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Resumo

O desenvolvimento de sistemas onipresentes e difundidos considera o uso de componentes
eletrônicos e sistemas de computador para aprimorar objetos diários com alguma inte-
ligência computacional para ajudar os usuários em suas tarefas de maneira difundida.
A Ambient Intelligence (AmI) é um ramo da computação onipresente que fornece um
ambiente cheio de dispositivos interconectados e pode fornecer comunicação de dados e
colaboração entre os dispositivos do sistema. Da mesma forma, a Internet das Coisas
(IoT) fornece dispositivos ou itens identificados exclusivamente em uma rede para ajudar
os usuários em suas atividades. Os sistemas multi-agente (MAS) são sistemas inteligentes
em que os agentes são responsáveis por raciocinar, competir e usar recursos para alcançar
metas desejáveis de forma proativa e autônoma. A abordagem do agente MAS é ade-
quada para sistemas AmI, pois ambos compartilham as mesmas características. Nesse
cenário, os agentes têm sido empregados em várias abordagens e trabalhos nos últimos
anos. No entanto, nenhum deles considerou o MAS incorporado autônomo responsável
pelos objetos IoT para ambientes abertos em um sistema AmI. Portanto, esta tese propõe
uma arquitetura para o desenvolvimento de sistemas AmI que usam objetos IoT como
coisas inteligentes com MAS incorporado para interface com sensores e atuadores e são
capazes de se comunicar e interagir com outros objetos IoT em uma rede IoT. Em se-
guida, apresentamos a Internet das Coisas Inteligentes (IoST), que é uma arquitetura para
gerenciamento de recursos, na qual vários Objetos IoT podem fazer parte de ambientes
representados virtualmente e ficam disponíveis para serem acessados pelos usuários atra-
vés do uso de aplicativos. A arquitetura é composta por três camadas que representam
objetos da IoT, a solução em nuvem e aplicativos. Além disso, o IoST é estendido para
criar uma camada dependente de recursos para que os agentes de planejamento contextual
explorem os recursos físicos de qualquer objeto IoT disponível.

Palavras-chave: Sistemas Multi-agentes, sistemas embarcados, computação ubíqua



Abstract

The development of ubiquitous and pervasive systems considers the use of electronic
components and computer systems for enhancing daily objects with some computational
intelligence for aiding users in their tasks pervasively. Ambient Intelligence (AmI) is a
branch of ubiquitous computing that provides an environment full of interconnected de-
vices, and it can provide data communication and collaboration among system’s devices.
Similarly, the Internet of Things (IoT) provides uniquely identified devices or things in a
network for helping users in their activities. Multi-Agent Systems (MAS) are intelligent
systems where agents are responsible for reasoning, competing, and using resources to
achieve desirable goals pro-actively and autonomously. The MAS agent approach is sui-
table for AmI systems since both of them share the same characteristics. In this scenario,
agents have been employed in a lot of approaches and works during the last years. Howe-
ver, none of them considered autonomous embedded MAS responsible for IoT Objects for
open environments in an AmI system. Hence, this thesis proposes an architecture for the
development of AmI systems that uses IoT Objects as Smart Things with embedded MAS
for interfacing with sensors and actuators and are able of communication and interacting
with other IoT Objects in an IoT network. Then, we present the Internet of Smart Things
(IoST), which is an architecture for resource management, where several IoT Objects can
be part of environments that are represented virtually, and they become available to be
accessed by users through the use of applications. The architecture is composed of three
layers representing IoT Objects, the cloud solution, and applications. Besides, the IoST
is extended to create a resource-dependent layer for contextual planning agents explore
physical resources from any available IoT Object.

Keywords: multi-agent systems, embedded systems, ubiquitous computing
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Chapter 1

Introduction

Ubiquitous Computing or Pervasive Computing is the capability of embedding intelligence

in everyday objects using computer systems to provide services, several functionalities, and

information, continuously to support users in daily tasks reducing the level of interaction

between users and devices or acting transparently in the environment [127]. The ten-

dency of Ubiquitous Systems, supported by the advances in communication and network

interconnection, allows to include everyday objects to interact with humans pervasively

and to communicate with each other [116].

One of the sub-areas of Ubiquitous Computing is Ambient Intelligence (AmI), which

comprises electronic and intelligent environments characterized by the interconnection of

different hardware and telecommunication technologies to assist users’ daily tasks auto-

nomously and proactively [125]. Some issues about the development of AmI solutions

refer to technologies that are necessary for the communication between devices in the

system, collecting and storing context data and mechanisms for pro-actively acting on

the environment. In general, the objects that participate in this system are composed of

sensors and actuators. They are responsible for capturing information such as light inten-

sity, temperature, and humidity. Besides, it controls specific functions in the environment

such as lights, air-conditioners temperature, or a coffee machine, for example. In general,

they are part of some embedded device, which is an electronic component with several

limitations regarding hardware resources such as processing power and communication

capability [111].

Early AmI works dealt with the automation of ordinary things at home or office.

For example, the classical automated coffee pot [61] that sends information to the lab’s

persons about the making time, availability, and temperature of the coffee. This solution

uses sensors and actuators, a computer, and a UNIX workstation to provide a simple
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reactive solution connected to the Internet and without any intelligence applied in the

solution. Another example is to provide available information and services about a room

when the user enters it [45]. If users enter the kitchen, the refrigerator shows a list of

fridge items or a list of recipes, for example, using Internet browsers. At that time,

the projects did not consider communication between devices or embedded technologies

for providing a more complex processing or autonomous reasoning, above all because of

the technological limitations of that time. With the advent of IoT technology, it became

possible to enhance and interconnect daily objects together to perform actions pervasively

for helping humans being pervasively in different domains.

1.1 Internet of Things and AmI Systems

The Internet of Things (IoT) is a network of interconnected and uniquely identified de-

vices, endowed with the abilities of computing and exchanging information without the

intervention of human or computer interfaces. These devices work as everyday objects

such as vehicle, refrigerators, televisions, smartphones, and every physical equipment, em-

bedded with electronic components (microcontrollers, processors, sensors, actuators, and

network connectivity) [4]. Some challenges of IoT deal with the heterogeneity of physical

devices and to provide communication between interconnected devices.

Several fields and applications will be impacted by the Internet of Things (IoT), such

as AmI. IoT can be used to deploy AmI systems since both use electronic components

and communication infrastructure to provide such kind of intelligent environment. The

IoT impacts the way of AmI systems are implemented since it allows an open architecture

of devices that can be modified at runtime in contrast to design-time devices [105].

However, it is hard to deploy smart applications in existing IoT infrastructure for

AmI systems because of the heterogeneity of devices that can enter in these systems. In

an open infrastructure, devices can dynamically come or leave, and they should be able

to exchange information by communicating with each other. Besides, the interoperability

between these devices has also to be treated [76].

1.2 Agents and AmI Systems

Intelligent Agents are entities — constructed in both hardware and software — that are

able of performing actions in specific environments autonomously and pro-actively based
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on some cognitive model of reasoning. The Belief-Desire-Intention (BDI) [15] is a well-

known and used model, which considers that agents can reason based on beliefs acquired

from the interaction with other agents, environment or self-assertion to activate desires,

intentions, and execute plans to achieve goals. A Multi-Agent System (MAS) is composed

of intelligent agents capable of communicating and collaborating — or even competing

— for using resources in an environment to achieve conflicting or common goals [130].

The use of the intelligent agents applied in AmI and pervasive systems are justified by

the autonomous characteristics of agents and their application in complex systems, both

found in Ubiquitous Computing and AmI [123, 68].

During the last decade, the agent approach was applied in AmI systems in seve-

ral domains exploring emergent communications technologies (Wi-fi, ZigBee, Ethernet,

etc.) in conjunction with Agent-Oriented Programming Languages (AOPL) and agent

frameworks [30, 60, 74]. Some of the applications were based on logic, or traditional pro-

gramming languages such as Java [81, 70, 104], and they were bonded to a specific domain

with limited hardware technologies. In the same way, several works try to provide cogni-

tive reasoning for controlling embedded systems integrating AOPL and hardware devices.

Some of them exploit existent architectures and middleware to facilitate the communi-

cation between hardware and the intelligent software [100, 126, 27]. Some works try to

embed MAS into hardware platforms to provide autonomy to the platform [63, 90], or to

use a central processing unit for controlling the platform from distance [112, 6].

In general, those works employ a one-to-one mapping, in which every device or service

in a real environment is mapped to an agent using a centralized architecture [108, 5]. It

also uses distributed architectures [14], where agents of each device can be embedded

into hardware with limited processing power and use communication technologies for

exchanging information with other agents in that device. Furthermore, some works employ

hybrid architectures mixing centralized and distributed agents [33, 117]. They consider

the set of agents and their devices as a MAS responsible for the whole environment, and

no new agents can enter or leave the system limiting the growth of the system at runtime.

1.3 Problem Setting

In dynamic environments such as AmI systems based on IoT infrastructures, devices can

enter or leave the system anytime, growing, or even reducing the hardware infrastructure

available for deploying applications. In this case, the infrastructure is not fixed, and it can
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grow whenever new devices enter the system in a plug-and-play way, for example. In fact,

there will be a fixed part of the infrastructure — such as electrical facilities adapted for

AmI — and a mobile part that can grow depending on upcoming devices. Besides, these

devices will be responsible for controlling a part of the fixed and mobile infrastructure

available.

Issues such as dynamic environments, context management, scalability, and robust-

ness of the system have to be taken into account for an entire application [94]. For

example, in an AmI system where a smart lamp and a luminosity sensor can communi-

cate with each other and negotiate based on the user experience for providing a better

luminosity experience, new devices such as presence sensors, temperature sensors, or even

users’ mobile phones can enter or leave the system. These new devices should be able

to interact with each other exchanging information to cooperate and achieve a collective

goal. Besides, new devices can add new features to the original system. The AmI system

must be prepared to guarantee that all services will remain working even if the number

of devices grows, and the upcoming services provided by the new devices as well.

When deploying solutions for AmI systems based on devices, it is necessary to take

into account that the system needs to be open and scalable allowing the interaction

of the current devices with the new ones, which might be entering the environment.

Another important issue is the configuration of a new device that wants to be part of

the system. When considering AmI, this configuration has to be done without being

perceptible by users regarding AmI’s characteristics such as anticipative, adaptiveness,

and pervasiveness. For example, in case of a smart lamp, as the environment is open,

a presence sensor can enter to be part of the system, and communicate to the lamp to

inform if there is someone in a room. In most of the cases, the user has to configure this

new device manually.

These devices can employ different technologies and approaches on top of them to

control their functionalities and sometimes to provide at least a minimum reasoning in

their systems. This includes the agent approach itself. An embedded MAS can be part

of an independent and autonomous device with enough processing power and memory for

hosting a MAS. It is able of controlling sensors and actuators by using microcontrollers,

serial communication interfaces, and tiny computers. The use of embedded systems is a

critical issue to provide autonomy to devices in AmI and IoT systems and devices can

be designed independently of the domain [91]. Therefore, applying MAS in embedded

systems is not a simple task and problems can arise because of the number of percepti-
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ons coming from sensors that a platform has access in real environments and real-time

constraints that an embedded agent has to consider in response to a stimulus (acting in

the environment). Some approaches try to deal with them [113, 89, 14] to help to create

autonomous embedded MAS.

However, these works consider a MAS embedded in a device without the ability to

communicate with other devices. Every agent present in the MAS is only able of inte-

racting with agents from its own MAS and for controlling hardware components. Com-

munication mechanisms must be present in such kind of devices considering IoT or AmI

systems. If the embedded MAS does not have any mechanism for exchanging information

with other devices, it will not be useful in a collective system where decisions have to

be made considering distributed information. If the MAS could be deployed in a single

and unique device able of interacting with other devices, some advantages can be exploi-

ted such as pro-active reasoning to discover context information in a real-time situation.

Otherwise, using only one agent per device leads to an approach where the MAS has to

be mandatory open, raising issues about privacy and security of the devices’ infrastruc-

ture. Besides, depending on the agent’s goals, it can be overloaded. In these cases, it is

preferable to employ MAS in devices.

In general, AmI systems deal with many contexts produced from their devices and

sensors. Context is defined as any information with some meaning used to characterize

an entity in the system. An entity could be considered a person, place, or object [2].

These contexts are available to be consumed by other entities such as devices, systems,

and services. In this scenario, devices will need to be continually being informed about

context information or asking for it, which requires much effort when considering agents.

Besides, there are no guarantees that the required device is still available in the system

when someone tries to access it.

Agents have to work together to solve problems demanding collective efforts because

resources such as knowledge and contextual information can be distributed in such sys-

tems. Sometimes, agents are not able to accomplish a goal, and it needs mechanisms to

overcome this situation. When the agent does not have the know-how to do something,

agents can solve problems by constructing plans and decomposing problems in subpro-

blems. This planning mechanism help agents to formulate plans during its execution [46]

based on distributed resources available, and as contextual information can be genera-

ted from devices in AmI systems, these data could be used as input for such planning

mechanisms.
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There is a planning management process named Contextual Planning [21, 22], which

considers contextual information as part of the architecture of BDI agents for specifying

new plans. However, this process focuses on producing a set of actions as a result that

can be executed over an environment and it does not focus directly on how to handle

those actions in devices or how to interact with devices to access contextual information

in open systems. The absence of treatment in how to deal with these issues can lead to

conflicts in concurrent accessing devices’ resources since there will be several agents trying

to request information or acting upon the environment.

1.4 Goals

The objective of this thesis is to present an architecture for the virtualization of devices

and management of their associated resources — represented as sensors and actuators

— to expose them to be consumed by clients in an IoT network. The architecture is

responsible for keeping information about the real devices and resources stored in a middle

layer, which abstracts the direct access to devices from clients. Hence, they can consume

these data using applications, such as exposed web services, that access virtualized devices

based on a Sensors-as-a-Service model. The Resource Management Architecture (RMA)

is divided into three abstractions: Device Layer, Resource Management Layer (RML), and

Application Layer. The Device layer comprises mobile and fixed devices running over an

IoT network. These devices control sensors and actuators, hardware interface, and a tiny

computer. In this layer, devices are also self-configurable and able to enter in the system

for updating the RML with resources’ data to be later consumed. Besides, IoT devices

will be able to communicate with other IoT devices apart of the technology employed

in them, considering the interoperability between those devices [114]. These devices are

named as IoT Objects in this thesis.

IoT Objects can also employ embedded MAS for controlling all their resources, and

to provide more intelligence, pro-activity, and autonomy to these objects. In this thesis,

IoT Objects can be traditional Things from IoT or Smart Things employing embedded

MAS. The overall architecture using Smart Things can be characterized as an Internet of

Smart Things (IoST). In some cases, the use of embedded MAS bring some advantages

compared to devices that only work as data repeaters sending information from sensors

to a server application for generating context about a situation and need stimulus from

other devices to act upon the environment [66]. Agents are pro-active, autonomous, and

are capable of reasoning about information from the environment that they are situated.
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These characteristics allow a piece of improved information or even a previous context

generation before sending it to a server application releasing processing power of server

applications, for example. Besides, agents can make decisions and act autonomously

without depending on third-part processing (if they have sufficient processing power).

For example, the MAS responsible for the smart lamp can communicate with the MAS

responsible for the presence sensor to negotiate a better luminosity experience instead of

sending this information continuously to a server-side for vertical reasoning and decision.

The RML deals with the virtualization, registering and updating of data coming from

IoT Objects. It keeps a model of environments and their resources mapped in the core

of the architecture that can be accessed by clients. The hardware information about IoT

Objects is abstracted from clients, that need to access them by the interested environment

or resources. Every time that an IoT Object sends data to this layer, it updates the core

model keeping just the most recent values available. Besides, every action that needs

to be performed by IoT Objects’ actuators enters into a stack of actions to be executed

in the respective IoT Object. The access to this layer occurs by using exposed services

and web systems. The Application layer is composed of parts interested in accessing and

consuming information over RML. It is possible for clients — systems, services, agents,

or any other solution — to access these data and interact with virtualized IoT Objects,

gathering information or sending actions commands. The RML abstracts the access of

physical IoT Objects from clients, and it does not matter what kind of technology is

accessing the virtualized data.

Particularly, when Contextual Planning agents are accessing resources, they need to

verify the availability of resources, to gather a list of these resources and to allocate them

for plans execution until they decide which plans are feasible and which resources will

be involved in the execution. While an agent is reasoning with resources information,

no other agent must take control of the resources involved in this process. Hence, all

requested resources must be locked until agents decide which resources will be effectively

used. After that, actions can be sent to be executed. However, Contextual Planning

does not provide integration to physical devices or any sensors because the notion of

resource is not defined in the Contextual Planning method. In this thesis, the RML is

also responsible for checking the availability of the intended resources and for producing

a list of available environments registered in the layer, and associated resources that can

be used. It also deals with locking and unlocking process to guarantee the execution

of an action effectively executed and a timeout process to avoid uninterrupted usage of

resources. For example, when an agent needs to execute a plan, or even construct a
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new one using contextual planning, to access an environment with an air-conditioner and

projector, these resources should be blocked for other agents and services while it is using

them.

The RMA layers are built using several different technologies. The IoT Objects are

constructed using tiny computers, and they are controlled by an embedded system or

MAS, which interfaces microcontrollers using a serial interface [63]. Both the embedded

system and the RML use the ContextNet middleware [48], where IoT devices deploy the

client part of ContextNet, and the RML deploy a server solution in the architecture. In

the Application layer, web services and web pages are exposed using the Jetty servlet

engine and Java.

Hence, we identify the following research questions to be tackled:

1. Can MAS be deployed for controlling a specific device embedded with sensors and

actuators — working as a Smart Thing —, in a way that this device will be auto-

nomous, proactive and independent from server side technologies to operate?

• Can these Smart Things interact and communicate with other Smart Things

for sharing information, plans, and goals.

• Can any AOPL be used or extended to develop autonomous Smart Things

since they use embedded MAS?

2. Is it possible to create an architecture to support the implementation of AmI sys-

tems, built over an IoT infrastructure, connecting IoT Objects and clients to provide

consumable data as a service?

• Can Smart Things self-register themselves at the architecture to send data

continuously to be accessed by services and clients?

• Could a service using the Contextual Planning mechanism use the architec-

ture for accessing information from environments in AmI systems to verify the

availability of resources, IoT Objects, and environments?

• Is this architecture capable of dealing with matching, locking, allocation, and

execution of physical resources for guaranteeing the fulfillment of contextual

planning agents’ requisitions?
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1.5 Organization

This thesis is structured as follows: in Section 2, the theoretical background including

all the basic concepts for the understanding of this proposal is presented; in Section 3,

it is presented a review of the literature considering MAS architectures and works using

the agent approach for IoT and AmI systems; In Section 4, it is presented the proposed

architecture; In Section 5, it is presented the implementation of all components of the

architecture; In Section 6.2 it is presented some performances tests and a case study.

Some final remarks are presented in Section 7; and finally, the references are shown.



Chapter 2

Theoretical Background

In this chapter, it is briefly presented the basic concepts for helping to understand the

goals of this thesis. Firstly, it is presented the agent and MAS fundamentals, where the

main concepts about the openness of environments and systems are addressed. Then, it

is shown some of the technologies for the development of MAS; afterward, we present the

relation between middleware and the IoT focusing on the ContextNet middleware, which

will be used to provide connectivity and communicability in this thesis.

