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Resumo

Neste trabalho, descrevemos uma abordagem baseada em imagem para estimar a velocidade da em-
barcação em movimento a partir dos rastros que permanecem na superfície da água. Apenas uma
imagem obtida com projeção em perspectiva foi usada para estimar a velocidade. As embarcações
que se movem em velocidade e direção constantes mostram um padrão familiar em forma de V, dife-
rindo apenas um do outro pelo comprimento de onda. Esse comprimento de onda está relacionado
à velocidade da embarcação. Na técnica proposta, conceitos de geometria projetiva, homografia
plana e restrições naturais foram utilizados para encontrar as cristas/vales dos vasos e, consequen-
temente, encontrar o comprimento de onda. Nós utilizamos imagens ópticas adquiridas por câmeras
convencionais.

Definimos uma região de interesse que continha o rastro deixada pela embarcação para calcular a
velocidade. Para localizar a região de interesse, escolhemosmanualmente uma posição na imagemde
entrada que representa um canto da região de interesse. A imagem de entrada também foi convertida
em uma imagem de borda para identificar melhor os rastros das embarcações. O algoritmo k-means
foi usado para agrupar o rastro em dois braços de onda (o padrão em forma de V da onda). Usamos
apenas o braço ondulado mais próximo da câmera e menos afetado pela turbulência para encontrar
o comprimento de onda. Usando o problema inverso das ondas de Kelvin, conseguimos estimar a
velocidade da embarcação.

Um modelo algorítmico foi desenvolvido para calcular a velocidade da embarcação usando ape-
nas uma imagem. Para validar o método proposto, usamos um radar projetado para monitorar
embarcações. Capturamos imagens da tela do radar com informações sobre a velocidade da embar-
cação e comparamos com o resultado do nosso método. As fotos dos navios e a tela do radar foram
tiradas ao mesmo tempo.

Neste trabalho, estudos estatísticos foram apresentados para determinar a confiabilidade da ve-
locidade obtida. Também foi apresentado um estudo sobre a propagação de erros ao longo do pro-
cesso de cálculo da velocidade. Experimentos mostram que o método proposto produz resultados
convincentes que concordam com os dados reais obtidos pelo radar.

Palavras-chave: Velocidade da embarcação, imagem óptica, geometria computacional, detecção de
objetos, homografia plana, geometria de cristas de navios.



Abstract

In this work, we describe an image-based approach to estimate the vessel’s speed in motion from the
wakes that remain on the water surface. Only one image obtained with perspective projection was
used to estimate speed. Vessels moving at constant speed and direction show a familiar V-shaped
pattern, differing only from each other by wavelength. This wavelength is related to vessel speed. In
the proposed technique, projective geometry concepts, planar homography, and natural constraints
were used to find the crests/troughs of the vessels and, consequently, find the wavelength. We use
optical images acquired by conventional cameras.

We defined a region of interest that contained the wake left by the ship to calculate the vessel
speed. To find the region of interest, we manually choose a position in the input image representing
a corner of the region of interest. The input image was also converted to an edge image to identify
the wakes of the vessels better. The k-means algorithm was used to group the wake into two wave
arms (the V-shaped pattern of the wave). We only use the wave arm closest to the camera and least
affected by turbulence to find the wavelength. Using the inverse problem of Kelvin waves, we were
able to estimate the vessel speed.

An algorithmic model was developed to calculate the vessel speed using only one image. To
validate the proposed method, we used a radar designed to monitor vessels. We captured images
from the radar screen with information on the vessel speed and compare it with the result of our
method. The pictures of the vessels and the radar screen were taken at the same time.

In this work, statistical studies were presented to determine the reliability of the obtained speed.
A study on the propagation of errors throughout the speed calculation process was also presented.
Experiments show that the proposed method produces convincing results that agree with the actual
data obtained by the radar.

Keywords: Vessel velocity, ship wakes, optical image, computational geometry, object detection,
planar homography, ship wake crests geometry.
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Chapter 1

Introduction

One of the most significant technological advances in the maritime industry is electronic navigation,

where Satellite images andGlobal Positioning System (GPS) have beenwidely used [Tetley e Calcutt 2001].

These systems, using a monitoring system, keep the pilot informed about the location and speed of

nearby vessels. Unfortunately, there is the possibility of difficulties in both transmission and recep-

tion. Also, many vessels are not equipped with such systems. As a result, eye contact still plays an

essential role in decision making, especially at close range.

The importance of visual contact must be taken into account while commercial, military, and

recreational navigation move toward the self-sailing ships era. According to specialists, driverless

technology will soon enter such major global industry. The problem is that radars and other sensors

may fail to detect stealth ships and non-metallic targets, like inflatable boats, because they reflect a

very low amount of radiation. As a result, computer vision techniques for estimating ships’ relative

location and velocity from visual clues will probably be an important component of self-sailing

systems.

In this manuscript, it is presented a method to calculate the speed of vessels directly from pers-

pective projection images acquired by conventional cameras (Figure 1.1). The method is based on

projective geometry and estimates the vessel speed using Kelvin’s ship-wave pattern [Maver Ksenija 2004].

The key observation is that sailing ships (even stealthy ones) leave traces of their movement in

the form of wake patterns on the surface of the water. In 1887, Lord Kelvin demonstrated that

speed of vessels could be estimated from the wakes left by vessels moving at a constant course and

speed [Thomson 1887]. These wakes have universal characteristics, e.g., the wakes left by a boat

are similar to the wakes left by a duck. The proposed method should attend the next restrictions to

estimate the vessel speed:

• Be able to estimate the vessel speed from a single image taken by a conventional camera;
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Vanishing
line ROI

Rectified Image ROI

Figure 1.1: Our approach takes the cusp wave arms, performs geometric rectification of the mean
water plane, and uses the distance between crests/troughs to estimate vessel speed.

• Be robust in the presence of different weather conditions and different ambient lighting;

• Be accurate and precise; and

• Do not require user intervention throughout the process.

Weather conditions and natural light are factors that hinder the process from detecting wakes

and consequently estimating the vessel speed. The proposedmethod uses Kelvin’s ship-wave pattern

to estimate vessel speed. If the wakes are weak or poorly visible, it will not be easy to estimate the

speed. In this work, the RCF algorithm was used to detect the edges image. RCF helps in detecting

the wakes left by the vessel, making the waves more visible. Besides, we manually choose one first

corner of the region of interest that contains the wake of the vessel, making the process not wholly

automatic.

Concepts of projective geometry and computer vision are introduced in Chapter 2. Related

works are shown in Chapter 3. The vanishing line estimation, which serves as the basis for removing

perspective distortion, is introduced in Chapter 4. Manual marking was used to indicate on of the

corners of the region of interest. The calculation of the remaining corners of the region of interest

was described in Chapter 5. In Chapter 7, we found the wave arms present in the region of interest.

In Chapter 6, we choose the wave closest to the observer and least affected by turbulence. Also, the

problem of projective ambiguity is discussed. The velocity is calculated by an inverse Kelvin wave

problem, once the two adjacent wave crests(or troughs) and their distance are known. Chapter 8

shows the propagation of errors along the computational chain. Chapter 9 presents the results and

statistical analysis. Finally, Chapter 10 presents conclusions and future work.
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1.1 Motivation

The advantages of the proposed approach are twofold. First, the use of single images allows the esti-

mation of the speed of nearby vessels from each frame of a video sequence independently. Estimate

velocity from motion in video sequences, on the other hand, would be a challenging task due to the

natural movement of both reference and target ships as a result of wave action. Second, ship wakes

are more distinct than the hulls and can be observed in optical images [Liu e Deng 2018].

Most of theworks that address the problem of estimating the vessel speed use Synthetic-Aperture

Radar (SAR) images [Pelich et al. 2016, Panico, Graziano e Renga 2017, Reggiannini e Bedini 2018,

Carona e Marques 2014] or use some navigation systems, e.g., GPS [Yang et al. 2019], and different

types of radars [Ao et al. 2018, Wang et al. 2019, Li et al. 2019]. No works were found that used a

single optical image to estimate the vessel speed. An analysis of the techniques that reflect state of

the art in this segment of computer vision is shown in Chapter 3.

Another motivation that was taken into account is the technological advancement regarding

autonomous navigation. In recent years, projects have been seen on the creation of autonomous

vessels [Hand, Bajpai], both for passenger and merchant ships. The proposed method is intended to

support the operation of autonomous vessels. As our method requires only an image taken from a

considerable height, there is the possibility of placing the camera in a lighthouse, and the estimated

velocity serves as relevant information for the autonomous vessel.

1.2 Research Objective

The main objective of this research is to estimate the vessel speed from a single perspective projec-

tion image, based on the wakes left by the vessel and information on Kelvin’s ship-wave pattern.

The sequence of process followed to achieve this goal is shown in Figure 1.2.

1.2.1 Secondary Objectives

In order for the speed to be estimated in the way it is being proposed, it is necessary to solve the

following problems:

• Identify the region of interest: The region of interest must contain the wake left by the

vessel;

• Identify the least two crests or troughs of the wave: These crests or troughs must be

present in the region of interest;
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Figure 1.2: Flowchart used in this manuscript to estimate the vessel speed. Each box represents a
chapter in this manuscript. The input image for the proposed method is an image containing one or
more vessels, where the trace left by it is visible, and the output is the vessel speed.

• Remove perspective distortion from images: Only the region of interest image will be

used to remove the projective distortion; and

• Estimate the vessel speed: Estimate speed from a single optical image.

Another challenge in this research is to identify the wavelength when another object occludes

it. In order for the wave and wavelength to be found, there must be no relatively large objects on

the wave. Also, finding the wave arms in lousy weather conditions and natural low light, i.e., when

it is night, is still a challenge in this research.
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1.2.2 Validation Approach

The proposed method validation was performed using a radar installed in the Instituto de Geociências

at Universidade Federal Fluminense (UFF) to measure the vessel speed. The radar had to be manually

maneuvered. The vessel images were taken manually and synchronized with the radar. For each

vessel image, one note of the radar content was also taken.

Statistical experiments to estimate the reliability of the calculated speeds were described in

Chapter 9. A study of the sources of error and the propagation of errors in the computational chain

was also presented. In this way, it is possible to estimate the error associated with a given speed,

which varies dynamically according to the capture conditions of the input images.

1.3 Contributions

The main contribution of this manuscript is a technique for computing vessel velocity as an inverse

Kelvin wave problem using data extracted from single optical images. We have performed expe-

riments on images of different moving vessels.The results comparing the speeds estimated by the

proposed method and the speeds obtained by the radar show the precision of the proposed method.

The vessels used for the experiments are passenger vessels that followed a service route through

Guanabara Bay, Niteroi, Rio de Janeiro. We believe that our approach can be applied not only by

self-sailing systems but also by surveillance drones and by smart lighthouses for monitoring of ship

traffic.



Chapter 2

Background

This chapter discusses the main concepts used throughout this dissertation. Section 2.1 presents

basic concepts of a digital image and a simple way to represent it mathematically. Section 2.2 shows

traditional methods and the use of Convolutional Neural Networks (CNNs) to detect edge-images.

Section 2.3 and 2.4 introduce concepts about the pinhole cameramodel and the intrinsic and extrinsic

parameters of the camera. Section 2.5 introduces the main concepts of projective geometry used in

this dissertation, i.e., concepts about vanishing points, vanishing lines, and homography. Finally,

Section 2.6 describes some of the main concepts of the Kelvin wave structure. The Kelvin’s waves

model is used to estimate the vessel speed.

2.1 Digital Image

A digital image is a two-dimensional representation of an image from a numerical matrix (Equation

2.1). Depending on whether the image resolution is fixed, it can be vector or raster. Raster images

have a finite set of digital values, called image elements or pixels [Gonzalez 2002].

Let fx,y represent a continuous image function of two continuous variables, x and y. We convert

this function into a digital image by sampling and quantization. Where, digitizing the coordinate

values is called sampling, and digitizing the amplitude values is called quantization [Gonzalez 2002].

Suppose that we sample the continuous image into a 2D array, fx,y , containing m rows and n co-

lumns, where x, y are discrete coordinates (x = 0, 1, 2, ...,m − 1 and y = 0, 1, 2, ..., n − 1). In
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(a) Image plotted as a surface. (b) Image displayed as a visual
intensity array.

Figure 2.1: Two basic ways to represent fx,y . (a) is a plot of the function, with two axes determining
spatial location and the third axis being the values of f (intensities) as a function of the two spatial
variables x and y. (b) It shows fx,y as it would appear on a monitor or photograph. Image extracted
from [Gonzalez 2002]

equation form, we write the representation of anm× n numerical array as:

fx,y =


f0,0 f0,1 . . . f0,n−1

f1,0 f1,1 . . . f1,n−1

...
...

...

fm−1,0 fm−1,1 . . . fm−1,n−1

 . (2.1)

A digital image can also be represented as [Schalkoff 1989]:

• A grayscale image: it is a monochromatic digital image with an intensity value per pixel.

• A multispectral image: it is an image that has a vector of values in each pixel. If the image is

a color image, then the vector has three elements.

• A binary image: it is a digital image where all pixel values are 0 or 1.

For the acquisition of digital images, the light source is an important parameter. The light reflects

the objects and sometimes passes through the objects to create an image, this information can be

captured by the human eye or by some sensor [Gonzalez 2002].

2.2 Edge Detection

Object boundaries often generate abrupt changes in brightness: a light object may be on a dark

background, or a dark object may be on a light background [Forsyth 2013]. These sudden changes
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in brightness can be quite distinctive. Points in the image where brightness changes particularly

sharply are often called edges or edge points [Forsyth 2013].

Edge detection can be viewed as a method for extracting visually salient edges. It is possi-

ble to differentiate two types of edges, edges with ideal contour and edges with noisy contour

[Gonzalez 2002]. An ideal contour border has two regions with different intensities on its borders,

where there is an abrupt or smooth transition, but well defined. A border with a noisy contour is

due to the lack of uniformity of the material. Edge detection is also used for object detection ap-

plications [Ullman e Basri 1991, Ferrari et al. 2008], and image segmentation [Arbelaez et al. 2014,

Cheng et al. 2016].

Traditionalmethods extract local signals of brightness, color, gradient, and texture [Forsyth 2013].

Detecting changes in intensity for the purpose of finding edges can be accomplished using first- or

second-order derivatives [Gonzalez 2002]. Differential operators most used for edge detection are

[Forsyth 2013]:

• Square gradient: Uses first-order derivatives, it is represented as a crest of height proportional

to the square of the difference in intensity at the edge, linked in Sobel operator; and

• Laplacian: Uses second-order derivatives, it is represented as two parallel crests of opposite

polarities on each side of the edge, like in the Zero-crossing [Mazeika e Draudviliene 2010]

method.

The variation of the intensities, using the gradient, is a reasonable approach used to locate the

edges. An advantage of using the image gradient is its easy calculation, and the problem is that it

increases noise.

Among the pioneer algorithms that mainly focus on the use of intensity and color gradients,

we have Canny [Canny 1986]. The Canny edge detector is a multi-stage algorithm to detect a wide

range of edges in images, possessing good detection, good location, and minimal response.

Although these methods are shown to be promising in some cases, these early methods are

usually not accurate enough for real-life applications [Liu et al. 2019].

2.2.1 Deep Learning Based Algorithms

Algorithms based on deep learning have made great advances in many computer vision tasks. Re-

cently, Xie et al. [Xie e Tu 2017] developed an efficient and accurate edge detector, Holistically

Nested Edge Detection (HED), which performs training and prediction of an image to image. Xu et

al. [Xu et al. 2018] introduced a deep hierarchical model to merge representations of learned edges
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Figure 2.2: Some examples of RCF. The images were taken from the Instituto de Computação of the
Universidade Federal Fluminense, facing the entrance of the Guanabara Bay. The four images were
taken at a resolution of 6000× 4000 pixels. The two images in the first column are cropped images,
having a size of 800× 600 pixels each.

at different scales solidly. These methods generally use the last convolutional layer characteristics,

ignoring the intermediate convolutional layers, remembering that the intermediate convolutional

layers have finer details.

Currently, Richer Convolutional Features (RCF) [Liu et al. 2019] is state of the art in edge detec-

tion. RCF proposes a solution using a CNN, inspired by the VGG-16 network [Zhang et al. 2016],

with the HED architecture. RCF explores multiscale, taking the average of the results in pyramids of

images. It also explores multilevel information, considering intermediate results of VGG-16 stages

in data fusion. It introduces a new loss function, where they consider the edge pixels that were la-

beled by annotators as positive samples and the pixels that no annotators labeled as negative. They

also ignore border pixels with confusing attributes labeled by annotators.

In this work, we use RCF to detect the edges of the input image. The edge image helps us in

the process of wave arms detection present in the wake left by the vessel. Figure 2.2 shows some

examples of RCF.

2.3 The Pinhole Camera Model

The pinhole camera model captures the relationship between an x′ point in the image with the

position in the world X′. The pinhole camera model aims to create a mathematical model of the

image creation process [Forsyth 2013], where the image (2D plane) is created by the rays from the

object to the camera’s center of projection. The rays of the object pass through the hole of the

pinhole camera. Figure 2.3 illustrates the pinhole camera model, where O is the center of projection
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Figure 2.3: Pinhole camera model: O is the camera’s projection center; X′ is a point in 3D space,
projected at point x′ on the image plane; and o is the main point and origin of the image coordinate
system. The focal length f is calculated between the distance from O to o.

of the camera and also the coordinate origin of the 3D space. The camera does not need to be

positioned at the origin of the World Coordinate System. In the model, point X′ = (XX′, YX′, ZX′)T

in 3D space is projected to point x′ = (xx′, yx′, zx′)
T on the image plane. Where x′ is calculated by

the intersection of the image plane and the straight line that passes throughO and X′. The principal

point o is the origin of the image coordinate system, also known as the principal point, calculated

by the intersection between the Z-axis and the image plane.

Using similar triangles, x′ = (
fXX′
ZX′

,
fYX′
ZX′

, f)T can be calculated, where f is the focal distance

calculated by the difference of the Z coordinates between O and o. When the distance between the

image plane and the projection center are at a finite distance, the mapping of the scene is done by

perspective projection. In the perspective projection, objects farther from the distance from O are

seen as smaller than objects closer to O, these objects being of equal size.

2.4 Camera Parameters

A camera is the mapping between the 3D world and a 2D image [Hartley e Zisserman 2004]. A

camera has two sets of parameters, the intrinsic parameters, and the extrinsic parameters.

Intrinsic parameters are those that define the internal geometry and optics of the camera. These

determine how the camera projects the points of the 3Dworld to the 2D image plane, being constant

as long as the characteristics and relative positions between the optics and the image sensor do not
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vary. These parameters make up the matrix K:

K =


fx s ox

0 fy oy

0 0 1

 , (2.2)

where fx = fmx, fy = fmy , f is the focal length,mx andmy are the ratios between the sensor and

the image measurements, s is the coefficient that defines the angle between the x and y-axis of the

pixels, ox and oy are the coordinates of the principal point o.

The external parameters of the camera are those that define the position and orientation of the

camera reference frame with respect to the real world, that is, they give the external orientation of

the camera, and such parameters are:

• Translation Vector~tT : Vector that determines the location of the optical center of the camera

(O) with respect to the axes of the real world ; and

• Rotation Matrix R: 3× 3 Matrix that relates the rotation of the camera position with respect

to the axis of the real world.

The following is the relationship between a 3D point X′ and its projection x′ on the image:

x′ = PX′, (2.3)

where P = K[R|~tT ] is the projection matrix.

In the case of real cameras approaching the pinhole model (see Figure 2.3), the intrinsic parame-

ters can be obtained by consulting the documentation provided by the manufacturers of the camera

and the lens used. If this information is not available, it is possible to use a camera calibration

process.

