subpath.

We first observe that any solution of the STSP has no unique representation as a sequence of the
visited required nodes, since any closed walk can start from different nodes and can be traversed in
two directions (forward and backward). Therefore, the representation of the initial and guiding solu-
tions must be adjusted to facilitate the operation of relinking them. With this purpose, before applying
path-relinking, we adjust the representations of the initial and guiding solutions by detecting the largest
common subpath between them.

In our implementation, we choose to detect the largest (or longest) common subpath, instead of the
longest common subsequence, in order to prioritize consecutive sequences of nodes in both solutions.
This problem is known as the largest (or longest) common substring (LCS) problem and can be solved

in time and space [5].
The guiding solution and the initial solution are oriented in the same direction according with
. Next, the initial nodes of the walks associated with and are made to coincide with the initial

node of .
To move from the initial to the guiding solution, path-relinking considers a restricted neighborhood.

Each move in this restricted neighborhood involves the swap of two required nodes in the walk cor-
responding to the current solution that are not in the same positions as they are visited in the guiding
solution. In addition, each move should place at least one of the two involved nodes in the appropriate
position corresponding to the order in which it will be visited in the guiding solution. After two required
nodes are swapped, the shortest paths from their predecessors and to their successors are updated. Since
at least one node is placed in the appropriate position of the guiding solution at each iteration, path-
relinking will take at most as many iterations as the number of required nodes that were misplaced in the

initial solution with respect to the guiding solution.
Algorithm 2 presents the pseudo-code of path-relinking from the initial solution to the guiding

solution . The current solution and the best solutions are initialized in line 1. The cost of
the best solution found by path-relinking is initialized in line 2. The loop in lines 3 to 10 is performed
until the current solution reaches the guiding solution. is set to the best solution in the restricted
neighborhood of the current solution in line 4. The best solution found by path-relinking and its
cost are updated in lines 6 and 7, respectively, if the new solution improved the previous best. The
current solution is updated in line 9 and a new path-relinking iteration resumes. The best solution found
by path-relinking is returned in line 11.

Algorithm 2 Path-relinking algorithm for STSP.

1: ;
2: ;
3: while do
4: best solution in the restricted neighborhood of ;
5: if then
6: ;
7: ;

8: end if;
9: ;
10: end while;
11: return .

The pseudo-code in Algorithm 3 summarizes the main steps of the proposed GRASP with path-
relinking (GRASP+PR) heuristic, following the same structure proposed in Section 9.3 of [10]. The
set of elite solutions is initialized in line 1. The loop in lines 2 to 12 is performed until some stopping
criterion is satisfied. An initial solution is built in line 3 by the greedy randomized constructive heuristic
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described in Section 2. A local search procedure is used in line 4 to improve the solution obtained at the

end of the construction phase. Except for the first iteration, when the elite set is still empty, lines 6 to 9
amount to the application of path-relinking. Line 6 randomly selects an elite solution from the elite
set . The representation of solution is adjusted considering the selected elite solution . Backward
path-relinking is applied from the initial solution to the guiding solution . Local search
is applied in line 9 to the solution obtained by path-relinking. The elite set is updated with the new
solution in line 11. The best elite solution is returned in line 13.

Algorithm 3 GRASP+PR algorithm for STSP

1: ;
2: while stopping criterion not satisfied do

3: ;
4: ;
5: if then
6: Select solution at random from ;
7:

8: ;
9: ;
10: end if;
11: ;
12: end while;
13: Return the best solution in .

5 Computational experiments

Several experiments were performed to assess the performance of the algorithms presented above and
their variants. The algorithms were implemented in C# programming language and compiled by Roslyn,
a reference C# compiler, in a Intel Core i5 machine with a 2.9 GHz processor and 8 GB of random-access
memory, running under the Windows 10 operating system.

We considered the same test problems used by Letchford et al. [6, 7] and Zhang et al. [12, 13], created
by a random generator described in [7]. This generator was designed to create graphs that resemble real-
life road networks. It creates connected sparse graphs and a fraction of required nodes is specified for
each instance. In addition to the graphs from [7], we considered some larger instances, with up to 300
nodes. Altogether, ten sparse weighted graphs with 50 to 300 nodes were used to assess the performance
of the heuristics. Each graph generated two instances: one with required nodes and another with

required nodes, where is the total number of nodes, corresponding to 20 different instances. We
observe that individual optimal values for each of these instances have not been previously reported in
[7]. Due to space limitations, we report here only numerical results for the instances with required
nodes. Additional computational results will be reported in the final, extended version of this work.

5.1 Selecting the quality measure for the RCL

In order to compare the effect of the value of in the quality-based scheme used to define a restricted
candidate list, we ran the randomized nearest neighbor constructive heuristic with and .
The greedy randomized algorithm was applied to all instances. Average and best values over 100 runs

are presented in Table 1. As for all tables that follow, the best solution values found for each instance are
depicted in boldface. The randomized heuristic with found significantly more better solutions.
We observe that the use of a better constructive method for building the initial solutions is likely to
improve the quality of the solutions produced by the GRASP heuristic.
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Table 1: Greedy randomized heuristic: average and best value over 100 runs.

Nodes average best average best

50 1207.51 979 1213.34 1031

75 1308.21 1125 1309.49 1094
100 1607.99 1375 1599.44 1299
125 1929.31 1627 1911.41 1623
150 2110.56 1875 2102.40 1899
175 2248.23 1970 2265.40 1913
200 2615.95 2369 2614.78 2354
225 2817.25 2524 2844.12 2522
250 3022.70 2748 2988.79 2723
300 3242.32 2952 3264.87 2977

5.2 Reduced 2-opt neighborhood

We now address the benefits of using the reduced 2-opt neighborhood, designed specifically for this
problem. Preliminary computational experiments have shown that the use of this reduced neighborhood
led to some target objective function values much faster than the use of the entire 2-opt neighborhood.
These empirical observations were explored by the implementation of an alternative VND (variable
neighborhood descent) local search procedure. First, only moves in the reduced 2-opt neighborhood
are applied. The full neighborhood is explored only after a local minimum is obtained in the reduced
2-opt neighborhood.

Table 2 illustrates the efficiency of the VND approach when compared with the classic use of the
full 2-opt neighborhood. It presents the solution values and the computation times in seconds for 100
iterations of the pure GRASP (without path-relinking) heuristic using both the pure 2-opt neighborhood

and the VND approach for local search. In both cases, local search has been implemented following a
best-improvement strategy.

Table 2: 2-opt vs reduced 2-opt neighborhoods, 100 GRASP iterations.
2-opt neighborhood reduced 2-opt

Nodes value seconds value seconds

50 978 0.484 978 0.36
75 1035 1.078 1045 0.985
100 1239 2.359 1208 1.610
125 1496 4.454 1469 2.921

150 1643 7.468 1615 4.703
175 1743 11.313 1719 6.687
200 1976 17.469 1925 9.187
225 2094 24.891 2047 12.828
250 2224 32.546 2170 15.297
300 2409 55.718 2285 26.578

The VND local search strategy starting by the reduced 2-opt neighborhood led to the best solutions
for nine out of the ten test problems. In addition, its computation times have been significantly smaller

for all instances. As an example, in the case of the largest instance with 300 nodes, the time taken by 100
GRASP iterations using the VND local search strategy amounted to only 47.8% of the time taken when
exclusively the complete 2-opt neighborhood is used. The GRASP heuristic using the VND local search
strategy performs better both in terms of solution quality and computation times.
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5.3 Probabilistic choice of

We have already shown in Section 5.1 that, although choosing most often leads to better
results than for the greedy randomized heuristic proposed for the STSP, for some instances the
latter was a better choice than the former. Different probabilistic strategies were considered in [8] for
the choice of the RCL parameter , in contrast with the commonly used choice of fixing its value (see
also [10]). It was shown that a randomly chosen from a decreasing nonuniform discrete probability
distribution offers a good compromise between the running time of the algorithm and the quality of the
solutions produced by the randomized heuristic. We relied on this work to sustain that it can be a good

choice, in addition to the previously used “good” value , to consider also other higher values for
this parameter with smaller probabilities of being chosen at each iteration. Therefore, in the following
experiments, we used with a probability 70% and the values and with
probabilities 20% and 10%, respectively.

5.4 Path-relinking

In this section, we address the impact of path-relinking in the search process. Table 3 shows the lengths
of the solutions produced by the nearest neighbor adaptive greedy heuristic, by the pure GRASP heuristic
running for 200 iterations (together with its running time in seconds), and by the GRASP with backward
path-relinking running by the same time taken by 200 pure GRASP iterations. The randomized heuristic
used in the construction phase of both the pure GRASP and GRASP with path-relinking algorithms

makes use of the probabilistic criterion for the choice of discussed in Section 5.3. The local search
phase of both the pure GRASP and the GRASP with path-relinking algorithms was implemented using
the best improvement VND strategy starting by the reduced 2-opt neighborhood. Path-relinking made
use of elite sets formed by at most ten elements.

Table 3: GRASP and GRASP with path-relinking, 200 pure GRASP iterations.
Greedy ( ) GRASP (200 iterations) GRASP+PR (same running time)

Nodes value value seconds value seconds iterations

50 1356 978 0.750 978 0.750 179
75 1204 1031 1.781 1029 1.782 183
100 1290 1211 3.484 1193 3.485 182
125 1915 1450 6.297 1427 6.313 196
150 1847 1615 9.812 1567 9.844 184

175 2085 1704 14.64 1667 14.641 191
200 2484 1952 19.828 1895 19.828 177
225 2549 2024 27.266 1973 27.281 191
250 2523 2165 35.078 2080 35.172 182
300 2759 2308 62.328 2219 62.609 193

Path-relinking considerably improved GRASP performance, leading to better solutions for all in-
stances in the same running time and fewer iterations than the pure GRASP. Time-to-target plots for
pure GRASP and GRASP with path-relinking algorithms for a 200-node instance are shown in Figure 1.
The target value is 2000. Each algorithm was run 200 times. The plots in this figure provide empirical
evidence that algorithm GRASP+PR outperforms pure GRASP for this instance and target value.

6 Restart strategies for GRASP with path-relinking

Resende and Ribeiro [9] have shown that restart strategies are able to reduce the running time to reach a
target solution value for many problems. We apply the same type of restart( ) strategy, in which the elite
set is emptied and the heuristic restarted from scratch after consecutive iterations have been performed
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Figure 1: Time-to-target plot for 200-node instance and target value set to 2000.

without improvement in the best solution found. Computational results for restart strategies for STSP

are displayed in Table 4, showing that they contribute to find better solutions in the same number of
iterations, mainly when the problem size increases.

Table 4: Restart strategies for 1000 iterations.
no restarts restart(100) restart(200)

Nodes value seconds value seconds value seconds

50 978 4.03 978 3.96 978 3.95
75 1029 9.46 1029 9.45 1029 9.26
100 1193 18.95 1193 18.73 1193 18.43
125 1421 33.04 1417 33.93 1420 33.09

150 1565 53.39 1564 53.04 1562 52.23
175 1657 77.25 1665 76.84 1652 76.23
200 1883 105.53 1885 105.68 1867 105.20
225 1941 148.96 1953 144.68 1928 142.26
250 2054 173.68 2073 175.01 2035 176.04
300 2203 304.40 2192 310.03 2205 296.76

As previously observed in [9, 10], the effect of restart strategies can be mainly noticed in the longest
runs. Considering the 200 runs for the 200-node instance with the target value set to 1900, they are
associated with the column corresponding to the fourth quartile of Table 5. Entries in this quartile
correspond to those in the heavy tails of the runtime distributions. The restart strategies in general do not
affect too much the other quartiles of the distributions, which is a desirable characteristic. Compared to
the norestart strategy, the restart(200) strategy was able to reduce not only the average running time in the
fourth quartile, but also in the third and second quartiles. Consequently, strategy restart(200) performed
the best among those tested, with the smallest average running times over the 200 runs.

7 Concluding remarks

In the Steiner TSP, one seeks a minimum-weight closed walk that visits a subset of required nodes. Since
only a walk is sought, nodes can be visited more than once and edges may be traversed more than once.

We developed a GRASP with path-relinking and restarts for solving the Steiner Traveling Sales-
man Problem. The algorithm used in the construction phase is a randomized extension of the nearest
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Table 5: Summary of computational results for each restart strategy for the 200-node instance: 200
independent runs were executed for each strategy. Each run was made to stop when a solution as good
as the target solution value 1900 was found. For each strategy, the table shows the distribution of the
running times by quartile. For each quartile, the table gives the average running times in seconds over all
runs in that quartile. The average running times over the 200 runs are also given for each strategy.

Average running times in quartile (seconds)

Strategy 1st 2nd 3rd 4th average

Without restarts 3.648 9.915 17.952 37.355 17.218
restart(100) 2.933 8.466 17.067 37.509 16.494
restart(200) 2.955 8.093 15.410 34.878 15.334

neighbor heuristic for the Traveling Salesman Problem. A variable neighborhood descent (VND) strat-
egy exploring a reduced 2-opt neighborhood is used to optimize a best improving local search scheme.
Path-relinking and restart strategies are used to improve the efficiency of the GRASP algorithm.

Extensive computational results for a set of instances previously used in the literature are reported.
Since neither optimal values nor even upper bounds have been previously reported for these instances,
the solutions obtained by the GRASP with path-relinking and restarts heuristic proposed in this work

cannot be directly be compared with other solutions.

As a step towards avoiding this difficulty and facilitating the research on this problem, we made all
test instances considered in this paper (together with their best known solutions and their costs) avail-
able at http://www2.ic.uff.br/˜rinterian/instances/allinstances.html. This website will be continuously
updated with information provided by other researchers working on this problem with optimal values,
upper bounds and best known feasible solutions for these and other benchmarking instances.
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Abstract. An adequate combination of verification and validation (V&V)
methods is important to improve software quality control throughout the
development process and to reduce costs. However, to find an appropriate set of
V&V methods that properly addresses the desired quality characteristics of a
given project is a NP-hard problem. In this paper, we present a novel approach
that combines V&V methods efficiently in order to properly cover a set of
quality characteristics. We modelled the problem using a bipartite graph to
represent the relationships between V&V methods and quality characteristics.
Then we interpreted our problem as the Set Cover problem. Although Set Cover
is considered hard to be solved, through the theoretical framework of Parame-
terized Complexity we propose an FPT-Algorithm (fixed-parameter tractable
algorithm) that effectively solves the problem, considering the number of quality
characteristics to be covered as a fixed parameter. We conclude that the pro-
posed algorithm enables combining V&V methods in a scalable and efficient
way, representing a valuable contribution to the community.

Keywords: Combination � Verification � Validation � Software quality
FPT � Set cover � Parameterized Complexity

1 Introduction

Studies suggest high costs related to quality assurance activities in software develop-
ment projects [1]. The appropriate combination of verification and validation (V&V)
methods is seen in the literature as a way to reduce these costs and increase product
quality [2]. Over the years, some knowledge has been generated regarding V&V
methods when observed in isolation [3]. However, the selection of different V&V
methods as well as the interdependencies among them are still not well-understood [4].
A significant part of the software industry is made up of small and medium-sized

companies that, given the lack of guidelines for performing the right combination of
V&V methods, have difficulties in optimizing this combination for their context,
increasing the costs of resources and time and mainly harming the quality of the
produced software.
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According to the Guide to the Software Engineering Body of Knowledge (SWE-
BOK) [5], verification is used to ensure that the software product is built in the correct
way, that is, it complies with the previously defined specifications. On the other hand,
validation guarantees that the product is adherent to the user needs. It is known that an
adequate combination of V&V methods outperforms any method alone [6]. Most of the
studies presented in a systematic mapping [9] do not clearly specify which V&V
methods cover which quality characteristics (e.g., considering the quality characteris-
tics described in the ISO 25010 quality model standard).
Finding a set of methods that together properly addresses all quality characteristics

of interest can be seen as a Set Cover Problem (SCP) [11]. The SCP is a classic NP-
hard problem in the computational complexity area, whose decision version belongs to
the list of the 21 Karp’s NP-complete problems [11]. This means that when the number
of methods or quality characteristics increase, the performance of an algorithm to
aiming at combining them in an optimal way would drastically decrease.
The existence of efficient algorithms to solve NP-complete, or otherwise NP-hard,

problems is unlikely, if the input parameters are not fixed; all known algorithms that
solve these problems require exponential time (or at least super-polynomial time) in
terms of the input size. However, some problems can be solved by algorithms for
which we can split the running time into two parts: one exponential, but only with
respect to the size of a fixed parameter, and another polynomial in the size of the input.
Such algorithms are denoted FPT (fixed-parameter tractable) in the Parameterized
Complexity field, because the problem can be solved efficiently for small values of the
fixed parameter [13–15]. This field emerged as a promising alternative for working
with NP-hard problems [12].
In this paper, we propose an algorithm to obtain an optimal combination of

methods covering software quality characteristics of interest in reasonable computa-
tional time. In order to find an optimal solution for the problem (based on the desired
software quality characteristics and the relation between those and V&V methods,
provided as input), we adopted a parameterized approach, considering the set of quality
characteristics as fixed parameter, and obtaining an algorithm classified as FPT. The
implemented FPT algorithm is the first of its kind that solves the SCP.
Our proposed algorithm reached its goals: it runs in O f kð Þ � nð Þ, where the con-

stant k is the number of quality characteristics, n is the number of methods, and f kð Þ is
some function of k. Considering that the number of quality characteristics of a given
quality standard is always constant, the algorithm runs in polynomial time in terms of
the number of V&V methods to be combined. As a result, it provides the minimum set
of V&V methods addressing all quality characteristics of interest. While this infor-
mation is surely useful, we are aware that companies may choose to complement these
methods with others to further assure the quality of the product (or even chose others)
and that other factors, such as cost, should be considered when taking the final
decision.
The remainder of this paper is organized in the following sections: Sect. 2 presents

the background and related work concerning quality characteristics, V&V methods,
and the combination of V&V methods. In Sect. 3 the problem is modeled as a
SCP. Section 4 briefly introduces parameterized complexity theory. Section 5 presents
the FPT–Algorithm that obtains the optimal combination. Section 6 contains a
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computational experiment analysis. Section 7 discusses the contributions and limita-
tions of our approach. Section 8 presents the concluding remarks.