2.1 Agents and Multi-Agent Systems

Agents are intelligent entities coming from Artificial Intelligence that is capable of sensing

an environment where they are situated, and after a reasoning process, they are able of

acting upon the same environment in order to achieve common or conflicting goals. Agents

are autonomous entities capable of learning from their past experiences, interaction with

other agents, and perceiving the environment. They are also adaptable and flexible, being

capable of reacting pro-actively to changes within the environment they are situated. An

agent can be part of a system where it can interact in a peer-to-peer way with other

agents. Hence, a Multi-Agent System (MAS) is a system, which comprises several agents

competing or collaborating for achieving individual or collective system’s goals. Every

agent of a MAS are responsible for acting and sensing a sphere of influence, which is a

piece of the environment, and more than one agent can overlap this sphere, competing or

working together based on their individual or collective goals [131].

These characteristics of agents are often related to AmI and Ubiquitous systems since

they need intelligent, autonomous and pro-active entities capable of interacting and reason

in a highly dynamic ambient where persons and artifacts share information and cohabit
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pervasively [68]. As AmI systems and ubiquitous computing consider systems built upon

real ambients using physical devices taking actions pervasively, agents must follow up

these characteristics. Agents can be virtual or physical entities [75]. A virtual agent runs

simulated on a computer using a virtual representation of an environment, and it does

not support an interface with physical devices or hardware. Conversely, a physical agent

interfaces with hardware devices such as actuators and sensors to interact with real-world

environments. It is embodied in physical infrastructure, and it can run embedded into

platforms, tiny computers, or any computational technology. A traditional vision of a

physical agent is a robot [103].

At this point, it is essential to define that both environments and ambients represent

a physical or simulated place where information and entities — artifacts, devices, persons,

etc. — can exchange messages, be perceived, handled and modified by entities present in

the local at a specific time. In AmI, Ubiquitous Computing, and Ambient Assisted Living

(AAL), for example, ambient is a physical representation of someplace such as a room or

house with expected behavior and equipped with pervasive technologies. It is not limited

to physical places, and simulated ambients are often used in many solutions [30, 67, 1,

72]. However, it is expected to materialize ambients and devices when adopting AmI

or Ubiquitous systems. When considering agents, the environment is a place containing

artifacts that can be perceived and used by agents or groups of agents in a MAS for helping

in accomplishing their goals. Depending on the cognitive model adopted by agents, the

artifacts’ data assume different names such as beliefs and percepts. Many domains use

agents as a programming abstraction, and simulated environments are not necessarily

used as a trustworthy representation of reality. In some cases, agents can interact directly

with the real world [75, 112, 66].

The open nature of a real ambient allows the entry and exit of entities at any time. It is

natural to think in a room where it is possible to enter or leave freely or to add new features

such as a television or a sound system. However, in these systems, environments can be

open or closed depending on their configuration and purpose [23]. An open environment

works as a real ambient allowing new artifacts and agents to enter or leave it in any

time. Conversely, a closed environment allows artifacts and agents that exist from the

beginning. This latter implies that the closed environment must be simulated since it

does not make sense that exists a real environment that is closed for new entities or, at

less, it is not useful. In this thesis, we consider an agent’s environment as an open and

physical environment that represents a real spot or place where exists agents that can

perceive and act upon this same environment controlling objects.
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The fact of existing open environments is related to the notion of MAS. If an open

environment exists where agents can enter and interact with other agents, sharing infor-

mation, and collaborating or competing, it is possible to consider that these agents are

part of a dynamic MAS. In this thesis, we employ MAS on top of objects, and only ob-

jects can enter or leave the environment, which avoids the existence of standalone agents

running freely in the environment. Hence, it is necessary to expand the discussion of

openness to the MAS level.

Similarly to environments, MAS can be closed or open, depending on how they treat

the mobility of their agents. The conventional approaches consider that agents established

in a MAS cannot move to another system, and it does not allow existing agents elsewhere

to enter in its system. Then, in a closed MAS, there is an architectural limitation that

avoids the mobility of agents. When considering the communication of these agents,

commonly the MAS also limits this interaction to agents that are part of the same system.

However, agents able to communicate with agents from different systems does not change

the openness of the system. If a MAS has open communicability, it does not mean that it

is prepared for the entry of new agents in the system. Instead, an open MAS allows agents

to enter or leave the system at runtime, and there are no limitations in communication

since they can perform direct communication in the destiny system, for example. Hence,

the openness of MAS is defined by mobile agents, which are capable of moving from one

system to another and stay as long it is interesting for them or until they accomplish their

expected goals [62].

However, in practice, it is hard to define a physical border for limiting agents inside

a MAS and programming languages are responsible for dealing with the relation agents

and system. In the same way, it is common to observe a MAS using hybrids approaches

considering agents, communication, and environments. In this thesis, we treat a MAS as a

closed system where particular types of agents can use abilities to communicate with other

agents from other systems hosted in IoT Objects. However, the technologies employed in

the development of our approach allows agents to be movable and systems to be open,

and it has been explored in parallel approaches [41, 38, 39].

As stated before, agents are intelligent entities capable of reasoning about statements

perceived from an environment and social relations to accomplish goals. For this, agents

adopt cognitive models of reasoning that tries to model their mental behavior. A cognitive

model tries to understand or scientifically explain basic cognitive processes involving the

brain in how to accomplish complex tasks as perceiving, learning, and decision making [16].
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There is extensive literature considering cognitive models in the agent domain, but one

is highlighted at this point since it is used in this thesis. The Belief-Desire-Intention

(BDI) [15] considers the cognitive process of practical reasoning based on beliefs, desire,

intentions, and plans. Agents can perceive the environment as pieces of information

named Beliefs, which are used for triggering desires and intentions of an agent. Plans and

actions materialize Desires and Intentions considering agents’ beliefs and goals, which

define when the agent commits to a desire, transforming it in intentions. The BDI has

been widely used in the development of MAS during the past years, including IoT and

AmI.

2.2 Development of MAS

During the last decades, agents emerged as a paradigm of Artificial Intelligence for solving

distributed and decentralized problems in different domains, including IoT recently. The

agent approach provides abstractions and mechanisms based on cognitive models that

facilitate the development of intelligent, pro-active, collaborative, and dynamic systems.

There are several AOPL and frameworks used in the development of MAS in the literature

using different reasoning models such as BDI or merely reactive agents, for example. The

Java programming language was used in the last years for creating three of the well-known

Java-based frameworks: Jade [7], Jack [19], and Jason [11].

Jade is a reactive framework where agents are developed in a Java-like style. Howe-

ver, there is an extension using the BDI model named Jadex [95] that runs over Jade.

The frameworks Jack and Jason use the BDI architecture alongside an interpreter of the

Procedural Reasoning System for providing real-time reasoning systems. Besides, Jason

works together with CArtAgO [98], which provides an abstraction of artifacts placed in

environments that agents can interact with and Moise [55], which presents an extension

for normative and organizational models in Jason. These three technologies together are

known as the JaCaMo [9] framework.

When considering applications for IoT and AmI systems using MAS, none of these

frameworks are prepared for interfacing hardware and communicate to an IoT network.

Hence, if one of the mentioned frameworks would be employed in the development of

IoT Objects, interface mechanisms, or middleware should be necessary. The Jade itself

has been used in domains such as robotics and IoT but since its reactive nature and the

absence of a proper abstraction for implementing agents — agents are programmed in
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Java — it is not the most appropriated framework to be employed in autonomous and

intelligent IoT Objects, which is expected some cognitive behavior. Even Jadex, which

implements the BDI model, still depends on Jade since this extension runs on top of

Jade. The Jack framework is proprietary software, which makes it difficult to access the

source code or modify the agent’s reasoning cycle, for example. The frameworks Jason

or JaCaMo have a BDI reasoning cycle implemented in Java, and they are open and

free platforms. Besides, they have several points of extensions that can be explored for

creating agents with modified behaviors, and to add external technologies. Then, it is

essential to understand Jason’s internal structures that will be explored in this thesis for

creating Things and Smart Things.

2.3 Framework Jason

The Jason is a framework for developing MAS using the cognitive model BDI [15] and has

an interpreter for the BDI based agent-oriented programming language AgentSpeak [97]

in Java language. The BDI contains three basic constructions: beliefs, desires, and inten-

tions. Beliefs are information considered to be true by the agent, which can be internal,

acquired by a relationship with other agents or by the environment’s information. Desires

represent the agent’s motivation to perform a determined goal. Intentions are actions that

the agent is compromised to execute. Moreover, the Practical Reasoning System allows

agents to build a reasoning system at runtime to execute complex tasks [11]. Besides,

they have plans composed of actions that are activated depending on beliefs on their

belief bases.

Specifically, Jason’s standard agent has a reasoning cycle responsible for processing

all perceptions and beliefs to generate events, which activate plans and actions. It is im-

portant to understand the reasoning cycle of a standard agent because several extensions

(including the ones described in this thesis) modify some of its characteristics to enhance

specific kind of agents with new customized abilities. The reasoning cycle (Figure 2.1) of

a standard agent is composed of the following steps:

• Capturing Perceptions: The agent captures the perceptions from a simulated

environment where it is situated. In this environment, the agents can interact with

virtual objects that may have information represented as perceptions. In Jason,

the perceptions and beliefs are literals. It is important to remark that the original

distribution of Jason does not have any access to real environments using sensors
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or actuators.

• The Belief Update Function: This function updates the Belief Base using the

captured perceptions of the environment, beliefs received from messages, and self-

statements generated internally during plan execution. For each modification in the

Belief Base, an event is generated. An event represents a consequence of something

that an agent has to deal with to achieve its goals based on those new beliefs.

• Checking and Selecting Messages: The agent has a mailbox for receiving mes-

sages from other agents. It verifies at the beginning of each cycle if exists messages

to be read. Then, it can select socially acceptable messages to be processed or ignore

the one that is not acceptable. This step also generates events.

• Event Selection: In this step, an event is selected from a list of generated events

of the previous steps.

• Dealing with Plans: when an event is selected, it retrieves all the relevant plans

of the agent’s plan library. After that, a verification is performed to identify which

plans can be executed based on its current beliefs and perceptions, and a function

selects only one plan to be executed.

• Selecting Intentions: a function is responsible for choosing one ready-to-use in-

tention at a time to be executed.

• Executing Actions: Finally, an action of the selected plan is executed one at a

time.

The Jason does not have the necessary technologies for implementing IoT Objects

for working in IoT and AmI systems. It does not interface hardware, and it does not

communicate with different MAS. It is only possible to create MAS that accesses simulated

environments as said before, and the communicability is limited to agents inside the

created MAS. Hence, it is essential to adapt Jason for creating the IoT Objects. There is

an extension of Jason [90, 89] named ARGO that uses a serial hardware interface [63] for

transferring sensors’ values as perceptions directly for agents and receives agent’s actions

to activate actuators, which helps the creation of embedded MAS using microcontrollers.

This extension will be used in this thesis as part of the creation of IoT Objects and will

be explained in details in Chapter 5.1.

For applying IoT Objects controlled by agents in IoT, open environments are necessary

and, consequently, communicability and connectivity. In this case, middleware for IoT
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Figure 2.1: The reasoning cycle of a Jason agent [11].

should play an essential role in dealing with these issues since some of them can guarantee

scalability, connectivity, communicability, data sharing, and protocols. In the next section,

it is explored the chosen middleware, which is the basis for creating the proposed Internet

of Smart Things (IoST) in this thesis.

2.4 Internet of Things

IoT middleware and protocols are responsible for managing the integration of the physical

world and the cybernetic ones by using IoT objects and establishing an interconnected IoT

network of these objects with the purpose of data collection and analysis, and reactive

applications and systems [85]. The increasing number of middleware and connectivity

protocols designed specifically for IoT do not consider the heterogeneity of such objects

and their needs. When combining agent approach and IoT middleware for providing an

IoST, the former one needs to be autonomous and pro-active and independent from the

latter one. Besides, the IoT network should provide open environments where IoT Objects

embedded with agents can enter and leave anytime they want.

Hence, it is necessary an open, lightweight and secure middleware capable of dealing

with the heterogeneity of IoT Objects and agents technologies to be employed as the basis

of the IoST without bounding the IoT Objects to the system. Besides, it is important

to offer an IoT layer where different types of clients can access whenever it is necessary
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without interfering in the IoT Objects functioning. In this thesis, we consider both IoT

Objects and Clients as being built over agent methodologies.

A cloud-based IoT architecture should provide the necessary abstraction for creating

an IoST capable of dealing with IoT Objects controlled by agents. Besides, it considers

an uncoupled three-layer architecture where an IoT middleware working as a middle layer

deals with connectivity and communicability of IoT Objects and clients. IoT Objects are

capable of connecting and disconnecting from it as part of the device layer, and clients

can interact or access these objects by accessing Application Programming Interfaces

(API). Based on that, we selected the ContextNet middleware, which will provide all the

necessary abstractions and constructions for creating the IoST. In the next section, the

main concepts of ContextNet will be explained.

2.5 ContextNet

The ContexNet [47] middleware is a service for providing context data in stationary and

mobile networks. It provides context services for ubiquitous and pervasive applicati-

ons, and it has been employed in a wide range of solutions [36, 120, 49, 43]. It uses a

Scalable Data Distribution Layer (SDDL), which employs the Data Distribution Service

(DDS) [93] protocol for a real-time Publish/Subscribe mechanism for the communication

within the SDDL Core. Besides, it also uses the Mobile Reliable UDP (MR-UDP) [109]

for performing communication between mobile nodes and the core application running in

servers. There are other services provided by the SDDL core, such as data persistence,

data stream, fault tolerance, node disconnection, and group communication.

The data transferring occurs by using the MR-UDP and the Object Management

Group (OMG) DDS. The MR-UDP treats messages between a client and a gateway, and

the DDS is responsible for distributing data in the core of the network. The DDS is

an OMG standard built upon a peer-to-peer architecture for data distribution, which

guarantees Quality of Service (QoS) contracts between data users and providers. By

using ContextNet, it is possible to enable the growth of a network, ensuring the scalability

of the content distribution between millions of devices. From the point of view of the

IoT developer, the ContextNet middleware allows the development of clients and core

applications. Clients can be fixed or mobile devices able to connect to the server, and to

communicate with other clients and to the core application. It deals with the MR-UDP

connection to available gateways, and it isolates technical details from the application
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layer. The core application deals with the data flow coming from clients, and it is useful

for creating solutions where it is essential to collect data from several different clients

and process this information somehow. In this thesis, the ContextNet middleware is

used in the cloud solution as the core application dealing with all the requests from IoT

Objects and other application that need to access to retrieve some action or act upon

some environment. It offers all the necessary constructions to allow the development of

the proposed architecture as the scalability, communicability, and connectivity.

Besides, the ContextNet also provides dynamic management for groups of clients.

Devices running the client library of ContextNet can be arranged in groups, which helps

to organize the collective goals and to facilitate communication since it uses broadcast

and multicast messages. It is a promising characteristic to be explored when considering

organizations of physical objects using MAS. However, in the scope of this thesis when

considering the agent approach, ContextNet is used to create a new type of agent able

to communicate with other entities, including other agents. This new agent will use a

client instance of ContextNet, and it will be responsible for all inbound and outbound

communications related to this MAS with other entities. As it is a ContextNet client, it

will be uniquely identified in the IoT network. Hence, when this agent is embedded in

Smart Things, it will identify this object uniquely in the network, providing the necessary

connectivity and communicability for them to interact in open environments.

The Mobile Hub extends the capability of communication in ContextNet by running

in mobile devices that adopt the Android operating system. It provides mobile commu-

nication and data processing extending the cloud SDDL middleware. It discovers nearby

objects enhanced with wireless technology for short distance as Bluetooth, BLE, and

NFC. As the Mobile Hub is a client from ContextNet, it is working as a bridge between

these objects and the core of ContextNet, opportunistically connecting to those objects to

transfer data to the cloud. Since Bluetooth has a distance range for objects to connect to

the mobile device, we decided to employ wired connections to sensors and actuators, and

we use embedded systems running ContextNet clients for managing these resources. In

this way, it is possible to create Things and Smart Things capable of controlling resources

that do not depend on distance since they are all connected in a single object. Besides,

it is possible to adopt cognitive ability and reasoning in the case of Smart Things, which

employs MAS.



Chapter 3

Related Work

During the last years, AmI systems have been applied in different domains such as

Assisted Ambient Living (AAL), health care, smart homes, and smart cities, for example.

The embedded systems and robotics domain also play an essential role in the development

of this kind of systems because they are responsible for providing autonomy and pro-

activity by embedding different technologies and systems in devices that are part of the

environment. However, most of the early AmI systems were closed systems explicitly

designed for an environment. Hence, new devices cannot enter or leave without the

redesign of the entire system. Besides, the communication was restricted to all participants

of the systems.

With the arrival of IoT technology, the devices could be connected to the Internet, and

a device that is part of an environment was able of communicating with another one from a

different environment situated in a distant local or place. The devices can be endowed with

communication technologies, sensors and actuators, and capable of embedding software

solutions. Then, considering the proximity between AmI and IoT concepts, it is reasonable

using both in a system or to provide ways for two different systems to communicate using

IoT technologies.

However, some authors argue that the current level of intelligence of devices are not

sufficient for some applications because the devices act as data repeaters, transmitting

gathered information from sensors to a server, which is responsible for reasoning and the

decision making. These devices should be able to make their own decisions based on the

perceived data from their sensors and act autonomously and based on social shares with

other entities in the IoT network. At this point, one should state that the agent approach

can support to provide a cognitive layer to such devices.
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In this chapter, it is presented a review of the literature containing several related

works applied in AmI systems and IoT supported by multi-agent approach during the last

decades. It will be considered the initial work of AmI systems using the agent approach,

and the evolution of them to employ MAS considering the IoT infrastructure. Firstly, it

will be discussed early AmI systems using agents, considering the employed architecture,

programming language, autonomy, and decentralized aspects of the system. Afterward,

the discussion will be increased by the emergence of AOPL such as Jade, Jack, and

Jason, and how they were applied in different domains for AmI. Some works considering

embedded agent systems and robotic platforms will be discussed in how they could support

the development of autonomous IoT Objects. Finally, it will be analyzed existent related

works applying agents in IoT, considering all the relevant aspects mentioned before and

also the use of IoT middleware, embedded agents, and MAS.

3.1 AmI Systems and MAS

Applying MAS in AmI is widely discussed in the literature, and several proposals inte-

grating intelligent devices have already been presented during the last decades. In the

beginning, the classical AmI systems were concerned about the automation of conventi-

onal furniture and electronic devices for aiding the resolution of simple daily tasks such

as coffee machines automation [61], intelligent rooms [45], and refrigerators [84]. These

projects used automation principles for providing some sensing and sometimes actuating

aligned with the early Internet. Generally, they were ad-hoc solutions that did not provide

complex reasoning or processing because of hardware limitations at the time. Similarly,

embedded solutions or any communication technologies for providing interaction between

devices were not simple to deploy.

A few years later, with the advance of the technology, it was possible to deploy MAS

for AmI systems using traditional programming languages sometimes associated with logic

in different domains. Mostly, these works presented a centralized multi-agent solution,

where a central server is responsible for hosting the agents or a distributed multi-agent

system where agents were distributed in a closed environment [76]. As stated in chapter 2,

a closed environment is an electronic AmI system deployed in a specific facility, which it

is not possible for new devices to be part of the environment at runtime without changing

the electronic facility or redesign the software solution. A comparison of these related

works can be seen in Table 3.1.
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In the smart home domain, MavHome [30, 31, 29] is an intelligent house that works

according to the necessities of the residents, learning about its inhabitants for offering

comfort in day-by-day tasks, improving the inhabitants’ free time, reducing operational

costs, and managing security. The MavHome uses a MAS with hierarchical agents using

an architecture structured in four layers named: decision, information, communication,

and physical. The physical layer monitors the environment (using physical sensors), and it

transfers the information to the Information layer using the Communication layer to trans-

form raw data into context. Furthermore, the agent model is specific to the smart home

developed, it was employed the Common Object Request Broker Architecture (CORBA)

for the communication between agents, and the ZeroConf technology for dynamically

deploy agents in the smart home model.

