
UNIVERSIDADE FEDERAL FLUMINENSE

Alan Diêgo Aurélio Carneiro

On the Knot-Free Vertex Deletion Problem:
A Parameterized Complexity Analysis

NITERÓI

2020

UNIVERSIDADE FEDERAL FLUMINENSE

Alan Diêgo Aurélio Carneiro

On the Knot-Free Vertex Deletion Problem:
A Parameterized Complexity Analysis

Tese de Doutorado apresentada ao Pro-
grama de Pós-Graduação em Computação da
Universidade Federal Fluminense como req-
uisito parcial para a obtenção do Grau de
Doutor em Computação. Área de concen-
tração: Algoritmos e Otimização

Orientadores:
Fábio Protti

Uéverton dos Santos Souza

NITERÓI

2020

Ficha catalográfica automática - SDC/BEE
Gerada com informações fornecidas pelo autor

Bibliotecária responsável: Fabiana Menezes Santos da Silva - CRB7/5274

C289o Carneiro, Alan Diêgo Aurélio
 On the Knot-Free Vertex Deletion Problem : A Parameterized
Complexity Analysis / Alan Diêgo Aurélio Carneiro ; Fábio
Protti, orientador ; Uéverton dos Santos Souza, coorientador.
Niterói, 2020.
 88 f. : il.

 Tese (doutorado)-Universidade Federal Fluminense, Niterói,
2020.

DOI: http://dx.doi.org/10.22409/PGC.2020.d.03493711131

 1. Knot. 2. FPT. 3. W[1]-difícil. 4. Treewidth. 5.
Produção intelectual. I. Protti, Fábio, orientador. II.
Souza, Uéverton dos Santos, coorientador. III. Universidade
Federal Fluminense. Instituto de Computação. IV. Título.

 CDD -

For Nicole, Arthur and Alana.

Resumo

Um knot em um grafo direcionado G é um subgrafo fortemente conexo Q de G com
pelo menos dois vértices, tal que, nenhum vértice em V (Q) possui aresta direcionada
a um vértice em V (G)\V (Q). O Knot é uma estrutura importante já que caracteriza
a existência de deadlocks em um modelo de computação distribuída clássico, chamado
modelo Ou. A detecção de deadlocks está intimamente relacionada ao reconhecimento de
grafos livres de knots da mesma maneira que a resolução de deadlock está intimamente
relacionada ao problema de Eliminação de Knots por Deleção de Vértices (Knot-Free
Vertex Deletion (KFVD)), que consiste em determinar se dado um grafo G e um inteiro
k, G possui um subconjunto de vértices S ⊆ V (G) e |S| ≤ k tal que G[V \S] não contém
knot.

Nesta tese, primeiramente foi realizada uma revisão da literatura sobre a complexidade
computacional do problema de resolução de deadlock nos modelos clássicos de computação
distribuída. Foram apresentados que: o problema de Eliminação de Knots por Deleção
de Arcos pode ser resolvido em tempo O(n); KFVD é NP-difícil mesmo quando o grafo
de entrada é fortemente conexo ou bipartido, planar e com grau máximo 4; KFVD pode
ser resolvido em tempo O(m

√
n) quando o grafo de entrada é sub-cúbico. Além disso, é

apresentada uma equivalência entre as versões do problema de Eliminação de Knots por
Deleção de Arcos/Vértices para grafos com pesos e grafos sem pesos.

Em seguida, é apresentada uma análise de complexidade parametrizada de granular-
idade fina para KFVD. Provamos que: KFVD é W[1]-difícil quando parametrizado pelo
tamanho da solução k; pode ser solucionado em tempo 2k logϕnO(1), mas assumindo a
hipótese de tempo exponencial forte (Strong Exponential Time Hypothesis (SETH)) não
pode ser solucionado em tempo (2 − �)k logϕnO(1), onde ϕ é o tamanho da maior compo-
nente fortemente conexa de G; pode ser resolvido em tempo 2φnO(1), mas assumindo a
hipótese de tempo exponencial (Exponential Time Hypothesis (ETH)) não pode ser re-
solvido em tempo 2o(φ)nO(1), onde φ é o número de vértices com grau de saída no máximo
k; a menos que NP ⊆ coNP/poly, KFVD não admite núcleo polinomial mesmo quando
ϕ = 2 e parametrizado pelo tamanho da solução k.

Finalmente, considera-se parâmetros de largura onde provamos que: KFVD quando
parametrizado pelo tamanho da solução k é W[1]-difícil mesmo quando o tamanho do
maior caminho direcionado p, juntamente com o Kenny-width do grafo são limitados por
constantes; é solucionável em tempo FPT quando parametrizado por clique-width; pode
ser resolvido em tempo 2O(tw log tw) × n, mas, assumindo ETH não pode ser resolvido em
tempo 2o(tw) × nO(1), onde tw é a treewidth do grafo subjacente. Além disso, dado que
o tamanho do conjunto mínimo de vértices de retroalimentação (directed feedback vertex
set) dfv é um limite superior para o tamanho de um certificado de solução para KFVD,
investigamos parametrizações por dfv, onde mostramos que KFVD pode ser solucionado
em tempo FPT quando parametrizado tanto por dfv+κ ou dfv+p, e adimite um algoritmo
FPT quando parametrizado pela distância a um DAG tendo uma cobertura por caminhos
limitada (outro parâmetro superior ao dfv).

Palavras-chave: Knot, FPT, W[1]-difícil, ETH, Treewidth, Parâmetros de largura.

Abstract

A knot in a directed graph G is a strongly connected subgraph Q of G with at least two
vertices, such that no vertex in V (Q) is an in-neighbor of a vertex in V (G)\V (Q). Knots
are important graph structures because they characterize the existence of deadlocks in
a classical distributed computation model, the so-called OR-model. Deadlock detection
is correlated with the recognition of knot-free graphs, as well as deadlock resolution, is
closely related to the Knot-Free Vertex Deletion (KFVD) problem, which consists
of determining whether given a graph G and an integer k, G has a subset S ⊆ V (G) and
|S| ≤ k such that G[V \ S] contains no knot.

In this thesis, first it is done a literature review reggarding the computational complex-
ity of the deadlock resolution problem in the classical distributed computational models.
It is shown that: the problem of Knot-Free Arc Deletion can be solved in O(n) time;
the KFVD is NP-hard even when the input graph is strongly connected or bipartite,
planar and with maximum degree 4; KFVD can be solved in O(m

√
n) time when the

input graph is sub-cubic. Also, an equivalence between the versions of the Knot-Free
Arc/Vertex Deletion problems for weighted and for unweighted graphs is also presented.

Next, a fine-grained parameterized complexity analysis of KFVD is presented. It is
shown that: KFVD is W[1]-hard when parameterized by the size of the solution k; it can
be solved in 2k logϕnO(1) time, but assuming Strong Exponential Time Hypothesis (SETH)
it cannot be solved in (2 − �)k logϕnO(1) time, where ϕ is the size of the largest strongly
connected subgraph of G; and it can be solved in 2φnO(1) time, but assuming Exponential
Time Hypothesis (ETH) it cannot be solved in 2o(φ)nO(1) time, where φ is the number
of vertices with out-degree at most k; unless NP ⊆ coNP/poly, KFVD does not admit
polynomial kernel even when ϕ = 2 and k is the parameter.

Finally, we focus on width parameterizations where we show that: KFVD parameter-
ized by the size of the solution k is W[1]-hard even when p, the length of a longest directed
path of the input graph, as well as κ, its Kenny-width, are bounded by constants, and
we remark that KFVD is para-NP-hard even considering many directed width measures
as parameters, but in FPT when parameterized by clique-width; KFVD can be solved in
2O(tw log tw) × n time, but assuming ETH it cannot be solved in 2o(tw) × nO(1), where tw is
the treewidth of the underlying undirected graph. Since the size of a minimum directed
feedback vertex set (dfv) is an upper bound for the size of a minimum knot-free vertex
deletion set, we investigate parameterization by dfv, and we show that KFVD can be
solved in FPT-time parameterized by either dfv+κ or dfv+p, and it admits an FPT-time
algorithm by the distance to a DAG having bounded path cover (another parameter larger
than dfv).

Keywords: Knot, FPT, W[1]-hard, ETH, Treewidth, Width parametrization.

List of Figures

3.1 Graph GF built from F = (x1 ∨ x̄2 ∨ x3) ∧ (x1 ∨ x2 ∨ x̄3) ∧ (x̄1). 26

3.2 Variable cycle Xi built from a variable vertex vxi
in HF 29

3.3 Clause cycle Cp built from a clause vertex wcp in HF 29

3.4 Graph GF built from F = (x1) ∧ (x2) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x3). 30

3.5 Subtypes of vertices A in an SCC. 32

3.6 A graph with a knot composed only by vertices of type A.1. 33

3.7 Sample of set M � saturating t − 1 vertices in a bipartite graph B =

(K ∪ C,E). Vertices in K are red, and vertices in C are blue. Solid

lines represent edges of M �, while dashed lines represent edges not in M �.

The highlighted vertex in red is not saturated by M �. 36

3.8 Example of an instance G of W–Arc–Deletion(AND) with weights in

the arcs and the correspondent gadget in of an instance G of Arc–Dele-

tion(AND). 39

3.9 Example of an instance G of W–Arc–Deletion(AND) with weights in

the vertices and the correspondent gadget in of an instance G of Arc–

Deletion(AND). 40

3.10 Example of an instance G of KFAD and the correspondent gadget in of an

instance G of PKFAD. 41

3.11 Example of vertex v with weight p of an instance G of KFVD and the

correspondent gadget in of an instance G of WKFVD. 43

4.1 Instance (G�, k�) of Multicolored Independent Set and instance (G, k)

of k–KFVD. 46

4.2 The resulting graph G = (V,E) from a formula F = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨
x2 ∨ x3) ∧ (x1) where |V (G)| = O(n+m) and ϕ = 2. 49

List of Figures vi

4.3 PPT-reduction from RBDS parameterized by (|R|, k) to k–KFVD with

ϕ = 2. 51

4.4 PPT-reduction from RBDS parameterized by (|R|, k) to φ–KFVD with

φ = 4|R|. 54

5.1 Vertex gadget Yj in G built from the set of vertices of color V j in G�. . . . 58

5.2 An arc cycle Xp built from a arc ep = (vi, vl) in G� and its connection to

approprieted vertices in the vertex gadgets. 59

5.3 A hierarchy of digraph width measure parameters. α → β indicates that

α(G) ≤ f(β(G)) for any digraph G and some function f . More details

about the relationships between these parameters can be found in the ref-

erences corresponding to each arrow. 60

5.4 a) two connectivity sets with no intersection. b) an intersection with two

vertices belonging to both connectivity sets. c) two connectivity sets Hi,j

with i = j. Vertices to be added in B are marked in blue. 64

5.5 A tree decomposition of G�. 77

List of Tables

2.1 Computational complexity questions for λ–Deletion(M). 13

3.1 Partial scenario of the complexity of λ–Deletion(M). 25

3.2 Computational complexity of λ–Deletion(M). 44

3.3 Complexity of Vertex–Deletion(OR) for some graph classes. 44

4.1 Fine-grained parameterized complexity of Knot-Free Vertex Deletion. 54

6.1 Computational complexity of λ–Deletion(M). 80

6.2 Complexity of KFVD for some graph classes. 80

6.3 Fine-grained parameterized complexity of Knot-Free Vertex Deletion. 81

Contents

1 Introduction 1

1.1 Knot-Free Vertex Deletion Problem . 1

1.2 Objectives and Contribution . 3

1.2.1 Publications . 4

1.3 Organization . 5

2 Fundamental Concepts 7

2.1 Distributed Computation . 7

2.1.1 Wait-for Graphs . 9

2.1.2 Deadlocks . 10

2.1.3 λ−Deletion(M) Problems . 12

2.2 Graph Definitions and Notations . 13

2.3 Parameterized Complexity . 13

2.3.1 Bounded Search Trees . 16

2.3.2 Kernelization . 17

2.3.2.1 Lower Bounds on Kernelization 18

2.3.3 Fixed-Parameter Intractability . 19

2.3.4 Lower Bounds on Exponential Time Hipothesis 21

Additional Notation . 22

3 Classical Complexity 23

3.1 AND Model and Generalizations . 23

Contents ix

3.2 OR Model . 24

3.2.1 Knot-Free Arc Deletion . 24

3.3 Knot-Free Vertex Deletion . 25

3.3.1 Strongly Connected Graphs . 27

3.3.2 Planar Bipartite Graphs with Bounded Degree 27

3.3.3 Subcubic Graphs . 29

3.3.3.1 A Polynomial Time Algorithm. 34

3.4 Weighted-λ-Deletion(M) . 38

3.4.1 Weighted AND Model . 38

3.4.2 Weighted OR Model . 41

3.5 Conclusions . 44

4 Fine-Grained Parameterized Complexity Analysis 45

4.1 On the solution size as parameter . 45

4.2 The size of the largest strongly connected component as an aggregate parameter 47

4.2.1 The number of vertices with few out-edges as parameter 52

4.3 Conclusions . 53

5 Width Parameterizations 55

5.1 Preliminaries . 55

5.2 Directed width measures . 58

5.3 On the size of a minimum directed feedback vertex set as parameter 60

5.3.1 Taking the K-width as aggregate parameter 63

5.3.2 Taking the length of a longest directed path as aggregate parameter . 66

5.3.3 On the distance to an acyclic digraph having bounded path cover . . 67

5.4 On the clique-width as parameter . 68

5.5 On the treewidth as parameter . 70

Contents x

5.6 Conclusions . 76

6 Final Remarks and Future Works 79

References 83

Chapter 1

Introduction

A set of processes is in deadlock if each process of this set is blocked, waiting for a resource

to be freed, which is controlled by another process this same set; that is, the processes

cannot continue their execution, waiting for an event or a signal that only another process

of this same set can send. In other words, a deadlock situation is characterized by the

permanent impediment for a set of processes to proceed with their tasks due to a condition

that blocks at least one essential resource to be acquired [8].

Deadlock is a common phenomenon when some kind of resource sharing is needed,

such as: operating systems [87]; traffic intersections [30]; railway lines [80, 79]; and multi-

robot cooperation [44], to name just a few examples. Although this problem is extensively

studied in shared memory systems [30, 42], the problem remains difficult to solve and has

several open questions.

The existence of deadlock in a graph representation of a system can be accounted

by a specific graph structure which varies according to the model of the computation.

For instance, in a classical deadlock model “AND”, the existence of cycles characterize a

deadlock in the input graph. For the “OR” model, the existence of a structure called knot

accounts for the existence of deadlock in the input graph. This work we mainly regard

the Knot-Free Vertex Deletion Problem, that is, a vertex deletion graph problem related

to the deadlock resolution problem in the “OR” model.