2 Background and Related Work

2.1 Quality Characteristics

Concerning software product quality characteristics, the product quality model defined
in the ISO 25010 standard includes eight characteristics, for which quality requirements
may be defined and measured during software development [10]. The characteristics
and short descriptions for them, based on the ISO 25010 standard, can be found in
Table 1.

2.2 V&V Methods

Several V&V methods have been proposed over the years. In this paper we concentrate
on a subset of V&V methods extracted mainly from the SWEBOK [5] and some other
sources [19, 20] to compose our corpus. The list of methods can be found in Table 2.
Due to space constraints, a short description of the methods is not provided, but it can

Table 1. ISO 25010 quality characteristics.

Characteristic Short description

Function
suitability

Degree to which a product or system provides functions that meet stated
and implied needs when used under specified conditions

Performance
efficiency

Represents the performance relative to the amount of resources used
under stated conditions

Compatibility Degree to which a product, system or component can exchange
information with other products, systems or components, and/or perform
its required functions, while sharing the same hardware or software
environment

Usability Degree to which a product or system can be used by specified users to
achieve specified goals with effectiveness, efficiency and satisfaction in a
specified context of use

Reliability Degree to which a system, product or component performs specified
functions under specified conditions for a specified period

Security Degree to which a product or system protects information and data so
that persons or other products or systems have the degree of data access
appropriate to their types and levels of authorization

Maintainability Degree of effectiveness and efficiency with which a product or system
can be modified to improve it, correct it or adapt it to changes in
environment, and in requirements

Portability Degree of effectiveness and efficiency with which a system, product or
component can be transferred from one hardware, software or other
operational or usage environment to another

326 I. Mendoza et al.

rinterian@ic.uff.br



be easily obtained in the cited sources. It is noteworthy that there are variations for each
of these methods (e.g., different control flow-based criteria, different inspection tech-
niques). Nevertheless, we use this more generic classification as a starting point, given
that characterizing all possible variations to obtain a representative input for our
algorithm would be hard to accomplish. Thus, a method covering a quality charac-
teristic, in the context of this paper, means that there are ways of appropriately
addressing it using the method.

2.3 Combination of V&V Methods

It is known that the quality of software products is strongly dependent on the appro-
priate combination of V&V methods employed during development [2]. Experimental
studies have long demonstrated that the use of combinations of different V&V methods
to ensure the quality of a software is more effective than using isolated methods [7, 8].
Elbertzhager et al. [9] conducted a mapping study concerning the combination of

V&V methods. They describe two fundamental approaches: Compilation and Inte-
gration. We focus on the Compilation approach since our purpose is purely to combine
existing V&V methods (Compilation process). We are not focusing on creating new
techniques by combining different methods into one, nor in using the results of the
application of some technique as an instance to apply another one (Integration of V&V
methods).

Table 2. V&V methods.

Classification Method

Based on intuition & experience Ad Hoc Testing
Exploratory Testing

Input domain-based Equivalence Partitioning
Pair wise Testing
Boundary-Value Analysis
Random Testing
Cause-Effect Graphing

Code-based Control Flow-Based Criteria
Data Flow-Based Criteria

Fault-based Error Guessing
Mutation Testing

Usage-based Operational Profile
Usability Inspection Methods

Model-based Finite-State Machines
Workflow Models

Reviews Walkthrough
Peer Review or desk checking
Technical Review
Inspection
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In order to establish how other works perform the combination of V&V methods in
the Compilation approach, Elberzhager et al. [9] created a categorization to classify and
organize these studies into three subgroups.
In the first subgroup, static and dynamic techniques are combined, focusing on

thread escape analysis, atomicity analysis, protocol analysis, vulnerability analysis,
concurrent program analysis or on defects in general. All these combinations are
supported by open-source or proprietary tools.
The second subgroup compares different testing and inspection techniques discussing

advantages and disadvantages among them. In most cases, two or three techniques are
compared to each other. Several studies initially perform inspections, followed by some
tests, corroborating then the effectiveness of the combination of both techniques.
The last subgroup describes other combinations, such as testing techniques and

inspections combined with formal specifications, bug-finding tools, comprehensive
quality control processes in industrial environments, comprising several inspections
and technical tests, requirements and static analysis, tutorials, simulations, and vision-
based approaches.
The most cited papers in the systematic mapping [9] regarding the Compilation

approach are: Basili [22], Kamsties and Lott [23], and Wagner et al. [24]. Basili [22]
makes a comparison of three software testing techniques: reading of code by gradual
abstraction, functional testing using equivalence partition and border value analysis,
and structural testing using total coverage of criticism, according to efficiency, cost, and
fault detection classes. Kamsties and Lott [23], evaluate three techniques through a
controlled experiment: reading of code by gradual abstraction, functional (black-box)
testing and structural (white-box) testing. Wagner [24] describes a case study where
several projects are analyzed in an industrial environment. In this project, automatic
static analysis, testing, and reviews are used to detect defects. Their results show that
these techniques complement each other and that they should be combined.
In the systematic mapping [9], papers were analyzed until 2010. This led us to carry

out an update regarding the compilation approach, with the aim of finding more rel-
evant and recent papers from 2010 to present. Due to space constraints the details of
our mapping update will not be provided in this paper and we focus directly on the
recent related work.
Dwyer and Elbaum [25] suggest an approach based on dividing V&V methods into

two main classes: those that make dynamic analyses (or focused on behavior of the
system, e.g., testing) and those that use static analysis (typically focused on a single
property of the system at a time). Runeson et al. [27] compare code inspections and
structural unit tests by analyzing three replications of an experiment in order to know
which method finds more faults. Olorisade et al. [28] investigate the effectiveness of two
test techniques (partition of equivalence class and decision coverage) and one review
technique (code by abstraction) in terms of their ability to detect faults. Cotroneo et al.
[29] combine testing techniques adaptively, based on machine learning, during the
testing process, by learning from past experience and adapting the technique selection to
the current testing session. Bishop et al. [30] combine a monotonicity analysis with a
defined set of tests, showing that, unlike “independent” dynamic methods, this com-
bination provides a full error coverage. Solari and Matalonga [31] study the behavior of
two techniques, equivalence partition and decision coverage, to determine the types of
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defects that are undetectable for either of them. Finally, Gleirscher et al. [32] analyze
three different techniques of automated static analysis: code clone detection, bug pattern
detection, and architecture conformance analysis. They claim that this combination
tends to be affordable in terms of application effort and cost to correct defects.
It is noteworthy that none of the related work has implemented something similar to

our proposal, since we focus on covering a set of quality characteristics with few
methods, thus obtaining an optimal combination of V&V methods. While applying all
available methods represents a solution, this option might not be applicable due to cost
constraints.

3 Modeling the Problem

In this section we describe how the problem of finding the smallest combination of
methods that cover a specific set of quality characteristics can be modelled as a Set
Cover Problem.
Consider C as the set of characteristics, and N mð Þ as the subset of C that is covered

by a specific method m. We need to find the smallest set of subsets that cover C. The
problem is NP-hard in general. The relation between the characteristics and the
methods can be modeled as an undirected bipartite graph as shown in Fig. 1.

The example instance was obtained from the results of a survey [21] that collected
the opinion of experts about these V&V methods. The experts answered about their
agreement on the suitability of the methods to address the different quality attributes of

Fig. 1. Undirected bipartite graph. In the left-hand side the methods are positioned, and in the
right-hand side the characteristics. Edges reflect the relationship between methods and
characteristics. In the depicted instance, the set of methods contains the following elements:
Peer Review (PR), Workflow Models (WM), Finite-State Machines (FSM), Operational Profile
(OP), Mutation Testing (MT), and Exploratory Testing (ET). The set of characteristics is
composed by four characteristics: Usability (U); Reliability (R); Security (S), and Maintainability
(M). The graph shows a scenario in which method PR covers characteristics M and S, WM
covers S and U, FSM covers S and R, OP covers R and U, MT covers R, and ET covers U.
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the ISO 25010 standard. The relationship between some method m and some charac-
teristic c is obtained from the median of the survey answers (1 – disagree, 2 – partially
disagree, 3 – partially agree, 4 – agree). In this example we considered that m properly
covers c if the median is bigger or equal to 3. I.e., only methods that cover a quality
characteristic to a certain degree will have edges in the graph. The outcome of the
survey relating the quality characteristics to the V&V method can be seen in more
details in [21].
For illustrative purposes we built this graph instance taking a subset of our real

data, considering only four quality characteristics and some of the methods that can be
used to properly address them according to the answers of the respondents (19 experts
from 7 different countries, all with PhDs in software engineering, active in major
software engineering and V&V venue committees, and with relevant publications in
the area of V&V). The example perfectly serves our illustrative purposes to present the
V&V method combination algorithm. Actually, this smaller example allows providing
a better understanding of the algorithm’s execution and correctness.

4 Parameterized Complexity

The Parameterized Complexity field emerged as a promising way to deal with NP-hard
problems [12, 26]. It is a branch of the Computational Complexity Theory that focuses
on classifying computational problems according to their hardness with respect to
different parameters of the input. The complexity of a problem is mainly expressed
through a function of these parameters.
The theory of NP-completeness was developed to identify problems that cannot be

solved in polynomial time if P 6¼ NP. However, several NP-complete and NP-hard
problems still need to be solved in practice.
For many problems, only super-polynomial time algorithms are known when the

complexity is measured according to the size of the input, and in general, they are
considered “intractable” from the theoretical point of view assuming that P is different
from NP. Nevertheless, for several problems we can develop algorithms in which we
can split the running time into a part computed in polynomial time with respect to the
size of the input and another part computed in at least exponential time, but only with
respect to a parameter k. Consequently, if we set the parameter k to a small value and its
growth is relatively small we could consider these problems as “manageable” and not
“intractable” [13–15].
Thus, an important question arises: “Do these hard problems admit non-polyno-

mial time algorithms whose exponential complexity part is a function of merely some
aspects of the problem?” [12]. The existence of such algorithms was analyzed by
Downey and Fellows in [13], and is briefly discussed in the next section.

4.1 Fixed-Parameter Tractable (FPT) Approach

The fixed-parameter tractable (FPT) approach [13] considers the following format for
the problems: “Given an object x and a non-negative integer k, the goal is to determine
whether x has some property that depends on k?” The parameter k is considered small
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compared to the size of x. The relevance of these parameters lies precisely in the small
range of values they can take, being a very important factor in practice [12].
The FPT-algorithms sacrifice the execution time, which can be exponential, but

guarantee that the exponential dependency is restricted to the parameter k, which means
that the problem can be solved efficiently for small values of that fixed parameter. The
use of these algorithms provides a more rigorous analysis of problem’s time complexity
since this complexity is generally obtained from the size of the input [12].
Formally, a problem P belongs to the class FPT (it is fixed-parameter tractable)

with respect to a parameter k if it admits an algorithm to solve it whose running time is
of the form: f kð Þ � na, where a is a constant, and f is an arbitrary computable function.
Note that whenever k is bounded by a constant we have f kð Þ ¼ O 1ð Þ, hence the
running time of the algorithm will be polynomial.
Finally, for the problem of this paper, we present a fixed-parameter tractable

algorithm where the size k of the set of characteristics to be covered is the parameter.
I.e., we are limiting the complexity by the number of relevant product characteristics to
be considered when developing the software.

4.2 Scalability of the FPT-Algorithms

Scalability is the ability of a system or process to handle an increasing amount of data
[16]. Computer algorithms can be called scalable if they are efficient when applied to
large instances, i.e., instances with a large size of the input [17].
We can say that FPT-algorithms are scalable because they are efficient when

executed in large instances. These algorithms take advantage of the specific structure of
the instances, which is a differential when compared to exact or exhaustive search
algorithms that require high computational time.
It is important to note that the studied problem can handle a large number of V&V

methods, given that the number of quality characteristics tends to be relatively small.
Therefore, an FPT-algorithm with respect to the number of characteristics to be covered
will produce a tool for combination of V&V methods with high scalability.
Indeed, in our problem, the number of quality characteristics is already a known

small integer (in the ISO standard this number is 8). Therefore, scalability relies on the
ability to find the optimal solution even if the number of considered methods is
growing. Our initial set comprises 19 methods, but additional methods have been
reported by the survey respondents and our algorithm allows to efficiently work, for
example, with 30, 50, or 100 methods.

5 FPT–Algorithm to Combine V&V Methods

The goal of the algorithm, shown in the Fig. 2, is to obtain the optimal combination
(smallest number) of V&V methods that properly cover all the relevant quality char-
acteristics for the product to be developed. Certainly, a software organization could
complement the resulting set with other V&V methods that cover similar quality
characteristics to find more defects and to further enhance quality, but at least they
would know about the minimum set of methods to consider in order to address all the
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quality characteristics that are relevant for the product to be developed. I.e., a com-
bination such that there is a method properly addressing (i.e., with an edge in the graph
for) each relevant quality characteristic and none of them remains uncovered.
The objective function is the number of selected methods that properly cover all the

characteristics. The parameter to be set is the number of the selected quality charac-
teristics. In this way, we are parameterizing the Set Cover Problem by the number of
characteristics to be covered by the V&V methods.
Coming up next, we present some definitions that are used in the algorithm pre-

sented in Fig. 2:

C – set of characteristics.
M – set of methods.
N mð Þ – set of characteristics covered by the method m.
P cð Þ ¼ x 2 M : c 2 N xð Þf g – set of methods that cover the characteristic c.
R mð Þ ¼ x 2 M : N xð Þ �N mð Þf g – set of methods that cover a subset of N mð Þ.
The input parameters are the set of characteristics C and the set of methods M. The

redundant methods are removed in line 6 by using a simple preprocessing step. It
removes methods that cover a subset of characteristics covered by any other method.
A characteristic c is selected from the set of characteristics in line 7. The algorithm then
focuses on selecting the method that will cover c in the optimal solution. In line 8, the

Fig. 2. Pseudocode of the set cover FPT-algorithm.
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variable Ct that contains the characteristics to be covered is initialized. A loop runs
through all the methods that cover c in lines 9–25. The set M0 that stores the methods
that will be part of a feasible solution is initialized with method m in line 10. The set of
characteristics to cover Ct is updated in line 11 by removing the characteristics already
covered by m. The set Mt, containing the methods available to cover Ct, is initialized in
line 12 with all methods of M except those covering a subset of N mð Þ. In lines 13–18 a
loop is executed while there are characteristics c0 that are covered by a single method
m0. The variables Ct, Mt and M 0 are updated in lines 15–17. The available Mt methods
and the characteristics that have not been covered until now are used to obtain an
optimal sub-problem solution by recursively calling the SetCover algorithm. In line 19,
the obtained optimal solution is stored in M

0�. If the methods selected in M0 together
with the optimal solution M

0� of the sub-problem improve the optimum value found so
far ðf �Þ, then f � and M� are updated in lines 20–23. The value of Ct is reinitialized in
line 24. The best solution found ðM�Þ, is returned as the optimal solution to the
problem in line 27.

5.1 Execution of the Set Cover Algorithm

Taking the graph represented in Fig. 1 as the entry of the algorithm, we now illustrate
the execution of the pseudocode. After initialization steps 1–5, line 6 removes
redundant methods. In this case, methods MT and ET are removed, because they cover
only one characteristic, already covered by other methods. The result is shown in
Fig. 3.

Afterwards, the first characteristic M is chosen as c, and all the methods that cover
M must be considered in the loop that begins on line 9. Therefore, method PR is
selected. In line 11, we remove all the characteristics already covered by PR, that is,
M and S. The variable Mt gets the set of methods {WM, FSM, OP} in line 12. Since
there are no characteristics covered by only one method, the loop on lines 13–18 does
not perform any action, and the algorithm is called recursively in line 19 with set of
characteristics {R, U}, and set of methods {WM, FSM, OP} as parameters. Figure 4
illustrates the graph at this stage.

Fig. 3. Algorithm execution. State of the graph after the preprocessing step.
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Finally, the algorithm is executed again from the beginning. Methods WM and FSM
are immediately removed as redundant, and the remaining method OP is selected to
cover the last two characteristics. The variables Ct and Mt became empty, and in the
next recursive call, the stopping criterion is reached. The OP method is returned as a
solution of the instance represented in Fig. 4, forming the final solution of the whole
instance together with already selected method PR. The smallest set of methods M� is
set as {PR, OP}, and the optimal value f � is set to 2.

As can be observed from the execution, the algorithm considers all the possible
ways of covering the quality characteristics, keeping the most efficient ones. In this
sense, the obtained solution can be considered optimal for the problem and model we
pose. In fact, the algorithm is able to determine the optimal combination (smallest
number) of V&V methods that properly cover quality characteristics of interest for a
product to be developed based on any initial graph configuration connecting V&V
methods to the quality characteristics they properly address (Fig. 5).