The fact of using a centralized architecture with agents controlling physical resources

from a central computer increases the dependency of agents to the architecture and incre-

ases the risks of shutdowns of the whole system once that one single problem could stop

the service. When using a decentralized architecture, it releases processing power from

any central computer or processing, and consequently, the system becomes less depen-

dent on these issues. Due to the autonomous and pro-active characteristics of agents, it is

expected to explore them to manage physical resources locally, which helps in achieving

the layers independence in the architecture. The use of agents for managing devices and

resources was widely explored in the literature considering issues such as architectures,

platforms, programming languages, organizations, middleware, and communication. We

aim to combine these issues to provide an architecture where it is possible to extract the

most of them.

Similarly, a system [18, 17] for a facility combines services with mobile and fixed de-

vices using agents for providing continuous service for a group of persons in a museum.

Every resource or device in the facility is modeled as agents with the capability of for-

ming organizations. The agents communicate using an infrastructure named LoudVoice,

which works broadcasting messages for all agents instead of peer-to-peer messages. The

architecture is centralized with a one-to-one relation with agents and resources, which

is not a problem when considering centralized reasoning. However, it could increase the

number of agents in the system if the number of resources employed is high. Dealing

with organizations and communication of agents in large MAS can be hard to deploy.

The broadcast communication is costly to cognitive agents since they have to verify the

proper addressee for every message and implement a discarding processing. At the same

time, they are responsible for managing resources, which should be the main concern of
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agents.

An AmI system and a test-bed named iDorm [51] uses embedded agents endowed

with fuzzy logic applied in ubiquitous computing environments. The embedded agents are

located on small computers (68000 Motorola processor) with limited processing resources

responsible for receiving sensors information through the network. There is a network of

physical sensors, and actuators in a room reproduced in virtual reality and controlled by

a Java interface. There is a static agent responsible for the room and a mobile agent that

communicates through wi-fi with the static agents. The solution provided is specific for

the iDorm, and the agents do not control the sensors and actuators directly. Despite the

use of a hierarchy of gateways for guaranteeing scalability, it is not possible for new devices

to enter the system and iDorm’s agents cannot communicate with other systems. Real

ambients are naturally open, and it must allow new resources or devices to be allocated

even if it is represented virtually. It is common to change some existing resources for

recent ones or even to improve the ambient range by adding some new capability. Then,

we comply with the AmI system’s openness in our proposed architecture by allowing

devices to come and go freely.

The SALSA [101, 102] architecture, in the domain of healthcare, aims to facilitate the

development of AmI systems using autonomous agents. In SALSA, users, services, and

legacy systems are represented as agents. Some agents are hosted on PDA devices, and

the communication is provided by XML messages using an instant message server. As the

PDA does not have enough processing power for delivering a fully embedded service using

agents, it has to transfer information to the central part of the architecture. Embedded

systems play an essential role in the development of devices with physical resources such

as sensors and actuators. These systems deal in how data are acquired from sensors, and

how actions can be performed. When the embedded system is an agent, it is responsible

for managing the resources, and to reason about all information acquired. Depending

on the amount of information available during these processes, it can affect the agent’s

performance significantly.

The Mobile-C [25, 26, 24] is an agent-based system for dynamic environments in the

domain of real-time traffic detection. The system provides both mobile and stationary

C/C++ agents, which interfaces hardware devices with hybrid control. The communica-

tion between agents is provided by a middle layer named Agent Communication Channel

built on top of TCP/IP. Despite the hybrid hardware control, it adopts a centralized

architecture for controlling resources. The hybrid capability of controlling different hard-
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ware devices is essential when open environments are in question because it is expected

that devices employing different technologies enter the system in anytime. The AmI sys-

tem’s architecture must be prepared to deal with this characteristic. The heterogeneity

in devices could be understood as the employment of different resources — sensors and

actuators— and platforms, or as using different microcontrollers where different resources

can be connected. It helps in the adoption of a wide range of devices, and their designer

could be free to choose the hardware that fit his project. In this thesis, we consider the

microcontrollers heterogeneity as a functional requirement of IoT Objects in the proposed

architecture.

There is a bookshop [108] where exists a one-to-one mapping between the system’s

elements and software agents running on a central computer. The system uses responsive

ambients combining the agents and a physical environment. The architecture is generic,

and there is a blackboard communication using Linda in Prolog. Afterward, the bookshop

system is extended by using JADE, JavaSpaces, and Bluetooth for identification of shop-

pers and sensors [74]. Basically, there are several sensors in the bookshelves, which detects

customers and their preferences. However, the solution is bounded to both domain and

architecture. An architecture for dealing with devices in AmI systems should be capable

of being adopted in any domain. Otherwise, every solution will have its own architecture,

which can hinder the process of different interconnecting ambients, for example.

The ALZ-MAS [33] is a health care system for Alzheimer patients with five agents,

which communicate with physical devices. The system uses RFID, wi-fi, network, and

ZigBee. Agents running on a workstation processes the data. These agents are responsible

for gathering information through RFID and control device using ZigBee. It also checks

wi-fi for verifying if there is any PDA connected. The agents are hosted at the PDA or the

workstation. The communication is using wi-fi and ZigBee. Case-Based reasoning and

Java agents are used in ALZ-MAS and also in a Geriatric Ambient Intelligent system [32].

The architecture uses a MAS with BDI agents, where agents manager and patient run

at a central server, and the nurse agent run on a mobile phone device. The ALZ-MAS

is specific for the health care domain, and it uses an architecture where some agents are

centralized. However, it leads to a distributed behavior where some individual agents are

embedded in devices and communicate to the centralized ones. All the existing agents in

the architecture compose the MAS. In our approach, we employ a MAS for controlling

some devices connected to the architecture. Besides, it helps in separating devices from

centralized agents or layers since agents from these devices are not related to any other

part in the architecture.
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An architecture integrates Service-Oriented Architecture (SOA) and intelligent agents

for constructing AmI systems with functionalities divided by distributed services [118].

The core of the solution is composed of agents, working as controllers, and also modeled as

services. A centralized architecture [5] based on a rule-based inference methodology using

the Evidential Reasoning, where a single agent is responsible for gathering all information

and decision making is presented in the smart home scenario. Depending on the number

of resources that each agent has to deal with, it can overload the agent reasoning and

delays may occur. In this case, MAS could be used to specialize and divide some agents

obligations in devices.

An agent-based network for traffic management named aDAPTS [124] uses an archi-

tecture of three layers: a reasoning layer, middle layer for controlling, and the lowest layer

for running agents. It describes both hardware and software implementation applied in a

real-world scenario where agents are delivered for controlling centers, roadside controllers,

sensing devices, and information systems using networks for communication. However,

the solution considers agents as part of the same MAS, which limits the growth of the

system at runtime, for example. In a car driving system [13], the system models the

behavior of drivers using four distinct types of agents, which are instances of the Generic

Agent Model (GAM). The entire AmI system is based on a single car, where the agents

are responsible for the behavior of the driver, gathering sensors information, and artificial

intelligence techniques. The car system is not able to communicate with another car, and

it presents a simulated system.

A sensor and satellite tracking in cultural heritage applications using a MAS named

Dalica [34] can infer users’ interests from previous points of interest during a visitation

in an archaeological area. There are three levels in Dalica system: a basic level providing

external resources such as users’ PDA, which interacts with the MAS, an abstraction level

considering the authentication and the communication infrastructure and, an interaction-

mediation level responsible for mediating relations between MAS and visitors’ activities.

Besides, sensors detect ambient data, which are transferred to agents using RFID, PDA,

and network. The e-Commerce for shopping [59] presents an architecture based on a MAS

with BDI agents. Each buyer and store have a personal mobile agent in mobile phones

and PDA. It was developed using Java, Agent Factory, and it also uses Bluetooth.

In meanwhile, several frameworks for the development of MAS emerges. Frameworks

such as Jade, 3APL, and Jack are being used in many domains, including AmI. Later, these

same frameworks extend their concepts and approaches to include cognitive reasoning
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Table 3.1: A comparison of the AmI related works.
Work Domain Language Architecture Platform
[18, 17] Museum LoudVoice Centralized -

[30, 31, 29] Smart Home CORBA Centralized -
[51] Smart Home Java + Fuzzy Centralized Mot68k

[101, 102] Healthcare Java + XML Centralized PDA
[25, 26] Traffic C/C++ Centralized Hybrid
[108] Bookstore Linda Centralized -
[104] Elderly ALP - -
[33] Healthcare Java + CBR Centralized RFID+ZigBee
[118] - SOA Centralized -
[124] Traffic aDAPTS Distributed WSN
[5] Smart Home RIMER + RBI Centralized -
[32] Healthcare Java + CBR Centralized Mobile Phones
[59] E-commerce Java+Ag.Factory Centralized PDA
[34] Tracking Java Centralized PDA
[13] Traffic GAM Centralized Simulated

using the BDI model. The Jadex is one of those examples, which extended the original

Jade distribution with cognitive constructions. Another framework also based on BDI

agents, named Jason, emerges including an interpreter for AgentSpeak in Java. These

days, Java-based agent frameworks play an essential role in the development of MAS

because Java is still one of the most known languages for the development of software

systems and components.

These initial AmI systems using MAS looks like nowadays applications available in

smartphones that use sensors. These systems aid users by notifying about daily tasks even

when the user is not aware of them. That way, the independent Lifestyle Assistant [60]

monitors the behavior of health caregivers in emergency situations. The system was

developed using JADE, and it provides agents for device’s controllers, domain agents,

planners, and system management in a server-centered approach. Besides, a group of

agents is created for every human-assisted. The system was tested in real-world situations,

and each agent had from four to seven sensors. As discussed before, the number of sensors

can affect the performance of single agents significantly and generate undesired delays.

In comparison with later works developed in the same period, these works just changed

the programming language for an agent-oriented one. The centralized architecture is a

common characteristic during this time, and several simulated systems employing agents

were developed in a smart home domain.

There is a lightweight system for requesting cabs [81] that uses JADE-LEAP in PDA
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devices, and it uses agents running at computers. The main idea is that the agent is

responsible for requesting the cab using the PDA prototypes programmed with Jade. In

these prototypes, there are agents associated with every PDA, that has to communicate

with a centralized agent. The PDA agents are distributed in devices, but all other tech-

nologies are running centralized in a computer. In the same way, another work deals with

one agent for every device, service, or content in a restaurant negotiator scenario [77],

where every PDA is modeled as one or more agents, and the AmI system is composed

of an ad-hoc wireless network for communication. An embedded approach in real-time

using Jade for programming MAS for intelligent environments [58] maps each sensor and

actuator to agents in the high-level language, and there are six types of possible agents.

In fact, the number of agents would be the same as the number of sensors and actuators,

and they are not embedded in sensors.

Some works apply the agent approach in simulated smart homes [28, 8, 65, 115, 71,

72, 3]. A MAS [65] with context-aware uses communication, interaction protocols, and

the environment’s information, where agents’ task is to observe user’s actions, predict and

analyze the risk in executing the task. For this, sub-agents are receiving the simulated

sensors’ data, and transfer it to a super-agent connected with all sub-agents). However,

connecting a super agent to all sub-agents can generate delays, and the solution does

not provide an independent platform able to program MAS in different domains. These

works address issues in how managing resources using agents in simulated homes. The

interaction with simulated resources shows a direction that can help understand the beha-

vior of agents when they have to deal with a lot of perceptions and data coming from

sensors. Some BDI implementations have a costly process in reasoning with upcoming

beliefs and perceptions. Hence, approaches for filtering perceptions or specializing agents

can decrease the impact of this issue. Another interesting point is that these last three

works use JaCaMo [9] (which Jason is part of) as the development platform, showing a

direction of the use of the framework applied in real-world AmI systems.

3.2 Embedded Multi-agent Systems

In a scenario considering an AmI system, where real distributed and heterogeneous devices

are responsible for managing an entire environment pervasively, where they can enter or

leave this ambient in a scalable way, and devices should still act independently from the

technological architecture employed, embedded systems can help to provide autonomy to

devices regarding issues such as communication, embedded reasoning, and sensing and
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Table 3.2: A comparison of AmI systems after the AOPL emergence.
Work Domain Language Centralized Platform
[60] AAL Jade Centralized Sensors
[81] Vehicles Jade-Leap Centralized PDA
[77] Restaurant Jade Distributed WSN
[74] Bookshop Jade Centralized Bluetooth
[58] Smart Home Jade Centralized Arduino
[28] Smart Home LABView Simulated Simulated
[65] Smart Home - Simulated Simulated
[8] Smart Home Jadex Simulated Simulated
[115] Smart Home Jade Simulated Simulated

acting in dynamic environments.

Robotics is a research area, which has been exploiting the use of embedded sys-

tems. Basically, robots are autonomous entities endowed with sensors and actuators, and

some processing mechanism, including cognitive reasoning. Robot architectures deal with

platforms, sensors, actuators, programming language, and reasoning mechanisms. One

challenge is how to integrate these components in a way that a robot can deliberate to

perform a task without failing to accomplish its goal. The concept of a robot and agent

are quite similar, and several works try to provide cognitive reasoning for controlling ro-

bots integrating AOPL and hardware devices. Some of these approaches can be exploited

for the development of embedded systems in IoT Objects supported by MAS for AmI

systems in an IoT infrastructure.

Some of them exploit existent architectures and middleware to facilitate the commu-

nication between hardware and intelligent software. Some works try to embed the MAS

into robotic platforms in order to provide real autonomy to the robot, and others use a

central processing unit for controlling the robot from a distance. Applying MAS in robo-

tics is not a simple task and problems can arise because of the number of perceptions that

a robot has access in a real environment and some real-time constraints that a robotic

agent has to consider in response to a stimulus (acting in the environment). These issues

also have to be considered in IoT Objects in AmI systems. In Table 3.2, it is presented

some related work, which uses AOPL and architectures for facilitating the development

and construction of robotic agents.

There is a variant of 3APL [54] language for programming cognitive robots [35]. The

3APL architecture has constructions such as beliefs, goals, and actions. Besides, it has a

deliberative cycle that is similar to the Practical Reasoning System (also used in Jason).

The authors focused on the programming language, and they do not provide sufficient
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Table 3.3: A comparison of embedded systems using AOPL.
Related Work AOPL Middleware Platform Hybrid

[35] 3APL - - -
[56] Jason LeJOS Lego no
[80] CArtAgO Webots - no
[100] Jadex Stage/Player Pioneer-2DX no
[112] Jade LeJOS Lego no
[126] GOAL URBI NAO no
[6] Jason RxTx Arduino no
[121] PANGEA - Arduino no

[128, 78, 79] Jason ROS Turtlebots no
[27] Teleo-R ROS Lego no
[63] Jason Javino Arduino no

[89, 90] ARGO Javino Arduino + Raspberry no
[91] ARGO Javino Arduino + Galileo yes
[14] ARGO Javino Arduino + Galileo yes

information about the robot architecture and the communication between software agency

and hardware devices.

A Jason extension for implementing Lego agents [56] programmed in Jason can com-

municate with the Lego Mindstorm NXT Kit using a middleware named LeJOS for inte-

grating programs developed in Java and the Lego robot. The perception and the action

function of the reasoning cycle of Jason were modified to allow agents to control robots

using Lego. However, the communication between the Jason agent (hosted on a computer)

and the Lego robotic agent is done using serial communication or Bluetooth connections.

It does not truly embed the MAS, and it is dependent on the Lego Mindstorm Kit for

mounting the robot. Despite the use of a MAS for controlling the robot, it is not possible

to communicate with other Lego robots, limiting the approach when thinking in AmI

systems.

CArtAgO [98] is used as a functional layer for providing artifacts that represent sensors

and actuators of a robot, and Jason is used as the reasoning layer [80]. Despite using

artifacts, which is an interesting abstraction for representing sensors and actuators in a

MAS, because it provides a mechanism for agents to compete for resources and when

one agent is using an artifact, it is blocked to anyone else. However, the authors use a

simulator named Webots and do not embed the MAS. It is recommended for any approach

deployed in real-world to consider interactions with physical resources to deliver proper

management of AmI systems.

The Robot System Abstraction Layer is a generic middle layer for integrating MAS
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and robots [100]. The authors evaluate the middle layer developing an example connecting

a multi-robot system and a MAS using Jade. The middle layer takes significant participa-

tion in the reasoning through the use of behavioral components, and the communication

between the middle layer and the robots are done using Stage/Player middleware, which

is a network server for robot control. The Stage/Player uses TCP/IP connections to in-

teract with sensors and actuators and can run in some manufactured robots. However,

the Stage/Player does not communicate with microcontrollers directly, limiting the types

of hardware that can be employed. Besides, the proposed layer is not scalable. In the

same manner, an integration between Jade framework and Lego Mindstorm NXT uses the

LeJOS as middleware to obtain Multi-agent Robot Systems with limited resources [112].

The agents of the MAS are running on different computers, which communicates with

their respective robots using Bluetooth or serial port. Hence, the MAS is not embedded,

and the robot was mounted exclusively using Lego robots and components.

A cognitive robot control architecture [126] using the AOPL GOAL [53] and a de-

coupled architecture separating the hardware and the cognitive reasoning of the robot

is also presented. The URBI middleware is used for interfacing the hardware, and the

communication between the cognitive layer is done using TCP/IP connections. The robot

employed was the humanoid NAO, limiting the range of robotic applications in ubiquitous

and AmI domain for example.

There is an unmanned ground vehicle controlled by a MAS hosted on a computer

and programmed in Jason framework [6]. The agents are able to control the vehicle

using external actions programmed in Java language, and the commands are sent to the

hardware using radio transmitters on both sides (computer and microcontroller). A library

for locomotion considering the eccentricity of the Earth supports the agent reasoning

and positioning. The MAS is not embedded and depends on the radio transmitters for

communicating with the prototype. Besides, it only communicates with a single type of

microcontroller and a single board. In the same way, an AmI model supports residential

accidents and emergencies using embedded agents with sensors and actuators, which use

the Arduino and PANGEA as a platform for the development of intelligent agents [121].

For each Arduino, there is a specific controlling agent in the device and a high-level

agent replicated in case the former is not capable of processing (because of limitations of

Arduino).

Rason provides integration of Jason and the ROS middleware [96] for using high-

level programming languages to program robotic agents. The integration is done by
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modifying the original Jason distribution adding classes to embed Jason agents and ROS.

An execution control layer is responsible for some sophisticated algorithms, and Jason is

responsible for the decision-making process. The authors affirm that the perceptions burst

affects the reasoning cycle of the agent significantly, which compromises its performance

in dynamic environments. Similarly, some works [78, 128] focus in a scenario for fault

diagnosis for mobile robots, and it uses Turtlebots as robots, and they propose the use of

artifacts in CArtAgO.

An extension of Teleo-Reactive (TR) AOPL facilitates robotic implementations [27]

where TR can be used for getting percepts from sensors using ROS as middleware, and

robotic applications were developed using simulators and a Lego Mindstorm robot. A

platform for embedding MAS programmed in Jason uses a Raspberry Pi board to control

the basic functions of a ground vehicle prototype using external actions and middleware for

exchanging messages using serial communication named Javino [63]. The agents are not

able to directly control the devices becoming dependent on the simulated environment

programmed in Java. It only communicates with a single type of microcontroller and

several boards can be employed (but every agent’s action for controlling the devices has

to be programmed in Jason’s simulated environment).