1.1 Knot-Free Vertex Deletion Problem

A knot is an important graph structure with direct application in distributed computation.

According to Barbosa [7], for vi ∈ V let Ti be the set of vertices that can be reached from

1.1 Knot-Free Vertex Deletion Problem 2

vi through a directed path in G. A set of vertices K ⊆ V is a knot in G if and only if

S has at least two vertices and, for all vi ∈ S, Ti = S. Another definition, by Misra and

Chandy [74], a vertex v of a directed graph G is in a knot if for every vertex vj reachable

from vi, vi is reachable from vj. Notice that, by definition, no member of a knot has a

sink in its reachability set.

All strongly connected components on a graph G can be found through a topological

ordering of G, since a knot is a strongly connected component C of cardinality |C| > 1

where there are no paths from a C vertex to any G[V \C] vertex, then, all the knots of a

digraph can be identified in linear time as follows: first, find all the SCCs in linear time

by running a depth-first search (Cormen et al. [32], pages 615-621); next, contract each

SCC into a single vertex, obtaining an acyclic digraph H whose new sinks represent the

knots of G.

the concept of Knot is useful in distributed computation, with application in deadlock

detection and deadlock resolution, because they characterize the existence of deadlocks in

a classical distributed computation model, the so-called OR-model [10]. Deadlock detec-

tion is correlated with the recognition of knot-free graphs as well as deadlock resolution is

closely related to the Knot-Free Vertex Deletion (KFVD) problem, which consists

of determining whether an input graph G has a subset S ⊆ V (G) of size at most k such

that G[V \ S] contains no knot.

Formally the KFVD problem can be defined as follows.

Knot-Free Vertex Deletion (KFVD)

Instance: A directed graph G = (V,E); and a positive integer k.

Question: Determine if G has a set S ⊆ V (G) such that |S| ≤ k and G[V \ S] is

knot-free.

The focus of this work is to study the KFVD graph problem. It is interesting to

point that KFVD is closely related to the Directed Feedback Vertex Set (DFVS)

problem because of their relation with deadlocks, besides that, there are some structural

similarities between them. The goal of DFVS is to obtain a directed acyclic graph (DAG)

through vertex deletion (in such graphs all maximal directed paths end in a sink); the goal

of KFVD is to obtain a knot-free graph, and in such graphs, for every vertex v, there

is at least one maximal path containing v that ends in a sink. Finally, every directed

feedback vertex set is a knot-free vertex deletion set; thus, the size of a minimum directed

feedback vertex set is an upper bound for KFVD.

1.2 Objectives and Contribution 3

1.2 Objectives and Contribution

This work provides an analysis of the computational complexity of the Knot-Free Vertex

Deletion (KFVD) problem. Given a directed graph G, we investigate vertex deletion

problem whose goal is to obtain the minimum number of these removals in order to turn

G knot-free, which is a graph structure that characterizes deadlocks in the OR model.

We remark that deadlock detection can be done in polynomial time [70]. In this thesis,

we mainly analyze the KFVD problem from a parameterized complexity point of view,

which consists of determining whether G has a subset S ⊆ V (G) of size at most k such

that G[V (G) \ S] contains no knot. There are three primary contributions:

1. A classical computational complexity analysis of KFVD where we show that:

(a) KFVD is NP-hard when the input graph is either strongly connected or bipar-

tite, planar with bounded out-degree;

(b) KFVD can be solved in polynomial time when the input graph is subcubic;

(c) KFVD with weights can be reduced into the unweighted version.

2. A fine-grained parameterized complexity analysis of KFVD where we show that:

(a) KFVD is W[1]-hard when parameterized by the solution size, k;

(b) KFVD is FPT when parameterized by k and the size of the largest strongly

connected component;

(c) KFVD is FPT when parameterized by the number of vertices with out-degree

at most k;

(d) Lower bounds on running time and kernelization based on the Exponential

Time Hypothesis.

3. A parameterized complexity analysis of KFVD with graph width measures where

we show that:

(a) KFVD is W[1]-hard even if the input graph has longest directed path of length

at most 5 and K-width equal to 2;

(b) KFVD is FPT when parameterized by the size of the minimum directed feed-

back vertex set and:

i. the K-width;

1.2 Objectives and Contribution 4

ii. the length of the longest directed path.

(c) KFVD is FPT when parameterized by clique-width of the graph;

(d) KFVD is FPT when parameterized by treewidth of the underlying graph.

1.2.1 Publications

We present a list of papers developed and published during the doctoral studies whose

results are related to this thesis:

1. Bessy, S., Bougeret, M., Carneiro, A. D. A., Protti, F., Souza, U. S. Width Param-

eterizations for Knot-Free Vertex Deletion on Digraphs. 14th International Sympo-

sium on Parameterized and Exact Computation (IPEC), 2019.

2. Carneiro, A. D. A., Protti, F., Souza, U. S. Deadlock Resolution in Wait-For Graphs

by Vertex/Arc Deletion. Journal of Combinatorial Optimization (JOCO), 2019

3. Carneiro, A. D. A., Protti, F., Souza, U. S. Fine-Grained Parameterized Complex-

ity Analysis of Knot-Free Vertex Deletion – A Deadlock Resolution Graph Prob-

lem. The 23rd Annual International Computing and Combinatorics Conference

(COCOON), 2018.

4. Carneiro, A. D. A., Protti, F., Souza, U. S. Knot-Free Vertex Deletion Problem:

Parameterized Complexity of a Deadlock Resolution Graph Problem Latin American

Workshop on Cliques in Graphs (LAWCG), 2018.

5. Carneiro, A. D. A., Protti, F., Souza, U. S. A Parameterized Complexity Analy-

sis of the Knot-Free Vertex Deletion Problem. III ETC – Encontro de Teoria da

Computação (CSBC), 2018.

6. Carneiro, A. D. A., Protti, F., Souza, U. S. Deadlock Graph Problems Based on

Deadlock Resolution. The 23rd Annual International Computing and Combinatorics

Conference (COCOON), 2017.

7. Carneiro, A. D. A., Protti, F., Souza, U. S. Resolução de Deadlocks: Complexi-

dade e Tratabilidade Parametrizada. Simpósio Brasileiro de Pesquisa Operacional

(SBPO), 2017.

8. Carneiro, A. D. A., Protti, F., Souza, U. S. Deletion Graph Problems Based on

Deadlock Resolution. II ETC - Encontro de Teoria da Computação (CSBC), 2017.

1.3 Organization 5

9. Barbosa, V. C., Carneiro, A. D. A., Protti, F., Souza, U. S. Deadlock Models in

Distributed Computation: Foundations, Design, and Computational Complexity.

ACM Symposium on Applied Computing (ACM SAC), 2016.

10. Carneiro, A. D. A., Protti, F., Souza, U. S. Algorithms for Deadlocks Resolution

in Subcubic Graphs. Latin American Workshop on Cliques in Graphs (LAWCG),

2016.

11. Carneiro, A. D. A., Protti, F., Souza, U. S. Algoritmos para Resolução de Deadlocks

em Grafos Subcúbicos. Simpósio Brasileiro de Pesquisa Operacional (SBPO), 2016.

12. Carneiro, A. D. A., Protti, F., Souza, U. S. Complexidade de Resolução de Deadlocks

em Grafos de Espera de Sistemas Distribuídos. Simpósio Brasileiro de Pesquisa

Operacional (SBPO), 2015.

Besides these works, we recently submitted two papers. the first entitled “Knot-free

Vertex Deletion on Digraphs: A Parameterized Complexity Analysis” to Algorithmica

journal and the second “Computational Complexity Aspects of Deadlock-Model Expres-

siveness“ to the Computational Complexity journal.

1.3 Organization

The rest of the work is organized as follows.

In Chapter 2, we present the fundamental concepts and definitions. In particular, we

define λ–Deletion(M) as a generic optimization problem for deadlock resolution, where

λ ∈ {Vertex, Arc} indicates the type of deletion operation to be used in order to break

all deadlocks, and M ∈ {AND, OR, X-Out-Of-Y, AND-OR} is the deadlock model of

the input wait-for graph G. We also present a review of parameterized complexity, where

the concepts and some techniques of fixed-parameter tractability and intractability are

discussed.

In Chapter 3, we present complexity results for all the eight combinatorial problems

of the form λ–Deletion(M). First we point that Vertex–Deletion(AND) and Arc–

Deletion(AND) are equivalent to Directed Feedback Vertex Set and Directed Feedback

Arc Set, respectively. Next, we present a computational complexity mapping consider-

ing the particular combination of deletion operations and deadlock models M ∈ {AND,

OR, X-Out-Of-Y, AND-OR} in simple directed graphs and for directed graphs with

1.3 Organization 6

weighted vertices/arcs. A study of the complexity of KFVD in different graph classes

is also done. We prove that the problem remains NP-hard even for strongly connected

graphs and planar bipartite graphs with maximum degree four. Furthermore, we prove

that for graphs with maximum degree three the problem can be solved in polynomial

time. Finally, we show that λ–Deletion(M�) for deadlock models M ∈ {AND, OR}

with weights can be reduced into the unweighted version.

In Chapter 4, we present a fine-grained parameterized complexity analysis of Vertex–

Deletion(OR), so-called Knot-free Vertex Deletion (KFVD), where we first

show that KFVD is W[1]-hard when parameterized by k, the size of the solution; next,

we present two FPT-algorithms for KFVD considering different parameters. The first

considers the size of the largest strongly connected component and the size of the solution.

The second, the number of vertices with out-degree less or equal to the size of the solution.

Furthermore, lower bounds based on SETH and ETH and some proofs of the infeasibility

of polynomial kernelization are also presented.

In Chapter 5, we show that KFVD when parameterized by the treewidth of the

underlying graph or by cliquewidth of the directed graph can be solved in FPT time.

We also show a parameterized complexity analysis with several graph width measures,

where we first improve the result that KFVD is W[1]-hard when parameterized by k, by

showing that it remains W[1]-hard even if the input graph has a K-width at most 2 and

the longest directed path has at most 5 vertices. Furthermore, we show that KFVD when

parameterized by the directed feedback vertex set number together with either K-width

or the longest directed path can be solved in FPT time. Besides that, lower bounds based

on SETH and ETH and some proofs of the infeasibility of polynomial kernelization are

also presented.

In Chapter 6, we present our final remarks and future work.

Chapter 2

Fundamental Concepts

This chapter presents a literature review with concepts and definitions pertinent to the

problems addressed. The chapter is divided into three parts. In the first part, the main

concepts and fundaments of distributed computation are presented. We introduce: the

wait-for graphs, which are data structures used to represent distributed computing; the

deadlock models, which are models that provide abstraction of the rules that govern

the waiting of a process for its execution; the concepts and definitions of deadlock; the

λ−Deletion(M) problems as a notation for deadlock resolution problems. In the second,

the main notations and graph definitions are presented. Finally, we present a small review

of the Parameterized Complexity theory.

2.1 Distributed Computation

According to [7], distributed-memory systems comprise a collection of processors inter-

connected in some fashion by a network of communication links, where processors do

not physically share any memory, and the exchange of information among them must

necessarily be accomplished by message passing over the network of communication links.

The architecture of a distributed computation can be represented by a graph G =

(V,E), where V is a set of processors that perform all distributed computing, and E is a set

of communication channels that allows sharing resources through message passing. There

are two main distributed computing architectures [6], synchronous and asynchronous,

which differ mainly by time characterization.

Synchronous Architecture - It is mainly characterized by the existence of a global

clock known to all processes. We can consider the clock as a step counter s ≥ 0, and

2.1 Distributed Computation 8

the message exchange between process neighbors of G occurs in a clock step; all tasks

assigned to a process in time s are necessarily completed by starting step s+ 1 [6].

Asynchronous Architecture - It is characterized by the absence of a global clock: each

process has its own local clock, which is independent of the others. Message exchange

between processes takes place in a finite time (guarantee of delivery) but indefinite. A

process only performs some action upon receiving a message from a neighbor; Such action

may include sending messages. At least one process must have some kind of spontaneous

start or external intervention to start computing, as explained in [3, 27, 40].

The synchronous model offers some advantages due to the existence of a global clock,

but usually, such a representation does not occur in practice; hence, from this point on,

speaking of distributed computing or distributed system, we assume the asynchronous

model.

In a distributed system, resource sharing is necessarily accomplished by message ex-

changes. The graph G = (V,E) representing a distributed architecture is insufficient to

represent a distributed computing in progress. A vivj edge exists in E if there is a direct

communication channel between vi and vj; however, such abstraction does not provide

us with any accurate information about message exchanges, which is fundamental to the

study of deadlocks. Thus, we make use of wait-for graphs, which is presented in the next

subsection.

In a distributed computation, a set of processes (vertices of the wait-for graph) is in

deadlock if each process of the set is blocked, waiting for a response from another process

of the same set. In other words, the processes cannot proceed with their execution because

of necessary events, resources or a signal that only processes in the same set can provide.

Deadlock is a stable property, in the sense that once it occurs in a global state Ψ of a

distributed computation, it continues to hold for all the subsequent states to Ψ. Deadlock

avoidance and deadlock resolution are fundamental problems in the study of distributed

systems [3].

The main objective of this thesis is to study combinatorial problems related to dead-

lock resolution, in special, the deadlock resolution by process abortions (vertex deletion)

problem in a distributed computation in the OR model. Our study is inspired by dis-

tributed systems; however, the issues addressed are not restricted to this scenario and

and can be applied to any scenarios where deadlocks may occur. For this, we consider

the waiting graphs of a distributed system, defined next.

2.1 Distributed Computation 9

2.1.1 Wait-for Graphs

Barbosa and Benevides [9] define wait-for graphs as structures of analysis and abstraction

of distributed systems. These graphs, further detailed below, are dynamic structures,

i.e., they change according to requests and responses of the system. We can disregard

the nature of the dependency between the nodes of the network, that is, it will not be

relevant for the purposes of this study what makes one node wait for another but if the

wait occurs, because the study is directed to the existence of deadlocks, which as we have

seen is a stable property. Once a deadlock occurs in a set of processes, only through

external intervention (followed by the detection of deadlock) we may fix it.

We formally define the wait-for graph as a directed graph G = (V,E), the vertex

set V represents processes in a distributed computation, and the set E of directed arcs

represents the wait conditions [9]. An arc exists in E directed away from vi ∈ V towards

vj ∈ V if vi is blocked, waiting for a signal from vj. The graph G changes dynamically

according to the deadlock model, as the computation progresses. In essence, the deadlock

model specifies rules for vertices that are not sinks in G to become sinks [8]. (A sink is

a vertex with out-degree zero). Wait-for graphs are the most common data structure to

represent distributed computations, where the behavior of processes is determined by a

set of prescribed rules (the deadlock model or dependency model).