Fig. 4. Algorithm execution. State of the graph after the recursive call.

Fig. 5. Methods that form the optimal solution returned by the algorithm when executed in the
graph. If M is selected as the first characteristic at the beginning of the execution, then the
optimal set of methods returned by the algorithm is {PR, OP}.
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5.2 Running Time Analysis

Suppose that there are n methods in the set M, and there are k characteristics in the set
C, being k some small integer. We note that a naive (brute force) algorithm would test
all solutions (subsets of the set M) and chose which of them cover C having smaller
size. Because there are 2n subsets of the set M, this naive algorithm has a time
complexity of O 2nð Þ. This exponential order is intractable even for some relatively
small values of n, like 30 or 40 (which could easily be achieved when including
specific variations of the V&V methods as input).
Instead, the proposed algorithm tries to determinate which method is the best option

to cover each characteristic. After choosing some characteristic c, the algorithm tries to
select each method that properly covers c, covering the rest of characteristics recur-
sively. Because the number of methods that cover each characteristic is at most n, the
order of this algorithm can be initially bounded by OðnkÞ. In general, this order is
already better than the ‘naive’ solution.
Nevertheless, we improve the upper bound of our algorithm’s running time by

refining the actual number of methods it will analyze. In fact, there are only 2k different
ways of covering a set C of k elements. If there is more than 2k methods, then
necessarily there will be two of them that cover exactly the same set of characteristics.
That means that these two methods would be indistinguishable to our algorithm; that is,
if they cover the same characteristics, any one of them can be used. Using this fact, we
can successively preprocess the input, improving the algorithm performance from

O nk
� �

to O f kð Þ � nð Þ, where f kð Þ� 2k� �k¼ 2k2 . In our case, k ¼ 8 and this means that
f kð Þ is bounded above by a constant, i.e., f kð Þ ¼ O 1ð Þ. Then, we have a linear algo-
rithm for the problem instead of an exponential or even a O n8ð Þ-time algorithm.
Once again, the upper bound for f kð Þ is improved (decreased) using the fact that if

some method m1 covers a subset of characteristics covered by some other method m2,
then m1 can be removed from the set of methods. This is because if m1 is actually
chosen, you can instead choose m2, since m2 is ‘better’ method in the sense that it
covers all that m1 covers, and possibly more. Lubell [18] showed that there are no more

than
k
k=2b c

� �
combinations with the property that no one is a subset of the other. This

implies that for k ¼ 8, there can be much less than 2k different methods with the
property that there is no method that covers a subset of characteristic of some other

method. In particular, for k ¼ 8 there can be at most 8
4

� �
¼ 70 methods satisfying

this property, and there can be at most
7
3

� �
¼ 35 of these methods covering one

common characteristic. Therefore, the redundant methods are removed by using a
simple preprocessing step that searches for methods that cover a subset of character-
istics covered by any other method. At each iteration of the algorithm, the number of
characteristics to be covered decreases and the previous steps of the algorithm are
repeated considering a decremented k value.
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Summarizing, it holds that:

f kð Þ\ k � 1
k � 1ð Þ=2b c

� �
� k � 2

k � 2ð Þ=2b c
� �

� � � � � 2
1

� �
ð1Þ

For k ¼ 8, it follows that f kð Þ\ 35� 20� 10� 6� 3� 2, then our Oðf kð Þ � nÞ-
time algorithm is an efficient (linear) algorithm where f kð Þ is bounded above by a
constant. In practice, this constant is even lower, and does not depend on the number of
existing methods, which produces scalability with respect to the number of methods to
be worked.

6 Computational Experiments

Several experiments were performed to assess the algorithm presented above. The
algorithm was implemented in C# programming language and compiled by Roslyn, a
reference C# compiler, in an Intel Core i3 machine with a 2.0 GHz processor and 4 GB
of random-access memory, running under the Windows 10 operating system.
A number of test problems created by a random generator is considered. Each test

problem has two parameters: the number of vertices n and the probability p of a method
to cover a characteristic.
The FPT–algorithm is also executed on the instance obtained from the survey

described in [21], according to the criteria explained in the Sect. 3 when we build the
example with a subset of this same data.
Table 3 shows the optimal solution sizes and execution times (in seconds) for the

FPT-Algorithm solver with and without instance preprocessing (Fig. 2, line 6) and a
naive algorithm (brute force), for each instance. The name of the instance indicates the
number of methods, followed by the probability of a characteristic to be covered by a
method, in percent. The optimal solution sizes (number of methods returned) are equal
for all instances, indicating the correctness of the Algorithms.
The FTP–Algorithm with the preprocessing is more efficient than without pre-

processing and the Naive Algorithm, obtaining the result in less than 0:01 s in all cases
even for the biggest instances, unlike the other algorithms in which for some instance
sizes the solution is not found in a reasonable waiting time (—). The FTP–Algorithm
without processing proves to be, in turn, more efficient than the Naive Algorithm,
executing more instances with better runtime.
For the instance obtained from the survey [21], the FPT–Algorithm with the pro-

cessing of the instance returned the methods: 12, 19 and the FPT–Algorithm without
the processing and the Naive Algorithm returned the methods: 12, 18. The solution
returned by the FPT–Algorithm with the processing contains the method 19 that covers
a superset of the characteristics covered by the method 18 in the others algorithm
solutions, showing that FPT–Algorithm with preprocessing performs better when
concerning coverage, by using this additional comparison criterion.
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7 Discussion

Our proposed algorithm is effective, being able to provide the optimal combination
(smallest number) of V&V methods properly covering a set of chosen quality char-
acteristics to be considered when developing a software product. Additionally, it is
more efficient than brute-force or exhaustive search algorithms and its execution time
properties match the particularities of the problem well. Indeed, the algorithm can be
applied to instances of different sizes, making our approach scalable, i.e., suitable for
larger case studies (for instance, considering more V&V methods, including specific
variations of the more generic methods used for our sample).
There is, however, a basic assumption for applying the algorithm, which is having a

defined input with information on which V&V methods properly address the different
quality characteristics. For illustrative purposes, our example was based on initial
outcomes of an expert survey. It is also noteworthy that our set of 19 V&V methods
represents generic methods for which several variations are available (e.g., applying
specific testing criteria or variations of inspection methods). While they perfectly fit our
illustrative example and allowed us getting feedback from experts on whether they can
be employed to properly address quality characteristics, information on more specific
methods could be provided as input to combination algorithm. We highlight that this

Table 3. Computational experiments

Instance Runtime
FPT-Alg
(with pre-
processing)

Optimal
solution
FPT-Alg
(with pre-
processing)

Runtime
FPT-Alg
(no pre-
processing)

Optimal
solution
FPT-Alg
(no pre-
processing)

Runtime
Alg-
Naive
(brute
force)

Optimal
Alg-
Naive
(brute
force)

Instance_20_10 0.00031 5 0.00375 5 0.14907 5
Instance_20_20 0.00047 3 0.01094 3 0.17703 3
Instance_20_50 0.00062 2 0.08859 2 0.22297 2
Instance_50_10 0.00031 5 0.14359 5 — —

Instance_50_20 0.00110 2 4.97453 2 — —

Instance_50_50 0.00094 2 11.4025 2 — —

Instance_100_10 0.00094 2 64.7025 2 — —

Instance_100_20 0.00125 3 — — — —

Instance_100_50 0.00110 2 — — — —

Instance_200_10 0.00344 3 — — — —

Instance_200_20 0.00188 2 — — — —

Instance_200_50 0.00094 1 — — — —

Instance_500_10 0.00359 3 — — — —

Instance_500_20 0.00469 2 — — — —

Instance_500_50 0.00234 1 — — — —

Instance_1000_10 0.00766 3 — — — —

Instance_1000_20 0.00578 2 — — — —

Instance_1000_50 0.00500 1 — — — —
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initial configuration is out of the scope of the intended contribution of this paper and
that companies could use an initial configuration based on their own sets of evidence on
the V&V methods they typically use or on their own elicited expert beliefs.
Moreover, from a practical point of view, companies might decide to complement

the optimal solution provided by the algorithm by applying additional V&V methods
that cover similar quality characteristics (e.g., aiming at finding additional defects and
further enhancing product quality), in particular for critical projects. However, using
our approach at least they would know about a minimum set of methods that would
allow them avoiding neglecting quality characteristics that are relevant for the product
to be developed.
Also, specialists on software engineering economics might argue that our solution

providing the smallest number of V&V methods is not considering the cost of applying
each method. However, to address this issue we would need to know the relative cost
among the V&V methods and this information is extremely context specific and hard to
generalize. We are aware of this limitation and further addressing it is part of our future
work. A solution option to handle this issue when using the approach described in this
paper would be removing the methods that are cost restrictive from the initial
configuration.

8 Concluding Remarks

In this paper, we modeled the problem of finding a combination of V&V methods to
cover software quality characteristics as the Set Cover problem, a NP-hard combina-
torial optimization problem. We defined a parameterized FPT algorithm that is spe-
cially designed for our instances, since typically the number of considered quality
characteristics is small. Provided by a valid input, the proposed algorithm is able to
efficiently provide an optimal combination (smallest number) of V&V methods
properly covering a set of chosen quality characteristics to be considered when
developing a software product. Additionally, we showed that it is more efficient than
Naive (brute-force) algorithms. Furthermore, the algorithm can be applied to instances
of different sizes, making our approach scalable, i.e., suitable for larger studies (for
instance, considering more V&V methods).
Our future works consist of development of a support tool that, given a set of

selected quality characteristics and an initial configuration (e.g., from the survey
results, or any other source such as within-company expert belief elicitation), provide
the optimal combination of V&V methods. Finally, for now we focused on product
quality, and a next step would be to integrate cost-related issues into the approach.
Moreover, we believe that the Fixed-Parameter Tractable algorithm approach can be
applied to solve other problems in the software engineering domain and that sharing
our V&V method combination experience with the community could foster discussions
towards other graph theory-based solutions for relevant software engineering problems.
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Abstract

Software development using distributed version control systems has become more
frequent recently. Such systems bring more flexibility, but also greater complexity to
manage and monitor multiple existing repositories as well as their myriad of branches.
In this paper, we propose DyeVC, an approach to assist developers and repository
administrators in identifying dependencies among clones of distributed repositories. It
allows understanding what is going on around one’s clone and depicting the
relationship between existing clones. DyeVC was evaluated over open source projects,
showing how they could benefit from having such kind of tool in place. We also ran an
observational and a performance evaluation over DyeVC, and the results were
promising: it was considered easy to use and fast for most repository history
exploration operations while providing the expected answers.

Keywords: Distributed version control, Monitoring, Visualization, Awareness

1 Background
Version Control Systems (VCS) date back to the 70s when SCCS emerged (Rochkind

1975). Their primary purpose is to keep software development under control (Estublier

2000). Along these almost 40 years, VCSs have evolved from a centralized repository

with local access (e.g., SCCS and RCS (Tichy 1985)) to a client-server architecture

(e.g., CVS (Cederqvist 2005) and Subversion (Collins-Sussman et al. 2011)). More

recently, distributed VCSs (DVCS) arose (e.g., Git (Chacon 2009) and Mercurial

(O’Sullivan 2009a)) allowing clones of the entire repository in different locations.

According to a survey conducted by the Eclipse community (2014), Git and GitHub

combined usage increased from 6.8 to 42.9% between 2010 and 2014 (a growth

greater than 500%). During this same period, Subversion and CVS combined usage

decreased from 71 to 34.4%. This clearly shows momentum and a strong tendency

in the adoption of DVCSs in the open source community.

Besides these changes from local to client-server and then to a distributed architec-

ture, the concurrency control policy adopted by VCSs also changed from lock-based

(pessimistic) to branch-based (optimistic). According to Walrad and Strom (Walrad

and Strom 2002), creating branches in VCSs is essential to software development be-

cause it enables parallel development, allowing the maintenance of different versions

of a system, the customization to different platforms/customers, among other features.

DVCSs include better support for working with branches (O’Sullivan 2009b), turning

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

Cesario et al. Journal of Software Engineering Research and Development
 (2017) 5:5 
DOI 10.1186/s40411-017-0039-8



the branch creation into a recurring pattern, no matter if this creation is explicitly done

by executing a “branch” command or implicitly when a repository is cloned.

However, distributed software development, especially from the geographical perspec-

tive (Gumm 2006), brings a set of risk factors, and Configuration Management (CM) is

affected by them. The increasing growth of development teams and their distribution

along distant locations, together with the proliferation of branches, introduce additional

complexity for perceiving actions performed in parallel by different developers. Accord-

ing to Perry et al. (1998), concurrent development increases the number of defects in

software. Besides, da Silva et al. (2006) say that branches are frequently used for pro-

moting isolation among developers, postponing the perception of conflicts that result

from changes made by co-workers. These conflicts are noticed only after pulling

changes in the context of DVCSs. Moreover, Brun et al. (2011) show that even using

modern DVCSs, conflicts during merges are frequent, persistent, and appear not only

as overlapping textual edits (i.e., physical conflicts) but also as subsequent build (i.e.,

syntactic conflicts) and test failures (i.e., semantic conflicts).

By enabling repository clones, DVCSs expand the branching possibilities discussed by

Appleton et al. (1998), allowing several repositories to coexist with fragments of the

project history. This may lead to complex topologies where changes can be sent to or

received from any clone. This scenario generates traffic similar to that of peer-to-peer

applications. In practice, projects impose some restrictions on this topology freedom.

However, it can be still much more complex than the traditional client-server topology

found in centralized VCS.

With this diversity of topologies, managing the evolution of a complex system be-

comes a tough task, making it difficult to find answers to the following questions:

� Q1: Which clones were created from a repository?

� Q2: What are the communication paths among different clones?

� Q3: Which changes are under work in parallel (in different clones or different

branches) and which of them are available to be incorporated into others’ clones?

Most of the existing works, such as Palantir (Sarma and van der Hoek 2002), FASTDash

(Biehl et al. 2007), Lighthouse (da Silva et al. 2006), CollabVS (Dewan and Hegde 2007),

Safe-Commit (Wloka et al. 2009), Crystal (Brun et al. 2011), and WeCode (Guimarães

and Silva 2012), deal with question Q3, giving to the developers awareness of concurrent

changes. However, they do not provide an overview of the topology of repositories, indi-

cating which commits belong to which clones. This overview is essential to understand

the distributed evolution of the project.

To answer the questions above, we propose DyeVC,1 a novel monitoring and

visualization approach for DVCS that gathers information about different repositories

and presents them visually to the user. DyeVC allows developers to perceive how their

repository evolved over time and how this evolution compares to the evolution of other

repositories in the project. DyeVC’s main goal is two-fold: increasing the developers’

knowledge of what is going on around their repository and the repositories of their

teammates, and enabling repository administrators to visualize the relationship between

existing clones. DyeVC was evaluated over open source projects, showing how they

could benefit from having such kind of tool in place. We also ran an observational and
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a performance evaluation over DyeVC, and the results were promising: it was con-

sidered easy to use and fast for most repository history exploration operations while

providing the expected answers.

This paper extends a previous conference paper (Cesario and Murta 2016) by includ-

ing a more thorough discussion of our approach, including how DyeVC discovers the

topology and a formal definition of the process underneath DyeVC. Moreover, as the

previous version of DyeVC struggled when dealing with large repositories (over 6500

commits), we also added an automatic collapsing feature. This new feature provides a

dual contribution: it allowed DyeVC to deal with larger repositories and reduced clutter-

ing when presenting information to users. The performance evaluation was expanded to

present an assessment of the automatic collapsing feature. Finally, we included a deeper

comparison of DyeVC with its related work. This paper is organized as follows: Section 2

shows a motivational example. Section 3 presents the DyeVC approach. Section 4 presents

the technologies used in our prototype implementation. Section 5 describes the evaluation

of DyeVC. Section 6 discusses related work, and Section 7 concludes the paper and

presents some suggestions for future work.

2 Motivational example
Figure 1 shows a scenario with some developers, each one owning a clone of the reposi-

tory created at Xavier Institute. Xavier Institute acts like a central repository, where code

developed by all teams is integrated, tested, and released to production. There is a team

working at Xavier Institute, led by Professor Xavier, and a remote developer (Storm) that

periodically receives updates from the Institute. Outside the Institute, Wolverine leads a

remote team located in a different site, which is constantly synchronized with the Insti-

tute. Solid lines in Fig. 1 indicate data being pushed, whereas dotted lines indicate data be-

ing pulled. Thus, for example, Rogue can both pull updates from Gambit and push

updates to him, and Beast can pull updates from Rogue, but cannot push updates to her.

Fig. 1 Development scenario involving some developers
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Each one of the developers has a complete copy of the repository. Luckily, this sce-

nario has a CM Plan in action. Otherwise, each one would be able to send and receive

updates to and from any other, leading to a total of n × (n − 1) different possibilities of

communication (where n is the number of developers in the topology). In practice,

however, this limit is not reached: while interaction amongst some developers is fre-

quent, it may happen that others have no idea about the existence of some coworkers.

It occurs with Mystique and Nightcrawler, for example, where there is no direct

communication.