2.5 Projective Geometry

Projective geometry 2D is the study of the properties of the P2 projective plane that are invariable

under a group of transformations known as projectivities. Projective Geometry enables the design

of approaches to manipulate 2D projections of 3D objects. The projective space has more points

than the Euclidean space, for a given dimension, allowing geometric transformations that take extra

points, called points at infinity, into Euclidean points, and vice versa. In this mode, objects at infinity

can be represented and manipulated with projective geometry [Hartley e Zisserman 2004].
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In standard Euclidean space, using column vector notation, we represent a 2D point x as:

x =

(
xx

yx

)
, (2.4)

However, for homogeneous coordinates, we add an extra dimension to the vector, with an entry of

1. Also, we can multiply the entire new vector by an arbitrary scaling factor non-zero k:

x =


x

y

1

 .
=


kx

ky

k

 . (2.5)

A point x = (x, y, 1)T lies on a line l = (a, b, c)T if and only if ax + by + c = 0. One way

to represent this is by writing as an inner product of vectors (x, y, 1)(a, b, c)T = (x, y, 1)l = 0,

where the points can be represented in homogeneous coordinates. We can say that the line is also

in homogeneous coordinates.

Hartley and Zisserman [Hartley e Zisserman 2004] showbasic properties of projective geometry

on points and lines:

• The intersection of two lines l = (a, b, c)T and l′ = (a′, b′, c′)T at a point x = l × l′ is given

by the cross-product of l and l′.

• The line l through two points x and x′ is given by the cross-product l = x× x′.

• The basic incidence equation lTx = 0 for line and point is symmetric, since lTx = 0 implies

xlT = 0, in which the positions of line and point are swapped. This is known as the Duality

principle.

2.5.1 Vanishing Points and Vanishing Lines

In perspective projection images, all parallel lines meet at a single point. This point is called the va-

nishing point. Vanishing points are often outside the image boundary. Given parallel lines, the va-

nishing points can fall to infinity. The points, in homogeneous coordinates, x′ = (xx′, yx′, wx′)
T with

last coordinate wx′ = 0 are known as ideal points, or points at infinity [Hartley e Zisserman 2004].

Parallel lines that are not orthogonal to the optical axis meet at a vanishing point. Two sets of

parallel lines on the ground plane will give two vanishing points. The vanishing line is formed by

joining these two points (Figure 2.4). The vanishing line is also represented as the intersection of two

parallel planes in a plane at infinity (πππ∞). πππ∞ is a fixed plane under the projective transformation

H, where H is considered an affinity (see Section 2.5.2).
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l

v1 v2

π

Figure 2.4: The two sets of parallel lines on the scene plane πππ converge to the vanishing points v1
and v2 in the image. The line l through v1 and v2 is the vanishing line of the plane.

A scene plane’s vanishing line can be used to determine information about the plane πππ only if

the Kmatrix is known [Hartley e Zisserman 2004]. Using only the vanishing line, we can know the

plane’s orientation to the camera and rectify the plane metrically.

One of the common problems in computer vision is identifying the vanishing line from a sin-

gle image [Workman, Zhai e Jacobs 2016]. The vanishing line can be identified by knowing repea-

ted textures of the image or determining vanishing points from parallel lines found in the image.

In this work, we find the vanishing line using the Horizon Lines in the Wild (HLW) algorithm

[Workman, Zhai e Jacobs 2016]. The HLW algorithm is a method that uses CNNs to estimate the

location of the vanishing line from raw pixel intensities. Chapter 4 shows the vanishing line calcu-

lation using HLW.

2.5.2 Projective Transformations

Two images of the same planar surface are related by a homography. Homography is used for

image rectification (making parallel lines parallel in images). It is possible to remove perspective

distortion of a plane in a scene if we can find the vanishing line of the plane. An example of image

rectification can be seen in Figure 2.5. In general, we need four points for rectifying a plane that has

been distorted by a perspective projection.

Recall, a coordinateX′ is projected to x′ through the matrix P (Equation 2.3), where x′ is a image
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Figure 2.5: We need to identify four points on the plane such that the points are used to provide
constraints on the affine transformation.

coordinate and X′ is a world coordinate:


xx′

yx′

wx′

 = PX′ = K[r1 r2 r3~tT ]


XX′

YX′

ZX′

1

 , (2.6)

where r1, r2, r3, and r4 are columns of matrixR. We are free to choose the coordinates of the world

[Hartley e Zisserman 2004]. For an xy-plane Z = 0, therefore:

x′ = K[r1 r2 r3~tT ]


XX′

YX′

0

1

 , (2.7)

This simplifies to:

x′ = K[r1 r2~tT ]


XX′

YX′

1

 , (2.8)

where H = K[r1 r2~tT ] is a 3× 3 matrix, and it is called the Homography Matrix.

The homography matrix has nine unknowns and is defined up to an unknown scale:
xx′i
yx′i
wx′i

 = HX′ =


h11 h12 h13

h21 h22 h23

h31 h32 h33




XX′
i

YX′
i

1

 . (2.9)
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We get:

xx′i =
h11XX′

i
+ h12YX′

i
+ h13

h31XX′
i
+ h32YX′

i
+ h33

(2.10a)

yx′i =
h21XX′

i
+ h22YX′

i
+ h23

h31XX′
i
+ h32YX′

i
+ h33

, (2.10b)

where xx′i, yx′i and wx′i have to be normalized by wx′i .

We can write it as a system of linear equations:

Ah =

(
XX′

i
YX′

i
1 0 0 0 −xx′iXX′

i
−xx′iYX′

i
−xx′i

0 0 0 XX′
i
YX′

i
1 −yx′iXX′

i
−yx′iYX′

i
−yx′i

)
h11

h12
...

h33

 =


0

0
...

0

 . (2.11)

This has for form Ah = 0 and the solution is the right singular vector corresponding to the

smallest singular value of A, i.e. A = USV T , the last column of V is equal to h.

2.6 Kelvin Waves

The waves pattern left by a ship in the sea consists of a wave system that wraps the hull along

and it is intertwined with a cross-wave system. The two systems move forward with the vessel to

remain stationary concerning it. The pattern is more impressive when viewed from a high point,

but the same phenomenon on a more modest scale develops behind a duck that swims in a pond

[Maver Ksenija 2004].

When a disturbance (i.e., a ship) travels on a surface of the water, it carries with it a familiar

pattern of the bow and stern waves that Lord Kelvin [Ursell 1959] first explained mathematically.

Instead of the ship’s waves, Lord Kelvin considered the waves generated by a prescribed pressure

distribution that moves with a constant velocity U and acts on the surface of the water.

The Kelvin waves structure [Thomson 1887] consists of two components: the transverse compo-

nent develops in the same direction of vessel heading, while the divergent component is shown as

diagonal crest moving outward from the ship’s location (see Figure 2.6 and see Figure 2.7 for a 3D

representation). At constant heading and speed, the wake patterns generated by vessels is confined

to a V-shaped envelope whose aperture angle βlim = arcsin(1/3). The aperture angle is independent

of both the typology and velocity of the ship. The cusp waves, represented by cn, can be seen as the

intersection of the transverse and divergent components. More specifically, the cusp waves can be
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Figure 2.6: The wake crests diagram includes transverse and divergent crests. The envelop connects
the cusp waves.

(a) (b)

Figure 2.7: Image (a) represents image (b) in 3D space. Image (b) represents the Kelvin
wave structure viewed from a processed Synthetic-Aperture Radar imagery. Images extracted
from [Maver Ksenija 2004]

modeled on the mean water plane by the parametric functions:

un (p) = −1

4
(5 cos p− cos 3p)nλ, (2.12a)

vn (p) = −1

4
(sin p+ sin 3p)nλ, (2.12b)

where un and vn are parametric functions for the coordinates plotting the transverse and divergent

components of the n-th cusp wave behind the moving ship, where parameter p ∈ [−π/2, π/2] and
the wavelength λ is given in meters, for n ∈ {1, 2, · · · }.

The location cn = (u̇n, v̇n) of the cusps of the n-th wave can be computed by deriving Equa-

tion 2.12a and Equation 2.12b with respect to p and setting the derivatives equal to zero, leading
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to:

u̇n = −4
√
6

9
nλ, v̇n = ±2

√
3

9
nλ. (2.13)

The distance between successive crests or successive troughs can be used to estimate λ. For

instance, let D be the Euclidean distance measured in meters between cn and cn+1:

D = distE(cn, cn+1). (2.14)

After replacing the right side of Equation 2.14 with the coordinates of cn and cn+1, and solving for

λ, the result is:

λ =

√
3

2
D. (2.15)

Wavelength λ and ship’s speed U (in m/s) are related through:

U =

√
gλ
2π

, (2.16)

where g ≈ 9.80665 m/s2 is the acceleration of gravity. The problem can be formulated as follows:

the instantaneous location of the boat is the origin of a circular wave system; this origin is in uniform

rectilinear motion, its speed being the vessel speed U .

2.7 Discussion

The main concepts of projective geometry used in this dissertation were introduced in this chapter.

A small introduction of representation and acquisition of a digital image was made. Methods for

edge detection in a digital image were described. Concepts were presented on the vanishing line,

the homography matrix, in the part of productive transformations. Concepts of the the Kelvin wave

structure were also presented.

The definitions given in this chapter are fundamental for the calculation of the vessel speed, pro-

posed in this work, and will be used mainly in Chapters 3,7 and 9, where the bibliographic revision

of the techniques used for the calculation of moving object speeds, where the proposed method of

velocity calculation is presented, and where the analysis of the results, respectively, are shown.

For this work, we used a real camera, which is modeled as an pinhole camera. The matrix of the

intrinsic parametersKwas filled using the specifications of the camera and the camera lens provided

by the manufacturer. In this work, we did not calibrate the camera because we used the information

stored in the image (e.g., focal length) to build matrix K. The image information is provided by the

camera information, too. We used the HLW algorithm to find the vanishing line in the input image.

In addition, we used the RCF algorithm to detect edges in the input image.



Chapter 3

Related Work

In this chapter, an analysis of techniques used to estimate the vessel speed is carried out. The speed

of an object, a vessel or a vehicle, can be calculated with the help of sensors, e.g. radars and Global

Positioning System (GPS). Also, the speed can be estimated from images or videos using Computer

Vision techniques.

Some devices to estimate the speed of an object are listed in Section 3.1. Section 3.2 shows

examples of techniques that use images and videos to estimate the speed of objects, where the main

tasks are detecting and tracking the object. Section 3.3 showsworks that use radar images to estimate

speed.

3.1 Devices Used to Estimate Speed

Speed measuring devices vary with the job. Whether measuring travel speed, wind speed, accelera-

tion, there is a suitable instrument to calculate that form of speed. Radar and Light Detection and

Ranging (LIDAR) are used to measure the speed of automobile traffic. GPS is mostly used to monitor

vessels. Digital cameras, with the help of concepts of computer vision, are capable of estimating the

speed of an object.

3.1.1 Radar Detectors

Radar is one of the object detection systems used in aeronautics, navigation, astronomy, which

serves to indicate the presence of an object and determine the distance at which it is located, by

issuing unusual waves of very high frequency reflected on it. Radar can be handheld, mounted on

a vehicle, or mounted on a fixed object, such as a traffic signal [Wikipedia 2020]. Its disadvantages

are its high cost, lower accuracy, and radio interference.
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3.1.2 Lidar Detector

LIDAR is a device that allows you to determine the distance from a laser emitter to an object or

surface using a pulsed laser beam. The distance to the object is determined by measuring the delay

time between the pulse emission and its detection through the reflected signal [Wikipedia 2019].

One problem with LIDAR sensors is that they are expensive and inaccessible to an ordinary person.

Besides, the sensor must be close to the target object to estimate the speed. It also requires an

environment free of precipitation.

3.1.3 Satellite Navigation Device

Global Positioning System (GPS) is a device that is capable of receiving information from Global Na-

vigation Satellite Systems (GNSS) and then to calculate the device’s geographical position [Wikipedia 2020].

Yang et al. [Yang et al. 2019] developed a ship speed andmaneuverability measurement and analysis

system (SSMMAS).The developed system SSMMAS can be installed and used directly on a computer

through a USB connection together with a Differential GPS (DGPS) receiver. Where Coordinated

Universal Time (UTC) time, position (latitude and longitude), heading, speed, and quality of satel-

lites were obtained by serial communication between the DGPS and the computer with the system

SSMMAS installed.

The measurement and analysis of the vessel speed are crucial for the owner of the ship, the

designer, and the construction company. The distancemeasured by radar and fixedmarked positions

are the main traditional methods of speed measurement, which are primarily restricted by time and

sea area. As a high-precision satellite navigation system, the GPS device has been widely applied in

speed measurement [Yang et al. 2019].

3.1.4 Vision Based System

Measuring the speed of an object on a computer vision-based system is one of the most conveni-

ent methods available in speed detection [Wawrzyniak N. 2019]. A large number of algorithms to

estimate speed use videos or image sequences, taken with a digital camera, some of the works are

described in Section 3.2. Other techniques calculate the vessel speed using satellite imagery, detailed

in Section 3.3.
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3.2 Velocity Estimation Using Images and Videos

Ship detection and tracking is a primary task in any vessel traffic monitored area, whether marine

or inland. It has a significant impact on navigational safety, and thus, different systems and tech-

nologies are used to determine the best possible methods of detecting and identifying sailing units

[Wawrzyniak N. 2019].

Broggi et al. [Broggi et al. 2009] describes a method of detecting, measuring speed, and ex-

tracting statistics for vessels moving over a wide water surface using images stream taken from a

grayscale camera. Their technique is based on the extraction of the background (sea) with the clas-

sification and vessel tracking. They demonstrated stable vessel detection even with sea waves and

strong light reflections. The speed was estimated by the pixel/frame measurement, where this is

the main difference between our proposed method. The images were taken with a high-resolution

digital camera fixed to a pole at 10 meters of altitude (Burano-Venice island) and processed in real-

time. The field of view distance was previously known. They emphasize that the tide-height cannot

be ignored. In the experiments carried out without considering the tide-height, they obtained an

error of 24%. Their system was tested with motorboat equipped with a DGPS.

Based on physical arguments, the wavelength of a moving ship is scalar at speed, given by

λ = 2πU2/g, where U is the speed, and g is the gravitational constant (this formula is used in our

proposed technique). Kriebel and Seelig [Kriebel e N.S. 2001] suggest that the wave can be norma-

lized as gH/U2, where H is a measured wave height. H is measured using a wave sensor. Tan et

al. [Tan, Piepmeier e Kriebel 2012] proposed to develop an updated equation model capable of pre-

dicting the wave heights generated by the ship, given a set of basic ship parameters. The parameters

were obtained through video observations, such as the vessel length, speed, relative distance, and

correlate these measurements with the records of wave height. They used the parameters obtained

from the ship to validate the speed based on the wave height. They used video observations to esti-

mate vessel speed. They mounted a digital camera at a height of 19.51 meters above sea level, and

the field of view distance was calculated using Google Maps. They use image processing techniques

to detect the ship and morphological operations to eliminate the traces of the vessels. They have

difficulty detecting small vessels because the vessels are mistaken for the traces. For validation, they

used two known ships, where the data was manually paired. Finally, they highlight the feasibility

of conducting future wake studies in an efficient and low-cost manner, which can be used to better

support and analyze the environmental impacts of shipping and ship traffic.
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Figure 3.1: Kelvin waves pattern seen from a SAR imagery. Image extracted from
[Panico, Graziano e Renga 2017]

3.3 Velocity Estimation Using Radar Images

Synthetic-Aperture Radar (SAR) imagery is different from how optical imaging works. While optical

cameras rely on light created by other sources, like the Sun, a radar instrument actively sends its own

radiowaves towards its target and thenmeasures what is reflected back. The direct radar return from

a ship is the most common ship signature in SAR imagery. Pichel et al. [Pichel et al. 2004] describes

five limitations of detecting vessels with SAR systems:

• Ship characteristics: Such as ship size and material used in the building of the ship. Iden-

tifying ships made of iron is easier than a ship made of wood;

• Environmental conditions: sea state, wind speed, presence of ice affect the detection ships

using SAR images.

• Radar characteristics (instrument);

• Image quality: Image resolution is affected by image processing error and speckle noise; and

• Image resolution: Image resolution depends on the height of the radar and the characteris-

tics of the radar.

Kirscht et al. [Kirscht 1996] presented a method for detecting and estimating the azimuth

[Wikipedia 2020] velocity component of moving objects, which works on a sequence of SAR images.
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They used images that show the ground at different viewing angles and moments. They estimated

the velocities of the objects by evaluating the temporal correlation of successive images, where it

was applied to real and simulated raw data. One of the mentioned advantages was that they could

detect objects, whose range velocity component was zero. They achieved high estimation precision,

even if actual clutter data overlay the objects.

Carona et al. [Carona e Marques 2014] presented a technique for detecting ships and estima-

ting their speeds. They use Radon Transformation to detect the ship wake and evaluate the range

velocity component. For detection, they used the Normalized Cross Correlation (NCC) of the split

aspect. To calculate the azimuth velocity component, they used a sequence of SAR images processed

with center frequency filters. They detected, in the pictures, candidates for moving objects, and a

displacement vector was made for each candidate, which made it possible to estimate the speed of

the ship using SAR images.

Wang et al. [Wang et al. 2019] used two satellites, TerraSAR-X (TSX) and TanDEM-X (TDX),

dual-platform to obtain SAR images with a time delay to monitor maritime traffic. Wind conditions

were a cause of obtaining unstable speeds. To solve this problem, they proposed an object-oriented

Polarimetric Probability Ratio (PolLRT) testmethod based on the complexWishart [Conradsen et al. 2003]

distribution. The proposed method makes PolLRT statistics of the detected target pixels to eliminate

the effect of the varied marine disorder. Two pairs of complete SAR data sets covering the Strait of

Gibraltar acquired by dual-platform TSX/TDX in monostatic search mode with a time delay of ap-

proximately 10 seconds. They used the angular velocity azimuth and their range of displacement

as the basis for estimating vessel speeds. Experimental results showed that the proposed PolLRT

method performs better than the classical NCC method.

The use of waves left by moving objects is exploited by Kelvin wave structure, which it is a

method for vessel speed estimation [Ursell 1959]. The visibility of the Kelvin wave full pattern in

SAR imagery is an infrequent event. This is because of visibility results from the combination of

different phenomena and observation parameters. The appearance of the Kelvin wave structure

depends mostly on the relative geometry between the ship’s heading and the direction of flight of

the SAR sensor [Pichel et al. 2004].

Tunaley [Tunaley 2003] used high-resolution SAR images and the information of the wakes

left by the ships to monitor and track ships from a satellite. He used the information from the

wakes to obtain the ship’s direction and orientation. Also, he used Radarsat as a source for image

extraction. To estimate the vessel speed, he identified the center of the ship manually by clicking

on a zoom box. The cross-range separation between the vessel location in the image and the wake

provides an estimate of speed. He also mention two other techniques for estimating the vessel speed,
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highlighting the use of the Kelvin wave structure.

Panico et al. [Panico, Graziano e Renga 2017] contributed in the task of recovering the vessel

speed through wake analysis. They developed a method for estimating calm sea speed and applied it

to sevenX-band SAR images, collected by the COSMO-SkyMedmission over theGulf of Naples, Italy.

In their work, they exploit the well-known relationship between the wavelength of the waves that

make up the Kelvin pattern and the vessel speed. Also, they extend the applicability of existingwake-

based techniques, as they provide for wavelength evaluation along a general direction at the Kelvin

angle. They achieved promising results. Furthermore, they highlight that ship/wake displacement

can be used when both the ship’s main feature and the turbulent wake are clearly represented, while

due to the relative radar-ship geometry, cusp wave imaging is a relatively rare event. They propose

to apply the Kelvin pattern in a calm sea.