Another prototype of an autonomous vehicle assembled with Arduino in a real-world

collision scenario uses ARGO agents [89] with its MAS embedded in a Raspberry Pi

connected to an Arduino and four ultrasonic sensors, four temperature sensors and four

luminosity sensors. The vehicle has to stop before it crashes into a wall. The use of

ARGO sounds promising, and the experiments show that using a combination of ARGO

abilities such as filtering perceptions could lead to acceptable performances in dynamic

scenarios. However, it does not employ a heterogeneous hardware architecture, and it does

not communicate with any other vehicle because there is no communication mechanism

in the prototype.

A generic domain approach for prototyping ubiquitous and embedded MAS is presen-

ted in two different domains using ARGO: a vehicle and a smart home [91]. Both of them

using two different types of hardware in the solution (it was employed Galileo gen 2 and

Arduino). A prototype of smart bathroom [14] uses an embedded MAS for controlling

several functions of a bathroom, including a safety functionality for users. The prototype

evolves the previous work, extending the number of sensors and a complex scenario that

is pervasively managed by embedded agents. The prototype uses an ATMEGA328 micro-

controller and Raspberry Pi for embedding the MAS. However, these prototypes cannot
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Table 3.4: A comparison of the IoT works employing agents.
Work Domain Language Architecture Platform
[64] WSN IntelHex One Agent/Device ATMEGAs
[106] Semantic Web Java+Jade Centralized Not Embedded
[82] AoT Conceptual Conceptual -
[99] WSN Protocols One Agent/Device Hybrid
[83] AoT SHOM Conceptual -
[107] IoT Jade One Agent/Device -
[52] IoT Eve+XML One Agent/Device Raspberry
[12] Smart Grid Javascript Decentralized Smartphone
[110] IoT Conceptual Decentralized Conceptual

communicate with other kind of vehicles or embedded devices, being considered a closed

environment.

3.3 IoT and Agents

With the emergence of IoT technologies, it became possible to enhance and interconnect

daily objects together in an open environment able to communicate over the Internet to

perform actions pervasively for helping humans being in different domains. The use of the

MAS approach in such a system occurs naturally because of the characteristics of agents.

Both the IoT and AmI system deal with pro-active and autonomous devices capable of

communication over a network to enhance an ambient with a certain degree of automation

or even intelligence. There are several works in the literature, which uses agents to deal

with some details of IoT such as collaboration, autonomy, and sense. A brief comparison

is shown in Table 3.3.

Mobile agents provide collaboration in an IoT and Wireless Sensor Network (WSN)

using an Application Programming Interface (API), and an architecture for providing

interoperability between heterogeneous devices, platforms and WSN nodes [64]. The

authors affirm that the composition model of agents facilitates the dynamic resource

configuration of the system at runtime. The agent architecture is generic considering

the programming language, and the system uses a table with some configurations that

an agent should have. The agents are embedded in devices, and the API provided is

responsible for allowing the interaction between devices and agent communication. In

fact, there is at most one agent for each device during a period. The agents are also able

to move from device to device using the HTTP protocol and from node to node in the

WSN using CoAP protocol.
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The authors provide a real prototype using smartphones and WSN nodes with em-

bedded ATMEGA1284P and ATMEGA2560 microcontrollers. No AOPL is used in the

solution (it uses IntelHex binary format), which makes it difficult for the agent community

to adopt the approach. The use of different microcontrollers in WSN nodes are interes-

ting since agents are unaware of them. The devices work as a spot where agents can

move to perform some operations, then every node and device in this IoT network is not

autonomously, depending on mobile agent occupancy. Besides, there is no mention of the

scalability of the network.

There is a semantic web-based approach that deals with the coordination of several

sensors, devices, and services in a ubiquitous environment for maximizing the user’s satis-

faction [106]. The agents are developed using an architecture named Coordination System

of Real-World Transaction Services (CONSORTS), which can deal with the meaning of

the resources present in a ubiquitous computing environment. CONSORT agents can ma-

nage devices, services, and users, coordinating all activities for greater user satisfaction.

It employs semantic web agents that perform the reading of the environment’s meta-data

autonomously that can understand the knowledge related to this information.

The design principle of CONSORTS named Physically Grounding represents a real-

world model with a spatiotemporal inference mechanism and a repository with sensors’

and users’ information. In the approach, agents are considered services, and they can

communicate using FIPA-ACL. Wrapper agents are responsible for controlling devices

using the same FIPA-ACL. The architecture CONSORTS was developed using Java and

Jade, and it presents an application in museum domain where agents are not effectively

embedded, and the whole ambient (including sensors, services, users and agents) are

considered a MAS. Besides, it does not deal with the entrance of new devices such as

sensors in an open environment or a communication mechanism between different devices,

for example.

The Agent of Things (AoT) [82] is a definition for devices or things that are managed

by a single agent in a ubiquitous computing and dynamic environments. The authors

suggest that in such kind of environments, the approach used in most of the solutions

to provide communication between devices are highly programmable and depends on a

previous interaction configuration. It is proposed a conceptual framework which considers

a direct physical interaction between IoT Objects using the hardware layer and using a

software layer where every agent represents an IoT Object. In the conceptual framework,

agents are situated and centralized in a software layer. Besides, there is no mention of
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how an AoT will deal with scalability in real-world scenarios. The Software-Hardware

Optimizer Model (SHOM) [83] identifies and analyses the integration of hardware and

software for the creation of AoT working only at the design level.

The use of MAS in IoT raises questions about communication and the use of protocols

such as CoAP, MQTT, and AMQP [99]. Hence, it proposes an architecture, where the

main objective is to implement functionalities for controlling access in an agent-based IoT.

The architecture uses a central server for controlling and coordinating communication

using the protocols cited before. It is also presented with a hybrid system containing

intelligent agents and IoT Objects in the traffic scenario in a WSN. There is a hierarchy

between agents responsible for reasoning and communication with the embedded agents

present in the IoT Objects. There is one embedded agent for each IoT Object, and the

authors do not consider explicit how agents are organized.

The Agent-based Cooperating So (ACOSO) is used as IoT middleware for providing

an IoT network where agents are devices, and the whole group of agents is a MAS [107].

The ACOSO supports the development of autonomous, interoperable, and cognitive MAS

in the level of things. Hence, every smart object can be abstracted to a cooperating agent

using Jade as AOPL. It provides a three-layered architecture: application; transport;

and net and physical. The agents can managing sensors and actuators; reasoning and

decision making using local and distributed databases; and a communication system for

the interaction between smart objects and other mechanisms.

There is a decentralized approach with a framework and an architecture for enginee-

ring IoT applications based on autonomous smart objects [52]. The authors defend that

traditional smart objects are data gathers and senders and the data is stored and pro-

cessed in central servers compromising the autonomy of them, mostly because the high

dependency on technologies to provide communication and reasoning in these systems.

These characteristics lead users to deal with device configuration issues in the network.

The proposed smart objects are capable of running even if remote technologies (i.e., ga-

teways) are not available. There is one agent for a smart object, and it is programmed

using XML technologies (it does not use AOPL). A prototype is presented using a web

platform named Eve agent platform composed of Raspberry Pi model B and B+ and Arch

Linux.

In the JavaScript Agent Machine (JAM) [12], agents can move from different JAM

nodes, and the agent’s behavior is modeled using dynamic Activity Transaction Graphs

(ATG). In this architecture, agents are part of a simulated smart grid of sensors, and
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tests were executed on a PC and smartphones. The architecture does not use any specific

AOPL, and the work is simulated. The capability of moving from one spot to another

can allow agents to move to another system to learn and exchange information. In the

proposed architecture, agents are not forbidden to move from one Smart Thing to another.

However, the mobility of agents is out of the scope of this thesis. Another work [110]

proposes the idea of decentralized MAS responsible for cognitive intelligence in distributed

computing for IoT directing the area for the development of genuinely autonomous smart

objects that are independent of infrastructure technologies.



Chapter 4

The Proposed Approach

In this chapter, it is presented the Internet of Smart Things (IoST), our architecture

for developing AmI systems using autonomous and embedded MAS as part of Smart

Things that expose resources in the cloud to be consumed by services and clients. In

Section 4.1, an overview of the architecture is presented. In Section 4.2 will be explained

our proposal of Smart Thing, which is independent of the system’s architecture to work

and a MAS controls it; In Section 4.3, the Resource Management Layer and its components

are presented; Finally, we present the IoST in Section 4.4.

4.1 Architecture Overview

In this section, we present an overview of the Resource Management Architecture (RMA),

an architecture that supports the virtualization of devices that act as IoT Objects, ex-

posing their sensors and actuators as resources to be accessed by clients that might be

interested in their functionalities. Hence, these IoT objects can send data from their

sensors to a cloud layer, and they also receive action commands to be executed in their

actuators. The data is maintained in the cloud using a model that works as a mediator

between IoT Objects and clients, isolating technical details from both of them and it

organizes how the access to IoT objects’ resources — sensors and actuators — is done.

This cloud module is named the Resource Management Layer (RML) in this thesis.

Users can possess and share IoT Objects in a physical environment that can be ex-

ploited by other clients — as users or services — interested in their resources, for tests

beds or any other purpose, or privately if the environment is confidential. Hence, some

users do not possess IoT objects, and they can access and use some of the public resources

available in an environment. As the architecture is not limited just to users, some clients
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could be services as well. The RML provides exposed services that can be exploited by

application developers and applications for accessing IoT Objects.

One of the available services is for agents in the Contextual Planning Layer (CPL)

[21, 22], which need to use resources as part of their reasoning and planning mechanisms.

These agents request the available resources, in a specific moment, to define the best

plan that would fit the needed situation. In the next moment, the agents must have the

assurance that when the plan is executing that the resources are still available for them.

Then, the RML has an exposed service to deal with those requests and needs coming from

contextual planning agents. Besides, users who own IoT Objects can manage their virtual

environments using a web solution, and users that do not own any IoT Object can only

visualize the publicly available ones using the web interface. The virtual environment is

a computing representation of a real environment where IoT Objects should be related to

facilitating their identification and localization in the AmI system.

Concerning the IoT Objects, they can be Things and Smart Things. The former one

is the traditional Thing from the IoT, and the latter is an enhanced Thing empowered

with a MAS responsible for adding more cognition to Things. Both of them share some

of the functional and non-functional attributes (see Sec. 4.2) that are required to achieve

the expected behavior in the architecture. They can connect in the RML to expose their

resources for clients, which will interact with them eventually, as stated before. The

Figure 4.1 shows the general structure and the organization of components in RMA.

From a bottom-up perspective of the architecture, we identified some issues to be

tackled in this thesis. Things are capable of controlling resources — sensors, and actu-

ators — in the architecture, but they have limited reasoning capability, autonomy, and

pro-activity. For this, IoT Objects employing embedded MAS named Smart Things are

introduced within the RMA. Using agents in IoT Objects, it is not a new approach and

has been explored during the last years, as stated in Chapter 3. However, the use of em-

bedded MAS for providing autonomy and independence to these Smart Things that can

interact with other Smart Things through exchanging plans, beliefs, and goals at runtime

with purposes of learning and coordination has not been explored.

Usually, architectures for the deployment of AmI solutions using IoT Objects are

technology dependent. It means that the design of IoT Objects is homogeneous, using

the same hardware and software technologies in their development. Besides, sometimes

IoT Objects can be bounded the central layer of the AmI system. The RMA is a layered

architecture that provides technology abstraction between its layers. Hence, it is possible
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to mix both traditional Things, and Smart Things or any other technology using the

Resource Management Layer (RML) because IoT Objects can run independently of the

RML and the communication between them uses a text-based protocol. Bluetooth devices

play an important role in such systems. However, the focus of this thesis is in IoT Objects

capable of hosting embedded systems with wired connections to sensors and actuators.

Figure 4.1: The three layer structure of the Resource Management Architecture (RMA).

The architecture provides low-coupled layers that separate concerns about IoT Ob-

jects, the RML, and applications used by clients. It means that technical details of IoT

Objects are transparent for clients accessing the RML, and IoT Objects are unaware of

who is accessing their resources. The RML plays a significant role in separating these

concerns and dealing with requests from both layers. In this thesis, IoT Objects are built

over considering the heterogeneity of hardware, which means they can employ different

technologies — controllers, boards, sensors, and actuators — in the same structure, and

different IoT Objects can employ different technologies as well. Hence, there is no need for

all IoT Objects to use the same hardware configuration in the architecture. Logically, IoT

Objects can also employ different technologies on top of them, including MAS controlling

Smart Things.

The RML organizes the data received from IoT Objects and the requests for consuming

data and using resources from clients, which access the cloud instance using available

applications. These applications can be from different technologies as well since this access

is done by exposed services that do not bound technologies used in applications and the

RML. The architecture works providing the virtualization of IoT Objects, and it manages

the availability of their resources by automating the registering process of IoT Objects
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in the RML, dealing with actions requests coming from clients, organizing the available

resources in environments that can be consulted, and using time-bounded functions to

avoid unlimited use of resources. Agents can also be clients of this architecture if they

need to make use of resources. Thus, when considering agent applications, the RMA is

used by a contextual planning mechanism of agents for guaranteeing concurrent access to

physical resources and the deployment of generated plans [20]. Besides, the architecture is

expansible, and new approaches can be added as services, sharing its core model [88, 87].

Exposing devices as a service that can be virtually consumed brings some advantages

since users do not need to have their own IoT Objects, reducing eventual costs in creating

new ones. In this way, users can provide a shareable resource component that can be

exploited for several purposes. The proposed architecture (Figure 4.1) is composed of

three different layers:

1. Device: in this layer, an IoT Object is a device able of (i) connecting and registering

in the Resource Management Layer when it starts. It is initially configured to be

part of a specific environment, and it informs all of its available resources; (ii) it

gathers data from all its resources, and it sends them to the RML and; (iii) it receives

from the RML actions that must be executed by the IoT Object’s actuators.

2. Resource Management: the RML is capable of maintaining updated informa-

tion from IoT Objects hosted in environments and running over an IoT middleware.

The Resource Management Component (RMC) manages (i) the registering process

of IoT Objects; (ii) the resources’ data updating process in the Virtualized Com-

ponents Database (VCDB), and; (iii) the actions that must be executed by IoT

Objects. Besides, it also capable of exposing services for providing access for cli-

ents to visualize environments and their resources, and for agents to access physical

resources.

3. Application: it is responsible for applications that clients access to interact with

IoT Objects and their environments, by visualizing data and sending action requests.

In this thesis, it is represented as services to access environments’ information,

including contextual planning agents, which uses physical resources’ information as

part of their reasoning. This layer helps in obtaining data from real sensors, and it

offers an interface for those who want to expose sensors as a service or to control

some of them.

These three layers help organize the flow of information throughout the architecture,
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and their main goal is to provide an uncoupled abstraction where IoT Objects are treated

independently from the clients that may want access to them. The RML plays an essential

role in managing resources and abstractions for both Application and Device layers since

it is responsible for ensuring that they do not need to know technological details from any

of them. The RML cares about how to address the right resource, which is part of an IoT

Object, and it is placed in a given environment, to a specific client that desires to make use

of it. For this, mechanisms for connecting at RML, data and IoT Object availability, the

autonomy of IoT Objects, and heterogeneity of hardware and systems should be provided

in each of these layers. The following sections will describe with details each one of these

mechanisms for each RMA’s layer.

4.2 From “Thing” to “Smart Thing”

Things in an AmI system are entities responsible for monitoring the environment, sharing

information, and communicating for aiding clients to achieve their goals. These Things

are endowed with sensors and actuators — resources — and an embedded system for

controlling its functionalities. However, they lack autonomy, pro-activity, and abilities for

cooperating with other devices to offer a better experience from the perspective of the

system’s users. These characteristics demand the use of technologies to provide certain

autonomy and cognition in the decision-making process, including social exchanges with

other entities. The agent approach, as discussed before, deals with autonomous, pro-

active, adaptable, and social agents situated in the same environment where they can

compete or work together for resources or achieving goals [131].

As stated in Chapter 3, there are numerous approaches, architectures, platforms, and

prototypes applied in different domains that adopt agents for providing intelligence for

their systems. Commonly, these approaches consider centralized reasoning where agents

are running at a server solution representing services and devices in the system, which

is not appropriated for our proposal. The system is highly dependent on the server,

and there is no autonomy since they work as simple master-slave devices depending on

agents situated outside the physical structure of the device. Following the evolution of

the networks and microprocessors technology, agents started to be effectively embedded

in devices providing the necessary autonomy to devices and systems started to consider

open environments exploring characteristics such as scalability, connectivity, and com-

munication. Yet, the approaches deal with the one-to-one relation between agents and

devices, When comparing the performance of one or more agents responsible for a single
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device, it is expected that later approach produces better results [86] once it is conside-

red the specialization of tasks distributed between several agents compared to one agent

responsible for all tasks.

Hence, in this thesis, we present the Smart Thing, an extended Thing from IoT ma-

naged by an embedded MAS capable of sensing and acting in an IoT based AmI System

for aiding people or other systems to perform activities pervasively. Despite the practical

employment of the agent approach in IoT, the main contribution is to consider an em-

bedded MAS for controlling the functionalities of each Smart Thing providing autonomy

and pro-activity for them. When employing a MAS as embedded system for a Thing ins-

tead of only one agent, the IoT Object should gain in performance and autonomy, since

a unique agent can be overloaded depending on the tasks to be performed, even if the

hardware technology is powerful enough to provide fast processing, parallel actions should

still limit the agent performance. This parallel behavior of goals should affect somehow

the Smart Things’ autonomy since it is related to the capacity of agents to make decisi-

ons and act pro-actively in the environment. Smart Things endowed with a MAS have

specialized agents performing different types of operations for orchestrating the internal

and external activities — hardware interfacing and message exchanging, respectively —

to deliver better performance of the Smart Thing including when occurring parallel goal

that should be tackled.

This variety of specialized agents avoid Smart Things to be highly dependent on

technologies that are not part of the Smart Thing’s architecture. For example, the absence

of a communication channel does not stop a Smart Thing of operating in any environment,

because the agents responsible for interfacing hardware can operate even if the agents

responsible for the communication do not reach any other Smart Thing. As stated before,

several approaches rely on third part processing to work correctly. This characteristic

makes the IoT Object highly dependent on a structure that is not part of its physical

embodiment to work correctly, and this relation most of the time works in a master-slave

way.

Besides, one of these specialized functions enables the MAS to communicate and

interact with other Smart Things. Usually, MAS in such kind of Smart Things are closed

systems — where agents cannot enter or leave to another system — and, consequently, no

agents of a closed MAS can communicate to any other agent except those from its system.

In Smart Thing, a specialized agent is responsible for all external communications with

other Smart Things or MAS without a physical body. This characteristic leads to benefits
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that can be exploited in the development of intelligent systems. First, these agents can

exchange plans, beliefs, goals, and intentions with other Smart Things at runtime, which

is a characteristic there is not performed by traditional Things. When a Thing is designed,

its programming remains the same until the system or itself stops. Some approaches use

rules that change the Thing behavior at runtime, but they do not learn new functions

at runtime. When agents exchange plans, it is possible for a Smart Thing to learn new

behaviors from another Smart Thing.

Traditionally, a Thing in IoT is a fixed or mobile device capable of sensing and interac-

ting in an environment, and it is assembled with an embedded system, which is responsible

for their functionalities by controlling existing sensors and actuators. The Smart Thing

extends the notion of Things by applying the usage of MAS as the embedded system in

such IoT Objects, allowing a MAS to make decisions based on their perceptions from

the environment. A Smart Thing has specialized functions for each agent present in the

system. The traditional approaches usually use one agent for each IoT Object, or it keeps

the MAS centralized in one server machine, for example, interacting with the IoT Objects

in a master-slave configuration. MAS brings more capability, pro-activity, and autonomy

in executing a goal than only one agent responsible for all activities of an IoT Object.