As an example, from a developer’s point of view, like Beast, questions such as the

following can arise:

� How can he know at a given moment if there are commits in Rogue, in Gambit, or

in Nightcrawler clones that were not pulled yet? Suppose that Beast is working on a

feature that depends on a utility class developed by Gambit. If such class has a bug,

and Gambit is working to solve it, Beast would want to know when Gambit’s commit

is ready to be pulled. Moreover, if Gambit is evolving such class, and Beast has this

information, he could decide to anticipate a pull to incorporate Gambit’s changes in

his workspace.

� Would it be the case that local commits are pending to be pushed to Gambit? Beast

could certainly periodically pull changes from his peers, checking if there were

updates available, but this would be a manual procedure, prone to be forgotten. It

would be more practical if Beast could have an up to date knowledge of his peers,

warning him about any local or remote updates that had not been synchronized yet.

On the other hand, from an administrator’s point of view, questions such as the fol-

lowing are pertinent:

� How can she knows which are the existing clones of a project and how they relate

to each other? This is a common need to repository administrators. It helps not

only in identifying who must be notified regarding any news related to the repository

but also helps in visually verifying if pull/push policies are being followed by the team.

Having a map of all existing clones can help repository administrators in identifying

who is pushing to / pulling from each other. For instance, unauthorized access to

push to a production repository can be visualized, and the administrator can take

actions to revoke such access.

� How can she know if there are pending commits to be sent from a staging

repository to a production one? Having the ability to know how many commits are

pending and which commits are these can help administrators decide if this is the

right time to release a new version of the system to production.

3 DyeVC approach
Aiming at supporting both developers and repository administrators in understanding

the interaction among repository clones, the main features of DyeVC include: (1) a

mechanism to gather information from a set of clones (such as their relationships and

known commits) and (2) a set of extensible views with different levels of detail, which

let DyeVC users visualize this information. We detail in the following sub-section how
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DyeVC gathers information from DVCSs. Next, we discuss how this information is pre-

sented using different levels of detail. Finally, we show what happens behind the scenes,

discussing the algorithm involved in the data synchronization process.

3.1 Information gathering

DyeVC continuously gathers information from interrelated clones, starting from clones

registered by the user. Figure 2 shows a deployment view of DyeVC’s architecture. For

each clone rep that the user registers to monitor, DyeVC transparently creates a local

clone rep’ in the user’s home folder to fetch data from all of the peers with which rep

communicates. Data is gathered by DyeVC instances running at each user machine and

is stored in a central document database. In this way, information from one DyeVC

instance is made available to every other instance in the topology.

DyeVC gathers information from registered clones in the user’s machine and also

from their peers, which are clones that communicate with them. Since there is a com-

munication path between a registered clone and its peers (either to push data or to pull

data), we can analyze the commits that exist in these peers. This allows us to present a

broader topology visualization that contains not only registered clones, but also those

that have a push or pull relationship with them. DyeVC finds out related clones by

looking at the remote repositories registered in the DVCS configuration. More details

on how data is gathered are explained in section 3.3.

Figure 3 shows how DyeVC discovers the topology from the nodes where it is run-

ning and the registered clones. Blue nodes represent registered clones where DyeVC is

running, yellow nodes represent known clones located at nodes where DyeVC is not

running, dashed nodes and dashed lines represent clones and communication paths, re-

spectively, that are not known yet. Suppose a scenario where the existing clones and

interdependencies are shown in Fig. 3a, which depicts the same scenario shown in Sec-

tion 2 but here represented by the first letter of each clone. After installing DyeVC and

Fig. 2 How DyeVC gathers information
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registering clone X, DyeVC finds out that this clone communicates with clones W, P,

and S (either by pushing to or pulling from them), as shown in Fig. 3b. Later on, clone

P is registered and clones C, J and M are included as known clones in the topology

(Figure 3c). Clone G is the next to be registered, allowing DyeVC to discover that

clones R, N, and B also exist, as well as the communication between clone G and clone

W, which was already a known clone (Fig. 3d). Assuming that no other clones are regis-

tered, the known topology is shown in Fig. 3e. Notice that, although only clones G, P,

and X were registered, DyeVC is also aware of the existence of clones B, C, J, M, N, S

and W. Only some communication paths between clones will not be known (C-J, J-M,

S-M, R-B, R-N and N-B).

DyeVC finds out related clones by looking at the remote repositories, which are regis-

tered in Git’s config file of each clone. Figure 4 shows an example of this configuration,

taken from a local clone of the DyeVC project, where there is a remote named origin,

which is located at github.com/gems-uff/dyevc. This information is in the url parameter,

which indicates to Git that pushes and pulls use the same location. If there were a

pushurl parameter in the configuration, besides the url parameter, pulls would use the

location in the url parameter and pushes would use the location in the pushurl

parameter.

Data stored in the central database follows the metamodel presented in Fig. 5. A Pro-

ject groups repository clones of the same system. Clones are stored as RepositoryInfo

Fig. 3 DyeVC discovering the topology: actual topology (a), discovered topology with X (b), discovered
topology with X and P (c), discovered topology with X P and G (d), final discovered topology (e)

Cesario et al. Journal of Software Engineering Research and Development  (2017) 5:5 Page 6 of 34



and are identified by an id and a meaningful clone name provided by the user (cloneName

attribute). A RepositoryInfo has a list of clones to which it pushes data and a list of clones

from which it pulls data. These lists are represented respectively by the self-associations

pushesTo and pullsFrom. Finally, a RepositoryInfo stores the hostName where it resides

(e.g., a server name or localhost), its clonePath (be it an operating system path or an URL)

and the set of DyeVC instances that have registered it to be monitored (monitoredBy

attribute).

Branches are part of a RepositoryInfo. A Branch has a name and a boolean attribute

isTracked, which is true if the branch tracks a remote branch. A RepositoryInfo may

have one or many branches (it must have at least one branch, which is the main one).

A Branch has two associations with CommitInfo: through the first association, a Branch

knows which commit is its head and, conversely, a commit knows which branches

point to it as a head (headOf association end). The second association represents which

commits are reachable from a given branch (reachableCommits association end)

and, conversely, the branches from which the commit is reachable (reachableFrom

association end).

The finer grain of information is the CommitInfo, which represents each commit in

the topology. A commit is identified by a hash code (hash attribute) and refers to its

Fig. 4 Remote repository configuration in Git’s config file

Fig. 5 Metamodel used to store DyeVC data
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parents (except for the first commit in the repository, which does not have any parent).

As each commit may not exist in all clones of the topology, we store the list of clones

where each commit can be found (foundIn association end). We also store the commit-

ter, the commit message (shortMessage attribute), and whether the commits belong to

tracked or non-tracked branches (tracked attribute).

3.2 Information visualization

DyeVC presents information at four different levels of detail: Level 1 shows high-level

notifications about registered repositories; Level 2 shows the whole topology of a given

project. Level 3 zooms into the branches of the repository, showing the status of each

tracked branch. Lastly, Level 4 zooms into the commits of the repository, showing a

visual log with information about each commit. The following sections discuss these

levels.

3.2.1 Level 1: Notifications

In Level 1, our approach periodically monitors registered repositories and presents notifi-

cations whenever a change is detected in any known peer. The period between subse-

quent runs is configurable, and notifications are presented in the system notification area,

in a non-obtrusive way. Figure 6 shows an example of this kind of notification, where

DyeVC detected changes in two different repositories. The notification shows the reposi-

tory id, the clone name, and the project (system) name. Clicking on the balloon opens

DyeVC main screen.

3.2.2 Level 2: Topology

Aiming at helping to answer questions Q1 and Q2, we present a topology view showing

all repositories for a given project (Fig. 7), where each node represents a known clone.

A blue computer represents the current user clone, and black computers represent

other clones where DyeVC is running. Servers represent central repositories that do

not pull from nor push to any other clone, or clones where DyeVC is not running. Both

kinds of nodes use the same representation because, once DyeVC is not running at a

given clone, we cannot infer the pushesTo and pullsFrom lists, which will thus be empty

as in a server. At first sight, this could be understood as a risk within topology view.

However, DyeVC considers servers as clones. The denomination “server” is just to visu-

ally differentiate it from other clones. We believe that plotting servers and clones where

Fig. 6 DyeVC showing notifications in notification area
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DyeVC is not running with the same icons is not a risk because the topology view

brings more information about the clones (e.g., clone address and name). Thus, a re-

pository administrator can distinguish the servers among the plotted clones.

Each edge in the graph represents a relationship between two repositories. Continu-

ous edges mean that the source clone pushes to the destination clone, whereas dashed

edges mean that the destination clone pulls from the source clone. The edge labels

show two numbers separated by a dash. The first and second numbers represent how

many commits in tracked and non-tracked branches of the source clone are missing in

the destination clone, respectively. The edge colors are used to represent the

synchronization status: green edges mean that both clones are synchronized (i.e., the

destination clone has all the commits present in the source clone), whereas red edges

mean that the pair is not synchronized and indicates the direction that is missing

commits. For example, it is possible to observe in Fig. 7 that the current user clone

(blue computer) is hosted at cmcdell and is named dyevc. This clone pulls from

gems-uff/dyevc, which is located at github.com, and there are four tracked commits

ready to be pulled (i.e., commits that exist in the remote repository and do not exist

locally). It also pushes to the same peer, having five tracked commits ready to be

pushed. In this case, both edges are red, which raises attention to investigate further

what is happening, because such situation may lead to integration conflicts.

3.2.3 Level 3: Tracked branches

For helping answering question Q3, DyeVC’s main screen (see Fig. 8) shows Level 3

information, allowing one to view the status of each tracked branch in registered reposi-

tories regarding their peers. This information is complemented with that of Level 4,

shown in the next section.

The status evaluation considers the existing commits in each repository individually.

Due to the nature of DVCS, old data is almost never deleted, and commits are cumula-

tive. Thus, if commit N is created over commit N – 1, the existence of commit N in a

Fig. 7 Topology view for a given project

Cesario et al. Journal of Software Engineering Research and Development  (2017) 5:5 Page 9 of 34



given repository implies that commit N – 1 also exists in the repository. In this way, by

using set theory, it is possible to subtract the set of commits in the local repository

from the set of commits in its peers, resulting in the set of commits not pulled yet. In

this case, local repository will be behind its peers (arrow down in Fig. 8). Conversely,

subtracting the sets in the inverse order will result in the set of commits not pushed

yet, meaning that local repository is ahead of its peers (arrow up). When both sets are

empty, local repository is synchronized (green checkmark in Fig. 8) and when both sets

have elements, it is both ahead and behind its peer (arrow up and down in Fig. 8).

Let us assume that each commit is represented by an integer number to illustrate

how our approach works. At a giving moment, the local repositories of each developer

have the commits shown in Table 1. Consider the synchronization paths presented in

the right-hand side of Fig. 1, where the perception of each developer regarding their

known peers is shown in Table 2. Notice that the perceptions are not symmetric. For

instance, as Gambit does not pull updates from Nightcrawler, there is no sense in giv-

ing him information regarding Nightcrawler. Furthermore, it is uncommon to have a

scenario where pushes are performed from a developer to another (such as the one

between Beast and Gambit). What happens is that a developer pulls from another (for

example, between Gambit and Nightcrawler), avoiding inadvertent inclusion of com-

mits inside others’ clones. Although infrequent, this scenario helps in understanding

the need to have awareness about who are the peers in a project and what are their

interdependencies.

3.2.4 Level 4: Commits

Level 4 complements information of Level 3 to provide an answer to Question Q3.

Differently from the usual repository version graph, it presents a combined version

graph of the entire topology (Fig. 9). Each vertex in the graph represents either a

Fig. 8 DyeVC main screen

Table 1 Existing commits in each repository

Repository Wolverine Gambit Rogue Nightcrawler Beast

Commits 10; 11 10; 11 10; 12 10; 11; 13 10

Cesario et al. Journal of Software Engineering Research and Development  (2017) 5:5 Page 10 of 34



known commit in the topology, which is named after its hash’s five first characters

(e.g., the node labeled 2e10a in Fig. 9), or a collapsed node, representing several com-

mits blended. We implement two ways of collapsing nodes to provide a better under-

standing over huge amounts of data: manual and automatic. Manually collapsed

nodes are named after the number of contained nodes, such as the white node con-

taining 118 commits and the green node containing 24 commits in Fig. 9). Automat-

ically collapsed nodes have ellipses before and after the number of contained nodes in

their names (if the first collapse of Fig. 9 were automatic, its name would be “…

118…”). Automatic collapsing is detailed in Section 3.2.5.

Thicker borders denote that the commit is a branch’s head (e.g., commit ea6a4).

Commits are drawn according to their precedence order. Thus, if a commit N is cre-

ated over a commit N – 1, then commit N will be located to the right of commit N – 1.

For each commit, DyeVC presents the information described in Fig. 5 (gathered from

the central database), along with information that is read in real time from the reposi-

tory metadata, such as branches that point to that commit and affected files (added,

edited, and deleted).

This visualization contains all commits of all clones in an integrated graph. Each

commit is painted according to its existence in the local repository and the peers’ re-

positories. Ordinary commits that exist locally and in all peers are painted in white.

Green commits are ready to be pushed, as they exist locally but do not exist in peers

Table 2 Status of each repository based on known remote repositories

Repository Wolverine Gambit Rogue Nightcrawler Beast

Wolverine - - - - -

Gambit - - - -

Rogue - - - -

Nightcrawler - - -

Beast - -

Fig. 9 Collapsed commit history
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on the push list. Yellow commits need attention because they exist in at least one peer

in the pull list, but do not exist locally, meaning that they may be pulled. Red commits

do not exist locally and are not available to be pulled, as they exist only in clones that

are not peers. Finally, gray commits belong to non-tracked branches, so they can nei-

ther be pushed nor pulled. Heads of these branches are not identified with thicker

borders.

This visualization can easily have thousands of nodes, one for each commit in the

topology. Nevertheless, despite the high number of nodes, users are usually interested

in the most recent commits. As we show the commits following a chronological order,

from left to right, most recent commits will be at the right part of the visualization.

DyeVC positions the graph so that these commits are shown when opening the

visualization.

3.3 Automatic collapsing

As previously discussed, the first version of DyeVC struggled when dealing with larger

repositories (over 6500 commits). This limitation was mainly due to the memory used

to represent commit nodes in the commit history graph. However, we observed that

many of the commit nodes are unnecessary for comprehending the evolution and, in

fact, were cluttering the visualization. For instance, a sequence of 20 commit nodes that

are ordinary revisions and that belong to all clones (i.e., all have the same white color)

could be collapsed into just one commit node, avoiding visualization cluttering and

boosting performance. This observation motivated us to design and implement an

automatic collapsing feature for DyeVC.

We identified two common node structures that can be automatically collapsed: se-

quential and parallel. The former contains a sequence of commits of the same type,

where each of them has degree two, i.e., nodes with just one ancestor and one succes-

sor. This kind of structure can be collapsed because it does not represent any additional

information besides the fact that some sequential work was performed. Figure 10 shows

examples of sequences of commits, highlighted in red, which could be collapsed, produ-

cing the graph shown in Fig. 11 (still in red). On the other hand, the later contains one

fork node and one merge node, with at most one (regular or collapsed) 2-degree node in

each branch, between the fork and the merge nodes. Figure 11 shows examples

highlighted in yellow of this parallel structure. The result of the collapse is shown in

Fig. 12. The numbers inside the red and yellow circles refer to the number of col-

lapsed nodes.

We implemented an iterative algorithm that works in phases to benefit from both

sequential and parallel collapse strategies together. The algorithm is shown in Fig. 13.

Fig. 10 Sequential structures before automatic collapsing
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The algorithm receives the commit graph and the number of iterations as parame-

ters. Each iteration is executed in linear time complexity. The first phase collapses se-

quential structures (lines 2–11). The set of visited nodes is initialized as an empty set

in line 2. Each node is inspected in a loop (lines 3–11). If the node is still not visited,

the presence of a linear commit chain is tested in line 5 by examining predecessors and

successors of the node. All found linear commit chain elements are marked as visited

in line 6. If the linear commit chain has more than one node, it is collapsed (lines 7–9).

The second phase of the algorithm collapses parallel structures (lines 12–28). The

visited set is reinitialized as an empty set in line 12. All nodes of the graph are exam-

ined again in a loop (lines 13–28). If the element is still not visited, and we are in the

presence of a fork node (condition in line 14), the parallel structure generated by this

fork is analyzed. Both nodes afterward the fork are saved in variables a and b (lines

15–16). Initially, a group set is initialized containing a single element, the fork node,

in line 17. If the parallel structure resembles the 4-node group highlighted in yellow

in Fig. 11, then the group to be collapsed is populated in lines 18–19. On the other

hand, if the parallel structure resembles the 3-node group highlighted in yellow in

Fig. 11, then the group to be collapsed is populated in lines 20–21. The visited set is

updated in line 23. If the created node group has more than one node, it is collapsed

in lines 24–26.

The phases of the algorithm can be repeated, as collapsing parallel structures may

lead to new sequential structures. For instance, after applying parallel collapses over the

graph shown in Fig. 11, a new sequential structure is formed, as illustrated in Fig. 12.

The iteration would lead to a new collapse, and so on. As previously discussed, collapses

are performed just for commits of the same type (same color, discussed in section 3.2.4),

reducing the size of the graph without compromising the quality of the information

shown in the graph.