3.4 Discussion

In this chapter, techniques to estimate the vessel speed were presented, using raster images and

SAR images. Object detection and tracking techniques were used to estimate the speed in an image

stream (video). The speed is calculated using the displacement distance and the time within each

frame of the video. Techniques that use SAR images and radars to obtain the vessel speed were also

cited. These techniques use the traces left behind by vessels as support, where concepts of azimuthal

distance and Kelvin pattern are used.

In this work, we will not use image stream, SAR images, or other sensors, with the excep-

tion of a digital camera to estimate the vessel speed. In our method, we take the tide height as a

source of uncertainty, as explained in Broggi et al. [Broggi et al. 2009]. The wakes left by the ves-

sels are a source of information to efficiently estimate the vessel speed at low cost, as mentioned in

Tan et al. [Tan, Piepmeier e Kriebel 2012]. Besides, in our work, we use the Kelvin wave patterns

mentioned in techniques that use SAR images. In this work, only static digital images taken by a

conventional camera were used.



Chapter 4

Vanishing Line Estimation

In this chapter, we find the vanishing line present in the input image I . Basic concepts about the

vanishing line and vanishing points were described in Chapter 2, Section 2.5.

Section 4.1 presents a general definition of the vanishing line. Section 4.2 shows the vanishing

line detection in the input images.

4.1 Vanishing Line

The image location of the vanishing line is defined as the projection of the line at the infinity for

any plane that shares the normal or any parallel plane, which is orthogonal to the local gravity

vector. The gravity vector often coincides with the local ground plane surface normal, but not always

[Workman, Zhai e Jacobs 2016].

Geometrically, the vanishing line is constructed by intersecting the imagewith a plane parallel to

the scene plane through the center of the camera [Criminisi e Zisserman 2000], where the vanishing

line depends only on the orientation of the plane, and not its position.

4.2 Finding the Vanishing Line

Criminisi and Zisserman [Criminisi e Zisserman 2000] show two ways to determine a vanishing

line from a scene plane. The first way is to determine the vanishing points for two sets of lines

parallel to the plane, and then construct the line through the two vanishing points. Another way is

to determine it directly, without using vanishing points as an intermediate step, where the vanishing

line can be calculated given a set of equally spaced coplanar parallel line images. The later method

can be applied in images where structures, such as stairs, windows on the wall of a building, fences,
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and zebra crossings, are visible.

The input images used in this work do not present the structures mentioned above, but in most

of the images, the horizon can be visible. We can define the horizon as the line in which the Earth’s

surface and the sky seem to meet. But the problem of detecting the vanishing line is different than

detecting the horizon [Workman, Zhai e Jacobs 2016]. In this work, we have tried three ways to find

the vanishing line in the input image I :

• Manual detection, where the user marks two points on the image to form the vanishing line.

This requires that the horizon to be visible by the user.

• Semi-automatic detection, using RANSAC [Fischler e Bolles 1981], where the vanishing line

is found between the intersection of the sky and the sea [Huillca e Fernandes 2019]. This

method also requires that the horizon to be visible.

• Automatic detection, where the horizon does not need to be visible to find the vanishing line.

In this work, we used the third way, automatic detection, to not require the user’s intervention when

defining the vanishing line. The algorithm used to find the vanishing line was Horizon Line in the

Wild (HLW) [Workman, Zhai e Jacobs 2016].

The HLW algorithm finds two points that form the vanishing line using Convolutional Neural

Networks (CNNs), without the need to make explicit geometric assumptions about the content of

the scene. The HLW algorithm calculates the endpoints of the vanishing line on the image I . Each
endpoints, pvl and pvr, represent the left and right points, respectively. These points are converted

to homogeneous coordinates for future use:

pvl =


xpvl

ypvl

wpvl

 =


0

vl

1



pvr =


xpvr

ypvr

wpvr

 =


W − 1

vr

1


(4.1)

Equation 4.1 shows the points of the vanishing line, where the coordinates xpvl = 0 and xpvr =

W − 1 are constant values, and W is the width of the input image I . Thus, the x-coordinate of

points pvl and pvr do not vary in this work.

HLW includes five methods to estimate the vanishing line: so_imagenet, so_places, so_posenet,

so_salient and so_scratch. The so_imagenet method was chosen to be used in our work because this
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Figure 4.1: Vanishing lines found using the HLW algorithm, with the so_imagenet method. The red
dots in each image (left and right points) are the result of the HLW algorithm. The vanishing line is
the line that passes through these two points, a red line. The images were taken in different settings,
different weather conditions, and different ambient lighting. The top three images are i1, i2, and
i15, respectively, shown in Chapter 9, Figures 9.2, and 9.4. The results are very close to the actual
vanishing line.

method provides a good approximation to the actual vanishing line, as shown in Appendix A.

The vanishing line l can be computed as the cross product between points pvl and pvr represen-

ted in homogeneos coordinates [Hartley e Zisserman 2004]:

l =


A

B

C

 = pvl × pvr =


vl − vr

W − 1

(W − 1)vl

 (4.2)

4.3 Discussion

The estimation of the vanishing line on the input image I was presented in this chapter. The HLW

algorithm was used to find the vanishing line in our input images. HLW has includes methods:

so_imagenet, so_places, so_posenet, so_salient and so_scratch. Each method was trained with a dif-

ferent database. For each method, the output is two coordinates that form the vanishing line. The

method chosen in this work was so_imagenet. Appendix A describes the methodology applied to
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choose the appropriate method for the input images proposed in this work.

Recall that the HLW algorithm returns two extreme points of the image that form the vanishing

line. The x-coordinates of each endpoint remains constant, where it is zero for the left, and the width

of the input image I for the right point. In this way, we say that the y-axis has greater participation

when it comes to creating the vanishing line.

An important detail regarding the result of the two coordinates of the HLW algorithm is that the

coordinate system origin was in the center of the image. Some computer vision libraries are used

to work with the coordinate system origin on the upper left corner of the image. For this reason,

it is important to move the coordinate system origin according to the library with which you are

working.

As shown in Figure 4.1, the HLW algorithm with the so_imagenet method shows acceptable

results, where the found vanishing line is very close to the true vanishing line. The method proved

to be robust for images with different weather conditions, different natural light, and where the

horizon does not need to be visible, as shown in the images of Figure 4.1.



Chapter 5

Definition of the Corners of the Region of
Interest

In this work, the input image I was converted to an edge image B. Image B showed the wake of the

ship in greater detail. In order to estimate the vessel speed, it was necessary to solve the following

problems:

• Find the Region of Interest (ROI) that contains the cusp wave arms of the moving vessel; and

• Estimate the wavelength, which is the distance between two adjacent cusp of the wave.

This chapter describes the basic concepts of ROI. Section 5.1 defines ROI roughly. Section 5.2 cal-

culates the four points that make up the ROI, which will help in rectifying it. The estimation of the

peaks and the wavelength will be described in Chapter 7.

5.1 Region of Interest

In this work, ROI consists of a quadrilateral region in the input image I (see Figure 1.1) correspon-

ding to the projection of a rectangular region on the surface of the water in the 3-dimensional space.

The ROI must include the cusp wave arms of the target moving vessel. We have set the ROI by ma-

nually selecting a reference corner x1 and indicating the direction ~u of the vessel in image space.

The location of the remaining ROI corners in the image is computed by the procedure described in

Section 5.2.

An automatic procedure for detecting vessels in images and determining vessels’ heading is out

of the scope of this work. This task consists of a different research problem and can be accomplished

by existing techniques, e.g., [Bloisi et al. 2012, Moreira et al. 2014, Bloisi et al. 2017].
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π
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l
n
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x1

Figure 5.1: The vanishing line l of a plane πππ is obtained by intersecting the image plane with a plane
through the camera center Ch and parallel to πππ. In the 3-dimensional space, the ROI lies in πππ, and
~n is a normal vector. The initial coordinates of the ROI in the image, i.e., the image point x1, is
obtained manually.

5.2 Finding the Remaining Corners of the ROI

The variables used to find the corners of the ROI are:

• The vanishing line of the mean water plane,

• The camera height,

• The intrinsic parameters of the camera; and

• The ROI size in the 3-dimensional space.

Matrix K, defined in Chapter 2, Section 2.4, is defined using the intrinsic parameters of the

camera. The ROI size , πππW and πππH are defined in 3-dimensional space on the mean water plane

πππ, in centimeters. Chapter 4 describes how to find the vanishing line. Section 5.2.1 describes the

calculation of the camera height. Finally, Section 5.2.2 describes the calculation of the corners of the

ROI in image space.

5.2.1 Camera Height

In this work, the camera height above the sea level is calculated as the sum of the heights hg, hf , ht,

and hs representing, respectively, the ground height, the floor height, the tripod height, and the tide

height. Therefore, the camera height is written as:

h = hg +zhf + ht + hs, (5.1)
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where z is the floor number where the camera was mounted.

In perfect conditions, hs = 0. However, there are four tides per day. Therefore, one has to

consider the capture and compensate for the movement of the tide to correct estimate the camera

height. Since the tide height modifies the camera height above the sea level. The sources used to

estimate the tide height are Nautide [Nautide], Tides Chart [Tides Chart], and Marinha do Brasil

[Marinha do Brasil].

With the calculated camera height, it is possible to find the location of the camera center in the

world coordinate system (see Image 5.1), defined as:

Ch = (0, 0, h)T (5.2)

5.2.2 Remainig Corners of the ROI

Let {xk}4k=1 be the set of corners of the ROI in the input image I , I ′ the image of the frontal ortho-

gonal view of the ROI on the mean water plane πππ, and {x′
k}

4
k=1 the set of corners of I ′. The ROI

image rectification process is explained in Chapter 7, section 7.1.

Our algorithm makes I ′ isotropic to the ROI lying in πππ. We ensure isotropy by computing x2,

x3, and x4 from the reference corner x1 = (x1, y1, 1)
T , the direction ~u = (x~u, y~u, 0)

T of the vessel,

the expected size of the ROI in 3-D space (πππW × πππH centimeters), the camera height h, and the

coefficients of the general equation of the vanishing line l = (A,B,C)T (Equation 4.2) of the water

body. We set the size of I ′ to πππ′
w × πππ′

h pixels, where πππ′
w = bαπππW c and πππ′

h = bαπππHc, for α being a

scaling factor for converting centimeters to pixel units.

Let the origin of the 3-dimensional space be defined on themeanwater planeπππ as the orthogonal

projection of the camera center Ch = (0, 0, h)T (Equation 5.2) on πππ, where Ch is part of the external

camera parameters. The vector normal to πππ is aligned to the ~Z-axis of the world, which extends

vertically upward. Also, let {Xk}4k=1 be the set of corners of the ROI lying on plane πππ. The corner

X1 = (X1, Y1, 0, 1)
T is computed as the intersection between πππ and the ray back-projected from

point x1:

X1 =


−hx~D/z~D
−hy~D/z~D

0

1

 , (5.3)

where ~D = (x~D, y~D, z~D)
T = M−1x1 is the direction of the ray to the world origin from the camera

centre,M = KR,K is thematrix of intrinsic parameters, andR is a rotationmatrix. R gives us the ca-

mera orientation, which is part of the external camera parameterswhose columns are ~R1 = ~R3 × ~R2,
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x4 x1

π x2x3
l

vp

Figure 5.2: The image shows the positions of the four corners {xk}4k=1 of the ROI on the plane πππ.
Where l is the vanishing line, and vp is a vanishing point.

~R2 = unit((1, 0, 0)T × ~R3), and ~R3 = unit(up(KT l)), respectively. The unit function normalizes the

vector to have unit length and up function forces the vector to point upward. This causes the initial

x1 coordinate to be positioned at the bottom of the x4 coordinate, in image coordinates, according

to Figure 5.2.

X2, X3, and X4 were computed by translating X1 by πππW and πππH . These points are located in the

world coordinate system, and defined as:

X2 = (xX1 + πππW , yX1, zX1, 1)
T

X3 = (xX1 + πππW , yX1 + πππH , zX1, 1)
T

X4 = (xX1, yX1 + πππH , zX1, 1)
T

(5.4)

Finally, the corners of the ROI in I are computed as (see Figure 5.2):

xk = PXk, (5.5)

where P = M[I|−Ch] is the affine camera matrix (see Equation 2.3).

5.3 Discussion

The calculation of the points that make up the ROI was presented in this chapter. Finding the ROI

is an essential step in estimating vessel speed. The ROI contains the wake of the vessel. In Chapter

6, a wave inside the ROI will be chosen to determine the wavelength. ROI rectification is described

in Chapter 7.
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The calculation of the points that form the ROI was on the input image I . In our experiments,

initial coordinate x1 is obtained manually. The position of x1, along with the other coordinates, must

cover a large part of the trails left by the vessels. Usually, x1 is located close to the stern of the boat,

because the traces of the wake are more reliable. The vanishing line and the camera height are used

as input variables for calculating the corners of the ROI.

A tape measure was used to calculate the floor height, the tripod height, and to measure the

ground height we use Google maps. The tide height used three sources, taking Marinha do Brasil

[Marinha do Brasil] as the primary source. In an ideal scenario, the height of the tide would be equal

to zero, and the traces of the ships would not be modified by the wind or weather conditions.



Chapter 6

Finding the Wave Arms

In this chapter, the non-rectified Region of Interest (ROI) image is used to find the wave arms. We

utilize the edge image B for this purpose. We create a new image for the ROI, based on the set

of corners {xk}4k=1. The new image of the ROI will have a rectangular shape that facilitates the

detection of the wave arms.

In section 6.1, we define the new set of corners of the ROI’s bounding box. In Section 6.2, we

binarize the image present in the ROI’s bounding box of the edge-image B. Finally, in Section 6.3

we find the wave arms.

6.1 The ROI’s Bounding Box

Let {x∗
k}

4
k=1 be the set of corners of the ROI’s bounding box, they are calculated based on the set of

corners {xk}4k=1 of the ROI. The corners of the ROI are calculated in Chapter 5. The corners of the

ROI form a quadrilateral, which will be rectified in Chapter 7. The new image, created to facilitate

the detection of the wave arms, will be inside of the ROI’s bounding box.

It is only necessary to calculate two diagonal points, x∗
lower and x∗

upper, of the quadrilateral to find

the four corners of the ROI’s bounding box. These points are represented as two non-contiguous

vertices of the quadrilateral:
x∗
lower = (xlower, ylower)

T

x∗
upper = (xupper, yupper)

T ,
(6.1)
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(a) Cropped image.

x*1

x*4

x*2

x*3

x*3
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(b) Image shows the four corners of the ROI’s bounding box, in detail.

Figure 6.1: Representing the ROI’s bounding box. Image (a) is a cropped image to visualize the ROI
and the ROI’s bounding box, in blue line and green dotted line, respectively . Image (b) shows the
four corners {x∗

k}
4
k=1 of the ROI’s bounding box in detail, where a ≥ 0 is a constant value to expand

the ROI’s bounding box.

where xlower, ylower, xupper, and yupper are shown in the next equation:

xlower = min (xx1, xx2, xx3, xx4)− a

ylower = min (yx1, yx2, yx3, yx4)− a

xupper = max (xx1, xx2, xx3, xx4) + a

yupper = max (yx1, yx2, yx3, yx4) + a ,

(6.2)

and a ≥ 0 is a constant value used to extend the ROI’s bounding box.

The right image in Figure 6.1 shows the corners of the ROI’s bounding box in greater detail. The

ROI’s bounding box covers ROI, having more information about the wave. It should be noted that

the corner set of the ROI’s bounding box does not replace the corner set of the ROI at the time of

rectification. The ROI’s bounding box is used in this manuscript only to work in a friendlier way

when finding the wave arms.

6.2 ROI Image Binarization

The first step to find the wave arms is to remove the noise that is next to the waves and is presented

as non-edge. The image into of the ROI’s bounding box is a part of the edge image B, where the

edge image B is a grayscale image. The waves are subject to noise. This noise is seen as weak pixels

and, in some cases, almost indistinguishable, i.e., pixels with values practically close to 255, where

255 represents the white intensity. In order to find the correct wave arm properly, it is necessary to

eliminate noise.

In this work, the Otsu algorithm [Otsu 1979] was used to find an automatic threshold t to se-
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(a) Image representing the ROI’s bounding box. This image is a crop of the input image.

(b) Binary image of the new ROI.

Figure 6.2: Image binarization of the ROI’s bounding box using a threshold t calculated by the Otsu
algorithm [Otsu 1979].

parates the pixels into two classes, edge and non-edge. The threshold t is calculated only for the

image that is inside of the ROI’s bounding box. With the calculated threshold, we eliminate the

pixels whose intensities are greater that the threshold t to obtain the binarized image B∗, as shown

in the Equation 6.3:

B∗
i,j =

0 , Bbi+xlowerc,bj+ylowerc < t

255 otherwise
, (6.3)

where image B∗
i,j is treated as a matrix, and Bbi+xlowerc,bj+ylowerc represents the value of a pixel in

image B. The i and j indices are used to loop through the matrix. Figure 6.2 shows the effect of

image binarization within ROI’s bounding box.

6.3 Wave Arms Clusterization

The binary image B∗ within of the ROI’s bounding box was calculated in the previous step. The

image B∗ is used to find the wave arms. In this work, we assume that there are two waves in the

binary image, one upper and one bottom wave.

We use the k-means algorithm [Jin e Han 2010] to differentiate the two wave arms present in

the wake left by the ship. The k-means algorithm is a grouping method that iteratively assigns

data points to k-groups. This algorithm begins with k-seeds that are adjusted to the minimums of

a cost function. In our case, the cost function is going to be the default cost function of k-means,

where a Euclidean distance will be used between the coordinates of the pixels, regardless of their

intensity. We use k-means to group the coordinates of the binary image into two groups. The

image coordinates where the pixel value was equal to zero were taken as input to the algorithm.

The k-means algorithm is not applied to the entire image directly. We divided the B∗ image into q

windows vertically, each window having width of d pixels, and this window slides every α pixel, as
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qi qi+1 qi+2

d d d

Figure 6.3: The image shows the windows used where the k-means algorithm was applied. Each qi
window has a width of d pixels and a height equal to that of the new ROI. Each window slides by α
pixels, for α ≥ 1.

Figure 6.4: Image shows the waves separated into two groups, using k-means, an upper wave and a
bottom wave, depicted with green and red colors, respectively.

illustrated in Figure 6.3. In this work, d and α are equal to 5 pixels. In each qi window, we applied

the k-means algorithm, and we obtained their centroids. The two seeds in window qi are initially

taken as random to initialize the k-means algorithm. Subsequently, the seeds in window qi+1 are

equal to the two centroids calculated in window qi. If no centroids were found in window qi, the

two seeds are obtained randomly.

In this work, we use the centroids of each group to obtain the wave curves. In this way, we

will have two wave curves. Each wave is formed by a pixel obtained from the centroid. These

centroids are differentiated by color in Figure 6.4, where the upper centroids are green and the

bottom centroids are red. In this work, we use only one wave arm to estimate the wavelength

and consequently, to estimate the vessel speed. Chapter 7 describes the criteria for choosing the

appropriate wave.
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6.4 Discussion

In this chapter, we found the two wave arms. The waves will be transformed according to ROI

rectification in Chapter 7.

The threshold t, computed by Otsu algorithm, was assumed as a correct threshold to binarize the

image. When the image was binarized, it was observed that the waves have a thickness. Centroids

were used to find the waves correctly and try to solve the wave thickness problem, and in this way

obtain the skeleton of the wave. The k-means algorithm was used to differentiate the two wave

arms. In this work, noise related to objects that occlude the wave traces was not analyzed. The

existence of higher noise occurs when the traces of the vessels are not very visible.

We divide the binarized image within of the ROI’s bounding box into several small pieces to

calculate the centroids of the wave arms within each window. Each window was independent,

which facilitates parallelization. Every window slides α > 0 pixels, following a direction from left

to right. The assumed α value must be a small value and less than the window size to obtain the

most significant number of wave centroids. In this work, α = 5 was empirically chosen. The more

centroids are found, better the wave is represented.