The main deadlock models investigated so far in the literature are presented below.

a) AND model – In the AND model, a process vi can only become a sink when it

receives a signal from all the processes in Oi, where Oi stands for the set of out-

neighbors of vi. This model applies to situations in which a conjunction of resources

is needed by vi [21, 69, 83].

b) OR model – In this model, it suffices for a process vi to become a sink to receive

a signal from at least one of the processes in Oi. The OR model characterizes,

for example, situations in which any single resource of a group (a disjunction of

resources) is sufficient for vi to proceed with its computation [21, 69, 74, 83].

c) X-Out-Of-Y model – There are two integers, xi and yi, associated with a process

vi. Also, yi = |Oi|, meaning that process vi is in principle waiting for a signal from

every process in Oi. However, in order to be relieved from its wait state, it suffices

for vi to receive a signal from any xi of those yi processes. The X-Out-Of-Y model

can then be applied to situations in which vi starts by requiring access permissions

2.1 Distributed Computation 10

above what it needs, and then withdraws the requests that may still be pending

when the first xi responses are received [20, 21].

d) AND-OR model – There are ti ≥ 1 subsets of Oi associated with process vi. These

subsets are denoted by O1
i , . . . , O

ti
i and must be such that Oi = O1

i ∪ · · · ∪ Oti
i . It

suffices for a process vi to become a sink to receive a signal from all processes in at

least one of O1
i , . . . , O

ti
i . For this reason, these ti subsets of Oi are assumed to be

such that no subset is contained in another. Situations that the AND-OR model

characterizes are those in which vi perceives several conjunctions of resources as

equivalent to one another and issues requests for several of them with provisions to

withdraw some of them later [9, 21, 83].

Although distributed computations are dynamic, deadlock is a stable property; thus,

whenever we refer to G, we mean the wait-for graph that corresponds to a snapshot of

the distributed computation in the usual sense of a consistent global state [7, 26].

2.1.2 Deadlocks

Informally, we say that a set of processes S is in a deadlock when every i ∈ S is waiting

for some condition to be fulfilled only by some action of one or more members of S itself.

Classically, there are three main approaches to handling deadlocks [86]:

1. Deadlock prevention: It consists of identifying a condition C such that ∃ Dead-

lock → C. Once C has been identified (which is required for a deadlock to occur),

simply prohibiting the occurrence of C will prevent deadlocks. This approach is

commonly achieved either by having a process secure all the needed resources si-

multaneously before it begins executing or by preempting processes which holds the

needed resource.

2. Deadlock avoidance: It consists of when there are new requests for resources, a

simulation (usually by blocking algorithm) is performed to verify the risk of dead-

lock. This approach to distributed systems, a resource is granted to a process if the

resulting global system state is safe.

3. Deadlock detection: It consists of identifying a condition C such that C →
∃ Deadkock. Once C has been identified (which is sufficient for deadlock occur-

rence), simply check for C to detect detect the deadlocks. To handle deadlocks

2.1 Distributed Computation 11

using the approach of deadlock detection aproach lead to addressing two basic is-

sues: detection of existing deadlocks and resolution of detected deadlocks.

Deadlock avoidance is considered an impractical strategy, requiring a lot of time and

messages in order to know if a resource request is secure (it will not generate a deadlock).

Thus, deadlock prevention and deadlock detection are the most viable approaches. Al-

though prevention, avoidance, and detection of deadlocks have been widely studied in the

literature, only a few studies have been dedicated to deadlock recovery [25, 43, 71, 88],

most of them considering only the AND model. One of the reasons for this is that preven-

tion and avoidance of deadlocks provide rules that are designed to ensure that a deadlock

will never occur in a distributed computation. As pointed out in [88], deadlock pre-

vention and avoidance strategies are conservative solutions, whereas deadlock detection

is optimistic. Whenever the prevention and avoidance techniques are not applied, and

deadlocks are detected, they must be broken through some intervention such as aborting

one or more processes to break the circular wait condition causing the deadlock or pre-

empting resources from one or more processes which are in deadlock. In this thesis, we

consider such a scenario where deadlock was detected in a system and some minimum

cost deadlock-breaking set must be found and removed from the system.

Although the basic principle of deadlock is model-independent, its characterization

presents distinctions according to the deadlock model of the wait-for graph under anal-

ysis; Thus, we present the structures known in the literature that provide necessary and

sufficient conditions for the existence of deadlock in a wait-for graph [8]:

AND model: A deadlock on a graph G in the AND model exists if and only if G

contains a cycle.

OR model: A deadlock on a graph G in the OR model exists if and only if G contains

a strongly connected component C of cardinality |C| > 1 where there are no paths

from a C vertex to any G[V \ C] vertex, that is, a strongly connected component

with no exits and at least two vertices, called knot. Note that there are no paths

from a knot to a sink.

AND-OR model: A deadlock on a graph G in the AND-OR model exists if and only if

G contains a in b-knot: a strongly connected subgraph G� such that for each vertex

vi ∈ V (G�), at least one vertex of each subset of Oi also belongs to G�.

X-Out-Of-Y Model: A deadlock on a graph G in the X-Out-of-Y model exists if and

2.1 Distributed Computation 12

only if G contains a (xy) -knot: a strongly connected G� subgraph such that for each

vertex vi ∈ V (G�), at least (yi − xi + 1) nodes in the Oi set also belong to G�.

Once a deadlock is detected in distributed computing, some additional detection ac-

tion, usually, some external intervention is required to resolve it (known as deadlock

resolution). The deadlock detection and resolution algorithm always require that trans-

actions should be aborted [25]. Notice that unnecessary aborts result in wasted system

resources, thus, the aborts are usually more expensive than the waits. Finally, optimal

concurrency requires that the number of aborted transactions be as few as possible.

Observation 2.1.1. Sinks in G are vertices that do not depend on any vertex in G, that

is, they are ready to perform their tasks.

So, by Observation 2.1.1, it’s easy to see that:

� sink in G → ∃ Deadlock.

2.1.3 λ−Deletion(M) Problems

We denote by λ–Deletion(M) a generic optimization problem for deadlock resolution,

where λ indicates the type of deletion operation to be used in order to break all the

deadlocks, and M ∈ {AND, OR, X-Out-Of-Y, AND-OR} is the deadlock model of

the input wait-for graph G.

The types of deletion operations considered in this work are given below:

1. Arc: The intervention is given by arc removal. For a given graph G, Arc–

Deletion(M) consists of finding the minimum number of arcs to be removed from

G in order to make it deadlock-free. The removal of an arc can be viewed as the

preemption of a resource.

2. Vertex: The intervention is given by vertex removal. For a given graph G, Vertex–

Deletion(M) consists of finding the minimum number of vertices to be removed

from G in order to make it deadlock-free. The removal of a vertex can be viewed as

the abortion of one process.

The combination of intervention to be made and the deadlock model of the input graph

gives eight possible combinatorial problems of the form λ–Deletion(M) (Table 2.1).

2.2 Graph Definitions and Notations 13

λ–Deletion(M)
λ \ M AND OR AND-OR X-Out-Of-Y
Arc ? ? ? ?
Vertex ? ? ? ?

Table 2.1: Computational complexity questions for λ–Deletion(M).

2.2 Graph Definitions and Notations

We use standard graph-theoretic and parameterized complexity notations and concepts,

and any undefined notation can be found in [18, 41]. A directed graph G = (V,E) consists

of a set of vertices V with n = |V | and a set of arcs E with m = |E|. We only consider

loopless graph where for any v ∈ V , vv /∈ E. Let G[X] denote the subdigraph of G

induced by the vertices in X ⊆ V . What we call here a directed path is a path without

vertex repetition. Given a vertex v and a subset of vertices Z, we say that there is a path

from v to Z if and only if there exists z ∈ Z such that there is a vz-(directed) path. For

v ∈ V (G), let D(v) denote the set of descendants of v in G , i.e. nodes that are reachable

from v by a non-empty directed path. Given a set of vertices C = {v1, v2, . . . , vp} of G,

we define D(C) =
�p

i=1 D(vi). Let A(vi) denote the set of ancestors of vi in G, i.e., nodes

that reach vi through a non-empty directed path. We also define A[vi] = A(vi) ∪ {vi},
and given a set of vertices C = {v1, v2, . . . , vp} of G, we define A(C) =

�p
i=1 A(vi). For a

vertex v of G, the out-neighborhood of v is denoted by N+(v) = {u | vu ∈ E}, and given

a set of vertices C = {v1, v2, . . . , vp}, we define N+(C) =
�p

i=1 N
+(vi)\C. The out-degree

(resp., in-degree) of a vertex v is denoted by deg+(v) (resp., deg−(v)). In addition, δ+(G)

(resp., δ−(G)) denotes the minimum out-degree (resp., in-degree) of a vertex in G. We

refer to a Strongly Connected Component as an SCC. A knot in a directed graph G is an

SCC Q of G with at least two vertices such that there is no arc uv of G with u ∈ V (Q)

and v /∈ V (Q). Finally, a sink (resp. a source) of G is a vertex with out-degree 0 (resp.

in-degree 0). Given a subset of vertices S, we denote GS = G[S] and S̄ = V \ S. Thus,

GS̄ denote the graph obtained by removing S.

2.3 Parameterized Complexity

From the beginning of the ’70s, the development of the computational complexity theory,

a wide number of problems have been categorized into “complexity classes” based on how

fast they can be solved. The main complexity classes to take into account are the defined

2.3 Parameterized Complexity 14

bellow.

Definition 2.3.1. A problem Π belongs to the P class if and only if there is a deterministic

algorithm A that for any instance χ of Π solves χ in polynomial time with respect to its

size.

Definition 2.3.2. A problem Π belongs to the NP class if and only if for any yes-instance

χ of Π with size n, there is a certificate (a string that certifies the "yes" response for the

computation) that can be verified in polynomial time with respect to n.

Definition 2.3.3. A problem Π� is NP-hard if for any problem Π ∈ NP, Π ∝ Π�, i.e.,

there exists an algorithm A that, given an instance χ of Π of size n, A constructs an

instance χ� of Π� with size poly(n) such that χ� is a yes-instance of Π� if and only if χ is

a yes-instance of Π. If Π� ∈ NP and it is NP-hard then Π� is NP-complete.

The direct implications of Definitions 2.3.1 to 2.3.3 are that for any given problem Π,

if Π ∈ P, then, Π ∈ NP. Furthermore, if any NP-hard problem Π can also be solved in

polynomial time, then, every problem in NP can be solved in polynomial time. On the

other hand, if an NP-complete problem Π cannot be solved in polynomial time, then, no

NP-hard problem can be solved in polynomial time. From these observations, we get the

most important unanswered question in computer science, "P = NP?" [46].

As pointed by Garey and Johnson [56], discovering that a problem is NP-complete is

usually just the beginning of the work on that problem. The parameterized complexity

theory was proposed by Downey and Fellows [27] as an alternative to deal with NP-hard

problems. The parameterized complexity theory is a set of tools that can be used to

better understand what aspects turn a problem hard to solve and, for instances where

such aspects are fixed, it is possible to solve the problem efficiently. Next, we present two

of the Karp’s 21 NP-hard problems [67]:

Vertex Cover (VC)

Instance: A graph G = (V,E); a positive integer k.

Question: Does G have a vertex cover of size at most k? (A vertex cover is a set of

vertices S ⊂ V (G) such that |S| ≤ k and for every edge uv ∈ E, u ∈ S or v ∈ S.)

Independent Set (IS)

Instance: A graph G = (V,E); a positive integer k.

Question: Do G have a vertex independent set of size at least k? (An independent

set is a set of vertices S ⊂ V (G) such that |S| ≥ k and G[S] is a graph without any

edge, that is, there are no two vertices adjacent in S.)

2.3 Parameterized Complexity 15

The parameterized complexity theory came from a simple but powerful idea from Rod

Downey and Michael Fellows [46]. The combinatorial explosion that we have to deal with

to solve an instance of an intractable problem somehow can be held in a “small structural

characteristic” (called parameter) of this instance. These parameters are aspects of size,

topology, shape, logical depth [50]. Usually is a numerical value that may depend on

the input in an arbitrary way [52]. So, in parameterized complexity, the main interest

is to design algorithms that may be exponential in relation to this small parameter but

polynomial to the size of the input instance. Such an algorithm A formal definition of

Fixed-Parameter Tractability (FPT) is presented below.

Definition 2.3.4. A problem Π is Fixed-Parameter Treatable, if and only if, for any

instance I = (χ, k) of Π, there is a algorithm A that correctly decides if I is a yes- or no-

instance in time f(k).|I|O(1), where k is a parameter.

It is helpful to see that, both VC and IS problems are NP-hard, and, from the classical

computational complexity point of view, they are equivalent. In fact, both problems are

closely related, notice that, for any input graph G, the dual of a maximum IS of G is

a minimum VC of G. Furthermore, as pointed in [51], different problems, even as close

as VC and IS, for the same parameter like the size of the solution k, contributes in two

qualitatively different ways. It is known that VC is FPT when parameterized by the size

of the solution k. On the other hand, IS is unlikely to be FPT when parameterized by

the size of the solution k.

Both problems are solvable by a simple brute-force algorithm trying all subsets of size

at most k that requires O(nO(k)) time. XP is the class of parameterized problems that are

solvable in time O(ng(k)) for some function g. Proving the NP-hardness of a problem and

having a parameter k bounded by a constant immediately forbids the existence of any

XP (and thus algorithm) algorithm unless P = NP [39]. In this case, the parameterized

problem is para-NP-Hard.

In the remainder of this section, we bring forward some useful tools of the param-

eterized complexity theory not only to design FPT algorithms but also, for some cases,

to show that such an algorithm probably does not exist by establishing a parameterized

intractability. Furthermore, the Exponential Time Hypothesis, a very handy conjecture

to show lower bounds, is also presented.

2.3 Parameterized Complexity 16

2.3.1 Bounded Search Trees

This is one of the most commonly used tools in the design of fixed-parameter algorithms.

The bounded search trees originate in the general idea of backtracking [41]. The algo-

rithm tries to build a feasible solution to the problem by making a sequence of recursive

branching decisions, typically by marking, removing, adding or labeling elements in a set

of structure in each recursive call, reducing the size of the input instance until the answer

is easily computable or even trivial.

Downey and Fellows point in [50] that the method of bounded search trees is funda-

mental to FPT algorithmic results in a variety of ways. A typical bounded search tree

algorithm builds a search tree from the root where is the original instance and usually is

decomposed into two parts:

i) Compute some search space of bounded size by a function of the parameter.

ii) Run some relatively efficient algorithm on each branch of the tree.

The computed search tree build in i) can be of exponential size in relation to the

parameter, and the efficient algorithm ii) must be polynomial to the size of the input

where the exploration of the search space is required. As pointed in [50], the worst-case

may diverge significantly from the behavior of such algorithms on real datasets since

probabilistic search space may not be fully explored and many branches ignored.