Besides, raw data can be treated or analyzed before being sent to somewhere. In

some Things, data is sent to a central solution, and after processing, it returns with some

actions to be performed by it. Smart Things can deal with these requests without server

interaction even if its necessary to obtain data from other IoT Objects once they are able

to communicate with other IoT Objects in the same IoT environment. Of course, there are

other solutions that try to do the same, but they do not employ an architecture that can

exchange information with other IoT Objects or cognitive models for the decision making,

for example. Their processing and operation rely on some technology informing them what

they should do, and the whole system is bounded someway. One of the characteristics

of Smart Things is to be autonomous and independent from any technology to perform

actions in a system.

A traditional Thing in IoT shares some attributes (functional and non-functional)

with the proposed Smart Things [122]. These concepts are based on the definition of

functional and non-functional attributes from the object-oriented approach. However,

based on the description of the Smart Thing, the following functional attributes can be

identified and improved in some cases in order to provide real embedded devices that are

able of acting in an AmI system:
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• Autonomy: every Smart Thing hosts a MAS providing autonomy, and it should

perform independently of any technology outside its architecture. The Smart Thing

should still perform its functionalities into any environment even if there is no

communication with other systems or IoT Objects. The mobile Smart Thing should

work properly if it has been moved to another environment or AmI system.

• Communicability: since the Smart Thing is an autonomous entity, it should be

able to communicate with other IoT Objects, including Smart Things themselves.

Otherwise, it will not be able to exploit the advantages of the development of a

network of Smart Things. Then, a communication infrastructure should be present

in the Smart Thing architecture.

• Connectivity: Smart Things can connect at an IoT based infrastructure. Hence, a

component for allowing connectivity in such kind of environments must be provided.

In this case, middleware for IoT plays an important role because they are constructed

to deal with several issues regarding connectivity and availability.

• Context-awareness: most devices act as data repeaters transmitting raw data

from sensors to a central computer where data processing takes place. In Smart

Things, this data processing can occur in the device without the obligation to send

it to a central part. They can process and use the result for decision making, or

they send this improved information to a server of the AmI system, which is not

necessarily a central server.

• Heterogeneity: every Smart Thing has hardware components such as microcon-

trollers, actuators, and sensors that are responsible for the interaction between the

Smart Thing and the real world. Hence, the Smart Thing should provide an uncou-

pled architecture for interfacing hardware components where a high-level program-

ming language and more specifically, a MAS should be able of controlling these

components. The type of hardware chosen should not interfere with the system

responsible for logically controlling the Smart Thing. The heterogeneity of micro-

controllers increases the range of possibilities for creating Smart Things. The use of

sensors and actuators are considered heterogeneous since they are often connected

to a microcontroller and does not matter what type it is.

• Self-configuration: Smart Things are capable of setting up itself in an AmI system

using the RMA. When a Smart Thing enters in the system, it presents its functio-

nalities. In contrast, the system informs the interesting parts of the presence of the
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new IoT Object, and it provides an interface for interacting with those IoT Objects.

Besides, the following non-functional attributes are also identified in the proposed

Smart Things:

• Adaptability: The Smart Thing must be applied in any domain. It means that

they cannot be coupled to the deployed solution. For example, the technology for

creating a Smart Thing for a smart home must be the same for creating one to traffic

domain. Besides, a Smart Thing of a smart home domain could be able to move

for an AmI system in traffic domain without any modification in its architecture or

programming.

• Computational Capacity: since An embedded MAS controls smart Things, they

must use platforms that are capable of storing and processing at least a complex

MAS. A Smart Thing can employ notebooks, tablets, computers of any size, and

any platform hosting an Operational System. In fact, there is not a size limit for

Smart Things.

• Interoperability: independently from the agent language used on top of devices,

it should be able to control Smart Things. Then, no matter what AOPL is being

used for the development of Smart Things, they must be able to communicate with

other IoT Objects, which do not have embedded MAS. In this case, they have

to communicate using the same protocol. Hence, mechanisms for interoperability

between systems must exist.

• Reliability: The Smart Thing must be reliable. It means that the hardware in-

terfaces, reasoning, and all components of a Smart Thing should work properly as

long as possible without crashing.

• Scalability: The Internet of Smart Things (IoST) must be scalable, allowing the

entrance of new Smart Things without losing performance or crashing the system.

Hence, every Smart Thing should be prepared to enter or leave the IoST.

Technologically speaking, a Smart Thing is equipped with microcontrollers, sensors,

and actuators connected to any computational platform with sufficient processing power

for hosting a MAS. Every Smart Thing is operated by an embedded MAS composed of

agents with different purposes. There are agents responsible for interfacing with hard-

ware devices; communicating with others IoT Objects; and traditional agents responsible
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for reasoning and internal actions. As said before, the idea is to specialize them for not

generating processing bottlenecks or undesirable delays. A specific agent named Commu-

nicator will be responsible for the identification and connection at RML, communicability,

and organizational issues of the Smart Thing in the system. Another one type named

Interface will be dedicated for interfacing sensors and actuators connected to a hardware

controller. Besides, there will be Standard agents without any specific ability that are

responsible for helping in the decision making the process. The Figure 4.2 depicts the

architecture of a Thing, a Smart Thing, and how they interact with the RML.

Figure 4.2: The architecture of a Thing and a Smart Thing interacting with the Resource
Management Layer (RML).

A Smart Thing, as any IoT Object in the RMA, will configure itself in the system

by informing its functionalities and purposes to the RML. Since it is autonomous, it

could work independently from any environment or even if it is not connected to the

RML. It is possible because the embedded MAS controls the architecture of the Smart

Thing, and it can still be working even if it is not connected to any network. However,

once connected, the IoT Objects can send data from sensors to the RML. In the case of

Things, it sends raw data to be stored by the RML and consumed by clients that must

use the raw data or treat them as well. In the case of Smart Things, it provides improved

context data because the MAS can use the raw data perceived from its sensors to reason

and, consequently, discover context. Besides, Things and Smart Things can interact with

each other for exchanging information, but Smart Things can communicate to exchange

beliefs, intentions, plans, and goals. Finally, clients can also send messages to the Things

and Smart Things in order to execute some actions, for example. For this, they use the

RML architecture, which abstracts the technological details from both clients and IoT
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Objects. In the next section, the RML and the Application layer of the RMA will be

explored.

4.3 The Resource Management Layer

The Resource Management Layer (RML) plays an essential role in the RMA because it

separates conceptually and technologically both Application and Device layers dealing

with all necessary mechanisms for managing IoT Objects connections and application

services. The RML is the core solution of the whole architecture, and it keeps structures

for the virtualization of IoT Objects — both Things and Smart Things — that will

be consumed by clients using one of the exposed services provided in the architecture.

As these services will access the RML concurrently, it needs to manage the resource

availability for certain services for avoiding conflicts during the service execution, specially

when contextual planning agents are accessing this layer since they need an assurance that

the requested resources for executing a plan will be still available after the agent’s planning

mechanism is over. Therefore, the RML provides an interface for the Contextual Planning

Layer (CPL) where agents can request for resources that are locked and allocated for a

slice of time while they are using them.

The RML is also responsible for exposing services for data visualization in the archi-

tecture. These data visualization services include mobile applications and web pages that

access the database of the virtualized components to retrieve information about environ-

ments and their IoT Objects. Hence, every IoT Object must be attached to a virtual

environment to facilitate the management of resources since clients may access informa-

tion considering environments, as CPL does, for example. Nevertheless, clients are not

limited to retrieve information, and they can send action commands using a visualization

service to interact with any public IoT Object registered in the RML. Besides, the RMA

architecture is extensible for other solutions and services that want to exploit and make

use of these functionalities explained before.

In order to clarify the approach, the RML architecture is divided into functionalities

for explaining all those expected attributes. The first component of the RMA is the RMC,

which manages virtualization and registration of physical environments and IoT Objects,

providing information on their availability and allocating them to a client when necessary.

The IoT Objects are dynamically registered in the RMC, at which point they inform all

of their existing functionalities and characteristics. Once an IoT Object is registered, it
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Figure 4.3: The components of the Resource Management Layer and its interfaces.

keeps updating the RMC with data gathered from its sensors. In case of disconnection,

the IoT Object is unregistered from this layer. The RMC structure is capable of different

mapping environments, each composed of IoT Objects and their capabilities. The RML

functionalities are described below:

• Environment Matching and Locking: When the RMC receives a requisition

for resource availability check, it compares the required resource sets with all avai-

lable environments to determine which of them can be used. It then replies to the

original request with the resource sets that can be provided. Also, the matching

environments are locked until an allocation request is received, or a timeout occurs.

Locking the IoT Objects guarantee the execution of a requisition from the CPL to

use a specific resource set. This process is necessary to give the CPL enough time

to evaluate plan feasibility, receiving confirmation from the agent on which plans

will be executed (and which resource sets will be effectively necessary).

• Allocation and Execution: The Allocation and Execution module unlocks all the

resources relative to the initial requisition that are no longer necessary, effectively

allocating only the necessary resource sets. In the case there are no requisitions for

allocating the locked environments after a specific time, a timeout process will occur

(and all the locked environments will be released).
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• Virtualized Components Database (VCDB): The IoT Objects are continually

sending data to this component, which always stores the last value for each mapped

sensor (discarding the old ones). It also maps and manages every resource indicating

if it is busy or not in order to avoid concurrency conflicts.

• Applications and Services: the RML allows several services to exist at the same

time accessing the IoT Objects’ resources registered at this layer. Despite the CPL

service for contextual planning agents, mobile applications, and a web page for

accessing the VCDB are interfaces for helping in data visualization. The RMC and

the VCBD are prepared for receiving new interfaces or services if it is necessary or

desired.

It is essential to observe that IoT Objects perform a dynamic configuration and update

process when they connect in the RML for the first time. At this point, a connected IoT

Object sends information about all its available functionalities (including all sensing and

actuators’ capabilities) and the current environmental conditions (perceived according to

its existing sensors). Once connected, the IoT Object keeps updating the RMC with data

gathered from sensors (once per device’s cycle). Then, it checks if there are messages

received from the RML and put them into a queue of actions to be executed at the end

of the cycle. This process of our approach is explained in the next section.

4.4 An Architecture for the Internet of Smart Things

In the RMA, a device is an IoT Object that dynamically registers itself in the RMC

by sending all its functionalities (available resources, data and action commands) and the

environment where it is situated. Once connected, the IoT Object receives a confirmation,

and it starts to send data gathered from its sensors directly to the RMC, which keeps the

most recent value available to be consumed by the Application layer. Besides, the IoT

Object deals with action commands coming from the RMC that need to be executed by

its actuators. The RMC is the main component in the RMA, and it maintains information

about IoT Objects and environments to be consumed as a service by other layers. It has a

mechanism for registering IoT Objects in given environments and storing their information

in the Virtualized Components Database (VCDB). The VCDB keeps updated the data

coming from IoT Objects by considering only the new values that have changed since

the last data message was received. Besides, the RML exposes services for providing
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visualization layers for mobile applications or allowing new technologies to interact and

access the VCDB. The detailed architecture is seen in Figure 4.4.

Figure 4.4: The Resource Management Architecture (RMA) overview.

The RMC also manages the actions that need to be executed by IoT Objects. Clients

may perform actions in IoT Objects using some available application accordingly to their

availability in the architecture since other clients can also be consuming resources from

IoT Objects at the same time. When a resource is a sensor, it is normal that more than

one client can access it at the same time. However, when it is an actuator, conflicts can

arise if two or more clients try to access it at the same time. Furthermore, the RMC

is responsible for forwarding the received action commands that need to be executed

by a specific IoT Object since it keeps all of them mapped and registered in the RML.

Applications exposed as services need to inform the action — such as turn something on

or off — that they want to perform followed by the resource identification.
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The RMC redirects the action directly to the specific IoT Object only in case it is

available. One may notice that technical information about IoT Objects’ hardware is

transparent to clients, that need to know the available commands of the IoT Object it

wants to interact. While one device is being used, the RMC blocks the access to this IoT

Object for other clients for avoiding conflicts in the lower layer. The respective resource

is unlocked after the action execution or after a timeout boundary. The RMC is a server-

side solution running an IoT middleware instance where the devices must connect to work

correctly. The middleware provides the connectivity and communicability necessary for

IoT Objects to interact with the RMC layer, and it should guarantee the scalability of

the system.

The Application layer is responsible for providing ways for clients to access the RML

and consume data, as stated before. These accesses are materialized as solutions that allow

both layers to communicate and exchange information. For facilitating the environments

managing, the Application layer provides access to all environments using a web dashboard

where users can create their public or private environments to share their own IoT Objects.

This dashboard shows all the public environments allowing users to select and see their

available information and subscribe to have access to a specific and personalized group

of information. In this thesis, an environment is defined by a logical representation of

a physical space where several IoT Objects can co-exist sharing information. Mobile

applications have the same functionalities of the web dashboard. However, depending

on the solution, personalized services can guarantee access to specific environments for

facilitating their remote controlling.

Agents also play an essential role as clients of the RMA. Contextual Planning agents [21,

22] use resources as part of the reasoning process of evaluating the feasibility of plans to

be performed in an AmI system. These agents need to know the availability and capa-

city of resources intended to be used, to define which plan is the best to be performed

in the environment. Hence, the agents inform the resources needed for the execution of

their goals, and the RMC responds, informing if there is any environment that matches

the initial requisition. If so, this environment and resources are blocked until the agents

decide which plan will be executed or a timeout boundary is reached. After that, the

agent allocates the resources until the execution of the demanded plan’s actions happens.

At the end of this process, the initial resources blocked are free for the next client in the

RMC.

Finally, the deployment of the architecture provides a decentralized AmI system,
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where IoT Objects are heterogeneous, autonomous, capable of entering and leaving the

system, and they have shareable resources that can be virtualized by a middle entity that

mediates the data access for other clients. As these IoT Objects considers the heteroge-

neity in both hardware and software, the use of MAS on top of that creates a specific type

of device named Smart Things. Then, in this thesis, the RMA is defined as the Internet

of Smart Things (IoST), an IoT network of interconnected Smart Things and Things for

supporting the development of AmI systems.



Chapter 5

The IoST Implementation

In this chapter, it is presented the implementation of all layers of RMA towards an

IoST architecture for the deployment of open and dynamic AmI systems supported by

embedded MAS as Smart Things. In order to accomplish this goal, it is essential to provide

ad-hoc devices capable of reasoning independently from the proposed architecture, ways

of communicating over the IoT network, and self-configurable mechanisms in the RMA.

It is discussed the technological issues of the overall architecture for the IoST, which is

an interconnected network of Smart Things and devices based on the IoT for supporting

the development of AmI systems. The architecture considers an open and dynamic envi-

ronment where devices using the agent approach (Smart Things) and other devices can

enter or leave anytime. This approach leads us to a decentralized architecture and collec-

tive reasoning since every embedded MAS is considered an autonomous and independent

thing capable of communicating and negotiating — or even acting as a group pursuing

common goals — with others devices. By independent, it means that Smart Things can

keep running and reasoning even if communication and interaction technologies stop. It

is important to remark that it is only possible in cases where the reasoning process does

not depend on information coming from other Smart Things. For example, if a Smart

Thing is responsible for identifying if a room is cold or warm, and it keeps the temperature

straight by controlling air-conditioners, the Smart Thing will still perform this operation

even if there is none communication with other layers.

5.1 The Structure of Things and Smart Things

In a common architectural approach for creating IoT and AmI systems is expected that on

a bottom layer several sensors and actuators are controlled by different microcontrollers,
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while on a middle layer, generic services for accessing sensors and actuators are implemen-

ted and provided for applications running on a top layer. Thus, it is essential to adopt

a structure for creating IoT Objects able of controlling microcontrollers with connected

sensors and actuators, that uses embedded systems with enough storage and processing

power for dealing with all functionalities of Things and Smart Things, and communica-

tion mechanisms to interact with other components. As the IoST is a layered architecture

where IoT Objects has to connect to a middle layer — the RML — for exposing their

resources, it is necessary to provide a structure that complies with these needs.

Hence, Things and Smart Things of IoST are built over a heterogeneous structure,

which can control different microcontrollers in the hardware layer. This structure could

employ microcontrollers of different types, each of them controlling sensors and actuators

in the same IoT Object. We consider being heterogeneous a structure that can employ dif-

ferent types of microcontrollers in the same or different IoT Objects, and the type chosen

do not interfere in the embedded system [91]. For this, a hardware interface is responsi-

ble for exchanging information between the hardware and the embedded system using a

protocol that isolates both technologies. The embedded system has similar functionalities

in both Things and Smart Things, it is responsible for capturing the sensors’ data, it

sends commands to be executed by actuators, and it deals with the communication and

connectivity in the RML. Moreover, Smart Things uses a MAS, as an embedded system,

responsible for controlling all hardware components providing autonomous and cognitive

reasoning. Besides, the MAS of a Smart Thing has specialized agents for performing

hardware interfacing and communication.

Thus, the structure of Things and Smart Things is modular, and it includes a mo-

dule for the embedded system and the MAS; one for the hardware components with all

microcontrollers, actuators, and sensors and; and the serial interface responsible for the

data transferring between software and hardware modules [63]. The modules are created

separately, and they communicate by using the hardware interface with a defined proto-

col. So, the embedded system and the MAS are independent of the hardware, and they

both can be modified or changed without interfering in each other. The microcontroller is

programmed to send all the sensors’ values using the hardware interface to the embedded

system, and all possible actions that can be executed are also planned. The embedded

system, some functions or agents, in case of MAS, are designed to interact with the mi-

crocontrollers sending commands to the hardware module for requesting data or execute

actions.
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Figure 5.1: The layered architecture representing both Things and Smart Things interfa-

cing hardware. The serial interface is common to both IoT Objects, and Things use an

embedded system while Smart Things use MAS.

The IoT Objects needs to execute Java-based application in the embedded system,

in case of Things, or any MAS framework based on Java, such as Jason [11] or Jade [7],

since the middleware employed in the RML and the hardware interface developed for IoT

Objects (Section 5.1.1) are Java-based libraries. In Smart Things, it is used the Jason

framework and hardware interface agents (Section 5.1.3.1), for controlling hardware’s

resources. In the context of software agents, the use Jason and hardware interfacing agents

provides a platform which supports the developer to program AmI Systems solutions

without concerns about integration issues between hardware and software because of the

independence between the layers. All perceptions are directly processed without the

intervention of the designer. Besides, the capability of using different microcontrollers in

the same project controlled by a MAS is the main contribution of using this approach [89].

IoT Objects can communicate with each other and connect to the RML to expose

their resources. For this, the ContextNet middleware works as the communication channel

between all the IoT Objects. The embedded system of a Thing employs a client instance

of the middleware to provide connectivity and communicability with the RML. It also

implements a cycle to synchronize the behavior of Things and to avoid undesired conflicts

in mounting, sending, and receiving messages. Besides, the RML is built over a core

instance of ContextNet where is kept the information of IoT Objects’ resources. In Smart

Things, another significant improvement is that a customized and specialized agent is

responsible for the communicability and connectivity in the RML. This type of agent has

a client instance of ContextNet inside its reasoning cycle, allowing to exchange beliefs,
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intentions, goals, and even plans at runtime. In the next sections, all the technical details

of implementing Things and Smart Things will be explained and described.

5.1.1 Hardware Interface

Both Things and Smart Things need to access hardware — sensors, and actuators — to

retrieve information or to perform some action in a given environment. Hardware-Software

Interfaces are technologies that deal with the communication and data transferring from

hardware devices to a software solution. As a Thing or a Smart Thing are composed

of hardware components interfaced by microcontrollers that send data to an embedded

system hosted in another tiny computer, it is essential to provide a bridge using these

kinds of interfaces for guaranteeing a proper communication between hardware devices.