Chapter 7

Vessel Velocity Estimation

In this chapter, the wavelength is used as the basis for estimating the vessel speed. Thewavelength is

extracted from the rectified Region of Interest (ROI) image. Here, it is assumed that the ROI contains

only the wave arms. The wave arms are found using the procedure presented in Chapter 6, where

the wave arms image replaced the ROI content. In this way, only the wave arms were rectified,

which facilitates the estimation of the wavelength. Vessel speed is estimated using the Kelvin wave

structure equations, described in Chapter 2, Section 2.6.

We chose only one wave arm present in the region of interest, represented as the dotted red

line in Figure 7.1, to image rectify. Section 7.1 describes the image rectification. The rectified image

in Figure 7.2 (b) is relatively similar to the red dotted lines in Figure 7.1 (a), (b), and (c). After

rectifying the chosen wave arm, it was necessary to smooth and adjust the curve to more easily find

the crests or troughs of the wave. Section 7.2 describes the curve fitting. The crests or troughs can

be used to calculate the wavelength. In this work, we only use the troughs (shown as green stars in

Figure 7.1) as they were the least affected by the turbulence generated by the ship. The calculation

of the wavelength is described in section 7.3. The wavelength was used to estimate the vessel speed,

described in Section 7.4. The vessel speed is found using the inverse problem of Kelvin waves.

7.1 ROI Image Rectification

Recall that the process to find the wave arms were performed on the ROI edge image. The edge

image B was found with the Richer Convolutional Features (RCF) [Liu et al. 2019] algorithm. RCF

was used on the input image I . In this way, the set of corners of the ROI, calculated in Chapter 5,

can be used in both the edge image B and the input image I .

Let {xk}4k=1 be the set of corners of the ROI in the edge image B, B′ the image of the frontal



7.1 ROI Image Rectification 54
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Figure 7.1: Image (a) shows the Kelvin waves’ structure, indicating the transverse and divergent
components, along with the crests and troughs of the wave arm. Image (b) represents the Kelvin
wave structure viewed from a processed Synthetic-Aperture Radar imagery. Image (a) represents
image (b) in 3D space. The dotted red line represents the chosen wave arm. Green stars are the
troughs used to find the wavelength. Images (a) and (b) were extracted from [Maver Ksenija 2004]

orthogonal view of the ROI on the mean water plane πππ, and {x′
k}

4
k=1 the set of corners of B′. The

rectification consists on mapping the ROI from B to B′ in order to simulate the aerial view having

camera’s optical axis perpendicular to the mean water plane. We use the point-to-point corres-

pondences {xk ↔ x′
k} and the Direct Linear Transformation (DLT) [Hartley e Zisserman 2004] to

compute the 2-D homography that performs such mapping.

A projective transformation matrixM is used to rectify the ROI image. The matrixM is descri-

bed in the next section. Figure 7.2 (a) shows the chosen wave arm. We chose the wave arm closest

to the observer because it was the least affected by the turbulence. Figure 7.2 (b) shows the rectified

image of Figure 7.2 (a) using matrix M.

7.1.1 Findig the Homographic Matrix

In projective geometry, a homography is an isomorphism of projective spaces, induced by an iso-

morphism of the vector spaces from which the projective spaces derive [Artin 1957]. In this work,

homography is used to transfer the points from image B∗ to image B′ through the plane πππ. The

homography H of x∗ to x′ is written as:

x∗ = Hx′, (7.1)

where x∗ is an image B∗ point, and x′ is an image B′ point.

The (projective) matrix H which achieves this transformation can be applied to every point in

the image in order to affinely rectify the image, i.e. after the transformation, affine measurements
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(a) The ROI image showing the closest wave.

(b) The rectified ROI image showing only the closest wave. Axes in centimeters.

Figure 7.2: Image (a) shows one of the waves (the closest wave) found in Chapter 6. Image (b) shows
the rectified ROI image showing only the closest wave, where the ROI size is in centimeters.

can be made directly from the rectified image [Hartley e Zisserman 2004].

The objective of image rectifying is to eliminate the projective distortion present in the plane

image. Projective distortion can be removed by specifying four reference points (8 degrees of free-

dom) on the plane and calculating the transformation that assigns the reference points to its images.

In a projective transformation, it is only necessary to specify 4 degrees of freedom to determine me-

tric properties. These degrees of freedom (dof) are associated with the line at infinity l∞ (2 dof), and

two circular points on l∞ (2 dof), where l∞ removes projective distortion, and the circular points

on l∞ remove affine distortion. The line at infinity l∞ allows recovering related properties of the

images, i.e., parallelism, the proportion of areas [Hartley e Zisserman 2004]. In this work, we used

affine transformation. Also, it was only necessary to specify three reference points on the plane (6

degrees of freedom).

Recall, that when a point x lies on a line l, the transformed point x′ = Hx under a projective

transformation lies on l′ = H−T l [Hartley e Zisserman 2004], where H is an homography. Fol-

lowing the same analogy, we can represent l′∞ = H−T
A l∞, where HA is an affinity. To facilitate the

process, the canonical equation of l∞ = (0, 0, 1)T is used. Taking l = (A,B,C)T , calculated in

Chapter 4, as an imagined line at infinity (l′∞), for C 6= 0 will provide a projective transformation
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that maps l back to l∞:

H = HAHl = HA


1 0 0

0 1 0

A B C

 , (7.2)

where the multiplication ofHA andHl will create an affine transformation matrix with the last row

equal to lT . The Hl matrix is used to offset the affine matrix HA. Using the matrix H, we find a

(projective) matrix that accurately rectifies each point on the mean water plane. With the rectified

image, we will be able to perform affine measurements.

The HA matrix is an affine transformation matrix, written as:

HA =

(
A t

0T 1

)
=


vh1 vh2 vh3

vh4 vh5 vh6

0 0 vh7

 , (7.3)

where A is a 2 × 2 non-singular matrix, and t = (tx, ty)
T is a translation vector. A planar affine

transformation has six degrees of freedom corresponding to the six matrix elements. Such transfor-

mation can be computed from three point correspondences defined as:

x′
k =


xx′k
yx′k
wx′k

 = Hlxk, (7.4)

where k ∈ 1, 2, 3.

The new coordinates have to be transformed to a homogeneous coordinate system. Equation

7.5 shows its calculation:

x′
k
.
=


xx′k/wx′k

yx′k/wx′k

1

 , (7.5)

where k ∈ 1, 2, 3. The new coordinates x′
k are the corners of the ROI on thewater plane that will help

us get affinity. We create a linear system of equation A vh = 0 to obtain the affine transformation

matrix, whereA is anm×nmatrix of known values. The system of linear equations (Equation 7.6)

is used to calculate the affine transformation matrix HA.

Equation 7.6 shows the matrix A using the coordinates (x′
1,x′

2,x′
3), where πππW and πππH are the

width and height of the ROI, respectively. The ROI size is in centimeters.



7.2 Curve Fitting 57

Figure 7.3: The black points correspond to the digital curve in this example, while the red line is the
resulting smooth curve using LOWESS algorithm [Wilcox 2017]. Axes in centimeters.

A vh =



xx′1 yx′1 wx′1 0 0 0 0

0 0 0 xx′1 yx′1 wx′1 0

xx′2 yx′2 wx′2 0 0 0 −(πππW − 1)

0 0 0 xx′2 yx′2 wx′2 0

xx′3 yx′3 wx′3 0 0 0 0

0 0 0 xx′3 yx′3 wx′3 −(πππH − 1)





vh1

vh2

vh3

vh4

vh5

vh6

vh7


=



0

0

0

0

0

0

0


(7.6)

Any solver of linear system of equations serves to solve the DLT. In this dissertation, we choose

Singular Value Decomposition (SVD) [Baker 2013]. SVD presents the decomposed matrix A as:

Am×n = Um×mSm×nV
T
n×n. (7.7)

The necessary values for the HA matrix are found in V T
n×n. Only the last column of Vn×n (i.e.,

the vector vh) is necessary to create the HA matrix.

The homographic matrix H is found by calculating Equation 7.2. In Chapters 8 and 9, the ho-

mographic matrix H is known as the projective transformation matrix M.

7.2 Curve Fitting

Curve fitting is the process of constructing a curve, or mathematical function, that best fits a series

of data points, possibly subject to constraints [Arlinghaus 1994]. Curve fitting can involve interpola-

tion [Kiusalaas 2013], where exact fitting to the data is required, or smoothing [Savitzky e Golay 1964,

Wilcox 2017], in which a smooth function is constructed that roughly fits the data.
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The rectified ROI image is a binary image where the wave arms are present as edge pixels. We

will only use one wave arm for the curve fitting process. We choose the wave closest to the observer

(shown in Figure 7.2) because it is the wave least affected by the turbulence, i. e., in Figure 6.4, shown

in Chapter 6, the chosen wave is the red wave. This wave has the highest value in the y-coordinate.

The binary image of the chosen wave present noise, which makes it challenging to find the cusp of

the wave. We use the LOcally WEighted Scatter-plot Smoother (LOWESS) algorithm [Wilcox 2017]

to smooth the digital curve extracted from the rectified ROI image. The black points in Figure 7.3

corresponds to the digital curve in this example, while the red line is the resulting smooth curve

used to estimate wavelength and velocity in the next steps of our approach.

7.3 Wavelength Estimation

The wavelength of the transverse waves (see Figure 2.6) can be estimated through Equation 2.15 by

using the distance between successive crests/troughs of cusp waves. Thus, by finding the peaks of

the curve resulting from the previous step of our approach, one finds a set of crests or a set of troughs,

depending on the direction of the vessel with respect to the camera. Since we have the curve that

corresponds to the arm closest to the V-pattern, we can find the crests and troughs depending on

the direction of the vessel as follows (see Figure 7.5):

• When the vessel goes to the right in the original image, the curve maxima (yellow stars)

corresponds to the wave arm’s troughs;

• When the vessel goes to the right in the original image, the minimums of the curve (white

stars) correspond to the wave arm’s crests;

• When the vessel goes to the left in the original image, the curve maxima (yellow stars) cor-

respond to the wave arm crests; and

• When the vessel goes to the left in the original image, the minimums of the curve (white stars)

correspond to the wave arm’s troughs.

It is important to note that the graph shown in Figure 7.5 presents the y-axis in a decreasing

order, where the y = 0 coordinate is at the top of the graph. We avoid the identification of noisy

crests/troughs by imposing aminimumhorizontal distanceψ between valid neighbor crests/troughs,

and by extracting only the two minimums/maximums ones (the green stars in Figure 7.4 are the

maximums).
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Figure 7.4: The red line represents the fitting curve of the right wave arm. The green stars and
yellow dots represent the troughs found on the wave. Only the green stars are used to calculate the
wavelength, the left and right green stars correspond to cn, and cn+1, respectively. The wave arm
shown is from a ship going in the right direction.
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(a) The image represents a wave arm from a vessel that
goes to the left. Rotating image (b) 180◦

0

y

x

(b) The image represents a wave arm from a vessel that
goes to the right.

Figure 7.5: The wave arm of the ship going in the left direction, image (a), is similar to rotating 180◦
the wave arm of the ship going in the right direction, image (b). When making the rotation, the
point-views of the crests and troughs change according to the ship’s course. Taking image (b) as a
reference, the yellow stars in image (b) are the troughs and white stars are crests, while in image (a)
the white stars are the troughs and yellow stars are crests.

We compute the wavelength λ by replacing D in Equation 2.15, rewritten as:

λ =

√
3

2
D, (7.8)

where D is the Euclidean distance:

D = distE(cn, cn+1), (7.9)

where the result of the Euclidean distance between the location of the extracted cusp (or troughs),

cn and cn+1, is represented in centimeters. We calculate the wavelength using Equation 7.8. We

convert the wavelength to meters to use Equation 7.10, recall that g is the gravitational acceleration

(m/s2).



7.4 Vessel Velocity Estimation 60

7.4 Vessel Velocity Estimation

Finally, we compute the velocity U of the vessel by evaluating (2.16), rewritten as:

U =

√
gλ
2π

, (7.10)

replacing λ found in Equation 7.8.

Equation 7.10 returns the vessel speed atm/s. Equation 7.11 is used to convert the speed from

m/s to knot, where knot is a unit of measurement of speed, used for maritime navigation.

1 knot = 0.5144m/s (7.11)

7.5 Discussion

The ROI image rectification, curve fitting, and wavelength estimation to estimate the vessel speed

was described in this chapter.

In this chapter, we assume that there are two wave arms present in the rectified ROI image and

we chosen the closest to the camera. In the chosen wave of the ROI image must have at least two

crests/troughs to find the wavelength. In this work, we used the troughs to calculate the wavelength

because it was the least affected by the turbulence and the foam left by the ship. The existence of

noise makes it difficult to find the correct wavelength. One way to mitigate this problem was to

identify the noise presents in troughs by imposing a minimum horizontal distance ψ between the

troughs of the valid neighbors.

If the wavelength is not calculated, it will be impossible to estimate the vessel speed with the

proposedmethod. The vessel speed is strongly linked to the wavelength - the higher the wavelength,

the greater the speed.

The results obtained from the application of the techniques described in this chapter represent

one of the main objectives of this work, and the analysis of these results is presented in Chapter 9.



Chapter 8

First-Order Error Propagation

First-Order Error Propagation is a method that determines the uncertainty in a function of indepen-

dent variables, each with an uncertainty. In this chapter, we apply First-Order Error Propagation to

determine the uncertainty in the function to estimate vessel speed. The vessel speed U was compu-

ted by the method described in Chapter 7.

The measurement process in some contexts is not guaranteed if a confidence interval did not

accompany it, because, if the confidence interval were too high, it is concluded that themeasurement

is not accurate enough to be used. For this reason, it is interesting to have a confidence interval in

the measurements. Confidence intervals may be estimated from several samples. In our case, each

sample would came from a different image of the same vessel, captured virtually at the same time.

An alternative to not creating confidence intervals from a large number of samples is using First-

Order Error Propagation.

In order to use the First-Order Error Propagation model, it is necessary to verify the premises

that allow its application. First-order error propagation can be applied by knowing the result of

the error propagation, and this can be done if and only if the uncertainty input follows a Gaussian

distribution, the output follows a Gaussian distribution, and the process is linear. Now, if the process

is not linear or the inputs are not Gaussian, we can work with First-Order Error Propagation and

have an approximation.

The study of the propagation of errors along the computational chain (Figure 8.1) is presen-

ted in Section 8.1. In the following sections, the calculation of the Jacobian matrix in each of the

intermediate variables is explained.
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8.1 Error Propagation

InTheory of Errors [Vuolo 1996], it is presented the expressions to calculate the standard uncertainty

of a measurements w, which is calculated from standard uncertainties of other experimental great-

nesses (x, y, z, ...). The standard uncertainty of w is given by the Equation 8.1 in the case that the

variables are not independent (or correlated). The covariance σij indicates the degree of correlation

between two variables:

σ2
w =

(
∂w
∂x

)2

σ2
x +

(
∂w
∂y

)2

σ2
y +

(
∂w
∂z

)2

σ2
z + . . .

+ 2

(
∂w
∂x

)(
∂w
∂y

)
σxy + 2

(
∂w
∂x

)(
∂w
∂z

)
σxz + 2

(
∂w
∂y

)(
∂w
∂z

)
σyz + . . . .

(8.1)

The computational flow of the velocity calculation method described in Chapter 7 is illustrated

in Figure 8.1. In that Figure, the input variables that have an uncertainty value are represented by

circles, and the input variables without uncertainty are represented by a pentagon, squares represent

the intermediary variables, and a rhombus represents the result of the vessel speed. Equation 8.1 is

adopted in this work. The Equation 8.1 is rewritten in matrix form, to simplify its notation:

Λw = ∇JΛϑ∇J T , (8.2)

where Λw is a m ×m matrix of variances and covariances, ∇J is an m × n Jacobian matrix that

will tell us how much of the input uncertainty will influence the output result, and Λϑ is an n × n

covariance matrix that correlates the input variables. For the vessel’s speed estimation problem,

only one resulting variable is calculated, the velocity. Therefore,m = 1.

In total, there are 18 input parameters in the proposed:

• vi, for i = (l, r), are the y-axis coordinates of, respectively, the left and right endpoints of the

detected vanishing line. The points are taken as homogeneous coordinates pvi = (xi, vi, 1)
T .

The values of xi are constant since they are the same for all samples, leading to only two input

parameters affected by uncertainty;

• hj , where j ∈ {g, f, t, s}, is the list of four input variables related to the four parameters used

to calculate the camera height, these four variables are affected by uncertainties;

• K: matrix of the intrinsic parameters of the camera. αx = fmx, αy = fmy, γ, ox, oy , where

f is the focal length and mx and my are the ratios between the sensor and the image mea-

surements, s is the coefficient that defines the angle between the x- and y-axis of the pixels,

and ox and oy are the coordinates of the image center. These parameters, taken as constant
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vl,r

Vanishing Line

K

Intrinsic Parameters

R M

h0..3

Camera Height

Ch P

q0 ~d0

{xk}4k=1
x1, ~u

Initial Coordinate and direction

M πππw,πππh

ROI size

cn, cn+1

Adjacent Peaks of the Wave

c′n, c′n+1 U

Estimated Speed

Figure 8.1: Error propagation along the computational chain. It was not considered an uncertainty
for the parameters represented by pentagons. In contrast, the input parameters represented as circles
contain errors that are propagated by the intermediate stages (squares) until the velocity (rhombus)
is calculated.
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values, used to compute the matrix of intrinsic parameters K. The intrinsic parameters of the

camera are obtained by extracting metadata from the image and are assumed as constant va-

lues since they usually do not have much incluence on the uncertanty of the measurements

[Fernandes, Oliveira e Silva 2008];

• πππw and πππh define the size of the ROI in world coordinate system, represented in meters. These

two parameters are taken as constant values;

• x1 = (x1, y1, 1)
T and ~u = (x~u, y~u, 0)

T are, respectivelly, the coordinates of the first vertex of

the and the direction of the boat in image space. These coordinates are manually defined and

they are not taken as a source of uncertainty; and

• cn, cn+1, the two adjacent crests/troughs of the wave, extracted from non-rectified ROI image,

these two peaks are variables not taken as a source of uncertainty, because their rectified

versions will naturally include the uncertainty propagated from other input variables.

As mentioned earlier in this section, only the coordinates of the vanishing line and the camera

height contain uncertainties. The input variables have covariance equal to zero because we are

assuming independence on the variables and independence implies covariance equal to zero. These

variables are used as input parameters for matrix Λϑ. Then, matrix Λϑ of variances and covariances

is a 6× 6 diagonal matrix:

Λϑ = diag(Λvl,Λvr ,Λhg ,Λhf
,Λht,Λhs) (8.3)

The following sections show the calculation of the partial derivatives of the Jacobianmatrix used

in the propagation of errors from the input variables to the estimated velocity.

To estimate the uncertainty on the computed velocity, it is necessary to find the Jacobian matrix

of the function that calculates the velocity (Equation 8.4) and solve Equation 8.2 using the Jacobian

((∇U)) and the matrix Λϑ of Equation 8.3, where

∇U =
(

∂U
∂vl

∂U
∂vr

∂U
∂hg

∂U
∂hf

∂U
∂ht

∂U
∂hs

)
(8.4)

The confidence intervals calculated by the error propagation define the expected error in each of

themeasurementsmade by the system. Such propagation is expressed by Equation 8.2, and rewritten

as:

σ2
U = ΛU = ∇UΛϑ∇T

U , (8.5)

where σ2
U is the variance of the vessel speed, Λϑ is a 6 × 6 covariance matrix that encodes the

uncertainty of the input variables, and ∇U is the Jacobian matrix of the function that calculates the
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speed based on the six variables included in the set ϑ (see Chapter 5):

ϑ = {vl, vr, hg, hf , ht, hs}. (8.6)

Writing the equation that calculates the vessel speed based on the input variables and calculating

its Jacobian matrix is unavailable because the equation would be very extensive and with many

terms. One solution found for this problem is to solve the partial derivatives contained in the ∇U

matrix using the chain rule and apply First Order Error Propagation [Vuolo 1996]. Figure 8.1 shows

the flow of operations used to estimate speed. This figure helps us to monitor the operations chain

and, accordingly, to apply the chain rule.