Fig. 11 Sequential structures after automatic collapsing and Parallel structures before automatic collapsing

Fig. 12 Parallel structures after automatic collapsing
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3.4 Behind the scenes

The process underneath DyeVC can be formally defined using Set Theory, in order to

describe how the data is structured and how DyeVC can play with this data to identify

the repositories that are ahead or behind of other repositories, showing the commits

that are missing or that belong to specific branches. We can define a project p as a

Fig. 13 Automatic collapsing algorithm
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tuple (R,C,Cdatabase), where R is the set of all cloned repositories of p monitored by

DyeVC, C is the set of all commits of p, and Cdatabase C is the set of commits of p in

the DyeVC database. Each repository ri ∈ R is a tuple Rpush
i ;Rpull

i ;Cprevious
i ;Ccurrent

i ;Bi

� �
,

where Rpush
i ⊆R is the set of repositories that ri is allowed to push to, Rpull

i ⊆R is the set

of repositories that ri is allowed to pull from, Cprevious
i ⊆C is the set of commits in ri in

the previous execution of DyeVC, Ccurrent
i ⊆C is the set of commits in ri in the current

execution of DyeVC, and Bi is the set of named branches of ri (Fig. 14a). It is worth

noting that, as C is the set of all commits of project p (i.e., the domain of commits

of p), any set of commits that belong to specific repositories ri ∈ R, such as Cprevious
i

and Ccurrent
i , should also belong to C.

Each commit cj ∈ C has a set of parent commits Cparent
j ⊂C . Commits are organized in

a directed acyclic graph (Fig. 14b), where the first commit of the project has no parent

(e.g., commit A in Fig. 14b), revision commits have only one parent (e.g., commit B in

Fig. 14b), and merge commits have two or more parents (e.g., commit I in Fig. 14b).

All reachable commits from cj form its history, including cj itself and the transitive

closure over its parents (e.g., {A, B, E, F, H, I, J} is the history of commit J in Fig. 14b).

The history of cj ∈ C is formally defined as:

Hj ¼ c∈Cjc ¼ cj∨∃ck : ck∈C
parent
j ∧c∈Hk

� �n o

At this point, it is important to notice that ordering is not important for accounting

which commits belong to each repository. The only situation in which ordering is im-

portant is when DyeVC plots the commit history graph. In this case, DyeVC accesses

the tip of the branches (fast operation, as each branch has a reference to its tip) and

traverses its transitive closure for plotting all previous commits (also fast, because each

commit has a reference to its parents). Note that the commit graph is a directed acyclic

graph (DAG), and this DAG is already represented in terms of pointers in C.

The sets of previous and current commits in a repository ri are updated periodically,

according to the monitoring frequency parameter defined by the DyeVC user. In the

first execution of DyeVC over ri, C
previous
i ¼ ∅ and Ccurrent

i is populated with all commits

obtained directly from Git. In the following executions, Cprevious
i is populated with the

commits in Ccurrent
i of the previous execution and Ccurrent

i is again populated with all

commits obtained directly from Git.

Each branch bk ∈ Bi is a tuple (name, ck), where name is the name of bk and ck ∈ C is

the tip (i.e., head) of bk. Consequently, Hk C contains all reachable commits of bk.

Fig. 14 UML class diagram representing the DyeVC formalization (a) and a directed acyclic graph of commits (b)
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With this foundation established, we can now formalize the process of updating com-

mits in the topology. For a local repository ri ∈ R being monitored by DyeVC, the rare

situations where a commit is deleted can be formally defined as:

Deli ¼ Cprevious
i ∖Ccurrent

i

Each locally deleted commit c ∈Deli should be removed from Cdatabase if no other re-

pository r ∈ R still contains this commit. Conversely, the new commits in ri ∈ R since

the previous monitoring cycle can be formally defined as:

Newi ¼ Ccurrent
i ∖Cprevious

i

Each locally added commit that is not already in the database (c ∈Newi \ C
database)

should be inserted in Cdatabase. This verification is necessary because some of the locally

added commits might have already been inserted into the database by another instance

of DyeVC.

Moreover, we can formalize the identification of repositories that contain a specific

commit and the repositories that are ahead or behind of a given repository. This in-

formation is necessary for building some of our visualizations. We formally define the

repositories that contain a commit cj ∈ Cdatabase as:

Rj ¼ ri∈Rjcj∈Ccurrent
i

� �

We formally define from which repositories ri is ahead or behind as:

Aheadi ¼ rj∈R
push
i j∃c∈Ccurrent

i : c∉Ccurrent
j

n o

Behindi ¼ rj∈R
pull
i j∃c∈Ccurrent

j : c∉Ccurrent
i

n o

Finally, we can also formalize the commits that are ahead or behind two specific re-

positories and the branches in which a commit belongs. This relationship among

commits and repositories/branches is also necessary for some of our visualizations.

Considering two repositories ri , rj ∈ R, we formally define the commits ahead or be-

hind ri regarding rj as:

Aheadi;j ¼ Ccurrent
i Ccurrent

j

Behindi;j ¼ Ccurrent
j Ccurrent

i

Considering a given repository ri, we formally define the branches that a commit cj ∈
C belongs to as:

Bi;j ¼ bk∈Bijcj∈Hk
� �

The computation of Rj, Aheadi and Behindi is not expensive. The set of repositories

R is usually small (one or few repositories per developer) and the complexity of the

operation for checking if a commit belongs to a specific repository is O(1) (i.e., the

complexity of checking if an element belongs to a hash-based set). So, we can say that

the complexity of obtaining the relationship of commits and repositories is O(n),

where n is the number of repositories in the project.

Cesario et al. Journal of Software Engineering Research and Development  (2017) 5:5 Page 16 of 34



4 Implementation
We implemented our approach as a Java application launched via Java Web Start Tech-

nology. It currently monitors Git repositories, as it is the most used DVCS nowadays

(Eclipse Foundation 2014). The source code and the link to download the tool via Java

Web Start can be found at https://github.com/gems-uff/dyevc. The tool gathers infor-

mation from repositories using JGit library,2 which allows using our approach without

having a Git client installed.

Gathered information is stored in a central document database running MongoDB.

We hosted our database on a free MongoDB instance provided by MongoLab. We did

not use MongoDB proprietary API, which would demand opening specific ports to

connect to MongoDB. Instead, we opted to use MongoLab’s RESTful (Representational

State Transfer) API. RESTful APIs (Fielding 2000) have the advantage of being available

using standard HTTP and HTTPS protocols. In this way, our approach can be used in

environments protected with firewalls without major problems. We implemented a

MongoLab Provider to use this RESTful API, which translates the application methods

into RESTful commands and vice-versa. It also serializes/deserializes the application

objects to/from JSON (JavaScript Object Notation) representations to be used through

the RESTful commands.

A central document database was chosen because this way DyeVC instances can eas-

ily send and gather information. MongoDB was the chosen database because it is free,

open-source and cross-platform. Besides, it has many features to improve performance

and availability, such as document indexing, replication, and load balancing. Further-

more, it provides RESTful APIs, as cited before.

We present the gathered information as a series of graphs by using the JUNG (Java

Universal Network/Graph) library,3 from which DyeVC inherits the ability to extend

existing layouts and filters. All graphs present similar behavior, allowing the window to

be zoomed in or out, whether the user wants to see details of a particular area or an

overview of the entire graph. By changing the window mode from transforming to pick-

ing, it is possible to select a group of nodes and collapse them into one node, or simply

drag them into new positions to have a better understanding of parts with too many

crossing lines.

5 Evaluation
To evaluate our approach, we first conducted a posthoc evaluation over the JQuery

project,4 an open-source project, aiming at checking if DyeVC can help answering

questions Q1-Q3. Next, we conducted an observational evaluation involving four par-

ticipants that used DyeVC. This evaluation also used the JQuery project. Finally, we

ran DyeVC over some open-source projects of different sizes and from different

sources, aiming at evaluating the scalability of our approach.

5.1 Posthoc evaluation

We conducted a posthoc evaluation using a real open source project to demonstrate

that our approach can help in answering questions Q1-Q3. The selected project,

JQuery, began in 2006 and had 6222 commits by the time of the evaluation. We re-

constructed the repository history, simulating the actions that occurred in the past.
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We do not replicate the repository history here, due to its size, but it is publicly available

on GitHub. Automatically generated comments helped us to depict specific flows. For ex-

ample, the comment “Merge branch ‘master’ of https://github.com/scottjehl/jquery into

scottjehl-master” tells us that there was a user named “scottjehl” and that the merge oper-

ation was done at a branch called “scottjehl-master”. Although one might perform a merge

manually and insert a different text in the comment, this did not compromise our analysis

because we had a focus on depicting some of the merge situations, and not all of them.

Due to the operating mode of Git, some details are missing, but these details do not

compromise our analysis. The first one is the moment when a clone arises or deceases.

This information does not exist anywhere in the repository. We inferred the creation of

clones by looking at the commit messages (a commit by developer X led to the creation

of a clone named X). Clones created at a given time stayed alive for the rest of the

analysis.

The second missing detail is that, although we had the commit dates and times in

the repository history, these dates and times were not guaranteed to be correct. This

occurs because DVCSs do not have a central clock. Each commit is registered with the

local time on the machine where the clone is located, which could lead to commits in

the history with a predecessor in the future, depending on when and where each com-

mit was performed. This missing detail is not relevant, because the order of commits is

not depicted using their times, but using the pointers that Git maintains from a commit

to its parents, as discussed in section 3.1. We can use these dates, but not as an au-

thoritative information.

Finally, if rebases were conducted at the repository, this posthoc evaluation had no

means to detect it, once a rebase consists on rewriting the local history for placing par-

allel commits on top of existing commits, consequently leaving no trail of the parallel

work. This missing detail is not important for our evaluation as well, because this oper-

ation is done solely with the purpose of cleaning the repository, leaving its history eas-

ier to understand. However, other posthoc studies that intend to use DyeVC for finding

all cases of parallel work should consider rebase as a potential threat to validity.

We chose a moment in time when three developers were involved, performing com-

mits and merging changes in the repository. We created three clones for these devel-

opers, named after their usernames: jeresig, adam, and aakosh. Figure 15 shows the

topology view on Sep 24 20105 when aakosh had 121 commits pending to be pushed to

the central repository (hereafter called central-repo). Figure 16 shows part of aakosh’s

commit history and how DyeVC represents commits pending to be pushed (green

nodes).

Later on, aakosh pushed his commits to central-repo. In the meantime, both adam

and jeresig committed some changes. Before they pushed their work to central-repo,

adam’s last commit was on Jun 21, 2010, and jeresig’s on Sep 27 2010. At this moment,

we registered them to be monitored by DyeVC. Figure 17 shows the topology view after

this registration on Sep 27 2010.6 Here, we can see that aakoch was synchronized with

central-repo, whereas adam and jeresig had pending actions.

At this point, we can revisit questions Q1 and Q2:

Q1: Which clones were created from a repository? DyeVC’s topology view (Fig. 17)

shows all the clones where it is running, and also discovers other clones connected to

them, even if it is not running there.
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Q2: What are the communication paths among different clones? DyeVC’s topology

view (Fig. 17) shows the dependencies between peers in the topology, as well as the

number of commits ahead or behind in each of these clones.

Adam had 121 commits to pull from central-repo, what is corroborated by the details

of his tracked branches (master branch in Fig. 18a). He also had a non-tracked commit

pending to be pushed. Non-tracked commits are not shown in the tracked branches

view, but we can see them in gray in the commit history views. Fig. 18b shows the col-

lapsed commit history for jeresig, where we can see adam’s non-tracked commit with

hash a2bd8.

The repository history leads us to think that jeresig is a core developer of this project

because he performed most of the merges to the master branch. Looking at Fig. 17, we

see that he had 26 commits pending to be pushed to central-repo. These 26 commits

can be seen at aakoch’s commit history (Fig. 19) as red commits since they could not

be pulled by aakoch until jeresig has pushed them to central-repo. There was also a

commit in central-repo pending to be pulled by jeresig. If we look back at Fig. 18b, we

see that the only yellow commit is a0887, made by aakoch. This tells us that jeresig

pulled changes from central-repo just before aakoch pushed commit a0887. If we look

at Fig. 20, we see that all pending commits (those that were pending to be pushed and

pulled) are related to the same branch (master). This tells us that, if jeresig wanted to

push these commits to central-repo, he would have to perform a pull operation before.

This analysis helps us revisit and answer Q3:

Fig. 15 First monitored repository in Topology view (Sep 24 2010)

Fig. 16 aakoch’s commit history showing commits pending to be pushed
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Q3: Which changes are under work in parallel (in different clones or different

branches) and which of them are available to be incorporated into others’ clones? New

commits in tracked branches of peers can be easily found by looking at Level 3 infor-

mation (tracked branches, shown in Fig. 18a and Fig. 20). This view shows to which

branch these commits are related and how many new commits exist. If we want to look

at each commit individually, we can look at Level 4 information (commit history,

shown in Fig. 16 and Fig. 19) and notice the yellow nodes. Additionally, Level 4 infor-

mation can be used to find new commits in repositories that are not peers (red nodes),

or new commits in non-tracked branches (gray nodes).

Fig. 17 Three monitored repositories in Topology view (Sep 27 2010)

Fig. 18 Adam’s tracked branches (a) and collapsed commit history for repository jeresig (b)
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5.2 Observational evaluation

We conducted an observational evaluation over the same project used in the posthoc

evaluation (JQuery) to assess the capability of the visualizations provided by DyeVC in

supporting developers and repository administrators. The evaluation was conducted

with four volunteers, which had previous experience with DVCS. They were graduate

students from the Software Engineering research area at Universidade Federal Fluminense

(UFF). Four sessions were conducted, each of them with one subject.

The goal of this observational evaluation was to analyze when DyeVC helps on un-

derstanding the project history better than existing tools. The evaluation was divided

into two phases (without and with DyeVC), each one with two scenarios, where the

subject had to answer questions related to usual work with DVCS. In Scenario 1, the

subject played the developer role, working in a clone named aakoch. In Scenario 2, the

subject played the repository administrator role. The following questions were posed:

Q1.1 What is the status of your clone, compared to the central repository? Q1.2 Who

else is working in the JQuery project (other clones)? Q1.3 Which files were modified in

commit 5d454? Q2.1 What are the existing clones for JQuery project? Q2.2 Which

Fig. 19 Aakoch’s commit history

Fig. 20 Jeresig’s tracked branches
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clones are synchronized with the central repository? Q2.3 How many commits in

tracked branches are pending to be sent to the central repository? Q2.4 Is there any

commit in non-tracked branches? Where?

In Phase 1 (without DyeVC), DyeVC was not in place, and the subject answered the

questions using any desired DVCS client among the ones available in the computer

used in the evaluation: gitk, Tortoise Git, Git Bash, and SourceTree. Participants were

allowed to access the Internet and search any other procedure or tool that could help

in answering the questions. After that, the subject watched a 10-min video presenting

DyeVC and started Phase 2 (with DyeVC), which consisted of answering the same ques-

tions with the help of DyeVC. The possible answers in Phase 2 were either “keep the

answer of Phase 1”, meaning that using DyeVC did not change the subject perception,

or a different answer, otherwise.

Table 3 presents the time spent by each subject to answer each question in both sce-

narios and both phases. The values include the time to understand the question, inves-

tigate repositories with available tools, look for the answer, and write down the answers

in the form. However, the values do not include the time spent filling the consent form

and the characterization form, watching the video about DyeVC, and filling the exit

questionnaire. It is possible to notice, by looking at Table 3, that all subjects took less

time to complete Scenario 1 (developer role) in Phase 2 (with DyeVC). For Scenario 2

(admin role), none of the subjects managed to answer the questions in Phase 1 (without

using DyeVC). For this reason, times shown in Phase 1 are the times spent by the sub-

jects until they gave up finding an answer.

In Phase 1, each subject used different ways to look for the answers. In Phase 2, sub-

jects correctly used DyeVC to find the answers. Question 1.1 was answered using

DyeVC Level 3 visualization (Tracked branches). Question 1.3 was answered using

Level 4 visualization (Commit History). Finally, questions 1.2 and 2.1 through 2.4 were

answered using Level 2 visualization (Topology). Almost all subjects answered all the

questions similarly, except for subject P4 in question 1.2 from Phase 1.

Subject P1 answered questions 1.1 and 1.3 in Phase 1 using the command line inter-

face. To answer question 1.1, she looked at the log for both local and remote repositor-

ies, counted down how many hashes there were in each log and subtracted these

numbers to find the answer. Question 1.3 was answered with git show command, which

shows, for each affected file in the commit, what has changed. The answer to this ques-

tion was easy to find because only one file was affected, but if many files had been af-

fected, the subject would have trouble finding all affected files using this procedure. For

questions 1.2 and 2.1 through 2.4, the subject tried to find a way to discover related

clones by searching the Internet. After a few searches with no promising results, the

Table 3 Time spent (in minutes) to answer each question

Subject Scenario 1 Scenario 2

Phase 1 Phase 2 Phase 1 Phase 2

P1 14 5 10 6

P2 13 6 4 5

P3 3 2 2 4

P4 10 2 6 10
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subject gave up, and her answer was “I don’t know”. Once there was no answer to

question 2.1, next questions in Scenario 2 could not be answered as well.

Subject P2 answered question 1.1 by issuing the git status command. To answer

question 1.3, she used Tortoise Git and walked through the commit tree until finding

the desired commit. For questions 1.2 and 2.1 through 2.4, the subject answered that

she did not know a way to find an answer. When answering question 2.1, the subject

commented that, as a repository manager, she should know which were the existing

clones and their relationships, but she did not have any resources available to accom-

plish that.