Next, we present an example application of the FPT algorithmic strategy of bounded

search trees on a classical graph problem, the Vertex Cover.

k-Vertex Cover (k-VC)

Instance: A graph G = (V,E); a positive integer k.

Parameter: the size of the solution k.

Question: Does G have a vertex cover of size at most k? (A vertex cover is a set of

vertices S ⊂ V (G) such that |S| ≤ k and for every edge uv ∈ E, u ∈ S or v ∈ S.)

We present next, a naive algorithm for k-VC using bounded search tree.

Lemma 2.3.5. k-VC can be solved in FPT time.

Proof. Let (G, k) be an instance of the k-VC. We start with S as an empty set. By the

definition of the k-VC, it is clear that any VC S of the input graph G, each edge vu have

at least one of its extremities in S. Notice that if a vertex is chosen to be in S, all of

2.3 Parameterized Complexity 17

its neighbors are covered and we may remove both the vertex and its neighbors from G

without losing. Therefore, we randomly chose a edge uv from E and recursively try both

possibilities, (G− u, k − 1) e (G− v, k − 1). In each step, we reduce the parameter k by

one. The algorithm stops if k = 0. If E = {∅}, a vertex cover was found. The safety of

the algorithm relies on the fact that branching is exhaustive, therefore, all possible VC of

size at most k will be tested.

2.3.2 Kernelization

Kernelization is a powerful technique commonly used to give FPT-algorithms for pa-

rameterized problems that mainly consist of, in polynomial time, transforming an input

instance I = (χ, k) into a new instance I � = (χ�, k�) in such way that the size of I � is

somehow bounded by the parameter k. A kernelization algorithm typically can be bro-

ken down in a series of small steps so-called reduction rules, usually taking advantage

of specific features of the instance, which allow the safe reduction of the instance to an

equivalent “smaller” instance [47]. Without loss of generality, kernelization can be seen

as polynomial-time preprocessing with a guarantee. Thus, the technique has universal

applicability, not only in the design of efficient FPT algorithms but also in the design of

approximation and heuristic algorithms [58]. A formal definition is presented below.

Definition 2.3.6. Kernel: Let Π be a parameterized problem, where I = (χ, k) is an

instance of Π and k a parameter. We say that Π admits a kernel I � = (χ�, k�) if there is

a algorithm A that, from (I, k), builds I � = (χ�, k�) (called problem kernel or just kernel)

such that:

i) k� ≤ ck, for a constant c;

ii) |I| ≤ g(k) for some function g;

iii) I � = (χ�, k�) ∈ Π is a equivalent instance of (I, k), i.e. I � = (χ�, k�) is a yes instance

if and only if I = (χ, k) also is a yes instance.

iv) The algorithm A computes in polynomial time.

We present next some reduction rules for the k-VC used to obtain a naive kernel.

Reduction rule 2.3.7. Let (G, k) be a instance of k-VC. If there is a isolated vertex v,

remove v from G obtaining a new instance (G− v, k).

2.3 Parameterized Complexity 18

The safety of Reduction rule 2.3.7 is trivial. Next, we explore the vertices degree.

Reduction rule 2.3.8. Let (G, k) be a instance of k-VC. If there is a vertex v with

deg(v) > k. Take v into the solution and remove v from G, thus, obtaining a new instance

(G− v, k − 1).

The safety of Reduction rule 2.3.7 relies on the fact that, for every edge uv ∈ E, at

least one of the two vertices u and v has to be in the vertex cover, then, if a vertex v has

more than k neighbors, v must be in the solution.

Reduction rule 2.3.9. Let I = (G, k) be a instance of k-VC such that the Reduction

rules 2.3.7 and 2.3.8 can no longer be appliyed. If at least one of the following conditions

are satisfiyed, then I is a no instance.

i) k < 0;

ii) G has more then k2 + k vertices;

iii) G has more then k2 edges;

The safety of Reduction rule 2.3.9 relies on the fact that: i) if k < 0 then no vertex can

be picked to be in the vertex cover; ii) if G has more then k2+k vertices and Δ(G) ≤ k (by

Reduction rule 2.3.8), then, the k vertices to be choosen can cover at most k2 neighbours.

In iii), similar to ii), if G has more then k2 edges and Δ(G) ≤ k (by Reduction rule 2.3.8),

then, the k vertices to be choosen can cover at most k2 edges.

After Reduction rules 2.3.7 to 2.3.9, we obtain a quadratic kernel, since, either we find

that the input instance is a no instance or that the size of the instance is at most O(k2).

Theorem 2.3.10. The k-VC admits a kernel with O(k2) vertices and O(k2) edges.

2.3.2.1 Lower Bounds on Kernelization

After applying the kernelization technique and getting a kernel of a parameterized prob-

lem, a natural question that arises is, how small this kernel can be? Of course, we would

like the resulting kernel to be as small as possible, usually polynomial in relation to the

parameter.

There are several positive results on the existence of kernels with polynomial size [49,

19, 2] or even linear [15, 16]. However, some parameterized problems probably do not

2.3 Parameterized Complexity 19

support a kernel with polynomial size. In fact, in the past decade that the first results

regarding the unfeasibility of kernels with polynomial size [46].

In order to show lower bounds on the kernel size, we use parameterized polynomial

transformation (called PPT-reduction). Such a reduction is defined next.

Definition 2.3.11. PPT-reduction: Let Π(k) and Π�(k�) be parameterized problems

where k� ≤ g(k) for some polynomial function g : N → N. An PPT-reduction from Π(k)

to Π�(k�) is a reduction R such that:

i) for all χ, we have x ∈ Π(χ) if and only if R(χ) ∈ Π�(k�);

ii) R is computable in polynomial time (in relation to k).

2.3.3 Fixed-Parameter Intractability

From Section 2.3 to this point, the main goal was to show FPT algorithms techniques for

parameterized problems. Such problems are fit in the FPT class. Besides the FPT class,

Downey and Fellows defined the W hierarchy, a collection of computational complexity

classes that accounts for the level of parameterized intractability [46]. To propper define

the W hierarchy, we need some definitions.

Definition 2.3.12. [52] FPT-reduction: Let Π(k) and Π�(k�) be two parameterized

problems where k� ≤ f(k) for some computable function f : N → N. A FPT-reduction of

Π(k) to Π�(k�) is a reduction R such that:

i) for all x, we have x ∈ Π(k) if and only if R(x) ∈ Π�(k�);

ii) R is computable in FPT time (in relation to k).

It is important to notice that the FPT-reduction is transitive, that is, the FPT-

reduction preserves the fixed-parameter tractability as follows. Given an FPT problem Π

and a parameterized problem Π�, if Π� is FPT reducible to Π, then, Π� is also FPT. On

the other hand, if Π is not in FPT, then, Π� also is not in FPT [29].

To further discuss the W hierarchy, we describe a group of satisfiability problems on

circuits of bounded depth.

Definition 2.3.13. A Boolean circuit is of mixed type if it consists of circuits having

gates of the following kinds.

2.3 Parameterized Complexity 20

i) Small gates: not gates, and gates and or gates with bounded fan-in (usually assume

that the bound on fan-in is 2 for and gates and or gates, and 1 for not gates).

ii) Large gates: And gates and Or gates with unrestricted fan-in.

The circuit can be represented by a directed AND-OR graph where a node represents

a gate and each circuit has a single output. The weft of a circuit is the maximum number

of large nodes on a path from an input node to the output node. We denote by Ct,d the

class of circuits with weft at most t and depth at most d.

Weighted Circuit Satisfiability (WCS[t])

Instance: A boolean circuit C with t large gates; a positive integer k.

Parameter: k.

Question: Does C have a satisfying assignment of weight k?

The parameterized problem WEIGHTED CNF FORMULA SATISFIABILITY

(WCNF-SAT), consists of the pairs (F, k), where F is a boolean formula in the con-

junctive normal form and k is the parameter such that the formula F has a satisfying

assignment with weight k. The WEIGHTED CNF 3-SAT (WCNF-3SAT) problem is

the WCNF-SAT problem restricted to instances where every clause of the formula F has

at most three literals. Now we are ready to define the W-hierarchy.

Definition 2.3.14. [29] The W hierarchy (FPT ⊆ W [1] ⊆ W [2] ⊆ · · · ⊆ W [t] ⊆ W [P])

is a collection of computational complexity classes intuitively inspired in the Weighted

Circuit Satisfiability problem. The class W [1] consists of all parameterized problems

that are FPT-reducible to the problem WCNF-3SAT. For t ≥ 1, a parameterized problem

Π belongs to the class W [t], if there is a FPT-reduction from Π to Weighted Circuit

Satisfiability on Ct,d, for some d ≥ 1.

From definitions 2.3.12 and 2.3.14 we may define W [t]-hardness and completness (sim-

ilar to Cook’s theorem [31]) as follows. Given a parameterized problem Π, if WCS[t] (or

a problem in W [t]) is PFT-reducible to Π, then, Π is W [t]-hard, additionaly, if Π is in

W [t], then, it is also W [t]-complete. Notice that for t ≥ 1, if a problem Π is FPT, if a

problem Π� is W [t], if Π� is FPT-reducible to Π, then, FPT = W [t], so, as in classical

computational complexity there is the unanswered question "P = NP?", parameterized

complexity theory has its own unanswered question, "FPT = W [t]?".

2.3 Parameterized Complexity 21

2.3.4 Lower Bounds on Exponential Time Hipothesis

The Exponential Time Hypothesis (ETH) and its strong variant, the Strong Exponential

Time Hypothesis (SETH), are well-known and accepted conjectures that first appeared

in [62] and are commonly used to prove lower bounds in parameterized computation. In

the literature, several lower bounds have been found to many well-known problems, under

such conjectures [41].

Conjecture 2.3.15. [63, 72] Exponential Time Hypothesis (ETH): There is a pos-

itive real c such that 3-CNF-SAT cannot be solved in time 2cn(n+m)O(1), where n is the

number of variables, and m is the number of clauses. In particular, 3-CNF-SAT cannot

be solved in 2o(n)(n+m)O(1) time.

Conjecture 2.3.15 is commonly used together with the Sparsification Lemma [63],

meaning that 3-CNF-SAT cannot be solved in 2o(n+m)(n + m)O(1) time. In this work,

without loss of generality, whenever we refer to ETH we mean to the latter version of the

hypothesis. The Sparsification Lemma is presented below.

Lemma 2.3.16. [63] Sparsification Lemma For all positive � and positive r, there is a

constant K = K(�, r) such that any r-CNF formula F with n variables can be expressed as

F =
�r

i=1 ci, where t ≤ 2�n and each ci is a r-CNF formula with the same variable set as

F and at most Kn clauses. Moreover, this disjunction can be computed by an algorithm

running in time O(2�n).

Conjecture 2.3.17. [63, 72] A consequence of the Strong Exponential Time Hy-

pothesis (SETH): CNF-SAT cannot be solved in time (2 − �)n(n +m)O(1), where n is

the number of variables, and m is the number of clauses.

Conjecture 2.3.17 is an immediate consequence of the Strong Exponential Time Hy-

pothesis (SETH) [64, 23].

In [63] a generalized reduction called Sub-Exponential Reduction Family (SERF) was

introduced. A SERF reduction preserves sub-exponential time computation among search

problems and their associated complexity parameters [22].

Definition 2.3.18. [63, 66] SERF-reduction. Given two problems Π1 and Π2 with

parameters κ1 and κ2, respectively, if Π1 is SERF-reducible to Π2, there is a Turing-

reduction T� from Π1 to Π2 over all � > 0 with the following properties:

i) the reduction T�(χ) can be done in poly(|χ|)× 2�κ1(χ) time;

2.3 Parameterized Complexity 22

ii) if the reduction T�(χ) outputs an input instance χ� then:

(a) κ2(χ
�) is linearly bounded in κ1(χ);

(b) the size of χ� is polynomially bounded in the size of χ.

Additional Notation

We denote by dfv(G) the size of a minimum directed feedback vertex set of G. We

generally use F to denote a directed feedback vertex set and by R the remaining subset,

i.e., R = V \ F . The length of the longest directed path of G is denoted by p(G). The

Kenny-width [54] or K-width of G is denoted by κ(G) and is the maximum number of

distinct directed st-paths in G over all pairs of distinct vertices s, t ∈ V (G), where two

st-paths are distinct if and only if they do not use the same set of arcs. For any function

g (like dfv, κ, p), g(G) will be denoted simply by g when the considered graph G can be

deduced from the context. In what follows, we denote by g–KFVD the KFVD problem

parameterized by g (g = k denotes the parameterization by the solution size). More

concepts, notation, and definitions on parameterized complexity can be found in [41, 48,

52, 75].

Chapter 3

Classical Complexity

In this chapter, we present complexity results for all the eight combinatorial problems

of the form λ–Deletion(M). The Vertex–Deletion(OR) problem receives a special

analysis in Section 3.3. Finally, in Section 3.4, an analisys of the λ–Deletion(M) on

weighted wait-for graphs in the AND and OR model is presented.

3.1 AND Model and Generalizations

To determine if there is a deadlock in a graph G in the AND model, it is necessary and

sufficient to check the existence of cycles. Therefore, it is easy to see that Vertex–

Deletion(AND) coincides with Directed Feedback Vertex Set (DFVS) and

Arc–Deletion(AND) coincides with Directed Feedback Arc Set (DFAS), well-

known problems proved to be NP-Hard in [67].

The AND-OR model is a generalization of the AND and OR models; therefore, every

instance of a deadlock resolution problem for either the AND model or the OR model is

also an instance for the AND-OR model. Also, the X-Out-Of-Y model also generalizes

the AND and OR models. From this observation, it follows that:

Corollary 3.1.1. For M ∈ {AND-OR, X-Out-Of-Y}, it holds that:

• Vertex–Deletion(M) is NP-hard;

• Arc–Deletion(M) is NP-hard.

3.2 OR Model 24

3.2 OR Model

To determine if there is a deadlock in a wait-for graph G in the OR model, it is sufficient

and necessary to check the existence of a knot [8]. Recall that a knot K is a strongly

connected component (SCC) of order at least two where no vertex of K has an out-arc to a

vertex that is not in K. Thus, in order to turn a wait-for graph deadlock-free, it is sufficient

and necessary to turn the input graph into a knot-free graph. Therefore, we denote Arc–

Deletion(OR) by Knot-Free Arc Deletion (KFAD) and Vertex–Deletion(OR) by

Knot-Free Vertex Deletion (KFVD).

3.2.1 Knot-Free Arc Deletion

The Knot-Free Arc Deletion problem is formally presented next.

Knot-Free Arc Deletion (KFAD)

Instance: A directed graph G = (V,E); a subset X ⊆ V ; and a positive integer k.

Question: Determine if G has a set S ⊂ E(G) such that |E| ≤ k and G[E \ S] is

knot-free.