8.2 A Line Through Two Points

Following Figure 8.1, the first stage of the processing consists in obtaining the vanishing line, which

is a line defined by a pair of points. The input variables vl, vr are used to calculate the vanishing

line l:

l =


A

B

C

 = pvl × pvr =


vl − vr

W − 1

(W − 1)vl

 , (8.7)

where vl, vr are the y-axis of each point, 0 andW are the x-axis of each point, respectively, where

W is the input image width. Given that the pair of points is in homogeneous coordinates.

Partial derivatives of the vanishing line l are given by:

∂A

∂ϑ
=
∂vl
∂ϑ

+
∂vr
∂ϑ

(8.8a)

∂B

∂ϑ
= 0 (8.8b)

∂C

∂ϑ
= (W − 1)

∂vl
∂ϑ

(8.8c)

8.3 Camera Height

Camera height h is calculated by adding the ground height, floor height, tripod height, and sea tide

height, i.e., hg, hf , ht, and hs, respectively:

h = hg +zhf + ht + hs, (8.9)
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wherez is a constant that represents the floor number on which the camera is mounted. The partial

derivative of the camera height ∂h
∂ϑ

is given by:

∂h

∂ϑ
=
∂hg
∂ϑ

+z
∂hf
∂ϑ

+
∂ht
∂ϑ

+
∂hs
∂ϑ

(8.10)

8.4 Rotation Matrix

The rotation matrix R aligns the world coordinate system to the camera coordinate system. For the

creation of the rotation matrix, it is used the intrinsic parameters matrix of the camera K (Equation

2.2) and the vanishing line coefficients l, in image coordinates. The rotation matrix is a 3×3matrix,

defined by:

R =


~RT

1

~RT
2

~RT
3

 , (8.11)

where ~R1, ~R2 and ~R3 are 3× 1 vectors.

To find ~R1 and ~R2 is necessary to calculate ~R3 first (as described in Section 5.2.2):

~R3 = unit(up(KT l)). (8.12)

But to find ~R3, it is necessary to calculate KT l

Φ =


XΦ

YΦ

ZΦ

 = KT l =


αxA

γA− αyB

oxA+ oyB + C

 , (8.13)

along with its partial derivatives:

∂XΦ

∂ϑ
= αx

∂A

∂ϑ
(8.14a)

∂YΦ
∂ϑ

= γ
∂A

∂ϑ
+ αy

∂B

∂ϑ
(8.14b)

∂ZΦ

∂ϑ
= ox

∂A

∂ϑ
+ oy

∂B

∂ϑ
+
∂C

∂ϑ
(8.14c)

The unit function in Equation 8.12 normalizes the vector to have unit length. Finding the normal

for Φ:

κ1 =
√
X2

Φ + Y 2
Φ + Z2

Φ, (8.15)
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and the partial derivative ∂κ1

∂ϑ
is given by:

∂κ1

∂ϑ
=
XΦ

(
∂XΦ

∂ϑ

)
+ YΦ

(
∂YΦ

∂ϑ

)
+ ZΦ

(
∂ZΦ

∂ϑ

)√
X2

Φ + Y 2
Φ + Z2

Φ

(8.16)

The up function in Equation 8.12 forces the vector to point upward. If Y ~R3
is less than zero then

~R3 is equal to − ~R3, where ~R3 is defined by:

~R3 =


X ~R3

Y ~R3

Z ~R3

 =


XΦ/κ1

YΦ/κ1

ZΦ/κ1

 , (8.17)

and the partial derivatives of the components of ~R3 are given by:

∂X ~R3

∂ϑ
=

κ1

(
∂XΦ

∂ϑ

)
−XΦ

(
∂κ1

∂ϑ

)
κ2

1

(8.18a)

∂Y ~R3

∂ϑ
=

κ1

(
∂YΦ

∂ϑ

)
− YΦ

(
∂κ1

∂ϑ

)
κ2

1

(8.18b)

∂Z ~R3

∂ϑ
=

κ1

(
∂ZΦ

∂ϑ

)
− ZΦ

(
∂κ1

∂ϑ

)
κ2

1

(8.18c)

After calculating ~R3, we can calculate ~R2, where ~R2 is defined by ~R2 = unit((1, 0, 0)T × ~R3):

~R2 =


X ~R2

Y ~R2

Z ~R2

 =


0

−Z ~R3
/κ2

Y ~R3
/κ2

 , (8.19)

where κ2 is the norm, and is defined by Equation 8.20, together with its partial derivative:

κ2 =
√
(−Z ~R3

)2 + Y 2
~R3

(8.20a)

∂κ2

∂ϑ
=
Z ~R3

(
∂Z ~R3
∂ϑ

)
+ Y ~R3

(
∂Y ~R3
∂ϑ

)
√

(−Z ~R3
)2 + Y 2

~R3

(8.20b)

, and the derivatives of the ~R2 coefficients (Equation 8.19) are equal to

∂X ~R2

∂ϑ
= 0 (8.21a)

∂Y ~R2

∂ϑ
=

−κ2

(
∂Z ~R3
∂ϑ

)
+ Z ~R3

(
∂κ2

∂ϑ

)
κ2

2

(8.21b)

∂Z ~R2

∂ϑ
=

κ2

(
∂Y ~R3
∂ϑ

)
− Y ~R3

(
∂κ2

∂ϑ

)
κ2

2

(8.21c)
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Finally, to find the rotation matrix R we calculate ~R1, which is defined by ~R1 = ~R3 × ~R2.

~R1 =


X ~R1

Y ~R1

Z ~R1

 =


Y ~R3

Z ~R2
− Z ~R3

Y ~R2

−X ~R3
Z ~R2

X ~R3
Y ~R2

 , (8.22)

and the derivatives of the ~R1 coefficients (Equation 8.22) are equal to

∂X ~R1

∂ϑ
=

(
Z ~R2

∂Y ~R3

∂ϑ
+ Y ~R3

∂Z ~R2

∂ϑ

)
−
(
Y ~R2

∂Z ~R3

∂ϑ
+ Z ~R3

∂Y ~R2

∂ϑ

)
(8.23a)

∂Y ~R1

∂ϑ
= −

(
Z ~R2

∂X ~R3

∂ϑ
+X ~R3

∂Z ~R2

∂ϑ

)
(8.23b)

∂Z ~R1

∂ϑ
= Y ~R2

∂X ~R3

∂ϑ
+X ~R3

∂Y ~R2

∂ϑ
(8.23c)

8.5 Sub-matrix of the Projection Matrix

Once calculated the rotation matrix R, and having as input the matrix K, it is possible to calculate

M, where M is defined by :

M =


~M1

T

~M2
T

~M3
T

 = KR (8.24)

Each component of the matrix M is described in ~M1, ~M2, and ~M3, together with their corres-

ponding partial derivatives:

~M1 =


X ~M1

Y ~M1

Z ~M1

 =


αxX ~R1

+ γX ~R2
+ oxX ~R3

αxY ~R1
+ γY ~R2

+ oxY ~R3

αxZ ~R1
+ γZ ~R2

+ oxZ ~R3

 (8.25a)

∂X ~M1

∂ϑ
= αx

∂X ~R1

∂ϑ
+ γ

∂X ~R2

∂ϑ
+ ox

∂X ~R3

∂ϑ
(8.25b)

∂Y ~M1

∂ϑ
= αx

∂Y ~R1

∂ϑ
+ γ

∂Y ~R2

∂ϑ
+ ox

∂Y ~R3

∂ϑ
(8.25c)

∂Z ~M1

∂ϑ
= αx

∂Z ~R1

∂ϑ
+ γ

∂Z ~R2

∂ϑ
+ ox

∂Z ~R3

∂ϑ
(8.25d)
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~M2 =


X ~M2

Y ~M2

Z ~M2

 =


αyX ~R2

+ oyX ~R3

αyY ~R2
+ oyY ~R3

αyZ ~R2
+ oyZ ~R3

 (8.26a)

∂X ~M2

∂ϑ
= αy

∂X ~R2

∂ϑ
+ oy

∂X ~R3

∂ϑ
(8.26b)

∂Y ~M2

∂ϑ
= αy

∂Y ~R2

∂ϑ
+ oy

∂Y ~R3

∂ϑ
(8.26c)

∂Z ~M2

∂ϑ
= αy

∂Z ~R2

∂ϑ
+ oy

∂Z ~R3

∂ϑ
(8.26d)

~M3 =


X ~M3

Y ~M3

Z ~M3

 =


X ~R3

Y ~R3

Z ~R3

 (8.27a)

∂X ~M3

∂ϑ
=
∂X ~R3

∂ϑ
(8.27b)

∂Y ~M3

∂ϑ
=
∂Y ~R3

∂ϑ
(8.27c)

∂Z ~M3

∂ϑ
=
∂Z ~R3

∂ϑ
(8.27d)

8.6 Projection Matrix

The 3×4 projectionmatrixPmaps points in 3Dworld coordinates to points in 2D image coordinates.

P can be decomposed asP = M[I|−Ch] [Hartley e Zisserman 2004]. Indeed, lettingM be the left 3×3

submatrix of P, one decomposesM as a productM = KR. I is a 3×3 identity matrix and Ch a point

Ch = (0, 0, h)T , where h is the camera height defined in Equation 8.9. We can rewrite the projection

matrix P as:

P = M[I|−Ch] =


~P1

T

~P2
T

~P3
T

 (8.28)

Each component of thematrixP is described in ~P1, ~P2, and ~P3, together with their corresponding
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partial derivatives:

~Pi =


X~Pi

Y~Pi

Z~Pi

W~Pi

 =


X ~Mi

Y ~Mi

Z ~Mi

−hZ ~Mi

 (8.29a)

∂X~Pi

∂ϑ
=
∂X ~Mi

∂ϑ
(8.29b)

∂Y~Pi

∂ϑ
=
∂Y ~Mi

∂ϑ
(8.29c)

∂Z~Pi

∂ϑ
=
∂Z ~Mi

∂ϑ
(8.29d)

∂W~Pi

∂ϑ
= −Z ~Mi

∂h

∂ϑ
− h

∂Z ~Mi

∂ϑ
, (8.29e)

where i ∈ {1, 2, 3}. The projection matrix P is used to calculate the coordinates x1,x2,x3, and x4

in the image coordinate system.

8.7 Compute the Location of the Four Corners of the ROI

One of the four coordinates of the ROI is taken as an input variable. The other ones are computed

from it and using existing information. The x1 coordinate is the initial corner of the ROI. This input

variable is represented as a homogeneous coordinate x1 = (xx1, yx1, 1)
T . To find the positions of the

four corners in image coordinates, we will first determine the direction of the ray ~d0 to the reference

point q0 (Equation 5.3) in world coordinates. The direction of the ray is defined by Equation 8.30,

and their respective partial derivative by Equation 8.31:

~d0 =


X~d0

Y~d0
Z~d0

 = M−1x1 =


XM−1

1
xx1 + YM−1

1
yx1 + ZM−1

1

XM−1
2
xx1 + YM−1

2
yx1 + ZM−1

2

XM−1
3
xx1 + YM−1

3
yx1 + ZM−1

3

 , (8.30)

where M−1 is the inverse of M. The derivative of ~d0 with respect to ϑ is:

∂X~d0
∂ϑ

= xx1
∂XM−1

1

∂ϑ
+ yx1

∂YM−1
1

∂ϑ
+
∂ZM−1

1

∂ϑ
(8.31a)

∂Y~d0
∂ϑ

= xx1
∂XM−1

2

∂ϑ
+ yx1

∂YM−1
2

∂ϑ
+
∂ZM−1

2

∂ϑ
(8.31b)

∂Z~d0
∂ϑ

= xx1
∂XM−1

3

∂ϑ
+ yx1

∂YM−1
3

∂ϑ
+
∂ZM−1

3

∂ϑ
(8.31c)

The location of the reference point q0 of the ROI in world coordinates is defined by Equation 5.3,
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converted to homogeneous coordinate system, and rewrite as:

q0 =


Xq0

Yq0

Zq0

Wq0

 =


−h(X~d0/Z~d0)

−h(Y~d0/Z~d0)

0

1


T

, (8.32)

where the partial derivative of each component is:

∂Xq0

∂ϑ
= −X~d0

−Z~d0
∂h
∂ϑ

+ h
∂Z~d0
∂ϑ

Z2
~d0

− h

Z~d0

∂X~d0
∂ϑ

(8.33a)

∂Yq0
∂ϑ

= −Y~d0
−Z~d0

∂h
∂ϑ

+ h
∂Z~d0
∂ϑ

Z2
~d0

− h

Z~d0

∂Y~d0
∂ϑ

(8.33b)

∂Zq0

∂ϑ
=
∂Wq0

∂ϑ
= 0 (8.33c)

(8.33d)

With the calculated reference point q0 and direction of the ray ~d0, we find the remaining points

in the world coordinate system. X2, X3, and X4 are calculated by moving X1 by πππW and πππH , where

πππW and πππH are the width and height of the ROI image in meters, respectively. The points in the

world coordinate system are defined by:

X1 = q0 (8.34a)

X2 = (Xq0 + πππW , Yq0, 0, 1) (8.34b)

X3 = (Xq0 + πππW , Yq0 + πππH , 0, 1) (8.34c)

X4 = (Xq0, Yq0 + πππH , 0, 1) (8.34d)

The next step is to convert the world coordinate system points for the image coordinate system.

For this, points X1, X2, X3, and X4 are multiplied by the projection matrix P:

xk = PXT
k ,where k ∈ {1, 2, 3, 4}. (8.35)

x1 in the image coordinate system is calculated by Equation 8.36

x1 =


xx1

yx1

wx1

 =


X~P1

Xq0 + Y~P1
Yq0 +W~P1

X~P2
Xq0 + Y~P2

Yq0 +W~P2

X~P3
Xq0 + Y~P3

Yq0 +W~P3

 , (8.36)
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along with the partial derivatives of its components:

∂xx1
∂ϑ

=

(
Xq0

∂X~P1

∂ϑ
+X~P1

∂X~q0

∂ϑ

)
+

(
Yq0

∂Y~P1

∂ϑ
+ Y~P1

∂Y~q0
∂ϑ

)
+
∂W~P1

∂ϑ
(8.37a)

∂yx1
∂ϑ

=

(
Xq0

∂X~P2

∂ϑ
+X~P2

∂X~q0

∂ϑ

)
+

(
Yq0

∂Y~P2

∂ϑ
+ Y~P2

∂Y~q0
∂ϑ

)
+
∂W~P2

∂ϑ
(8.37b)

∂wx1

∂ϑ
=

(
Xq0

∂X~P3

∂ϑ
+X~P3

∂X~q0

∂ϑ

)
+

(
Yq0

∂Y~P3

∂ϑ
+ Y~P3

∂Y~q0
∂ϑ

)
+
∂W~P3

∂ϑ
(8.37c)

.

X2 in the world coordinate system is similar to X1, with the difference that the x-axis of X2 is

translated by πππW . The result of x2 in image coordinates is:

x2 =


xx2

yx2

wx2

 =


X~P1

(Xq0 + πππW ) + Y~P1
Yq0 +W~P1

X~P2
(Xq0 + πππW ) + Y~P2

Yq0 +W~P2

X~P3
(Xq0 + πππW ) + Y~P3

Yq0 +W~P3

 (8.38a)

∂xx2
∂ϑ

=

(
Xq0

∂X~P1

∂ϑ
+X~P1

∂X~q0

∂ϑ
+ πππW

∂X~P1

∂ϑ

)
+

(
Yq0

∂Y~P1

∂ϑ
+ Y~P1

∂Y~q0
∂ϑ

)
+
∂W~P1

∂ϑ
(8.38b)

∂yx2
∂ϑ

=

(
Xq0

∂X~P2

∂ϑ
+X~P2

∂X~q0

∂ϑ
+ πππW

∂X~Pk

∂ϑ

)
+

(
Yq0

∂Y~P2

∂ϑ
+ Y~P2

∂Y~q0
∂ϑ

)
+
∂W~P2

∂ϑ
(8.38c)

∂wx2

∂ϑ
=

(
Xq0

∂X~P3

∂ϑ
+X~P3

∂X~q0

∂ϑ
+ πππW

∂X~Pk

∂ϑ

)
+

(
Yq0

∂Y~P3

∂ϑ
+ Y~P3

∂Y~q0
∂ϑ

)
+
∂W~P3

∂ϑ
(8.38d)

(8.38e)

.

In a similar way x3 is calculated:

x3 =


xx3

yx3

wx3

 =


X~P1

(Xq0 + πππW ) + Y~P1
(Yq0 + πππH) +W~P1

X~P2
(Xq0 + πππW ) + Y~P2

(Yq0 + πππH) +W~P2

X~P3
(Xq0 + πππW ) + Y~P3

(Yq0 + πππH) +W~P3

 (8.39a)

∂xx3
∂ϑ

=

(
Xq0

∂X~P1

∂ϑ
+X~P1

∂X~q0

∂ϑ
+ πππW

∂X~Pk1

∂ϑ

)
+

(
Yq0

∂Y~P1

∂ϑ
+ Y~P1

∂Y~q0
∂ϑ

+ πππH

∂Y~P1

∂ϑ

)
+
∂W~P1

∂ϑ

(8.39b)
∂xx3
∂ϑ

=

(
Xq0

∂X~P2

∂ϑ
+X~P2

∂X~q0

∂ϑ
+ πππW

∂X~P2

∂ϑ

)
+

(
Yq0

∂Y~P2

∂ϑ
+ Y~P2

∂Y~q0
∂ϑ

+ πππH

∂Y~P2

∂ϑ

)
+
∂W~P2

∂ϑ

(8.39c)
∂xx3
∂ϑ

=

(
Xq0

∂X~P3

∂ϑ
+X~P3

∂X~q0

∂ϑ
+ πππW

∂X~P3

∂ϑ

)
+

(
Yq0

∂Y~P3

∂ϑ
+ Y~P3

∂Y~q0
∂ϑ

+ πππH

∂Y~P3

∂ϑ

)
+
∂W~P3

∂ϑ

(8.39d)

It is not necessary to calculate the derivatives of x4, i.e., the fourth corter of the ROI, because
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only points x1, x2, and x3 will be used to create the system of linear equations A vh = 0 (Equation

7.6), used to find the matrix of projective transformation M (Equation 7.2).

To finish with the calculation of the ROI corners, we divide all the components of each point

by ZXk
. This way, we ensure that ZXk

is equal to one, and use the points in the image coordinate

system:

xk =


xxk/wxk

yxk/wxk

1

 . (8.40)

The partial derivatives of each component of xk (Equation 8.40), for k ∈ {1, 2, 3}, are:

∂xxk
∂ϑ

=
wxk

∂xxk
∂ϑ

− xxk
∂wxk
∂ϑ

w2
xk

(8.41a)

∂yxk
∂ϑ

=
wxk

∂yxk
∂ϑ

− yxk
∂wxk
∂ϑ

w2
xk

(8.41b)

∂wxk

∂ϑ
= 0. (8.41c)

8.8 Matrix of the Projective Transformation

LetH be the homographic matrix, whereA,B, and C are the components of the vanishing line, and

xHk
are the projected points on a homographic plane, where k ∈ {1, 2, 3}:

Hl =


1 0 0

0 1 0
A
C

B
C

1

 (8.42)

Let xH1 , xH2 , and xH3 be input parameters for the system of linear equations A vh = 0, shown

in Equation 7.6, are defined as:

xHk
=


xxHk

yxHk

wxHk

 = Hlxk =


xxk

yxk

xxk
A
C
+ yXk

B
C
+ 1

 , (8.43)

where k ∈ {1, 2, 3}. The partial derivative of
∂xxHk

∂ϑ
,
∂yxHk

∂ϑ
and

∂wxHk

∂ϑ
is defined as:
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∂xxHk

∂ϑ
=
∂xxk
∂ϑ

(8.44a)

∂yxHk

∂ϑ
=
∂xxk
∂ϑ

(8.44b)

∂wxHk

∂ϑ
= xxk

(
C ∂A

∂ϑ
− A∂C

∂ϑ

C2

)
+
A

C

∂xxk
∂ϑ

+ yxk

(
C ∂B

∂ϑ
−B ∂C

∂ϑ

C2

)
+
B

C

∂yxk
∂ϑ

(8.44c)

, where the partial derivatives of ∂A
∂ϑ

, ∂B
∂ϑ

, and ∂C
∂ϑ

are given by the Equation 8.8.