Subject P3 answered question 1.1 by issuing a git status command (same as subject

P2). To answer question 1.3, she used Tortoise Git but found the desired commit using

the search feature of the tool, instead of walking through the commit tree. For ques-

tions 1.2 and 2.1 through 2.4, the subject answered that it was not possible to find an

answer.

Subject P4 answered questions 1.1 and 1.3 using SourceTree. This subject answered

question 1.2 differently from the others. She wrote down each different author of each

commit as if it was a different clone. Although this is a valid interpretation, it may hap-

pen that authors commit changes in the same clone, and this would lead to a wrong

answer for this question. For questions 2.1 through 2.4, the subject answered that it

was not possible to find an answer.

The overall results of this evaluation were positive. In Phase 1 (without DyeVC), sub-

jects were able to correctly answer questions Q1.1 and Q1.3 whether using DyeVC or

not. Also, further questions were answered correctly only by using DyeVC.

The subjects also answered an exit questionnaire7 (Cesario 2015). All subjects found

easy to interact with DyeVC, to identify related repositories, and to use the operations

available. They consensually elected the topology visualization as the most helpful

visualization in DyeVC. Also, by using Product Reaction Cards, three out of the four

subjects stated that DyeVC is helpful and easy to use. Product Reaction Cards (Benedek

and Miner 2003) have a large set of words, both positive and negative, used to check

the emotional response of a product or design.

5.3 Performance evaluation

We measured the time spent to perform the most common DyeVC operations to evalu-

ate the scalability of our approach. We used projects of different sizes and hosted in

different Git servers. Table 4 shows the monitored projects (name and hosting service),

the repository metrics (the number of commits, disk usage, and the number of files)

and the time spent to run some background and foreground operations in DyeVC. All

measurements were taken in the same period of the day and from the same machine, a

Core Duo CPU at 2.53 GHz, with 4GB RAM running Windows 8.1 Professional 64

bits, connected to the internet at 35 Mbit/s. Each operation was performed once for

each repository, except for the repository registration, which was executed twice

(“Insert 1st” and “Insert 2nd”), as detailed below.

We measured the main operations of our approach: “Insert 1st”, invoked when the

user registers the first repository of a given system to be monitored; “Insert 2nd”, in-

voked when the user registers a repository to be monitored in a system that already has
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registered repositories; “Commit History”, invoked when the user requests to see the

commit history of a given repository; “Topology”, invoked when the user wants to see

the topology of repositories of a given system; “Check Branches”, invoked periodically

to check all monitored repositories, searching for ahead or behind commits; and

“Update Topology”, invoked periodically to update topology information in the cen-

tral database. This last operation updates the existing repositories, their peers, and

the existing commits, marking in which repositories each commit is found.

It may be noted that the “Commit History” operation has no values for the last three

repositories. This occurs because, as the number of commits increases, more memory

is used to calculate the commit history graph. The current algorithm has an O(x2) space

complexity (being x the number of commits). The computer used in this evaluation

was configured with a 2 GB maximum Java Heap Size, which let us analyze repositories

with up to 6 K commits. This limitation occurs mainly because of JUNG.

Table 5 shows the correlation between each repository size metric and the DyeVC op-

erations’ execution time, according to the Spearman’s rank correlation coefficient

(Spearman 1904). This correlation coefficient measures the monotonic relation between

two variables and ranges from −1 to 1. Values of 1 or −1 mean that each variable is a

perfect (increasing or decreasing) monotone function of the other. A value of 0 means

that there is no correlation between the variables.

Looking at Table 5, it is possible to notice that, except for the “Check Branches” oper-

ation, all other operation times are strongly correlated to the number of commits and re-

pository size. This is due to the nature of these operations, which update or show

information about all commits in the repository. On the other hand, except for the

“Commit History” operation, all other operation times correlate with the number of

files. This is also expected due to the nature of “Commit History” operation, which

does not dig into the changed files.

However, it is possible to find some more tricky situations, which demonstrate that

all three variables (number of commits, size, and number of files) should be taken into

consideration when analyzing the performance of each DyeVC operation. One such

situation is the one that occurs with Git Extensions, which has significantly fewer com-

mits than repositories such as Git, but presents times for “Topology”, “Insert 1st” and

“Insert 2nd” operations in the same level of magnitude. This is because these opera-

tions are very I/O intensive. When a repository is registered to be monitored, DyeVC

creates the working copy for that repository, as discussed in Section 3.1. Larger reposi-

tories will then take more time to perform these actions. Note in Table 4 that the size

Table 5 Spearman’s rank correlation coefficient between repository size metrics and DyeVC
operations time

Operation Number commits Size Number files

Insert 1st 0.85 0.83 0.76

Insert 2nd 0.85 0.83 0.76

Check Branches 0.07 −0.05 0.72

Update Topology 1.00 0.88 0.52

CommitHistory 1.00 0.96 −0.04

Topology 1.00 0.88 0.52
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of Git Extensions is notably bigger than any other of the repositories used in the

evaluation.

Finally, it is worth mentioning that, even with all measurements taken in the same

period of the day and from the same machine, short network latencies and processor

usage peaks may have occurred, which affect the results.

All in all, although we cannot affirm that DyeVC is scalable to all possible repositor-

ies, our evaluation helped us to identify the scalability limits of DyeVC. Without auto-

matic collapses, DyeVC was able to process repositories with around 6500 commits. To

put this number in perspective, 99% of 50,012 projects analyzed by Rainer and Gale

(2005) had less than 3137 commits. Moreover, Kalliamvakou et al. (2014) indicate that

90% of the projects in GitHub have less than 50 commits. This shows that DyeVC is

scalable for a large number of projects, although we still see space for improvements,

as presented in the following section.

5.4 Automatic collapsing evaluation

We also studied the impact of the automatic collapsing algorithm in the “Commit

History” operation performance. This evaluation was performed at a later time in

comparison with the results obtained in the previous section. Consequently, the re-

pository metrics are slightly different. The repository size, number of commits, and

number of files are higher, as shown in Table 6.

The design of the evaluation was as follows. First, the “Commit History” operation

was performed without using the automatic collapsing. Afterward, sequential and paral-

lel collapse strategies described in Section 3.2.5 were used to simplify the structure of

the commit graph, collapsing the corresponding node structures. The execution of the

sequential strategy was the first stage, and the parallel strategy was the second stage of

each iteration of the automatic collapsing algorithm. Moreover, after each stage, run-

ning time and memory consumption were measured. The evaluation was executed in a

Core i7 CPU at 2.00 GHz, with 16GB of RAM running Windows 7 64 bits.

We evaluated the capability of the automatic collapsing algorithm to reduce the num-

ber of nodes in the commit graph without compromising the quality of the information

Table 6 Characterization of the repositories used in the evaluation of the automatic collapsing
algorithm

Repository Characteristics

Size (MB) Number files Number commits

DyeVC 3.2 745 228

SAPOS 18.8 668 1245

JGit 39.3 1902 4741

EGit 63.6 1779 4983

jQuery 29.2 296 7291

Git Extensions 94.9 1710 8146

Tortoise Git 168 3518 8442

Drupal 176 10,285 38,047

ExpressoLivre 366 21,592 27,079

Git 104 3026 46,794
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shown in the graph (collapses are performed just for commits of the same type, i.e.,

same color, as discussed in section 3.2.4).

Table 7 shows the reduction achieved after two iterations of the algorithm. The num-

ber of iterations was set to two due to empirical observation that there was almost no

reduction after a second iteration. With two iterations, the algorithm can reduce the

number of nodes by an average of 73% compared to the original graph. In some cases,

such as Drupal or ExpressoLivre, which are repositories that we could not analyze be-

fore, the nodes reduction surpassed 90%, allowing us to visualize their commit history

graph after the automatic collapsing process.

Furthermore, we analyzed the running time and memory consumption of the “Com-

mit History” operation. In particular, data collected for repositories that were visualized

before and after collapse are represented in Fig. 21 and Fig. 22 using boxplots. The fig-

ures show that the more collapse stages we execute, the less time is needed to represent

the commit history, and the less memory is consumed for this purpose. This can be ex-

plained by the fact that the automatic collapsing algorithm is linear and very fast com-

paring to the subsequent visualization process, and speeds up the presentation of the

commit graph. Using this method, significantly lower running times and memory con-

sumption values are obtained, compared with values before the automatic collapsing. It

was possible to visualize repositories with tens of thousands of nodes (Drupal and

ExpressoLivre), which could not be represented before, without applying automatic col-

lapsing process.

Git was the only repository that was not represented visually, even after the auto-

matic collapsing. The main contributing reasons for this fact are its high number of

nodes, its low nodes reduction rates, and its inherent complexity.

In the case of Drupal and ExpressoLivre repositories, high nodes reduction rates

seem to be influenced by a somewhat more linear structure of the commit graph. There

are long chains of 2-degree nodes, corresponding to sequential work stages performed

by one contributor. Instead, Git repository showed resistant to collapse. To explain

what we mean by “intrinsic complexity” of Git, we identified some structures that pre-

vent commit graph’s reduction. An example is shown in Fig. 23. Given the current def-

inition of the collapse operations, the whole structure cannot be reduced because the

Table 7 Reduction of the number of nodes by the automatic collapsing algorithm

Repository Before
Collapse

Iteration 1 Iteration 2

1st stage 2nd stage Reduction (%) 1st stage 2nd stage Reduction (%)

DyeVC 228 73 47 67.98 32 32 85.96

SAPOS 1245 456 404 63.37 378 375 69.88

JGit 4741 3015 2751 36.41 2635 2635 44.42

EGit 4983 3007 2564 39.65 2347 2329 53.26

jQuery 7291 867 709 88.11 609 603 91.73

Git Extensions 8146 4083 3833 49.88 3702 3684 54.78

Tortoise Git 8442 1466 945 82.63 497 482 94.29

Drupal 38,047 903 697 97.63 563 557 98.54

ExpressoLivre 27,079 3008 2792 88.89 2669 2669 90.14

Git 46,794 24,459 24,216 47.73 24,094 24,094 48.51

Average 66.23 73.15
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branches are not sequential chains of commits. Additional automatic collapsing heuris-

tics that consider the possible dependencies between different branches seem necessary

to accommodate these cases.

5.5 Threats to validity

While we have taken care to minimize threats to the validity of the evaluations, some

factors can influence the results. The usage of a posthoc evaluation to assess a real pro-

ject may not reflect the exact sequence of events that occurred, although the outcome

did not change. For example, when we say that aakosh, at some moment, had 121 com-

mits pending to be pushed to the central repository, these commits could have been

pushed at once or by a series of smaller pushes. Moreover, only one project was se-

lected to perform the analysis, what imposes limitations from a generalization
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Fig. 21 Boxplot showing the running time of “Commit History” operation depending on the number of
executed collapse stages
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Fig. 22 Boxplot showing the memory consumption of “Commit History” operation depending on the
number of executed collapse stages

Cesario et al. Journal of Software Engineering Research and Development  (2017) 5:5 Page 28 of 34



standpoint. Furthermore, we used an open source project to perform the posthoc evalu-

ation, but the modus operandi of peers may be different in academic or industrial

contexts.

In the observation evaluation, the selection of subjects was made by asking for volun-

teers from students in the same research group of the author. This was necessary due

to time and people restrictions. Therefore, this group might not be representative and

can be biased. Moreover, there were few subjects in this evaluation. Thus, the results

may have been influenced by the size and by specific characteristics of the group. Fur-

thermore, subjects performed tasks involving DyeVC right after knowing the approach,

giving no time to subjects to assimilate the tool. Results may have been influenced by

this lack of time to mature the necessary knowledge to use the approach efficiently.

Also, subjects could have answered questions in Phase 2 faster than in Phase 1 due to

their learning regarding the scenario.

Finally, there is a risk regarding the instrumentation used to measure the response

times during the performance evaluation. As we used a database stored over the Inter-

net, connectivity issues and network instability may have affected the response times.

6 Related work
According to Diehl (2007), software visualization can be separated into three aspects:

structure, behavior, and evolution. DyeVC relates primarily to the evolution aspect,

more specifically with studies that aim at improving the awareness of developers that

work with distributed software development. Steinmacher et al. (2012) present a sys-

tematic review of awareness studies, which we used to perform a forward and backward

snowballing. The approaches obtained after the snowballing were divided into four

groups. The first group (“Commit notification”) includes approaches that notify commit

activities. The second group (“Awareness of concurrent changes”) comprises approaches

that not only give the developer awareness of concurrent changes but also inform them

about conflicts. The third group (“Repository visualization”) includes approaches that

visualize repository information. Finally, the fourth group (“DVCS clients”) contains

commercial and open source DVCS clients.

The first group contains tools such as SVNNotifier,8 SCMNotifier,9 Commit Moni-

tor,10 SVN Radar,11 Hg Commit Monitor12 and Elvin (Fitzpatrick et al. 2006). The pri-

mary focus of these approaches is on increasing the developer’s perception of

concurrent work by showing notifications whenever other developers perform actions.

The approaches in this group do not identify related repositories and do not provide in-

formation on different levels of details, such as status, branches, and commits. DyeVC

provides these different levels of details, as shown in Section 3.2.

Fig. 23 Example of a structure that prevents automatic collapsing
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The second group comprises approaches that give the developer awareness of concur-

rent changes, sometimes informing them if conflicts are likely to occur. This group in-

cludes tools such as Palantir (Sarma and van der Hoek 2002), CollabVS (Dewan and

Hegde 2007), Crystal (Brun et al. 2011), Lighthouse (da Silva et al. 2006), FASTDash

(Biehl et al. 2007), and WeCode (Guimarães and Silva 2012). Among these, only Crystal

and FASTDash work with DVCSs. Crystal detects physical, syntactic, and semantic con-

flicts in Mercurial and Git repositories (provided that the user informs the compiling and

testing commands), but does not precisely deal with repositories that pull updates from

more than one peer. FASTDash does not detect conflicts directly, as the previously cited

studies, but provides awareness of potential conflicts, such as two programmers editing

the same region of the same source file in repositories stored in Microsoft Team Founda-

tion Server. Although DyeVC primary focus is not to detect conflicts, it can be combined

with such approaches to allow conflicts and metrics analysis over DVCS.

The third group includes approaches that visualize repository information. Each ap-

proach has a different visualization focus, such as program structures (Collberg et al.

2003), classes (Lanza 2001), lines (Voinea et al. 2005), authors (Gilbert and Karahalios

2006), and branch history (Elsen 2013)13,.14 The latter have the same focus of DyeVC’s

Commit History visualization, but dealing only with the local repository, not showing,

for example, where a given commit can be found in related repositories.

Finally, the fourth group includes commercial/open source DVCS clients, which al-

lows one to execute operations on repositories/clones (push, pull, checkout, commit,

etc.) and also visualizing the repository history, i.e., the commits, along with their

attributes (comment, date, affected files, committer, etc.). For example, some Git cli-

ents include gitk,15Tortoise Git,16 EGit for Eclipse,17 and SourceTree.18 The data about

commits shown by these tools varies, but usually involves the committer name, mes-

sage, date, affected files, and a visual representation of the history. These tools,

though, have no knowledge regarding peers. For this reason, they do not present com-

mits from other clones and do not include information about where each commit can

be found. It is worth noticing that we could not find any similar work showing the de-

pendencies among several clones of a DVCS.

Table 8 compares DyeVC with each group used to classify related work presented in

this section, according to the following features: notifications (Which types of notifica-

tion the approach supports?); CVCS (Does the approach support CVCS?); DVCS (Does

the approach support DVCS?); related repositories (Does the approach identifies related

repositories?); levels of detail (Does the approach present information in different levels

of detail?); multiple peers (Does the approach support repositories with multiple peers,

i.e., multiple pull / push destinations?); commits in peer nodes (Does the approach de-

tects commits in peer nodes, i.e., nodes that have a direct communication path to each

other?); commits in non-peer nodes (Does the approach detect commits in non-peer

nodes, i.e., nodes that do not have a direct communication path to each other?); mul-

tiple branches (Does the approach support multiple branches in DVCS?); topology

(Does the approach supply any topology visualization that shows dependencies among

repositories?); and, finally, commit History (Does the approach allow visualizing only a

partial commit history, showing only local commits, or does it allow visualizing a full

commit history, including commits in other repositories that were not synchronized

yet, or that are in non-tracked branches?).
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All in all, among related work, Crystal is the most similar to DyeVC and deserves a

deeper comparison. Both approaches work with DVCSs (besides Git, Crystal also sup-

ports Mercurial) and use working copies to perform analyses, but there are major dif-

ferences between them. Crystal’s goal is to identify conflicts among pairs of

repositories, whereas DyeVC’s goal is to provide awareness regarding the existing peers

and their synchronization, at different levels. To identify repositories, Crystal demands

the user to point out all repositories they want to compare, whereas DyeVC requires

that some of the repositories be registered and it automatically looks at configuration

files to discover all the repositories that one pushes to or pulls from. The repository

comparison in Crystal is from one repository against all the other together, whereas

DyeVC analyzes each repository against each other, providing a pairwise view and a

combined view of the history. Finally, the allowed actions in Crystal include the ability

to push, pull, compile, and test a repository, whereas DyeVC allows one to visualize

branches status, topology, and history. In this way, we see potential to have both tools

working together to provide awareness and safety better when working with DVCS.

6.1 Trace reduction methods and automatic collapsing

Trace reduction is the compression of traces in some manner (either lossless or lossy)

so that they can be stored and processed efficiently (Kaplan et al. 1999; Mohror and

Karavanic 2009). The process of collapsing the commit graph can be seen as a particu-

lar case of trace reduction.