Sometimes, middleware is also used for these purposes.

However, these components mentioned above are connected through serial wires limi-

ting the range of solutions that could be employed. For instance, Bluetooth and Wi-fi

connections are excluded from them. The wire connection is the most appropriated in-

terconnection in this case, since the components are nearby each other. Some of the

available solutions for this purpose do not deal with the duality hardware-software dedi-

cating efforts for only one side (hardware or high-level languages) such as RxTx Library

and JavaComm. There is middleware with fancy functions that provide communication

and data transferring along with different layers of abstraction in hardware development

such as [96]. However, they demand high computational processing for these kinds of

platform such as Things, and it could add serious delay for MAS considering a Smart

Thing.

Hence, we developed a double-sided and generic serial interface for data exchanging

and communication between microcontrollers and high-level languages that implements

a protocol with error detection and discard of messages ensuring that the receiver will

not accept messages with data loss. This protocol aims to guarantee that messages with

the loss of information arrive at the embedded system, avoiding unexpected crashing,

especially when talking about MAS. As the protocol considers only the message content

that is traveling between both sides, the technology employed in the low-level hardware

is not related to the high-level language employed in the embedded system. These cha-

racteristic endorses the functional attribute of Heterogeneity, and it helps in achieving

the non-functional attributes of Reliability, in exchanging messages from hardware to

software, and Adaptability as mentioned at Chapter 4.
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Before sending a message to the software, the microcontroller mounts the message,

calculating the content size that has to be sent. It adds a preamble for checking the

correctness of the message on the other side. Then, when the hardware side library sends

a message, the software side library receives and verifies the correctness of the content. If

there is no data loss during the transmission, the message is delivered. When the software

side library needs to send a message to the other side, it is necessary to identify the port

where the target device is connected.

When using this interface, the message follows the structure with three fields: Pre-

amble, composed by 2 bytes of a fixed value to identify a new message; Size that has 1

byte used to inform the size of the message sent and; the Message (up to 256 characters)

to be sent [63]. The two firsts fields, preamble, and size are both used to identify errors

that can occur because of collisions or information loss during the message transmission

using serial ports. At the end of the transmission, the receptor verifies if the preamble

received is the expected one. If it is, the receptor takes the field message, calculates its

size, and compares this result with the field size, which composes the message. If the

calculated value from the message is equal to the field size, there is no error, and the

receptor can use the message. Otherwise, if the received preamble is not the expected,

the protocol discards the message.

The double-sided interface is composed of a library for microcontrollers and another

library to be used at high-level languages. For now, it is provided libraries respectively

for ATMEGA and PIC controllers and for Java, which are the main technologies used in

Things and Smart Things. To perform serial communication between ATMEGA or PIC

microcontrollers and the Java programming language, the low-level library is a C-based

library (one for each microcontroller). The library was developed to work in controllers

with at least 256 bytes of RAM because the size of the message is up to 256 bytes. The

methods implemented for the low-level side are:

• sendMsg(String msg): This method sends a message to the software layer using

serial communication;

• availableMsg(): This method checks if exists messages coming from the software

layer. The method returns a boolean value informing whether there is a message

available or not;

• getMsg(): If there is a message available, this method is used to get the request

information sent by the software to perform some action using actuators or to gather
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perceptions.

The Java-side library offers four methods described as follows:

• sendCommand(String port, String msg): This method sends a message to the

hardware that is connected to the serial port informed and returns a boolean value

informing if the transmission occurred without a problem;

• requestData(String port, String msg): This method also receives as a para-

meter a message and the port to be used to send that message, but, unlike the

previous one, it expects the hardware to send back a response message that ne-

eds to be programmed in the hardware side. The method returns a boolean value

informing whether the hardware sends a response or not;

• listenHardware(String port): This method checks if exist any message sent by

the hardware in the informed port;

• getData(): This method is used to get the information sent by the hardware when

one of the previous methods inform that there is a message available.

Based on the libraries implementation, it is possible to employ the interface using

operation modes. Three operation modes can be programmed to determine the behavior

of the hardware concerning the software. The microcontroller works in a master-slave

way, receiving commands from the software side or sending asynchronous messages. The

operation modes for determining how the hardware will operate are:

• Request: it is a synchronized process of message exchanging where the software

requests all the sensors’ data from that specific microcontroller and the hardware

answer it with a formatted string containing the information. This mode guarantees

a response for every request made.

• Listening: it is an asynchronous process of exchanging messages where the micro-

controller is programmed to send the sensors’ data continuously, and the software

tries to reach this information when needed. In this case, there are no guarantees

that the message will arrive when it is needed.

• Send: it is responsible for receiving commands that will activate actuators. The

microcontroller is prepared to get the command and call a function specified by the

system designer.
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Despite the use of the interface in for creating Things and Smart Things, it was used in

several other domains such as prototypes for educational purposes [37, 42] and employing

MAS as well [86, 14, 69].

5.1.2 The Embedded System of a Thing

Things are IoT Objects composed of a tiny mobile board with Bluetooth and WiFi con-

nections with enough processing power for running an embedded system (e.g., Raspberry

Pi) connected to one or more microcontrollers using serial communication for accessing

sensors and actuators. The microcontroller is programmed in a loop for verifying if re-

quests are coming for gathering data or executing actions. If it is a request for gathering

data, it accesses all the sensors and mounts a string to be sent by serial communication

to the embedded system. Otherwise, the action received is verified, and executed if exists

an equivalent one expected, in the respective actuator. Actions, in this section, are any

commands that need to be executed by Things.

As stated before, the embedded system of a Thing deals with the connectivity and

communicability with the RML since it employs a client instance of ContextNet. It gathers

data from the sensors using the Hardware Interface and how to send the data acquired

to the RML. It also receives actions from clients or other IoT Objects to be executed

by actuators. These actions are redirected to the microcontroller using the Hardware

Interface library. All these steps happen during the execution of the cycle of the Thing

(Algorithm 1), which controls its behavior. First, there is a configuration file where the

developer of IoT Objects informs all functionalities that a Thing possesses at design time.

These functionalities are every resource, available actions that Users can interact with,

and where physically the resources are connected to since the Thing can employ more

than one microcontroller.

IoT Objects are capable of self-configuring in the RML, and the information contained

in the configuration file plays an essential role in this process. This file is processed

by the embedded system, which logically mounts the device in memory, and it sends

this information to the RML, which stores them in a specific database of virtualized

components, the VCDB. The RML answers it with an acknowledgment message. The

IoT Object cannot send any data to RML while it is not registered. It is important to

remark that this process is similar to Smart Things.

After the device is registered at the RML, the cycle synchronizes the reception of

data coming from sensors to be sent to the RML and the actions that need to be sent



5.1 The Structure of Things and Smart Things 58

Algoritmo 1 Embedded System’s Processing Cycle of Things.
1: procedure Cycle(configurationF ile)
2: mountDevice(configurationF ile)
3: intervalT ime← getIntervalT ime()
4: loop
5: if isRegistered() then
6: getheredData← dataFromSensors()
7: sendToRML(gatheredData)
8: wait(intervalT ime)
9: actions[]← getReceivedActions()

10: executeNextActions(actions[])
11: else
12: registerDevice()

and executed in the microcontroller because both cannot execute at the same time for

avoiding undesired conflicts. Hence, the actions received from the RML are put in a queue

of actions to be executed one step after the data from sensors are collected through serial

ports. The cycle also counts with an interval time between sending the gathered data to

RML and receiving actions that must be set by the IoT Developer at design time. It does

not have any practical influence in the process, but it works as a variable to control the

pace of the Thing, if necessary. The whole interaction between Device and Cloud can be

seen in Figure 5.2.

Figure 5.2: The activity diagram representing the message exchanging between Things
and RML.

As stated before, Things are capable of performing a self-configuration and registra-

tion at RML when it starts running, and there is a server available. For this, the Thing
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keeps an XML file describing all the available resources, commands, and also the server

configuration information. Once the file is processed, the embedded system’s cycle per-

forms everything automatically. Hence, the file must properly be filled in order to deliver

the best performance of the approach. The following information must be provided:

(i) Server: the gateway of the server — where the server instance of ContextNet is

installed — and the port must be provided to connect at RML. Besides, the time

interval of sending data to the server must be set.

(ii) Environment: for instance, it is necessary to inform in which environment the IoT

Object is inserted into since there is no automatic environment discovering a process,

or indoor/outdoor positioning system available. For this, the identification number

of the environment must be declared in the configuration file. The environment’s

identification is generated when Users register an environment in the Management

Dashboard system.

(iii) Resources: all the resources available must be mapped in the configuration file as

well. All the resources have the serial port where it is connected, its name, and a

non-mandatory description. If the resource is an actuator, it also has the available

execution commands (actions).

Finally, the embedded system uses a model composed by the Cycle class, which instan-

tiates an instance of ContextNet client (represented by the EmbeddedClient class) capable

of exchanging message with the RML. Besides, the EmbeddedClient is responsible for in-

terfacing hardware components, and it deals with a queue of actions received from RML

that has to be executed. The SerialCommunication and Action are the classes responsible

for the Hardware Interface implementation and the unit of action respectively.

Both Things and Smart Things shares some of the technological details for registe-

ring in the RML and interfacing hardware. The configuration file process, the hardware

interface, and the use of an instance of ContextNet clients are used together with agents.

Smart Things use embedded MAS, where there are specialized agents for each one of

these functions. Besides, Smart Things do not use a cycle, since every agent possesses

an associated reasoning cycle. In the next section, the implementation of MAS for Smart

Things will be described.
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5.1.3 The Embedded MAS of a Smart Thing

The main difference between a Thing and a Smart Thing is that the former one uses an

embedded system for controlling its functionalities, and to provide ways of controlling

the hardware for accessing data and actuators while the later one it is enhanced with an

embedded MAS for the same purpose adding autonomy and intelligence for such kind

of IoT Object. The advantages of employing MAS in Smart Things were discussed in

past chapters. This section intends to focus on the implementation of the technologies for

embedding MAS.

There are plenty of agent-oriented languages and frameworks for programming MAS [10]

but they do not provide internal hardware interfaces in their architectures leading to si-

tuations where external hardware interfaces must be used along with MAS. As these

interfaces are not specific for this purpose, they can introduce delays and errors, which

are undesired issues for any system, including MAS. Some of the agent-oriented langua-

ges are specific to programming robotics agents [53, 27, 35, 126] and they mainly focus

on creating and interfacing robots, which demand high-processing and robust solutions

in many different fields of computing. However, mainly, they consider it as one robotic

agent instead of a MAS capable of communicating with other devices in an AmI system

and, regarding communication, they need to make use of robotics middleware that is not

specific for IoT purposes.

So, to provide Smart Things for IoT and AmI systems, it is necessary to employ

an agent-oriented language capable of interfacing hardware information directly to the

internal structures of the language in order to gain performance in processing data as per-

ceptions and beliefs, once it is being used the BDI. Besides, it needs mechanisms to connect

to an IoT network, specifically to the RML, to expose their resources to be accessed by

clients, and ways of communicating with other Smart Things for transferring beliefs, go-

als, intentions and plans as part of the learning process inherent to Smart Things. There

is no such approach that considers both hardware interfacing and communication in the

same language.

Therefore, in order to provide those attributes for MAS, two new types of customized

agents were developed using the Jason framework. The Hardware Interfacing Agents are

capable of interfacing sensors and actuators using the double-sided hardware interface

described in section 5.1.1 in the agent’s reasoning cycle. All information that comes from

the interface is processed as perceptions in the agent’s internal belief base, and every

action that is needed to be executed is sent by the agent using their plans. This is a
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practical approach for both the programmer and the agent architecture since they do not

need to be aware of the technological details of interfacing hardware and the system gains

in performance and reliability because it is directly processed [57, 86].

The other type of customized agent is responsible for the communication with other

IoT Objects and the connectivity of the embedded MAS — consequently the Smart Thing

— in the IoST. Similarly, the reasoning cycle of the agent is extended with a client instance

of ContextNet, becoming possible to send and receive messages from the IoT network. In

the same way, it is also possible to connect and send information to the RML. This ex-

tended ability of communication allows a closed MAS — which does not allow interaction

with other agents except those from its system — to interact with other closed MAS. It

allows that two distinct and embedded system can exchange information without being

bounded technologically. Those both agents extensions endorse the functional attributes

of Autonomy, Communicability, and Connectivity described in Section 4. In the next

sections, we describe these customized agents in details.

5.1.3.1 Hardware Interfacing Agents

Differently from Things that uses an embedded system where the hardware interfacing

occurs inside a defined cycle, Smart Things uses a MAS composed of several agents with

their reasoning cycles that interacts for controlling all functionalities of the IoT Object.

The MAS is developed using Jason framework, which does not have an interface to capture

perceptions directly from the real world in its distribution. For this purpose, it was

necessary to create an extension of Jason’s agents capable of controlling resources such as

sensors and actuators connected to microcontrollers [89, 90].

This extension can capture perceptions and send them to a specialized type of agent,

which process all the information directly as beliefs in its belief base. In the same way,

the agents are able of executing actions using actuators without worrying about what

kind of hardware technology is being employed since the reasoning cycle of this — from

now on named Hardware Interfacing Agent — uses the Hardware Interface (Section 5.1.1)

instead of using the simulated environment provided by Jason in the capturing perceptions

step. It provides serial communication between microcontrollers and Jason using a basic

protocol to guarantee the correct information exchange between the transmitter and the

receiver.
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In order to create the Hardware Interfacing Agents, a customized and extended ar-

chitecture of the reasoning cycle of a traditional BDI agent of Jason is provided, and it

can be seen in Figure 5.3. There are two points where the cycle is modified from the

original one to allow the information to be processed as beliefs and to send action mes-

sages to activate any actuator. At the beginning of the reasoning cycle, it is performed

the act of perceiving the environment, at this moment, the Hardware Interface captures

the information coming from sensors to be processed in Belief Update Function (BUF).

However, before this, the information can be filtered by the agent. The filtering process

works in cases where there are many beliefs that can trigger undesirable events on that

occasion. Therefore, the Hardware Interface is also employed at the end of the reasoning

cycle in a step responsible for actions that the agent has to perform. It allows agents to

send actions to a specific microcontroller using the Hardware Interface directly from its

plans.

A Hardware Interface Agent has the abilities, at runtime, of selecting the microcon-

troller which it desires to control. In fact, a MAS using this type of agent can have many

microcontrollers, and the agent chooses which one it wants to control by pointing to the

serial port where it is connected; it decides whether or not to block the beliefs coming

from sensors releasing processing time for other tasks, for example; it filters undesirable

perceptions using perceptions filters created at design time; it limits the time interval

of perceiving the environment. Besides, a MAS can be composed of traditional Jason’s

agents and Hardware Interfacing Agents working simultaneously. The traditional agents

can perform plans and actions only in software level and communicate with other agents

in the system (including hardware interfacing agents).

The Hardware Interfacing Agent is a traditional agent with additional features, such

as the ability to communicate with the physical environment, perceive it, act upon it,

and filter information perceived from sensors connected to microcontrollers. However,

these agents only communicate with agents hosted in the same MAS. This implies that

if a MAS is embedded into a Smart Thing, which is programmed with only these two

types of agents, the communication will be limited, internally, to this device. In order

to facilitate the programming of these agents capable of interacting with hardware, the

Hardware Interfacing Agent has five internal actions that can be used:

1. .port(Port), where the agent chooses which device to control selecting the serial

port where the device is connected (e.g. .port(com8));

2. .percepts(open or block), where it is defined if the agent blocks or releases the
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Figure 5.3: The reasoning cycle of a Hardware Interfacing Agent [89].

flow of perceptions from the controller;

3. .limit(milliseconds), which defines for how long the environment should be per-

ceived;

4. .act(message), which sends a message through the serial port to execute an action

using an actuator and;

5. .filter(XML), which selects the XML file responsible for filtering perceptions.

Despite the use of The Hardware Interfacing Agents in Smart Things, this approach

has been used and tested in the prototyping of smart homes, autonomous vehicles, and

in bio-inspired solutions based on MAS. However, there is a lack of communicability if an

embedded MAS is employed only with Hardware Interfacing Agents. In the next section,

it will be described as another customized architecture of agents that will be responsible

for connectivity and communicability in the RML.

5.1.3.2 Communicability and Connectivity for Smart Things

Once there are Smart Things with the ability of interfacing hardware, now it is neces-

sary to provide communication abilities between different devices embedded with MAS
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for truly creating Smart Things. In some cases, the use of MAS brings some advantages

compared to IoT Objects that only work as data repeaters sending information from their

sensors to a server for discovering context about a situation and need stimulus from other

components to act upon the environment. Agents are pro-active, autonomous, and are

capable of reasoning about information from the environment that they are situated. In

this section, it is described the development of a new kind of agent named Communicator,

which is able of communicating with IoT Objects in the IoST and interacting with the

RML using ContextNet as a communication channel.

In order to allow the programming of agents that are able of communicating through

IoT, a special kind of agent named Communicator is developed. This agent is responsible

for exchanging messages with agents hosted in a different MAS or Smart Things. It

is important to remark that traditional agents can only communicate with agents from

their own MAS. Since the communication is done using ContexNet instances — both

in the IoT objects and RML — the Communicator agent must have a communication

mechanism for sending and receiving messages through the IoT. Thus, the reasoning cycle

of the Communicator agent was extended with a client instance of ContextNet middleware

embedded in its architecture (Figure 5.4).

The first modification happened at the beginning of the reasoning cycle where now

agents are capable of receiving messages from others IoT Objects using ContextNet Client

Library and messages coming from agents of its own MAS using the native checkMail

method. All messages received are processed to generate events and update the agent’s

Belief Base. The next modification was inserted at the end of the reasoning cycle after

the sendMsg step. At this moment, the agent can send a message to agents hosted in

its MAS or to another IoT Object in RML using ContextNet Client Lib. A message can

be sent to another Communicator agent or any IoT Object able of understanding the

message format since agents in Jason uses the KQML agent communication language. For

this, a mechanism for translating messages from agents to IoT Objects are necessary to

guarantee the interoperability between platforms. In the case of Smart Things, it is not

necessary since both use Jason, and they communicate using the same language.

Every Communicator agent must have a unique identification number provided by

ContextNet. This identification number guarantees that the Smart Thing will be uniquely

identified in the RML and the IoST. Hence, it leads to a MAS configuration where is

allowed just one Communicator agent per Smart Thing that will be responsible for all

communication with the IoST components. In order to send any message, the agent uses
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a new internal action named sendOut developed based on the original internal action

send from Jason. The major difference between them is that sendOut sends a message

to a Communicator agent in another MAS embedded in a Smart Thing or other IoT

Object with a translator mechanism. It works by sending a message to an addressee —

other IoT Object — using an illocutionary force. The available illocutionary forces to be

used along with Communicator agents in MAS are:

Figure 5.4: The Reasoning Cycle of a Communicator agent.

• achieve: sends a goal to be accomplished by the addressee. The content of the

message sent will be inserted in the base of intentions of the addressee agent.

• unachieve: drops a goal if it has not been reached yet. The content of the message

will be removed from the base of intentions of the addressee.

• tell: sends a belief of the sender to the addressee, which beliefs to be true. The

content of the message must be a literal, which represents a belief and will be

inserted into the belief base of the addressee.

• untell: the sender agent informs the addressee agent that the belief is no longer

to be believed. The content of the message is removed from the belief base of the

addressee.

• askHow: it asks the addressee if there is any implementation for a requested plan.

The addressee sends all the implementation available for the requested plan.
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• tellHow: sends the implementation of a plan to the addressee. The addressee does

not need to ask for the implementation first.