The projective transformation matrixM is the result of the product between the matrixHA and

the matrix Hl, where HA is defined by:

HA =


vh1 vh2 vh3

vh4 vh5 vh6

0 0 vh7

 , (8.45)

and vhi
is the result of the system of linear equations A vh = 0 (Equation 7.6), which is used to

create the matrixHA (Equation 8.45), where i = {1, 2, ..., 7}. The partial derivatives of vhi
are given

by:
∂~vhi

∂ϑ
=

(
∂~vh1

∂ϑ
. . .

∂~vh7

∂ϑ

)T

(8.46)

The projective transformation matrix M is defined by M = TvhH, and rewritten as:

M =


~MT

1

~MT
2

~MT
3

 =


X ~M1

Y ~M1
Z ~M1

X ~M2
Y ~M2

Z ~M2

X ~M3
Y ~M3

Z ~M3

 =


~vh1 + ~vh3

A
C

~vh2 + ~vh3

B
C

~vh3

~vh4 + ~vh6

A
C

~vh5 + ~vh6

B
C

~vh6

~vh7

A
C

~vh7

B
C

~vh7

 (8.47)

The partial derivatives of each component of ~M1 are given by:

∂X ~M1

∂ϑ
=
∂~vh1

∂ϑ
+
∂~vh3

∂ϑ

A

C
+ ~vh3

(
C ∂A

∂ϑ
− A∂C

∂ϑ

C2

)
(8.48a)

∂Y ~M1

∂ϑ
=
∂~vh2

∂ϑ
+
∂~vh3

∂ϑ

B

C
+ ~vh3

(
C ∂B

∂ϑ
−B ∂C

∂ϑ

C2

)
(8.48b)

∂Z ~M1

∂ϑ
=
∂~vh3

∂ϑ
(8.48c)
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The partial derivatives of each component of ~M2 are given by:

∂X ~M2

∂ϑ
=
∂~vh4

∂ϑ
+
∂~vh6

∂ϑ

A

C
+ ~vh6

(
C ∂A

∂ϑ
− A∂C

∂ϑ

C2

)
(8.49a)

∂Y ~M2

∂ϑ
=
∂~vh5

∂ϑ
+
∂~vh6

∂ϑ

B

C
+ ~vh6

(
C ∂B

∂ϑ
−B ∂C

∂ϑ

C2

)
(8.49b)

∂Z ~M2

∂ϑ
=
∂~vh6

∂ϑ
(8.49c)

The partial derivatives of each component of ~M3 are given by:

∂X ~M3

∂ϑ
=
∂~vh7

∂ϑ

A

C
+ ~vh7

(
C ∂A

∂ϑ
− A∂C

∂ϑ

C2

)
(8.50a)

∂Y ~M3

∂ϑ
=
∂~vh7

∂ϑ

B

C
+ ~vh7

(
C ∂B

∂ϑ
−B ∂C

∂ϑ

C2

)
(8.50b)

∂Z ~M3

∂ϑ
=
∂~vh7

∂ϑ
(8.50c)

8.9 Find Peaks

Let cn = (xcn, ycn, wcn)
T and cn+1 = (xcn+1, ycn+1, wcn+1)

T be two adjacent wave coordinates, ex-

tracted from the ROI image. These coordinates are taken as input variables without uncertainty,

calculated in Chapter 7. The transformation matrix M is used to rectify the two coordinates to c′n
and c′n+1, respectively. The rectified coordinates are defined as:

c′p =


xc′p

yc′p

wc′p

 = Mcp =


xcpX ~M1

+ ycpY ~M1
+ Z ~M1

xcpX ~M2
+ ycpY ~M2

+ Z ~M2

xcpX ~M3
+ ycpY ~M3

+ Z ~M3

 , (8.51)

where p ∈ {n, n+ 1}, and its partial derivatives are given by:

∂xc′p
∂ϑ

= xcp
∂X ~M1

∂ϑ
+ ycp

∂Y ~M1

∂ϑ
+
∂Z ~M1

∂ϑ
(8.52a)

∂yc′p
∂ϑ

= xcp
∂X ~M2

∂ϑ
+ ycp

∂Y ~M2

∂ϑ
+
∂Z ~M2

∂ϑ
(8.52b)

∂wc′p

∂ϑ
= xcp

∂X ~M3

∂ϑ
+ ycp

∂Y ~M3

∂ϑ
+
∂Z ~M3

∂ϑ
(8.52c)

.
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8.10 Vessel Velocity Estimation

Once the two wave peaks are found, the vessel speed can be estimated by the distance between these

points. Equation 2.16 estimates the speed of the vessel and is rewritten by Equation 8.53, where D

is the Euclidean distance between the two points that represent the crests(or troughs) of the wave.

U =

√
g
√
3

4π

√
D (8.53)

Knowing that g is the gravitational acceleration, r =
√

g
√
3

4π
is taken as a constant. ReplacingD

(Equation 2.14) in Equation 8.53, we obtain the following equation:

U = r 4

√
(xc′n+1

− xc′n)
2 + (yc′n+1

− yc′n)
2 + (wc′n+1

− wc′n)
2 (8.54)

By knowing the function U and the partial derivatives of the coordinates c′n and c′n+1, the deri-

vative of the Jacobian matrix ∇U (Equation 8.5) is calculated by:

∂U

∂ϑ
= r

(xc′n+1
− xc′n)

(
∂xc′n+1

∂ϑ
− ∂xc′n

∂ϑ

)
+ (yc′n+1

− yc′n)

(
∂yc′n+1

∂ϑ
− ∂yc′n

∂ϑ

)
2 4

√
(xc′n+1

− xc′n)
2 + (yc′n+1

− yc′n)
2 + (wc′n+1

− wc′n)
2

+

(wc′n+1
− wc′n)

(
∂wc′n+1

∂ϑ
− ∂wc′n

∂ϑ

)
2 4

√
(xc′n+1

− xc′n)
2 + (yc′n+1

− yc′n)
2 + (wc′n+1

− wc′n)
2

(8.55)

Once the matrix of variances and covariances Λϑ (Equation 8.3) is known, and the matrix ∇U

is calculated, the error in the calculation of the vessel speed can be estimated from Equation 8.5.

8.11 Discussion

The computational chain to estimate the standard deviation in the calculation of the vessel speed

was presented in this chapter. Also, the standard deviations of the intermediate variables shown in

Figure 8.1 were defined.

Thewavelength, described in Chapter 7, is calculated from a distance between two points. These

points, c′n and c′n+1, are two adjacent peaks of the wave present in the rectified ROI. Points cn and

cn+1 represent points c′n and c′n+1, respectively, without rectification. We use matrixM to rectify c′n
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and c′n+1, knowing that matrix M has sources of calculated uncertainties along the computational

chain.

All input data measured from the real world is a source of uncertainty. However, we did not

consider the location of the initial ROI coordinate x1, ship direction ~u, cn, and cn+1 (points in the

non-rectified ROI image) as sources of uncertainty in the proposed model. The reason was that we

did not have how to estimate the uncertainties in these input variables. Camera height, vanishing

line components, c′n and c′n+1 points in the rectified ROI image were considered with uncertainty.

The uncertainties, of c′n and c′n+1, came from the rectification that was incorporated into the homo-

graphic matrix M. The matrix M and the points cn and cn+1 are important variables to determine

the uncertainty of the vessel speed function.



Chapter 9

Analysis of the Results

To validate the techniques proposed in this work, it was developed a system that calculates the

vessel speed from a single image. The project involved the use of a professional camera and the

implementation of software, mentioned in Section 9.1.

Captured vessel images were taken with a digital camera. A radar estimates the captured vessel

speed. Considering that the data used as input (e.g., coordinates of the vanishing line, camera height)

are subject to an amount of error, it is expected that the estimated speeds are not accurate. By

comparing the calculated values and the actual speeds, it is possible to have an idea of the accuracy

and precision of the developed system. Accuracy can be defined as the proximity between the

experimentally obtained value and the actual value. In other words, it is the measure of how much

the obtained value approximates the correct value. Whereas the precision is the proximity between

the values obtained by the repetition of the measurement process. In other words, the precision

indicates the reproducibility of the result. Section 9.3 presents the analysis of the accuracy and

precision of the system through statistical studies.

In this Chapter, we perform the analysis of:

• Accuracy of the proposed method,

• Precision of the proposed method; and

• The ability to applying the First-Order Error Propagation.

The materials used are described in Section 9.1. Section 9.2 shows a method to verify the accuracy.

Section 9.3 shows a method to verify the precision. Results using error propagation are presented

in Section 9.4.
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(a) HSC vessel model, with an
19.20 knot speed.

(b) Another vessel type, with an
10.4 knot speed.

Figure 9.1: Examples of screenshots of the FAR − 21 × 7 radar monitor. The pictures were taken
with a smartphone camera.

9.1 Materials

The images were taken using a Nikon D3300 camera, with 24.2 megapixels and encoded in JPG

format file. The lens model used was an AF-S DX NIKKOR, with 18 ∼ 55mm focal length and with

vibration reduction (VR II) [Nikon Corporation 2010]. The camera was mounted on a tripod. This

tripod was placed on three different locations: the fourth floor, the fifth floor, and the sixth floor of

the Instituto de Computação at UFF, facing the entrance of the Guanabara Bay (Figure 1.1).

In the experiments, the images of acquired moving vessels were under natural light conditions

and different climatic situations. A total of 40 images were acquired, where 23 images were used

to analyze the results presented in this chapter. The remaining images, 17 images, are shown in

Appendix B. These images were not considered because they showed not very visible traces of the

ship, and it was not possible to identify the wave arms. The resolution of the captured image I
was set to 6000 × 4000 pixels. The Region of Interest (ROI) size lying on the plane πππ was set to

18000 × 9000 cm. Given the scale factor α = 10, the dimensions of the binary images B′ of the

rectified ROIs was set to 1800× 900 pixels. Under this configuration, the side of, 1-pixel unit in the

rectified image corresponds to 10 cm.

In Figures 9.2, 9.3, 9.4, and 9.5, the ship’s actual speed is informed next to each image. Each

image shows the real cropped picture, next to its respective edge image. The resolution of the real

image and the edge-image are the same. The images were cropped to highlight the vessels and their

trails.

In Figure 9.2, image i1 shows the HSC vessel model, while images i2 to i6 show the MC25

vessel model. In Figure 9.3, images i9 and i10 show the HSC vessel model. Images i8, i11, and i12
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Table 9.1: Ground-truth information of the vessel in each captured image.

Image Vessel Model Vessel Name Speed Time Weather Tide Height
(knots) (hh:mm) (meters)

i1 HSC Fenix 18.20 10:09 Cloudy 0.30
i2 MC25 Apolo 20.60 10:12 Cloudy 0.30
i3 MC25 Apolo 20.50 10:13 Cloudy 0.30
i4 MC25 Neptuno 19.20 10:19 Cloudy 0.50
i5 MC25 Neptuno 17.30 10:21 Cloudy 0.50
i6 MC25 Neptuno 17.10 10:22 Cloudy 0.50
i7 Other Escander Amazonas 9.20 10:28 Cloudy 0.60
i8 MC25 Missing 19.50 10:39 Cloudy 0.70
i9 HSC Fenix 15.60 10:41 Cloudy 0.70
i10 HSC Fenix 16.50 10:43 Cloudy 0.70
i11 MC25 Missing 20.40 11:08 Cloudy 0.50
i12 MC25 Missing 20.40 11:09 Cloudy 0.50
i13 MC25 Missing 17.30 11:12 Cloudy 0.50
i14 MC25 Zeus 19.60 11:42 Cloudy 0.70
i15 MC25 Neptuno 19.10 11:43 Cloudy 0.70
i16 MC25 Neptuno 20.20 12:10 Cloudy 0.90
i17 MC25 Missing 20.30 12:13 Cloudy 0.90
i18 MC25 Zeus 18.90 16:12 Scattered storms 1.10
i19 MC25 Zeus 17.50 16:50 Partly cloudy 0.70
i20 MC25 Zeus 17.60 16:51 Partly cloudy 0.70
i21 MC25 Zeus 17.80 16:51 Partly cloudy 0.70
i22 MC25 Missing 20.30 17:01 Partly cloudy 0.70
i23 MC25 Zeus 16.80 17:21 Partly Cloudy 0.50

show theMC25 vessel model. Only image i7 is an unknown vessel model. In Figure 9.4, all images

are of the MC25 vessel model. All images were taken on the same day and at different times.

Table 9.1 shows, respectively, the vessel model, the vessel name, the true vessel speed (U , in

knots), the time, the weather condition, and the tide height at which the image was taken. The

name of the ship and its actual speed were extracted from a radar. Time was retrieved manually.

The radar installed in the Instituto de Geociências at UFF was used as a resource to validate the

proposed method. The radar is a FAR− 21× 7 series ofX and S-band, with a 19−inch LCD screen

[Furuno Electric Co.]. The radar screen information was captured with a cell phone camera (see

Figure 9.1). The radar screen contains knots speed information of the selected vessel in motion.

Images taken from the radar screen and the moving vessel were acquired at approximately the same

time. Table 9.1 shows the time at which both pictures were taken. The system returns the ves-

sel speed in m/s. In order to compare with the resulting radar values, we used Equation 7.11 to
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(i1) U ≈ 18.20 knots (i2) U ≈ 20.60 knots

(i3) U ≈ 20.50 knots (i4) U ≈ 19.20 knots

(i5) U ≈ 17.30 knots (i6) U ≈ 17.10 knots

Figure 9.2: Cropping the images used in the experiments. Image i1 shows the a HSC vessel. Images
i2− i6 show a MC25 vessel.
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(i7) U ≈ 9.20 knots (i8) U ≈ 19.50 knots

(i9) U ≈ 15.60 knots (i10) U ≈ 16.50 knots

(i11) U ≈ 20.40 knots (i12) U ≈ 20.40 knots

Figure 9.3: Cropping the images used in the experiments. Images i8, and i9 show a HSC vessel.
Images i7, i10, i11, and (i12) show a MC25 vessel.
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(i13) U ≈ 17.30 knots (i14) U ≈ 19.60 knots

(i15) U ≈ 19.10 knots (i16) U ≈ 20.20 knots

(i17) U ≈ 20.30 knots (i18) U ≈ 18.90 knots

Figure 9.4: Cropping the images used in the experiments. All images sinclude a MC25 vessel.
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(i19) U ≈ 17.50 knots (i20) U ≈ 17.60 knots

(i21) U ≈ 17.80 knots (i22) U ≈ 20.30 knots

(i23) U ≈ 16.80 knots

Figure 9.5: Cropping the images used in the experiments. All images sinclude a MC25 vessel.
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transform fromm/s to knots.

The images shown in Figures 9.2, 9.3, 9.4, and 9.5 belong to passenger’s vessels, with the excep-

tion of image i7. These vessels follow the route that connects the ferry terminals, Praça XV, in Rio de

Janeiro, and Charitas, in Niteroi, Brazil. It was not possible to use another type of ship because the

radar was not able to display information on the speeds of small vessels, e.g., sailboats and yachts.

Small vessels did not have Automatic Identification System (AIS), which helps display the ship’s

speed information on the radar screen. AIS is an automatic tracking system that uses transponders

on vessels and is used by ship traffic services, where passenger and cargo ships are obliged to have

them [Omar Systems Ltd. 2020]. We did not take cargo ships into account because the tracks left

were very weak, and the proposed method did not correctly identify the wave arms. Also, the cargo

ships had a speed fewer than 10 knots. This is because the cargo ship was close to a port area, and

its speed had to be limited. The two models of passenger vessels operating on the observed route

are MC25 and HSC.

Speeds were calculated on a computer with an Intel (R) Xeon (R) CPU E5-2698 v4with 2.20GHz,

and a Tesla P100− SXM2 video card with 16 GB of VRAM. The language used to implement the

software was Python 21. We used the Exif2 module to extract the metadata from the images. The

extracted metadata was used to construct the matrix of intrinsic parameters of the camera. Also, we

used OpenCV3 to work with different image processing functions, Scipy4 library as a mathematical

algorithm tool, and the Numpy5 package to work with vectors and matrices. To work with error

propagation, we used the First-Order Error Propagation Template Library (EPTL6) developed by

ourselves.

9.2 Analysis of Relative Error

Relative error εr was used to determine the accuracy of themeasurement, εr indicates the proportion

of the error concerning the exact value of the measurement. It is necessary to know the expected

value to calculate the relative error. Equation 9.1 is used to calculate the relative error, where Um is

the measured value, and Ue is the expected value.

εr =
|Um − Ue|

Ue

(9.1)

1https://github.com/Prograf-UFF/lighthouse
2https://pypi.org/project/ExifRead/
3https://pypi.org/project/opencv-python/
4https://www.scipy.org/
5https://numpy.org/
6https://github.com/laffernandes/eptl
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Table 9.3: Table showing absolute error(εa) and relative error(εr) using the wave arms troughs.

Image Expected value Measured value Absolute error Relative error
(Ue) (Um) (εa) (εr)

i1 18.200 18.180 0.020 0.001
i2 20.600 22.404 1.804 0.088
i3 20.500 20.330 0.170 0.008
i4 19.200 19.582 0.382 0.020
i5 17.300 16.980 0.320 0.018
i6 17.100 16.453 0.647 0.038
i7 9.200 15.827 6.627 0.720
i8 19.500 19.158 0.342 0.018
i9 15.600 16.022 0.422 0.027
i10 16.500 16.401 0.099 0.006
i11 20.400 20.617 0.217 0.011
i12 20.400 20.664 0.264 0.013
i13 17.300 16.857 0.443 0.026
i14 19.600 20.974 1.374 0.070
i15 19.100 20.143 1.043 0.055
i16 20.200 17.957 2.243 0.111
i17 20.300 20.127 0.173 0.009
i18 18.900 19.485 0.585 0.031
i19 17.500 17.595 0.095 0.005
i20 17.600 18.023 0.423 0.024
i21 17.800 18.151 0.351 0.020
i22 20.300 16.802 3.498 0.172
i23 16.800 16.784 0.016 0.001

It is worth mentioning that in Equation 9.1, the numerator is also known as absolute error.

Absolute error, defined as εa = |Um − Ue|, is a measure of how ’far’ a measurement is from an

expected value.

In order to verify the accuracy of the proposed method, we calculated the relative error. We

used 23 captured images for this, shown in Figures 9.2, 9.3, 9.4, and 9.5. Tables 9.3 and 9.5 show

the image name, the expected value, the measured value, the absolute error, and relative error. The

relative error has no units because they are canceled during the calculation. The relative error is

a proportion, so we can express it as a percentage by multiplying the relative error by 100. The

measured value is calculated on the image applying the proposed method, and the expected value

is the measurement made by the radar.

In Table 9.3, we use the wave arms troughs. The troughs of the closest wave arm are the least

affected by the noise introduced by the vessel’s turbulence, and be the distortion of rectifying points
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Table 9.5: Table showing absolute error(εa) and relative error(εr) using the wave arms crests.