Program analysis and software visualization communities have already proposed trace

reduction methods (Kuhn and Greevy 2006; Cornelissen et al. 2008; Noda et al. 2012;

Jayaraman et al. 2017). In (Kuhn and Greevy 2006) and (Cornelissen et al. 2008), a trace

Table 8 Comparing DyeVC features with related work

Feature Commit
notification

Awareness of concurrent
changes

Repository
visualization

DVCS
clients

DyeVC

Notifications New commits Conflicts No No Status change
against peers

CVCS Yes Yes Yes No No

DVCS Somea Someb Somec Yes Yes

Related repositories No No No No Yes

Levels of detail No No No No Yes

Multiple peers No No No No Yes

Commits in peer nodes No Somed Somee No Yes

Commits in non-peer
nodes

No No No No Yes

Multiple branches No No No Yes Yes

Topology No No No No Yes

Commit history No No Somef / Partialg Partialg Full
aExceptions are SCM Notifier and Hg Commit Monitor
bException is Crystal
cExceptions are VisGi, Visugit, and GitHub’s Network Graph
dException is Lighthouse
eException is GitHub’s Network Graph
fVisugit and GitHub’s Network Graph
gApproaches allow visualizing only local commits. Commits in other repositories that were not synchronized yet, or that
are in non-tracked branches, are not shown
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reduction technique is mentioned, which assigns consecutive events that have equal or

increasing nesting levels to the same group. Particularly, method call sequences are

summarized in one method-call chain (Kuhn and Greevy 2006).

Also, compact sequence diagram generation is studied in (Noda et al. 2012) and

(Jayaraman et al. 2017). To have a better sequence diagram representation of the pro-

gram execution, Noda’s method (Noda et al. 2012) abstracts the history of object

interaction by grouping strongly correlated objects. These objects are compacted,

achieving an appropriate reduction in the number of objects appearing in the se-

quence diagram, which results in compression of this diagram along the horizontal

axis. Also, (Jayaraman et al. 2017) presents vertical and horizontal sequence diagram

compaction techniques. For this end, one-to-one correspondence between call trees

and sequence diagrams is used. A maximally compacted tree is obtained, generating

smaller and more useful diagrams.

These approaches work with method-call sequences and sequence diagrams, both

having a tree structure. Unlike these works, when applying automatic collapsing, we

deal with a commit graph, which is a DAG, with a high number of commit nodes. The

structure of a graph is more rich and complex than the structure of a tree.

7 Conclusion
In this paper, we presented DyeVC, an approach that identifies the status of a reposi-

tory in contrast with its peers, which are dynamically found in an unobtrusive way. We

have evaluated DyeVC on a real project, showing that it can be used to answer ques-

tions that arise when working with DVCSs. The observational evaluation results were

promising: DyeVC was considered easy to use and fast for most repository history ex-

ploration operations while providing the expected answers. This provides initial evi-

dence that DyeVC could effectively help developers and repository administrators by

saving time and by supporting answering questions regarding DVCS usage that could

not be answered before. We have also evaluated DyeVC’s performance over repositories

of different sizes, and we found out that the time and space complexity of the approach

are directly related to the number of commits in the repository, especially in the view

levels with finer granularity.

Some future research topics arise from this work. DyeVC could gather additional

metadata, for example, to create a visualization showing conflicts that would happen

when merging two or more branches. This data could also be used to mine information

in the repositories, revealing usage patterns or presenting metrics. Moreover, the

formalization of DyeVC mechanics could be used to prove correctness properties of

our implementation. Finally, some optimization should be done to allow DyeVC work

with larger repositories with more complex branch structures.

8 Endnotes
1Dye is commonly used in cells to observe the cell division process. As an analogy,

DyeVC allows developers to observe how a Version Control repository evolved over

time.
2http://www.eclipse.org/jgit/
3http://jung.sourceforge.net/
4https://github.com/jquery/jquery
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5Considering the scenario just after commit a088751a1b2c5761dab8de9d7da8602def

b45b11.
6Considering the scenario just after commit ea6a4813b7d996f6f7af0b61a5f1bf4ab80b

291d.
7The exit questionnaire can be found in Appendix G of the referenced Master’s

Thesis, which can be found at https://github.com/gems-uff/dyevc/blob/master/docs/

dissertation.pdf.
8http://svnnotifier.tigris.org/ (2012)
9https://github.com/pocorall/scm-notifier (2012)
10http://tools.tortoisesvn.net/CommitMonitor.html (2013)
11http://code.google.com/p/svnradar/ (2011)
12https://bitbucket.org/dun3/hgcommitmonitor (2009)
13Visugit: https://github.com/hozumi/visugit
14GitHub’s Network Graph: https://github.com/blog/39-say-hello-to-the-network-

graph-visualizer
15http://git-scm.com/docs/gitk
16https://tortoisegit.org/
17http://eclipse.org/egit/
18http://www.sourcetreeapp.com/
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1. Introduction 

The problem of 2D and 3D object representation is present in 

different areas of research as computer graphics and computer vi- 

sion. Modelling, 3D reconstruction and recognition tasks depend 

totally on a good representation of the observed objects. 

Unfortunately, it is usual to receive noised, discrete or in- 

complete real world data. The models are obtained from images, 

videos, 3D scanners or another capture devices [11] . The nature of 

this devices allow to obtain a finite and discrete amount of data 

from the original object, commonly as a point set. The process of 

finding a model that fits better this observation set is a goal of 

many investigations in the last years [5,15,21,35] . 

Implicit polynomials (from now on IPs) are proved to be a pow- 

erful tool modelling real objects compared to other representa- 

tion types, like explicit or parametric [34] , with surprising variety 

of forms ( Fig. 1 , “Cherries” and “The pear”) and good properties 

where required: 

• A compact surface representation, i.e. concise, efficient descrip- 

tion of the object, using few parameters [8] 
• Algebraic and geometric invariants, for instance, area and vol- 

ume [30] 
• A fast way for classifying points as internal or external to the 

object 

∗ Corresponding author. 

E-mail addresses: rinterian@ic.uff.br , rubenus@yandex.ru (R. Interian). 

• Robust algorithms in presence of noise and occlusion [34] 

1.1. Implicit polynomials 

Implicit curve or surface is a zero set of a polynomial function 

f . For instance, in the case of a surface, the function is expressed 

as: 

f a (x, y, z) = 

∑ 

0 ≤i + j+ k ≤n 

a i jk x 
i y j z k 

= ( 1 x y z x 2 . . . ) ︸ ︷︷ ︸ 
m (x ) T 

( a 0 0 0 a 100 a 010 a 001 a 200 . . . ) T ︸ ︷︷ ︸ 
a 

= m (x ) T a 

IP is being seen as product between a monomial vector m ( x ) T 

that only depends on the point ( x , y , z ), and the parameters vector 

a . 

Formally, an implicit polynomial surface is the solution set of 

the following equation: 

m (x ) T a = 0 (1) 

where x is the variable. This solution set is denoted as Z ( f a ). In 

both cases - 2D and 3D - usually implicit polynomial term is used. 

The main contribution of this research is to develop an IP fitting 

algorithm capable of discovering an optimal polynomial degree to be 

used during the fitting process. 

This paper presents two contributions. A new distance mea- 

sure between X and the implicit polynomial is defined, and an 

http://dx.doi.org/10.1016/j.cag.2017.05.002 

0097-8493/© 2017 Elsevier Ltd. All rights reserved. 
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Fig. 1. Implicit Polynomials. (a) “The pear”, 6 th degree IP (b) “The cherries”. Taken 

from [24] . 

algorithm able to find the optimal degree of the polynomial 

needed for the representation of the data set is proposed. The 

goal is to find an implicit polynomial that produces a compact and 

smooth representation of the point set with the lowest degree as 

possible, and at the same time minimizes the fitting error. The co- 

efficients of the implicit polynomial can be used then as a descrip- 

tor for other tasks, for instance, shape analysis and recognition [7] , 

in which complex and extensive representations are not useful. 

1.2. Structure of present work 

This work is organized as following. In the Section 2 , main IP 

fitting methods are presented. In the Section 3 , a novel distance 

measure between the point set and an IP is introduced. In the 

Section 4 , fitting algorithm that uses the new measure in order to 

find IPs with certain desired properties, without previous knowl- 

edge of the best degree to be used in the fitting process, is pro- 

posed. In the Section 5 , experimental results obtained from the 

proposed method are analyzed. 

2. IP fitting methods 

Fitting methods are classified as linear or nonlinear according 

to how the distance dist ( x i , Z ( f a )) between a point x i and the zero 

set Z ( f a ) is defined. 

2.1. Nonlinear methods 

There is no simple way to find analytically the distance from 

any point to Z ( f a ). Approximate iterative methods are used instead 

[16,20,33] . 

The main idea of the nonlinear IP fitting methods is to use the 

Taubin first order approximation to the exact point-curve or point- 

surface distance [28,29,31] : 

dist(x , Z( f a )) ≈ | f (x ) | 
‖∇ f (x ) ‖ 

This kind of distance is usually named geometric , because it 

uses information from the partial derivatives of f a . 

2.2. Linear methods 

The linear methods have been used most [6,36] , because they 

do not require iterative approximations and are faster than nonlin- 

ear ones. The most important linear fitting algorithms are classic 

linear fitting and 3L algorithm. 

The linear methods use the algebraic distance: 

dist(x , Z( f a )) ≈ f a (x ) 

The following assumptions are made. By continuity, the value of 

f a is close to zero near Z ( f a ). It is also assumed that far from Z ( f a ), 

f a is growing. 

In this case, the fitting problem is solved as a overdetermined 

system M n ×k a k ×1 = b n ×1 where M is the monomial matrix, which 

rows are the n monomial vectors of each point in the set X , and b 

is ( initially ) a zero vector. 

The least squares solution of this overdetermined system 

[10] is: 

a = (M 

T M ) −1 M 

T b = M 

+ b 

where M 

+ is the Moore–Penrose pseudoinverse [3] . 

However, the linear algorithms suffer instability, because small 

changes in the observations can lead to completely different solu- 

tions [6] . Furthermore, since b = 0 , there is a trivial solution a = 0 

that should be avoid. Thereby this classical linear method is im- 

proved by other linear algorithms, like the 3L algorithm [6] . The 

stability of fitting is increased, and the vector b is substituted by 

another nonzero vector. 

3. New distance measure to an IP 

In order to obtain a good fitting algorithm, a new distance mea- 

sure between a point and an IP is defined. In this regard, firstly two 

specific measures (called dissimilarity and smoothness measures) 

are deduced, with the aim of evaluating the “separation” and the 

“proximity” of the point set to Z ( f a ). 

3.1. Dissimilarity measure 

The dissimilarity measure evaluates quantitatively the real dis- 

tance between the IP and the points. 

First order Taubin approximation [31] is chosen for providing 

fast and analytically substantiated approximation to the point-IP 

distance: 

dissim (x , Z( f a )) = 

| f (x ) | 
‖∇ f (x ) ‖ 

Therefore, for calculating the dissimilarity between a point set 

X and the IP, we propose to use the following function by averag- 

ing the Taubin approximations in each point: 

dissim (X , Z( f a )) = 

1 

N 

N ∑ 

i =1 

| f (x i ) | 
‖∇ f (x i ) ‖ 

(2) 

This function is called hereinafter dissimilarity measure between 

X and Z ( f a ). 

3.2. Smoothness measure 

In some of the latest works [21,27,34,35] , the idea of taking con- 

trol of some geometric characteristics of the IPs over the course of 

the fitting algorithms, is proposed. These characteristics could be: 

gradient vector norm near the point set, gradient direction rela- 

tive to some estimated tangent vector in some points, as well as 

some others. All of them attempt to avoid the effects of overfit- 

ting, promoting those polynomials which have desired geometric 

properties. 

For those reasons, “smoothness” measure is also used in order 

to provide a geometric proximity criterion between the IP and the 

dataset [34] . This measure evaluates qualitatively any IP as an ap- 

proximation to the given set of points. The advantage of using this 

quality measure consists in obtain only IPs with certain desired 

topological properties, as shown below. 
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Fig. 2. Smoothness measure. If the directions of the estimated normal vector and 

the gradient vector are very different, the quality of the fitting is poor. 

Given a dataset X , an IP is smooth in x i ∈ X if: 

∇ f (x i ) 

‖∇ f (x i ) ‖ 

N i ≈ 1 

where N i is an estimated normalized normal vector in x i . It can be 

obtained from physical models or estimated from X . 

Care should be taken when generating N i vectors in a noisy 

point cloud, since inaccurate generation of these vectors can lead 

to poor fitting results. There are several algorithms addressing this 

problem [12,22,23] . In particular, we refer to Sahin method [22,23] , 

in which this issue is tackled. In this work, the existence of a set 

of N i vectors computed by any efficient method is assumed. 

We use the following expression [35] as the smoothness measure 

of an IP regarding the point set X : 

smooth (X , Z( f a )) = 

1 

N 

N ∑ 

i =1 

∇ f (x i ) 

‖∇ f (x i ) ‖ 

N i (3) 

We note that this function is bounded between -1 and 1 due to 

the normalization of both, gradient and normal vectors. Neverthe- 

less, in practice, if the directions of the estimated normal vectors 

are determined accurately, the smoothness measure should never 

be close to −1. We note that smoothness can be interpreted as the 

average of cosine values of the angles between the gradient vector 

and the estimated normal vector, for every point of the dataset. If 

the cosine value is close to −1, that means the angle is close to 180 

degrees. If that happens, it implies inversion of orientation which 

we should avoid because we are working with orientable surfaces. 

In the worst case, the gradient can be perpendicular to the esti- 

mated normal vector, causing smoothness be zero at this point. 

In the Fig. 2 , the intuitive idea of the smoothness measure is 

illustrated. 

If the fitting result has good quality, the normalized gradient 

vector 
∇ f (x i ) ‖∇ f (x i ) ‖ is close to the normal vector N i in any point x i . 

3.3. Penalization strategy 

One of the contributions of this work is to propose a combi- 

nation of the measures described above as an objective function 

(from now on OF) used in the fitting process. It is common to use 

quantitative OF in linear and nonlinear fitting methods, i.e. a func- 

tion that describe an approximation to real distance from some IP 

to the points. Our approach include an objective function that pe- 

nalizes non-smooth solutions during the optimization process, pro- 

moting higher quality IPs. 

A strategy based on the idea of penalizing non-smooth IP solu- 

tions along the fitting process is described. Given a point set X , we 

say that an IP is non-smooth if smooth ( X , Z ( f a )) ≈ 0, that is: 

1 − smooth (X , Z( f a )) ≈ 1 

Therefore, a new OF that penalizes non-smoothness is defined 

as the sum of two terms. The first term is the dissimilarity mea- 

sure. The second term reflects how far the IP is from being smooth. 

Fig. 3. Overfitting. The implicit polynomial pass close all the points in X ; it is well 

evaluated quantitatively, but has a poor qualitative evaluation, since it can be im- 

proved [27] by eliminating the turns it makes when passing through several points. 

The positive constant δ has the role of penalty coefficient: 

dist(X , Z( f a )) = dissim (X , Z( f a )) + δ(1 − smooth (X , Z( f a ))) 

Substituting the expressions of dissimilarity and smoothness 

measures, and grouping the terms, we get: 

dist(X , Z( f a )) = 

1 

N 

N ∑ 

i =1 

| f (x i ) | 
‖∇ f (x i ) ‖ 

+ δ

( 

1 − 1 

N 

N ∑ 

i =1 

∇ f (x i ) 

‖∇ f (x i ) ‖ 

N i 

) 

dist(X , Z( f a )) = 

1 

N 

N ∑ 

i =1 

( | f (x i ) | 
‖∇ f (x i ) ‖ 

+ δ

(
1 − ∇ f (x i ) 

‖∇ f (x i ) ‖ 

N i 

))
(4) 

This formulation of the distance function attempts to reconcile 

the two concepts we exposed in past sections: the proximity be- 

tween the point cloud and the polynomial, and geometrical proper- 

ties that the polynomial must have. The positive parameter δ indi- 

cates how strong is the penalty for not having those desired prop- 

erties. 

The δ parameter acts in a similar way to ridge regularization 

parameter α [22] . The aim of both parameters is to improve sta- 

bility. However, there is no equivalence between the two. While in 

ridge regression the parameter works on global stability [22] (pos- 

sibly causing local inaccuracy), in our method the value of δ acts 

locally by fixing gradient directions and improving local stability. 

The distance function (4) is taken as the new OF that should be 

minimized during the fitting process: 

min 

f a 

1 

N 

N ∑ 

i =1 

( | f (x i ) | 
‖∇ f (x i ) ‖ 

+ δ

(
1 − ∇ f (x i ) 

‖∇ f (x i ) ‖ 

N i 

))
(5) 

Note that the IP can pass through all the points in X having 

positive OF value, for example, as in Fig. 3 . We define now the fit- 

ting algorithm based on the distance measure (4) . 

4. An adaptive fitting algorithm 

The main contribution of this work is to provide an algorithm 

capable of finding the degree of the polynomial needed for the 

representation of the points, without previous knowledge of the 

complexity of the dataset. This kind of algorithm is called here- 

inafter “adaptive fitting algorithm”. 

Firstly, a fixed degree fitting algorithm is discussed. Subse- 

quently, this algorithm is generalized to the variable degree case. 