In order to integrate ContextNet into Jason architecture, some modifications were

performed. First of all, the Communicator class for creating an agent with the ability to

communicate was added as an agent’s customized architecture. This class has an attribute

commBridge, which is responsible for all the functions of sending and receiving messages

from ContextNet. This class also has a function for adding the received message from

ContextNet to the agent’s mailbox. The commBridge implements a process for mounting

and verifying a message to guarantee no losses of data in the communication based on a

protocol similar to the one from the Hardware Interface. A message is composed of the

following fields: a preamble to identify the origin of the message with a length of 4 bytes;

fields to identify the sender and the receiver of the message with 32 bytes each; a field to

identify the illocutionary force with 32 bytes; and a field with the message content with

256 bytes.

When the sender mounts the message, it calculates the size of all fields to identify the

beginning and the end of each field. After that, the preamble is added at the beginning of

the message to verify the origin of the message. The message is mounted adding all the

fields in a single string message that is sent by ContextNet. When the receiver receives

the message, the preamble is verified to guarantee the origin of the message. Then, all the

fields’ size is verified to guarantee no losses in the communication process. If everything is

right, the message is mounted and processed as Jason’s message. Otherwise, the message

is discarded. Figure 5.5 illustrates the steps of processing of a message by Jason.

The native TransitionSystem class of Jason was modified in the reasoning cycle func-

tion for allowing to check if exist messages to be read coming from ContextNet. The

existing messages are added to the mailbox of the agent to be processed as beliefs or

intentions depending on the illocutionary force related to the message, as explained be-

fore. After that, the agent can send a message using an internal action named .sendOut,

which uses the .commBridge to send a message using the ContextNet. Another internal

action named .setMyCommId is responsible for setting the identification string used by

ContextNet to identify uniquely a Smart Thing in the IoST. It is important to remark

that all modifications proposed do not interfere with the original Jason distribution nor

in Hardware Interfacing Agents.

As Smart Things are also components of IoST, they need to connect to the RML in

order to expose their resources. For this, there is necessary to provide three new internal
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Figure 5.5: The process of a ContextNet message in Jason.

actions to allow Smart Thing to connect and disconnect to the RML, and to send the

values from its resources to keep them updated in the RML. The internal action .connect

is responsible for connecting the Smart Thing in the given gateway where the RML is

hosted using the configuration file, the same used in Things, and the internal action

.disconnect removes all the related data of the Smart Thing from the RML. Finally, the

internal action .sendToCloud sends the data-informed in the configuration file to be stored

and updated in the RML.

It is important to remark that our approach allows designing Smart Things able to

interact with other IoT Objects (including another Smart Thing) using Communicator

agents, which can connect to the RML and communicate to others IoT Objects using the

ContextNet in the IoST. Besides, there is another type of agent responsible for controlling

sensors and actuators, presented in the past Section, that can be used along with Com-

municator ones. Therefore, for programming the embedded MAS for Smart Things, it

is possible to employ four types of agents:

• Standard: the standard agent can communicate with other agents of its MAS, but

it is not possible to communicate with agents from a different MAS, and it is not

able to control any hardware. It is the basic unit of a MAS. In the IoST architecture

it is equivalent to Traditional agents.

• Hardware Interfacing Agent: it is a customized architecture of agents capable

of controlling microcontrollers independently of its type and the domain applied in



5.2 The Resource Management Layer (RML) 68

the solution. These agents have all the abilities of a standard agent but are not able

to communicate with agents from a different MAS.

• Communicator: this agent can communicate with agents from a different MAS

or any IoT Object using ContextNet. It has the same abilities as a standard agent,

but it is not able of controlling hardware devices.

The ContextNet is a scalable middleware, which guarantees a significant number of

devices transmitting data at the same time. In this approach, we propose its use to

exploit some advantages of using a robust middleware for IoT applications along with a

well-known framework for agents solutions. Then, creating a customized architecture for

agents Communicator with a ContextNet instance embedded into its implementation

allows Smart Things to connect, interact to the IoST, and to communicate with other IoT

Objects, or even systems if they use the same language. If a system needs to communicate

with a Smart Thing, it should send messages in KQML format and translate the received

KQMLmessages. Several works deal with the interoperability between MAS [114, 44, 107].

Then, it is out of the scope of this thesis to propose mechanisms for processing messages

based on agent communication languages. In the next Section, the main components of

the RML and the IoST Clients of the Application Layer will be described.

5.2 The Resource Management Layer (RML)

In the IoST, it is possible to use mobile and fixed Things and Smart Things that can

enter or leave the system or that are fixed in the infrastructure of the environment and

cannot be moved without changing physical parts, such as electrical facilities. Physically,

these IoT Objects are composed of: the platform for the embedded system, which could be

any tiny computer, such as Raspberry Pi, or any computational platform able of hosting

an operational system; sensors and actuators; and microcontrollers. In this approach, we

assert that Smart Things can employ embedded MAS for managing sensors and actuators

in the AmI systems using Jason framework enhanced with agents responsible for interfa-

cing with hardware components and agents responsible for communication in the network

using an instance of ContextNet.

Basically, every IoT Object should connect to a server computer running a solution

developed over the ContextNet middleware for IoT in order to communicate with other
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IoT Objects and to make available its resources to be accessed by IoST Clients that can

be Clients, Services, or any other application, such as a Management Dashboard or a Web

System for data visualization. In this section, it is presented the implementation of the

Resource Management Layer (RML) considering technological components and how these

layers interact with the Device and Application layer. Figure 5.6 depicts an overview of

the IoST focusing in technological components. For both Device and RML, it is employed

the ContextNet middleware [48], which is an IoT middleware for context reasoning and

data sharing in a large scale environment. It was chosen because it is a context-providing

service for stationary and mobile networks, which already addresses data communication

issues such as fault tolerance, load balancing, and node disconnect support (handover).

It also uses the OMG DDS [93] protocol for handling messages between clients.

Figure 5.6: An overview of the proposed architecture.

The RML is a server instance of the ContextNet running a core system responsible

for the virtualization of environments, IoT Objects, and their available resources. The

IoT Objects registers at the RML informing their resources and environment where they

are situated. This process starts when the core system receives all the information of the
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IoT Object. Then, it registers the IoT Object at the system in the informed environment.

Afterward, it sends back a message to the IoT Object authorizing the beginning of sending

data from its resources. Once the IoT Objects start sending data, the core system registers

in VCDB (Figure 4.1) the values that have changed since the last message received, if the

data have not changed, there is no update of resources’ values in the VCBD.

For every IoT Object, some resources can be sensors or actuators. In the case of

sensors, if it is the first time that a new value of a resource is received, the system

inserts this new value at the VCDB. Otherwise, if the value has changed since the last

data reception, this new value is updated in VCBD. In the case of actuators, there is no

data to be stored, but it is kept the information about the availability of the resource.

For example, the system informs if a specific actuator is being used or it is free for

executing commands. The core system deals with commands requisitions coming from

the Application Layer (using web systems and services) to be sent and executed at IoT

Objects. The Application layer does not know technical details of hardware or even

in which IoT Object the command will be executed. The commands are specific for a

resource, and the core system avoids duplicated resources and commands names. Besides,

it also redirects a received command to the respective IoT Object by sending a message

using ContextNet, since it keeps the identification of each IoT Object registered in the

system.

The IoST considers a model where resources are part of devices — IoT objects in

IoST — situated in existing environments in the architecture. For instance, the environ-

ments have to be manually registered by the user to facilitate their management and for

security issues. The RML’s model is composed of the ResourceManagement class where

the ContextNet server is instantiated. Besides, it hosts a list of Environments with their

Devices, Resources, and Commands classes. This model is represented as a class diagram

(Figure 5.7) shared between the three layers. The classes that can be found in our solution

are described as follows:

• Action: the action that is executed at the low-level hardware in a device. Every

command sent by the Client and Cloud layers becomes an action in the Device

layer.

• Command: it is the representation of commands available to be executed if the re-

source is an actuator. Sensors do not have commands because they are data provi-

ders.
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Figure 5.7: The class diagram of the overall architecture comprising the Client, Cloud
and Device layers.

• Cycle: it is the functioning cycle of the embedded system hosted in devices. It is

responsible for synchronizing the device activities of sending data and executing

actions.

• Device: it is the device representation used in the Client, Cloud, and Device layers.

It keeps the identification, name, and description of a device, and it is composed of

resources.

• Embedded Client: it is the ContextNet client instance responsible for receiving mes-

sages from the Cloud layer and other clients, and sending the data from sensors to

the RML. It also maps the components of the configuration file into its respective

components.

• Environment: the virtual representation of environments in all layers. Each environ-

ment is composed of devices.

• Main: the main class that starts a device.

• Resource: it represents both sensors and actuators in all layers. The resources keep

information about the serial port where the resource is connected, the available

commands to be executed, and the availability of the resource.

• Resource Management: it is the main class of the cloud layer, and it is a server

instance of the ContextNet. It keeps a list of environments mapped and the devices

registered for each one. It is responsible for the process of registering and updating
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devices and resources. It also exposes the web servers and the interfaces to the

database.

• Serial Communication: the serial interface between the micro-controller and the

system hosted at devices.

Moreover, the RML deals with requisitions of IoST Clients that are Services. Depen-

ding on which service is being executed, the processing of the request will be different.

Hence, the core system of RML deals with processing registering IoT Objects, updating

and keeping data, and data access requests from IoST Clients. In the next sections, the

interface service with Contextual Planning Layer where agents can interact with the RML

is described and also the Management Dashboard for aiding IoST Users to manage their

IoT Objects is described.

5.2.1 Contextual Planning Layer as IoST Client

As stated before, web services can be exposed to extending the functionalities of the

RML. They facilitate how IoT Clients access the RML for retrieving data or requesting

any action execution, for example. A Web service is an interoperable interface using

the internet, which is used for machine-to-machine communication independently from

technologies such as devices, hardware, and programming languages. A Representatio-

nal State Transfer (REST) is a representational architecture that allows the creation of

well-defined interfaces [73]. Hence, for creating RESTful web services, it is used as an em-

bedded servlet container and a web server named Jetty [119]. The available web services

in the RML is a requisition service for contextual planning agents for getting information,

allocating, and using resources exposed by IoT Objects in the IoST.

Agents in the Contextual Planning Layer (CPL) need to consider resources as part of

their planning mechanisms. Hence, CPL accesses the RML using RESTful web services to

obtain information about environments and resources available for the execution of plans.

Based on the type of resources needed by the CPL, the RML performs a matching process

answering it with all available resources identifications that matched the requisition. At

this time, there is also a locking process for avoiding conflicts in executing actions when

two or more agents try to use the same resource. In the case of sensors, there is no need

for locking since one or more agents can consume the data without interfering the agents’

planning mechanism or the IoT Object functioning. However, every time an agent needs

to use a specific actuator, the core system locks this resource until the agent informs that
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is no longer using it, the action was performed, or a timeout boundary is reached. During

this process, the locked resource is unavailable for all IoT Clients.

The process starts by the CPL requesting the availability of specific resources by

sending to the RML a JSON file with all resources that agents need in an environment

for executing their plans. The RML answer it with another JSON file containing a list

with the identification of the environments able of attending the CPL’s request and it

blocks the specific resources and environments related until CPL decides which one will

be effectively used. This process is named Matching and Locking, and it is done by

accessing the VCDB for verifying the availability of the resources. Afterward, the RML

waits for a request for allocating a chosen environment — among the list sent previously

— and it also waits for a list of actions to be executed. If this request takes so long to

arrive at RML, a timeout process is performed, unlocking all environments and resources

from the initial request. The timeout process waits for one minute until it releases all

locked resources.

Otherwise, the CPL sends the identification of which environment and resources to

allocate. This process unlocks all environments and resources from the initial request

except the one chosen and allocated. Then, the actions are sent to be executed by IoT

Objects in a process named Allocation and Execution. When actions need to be executed,

the Allocation and Execution step sends the received actions to RMC, which is the core

system with the server instance of ContextNet, that redirects each action to the respective

IoT Objects. Then, when the actions were sent to the IoT Objects to be executed, all

resources are unlocked, and the CPL is informed.

5.2.2 Management Dashboard as IoST Client

The idea behind the Applications layer is to provide a layer capable of showing environ-

ments’ resources in any platform such as web pages, web services, or mobile applications.

Besides, it is responsible for providing some basic mechanisms that are not available in

previous layers such as environments creation for example. The Management Dashboard

is represented as a web page for showing all the IoT Objects related to environments and

some essential functions for interacting with their resources. An IoST Client is able of cre-

ating environments to virtually host his IoT Objects and to expose them to be consumed

by other IoST Clients. Besides, the actuators have commands that users can activate by

interacting with the Management Dashboard. The technologies employed are relational

databases, Java web pages, and Ajax.
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The Management Dashboard employs a web system capable of managing environ-

ments, showing their available resources, and it sends actions to IoT Objects. This web

system allows the IoST Clients who own IoT objects to interact with their specific resour-

ces. Besides, this dashboard works as a center of control where the Users can configure if

the data is public or private and to send actions privately. For now, other Clients are just

able to visualize the public data, and they are not allowed to send actions to IoT Objects.

One of the benefits that can be explored by using web systems is that users can

choose to follow some of the resources without the need to access the environments every

time that he needs to get those values. By adopting a publish and subscribe mechanism,

users can have access to resources’ values always that the core system perceives a change

in the RML. Moreover, users could set basic rules such as defining the desired value to

be announced on a mobile phone when reached, for example. Since these are simple

applications that use well-established technologies, these mechanisms are left as future

works.

In time, all existing layers can co-exist without interfering in each other since all

functions are managed by the RML, which centralizes and executes the requisitions from

other layers one by one. Hence, there are no possibilities of more than one request to

be executed at the same time. However, in practice, this issue is not perceptible by

IoST Users. Besides, some of the IoST Clients access the RML’s database — the VCDB

— directly, since they need to visualize the data stored of IoT Objects, which does not

interfere in RML’s core system at all.



Chapter 6

Experimentation

In this chapter, it is presented some experiments and a case study evaluation in the

assisted environment domain using the proposed RMA exploiting a software engineering-

based approach. Case studies are employed because they are suitable for the evaluation

of software engineering methods involving development, operation, maintenance, and its

artifacts [129].

6.1 Case Study

First, the IoST must be provided to allow the connection of devices. For this, a server

with an instance of ContextNet middleware was configured as well as all the network

requirements needed. ContextNet is responsible for the connectivity, communicability,

reliability, and scalability of the IoST. A Smart Thing is equipped with controllers, sen-

sors, and actuators connected to any computational platform with an operational system

and sufficient processing power for hosting a MAS. Tiny computers are commonly used

since they are small, hold serial ports, and on-board communication technologies. So,

we employed in the Smart Things ATMEGA328 controllers connected with temperature

and luminosity sensors and power plug where electricity can be turned on or off, and a

Raspberry Pi Zero for hosting the MAS. In the MAS was employed one Communicator

agent per device, one Interface agent per controller, and one Traditional agent for aiding

the other ones in the communication process.

In order to test the functional attributes of Smart Things, some devices were prepared

to attend our proof-of-concept. The autonomy of devices was tested by verifying if sensors

values were still being gathered when the server was disconnected. So, we assembled one

Smart Thing responsible for gathering data from a temperature sensor and depending



6.1 Case Study 76

on the temperature measured, it should turn on or off the plug where an air-conditioner

is connected. The Smart Thing should connect to the ContextNet and after that, the

server was disconnected. We repeated this ten times and the Smart Thing was able to

perform autonomously in all opportunities. Once the server is available, the connectivity

and communicability were possible to be tested. Thus, we tested the behavior of Smart

Things by sending messages with data from the luminosity sensor of one Smart Thing

to another one. This former one is responsible for executing a turn on action in its light

actuator based on the value received. There were no problems in the execution of these

tests.

The context-awareness was tested using the former test but changing the information

that was sent. Instead of sending just the raw information from luminosity sensor, the

Smart Thing was able to gather and process this information as dark or bright and it

sent this context for the second Smart Thing to execute the turn-on action. The hete-

rogeneity was tested by changing the controller from ATMEGA328 to Galileo Gen 2 in

the first Smart Thing. Again, it was not identified any problems during the execution

and everything went well. The objective of this proof-of-concept is to highlight that it

is possible to employ MAS in embedded systems to provide autonomous and pro-active

devices that are not dependable on central services to keep reasoning. Besides, the IoST

extends the Smart Thing reach, providing a layer with connectivity, scalability, and com-

munication. These tests aim to validate the main functionalities and the communication

between the layers of the approach.

Afterwards, a scenario was specified to show some of the behaviors of the RML.

The scenario appears in a hypothetical Smart City where the government has access

to a hospital where the RMA is available. Some rooms in the hospital building have

IoT Objects for controlling the temperature and luminosity (as sensors), and light lamps

of the room (as actuators), and other IoT Objects for measuring some of the patients’

information such as heartbeat frequency. Therefore, every room in the hospital endowed

with IoT Objects is considered an environment in the RMA and its IoT Objects’ resources

are available as a service for the board of directors, government and everyone interested

in them. It is important to remark that, even in this hypothetical scenario, there is no

real personal contact of patients available.

Based on this, two IoT Objects were prepared for a room named Room 403. Both

IoT Objects use a Raspberry Pi Zero connected to an Arduino board. The first IoT

Object uses temperature and luminosity sensors for the basic sensing of the room. The
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second one is an IoT Object with a light lamp connected to the Arduino working as

an actuator and informing if the lamps are on or off. Besides, simulated virtual IoT

Objects stress RMC functioning. For this, the serial interface between the embedded

system and the hardware were disabled, and several simulated resources are available for

each virtual IoT Object, which sends random data to the RML. So, one IoT Object for

monitoring the heartbeat frequency of a patient and IoT Objects identical to the real ones

above were simulated in each room. In general, 20 environments were prepared where the

environment Room 403 has two real IoT Objects and one simulated, and the other 19

have three simulated resources. The case study approach is divided into four steps: case

study design, preparation for data collecting, the data collecting, and data analysis. The

following Table 6.1 shows the details and aim of the descriptive case study.

Table 6.1: The Case Study Design
Design Description

Objective A descriptive analysis of the behavior of the RMA functioning.
Case The asynchronous process of transferring information from IoT Ob-

jects to the RML to be consumed by clients using web solutions.
Questions Does the IoT Object connects correctly to the RML? Does the

communication process between all layers works? Is the Application
layer showing the correct data?

Method Qualitative data analysis using negative case analysis and observa-
tion method.

Some tests were conducted trying to deny the research questions above. The prepara-

tion for the data collecting consisted in store both dynamic registration at the RMC and

the answer that IoT Objects receive before starting sending data from sensors. Afterward,

it is verified if these data arrives at all layers correctly by analyzing the transferring pro-

cess between hardware and IoT Object, IoT Object and RML, and RML and applications.

A string of data that comes out from the hardware is collected and compared if the data

read arrived correctly at the embedded system. Between Device and the Resource Ma-

nagement layers, all IoT Objects should keep sending data to be stored at the VCDB in

the RMC. Finally, between RML and Application layer, these same data should be read

by clients when data update occurs.

The data collecting and analysis were performed in an arithmetic progression from 1

to 20 devices. Firstly, the server instance was running properly to verify the effectiveness

of RMA, and then it was disabled. Once there is no server instance available, they should

not send data. Then, the data should be adequately stored and read by the Resource

Management and Application layers. Table 6.2 shows the resumed results from tests.
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Table 6.2: Data Collection and Analysis
Test Description Hit

(%)
Hardware Data is correctly transferred to the embedded system. 100
Connection
with Server

IoT Object registered at RMC and registered message
received.

100

Connection
without Ser-
ver

IoT Object registered at RMC and registered message
received.