Image Expected value Measured value Absolute error Relative error
(Ue) (Um) (εa) (εr)

i1 18.200 19.976 1.776 0.098
i2 20.600 21.461 0.861 0.042
i3 20.500 20.638 0.138 0.007
i4 19.200 20.860 1.660 0.086
i5 17.300 18.599 1.299 0.075
i6 17.100 16.927 0.173 0.010
i7 9.200 15.381 6.181 0.672
i9 15.600 19.582 3.982 0.255
i10 16.500 17.925 1.425 0.086
i13 17.300 17.633 0.333 0.019
i14 19.600 19.469 0.131 0.007
i17 20.300 21.694 1.394 0.069
i18 18.900 17.355 1.545 0.082
i19 17.500 15.944 1.556 0.089

that are not in the actual mean water plane. The results of the relative error were below 6%. Some

results are between 6% and 17%, but they have, at most, one occurrence each. Only one image, i7,

had a relative error equal to 72%. One possible explanation for this error is that the trace left behind

was weak due to the 9.2 knots speed. It should be noted that the ship was close to a port area where

the regulation limits the approach speed of larger vessels. The average of all relative errors obtained

is equal to 6.48%, which shows that the proposed calculation method is accurate.

In Table 9.5, we work with the wave arm crests. The relative error was less than 10%, and

only one case with a relative error equal to 25.5% was observed. We can also note that in images

i8, i11, i12, i15, i16, i20, i21, i22, and i23 it was not possible to obtain the vessel speed by our pro-

posed method. The average relative error obtained was 11.407%, without taking into account the

images where it was not possible to get the speed. The turbulence noise is a possible explanation

for the significant relative error, and the vessel speed not estimated in some images.

9.3 Analysis of Confidence Intervals

In the experiments, it was not possible to make several captures of the vessels’ images at the same

time. To simulate the capture of various vessels’ images, we made small variations for each image

in the input parameters that were taken as a source of uncertainty, points that form the vanishing

line and the camera height. These minor variations in each image were taken as samples.
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Along with the image capture, annotations were made of tripod height, floor number where

the camera was mounted, floor height above sea level, tide level height, and the time when the

picture was taken for each picture. The height to each floor was obtained with the help of the

architectural plans of the Instituto de Computação. The ground height above sea level was obtained

from the Google Maps information. Nautide [Nautide], Tides Chart [Tides Chart], and Marinha do

Brasil  [Marinha do Brasil] were used to estimate sea level height. Annotations were also made of

the time when the images of the radar screen were captured (Figure 9.1). It is essential to mention

that the radar was in the Instituto de Geociências building, next to the Instituto de Computação. For

that reason, it was necessary to write down the time vessels’ images and radar screen images were

taken. The annotated time format is hh:mm (hours:minutes). For each picture, n = 150 samples

were made, obtaining n speeds estimations using the method described in Chapter 7.

In this analysis, samples were used to calculate the mean, standard deviation, and confidence

interval of each speed. Equation 9.2 gives the Confidence Interval (CI) for velocity,

CI(γ) =

[
x̄− tγ

s√
n
, x̄+ tγ

s√
n

]
, (9.2)

where x̄ is themean velocity and s is the standard deviation. In Equation 9.2, tγ is a t-Student variable

withn−1 degrees of freedom so that the probability that velocity x belongs to the confidence interval

is γ.

Table 9.7 and Table 9.9 show the confidence intervals calculated for each vessel image, using the

wave arm troughs and the wave arm crests, respectively. The first column of the tables represent

the name of the image. The second column shows the true speed in knots taken by the radar. The

average velocity x̄ and standard deviation s, are shown in the third and fourth columns, respectively,

followed by the confidence intervals (CI), where γ is equal to 95.0% (tγ = 1.96), 98.0% (tγ = 2.33),

and 99.8% (tγ = 3.08), respectively.

The standard deviation s measures the dispersion of the values around the mean x̄. The greater

the standard deviation is, the less reproducible the estimated values and the less accurate the re-

sults. The standard deviation is expressed in the same unit of the data (knots), which facilitates its

comparison. Observing Table 9.7, it is possible to notice that s varies between 0.19 and 1.50 knots.

It is observed that for images with better natural lighting, the edges of the traces left by vessels are

better (i3, i6, i10), and they have smaller standard deviations. In contrast, the standard deviations

are higher for images with little natural lighting and taken very close at dusk (e.g., i16). The same

applies to images taken in bad weather, especially i18. This image was captured when it was raining,

leaving the trail of waves less visible. Images i1 and i9 have longer intervals because the wave crests

are wide, making it difficult to find the troughs.
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Table 9.7: Confidence intervals for estimated speeds in knots, using the wave arms troughs.

Image True speed x̄ s CI(95, 0%) CI(98, 0%) CI(99, 8%)

i1 18.20 18.32 1.50 [18.08, 18.56] [18.03, 18.61] [17.94, 18.70]
i2 20.60 21.91 0.40 [21.85, 21.97] [21.83, 21.99] [21.81, 22.01]
i3 20.50 20.74 0.35 [20.68, 20.80] [20.67, 20.81] [20.65, 20.83]
i4 19.20 19.32 0.54 [19.23, 19.41] [19.22, 19.42] [19.18, 19.46]
i5 17.30 17.43 0.55 [17.34, 17.52] [17.33, 17.53] [17.29, 17.57]
i6 17.10 17.37 0.28 [17.33, 17.41] [17.32, 17.42] [17.30, 17.44]
i7 9.20 17.36 0.77 [17.24, 17.49] [17.22, 17.51] [17.17, 17.56]
i8 19.50 19.76 0.59 [19.67, 19.85] [19.65, 19.87] [19.61, 19.91]
i9 15.60 15.79 1.12 [15.61, 15.97] [15.58, 16.00] [15.51, 16.07]
i10 16.50 16.63 0.19 [16.60, 16.66] [16.59, 16.67] [16.58, 16.68]
i11 20.40 20.81 0.54 [20.72, 20.90] [20.71, 20.91] [20.67, 20.95]
i12 20.40 20.00 0.57 [19.91, 20.09] [19.89, 20.11] [19.86, 20.14]
i13 17.30 17.19 0.38 [17.13, 17.25] [17.12, 17.26] [17.09, 17.29]
i14 19.60 20.39 0.60 [20.29, 20.49] [20.28, 20.50] [20.24, 20.54]
i15 19.10 19.50 0.60 [19.40, 19.59] [19.38, 19.61] [19.35, 19.65]
i16 20.20 20.39 0.83 [20.26, 20.52] [20.23, 20.55] [20.18, 20.60]
i17 20.30 19.20 0.45 [19.13, 19.27] [19.11, 19.29] [19.09, 19.31]
i18 18.90 18.91 0.91 [18.77, 19.05] [18.74, 19.08] [18.68, 19.14]
i19 17.50 17.92 0.54 [17.83, 18.01] [17.82, 18.02] [17.78, 18.06]
i20 17.80 18.50 0.54 [18.41, 18.59] [18.40, 18.60] [18.36, 18.64]
i21 17.20 17.18 0.41 [17.11, 17.25] [17.10, 17.26] [17.08, 17.28]
i22 20.30 17.69 0.42 [17.62, 17.75] [17.61, 17.77] [17.58, 17.79]
i23 16.80 17.87 0.52 [17.79, 17.96] [17.78, 17.97] [17.74, 18.00]

Table 9.6 shows the confidence intervals for the wave arm crests. We can see that in only two

images (i16 and i18), the average value calculated by the proposed method is within the confidence

interval. The average speeds calculated for images i5, i9, i15, and i19 are the most distant from the

true value, approximately 4.23 knots. For images i7, i8, i11, i12, i20, i21, i22, and i23, it was not

possible to estimate their speeds, a possible explanation was that the crests were affected by the

turbulence, mentioned in Section 9.2.

The standard deviation result is related to the confidence interval. The larger the standard devi-

ation is, the higher the confidence interval will also be. Narrow confidence intervals indicate greater

precision in the results. The first column of Figure 9.6 and Figure 9.7 help to illustrate the confidence

intervals shown in Table 9.7 and Table 9.9, respectively. In these Figures, the red line represents the

real vessel speed in increasing order. Blue lines indicate the average of the speeds calculated by the

system, and the uncertainty bars the confidence intervals.

In our analysis, we have observed that the intervals (Table 9.7 and the first column of Figure 9.6)
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Table 9.9: Confidence intervals for estimated speeds in knots, using the wave arms crests.

Images True speed x̄ s CI(95, 0%) CI(98, 0%) CI(99, 8%)

i1 18.20 19.31 1.72 [19.04, 19.59] [18.99, 19.64] [18.88, 19.74]
i2 20.60 21.71 0.45 [21.63, 21.78] [21.62, 21.79] [21.59, 21.82]
i3 20.50 21.38 0.96 [21.23, 21.53] [21.20, 21.56] [21.14, 21.62]
i4 19.20 20.23 0.50 [20.15, 20.31] [20.14, 20.33] [20.11, 20.36]
i5 17.30 19.58 1.20 [19.39, 19.77] [19.35, 19.81] [19.28, 19.88]
i6 17.10 16.76 0.96 [16.61, 16.91] [16.58, 16.94] [16.52, 17.00]
i9 15.60 19.83 0.64 [19.73, 19.93] [19.71, 19.95] [19.67, 19.99]
i10 16.50 18.06 1.15 [17.88, 18.24] [17.84, 18.28] [17.77, 18.35]
i13 17.30 17.78 1.01 [17.62, 17.94] [17.59, 17.97] [17.53, 18.04]
i14 19.60 19.51 0.43 [19.44, 19.58] [19.43, 19.59] [19.40, 19.62]
i15 19.10 17.89 2.00 [17.57, 18.21] [17.51, 18.27] [17.39, 18.40]
i17 20.30 21.68 0.47 [21.60, 21.75] [21.59, 21.77] [21.56, 21.80]
i18 18.90 18.44 2.73 [18.00, 18.87] [17.92, 18.96] [17.75, 19.12]
i19 17.50 15.62 0.23 [15.59, 15.66] [15.58, 15.67] [15.56, 15.68]

are not so narrow, and most part of the confidence intervals does not incorporate true speeds. The

images whose speeds are within the confidence interval are i1, i4, i5, i9, i13, i15, and i18. Images

i2, i22 and i7 show a greater distance between actual speed and average speed. The difference

between the actual speed and the average speed are approximately 1.6, 3.5, and 8.4 knots, to i2, i22

and i7 respectively. A possible explanation for the result of i2 is that the wake and the vessel passed

close to an oil platform, altering the shape of the waves since there were other waves coming from

the platform disturbing the water surface. In the edge image i22, the traces left by the ship were

weak. This is because it was taken in poor natural light. In image i7, the vessel’s traces were also

weak, but this was due to the speed the ship was going. For the remaining images, although the

actual speed was not within the confidence interval, the average speeds were close, approximately

0.36 knots on average.

9.4 Analysis of the Error Propagation

In this section it is developed an analytical study on the propagation of errors along the computati-

onal chain presented in Figure 8.1.

The coordinates that form the vanishing line and the camera’s height are determined from a

set of experimental data. The error η is given by the difference between the experimental value x

and the true value xv [Vuolo 1996]. Where the true value xv is unknown, and the error η is also
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Figure 9.6: The first column shows the confidence intervals (CI), presented in Table 9.7, using sam-
ples randomly created. The second column shows the result of the confidence intervals using error
propagation. The wave arm troughs were used to create the confidence intervals.

unknown. Therefore, η can only be estimated in terms of probabilities:

η = x− xv (9.3)

The confidence interval for a true value xv , around an experimental value, is defined as:

x− σ < xv < x+ σ (9.4)
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Sampling First-Order Error Propagation
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Figure 9.7: The first column shows the confidence intervals (CI), presented in Table 9.9, using sam-
ples randomly created. The second column shows the result of the confidence intervals using error
propagation. The wave arm crests were used to create the confidence intervals.

Interpreting Equation 9.4, we can say that there is a probability P of xv being within the range,

for σ ≥ 0. Considering that the distribution of errors is Gaussian and that standard uncertainty is

obtained experimentally.
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9.4.1 Errors in Input Data

The input data of the system are the vessel image, coordinates that form the vanishing line, camera

height, intrinsic parameters of the camera, an initial ROI coordinate, the direction of the vessel, ROI

size (in meters), and two adjacent crests/troughs of the wave. In this work, we assume that the last

five input parameters are values unaffected by uncertainties. Two coordinates of the vanishing line,

which represents the horizon, are extracted from the image. These coordinates are calculated using

the Horizon Line of the Wild (HLW) algorithm, explained in Chapter 5. Due to the discretization,

lighting, weather conditions, and image resolution, the coordinates are estimated with small varia-

tions in position. The camera height is subject to variations due to external influences, such as tide

height, instrument defects, and in the measurement process. All these errors in the input data will

influence the estimated vessel speed.

The coordinates to obtain the vanishing line, together with the camera height, are associated

with an error. Both values used as input parameters have different ways of estimating their error.

These errors are used in the composition of matrix Λϑ (Equation 8.3).

The vanishing line is created from two coordinates, where the y-axis is taken as the input vari-

able (recall Section 4.2). The left and right axis vl and vr, respectively, are obtained from the HLW

algorithm. Due to discretization, lighting, weather conditions, and image resolution, the true values

of vl and vr are in the range of vi ± svi , for i in (l, r). Thus, the matrix of variances and covariances

of the coordinates of the vanishing line is given by Equation 9.5:

Λvi =

(
s2vl 0

0 s2vr

)
. (9.5)

The camera height is given by the sum of the floor height, ground height, tripod height, and

the subtraction of the tide height. The standard deviation calculation for each input parameter is

described in Appendix A. The matrix of variances, and covariances for the camera height is given

by:

Λhj
=


s2hg

0 0 0

0 s2hf
0 0

0 0 s2ht
0

0 0 0 s2hs

 (9.6)

The image size of the rectified ROI πππw,πππh and the initial coordinate of the ROI, X1, are not in-

cluded as a source of uncertainty. πππw andπππh are a constant value defined manually. Also, Fernandes

et al. [Fernandes, Oliveira e Silva 2008] showed that in an experiments where the impact of the un-

certainty of each input variable was calculated for the estimation of the size of boxes from images,



9.4 Analysis of the Error Propagation 94

Table 9.11: Normality Tests using Shapiro-Wilk. If ρ − value > α then the null hypothesis cannot
be rejected, where α = 0.05. It was used the wave arm troughs for the Normality Test.

Images Shapiro-Wilk
W ρ-value

i1 0.899 9 × 10−9

i2 0.987 0.175
i3 0.982 0.062
i4 0.990 0.400
i5 0.983 0.051
i6 0.998 0.999
i7 0.865 5 × 10−7

i8 0.988 0.252
i9 0.862 1 × 10−10

i10 0.990 0.426
i11 0.983 0.051
i12 0.987 0.180

Images Shapiro-Wilk
W ρ-value

i13 0.987 0.151
i14 0.987 0.151
i15 0.980 0.051
i16 0.907 3 × 10−8

i17 0.990 0.440
i18 0.993 0.648
i19 0.969 0.002
i20 0.985 0.106
i21 0.985 0.084
i22 0.913 7 × 10−8

i23 0.641 2 × 10−16

the intrinsic parameters of cameraK carry insignificant uncertainty, so we assume that observation

in this work and did not include the intrinsic parameters of the camera as a source of uncertainty.

9.4.2 Verifying the Use of Error Propagation

The input variables used in the sample procedure described in Section 9.3 were created randomly

following a Gaussian distribution. In this way, we guarantee that the entry of the uncertainties is

Gaussian. To verify if the output is also Gaussian, we use the Shapiro-Wilk [SHAPIRO e WILK 1965]

test.

The Gaussian distribution is widely used to describe experimental errors. It is also called the

normal error function [Vuolo 1996]. The Central LimitTheorem justifies the Gaussian function as an

error distribution. Where, if the total error η is the sum of several ηi errors that have any distribution

with finite variances, the probability distribution tends to be Gaussian. In order to use first-order

error propagation, it is necessary to verify if the sample’s result of each image is approximately

normally distributed. The normal distribution peaks in the middle and is symmetric about the mean.

The data does not need to be correctly distributed normally for the tests to be reliable.

The normality test chosen is the most powerful in most situations [Shapiro e Wilk 2007]. The

null hypothesis of this test is: the data is normally distributed, if ρ > α . Therefore, if the ρ-value

is less than the chosen α level, then the null hypothesis is rejected, and there is evidence that the

tested data is not normally distributed. On the other hand, if the ρ-value is higher than the chosen

α level, then the null hypothesis that the data comes from a normally distributed population cannot
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Table 9.14: Normality Tests using Shapiro-Wilk. If ρ − value > α then the null hypothesis cannot
be rejected, where α = 0.05. It was used the wave arm crests for the Normality Test.

Images Shapiro-Wilk
W ρ-value

i1 0.916 1 × 10−7

i2 0.958 0.007
i3 0.958 4 × 10−5

i4 0.985 0.091
i5 0.859 1 × 10−10

i6 0.983 0.087
i9 0.634 1 × 10−16

Images Shapiro-Wilk
W ρ-value

i10 0.365 1 × 10−16

i13 0.979 0.051
i14 0.981 0.051
i15 0.94649 1 × 10−5

i17 0.984 0.053
i18 0.932 1 × 10−6

i19 0.983 0.082

be rejected based on the data available.

Table 9.11 shows the results of the samples of each image applying the Shapiro-Wilk test, where

the wave arm troughs were used. The chosen level of significance is α = 0.05. Recalling the null

hypothesis, if the ρ-value is higher than α, normality can be assumed. In Table 9.11, ρ-values less

than α is highlighted in red. Images i1, i8, i13, and i16 have ρ-values equal to 9×10−9, 1×10−10, 3×
10−8, and 0.002, respectively, which suggest strong evidence of non-normality in those cases. A

possible reason for images i1, i8, and i13 that do not follow a normal distribution is the size of the

confidence interval, seen in Section 9.3, showing that the results in those images have low precision.

Table 9.14 shows the results of the normality test applied to the wave arm crests. Only images i4,

i6, i13, i14, i17, and i19 present a Gaussian distribution. In images i7, i8, i11, i12, i16, and i20− i23,
it was impossible to apply the normality test because the vessel speeds were not estimated. Thewave

arm crests were not a good source for calculating the vessel speed.

Recall from Chapter 8 that, by knowing that the samples of each image follow a Gaussian dis-

tribution, it is possible to use first-order error propagation for the wave arm troughs.

9.4.3 Analyzing the Results

Applying the error propagation on various vessel images shown in the Figures 9.2, 9.3, 9.4, and 9.5, it

was observed that the use of the standard deviation in the calculation of the Equation 9.4 is sufficient

to create confidence intervals that include or are very close to the actual speed, where the actual

value is far away from the interval, as seen in the second column of Figure 9.6. Other confidence

intervals are approximately 0.32 knots from the actual speed. In total, 72.2% of confidence intervals

do not incorporate actual speed. This result is similar to that obtained in the statistical analysis pre-

sented in Section 9.3. The confidence intervals where the standard deviations are most considerable
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(a)
Image (i3),
U ≈ 20.74 knots
s ≈ 0.34 knots

(b)
Image (i5)
U ≈ 17.43 knots
s ≈ 0.43 knots

(c)
Image (i6)
U ≈ 17.37 knots
s ≈ 0.32 knots

(d)
Image (i8)
U ≈ 15.79 knots
s ≈ 0.36 knots

(e)
Image (i9),
U ≈ 16.63 knots
s ≈ 0.29 knots

(f)
Image (i2)
U ≈ 21.91 knots
s ≈ 0.73 knots

(g)
Image (i12)
U ≈ 20.39 knots
s ≈ 0.76 knots

(h)
Image (i15)
U ≈ 18.91 knots
s ≈ 0.74 knots

Figure 9.8: Images with smaller standard deviation (a-e), so the confidence interval is narrower. The
images with higher standard deviation are presented in (f, g, h). Here, U is the estimated speed and
s is the standard deviation calculated using First-Order Error Propagation.

are in the i7, i22, and i23 images. We believe that this is because these images did not pass the

normality test. We can deduce that the result of the confidence intervals is an approximation.