Since all strongly connected components on a graph G can be found through a topo-

logical ordering of G and a knot is a strongly connected component C with at least two

vertices where there are no paths from a C vertex to any vertex in G[V \ C], then, all

the knots of a digraph can be identified in linear time as follows: first, find all the SCCs

in linear time by running a depth-first search (Cormen et al. [32], pages 615-621); next,

contract each SCC into a single vertex, obtaining an acyclic digraph H whose new sinks

represent the knots of G.

Lemma 3.2.1. Let G be a wait-for graph G in the OR model.

(a) Let K be a knot. The minimum number of arcs to be removed in K to make it

knot-free is δ+(K).

(b) Let K = {K1, K2, ..., Kp} be the non-empty set of all the existing knots in G. The

minimum number of arcs to be removed from G to make it knot-free is
�p

i=1 δ
+(Ki).

Proof. (a) The key property to this proof is that any pair of vertices u, v in an SCC has

a directed path to each other. Let v be a vertex with minimum out-degree in K. By

removing all the out-arcs of v, v becomes a sink. Since K is an SCC, for every vertex

u ∈ V (K) all paths from u to v will remain intact; therefore, K will be knot-free. Since

3.3 Knot-Free Vertex Deletion 25

at least one sink must be created to make K knot-free, the minimum number of arcs to

be removed of K is δ+(K).

(b) By applying (a) repeatedly to each knot Ki in G, we solve all the knots with
�p

i=1 δ
+(Ki) arc removals. Let V � =

�p
i=1 V (Ki). Since no arcs or vertices are changed

outside G[V (G)\V �], it is easy to see that no new knots will be created. Thus, G[V (G)\V �]

is knot-free.

By Lemma 3.2.1 we can obtain in linear time a minimum set of arcs whose removal

turns a given digraph G into a knot-free digraph.

Corollary 3.2.2. Knot-Free Arc Deletion can be solved in linear time.

Table 3.1 presents the computational complexities of the problems presented so far.

The complexity analysis of Vertex–Deletion(OR) is presented in next section.

λ–Deletion(M)
λ \ M AND OR AND-OR X-Out-Of-Y
Arc NP-H P NP-H NP-H
Vertex NP-H ? NP-H NP-H

Table 3.1: Partial scenario of the complexity of λ–Deletion(M).

3.3 Knot-Free Vertex Deletion

In this section, we show that KFVD is NP-hard. In addition, we analyze the problem

for some particular graph classes and present a polynomial time algorithm for KFVD

when the input graph is subcubic. The Knot-Free Vertex Deletion problem is formally

presented next.

Knot-Free Vertex Deletion (KFVD)

Instance: A directed graph G = (V,E); and a positive integer k.

Question: Determine if G has a set S ⊂ V (G) such that |V | ≤ k and G[V \ S] is

knot-free.

Lemma 3.3.1. Knot-Free Vertex Deletion is NP-hard.

Proof. Let F be an instance of 3-SAT [56] with n variables and having at most 3 literals

per clause. From F we build a graph GF = (V,E) which contains a set S ⊆ V (G) such

3.3 Knot-Free Vertex Deletion 26

that |S| = n and GF [V \S] is knot-free if and only if F is satisfiable. The construction of

GF is described below:

1. For each variable xi in F , create a directed cycle with two vertices (“variable cycle”),

Txi and Fxi, in GF .

2. For each clause Cj in F create a directed cycle with three vertices (“clause cycle”),

where each literal of Cj has a corresponding vertex in the cycle.

3. For each vertex v that corresponds to a literal of a clause Cj, create an arc from v

to Txi if v represents the positive literal xi, and create an arc from v to Fxi if v

represents the negative literal x̄i.

Figure 3.1 shows the graph GF built from an instance F of 3-SAT.

Tx1

x1

x2 x3
__

C1 = X1 V X2 V X3 C2 = X1 V X2 V X3 C3 = X1

Fx1

x2

Tx2 Fx2

__
x1

Tx3 Fx3

x1

x3
__

Figure 3.1: Graph GF built from F = (x1 ∨ x̄2 ∨ x3) ∧ (x1 ∨ x2 ∨ x̄3) ∧ (x̄1).

Suppose that F admits a truth assignment A. We can determine a set of vertices S

with cardinality n such that GF [V \S] is knot-free as follows. For each variable of F , select

a vertex of GF according to the assignment A such that the selected vertex represents the

3.3 Knot-Free Vertex Deletion 27

opposite value in A, i.e., if the variable xi is true in A, Fxi is included in S, otherwise

Txi is included in S. Since each knot corresponds to a variable cycle, it is easy to see

that GF [V \S] has exactly n sinks. Therefore, since A satisfies F , at least one vertex

corresponding to a literal in each clause cycle will have an arc towards a sink (vertex that

matches the assignment). Thus GF [V \S] will be knot-free.

Conversely, suppose that GF contains a set S with cardinality n such that GF [V \S]
is knot-free. By construction, GF contains n knots, each one associated with a variable of

F . Hence, S has exactly one vertex per knot (one of Txi, Fxi). As each cycle of GF [V \S]
corresponds to a clause of F , and GF [V \S] is knot-free, each cycle of GF [V \S] has at

least one out-arc pointing to a sink. Thus, we can define a truth assignment A for F by

setting xi = true if and only if Txi ∈ {V \ S}. Since at least one vertex corresponding

to a literal in each clause cycle will have an arc towards a sink, we conclude that F is

satisfiable.

3.3.1 Strongly Connected Graphs

In general, a wait-for graph in the OR model can be viewed as a conglomerate of several

strongly connected components. As observed in Subsection 3.2, the problems that can be

solved in polynomial time have a characteristic in common: it suffices to solve every knot

in G because no other SCC will become a knot after such removals. The next result deals

with the natural question: “Can Vertex–Deletion(OR) be solved in polynomial time

when the input graph is strongly connected (i. e., G is a single knot)?”.

Corollary 3.3.2. Knot-Free Vertex Deletion is NP-Hard even if G is strongly

connected.

Proof. Build a graph GF as in Lemma 3.3.1, then add a universal vertex u (i.e., there

are directed edges from u to all the other vertices, and vice-versa). Clearly, the resulting

graph has a set of vertices S with cardinality k+1 such that GF [V \S] is knot-free if and

only if F is satisfiable.

3.3.2 Planar Bipartite Graphs with Bounded Degree

Now we consider properties of the underlying undirected graph of G.

Since one of the most used architectures in distributed computation follows the

user/server paradigm, an intuitively interesting graph class for distributed computation

3.3 Knot-Free Vertex Deletion 28

purposes are bipartite graphs. Planar graphs can also be interesting if physical settings

must be considered; finally, bounded-degree graphs are very common in practice.

Theorem 3.3.3. Knot-Free Vertex Deletion remains NP-Hard even when the un-

derlying undirected graph of G is bipartite, planar, and with maximum degree 4.

Proof. Let F be an instance of Planar 3-SAT-AM3, where each variable has at most

three occurrences with at least one positive and at least one negative. This problem

is known to be NP-complete [81]. We show next that given a planar embedding HF

(the incidence graph corresponding to formula F 1) we build an instance GF of Vertex-

Deletion(OR) (a planar bipartite graph with Δ(Gf) = 4) as follows:

• For each variable vertex vxi
in HF , create a directed cycle with two vertices (“variable

cycle” Xi), Txi and Fxi, in GF .

• For each clause vertex wcj in HF , create a directed cycle with six vertices (“clause

cycle” Cj), where every two consecutive vertices in this cycle represent a literal in

Cj, the first positive and the other negative.

• Considering HF , choose an index i ∈ {1, . . . , n} and suppose that xi (the vertex

representing the variable xi) has degree at most three in HF . This means that xi

occurs at most three times in F . Without loss of generality suppose that xi occurs

three times in F ; therefore, in HF , there are the edges (vxi
, wcj), (vxi

, wck), and

(vxi
, wcl). Fig 3.2(a) shows vertex vxi

with its incident edges in HF . We then create

edges in GF by linking the clause cycles (corresponding to wcj , wck , and wcl) to the

variable cycle (corresponding to vxi
). The added edges come from the first vertex

corresponding to a literal if the literal is positive, and from the second otherwise.

Observe in Fig 3.2 that the embedding of HF is used as a “planar template” to

guide the drawing of the edges leaving vxi
in Fig 3.2(b). On the other hand, the

added edges linking clause cycles and variable cycles can be seen from the clause

cycle perspective. For each clause vertex wcp , p �= i, formed by the occurrences of

variables xi, xj, and xk, there are in HF the edges (wcp , xi), (wcp , xj) and (wcp , xk).

Figure 3.3 illustrates the corresponding added edges in this perspective.

1The incidence graph of a CNF formula F is the bipartite graph I(F) defined as follows: V1(I(F))
consists of the variables of F and V2(I(F)) consists of the clauses of F ; a variable x and a clause C are
adjacent if and only if x occurs (positively or negatively) in C.

3.3 Knot-Free Vertex Deletion 29

vxi

(wcj, vxi)

(wck, vxi)

(wcl,, vxi) from wcl

from wck

from wcj

(a) (b)

Xi

Figure 3.2: Variable cycle Xi built from a variable vertex vxi
in HF .

wcp

(wcp, vxi)

(wcp, vxk)

(wcp,, vxj)
to vxj

to vxk

to vxi

(a) (b)

Cp

Figure 3.3: Clause cycle Cp built from a clause vertex wcp in HF .

The bipartition of GF can be easily deduced since no pair of vertices represent-

ing positive (resp. negative) literals are adjacent; moreover, in such cycles, if a ver-

tex represents a positive literal and another vertex a negative literal then they are at

an odd distance. In order to better understand the complete construction, the pla-

nar drawing, and the bipartition of GF , Fig 3.4 shows a graph constructed from F =

(x1) ∧ (x2) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x3).

The rest of the proof follows directly from Lemma 3.3.1.

3.3.3 Subcubic Graphs

Since Knot-Free Vertex Deletion remains NP-hard for graphs with Δ(G) = 4, and

is trivial for graphs with Δ(G) ≤ 2, an interesting question is to study the complexity

of Vertex–Deletion(OR) when the underlying undirected graph of G has maximum

degree three, i.e, is subcubic.

3.3 Knot-Free Vertex Deletion 30

C1
C2

C3

C4

C5

x1
x2 x3

Figure 3.4: Graph GF built from F = (x1) ∧ (x2) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x3).

3.3 Knot-Free Vertex Deletion 31

To answer this question the first step is to phase out unnecessary vertices, i.e., vertices

that never belong to any solution, such as sources and sinks.

Preprocessing. Let vi be a sink or a source vertex in G; then, delete Ai from G, until

G becomes source/sink free. Using depth-first search the preprocessing can be done in

O(n+m) time.

The safety of the preprocessing relies in the fact that sources will never be in a

minimum Vertex–Deletion(OR) set solution and that all vertices that reach a sink

vi (forming the set Ai) are already deadlock-free.

After the preprocessing, all vertices of G are in deadlock, and each one is classified into

three types: A - with one in-arc and one out-arc; B - with one in-arc and two out-arcs;

C - with two in-arcs and one out-arc.

The next step is to continuously analyze graph aspects in order to establish rules and

procedures that may define specific vertices as part of an optimum solution. Thus, we

iteratively build a partial solution contained in some optimum solution.

To break all the deadlocks in a graph G, it is necessary to destroy each knot in G.

The removal of some vertices can destroy a knot; however, these removals may produce

new knots that also need to be broken. Thus, our goal now is to identify for each knot a

vertex that without loss of generality is part of an optimum solution.

Let W be an induced SCC of G. We can classify the vertices that are of type A in

W into three sub-types (see Figure 3.5). A vertex is of sub-type A.1 if it is of type A in

W , but of type C in the original graph, i.e., has an in-arc from another SCC; a vertex is

of subtype A.2 if it is of the same type in both W and G; finally, a vertex is of subtype

A.3 when it is of type A in W but of type B in G. Note that in a knot there will never

be vertices of type A.3. It is worth noting that in a subcubic graph every knot vertex has

at most one external neighbor (in-neighbor).

The following lemma presents an interesting relation between vertices of types B

and C.

Lemma 3.3.4. Let Q be a strongly connected subcubic graph. The number of vertices of

type B in Q is equal to the number of vertices of type C.

Proof. It is known that
�
vi∈V

deg−(vi) =
�
vi∈V

deg+(vi) [85]. Since G is subcubic and strongly

connected, G has only vertices A, B, and C . Note that a vertex of type A has one in-arc

3.3 Knot-Free Vertex Deletion 32

A.1 A.2 A.3

Induced SCC

Figure 3.5: Subtypes of vertices A in an SCC.

and one out-arc; therefore it is easy to see that in order to maintain the same number of

in- and out-arcs of G, G must have an equal number of vertices of types B and C.

At this point, we can identify some vertices of an optimal solution.

Theorem 3.3.5. Let G be a subcubic graph and Q be a knot in G. If Q contains a vertex

of type B, C, or A.2, then G has an optimal solution S for Vertex–Deletion(OR)

which contains exactly one vertex vi ∈ V (Q).

Proof.

(a) Suppose first that Q contains a vertex of type B. Since Q is strongly connected,

any sink arising from a vertex removal will break Q. Since a vertex of type B has no

neighbor outside Q (otherwise Q would not be a knot), removing it does not create a

knot in G − V (Q). Thus, given a vertex vi of type B in Q, the removal of vi will not

turn its in-neighbor wi into a sink only if wi is also of type B. In this case, we repeat

the same process for wi. From Lemma 3.3.4, eventually, we find a vertex vj of type B

whose in-neighbor wj is not of type B, otherwise, Q would be composed only by vertices

of type B.

(b) Suppose now that Q contains a vertex of type C. The proof for this case follows

directly from Lemma 3.3.4 and (a).

(c) Finally, suppose that vi is a vertex of type A.2 in Q. Since such a vertex has no

neighbors outside Q, removing it does not create a knot in G − V (Q). In addition, the

3.3 Knot-Free Vertex Deletion 33

removal of vi does not break Q only if its in-neighbor wi is of type B. In this case, we

can apply (a).

Corollary 3.3.6. The vertex in Theorem 3.3.5 can be found in linear time.

Corollary 3.3.7. Let Q be a knot of a subcubic graph G. If there is no vertex vi in Q

such that G−vi has fewer knots than G, then Q is a cycle composed only by vertices of

type A.1.

Proof. By Theorem 3.3.5, Q clearly contains no vertices of types B, C, or A.2. Fur-

thermore, it cannot have any vertices of type A.3. Thus, Q is a cycle of vertices of

type A.1.

Figure 3.6 shows a graph with a knot (SCC in red) composed only by vertices of

type A.1.

Figure 3.6: A graph with a knot composed only by vertices of type A.1.

Now, we can determine lower and upper bounds for the problem.

Lemma 3.3.8. Let S be an optimal solution of a subcubic instance G of Knot-Free

Vertex Deletion. Then it holds that k ≤ |S| ≤ 2k, where k is the number of knots

of G.