0

Data Updated
and Stored

Data correctly stored at VCDB. 100

Data Read Data correctly read by applications. 100

The communication between hardware and the embedded system is done using a serial

interface, which guarantees no losses in the data transferring. None errors were observed

in this process. As expected, when the server instance is disabled, it is observed that

devices try to connect to the RML, but there is no response from the server, and the

IoT Object did not send any data. Otherwise, the IoT Object is registered and receives a

confirmation to start sending data to the RML. All IoT Objects work properly considering

an available server instance.

The most recent information available coming from IoT Objects is updated in the

VCDB. Considering that the VCDB uses a relational database, there are no big deals in

this process not even in the visualization of the IoT Objects by the Application layer.

This case study focused on observing the communication and the correctness of data

flowing through the architecture. More experiments focusing on performance and a proper

formalization were left for future efforts.

6.2 Performance Tests

In this section, we present some performance tests and discussions regarding some of the

IoST components. These tests aim to provide an understanding of the behavior of the

architecture during its execution. It is essential to verify the IoST processing capacity

when it deals with high numbers of IoT Objects. The cost of processing messages in

RML, the connection time of IoT Objects, and the time of sending messages will be

explored to determine whether or not to use the architecture. All tests were executed in

a regular machine, with an i5 processor of 1.7 GHz and 8Gb of RAM. Besides, we also

present some experiments regarding requisitions from CPL to the RML. For this, the first
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test considered how long it takes to IoT Objects to connect at RML. All IoT Objects

must connect to the RML to allow their data to be shared and consumed by services and

other clients. The connection to the RML is the first step that must be accomplished

by the IoT Objects before they start to send data. However, while a connection request

is sent, the RML can be treating other requisitions such as data processing, connection

and disconnection, and actions messages coming from several IoT Objects. Hence, we

simulated an AmI system with 30 IoT Objects and evaluated the time response for a

connection request. We captured the moment when the request is sent, and when each

IoT Object received the connection feedback. We also configured the interval of sending

messages with 1 second, and after that, up to 5 seconds. The results can be seen in plotted

graphics in Figure 6.1.

Figure 6.1: The relation between the connection time and IoT Objects considering the
time interval of sending messages from 1 to up 5 seconds, and 30 IoT Objects.

The first graphic shows that the connection time increases as the number of devices

grow. The determination coefficient corroborates the dependency between the connection

time in seconds and the number of IoT Objects. It is expected that as IoT Objects

register themselves, they start to send messages from one to one second, in the first

case. Hence, as the number of IoT Objects grows, the number of messages that should

be processed by the RML grows as well. Then, the RML deals with the message that

arrives first independently from which type it is. IoT Objects use the ContextNet as a

communication channel, and this SDDL middleware handles all messages. The RML does

not have access to how ContextNet stores and sorts incoming messages. If so, a priority

mechanism for such type of messages could be provided and tested.

Nevertheless, we explored varying the interval of sending messages from 2 to 5 seconds

to verify if the behavior holds. The results show that the connection time starts to increase

slowly as new IoT Objects connected to the RML. However, the connection time decreased

for a few IoT Objects connected. If the number of IoT Objects necessary for running an
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AmI system is too large, eventually the connection time will grow again. The connection

time does not interfere in the RML processing or capacity, but it adds an undesirable

waiting time that IoT Objects have to wait for being part of the system. Then, we run

a test considering a dedicated service for connecting IoT Objects apart from sending

messages to compare the performance and the response time. The results can be seen in

Figure 6.2.

Figure 6.2: The relation between the connection time and IoT Objects considering a
dedicated connection service, and 30 IoT Objects.

In this case, the connection time cost reduces and tends to stabilize. This variability

can be corroborated by measuring in seconds the standard deviation and average of the

connection time of all IoT Objects for this test. The average is 4.13 seconds, and the

standard deviation is 2.84 seconds. Comparing the same metrics for the previous tests,

when the interval time of sending messages is 1 second, we obtain an average of 24.57

seconds and a standard deviation of 13.09 seconds. In the other case, considering the

interval time of 5 seconds, the average is 0.73 second, and the standard deviation is 0.13

seconds. The results for the time interval of 5 seconds overcame the one with a dedicated

service for connection of IoT Objects. It was expected the opposite. However, we increased

the number of IoT Objects to 50 to analyze if these results still hold. Figure 6.3 shows

the results for the interval time of 1 and 5 seconds with 50 IoT Objects.

As expected and observed from past tests, when the number of IoT Objects increases

the connection time also increases. However, when the interval time of sending messages is

5 seconds, the connection time grows more than the similar one with 30 IoT Objects, and

it starts to increase from 30 to 50 IoT Objects slowly. It is essential to understand that

the time is growing because RML has to process every message that arrives. Hence, there

is a processing cost associated with the RML for every connection request. Understand
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Figure 6.3: The relation between the connection time and IoT Objects considering the
time interval of sending messages from 1 to up 5 seconds, and 50 IoT Objects.

the impact that this process cost has in the RML will help to set some limitations and

approaches to deal with a large number of IoT Objects. For this, the next test considered

the processing cost in the RML associated to the connection time spent for each IoT

Object. Then, it will make it possible to observe the impact that the RML effectively has

in the connection process. Figure 6.4 shows the processing cost and the connection time

with a dedicated service exclusive for connecting IoT Objects.

Figure 6.4: The relation between the connection time and IoT Objects considering the
time interval of sending messages from 1 to up 5 seconds, 50 IoT Objects, and the asso-
ciated RML processing cost.

It is possible to see that the processing cost of the RML is not the main cost in the

connection process of an IoT Object. Other costs might be associated such as the network

latency for example. However, it is essential to identify the capacity of RML and the cost

associated with it for every message that it has to process since the RML centralizes all

messages of IoT Objects connected to it. Then, we tested the processing capacity of RML

by sending plenty of messages from the 50 IoT Objects. Figure 6.5 shows the graphic

related to the referred test.
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Figure 6.5: The relation between the processing time in RML and the number of messages
received.

We configured two scenarios where 50 IoT Objects sent messages to the RML. In

the first case, the architecture processed near to 3500 messages, and in the second one,

it processed about 5000 messages. The interval time of messages sent is irrelevant for

the processing that occurs in the core application. It is possible to observe that there

is a higher cost associated with the connection of IoT Objects in the first 100 messages.

After that, there is no significant variation in message processing. The average time of

processing messages is 0.13 seconds, with a standard deviation time of 0.07 seconds.

Considering the average time of processing one message in the RML, it is possible to

define an upper limit of IoT Objects — if every IoT Object sends exactly one message

— that can be attended per second — or minute — using the hardware configuration for

these tests. Approximately, it is possible to attend eight messages per second and 480

messages per minute in the tested version of the RML. However, the hardware is too limi-

ted for this purpose, and several improvements can be applied in the RML programming

to reduce the processing time further. Anyhow, there will always be a processing limi-

tation when considering hardware technologies that will define the applicability of any

computer application, including the RML. This limitation creates a queue of messages
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in the ContextNet that still need to be sent to be processed by the RML. Moreover, if

the amount of queued messages grows more than the capacity of the RML of processing

messages, the system becomes infeasible.

To overcome this issue, several instances of the RML could run in different servers.

All components of RML can be replicated in other servers since the RML does not store

any data from IoT Objects. The VCDB is responsible for storing all the information

needed to the system works properly, and it can be accessed by other services as well. In

this way, the network infrastructure can grow whenever new IoT Devices enter the IoST,

or new virtual environments are created to host IoT Devices, and the current architecture

does not support new additions. However, in an ad hoc application focusing on a building

where the number of IoT Devices will not grow significantly during the time, the IoST

can deliver proper ambients and resources management.

6.3 CPL-RML Experiments

Here, it is presented some experiments considering the interaction between the RML and

CPL as a proof-of-concept for this service. These tests were conducted in collaboration

with the LIP6 laboratory at the Université Pierre et Marie Curie (Sorbonne UPMC).

The proof-of-concept was validated in conjunction with an application scenario. It is

important to remark that both layers were deployed to the Web as RESTful services.

The objective of these tests was to observe if the architecture would be able to properly

deal with requests from multiple agents and multiple resources at the same time. The

agent plans used in these experiments will not be detailed because they are part of the

planning mechanism provided by the CPL. The scenario contains multiple agents, with

multiple plans depending on common resources.

The proof-of-concept was evaluated with a simple scenario involving multiple agents.

Each agent possessed different plans, and some of them depended on physical resources.

We also considered different sets of resources grouped into five different environment

abstractions. Each of these environments possessed a limited capacity and a subset of the

following resources: thermostat, camera, illumination controls, and projector.

For this thesis, the scenario was executed in two different environmental conditions,

considering the presence of available resources. In the first context (1), each agent was

given a set of plans that did not contain resource-dependent elementary plans (in CPL).

In this context, we expected that only the plans depending on other constraints than
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resources would be unfeasible. This execution establishes a baseline for the next execution,

where resource dependency was added to the agent’s plans used in the previous execution.

The resources were not necessarily available in the environment. Thus, it is expected

that some of the otherwise feasible plans would be marked as unfeasible due to resource

constraints. Six different sets of environment configurations were used as requirements

(Table 6.3). Each environment configuration was designed to match none, one or multiple

of the environment abstractions in RML.

Table 6.3: The environment configuration.
Configuration Capacity Resources Matches

1 20 thermostat, light controls 1, 4
2 40 temperature 1
3 60 light controls -
4 20 camera 3
5 20 light controls 1, 2, 4, 5
6 20 temperature, computer -

Once defined the environment configurations, the agent’s plans were executed to verify

the resource allocation mechanism and its impact on plan feasibility. The test has objec-

tives into (i) availability (checking if a given environment set was available upon request),

(ii) concurrency (checking if the resource limit was observed, allowing plans depending

on equivalent environment configurations to be executed accordingly) and (iii) multiple

dependency (checking if plans depending on multiple environments could be fully or par-

tially executed, and how the RML would handle such situations). An example of test

cases executed according to these directives is shown in Table 6.3. Each case is related

to a given objective, the configuration sequence used (environments sequentially required

by agent plans), and the expected allocation of the available environments. Both confi-

guration sequences and the allocated environments refer to the tables previously shown.

The operator ”+” refers to multiple elements in the same requisition.

Table 6.4: The CPL-RML tests.
Objective Config. Sequence Alloc. Env.

1 Availability 3 -
2 Concurrency 4, 4, 1, 1, 1 3, -, 1, 4, -
3 Multiple Dependency 2+4, 2+4 1+3, -



Chapter 7

Final Remarks

It was presented a three-layer architecture for exposing IoT Objects that are able of

connecting and registering their resources (sensors and actuators) in a middle layer, which

makes all the public data available to be accessed by client applications. Hence, users can

create real environments with their own IoT Objects, and they could share it publicly

using the RMA. This architecture was named Internet of Smart Things (IoST), and it

comprises three layers: Device, Resource Management, and Application.

In the Device layer, the architecture employs Things and Smart Things, autono-

mous IoT Objects endowed with hardware resources and built using hardware platforms

enhanced with wi-fi connections, and they use a serial interface for communicating with

microcontrollers. These technologies provide the necessary autonomy, heterogeneity of

hardware employed, and communicability to the RML. Besides, Smart Things uses MAS

as the embedded system for controlling the Smart Things functionalities and reasoning.

The RML employs different technologies: the ContextNet middleware provides client

and server instances for both IoT Objects and the RML respectively, and it is used

in the architecture because of the middleware guarantees connectivity, communicability,

reliability, and scalability, using an industrial market standard protocol. The Application

layer offers solutions for the visualization of IoT objects that are situated in environments

that can be managed by the IoT Objects’ owner. Besides, it is possible to subscribe

individually to some resources that one might be interested in accessing. Moreover, the

IoST provides an architecture for exposing IoT Objects to be consumed by clients that

do not have access to these kinds of resources either for the cost or complexity of creating

from scratch an architecture for that purpose. One of the available application is directed

to CPL agents. The CPL adds the resource dependability in how to generate feasible

plans using the RML. Initially, the CPL did not use physically distributed resources as
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part of its planning mechanism.

In this thesis, it was also presented an extension of the agent-oriented framework Jason

to allow embedded MAS in Smart Things to communicate with other agents hosted and

embedded in different Smart Things. This extension provides a specific and new kind

of agent that can communicate with other agents using the ContextNet. In this type of

agents, the middleware is part of the reasoning cycle of the agent, which uses internal

actions for sending illocutionary messages to agents with the same ability and hosted in

a different MAS. Using ContextNet and Communicators agents, it is possible to an

embedded MAS to enter or leave an intelligent ambient or AmI system by connecting

and disconnecting from the IoST to interact with other devices without concerning about

modifications in the code of the MAS.

7.1 Published Works

This thesis generated several works that were published during the development of the

IoST. As the architecture is divided into three layers — Device, Cloud and Service —

there are published works considering technological issues for allowing the development of

embedded MAS systems in IoT devices, and how to use these devices in an architecture

exploiting advantages from the agent approach, AmI and IoT together to aid developers

and users in how to provide and use their services. In order to facilitate in visualizing

the published and submitted works, Figure 7.1 shows a timetable and dependency of all

published works related to the development of this thesis.

Starting from Smart Things, employ embedded MAS is necessary to provide autonomy

and pro-activity in these IoT devices. However, to pursue this goal, it was necessary to

allow the development of embedded agents and MAS for guaranteeing the management of

hardware platforms by such systems. Hence, a hardware interface was proposed to transfer

information between hardware and software in 2015. The work entitledA Robotic-agent

Platform For Embedding Software Agents using Raspberry Pi and Arduino

Boards [63] was published in the Workshop-Escola de Sistemas de Agentes, Seus Ambi-

entes e Aplicações in 2015. The same idea was extended for another type of controller in

the work A Middleware for Using PIC Microcontrollers and Jason Framework

for Programming Multi-Agent Systems [50] published in the I Workshop de Pes-

quisa em Computação dos Campos Gerais (WPCCG) in 2016. The hardware interface

allowed the development of a new kind of agent able to controlling hardware directly from
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Figure 7.1: The timeline of the published works related to this thesis: the gray squares
show the works developed at the beginning of the Ph.D. The yellow squares show the
works developed after professor Viterbo became the advisor. The green squares show the
works after professor Amal became the co-advisor.

its reasoning cycle. It was described in details in ARGO: A Customized Jason Ar-

chitecture for Programming Embedded Robotic Agents [90] it was selected to be

extended in ARGO: An Extended Jason Architecture that Facilitates Embed-

ded Robotic Agents Programming [89] published in the Lecture Notes in Computer

Science, v. 10093 both in 2016.

Even though they are not the focus of this thesis and they were developed before

the conception of the IoST architecture, they are essential to provide the basis of Smart

Things, and from this basis, it was possible to explore some abilities. The heteroge-

neity of controllers and the capability of being applied in any domain was exploited in

A Heterogeneous Architecture for Integrating Multi-Agent Systems in AmI

Systems [40] in The 30th International Conference on Software Engineering and Kno-

wledge Engineering in 2018 and Prototyping Ubiquitous Multi-Agent Systems:

A Generic Domain Approach with Jason [91] published in the Lecture Notes in

Computer Science, v. 10349 in the proceedings of International Conference on Practical

Applications of Agents and Multi-Agent Systems in 2017.

Besides, real prototypes were developed using the embedded approach such the one

described inManaging Natural Resources in a Smart Bathroom Using a Ubiqui-

tous Multi-Agent System. [14] published in the XI Workshop-Escola de Sistemas de

Agentes, seus Ambientes e Aplicações and selected as one of the best papers and extended
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in Applying Multi-Agent Systems in Prototyping: Programming Agents For

Controlling a Smart Bathroom Model With Hardware Limitations [69] in the

Revista Júnior de Iniciação Científica em Exatas e Engenharia in 2017.

The architecture considering the Cloud and Device layers where the ability of com-

municability and connectivity were inserted was explored in the An Architecture for

the Development of Ambient Intelligence Systems Managed by Embedded

Agents [88] published in the 30th International Conference on Software Engineering and

Knowledge Engineering in 2018, and in From Thing to Smart Thing: Towards An

Architecture for Agent-Based AmI Systems [92] published in the Proceedings of

the Agent and Multi-Agent Systems: Technology and Applications, 13th KES Internatio-

nal Conference in 2019.

The RML integrated to the CPL were proposed in Resource-dependent contex-

tual planning in AmI [20] published in the journal Procedia Computer Science, v. 151

in 2019. The work entitled A Resource Management Architecture For Exposing

Devices as a Service in the Internet of Things [87] was published in the The 31st

International Conference on Software Engineering and Knowledge Engineering in 2019,

and it was selected to be extended in the upcoming issue of the International Journal of

Software Engineering and Knowledge Engineering also in 2019.

7.2 Limitations

At this point, it is essential to remark some of the identified limitations of the presented

approach. The IoST is dependent on available gateways with a single RML instance

installed, and it is not prepared to be a distributed layer. It centralizes the flow of data

to a single point in the solution obligating the available IoT Objects to connect to it.

Engineering depends on a lot of effort from the designer of the IoST Object since he

needs to mount and configure all resources manually for the self-registering mechanism

works adequately.

The MAS of Smart Things must employ only one type of Communicator agent, which

can communicate and connect in the IoST. There are no practical limitations in using more

than one Communicator agent, but it is employed to identify the Smart Thing uniquely

in the IoST. If two or more Communicator agents were employed, the RML would not

deal with the ambiguity of which agent will be responsible for interacting with the IoST.

However, the Smart Thing will still be functional, and both of them could perform the
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communicability with other IoT Objects.

Another issue regarding the IoST Objects is that they need to know each other identi-

fication if they want to communicate. Even though the agents can introduce to each other

and exchange plans (including introducing plans), it is not possible to identify newcomer

IoT Objects without being prepared for that, and it depends on the IoST Designer to

provide such mechanisms. However, it is possible to adapt the RML to broadcast a list

of active IoST Objects to the interested Smart Thing.

7.3 Future Works

Concerning the agent approach, social organizations of Smart Things could represent an

advance in how to achieve collective goals in IoT. Social organizations consider groups of

agents organized for achieving common goals, with well-defined missions based on roles

that an agent could play depending on what is expected from it on the social organization,

associated mission or collective goal [55]. Distributed approaches using simulated agents

have been successfully employed during the past years exploring agent organizations and

social interaction among groups. However, the groups are composed of agents treated as

individual entities from a pre-existing MAS. Since a Smart Thing is a single and autono-

mous entity controlled by MAS, it can be itself part of a group along with other Smart

Thing to perform a collective behavior in the IoST. For applying social organizations of

Smart Things, the ContextNet already deals with a group of clients. This characteristic

could be explored or extended to allow the creation of organizations or society of Smart

Things.

From the data flowing in the architecture, it is interesting to explore machine and

stream learning technologies in this flow of data to identify patterns, behaviors, and

situations in an AmI system. We also aim to explore the ability to use rules in the

ContextNet middleware along with Things and Smart Things. Besides, we also aim to

create a testbed for automation of experiments and resource sharing, in order to assist in

the validation of new proposals involving IoT technologies and MAS.

In the engineering process of IoT Objects for the IoST, the designer of the device

should program how data is mounted and captured by the microcontroller and sent to the

embedded system. As future works, it is essential to create an automatized plug-and-play

way of configuring the device in low-level. Besides, as microcontrollers are connected to

the serial port of the tiny computer of the device, a similar process for the identification
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of serial ports by the embedded system is also interesting. These issues will facilitate

and automate in how the IoT Objects are programmed and mounted. The environment

has to be set manually at the device’s configuration file for security and control reasons.

Nevertheless, it is possible to identify and register autonomously the environment based

on access points or any other indoor localization system.
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