With the help of error propagation, it is easy to detect cases where greater uncertainty is gene-

rated in the calculated speeds. Using a single image to calculate confidence intervals makes error

analysis easier.

9.5 Discussion

The results of the method applied to calculate the speeds proposed in this work were presented in

this chapter. The hardware and software used to estimate and validate the method were presented.

Statistical studies and an analytical study of the error propagation in the input data for the calculated

speeds were also presented. We used 23 images, of the 40 acquired, for the analysis of the results.

The remaining 17 images are shown in Appendix B.

The initial ROI coordinate is an important parameter to estimate the vessel speed. This coordi-

nate is responsible for placing the ROI in the position where the traces of the ship. The ROI has to

cover a large part of the path left by the ship. Tidal altitude also plays an essential role in calculating

speed. This variable is responsible for modifying the camera height. Speed is estimated from the

edge image, where the trail left by the ships is visible. Image edge detection is the heaviest process
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in the system. In the edge image, it is observed that for smaller or slower vessels, the tracks are

fragile and not visible, making it difficult to estimate their speed.

Lighting conditions play an important role in estimating the vessel speed. If the ambient lighting

is good, there are more possibilities to capture the traces of the ship, and consequently, to better

distinguish its waves. To estimate the vessel speed, it is necessary that the trail is visible. Problems

with overexposure or underexposure with any object are not covered in this manuscript.

As can be seen in the Figures 9.2, 9.3, 9.4, and 9.5 used in the experiments, the vessels are taken

laterally, following a straight line. If the vessel does not follow a straight line and its trace is visible,

the ~u direction (showed in Seccion 5.2.2) must be modified, as well as the ROI. In this manuscript,

we used vessels that followed a straight line for the experiments. Also, we assumed that the vessel

had a constant speed.

The method proved to have moderate accuracy and good precision. The accuracy and precision

of the system were verified by applying statistical analysis on a set of vessel images. The images

were taken with different sources of natural light, different climatic conditions (with rain and wind,

the latter being responsible for affecting the tide height). The average relative error for the vessel,

using the wave arm troughs was 6.480%.

Applying the Error Theory, an analytical method was presented for the study of how the errors

of the input parameters are propagated to calculate the speed. Confidence intervals were calculated

from a single image. The application of error propagation showed similar results to the statistical

analysis. For that reason, there was an advantage of not requiring to capture multiple images under

the same conditions. With the help of error propagation, it was possible to identify situations with

more significant uncertainty. One problem found was the resolution of the waves present in the

ROI image. It is proposed to include the ROI image resolution as one of the sources of error in the

samples, thus improving the confidence intervals to contain the actual speeds.



Chapter 10

Conclusion and Future Work

This dissertation presented a method for estimating vessel velocity from single perspective projec-

tion images. The approach uses planar homography to remove perspective distortion from images

of traces of a moving vessel, curve fitting and peak detection to identify crests/troughs in the cusp

wave arms, and natural constraints on components of Kelvin wakes to estimate wavelength and

compute vessel velocity. Experimental results comparing estimated velocities to truth data have

demonstrated the accuracy of our approach.

In this last chapter, the main points presented throughout this dissertation are listed. Also, a

discussion is presented on the advantages and limitations of the proposed approach. Finally, sug-

gestions for future work are listed.

Four problems must be solved to estimate the vessel speed from a single image: (1) identify

the region of interest that contains the trace of the vessel; (2) Identify at least two adjacent crests

or troughs of the wave included in the region of interest; (3) Remove perspective distortion from

images of traces of moving vessels; and (4) Estimate the vessel speed from a single optical image.

To solve the first problem, we manually select an initial corner of the region of interest as a

reference and indicate the direction of the vessel in the image space, making sure that the region

of interest will contain the trace of the ship. The region of interest must be very close to the ship,

because the trails are stronger, which will make it easier to find the correct wave.

Once the region of interest has been identified, the wave arms will be classified, and a wave arm

closer to the observer will be chosen. The closest wave arm was chosen because it was observed that

the wave profile is less affected by turbulence, making the crests/troughs more visible. Knowing the

chosen wave arm, two adjacent wave crests/troughs were found, thus solving the second problem.

The problem of perspective distortion, the third problem, was solved with planar homography.

The distance between two crests/troughs is calculated using a Euclidean distance. We used the
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wavelength, along with the Kelvin wave structure to estimate the vessel speed, solving the fourth

problem. An scalar factor α = 10 was used to convert the wavelength distance from centimeters to

meters. The result was converted to knots to validate the proposed method with the radar.

The quality of the results was verified by the application of statistical analysis on the estimated

speeds. Statistical analysis reveals that speeds are accurate and precise. It was not possible to make

several captures of the same vessel at the same time, so we created small variations in the input

variables as a sample to define the confidence intervals. The expected average relative error was

6.480%. For this, 23 images were used. The error propagation along the computational chain was

also relevant to provide the user with reliable intervals that give a notion of quality in the estimated

speeds made from an image.

The vessels used are shown in Figures 9.2, 9.3, 9.4, and 9.5. We assume that those vessels follow a

linear path at constant speed. Taking the image of the vessel laterally helps to visualize the traces left

behind. The vessel speed coming from different directions can also be calculated using the proposed

technique, where one restriction is that the trails of the vessels have to be visible. In the experiments,

vessels that followed another direction were not used.

A limitation of the technique is when the traces of the vessels are over-exposed or under-

exposed. If any object occludes the traces of the vessel, our method will not be able to detect the

wave crests/troughs correctly.

Another limitation that exists is the distance between the camera and the traces of the vessels.

If the trace of the vessel is not visible due to the camera distance, it will be difficult to estimate its

speed. This is directly affected by the resolution image and the camera lens. Besides, vessels with a

speed of fewer than 10 knots have very weak and difficult traces to detect. Weather conditions and

natural light play an important role in detecting the traces of the vessels correctly.

We assume that the vessel speed is constant in the presented image, but in reality, the vessel

speed is not always constant. The acceleration of the vessel can be seen if several images of the same

vessel are taken at different times, the acceleration will be observed if the speeds estimated by our

method change from one image to another.

The proposed method is able to estimate the vessel speed from a single image. The proposed

method is not entirely robust in the presence of different weather conditions and different ambient

lighting, i. e., at night or on a stormy day, where the waves are not visible. The proposed method

proved to be accurate and precise, seen in the Results Analysis Chapter. The proposed method

requires user intervention to choose the initial coordinate of the ROI, even though it is a challenge

to calculate it automatically.
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10.1 Future Works

Throughout the development of this work, issues were identified that would serve as a direction for

the extension or improvement of the techniques discussed here:

• The direction of the vessel: In this dissertation, experiments were performed with vessels

taken laterally that followed a straight line. A possible extension for the technique is to see

the behavior when the vessel does not follow a straight line.

• Identify the corners of the region of interest: In this dissertation, a corner of the region

of interest is manually selected. A possible extension for the technique is to automate this

step.

• Improve image quality: We are exploring the use of image super-resolution to improve the

estimation of the crests/troughs present in the region of interest.

• Real-time technique: The time it takes to execute the proposed method is not made to work

in real-time. Processing only one image, once the user has specified the initial corner of the

Region of Interest (ROI) and vessel direction, takes approximately twelve seconds. The part of

the code that takes the longest to process is dedicated to compute the edge image. A possible

improvement and extension of the technique is to detect edges only in the portion where the

ROI is located.
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APPENDIX A -- Standard Deviation for Input Variables

This appendix describes how the standard deviations of the random input variables used in Chapter

9 were calculated. The input variables used are the y-coordinates (vl, vr) of each point that forms

the vanishing line, and the components of the camera height.

A.1 Finding the Standard Deviation for the Vanishing Line

The horizovanishingn line computed as the cross product of the vectors enconding two points in

homogeneous coordinates, and these vectors can be defined by:

pvl = (0, vl, 1)
T

pvr = (W, vr, 1)
T ,

(A.1)

whereW is the width of the input image. Only the y-axes of the points are taken as input variables

because the x-axis is constant. These variables, vl and vr, are found using the Horizon Line of the

Wild (HLW) algorithm [Workman, Zhai e Jacobs 2016], discussed in Section 4.2. HLW presents five

models to find the vanishing line in an image. An example of the results of the possible models to

be used is shown in Figure A.1.

Figure A.1 shows four of the n = 30 images used to choose the model of the HLW algorithm

which best approximates the actual vanishing line. To choose the best model, the points that define

the vanishing line lt were manually marked, and these points are taken as true points. Table A.1

shows the cosine distances between the actual vanishing line and the vanishing line of each model

of the images presented in Figure A.1, compute as:

dcosine = 1− lilt
‖ li ‖2 ‖ lt ‖2

(A.2)

The cosine distance (Equation A.2) was used to measure how close each model is to the true

line. The n = 30 images were taken under different weather conditions and day times. The cosine
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manual
so_imagenet
so_places
so_posenet
so_salient
so_scratch

(a) Photograph taken on a sunny day with good weather.

manual
so_imagenet
so_places
so_posenet
so_salient
so_scratch

(b) Photograph taken in the afternoon, a few hours after the
sun goes down, the weather is also good.

manual
so_imagenet
so_places
so_posenet
so_salient
so_scratch

(c) Photograph taken at dusk, with little natural lighting, on
a cloudy day.

manual
so_imagenet
so_places
so_posenet
so_salient
so_scratch

(d) Photograph taken at noon, with an unfavorable climate,
with rain and fog.

Figure A.1: Four of the 30 images were chosen to visualize the results of the models presented by
the HLW algorithm. The black line was found manually. It serves as a reference to identify the best
method for detecting the vanishin line.

Table A.1: Result of the cosine distance between each method for detecting the vanishing line and
the reference line on the images presented in Figure A.1. The smaller distances are highlighted in
red.

Method Distances
(a) (b) (c) (d)

so_imagenet 6.02× 1012 6.02 × 1012 7.82× 1011 2.01× 1010

so_places 1.91 × 1013 4.20× 1011 1.91 × 1013 7.82× 1011

so_posenet 4.68× 1010 4.69× 1010 1.25× 1011 8.29 × 1012

so_salient 7.86× 1011 9.90× 1011 8.29× 1012 1.61× 1010

so_scratch 1.66× 1011 3.66× 1010 3.66× 1010 1.61× 1010
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Figure A.2: Cumulative distribution of errors for the HWL algorithm models. 30 images were used.
so_imagenet presents good results, obtaining a very low error. This model is used to find future
vanishing lines.

distance between the true line lt and each line li was calculated. Figure A.2 shows the cumulative

error distribution for each model. Results show that the model with the lowest error is so_imagenet.

Therefore, we have choosen this method to calculate the points that defines the vanishing line.

A standard deviation for each y-axis is calculated using Equation A.3, where ȳ is the average of

all yi, and yi is the error on each point of the y-coordinate. The error is calculated by measuring the

Euclidean distance between the point calculated by the HLW algorithm and the manually marked

point. σ represents the standard deviation of the point on the y-axis. The standard deviations cal-

culated are 22.72 and 23.62 for vl and vr, respectively. Where σ is used to generate random points,

following a Gaussian distribution, which will in turn be used for producing samples in Section 9.3:

σ =

√∑
i(yi − ȳ)2

n− 1
(A.3)

where n = 30 is the number of images used.
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A.2 Finding the Standard Deviation of the Camera Height

The camera height is computed from four input variables: the ground height, the floor height, the

tripod height, and the sea tide height, i.e., hg, hf , ht, hs, respectively. A tape measure was used to

calculate the floor height, and the tripod height. We use Google Maps to measure the ground height.

The deviation used for the components of the camera height was 0.03m, except for the tide height.

To estimate the deviation of the tide height, three sources were used Nautide [Nautide], Tides Chart

[Tides Chart], and Marinha do Brasil [Marinha do Brasil], shown in the Table A.3.

Table A.3 shows the date, time, and tide height for each source. The last column of the table

shows the average to each tide height (τ̄k), defined by:

τ̄k =
1

m

m∑
i=1

τi, (A.4)

wherem = 3 is the number of sources used, and τi is the value of each row in Tides column.

We calculate the standard deviation using Equation A.3 , assuming n = 27 tidal heights. The

result of the standard deviation obtained is 0.049m.
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Table A.3: Tides Table of Rio de Janeiro - Niteroi. The values in this table are used to estimate the
average error of the tide between three sources: Nautide [Nautide], Tide Chart [Tides Chart], and
Marinha do Brasil [Marinha do Brasil], respectively.

Date Time Tides (cm) Average
Source 1 Source 2 Source 3 Source 1 Source 2 Source 3

Nov 8, 2019 07:01 06:35 06:28 10 15 20 15.00
12:02 12:07 12:34 110 100 110 106.67
19:21 18:55 19:04 30 26 30 28.67

Nov 9, 2019t 00:01 00:06 00:38 110 106 110 108.67
07:39 07:13 07:08 10 10 20 13.33
12:31 12:33 13:02 110 106 120 112.00
19:59 19:33 19:38 20 19 30 23.00

Nov 10, 2019 00:38 00:43 01:09 120 108 120 116.00
08:23 07:57 07:47 10 8 20 12.67
13:06 13:11 13:30 120 112 120 117.33
20:40 21:51 20:08 10 10 20 13.33

Nov 11, 2019 01:22 01:27 01:47 120 117 130 122.33
09:05 08:39 08:23 10 8 20 12.67
13:47 12:52 14:00 120 112 120 117.33
21:17 20:51 20:39 10 10 20 13.33

Nov 12, 2019 02:10 02:15 02:17 130 121 130 127.00
09:40 09:14 09:00 10 10 20 13.33
14:28 14:33 14:30 120 113 130 121.00
21:46 21:20 21:09 10 9 10 9.67

Nov 13, 2019 02:53 02:58 02:54 130 123 130 127.67
10:11 09:45 09:39 20 17 20 19.00
15:04 15:09 15:00 120 113 120 117.67
22:12 21:46 21:43 10 11 10 10.33

Nov 14, 2019 03:31 03:36 03:28 130 124 130 128.00
10:40 10:14 10:21 30 28 30 29.33
15:36 15:41 15:30 120 110 120 116.67
22:33 22:07 22:23 20 16 20 18.67
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APPENDIX B -- Vessel Images not Considered in the
Experiments

In this appendix, images not considered for the experiments and analysis of the results, Chapter 9,

are shown. The images were not considered due to being in adverse weather conditions, little natural

light, and not being able to estimate the vessel speed with the proposed method.

A total of 40 images were captured for the experiments, where 23 images were used for the main

experiments (see Figures 9.2, 9.3, 9.4, and 9.5, Chapter 9). In the remaining images, 17 images (see

Figures B.1, B.2, and B.3), the wake left by the vessel was very weak or not visible, and they were not

considered. Table B.1 shows information about the 17 vessel images, where the first column presents

the image name. The second column displays the vessel model. The third column shows the vessel

name. The fourth, fifth, and sixth columns present the vessel speed give by the radar, the time was

taken the image, and the weather condition, respectively. The last column shows the tide height.

Two types of vessels are shown, passenger ship (modelMC25) and merchant ships. Merchant ships

(i24, i25, i27, and i32) are shown in Table B.1 as ship models equal to others because it was not

possible to obtain the exact ship model.

We used the proposed method to estimate the speed of the 17 images. Section B.1 presents an

analysis of the relative error of the calculated speeds.

B.1 Analysis of Results

From the 17 images shown (Figures B.1, B.2, B.3, and⁇), we grouped them into two groups according

to the trace left by the vessel:

•First group: images where the vessel’s trace is not completely visible. These images are i27,

i29, and i37. They can also be seen in Figure B.4 (b), (d) and (f), respectively;

•Second group: images where the vessel’s trace is very weak, and it is not possible to distin-

guish the crests/troughs. These images are i24− i26, i28, i30− i36, and i38− i40. They can
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Table B.1: Ground-truth information of the vessel in each captured image. This images were not
considered in the main experiments.

Image Vessel Model Vessel Name Speed Time Weather Tide Height
(knots) (hh:mm) (meters)

i24 Other Skandi Peregrino 10.10 10:05 Cloudy 0.30
i25 Other Escander Amazonas 9.10 10:26 Cloudy 0.50
i26 MC25 Missing 18.90 10:38 Cloudy 0.50
i27 Other Bahia San Blas 8.20 10:46 Cloudy 0.70
i28 MC25 Zeus 19.60 11:41 Cloudy 0.70
i29 MC25 Neptuno 14.30 11:43 Cloudy 0.70
i30 MC25 Neptuno 20.20 12:09 Cloudy 0.90
i31 MC25 Apolo 18.90 16:12 Scattered storms 1.10
i32 Other Far Scotsman 8.00 16:25 Scattered storms 1.10
i33 MC25 Apolo 21.10 16:40 Partly Cloudy 0.70
i34 MC25 Missing 20.30 17:01 Partly cloudy 0.70
i35 MC25 Missing 20.30 17:02 Partly cloudy 0.70
i36 MC25 Zeus 17.90 17:21 Partly cloudy 0.50
i37 MC25 Zeus 17.70 17:22 Partly Cloudy 0.50
i38 MC25 Missing 15.70 17:29 Cloudy 0.50
i39 MC25 Apolo 22.80 17:38 Cloudy 0.50
i40 MC25 Apolo 22.20 17:39 Cloudy 0.50

also be seen in Figure B.4 (a), (c), (e), (g), (h), (i) and (j).

In the first and second groups, the vessels’ speed cannot be estimated because the wake and

crests/troughs were not identified. The common problems found in the two groups are:

•Weather conditions: images taken on a cloudy day, or a day with a storm or rain, also, the

presence of strong wind affects the shape of the wave; and

•Natural light: depending on the time the vessel image was taken (day, afternoon, night).
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(i24) U ≈ 10.10 knots (i25) U ≈ 9.10 knots

(i26) U ≈ 18.90 knots (i27) U ≈ 8.20 knots

(i28) U ≈ 19.60 knots (i29) U ≈ 14.30 knots

Figure B.1: Cropping the images used in the experiments. Images i24− i29 shown in Table B.1.
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(i30) U ≈ 20.20 knots (i31) U ≈ 18.90 knots

(i32) U ≈ 8.00 knots (i33) U ≈ 21.10 knots

(i34) U ≈ 20.30 knots (i35) U ≈ 20.30 knots

Figure B.2: Cropping the images used in the experiments. Images i30− i35 shown in Table B.1.
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(i36) U ≈ 17.90 knots (i37) U ≈ 17.70 knots

(i38) U ≈ 15.70 knots (i39) U ≈ 22.80 knots

(i40) U ≈ 22.20 knots

Figure B.3: Cropping the images used in the experiments. Images i36− i40 shown in Table B.1.
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(a) Image (i24),
U ≈ unknown

(b) Image (i27)
U ≈ unknown

(c) Image (i26)
U ≈ unknown

(d) Image (i29)
U ≈ unknown

(e) Image (i32)
U ≈ unknown

(f) Image (i37)
U ≈ unknown

(g) Image (i28)
U ≈ unknown

(h) Image (i30)
U ≈ unknown

(i) Image (i35)
U ≈ unknown

(j) Image (i36)
U ≈ unknown

Figure B.4: Each image shows the region of interest rectified along with the image name and the
speed calculated by the proposed method, where the red dotted line is the chosen wave arm to find
thewavelength. The imageswhere it was not possible to identify the traces of the vessel and estimate
the speed were shown as unknown speed.
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