3.3 Knot-Free Vertex Deletion 34

Proof. For a given subcubic graph G containing k knots, G needs at least k vertex deletions

(one in each knot) in order to break all the knots. Conversely, in the worst case, all the

knots are composed only by vertices of type A.1 (Corollary 3.3.7) and we show next that

at most 2k removals are required to make G deadlock-free. If a knot Qi has at least one

vertex that is not of type A.1, apply Theorem 3.3.5. Since at least one vertex deletion is

needed in each knot and all remaining knots are composed only by vertices of type A.1,

for each knot Qi simply remove any vertex vi. Observe that the deletion of a vertex of

type A.1 in a knot creates at most one new knot Q�
i (the SCC of the in-neighbor wi of the

deleted vertex vi); furthermore, wi becomes a vertex of type A.2 after the deletion of vi.

Finally, considering that the new knot Q�
i has at least one vertex of type A.2, Q�

i can be

solved with only one vertex deletion (Theorem 3.3.5).

Corollary 3.3.9. Knot-Free Vertex Deletion in subcubic graphs can be 2-approx-

imated in linear time.

Proof. Follows from Theorem 3.3.5 and Lemma 3.3.8.

3.3.3.1 A Polynomial Time Algorithm.

In order to obtain an optimum solution in polynomial time, there are some significant

considerations to be made regarding the remaining graph.

Lemma 3.3.10. Let G be a subcubic instance of Knot-Free Vertex Deletion. Let

C = {C1, C2, . . . , Cj} be a set of non-knot SCCs of G, where for each Ci ∈ C there is a

directed path from C i to C i+1 and from Cj to a knot Q. Then:

(a) No vertex in C1, C2, . . . , Cj−1 is part of an optimal solution.

(b) If Cj has two or more out-arcs pointing to Q or there is some i < j for which C i is

directly connected to Q then there is an optimal solution S such that V (Q)∩S = {vi},
and such a vertex can be found in linear time.

Proof.

(a) Note that each C i, 1 ≤ i ≤ j − 1, has a path to Cj; therefore, in the worst case two

removals will take place (one in Q and other in C j), and thus all the SCCs C1, C2, . . . , Cj−1

will have a path to a sink.

(b) If Cj has two or more out-arcs pointing to Q, without loss of generality we can remove

an in-arc from Cj to a vertex of type A.1 in Q. In so doing, such a vertex becomes a

3.3 Knot-Free Vertex Deletion 35

vertex of type A.2 and Theorem 3.3.5 can be applied. Analogously, if there is some i < j

where C i is directly connected to Q, we can also remove an in-arc from C i to a vertex of

type A.1 in Q and apply Theorem 3.3.5.

At this point, we are able to apply the first steps of our algorithm.

First steps of the algorithm. (i) Remove any SCC that is pointing to another non-

knot SCC; (ii) If a non-knot SCC has at least two arcs pointing to the same knot then

remove all such arcs but one; (iii) For each knot Q having vertices of type B, C, or A.2,

find a vertex vi that, without loss of generality, is in an optimal solution and remove it;

(iv) Remove all vertices that are no longer in deadlock.

The correctness of the above steps follows from Theorem 3.3.5 and Lemma 3.3.10.

Observe also that such routines can be performed in O(n+m) time.

Now, consider the graph G obtained after applying the above steps. The knots of

G are directed cycles composed by vertices of type A.1 (see Corollary 3.3.7), and each

non-knot SCC of G is at distance one of a knot. At this point, any vertex v removed from

a knot Q will break it, but potentially creates a new knot from the SCC W that has an

out-arc to v. However, such new knot W will have a vertex of type A.2; therefore, W can

be solved by the removal of another vertex w in W , called solver vertex.

Our final step is to minimize the number of solver vertices that actually need to be

removed in order to make the graph knot-free. To achieve this purpose, we will consider

the bipartite graph B = (K∪C, E), where K is the set of vertices representing contracted

knots, and C is the set of vertices representing contracted non-knot SCCs. Note that each

arc from a vertex cj in C to another vertex ki in K represents a connection from a vertex

w of the SCC represented by cj to a vertex v of the knot represented by ki, and indicates

that w becomes a vertex type of A.2 after the removal of v, which guarantees the existence

of a solver vertex, that may or may not be used. Therefore, we seek a set M � of arcs in

B such that:

1. Each vertex in K is adjacent to at most one arc of M �. (This arc indicates the

vertex of the knot to be removed.)

2. Each vertex in C has at least one arc that does not belong to M �. (This arc indicates

a path to a sink, a broken knot in K; thus, the SCC is deadlocked without removing

internal vertices.)

3.3 Knot-Free Vertex Deletion 36

3. M � is maximum.

From the set M � we can obtain an optimal solution S such that G[V \ S] is knot-free

(where G is prior to the contraction). In fact, M � indicates the maximum number of

knots that can be broken without generating new knots, as well as the number of solver

vertices needed. A solution S can be built as follows: for each vertex ki in K, saturated

by M �, include in S the associated knot vertex in G; for every vertex ki ∈ K such that ki
is not saturated by M �, choose an arc e ∈ E(B) and include in S the knot vertex of G

associated with e; then, for the SCC C of G indicated by the arc e, include in S a solver

vertex. Figure 3.7 shows a set M � for a graph B = (K ∪ C,E). Each unsaturated vertex

in K (vertex in red) suggests one solver vertex in C that needs to be in S.

Edges not in M’

Edges in M’

Figure 3.7: Sample of set M � saturating t−1 vertices in a bipartite graph B = (K∪C,E).
Vertices in K are red, and vertices in C are blue. Solid lines represent edges of M �, while
dashed lines represent edges not in M �. The highlighted vertex in red is not saturated by
M �.

The set M � can be obtained by using the concept of (f, g)-semi-matching. An (f, g)-

semi-matching is a generalization of the concept of semi-matching presented in [17]. Let

f : K → N and g : C → N be functions. An (f, g)-semi-matching in a bipartite graph

B = (K ∪ C,E) is a set of arcs E � ⊆ E such that each vertex ki ∈ K is incident with at

most f(ki) arcs of E �, and each vertex cj ∈ C is incident with at most g(cj) arcs of E �.

3.3 Knot-Free Vertex Deletion 37

In fact, M � is an (f, g)-semi-matching where, for every ki ∈ K, f(ki) = 1, and for every

cj ∈ C, g(cj) = deg(cj)− 1.

Lemma 3.3.11. [17, 53, 68] Given a bipartite graph B = (K ∪C, E) and two functions

f : K → N and g : C → N, finding a maximum (f, g)-semi-matching of B can be done

in polynomial time, and a maximum (1, g)-semi-matching of B can be found in O(m
√
n)

time.

The algorithms for (f, g)-semi-matchings use similar ideas to those used in the well-

known algorithm by Hopcroft and Karp [60].

At this point, we have all the elements to answer the question raised on the complexity

of Vertex-Deletion(OR).

Theorem 3.3.12. Knot-Free Vertex Deletion restricted to subcubic graphs is solv-

able in O(m
√
n) time.

Proof. First, we must perform all the preprocessing previously presented. Then, we build

the equivalent bipartite graph B. Given the bipartite graph B, the set of arcs M � is

an (f, g)-semi-matching where, for every ki ∈ K, f(ki) = 1, and for every cj ∈ C,

g(cj) = deg(cj)− 1. The (1, g)-semi-matching can be computed in O(m
√
n) time.

If |M �| = |K|, then for every knot a vertex in the original graph G is chosen to be

deleted (a vertex in a knot ki ∈ K saturated by M �), and each component cj of C is

released through a solved knot (by some arc that is not in M �). Thus, the arcs of M �

induce an optimum set of vertices to be removed.

Suppose a maximum M � such that |M �| = |K|−q for some q ≥ 1. Since each vertex

v in K sees at most one arc in M � and |M �| = |K|−q, q vertices of K are not saturated

by the (1, g)-semi-matching . The number of vertices not saturated by M � is equal to the

number of components that are turned into knots (after solving all knots not saturated

by M �) and the number of solvers that need to be removed. Since M � is maximum and

|M �| = |K|−q, we have that q is minimum, and from M � we build a set S with |S| = |K|+q
vertices such that G[V (G)\S] is knot-free as previously explained: for each vertex ki in

K, saturated by M �, include in S the associated knot vertex in G; for every vertex ki ∈ K

such that ki is not saturated by M �, choose an arc e ∈ E(B) and include in S the knot

vertex of G associated with e; then, for the SCC C of G indicated by the arc e, include

in S a solver vertex, by Theorem 3.3.5. See Figure 3.7.

Conversely, if we have a set S of vertices of cardinality |K|+q such that G[V (G)\S] is

3.4 Weighted-λ-Deletion(M) 38

knot-free, S induces a set M � of arcs in the bipartite graph B that saturates |K|−q vertices

of K using arcs that also saturate the SCCs in C that do not have solver vertices in S.

Therefore, there is a (1, g)-semi-matching for the bipartite graph B of size |K|−q.

3.4 Weighted-λ-Deletion(M)

Priority-based distributed computations have multiple applications like Job Scheduling [4],

Resource Allocation [73], among others. Wait-for graphs with weights in a distributed

computation model can express de degree of priority of processes or requisitions. We

denote by P (x) the weight of a vertex/arc x and �+(v) the set of out-arcs of v. i.e. there

is a arc ei = (v, vi) ∈ �(v) ∀ vi ∈ N+(v). In this section we show that λ-Deletion(M) on

weighted directed graphs (W-λ-Deletion(M)) is equivalent to the λ-Deletion(M) prob-

lems on non-weighted directed graphs.

Formally, we define the deletion operations of W-λ-Deletion(M) as follows:

1. Arc: The intervention is given by arc removal. For a given weighted directed graph

G, W-Arc–Deletion(M) consists of finding a set of arcs to be removed from G

with minimum combined cost in order to make it deadlock-free.

2. Vertex: The intervention is given by vertex removal. For a given graph G, Vertex–

Deletion(M) consists of finding a set of vertices with minimum combined cost to

be removed from G in order to make it deadlock-free.

3.4.1 Weighted AND Model

As pointed in Section 3.1, to determine if there is a deadlock in a graph G in the AND

model, it is necessary and sufficient to check the existence of cycles. Therefore, it is

easy to see that W–Vertex–Deletion(AND) coincides with Weighted Directed

Feedback Vertex Set (WDFVS) and W–Arc–Deletion(AND) coincides with

Weighted Directed Feedback Arc Set (WDFAS). Next, we show that in fact

that Vertex–Deletion(AND) is reducible to W–Vertex–Deletion(AND). First,

we show for the vertex version (the vertices have weights) and second we show for the arc

version (The arcs have weights).

Lemma 3.4.1. Let G be an instance of W–Arc–Deletion(AND). We can transform

G into an equivalent instance G� of Arc–Deletion(AND) in polynomial time if for any

arc e ∈ E(G), P (e) ≤ poly(n).

3.4 Weighted-λ-Deletion(M) 39

Proof. We show that W–Arc–Deletion(AND) ∝ Arc–Deletion(AND). We build G�

from G as follows. Set G� = G. Let x = P (ei)−1 , if x ≥ 1, for each arc ei = (v, u) ∈ �+(v)

create x artificial vertices v1u, ..., v
x
u. Also, create an arc from v to each viu and from each

viu to u in G� (see Figure 3.8).

1

2

2 4

1

v

u

v

u

vu
1

Figure 3.8: Example of an instance G of W–Arc–Deletion(AND) with weights in the
arcs and the correspondent gadget in of an instance G of Arc–Deletion(AND).

Suppose that G has a set S of arcs such that
�

ei∈�+(v) P (ei) = k and G[E(G) \ S] is

knot-free. We build a set S � such that G�[V (G�) \ S �] is knot-free. For each arc ei = (v, u)

in S we put in S � the additional P (ei) arcs (P (ei) − 1 arcs from vi to the x artificial

vertices v1u, ..., vxu and one from v to u). Since G[V (G) \S] is cycle-free, and all additional

out-arcs from v created to each deleted ei in G is also in S �, G�[V (G�) \ S �] is knot-free

and S � has size exactly k.

Conversely, Suppose that G� has a set of arcs S � with size k and G�[V (G�) \ S �] is

cycle-free. We create a set S such that
�

ei∈�+(v) P (ei) ≤ k and G�[V (G�) \S �] is knot-free

as follows. For each arc e� = (v, u) in S � we put e = (v, u) in G, i.e. we just ignore the arcs

that goes to/from a artificial vertex viu. Notice that even if we delete all de ignored edges

in the graph, if there is an arc in S � that goes to/from a artificial vertex viu, then, In order

to get a knot-free graph, the u, v arc must be in S �. So, if the arc (v, u) is in S �, S � must

have one other arc for each artifitial viu that either goes from v or to u. Finally, since G is

equal G� without the artificial vertices and G[E(G) \ S �] is cycle-free, then, G[E(G) \ S]
is also cycle-free.

3.4 Weighted-λ-Deletion(M) 40

Next is presented wait-for graphs with weighted vertices, i.e, a distributed com-

putation where the processes have priorities. We show next that W–Vertex–Dele-

tion(AND) is reducible to Vertex–Deletion(AND), thus solvable in polynomial time.

Lemma 3.4.2. Let G be an instance of W–Vertex–Deletion(AND). We can trans-

form G into an equivalent instance G� of Vertex–Deletion(AND) in polynomial time

if for any vertex v ∈ V (G), P (v) ≤ poly(n).

Proof. We show that W–Vertex–Deletion(AND) ∝ Vertex–Deletion(AND). We

build G� from G as follows. For each vertex vi ∈ V (G) with weight x = P (vi) we create

v1i , ..., v
x
i vertices in G�. For each arc u, v in G, create an arc from each uj

i to each vzl in

G� (see Figure 3.9).

21

v

12

u

v2

u1

u2

v1

Figure 3.9: Example of an instance G of W–Arc–Deletion(AND) with weights in the
vertices and the correspondent gadget in of an instance G of Arc–Deletion(AND).

Suppose that G has a set S such that
�

vi∈S P (vi) = k and G[V (G) \ S] is cycle-free.

We create a set S � of size k such that G�[V (G�) \ S �] is cycle-free. For each vertex v ∈ S

put all the vji vertices of G� in S �. Since by construction each vertex vji have the same in-

and out-neighbors, clearly G�[V (G�) \ S �] is cycle-free. As there are P (vi) vertices in G�,

|S �| = k.

Conversely, suppose that G� has a minimum set S � of size k such that G�[V (G�)\S �] is

knot-free. We create a set S such that
�

vi∈S P (vi) = k such that G[V (G)\S] is knot-free

as follows. If there is a vertex vji ∈ S �, put v in S. Since any pair of vertices vji and

vli have the same in- and out-neighbors, if vji is in S, vli also has to be in S. Therefore,

G[V (G) \ S] is knot-free and clearly
�

vi∈S P (vi) = k.