4.1. Fixed degree fitting 

The minimization of the objective function defined above is 

proposed: 

min 

f a 

1 

N 

N ∑ 

i =1 

( | f (x i ) | 
‖∇ f (x i ) ‖ 

+ δ

(
1 − ∇ f (x i ) 

‖∇ f (x i ) ‖ 

N i 

))
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Besides having not derivable nominator, it is well known that 

curve and surface fitting problems commonly lead to multimodal 

functional dependencies of the solution from data, even those as- 

sociated to linear methods, as explained very well in [6] . This 

means that the objective function may have several local opti- 

mums. Exact methods are not efficient in this kind of problems, 

converging naturally to closest of them. 

Therefore, metaheuristic algorithms are used in order to realize 

a better exploration of the search space and most important, refine 

several solutions provided by classical fitting methods, improving 

the quality of those. Those that were designed specifically for con- 

tinuous problems are chosen, such as Particle Swarm Optimization 

and Differential Evolution [13,25] . Both have been previously used 

in curve fitting problems [18] . 

4.1.1. Optimization by PSO metaheuristic 

The Particle Swarm Optimization metaheuristic (PSO) keep a set 

(swarm) of N particles traveling in a d -dimensional space [13] . Ev- 

ery particle represents a solution, and has associated a position 

and a speed vector, this last indicating the direction and the step 

of the movement. Each time some particle moves, it readjust its 

speed using information from the swarm, such that the search pro- 

cess is directed to promising search space regions. The parameter 

χ , called restriction factor, allows to bound speed values. In this 

way, the success of some particles affects the behavior of the oth- 

ers. 

This algorithm has only two parameters: χ , the restriction fac- 

tor, and N , the size of the swarm. 

4.1.2. Optimization by DE metaheuristic 

The Differential Evolution metaheuristic (DE) is an Evolution- 

ary Algorithm and can be seen as a variation of the Genetic Algo- 

rithm [25] . Like any genetic algorithm, DE uses a population of N 

individuals represented by d -dimensional vectors. In summary, the 

algorithm generate new individuals using sum and difference op- 

erations over vectors in the population. In recent years this meta- 

heuristic has been widely used in many practical problems, spe- 

cially continuous ones [19] . 

Besides the population size N , DE has two parameters: weight- 

ing factor F , which controls the amplification of the variation 

obtained from the vector difference; and crossover constant CR , 

which indicates the percentage of the new individual vector com- 

ponents taken into account in the vectors of the next generation. 

4.1.3. Seeded elements 

Small number of seeded elements is included into the initial 

population of the iterative algorithms. Seeded elements typically 

have good values of the objective function, and is assumed that 

they increase the fitness of the population. 

Exact algorithms solutions can be used as seeded elements. In 

particular, we use solutions of linear classic and 3L algorithms. The 

solutions of these linear methods can be obtained very quickly. The 

proposed number of seeded elements is N 
10 , where N is the total 

size of the population. The role of the metaheuristic is to improve 

the quality of the exact method solutions if they have good fitness 

respect to the distance measure defined above. 

4.2. Adaptive fitting 

The following question arises: what criteria should be followed 

for finding the optimum IP degree that best represents some 

dataset X ? In order to find an answer, several aspects of this prob- 

lem are discussed below. 

Table 1 

Number of IP coefficients (problem dimension) 

from polynomial degree. 

Degree Coefficients, 2D Coefficients, 3D 

1 3 4 

2 6 10 

4 15 35 

6 28 84 

8 45 165 

10 66 286 

12 91 455 

14 120 680 

16 153 969 

4.2.1. Maximum IP degree selection 

Some practical considerations on IP degrees utilization are ex- 

posed. 

In most research works addressing IP fitting problem, only 

even degrees are used in experiments or practical examples 

[6,14,22,34,35] . 

Taubin’s work [32] has the explanation. Zero set of any odd 

degree polynomial is always unbounded 

1 . Even degree polynomial 

zero sets can be bounded or unbounded. Therefore, are only con- 

sidered even degree polynomials, due to finite nature of the ob- 

served datasets. 

Furthermore, on the same researches, the most used IP degrees 

are in the range from 2 to 10. The use of superior degrees (12, 

14, 16 and 18) is exceptional. In fact, the advantage of having a 

compact representation of the object is lost when these degrees 

are utilized (see the Table 1 ). 

4.2.2. Smoothness measure behaviour analysis increasing IP degree 

The key to determining the optimum IP degree is the behav- 

ior of the smoothness measure when this degree is increasing. The 

Fig. 4 shows the evolution of the above mentioned measure of the 

solutions of two fitting algorithms, for two distinct datasets. 

In both cases, the smoothness measure increases, and then sta- 

bilizes its growth. In one case, the measure reaches the maximum, 

and then drops slightly. In the second case, asymptotic behavior is 

observed. The 3L algorithm solutions have higher quality than the 

solutions of the classical fitting algorithm. 

These considerations lead us to use the change of the smooth- 

ness measure as a criterion of closeness to optimum IP degree. If 

the increment of the smoothness is very small or negative (the 

smoothness decreases) the “best” degree is reached. 

4.2.3. Summary of the adaptive fitting algorithm 

Taking into consideration all the above, the following fitting al- 

gorithm is proposed: 

The stopping criterion of this algorithm is the non-increment of 

the smoothness measure in some ε. If ε = 0 , this is equivalent to 

a decrement of the smoothness. 

One advantage of using this stopping criterion in the algorithm 

is that it has a clear geometric interpretation. The smoothness is 

the average of cosine values of the angles between the gradient 

vector and the estimated normal vector, for every point of the 

dataset. For instance, setting the value ε = 0 . 01 in the stopping cri- 

terion represents a reduction of those angles in approximately 1 °. 
The following properties of the adaptive fitting algorithm can 

be exploited: 

• It is able to find the degree of the IP that is necessary to get 

a good fitting result without any previous knowledge of the com- 

plexity of the dataset . 

1 For instance, any line in the plane, or any plane in the space, are zero sets of 

one-degree polynomials, and also unbounded. 
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Fig. 4. Smoothness measure behaviour increasing IP degree, datasets: (a) “Boot”, (b) “Horse” ( Large Geometric Models Archive , Georgia Institute of Technology [1] ). 

• It introduces variability of the solutions, allowing to generate a 

set of them as output of the algorithm. With this we capitalize 

the multimodal nature of the IP fitting problem 

2 , which is an 

advantage over exact algorithms. 
• It utilizes and improves the quality of the IPs that are solu- 

tions of the classic algorithms. This can be seen as a post- 

optimization process. The metaheuristics can generate new IPs 

that are unrelated to classic solutions, if they have desired geo- 

metric properties. 

Algorithm 1 Adaptive fitting algorithm. 

G ← Maximum degree to be used for the current dataset 

g ← 2 

while g ≤ G do 

best _ elements g ← F ixedDegree (g) 

if g > 2 and smooth (best _ elements g ) −
smooth (best _ elements g−1 ) ≤ ε then 

return best _ elements g−1 

else 

g ← g + 2 

end if 

end while 

return best _ elements g 

5. Experimental results 

Several issues concerning the practical implementation of the 

proposed algorithms are clarified. 

One aspect that should be considered when applying fitting al- 

gorithms is the need of centering the dataset X at the coordinate 

origin. Furthermore, the dataset must be scaled (for example, di- 

viding the points by their average distance from the coordinate 

origin). These transformations avoid numerical problems in fitting 

algorithms. 

The experiments evaluate the performance of the adaptive fit- 

ting method in real 2D and 3D scenarios. Our main goal is to eval- 

uate the quality of the solutions. The algorithm should generate 

2 A multimodal problem has many local optima, which may have close values of 

the objective function. 

Fig. 5. 2D datasets. (a) Boot, (b) Airplane, (c) Butterfly. 

Fig. 6. 3D datasets. (a) Apple, (b) Rubber duck, (c) Stanford Bunny. 

curves and surfaces that are interpretable and similar to the origi- 

nal 2D and 3D objects. 

5.1. Datasets 

The 2D and 3D datasets are selected as follows. 

Point clouds are taken from widely known repositories, such as 

Stanford 3D Scanning Repository [2] and others ( Fig. 6 ). In partic- 

ular, we take the following models: 

• Apple 
• Rubber duck 
• Stanford Bunny 

In the case of 2D models, plane figures that appear frequently 

in implicit polynomial fitting research [6,27,35] are chosen ( Fig. 5 ). 

There is not neither consensus nor repositories containing the ideal 

datasets for two-dimensional fitting. Moreover, 2D models are eas- 

ily reproducible by researchers in the area. 

5.2. Parameters of the algorithms 

The following parameters were used in the experiments. 
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Fig. 7. Dataset “Boot”: setting parameter δ, 4th degree. Below each image is shown the value of δ. 

Fig. 8. Dataset “Airplane”, adaptive fitting run: (a) 2nd degree fit, (b) 4th degree fit (optimal degree), (c) evolution of the smoothness measure during the execution, (d) 3L 

fit for the 4th degree, (e) lineal classic fit for the 4th degree. 

In DE and PSO metaheuristics, the population (swarm) size is 

set to four times the dimension of the problem [17] , that is, four 

times the dimension of the parameters vector a . As stopping condi- 

tion in both metaheuristics, the criterion of reaching 500 iterations 

is used. The run times of both algorithms are very similar. 

In PSO metaheuristic, value χ = 0 . 729 is taken, as suggested in 

[9] . 

In DE metaheuristic, values for weighting factor F = 0 . 7 and 

crossover constant CR = 0 . 9 are assumed, as recommended in [26] . 

The penalization parameter δ from the objective function (5) is 

estimated in Section 5.3 . 

Finally, for 3D models, fractions of the total number of points in 

the original dataset are taken, since the cardinality of these sets is 

very large, becoming 35,947 points in the dataset Stanford Bunny. 

This is because these models are often used in research in the field 

of computer graphics, where local accuracy is critical. 

5.3. Setting parameter δ

The parameter δ introduced in the fitting algorithm, determines 

how strong is the penalty for having too low values of the smooth- 

ness measure. 

Setting this parameter correctly is essential to obtain results 

that can be used and interpreted correctly, because a low value 

can eliminate the necessary effect of the penalty, and a high value 

can cause the implicit polynomial to stay away from the original 

set of observations. 
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Fig. 9. Dataset “Boot”, adaptive fitting run: (a) 2nd degree fit, (b) 4th degree fit, (c) 6th degree fit (optimal degree for ε = 0 . 01 ), (d) evolution of the smoothness measure 

during the execution, (e) 3L fit for the 6th degree, (f) lineal classic fit for the 6th degree. 

Fig. 10. Dataset “Butterfly”, adaptive fitting run: (a) 2nd degree fit, (b) 4th degree fit (optimal degree for ε = 0 . 01 ), (c) 6th degree fit, (d) 8th degree fit (optimal degree for 

ε = 0 ), (e) evolution of the smoothness measure during the execution, (f) 3L fit for the 4th degree, (g) lineal classic fit for the 4th degree, (h) 3L fit for the 8th degree, (i) 

lineal classic fit for the 8th degree. 

This fact is illustrated in the Fig. 7 . Unstable behavior of the 

algorithm for small values of δ, as well as imprecise results for 

the large values, is observed. There is also a wide range of accept- 

able values for δ. We use the value δ = 0 . 25 in the experiments 

described below. 

5.4. Analysis of adaptive fitting results 

The results of adaptive fitting algorithm for the different 

datasets are presented. 

5.4.1. Fitting 2D curves 

Adaptive fitting algorithm runs for 2D datasets are shown 

( Figs. 8–10 ), comparing the obtained results with classic linear and 

3L algorithm results. 

As observed, the adaptive algorithm can determine the degree 

of implicit polynomial needed to obtain an interpretable fitting. 

5.4.2. Fitting 3D surfaces 

Just as in 2D, experimental runs of the adaptive fitting algo- 

rithm for 3D datasets are executed. The Figs. 11–13 show the ob- 

tained results as well as the fits obtained by 3L and classic linear 

algorithms for the same datasets. 

It is remarked that the algorithm is able to represent complex 

objects by relatively low degree implicit polynomials (degrees 2, 4, 

6, 8). 

5.4.3. Discussion of the graphical results 

The results we presented in Figs. 8–13 can be divided into two 

groups. The first one contains datasets in which the smooth func- 

tion has a strict maximum ( Figs. 8, 11 and 12 ). In this cases, any 

nonnegative value for ε leads to easily identifiable optimum de- 

gree, in particular, ε = 0 or ε = 0 . 01 . 

The second group contains point clouds where the smoothness 

is a strictly increasing function (like Figs. 9 and 13 ). In order to 

reach correct results, the value of ε must be strictly positive, for 

example ε = 0 . 01 . 

There is also a “Butterfly” dataset ( Fig. 10 ), an example of a 

smoothness function with a strict maximum that has some un- 

usual behavior. In this case, any of the aforementioned values of 

ε (0 and 0.01), leads to different but interpretable results. 
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Fig. 11. Dataset “Apple”, adaptive fitting run: (a) original point cloud, (b) 2nd degree fit, (c) 4th degree fit (optimal degree), (d) evolution of the smoothness measure during 

the execution, (e) lineal classic fit for the 4th degree, (f) 3L fit for the 4th degree. 

Fig. 12. Dataset “Rubber duck”, adaptive fitting run: (a) original point cloud, (b) 2nd degree fit, (c) 4th degree fit, (d) 6th degree fit (optimal degree), (e) evolution of the 

smoothness measure during the execution, (f) lineal classic fit for the 6th degree, (g) 3L fit for the 6th degree. 

All these examples suggest that that the value of ε, however 

small, must be strictly positive. The value 0.01 seems to be a good 

strategy in all 6 cases we analyzed. 

5.5. Comparison with 3L method plus ridge regression regularization 

Ridge regression regularization (RRR) is a method that improves 

global stability of other linear methods, like 3L algorithm. It con- 

sists in adding the term kD to the M 

T M matrix used in these meth- 

ods (see Section 2 and [22] for further details). The variable k is 

the ridge regression parameter that should be small enough to pre- 

serve properties of the original matrix, but large enough to achieve 

global stability. 

We now compare the performance of our method against 3L 

with RRR (3L+RRR) using some selected values of k parameter. 

The results are shown in Figs. 14 and 15 . We use 3L+RRR with 

the same degree founded by our algorithm. Unlike the 3L method 

with ridge regression regularization, our method preserves impor- 

tant shape features, like a pronounced corner in the tail of the air- 

plane, or the central part of the butterfly. The ridge regression is 

unable to achieve this kind of results for these datasets, since it 

only cares about global stability. Increasing k parameter, 3L+RRR 

fitting results tend to be more “circular”, eliminating corners and 

protrusions. 

5.6. Fitting in presence of noisy data 

To analyze the behavior of the algorithm when the data is noisy, 

we generated Gaussian noise in the original point clouds, with 

different standard deviation values. The results are presented in 

Fig. 16 . Normal vectors N i are generated using a simple algorithm 

presented in [12] . Our fitting algorithm always stopped in degree 

4. The presented empirical evidence indicates that the method is 
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Fig. 13. Dataset “Stanford Bunny”, adaptive fitting run: (a) original point cloud, (b) 2nd degree fit, (c) 4th degree fit, (d) 6th degree fit (optimal degree for ε = 0 . 01 ), (e) 

evolution of the smoothness measure during the execution, (f) lineal classic fit for the 6th degree, (g) 3L fit for the 6th degree. 

Fig. 14. Dataset “Airplane”, comparing with 3L+RRR method: (a) Our method, (b) 3L method without RRR ( k = 0 ), (c) 3L+RRR, k = 10 −8 , (d) k = 3 ∗ 10 −8 , e) k = 10 −7 . 

Fig. 15. Dataset “Butterfly”, comparing with 3L+RRR method: (a) Our method, (b) 3L method without RRR ( k = 0 ), (c) 3L+RRR, k = 10 −5 , (d) k = 3 ∗ 10 −5 , (e) k = 10 −4 . 

Fig. 16. Fitting in presence of noisy data. Below each image is shown the standard deviation value of Gaussian noise. 

little sensitive to noise, which allows it to be used for recognition 

tasks. 

6. Conclusions 

Although the implicit polynomials are not the most locally pre- 

cise representation scheme, they are very useful for applications 

requiring a compact registration of data from a complex real-world 

object, in order to perform a process of recognition [4] of the same, 

or other objects that correspond to the pattern. With the aim of 

finding an IP that properly represents some dataset, a fitting pro- 

cess is performed. The vast majority of fitting algorithms requires 

knowledge of the IP degree that best represents the points. This 

work presents an alternative to these fitting algorithms. 

Firstly, an objective function to be used during the fitting 

process is defined. This function is characterized by including a 
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penalty of undesired geometric properties (non-smoothness) in the 

polynomial. 

Then, heuristic adaptive fitting algorithm is proposed, which is 

able to find the degree of the implicit polynomial that is neces- 

sary to represent the dataset. The algorithm is based on the idea 

of gradually increasing the degree of the IP, while there is an im- 

provement in the smoothness of the solutions. 

This algorithm is beneficial in comparison to others for three 

reasons: it can automatically find the required degree of the im- 

plicit polynomial, it can offer a set of solutions in contexts where 

variability (options) is required, and it can post optimize solutions 

of known fitting algorithms (classical linear and 3L), in order to 

obtain better quality solutions. 

The experiments confirm the validity of the approach for the 

selected 2D and 3D datasets, since the fits made by the proposed 

algorithm are interpretable. 
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APPENDIX I -- Tumor growth modelling by cellular
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