3.4 Weighted-λ-Deletion(M) 41

3.4.2 Weighted OR Model

We first analyze wait-for graphs with weighted arcs, we call Weighted Knot Free

Arc Deletion (WKFAD) the weighted version of KFAD. We show next that PKFAD

is reducible to KFAD, thus, solvable in polynomial time.

Lemma 3.4.3. Let G be an instance of PKFAD. We can transform G in polynomial time

into an instance G� of KFAD if for any arc e ∈ E(G), P (e) ≤ poly(n).

Proof. We show that WKFAD ∝ KFAD. We build G� from G as follows. Set G� = G.

For each arc ei = (v, u) ∈ �+(v), if P (ei) ≥ 2, create a directed complete subgraph Qei of

size
�

ej∈�+(v) P (ej) + 2 in G�, and create P (ei) − 1 arcs from v to Qei and one arc from

Qei to u in G� (see Figure 3.10).

1

2

2 4

1

v

u

v

u v

Figure 3.10: Example of an instance G of KFAD and the correspondent gadget in of an
instance G of PKFAD.

Suppose that G has a set S of arcs such that
�

ei∈�+(v) P (ei) = k and G[E(G) \ S] is

knot-free. We build a set S � such that G�[E �(G�) \S �] is knot-free. For each arc ei = (v, u)

in S we put in S � the additional P (ei) arcs (P (ei)− 1 arcs from vi to Qei and one from v

to u). Since G[V (G) \ S] is knot-free, and all additional out-arcs from v created to each

deleted ei in G is also in S �, G�[V (G�) \ S �] is knot-free and S � has size exactly k.

Conversely, Suppose that G� has a set of arcs S � with size k and G�[E(G�) \ S �] is

knot-free. We create a set S such that
�

ei∈�+(v) P (ei) ≤ k and G�[E �(G�)\S �] is knot-free

3.4 Weighted-λ-Deletion(M) 42

as follows. Let G = V (G�) \H, where H is the set of all vertices in all the Qei directed

complete subgraphs. We make S = (S �\E(G�[H])). If there are arcs of G�[H] in S � in such

a way that there is a sink w in G[V (H) \ S �]: by construction, w is a vertex of a directed

complete subdigraph Qei of size P (ei) such that ei = (v, u); we can safely exchange �+(w)

by �+(v) in S � which turns v into a sink with fewer arc deletions than w (w needs at least

one more arc removal than v). Since Qei has a path to u and either u had a path to a

sink (other than w) that still remain intact or u had a path to w; in this case, since all

paths to w are through v, after the exchange, u is now released by v. If there are no arcs

of G�[H] in S �: since G�[V (G�) \S �] is knot free, G[V (G) \S] is also knot-free and for each

sink v in G[V (G) \ S] there are
�

ei∈�+(v) P (ei) arcs in S �.

Lemma 3.4.3 shows that WKFAD can be solved in polynomial time; however, KFAD

can be solved in linear time and through the presented reduction the linearity time is not

achieved. We show next that by generalizing the arguments in Lemma 3.2.1, PKFAD

can be solved in linear time.

Corollary 3.4.4. Let G be an instance of WKFAD.

(a) Let Q be a knot of G. The minimum number of arc deletions in Q to make it

knot-free is min
v∈Q

(
�

ei∈�+(v) P (ei)).

(b) Let Q = {Q1, Q2, ..., Qp} be the non-empty set of all the existing knots in G. The

minimum number of arc deletions in G to make it knot-free is
�p

i=1 min
v∈Qi

(
�

ei∈�+(v)

P (ei)).

Proof. The proof follows directly from Lemmas 3.2.1.

Note that all the knots of a digraph can be identified in linear time as follows: first,

find all the SCCs in linear time by running a depth-first search (Cormen et al. [32], pages

615-621); next, as a consequence of Corollary 3.4.4, we can obtain in linear time a set of

arcs with minimum cost whose removal turns a given directed graph G into a knot-free

directed graph.

Corollary 3.4.5. WKFAD can be solved in linear time.

Next is presented wait-for graphs with weighted vertices, i.e, a distributed compu-

tation where the processes have priorities. We call Weighted Knot Free Vertex

Deletion (WKFVD) the weighted version of KFVD. We show next that PKFVD is

reducible to KFVD, thus solvable in polynomial time.

3.4 Weighted-λ-Deletion(M) 43

Lemma 3.4.6. Let G be an instance of WKFVD. We can transform G into an instance

G� of KFVD in polynomial time if for any vertex v ∈ V (G), P (v) ≤ poly(n).

Proof. We show that WKFVD ∝ KFVD. We build G� from G as follows. Set G� = G. For

each vertex vi ∈ V (G) define P (vi)− 1 cycles of size two ({Uv1i
,Wv1i

}, . . . , {Uvp−1
i

,Wvp−1
i

})
and one arc from each vertex U of the directed cycles of size two to the copy of vi in G�

(see Figure 3.11).

Uv

vi

1

i

Wv
1

i

Uv
2

i

Wv
2

i

Uv i

Wv
p-1

i

p-1

vi

p

Figure 3.11: Example of vertex v with weight p of an instance G of KFVD and the
correspondent gadget in of an instance G of WKFVD.

Suppose that G has a set S such that
�

vi∈S P (vi) = k and G[V (G) \ S] is knot-free.

We create a set S � of size k such that G�[V (G�) \ S �] is knot-free. First set S � = S. For

each vertex vi in S �, insert {Uv1i
, . . . , Uv1i

} in S �. Since in G�[V (G�) \S] the only remaining

knots are the additional cycles of size two that had its exit deleted, adding the U vertices

corresponding to the vertices in S clearly makes G�[V (G�) \ S �] knot-free.

Conversely, suppose that G� has a set S � of size k such that G�[V (G�)\S �] is knot-free.

We create a set S such that
�

vi∈S P (vi) = k such that G[V (G) \ S] is knot-free. Let

H be the set of vertices {Uv1i
,Wv1i

}, . . . , {Uvp−1
i

,Wvp−1
i

} such that G = G�[V (G�) \ H].

Since G�[V (G�) \ S �] is knot-free and by construction V (G�) = V (G) ∪ H and no vertex

in V (G) \ H reaches a vertex in H, G[V (G) \ S �] is also knot-free. Furthermore, for

each deleted vertex vi ∈ (S � \ H), there are P (vi) − 1 directed cycles of size two; since

G�[V (G�)\S �] is knot-free, at least one vertex in each of these cycles must be in S �. Finally,

by setting S = (S � \H), we have a set S such that
�

vi∈S P (vi) = k and G[V (G) \ S] is

knot-free.

3.5 Conclusions 44

3.5 Conclusions

We show that Vertex–Deletion(AND) and Arc–Deletion(AND) are equivalent

to Directed Feedback Vertex Set and Directed Feedback Arc Set, respec-

tively. We proved that Arc–Deletion(OR) and Output–Deletion(OR) are solvable

in polynomial time. In addition, Vertex–Deletion(OR) was shown to be NP-complete.

Such results are summarized in Table 3.2.

λ–Deletion(M)
λ \ M AND OR AND-OR X-Out-Of-Y
Arc NP-H P NP-H NP-H
Vertex NP-H NP-H NP-H NP-H

Table 3.2: Computational complexity of λ–Deletion(M).

A study of the complexity of Vertex–Deletion(OR) in different graph classes was

also done. We proved that the problem remains NP-hard even for strongly connected

graphs and planar bipartite graphs with maximum degree Δ(G) = 4. Furthermore,

we proved that for graphs with maximum degree three the problem can be solved in

polynomial time (see Table 3.3).

Vertex–Deletion(OR)
Instance Complexity
Weakly connected NP-Hard
Strongly connected NP-Hard
Planar, bipartite, Δ(G) ≥ 4 and Δ(G)+ = 2 NP-Hard
Δ(G) = 3 Polynomial
Δ(G) = 2 Trivial
Δ(G)+ = 1 Trivial

Table 3.3: Complexity of Vertex–Deletion(OR) for some graph classes.

In addition, we explored weighted wait-for graphs, where we show that W–λ–Dele-

tion(OR) can be reduced into λ–Deletion(OR) and W–Arc–Deletion(OR) can

also be solved in linnear time. Also, W–λ–Deletion(AND) can be reduced into λ–

Deletion(AND).

Chapter 4

Fine-Grained Parameterized Complexity
Analysis

In this chapter we present a fine-grained parameterized analysis of KFVD. First we show

that the KFVD problem is W[1]-hard when parameterized by the size of the input. Then,

we show that: KFVD can be solved in 2k logϕnO(1) time, but assuming SETH it cannot

be solved in (2 − �)k logϕnO(1) time, where ϕ is the size of a largest strongly connected

subgraph of G; KFVD can be solved in 2φnO(1) time, but assuming ETH it cannot be

solved in 2o(φ)nO(1) time, where φ is the number of vertices with out-degree at most k;

unless NP ⊆ coNP/poly, KFVD does not admit polynomial kernel even when ϕ = 2 and

k is the parameter; KFVD can be solved in time 2O(tw)×n, but assuming ETH it cannot

be solved in 2o(tw) × nO(1), where tw is the treewidth of the underlying undirected graph

4.1 On the solution size as parameter

In this section, we show that unless FPT = W [1], there is no FPT-algorithm for k–Knot-

Free Vertex Deletion. The Knot-Free Vertex Deletion problem parameterized by the

size of the solution is formally presented next.

k–Knot-Free Vertex Deletion (k–KFVD)

Instance: A directed graph G = (V,E) and a positive integer k.

Parameter: k (The size of solution).

Question: Determine if G has a set S ⊂ V (G) such that |V | ≤ k and G[V \ S] is

knot-free.

We present a simple and useful reduction for the reader to get more familiar with the

problem. Later we present modifications to it in order to obtain results regarding some

4.1 On the solution size as parameter 46

width parameterizations.

Theorem 4.1.1. The k-KFVD problem is W[1]-hard.

Proof. The proof is based on an FPT-reduction from k-Multicolored Independent

Set (k-MIS), a well-known W[1]-complete problem [29]. Let (G�, k�) be an instance

of Multicolored Independent Set, and let V 1, V 2, . . . , V k� be the color classes of

G�. We construct an instance (G, k) of Knot-Free Vertex Deletion as follows (see

Fig. 4.1):

V1

e1

e3

e4

em

V2 V3 Vk’

e2

w1 w2 w3 w4 wm

G’

G
C1 C2 C3 Ck

Figure 4.1: Instance (G�, k�) of Multicolored Independent Set and instance (G, k)
of k–KFVD.

1. for each vertex v� in G�, create a vertex v in G;

2. for a color class V i in G�, create a directed cycle Ci with its corresponding vertices

in G;

3. for each edge ej = (u�, v�) in G� create a strongly connected component (scc) Wj

with two artificial vertices, uw
j and vwj ;

4. for each artificial vertex vwj , create an edge from vwj towards v in G;

5. finally, set k = k�.

4.2 The size of the largest strongly connected component as an aggregate parameter 47

Suppose that S � is a k-independent set with exactly one vertex of each set V i of G�.

By construction, G has k knots, one for each color class V i in G�. Thus, at least k vertex

removals are necessary to make G knot-free. We set S = {v | v� ∈ S �}. Next, we show

that G[V \S] is knot-free. Each knot Ci is an induced cycle of G, and it is associated with

a color class V i of G�. Since S � has one vertex of each color class V i, all induced cycles Ci

will be turned into directed paths after the removal of S. Now, it only remains to show

that no new knots appear after the removal of S. Notice that S � is a k-independent set

of G�; thus, each SCC Wj in G is adjacent to at least one vertex that is not in S. Hence,

each SCC Wj will have at least one of its exits preserved, i.e., no new knots are created.

Conversely, suppose that G has a set of vertices S of size k such that G[V \ S] is

knot-free. Note that G has k knots. Then, exactly one vertex of each cycle Ci is in S.

By deleting S, each cycle Ci related to V i will be turned into a path, and no new knots

are created after the deletion of S; thus, every scc Wj will have at least one of its exits

preserved. We set S � = {v� | v ∈ S}. Since each scc Wj corresponds to an edge of G�, and

at least one vertex of each edge of G� is not in S � (otherwise G[V \ S] is not knot-free),

S � has no pair of adjacent vertices; moreover, S � is composed by one vertex of each Ci.

Therefore S � is a multicolored independent set of G�.

Corollary 4.1.2. Assuming ETH, there is no f(k)×no(k) time algorithm for KFVD, for

any computable function f .

Proof. It is known that Multicolored Independent Set does not admit a f(k)×no(k)

time algorithm, unless ETH fails (see [41]). As the parameterized reduction presented in

Theorem 4.1.1 has linear parameter dependence, we obtain the tight lower bound for

KFVD.

Next, we present two FPT-algorithms for the KFVD problem. The first algorithm

takes into account the size of the largest scc and the size k of the solution as aggregated

parameters. The second algorithm uses the number of vertices with maximum out-degree

at most k as the parameter.

4.2 The size of the largest strongly connected compo-
nent as an aggregate parameter

In this section, we consider the size of the largest scc of the input directed graph as an

additional parameter. The choice of the size of the largest scc as a parameter is mainly

4.2 The size of the largest strongly connected component as an aggregate parameter 48

inspired by the reductions presented in [24] that prove the NP-hardness of KFVD (even

for restricted graph classes). Such reductions result in graphs with scc’s of size at most

three, and planar graphs with scc’s of size at most six.

The W[1]-hardness of k–KFVD, and the NP-completeness of KFVD in graphs having

only scc’s of small size motivates the following parameterized problem:

[k,ϕ]–Knot-Free Vertex Deletion ([k,ϕ]–KFVD)

Instance: A directed graph G = (V,E), and a positive integer k;

Parameter: k and ϕ (the size of a largest scc of G);

Question: Determine if G has a set S ⊆ V (G) such that |S| ≤ k and G[V \ S] is

knot-free.

We first describe a 2k logϕ × nO(1) time algorithm for [k,ϕ]–KFVD.

Lemma 4.2.1. [k,ϕ]-KFVD can be solved in 2k logϕ × nO(1) time.

Proof. We use a bounded search tree algorithm. In each node of the search tree, all possi-

ble vertices to be removed from the smallest knot of the current graph are analyzed (their

number is bounded by ϕ). Next, for each possibility, one selected vertex is removed, gen-

erating a new branch, where the previous steps will be recursively applied until obtaining

a knot-free directed graph or removing exactly k vertices. Since any knot has at most

ϕ vertices, the number of levels is bounded by k, all knots in a directed graph can be

found and enumerated in linear time with a depth-first search [32], and the deletion of a

vertex cannot increase the size of the largest SCC, the algorithm runs in 2k logϕ × nO(1)

time. Finally, as any knot of a directed graph must have at least one vertex removed, the

algorithm checks all possible sets of size at most k that may produce a solution. Thus,

the algorithm is correct.

Algorithm 1 for [k,ϕ]–KFVD is presented next.

Lower bounds based on SETH. Now, we show that [k,ϕ]-KFVD cannot be solved

in (2 − �)k logϕ × nO(1) time, unless SETH fails. To show this lower bound we present a

reduction from CNF-SAT to KFVD.

Theorem 4.2.2. Assuming SETH, there is no (2 − �)k logϕ × |V (G)|O(1) time algorithm

for KFVD for any � > 0, where ϕ is the size of a largest strongly connected subgraph of

the input.

Proof. Let F be an instance of CNF-SAT [56] with n variables and m clauses. From F

we build a graph GF = (V,E) which will contain a set S ⊆ V (G) of size k = n such that

4.2 The size of the largest strongly connected component as an aggregate parameter 49

Algorithm 1: KFVD(G, k, ϕ)

1 if G is knot-free then
2 return true;
3 else
4 if k = 0 then
5 return false;
6 end if
7 end if
8 answer := false;
9 Q ← set of vertices of the smallest knot in G;

10 foreach vi ∈ Q do
11 if G− vi is knot-free then
12 return true;
13 else
14 answer := answer ∨ KFVD(G− vi, k − 1, ϕ);
15 end if
16 return answer;
17 end foreach

G[V \S] is knot-free if and only if F is satisfiable. The construction of GF is described

below:

tx1

C1

C1 = X1 V X2 V X3 C2 = X1 V X2 V X3 C3 = X1

fx1 tx2 fx2 tx3 fx3

C2 C3

Figure 4.2: The resulting graph G = (V,E) from a formula F = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨
x2 ∨ x3) ∧ (x1) where |V (G)| = O(n+m) and ϕ = 2.

1. For each variable xi in F , create a directed cycle with two vertices (“variable cycle”),

txi
and fxi

, in GF .

2. For each clause Cj in F create a directed cycle with two vertices (“clause cycle”), �1cj
and �2cj , in GF .

4.2 The size of the largest strongly connected component as an aggregate parameter 50

3. for each literal xi (resp. x̄i) in a clause Cj, create an arc from �1cj to txi
(resp. fxi

).

At this point, it is easy to see that F has a truth assignment if and only if GF has a

set S of vertices containing precisely one vertex of each knot of GF , such that the removal

of S from GF creates n sinks, for which any clause cycle reaches at least one of them.

Notice that the construction of GF can be done in polynomial time, ϕ = 2 and k = n.

Therefore, if KFVD can be solved in (2 − �)k logϕ × |V (GF)|O(1) time for � > 0, then we

can solve CNF-Sat in (2− �)n(n+m)O(1) time, i.e., SETH fails.

The reduction described above is more restrictive than a SERF reduction, i.e. it is a

polynomial reduction that preserves the parameter n.

Lower bound on the kernelization. Next, we present some lower bounds on the size of

a kernel to [k,ϕ]-KFVD and k-KFVD. We show that, unless NP ⊆ coNP/poly, through

a PPT-reduction from the Red-Blue Dominating Set (RBDS) Problem that the KFVD

problem does not admit polynomial kernel, even if the input graph has scc’s of bounded

size.

Theorem 4.2.3. Unless NP ⊆ coNP/poly, k-KFVD does not admit a polynomial ker-

nel, even when a largest scc of the input graph G has size 2.

Proof. In Red-Blue Dominating Set (RBDS) we are given a bipartite graph G =

(B ∪ R,E) and an integer k and ask whether there exists a vertex set R� ⊆ R of size at

most k such that every vertex in B has at least one neighbor in R�. RBDS parameterized

by (|B|, k) is equivalent to Small Universe Set Cover, and RBDS parameterized by

(|R|, k) is equivalent to Small Universe Hitting Set. Both problems were shown to

have no polynomial kernel (see [45]), unless NP ⊆ coNP/poly.

The proof is a PPT-reduction from RBDS parameterized by (|R|, k). Let (G, k) be an

instance of RBDS parameterized by (|R|, k). We build an instance (G�, k�) of Knot-Free

Vertex Deletion as follows (see Fig. 4.3):

1. set k� = |R|+ k;

2. for each vertex vi in R, create in G� a weakly connected component Ci as follows:

(a) create two directed cycles of size two, (c1i , c2i) and (c3i , c
4
i);

(b) create an edge from c3i towards c2i .

4.2 The size of the largest strongly connected component as an aggregate parameter 51

3. for each vertex uj in B create a set Wj = {C1
j , C

2
j , . . . , C

k�+1
j }, were each Cz

j is a

directed cycle of size two;

4. finally, for each edge (vi, uj) in G, create one directed edge from a vertex of each

Cz
j ∈ Wj to the vertex c1i .

w1

Wj

Ci

w2
wk’+1

c
1

i

c
2

i

c
3

i

c
4

i

vi

uj

Figure 4.3: PPT-reduction from RBDS parameterized by (|R|, k) to k–KFVD with ϕ = 2.

Suppose that S is a red/blue dominating set of G with size k. We build from S a

knot-free vertex deletion set S � of G� with size |R|+k as follows: for each vertex vi ∈ R we

add c1i to S � if vi /∈ S, and add c2i and c3i to S � if vi ∈ S. Since S is a red/blue dominating

set of G, every cycle in each Wj will have an arc pointing to one sink c1i in G�[V \ S �].

In addition, all other vertices have either turned into sinks or reach a sink in G�[V \ S �].

Therefore G�[V \ S �] is knot-free, and |S �| = |R|+ k.

Conversely, suppose that G� has a set S � of size k� = |R| + k such that G�[V \ S �] is

knot-free. We build from S � a red/blue dominating set S of G with size at most k as

follows: add vertex vi in S if c1i /∈ S �. Now, we show that S is a red/blue dominating set

of G. First observe that G� has |R| knots, and for each vi ∈ R, {c1i , c2i } induces a knot of

G�; then either c1i ∈ S � or c2i ∈ S �. In addition, for any vi ∈ R the removal of c2i creates

another knot induced by {c3i , c4i }; thus c1i /∈ S � implies c2i ∈ S �, and hence {c3i , c4i }∩S � �= ∅.
Since G� has |R| knots and |S �| = |R| + k, it follows that |S| ≤ k. Also, since each Wj

has |R|+ k+1 cycles, without loss of generality we can assume that no vertex in Wj is in

S �, and as G�[V \ S �] is knot-free, any vertex in Wj (representing a blue vertex) reaches a

sink in G�[V \ S �], which by construction is a vertex c1i (representing a red vertex). Then

S is a set of red vertices with size at most k that dominates all blue vertices of G.

4.2 The size of the largest strongly connected component as an aggregate parameter 52

Corollary 4.2.4. [k,ϕ]-KFVD does not admit a kernel of size kf(ϕ), unless NP ⊆
coNP/poly.

Proof. This follows from Theorem 4.2.3 and the fact that a kernel of size kf(ϕ) for [k,ϕ]-

KFVD would be a polynomial kernel for k-KFVD when a largest scc of the input graph

G has size 2.

4.2.1 The number of vertices with few out-edges as parameter

An interesting property related to the degree of the vertices is that if we are interested

in removing a set S with k vertices to obtain a knot-free directed graph, then the out-

neighbors of the vertices that will be turned into sinks are contained in S. Thus, if we

look for only k removals to obtain a knot-free directed graph, then the candidate vertices

to become sinks are the vertices with out-degree at most k. At this point, we consider

the number of vertices with out-degree at most k as a parameter.

φ–Knot-Free Vertex Deletion (φ–KFVD)

Instance: A directed graph G = (V,E), and a positive integer k;

Parameter: φ (the number of vertices v ∈ G with deg+(v) ≤ k);

Question: Determine if G has a set S ⊆ V (G) such that |S| ≤ k and G[V \ S] is

knot-free.

Theorem 4.2.5. φ–KFVD can be solved in 2φ × nO(1) time. In addition, it cannot be

solved in 2o(φ) × nO(1) time, unless ETH fails.

Proof. Let L be a set of vertices with deg+(vi) ≤ k of an input graph G. By Corollary 5.1.4

to solve φ–KFVD in 2φ × nO(1) time, it is only needed to try the deletion of all out-

neighbors of the subsets of L, checking if the deletion does not exceed k vertices and if

the resulting directed graph is knot-free.

In order to show a lower bound based on ETH to φ–KFVD, we can transform an

instance F of 3-CNF-SAT to an instance GF of KFVD using the reduction presented

in Theorem 4.2.2, obtaining in polynomial time a graph with |V | = O(n + m), |E| =
O(n+m), and φ = O(n+m).

Algorithm 2 for φ–KFVD is presented next.

4.3 Conclusions 53

Algorithm 2: KFVD(G, k, φ)

1 H ← set of vertices vi ∈ V (G) such that deg+(vi) ≤ k;
2 if |H| > φ then
3 return false;
4 end if
5 foreach subset H � ⊆ H do
6 if

�
vj∈H�

deg+(vj) ≤ k then

7 S ← �
vj∈H�

N+(vj);

8 if G[V (G) \ S] is knot-free then
9 return true;

10 end if
11 end if
12 end foreach
13 return false;

We show through a PPT-reduction from the RBDS that, unless NP ⊆ coNP/poly,

KFVD does not admit polynomial kernel, even if the input graph has scc’s of bounded

size. The reduction is a slight modification of Theorem 4.2.3.

Corollary 4.2.6. Unless NP ⊆ coNP/poly, KFVD does not admit polynomial kernel

when parameterized by k and φ.

Proof. We start by making the same transformation as in Theorem 4.2.3, obtaining a

directed graph G. Now, for each scc associated with a blue vertex, we add k auxiliary

vertices and add edges in order to transform the component into a complete directed

subdigraph with k + 2 vertices and (k + 2)(k + 1) arcs. Now, the resulting graph G has

φ = 4|R|, and the rest of the proof follows as in Theorem 4.2.3.

4.3 Conclusions

In this chapter, we study the Knot-Free Vertex Deletion problem from a param-

eterized complexity point of view. We proved that KFVD with the natural parameter

k is W[1]-hard through a FPT-reduction from Multicolored Independent Set, a

well-known W[1]-complete problem [29]. Next, we propose two FPT-algorithms, each ex-

ploring a different additional parameter. The first parameter, ϕ, is the maximum size of

a SCC of the input graph. We show that KFVD can be solved in 2k logϕnO(1) time and

unless SETH fails it cannot be solved in (2 − �)(k logϕ)nO(1) time. We show that, Unless

4.3 Conclusions 54

Wj

2 C

vi

uj

i

1 C

i

2 C

i

4 C

i

1

2

k k+1

k+2

1

2

k k+1

k+2

1

2

k k+1

k+2

Figure 4.4: PPT-reduction from RBDS parameterized by (|R|, k) to φ–KFVD with φ =
4|R|.

NP ⊆ coNP/poly, k-KFVD has no polynomial kernel even if the input graph has only

SCCs with size bounded by 2. The second algorithm runs in 2φnO(1) time and it is ap-

propriate for graphs where there are few vertices, φ, with small out-degree. In addition,

assuming ETH, we show that it cannot be done in 2o(φ)n
O(1) time. We also show that,

unless NP ⊆ coNP/poly, KFVD has no polynomial kernel when the number of vertices

with out-degree at most k is a parameter.

Table 4.1 summarizes the results presented in this work.

Table 4.1: Fine-grained parameterized complexity of Knot-Free Vertex Deletion.
Complexity Running time Lower bounds assuming (S)ETH

k W[1]-hard nk no f(k)× no(k) alg.
k,ϕ FPT 2k logϕ × nO(1) no (2− �)k logϕ × nO(1) alg.Parameter
φ FPT 2φ × nO(1) no 2o(φ) × nO(1) alg.

Chapter 5

Width Parameterizations

In this chapter we present a parameterized complexity study of KFVD on directed width

measures. First we show that the KFVD problem is W[1]-hard when parameterized by

the size of the solution even if the input graph has a K-width 2 and largest directed path

of size 5. Then, we propose two FPT-algorithms, each exploring a different additional

parameter to the directed feedback vertex set number (dfv). The first, combining with

K-width (κ), it can be solved in 2O(κdfv5)nO(1). The second, combining with the length

of the longest directed path p, it can be solved in 2O(dfv3) pO(dfv)nO(1). Also, a 2|F | × nc

time algorithm is presented when we are given a special directed feedback vertex set F

whose removal returns an acyclic graph having path cover bounded by a constant c. We

show that: KFVD can be solved in FPT time when parameterized by cliquewidth of

the underlying undirected graph. Finally, KFVD can be solved in time 2O(tw log tw) × n,

but assuming ETH it cannot be solved in 2o(tw) × nO(1), where tw is the treewidth of the

underlying undirected graph.

5.1 Preliminaries

In this section, we present some useful remarks and reduction rules. Remind that in the

decision version of the problem we are given G and a positive integer k.

The first observation is immediate, as if we can make the graph acyclic, then it will be

knot-free.

Observation 5.1.1. If k ≥ dfv(G) then G is a yes-instance.

The two other observations are less obvious but rather natural.

5.1 Preliminaries 56

Observation 5.1.2. Let S be a solution with set of sinks Z in GS̄, and s ∈ S. Let

S � = S \ {s} and Z � be the set of sinks of GS̄�. If there is a path from s to Z � in GS̄� then

S � is also a solution.

Proof. Let u ∈ V (GS̄�). Let us prove that u has a path to Z � in GS̄� . If u = s then it is

clear by assumption. Suppose now that u �= s. As S is a solution, let P be a uz-path in

GS̄ from u to a sink z ∈ Z. As V (GS̄) ⊆ V (GS̄�), P still exists in GS̄� . Thus, if z ∈ Z � we

are done. Otherwise, it implies that there is s ∈ N+(z) such that P � = (u, . . . , z, s) is a

us-path in GS̄� . As s has a path to Z � in GS̄� , we obtain the desired result.

Informally, after deleting a vertex s, we can add s back to the graph when it is certain

that s has a path to a sink in the current graph. This is detailed by the following lemma

and its corollary.

Lemma 5.1.3. Let S be a solution with set of sinks Z in GS̄. If there exists s ∈ S with

s /∈ N+(Z), then S � = S \ {s} is also a solution.

Proof. Let Z � be the set of sinks of GS̄� . According to Observation 5.1.2, it suffices to

prove that there is a path from s to Z � in GS̄� . If s is a sink in GS̄� we are done. Otherwise,

there exists an arc su in GS̄� , with u ∈ V (GS). As S is a solution, either u is a sink and

we are done, or, there exists a uz-path P in GS̄ with z ∈ Z. As V (GS̄) ⊆ V (GS̄�), P still

exists in GS̄� , and s /∈ N+(Z), z is still a sink in GS̄� .

The following corollary is immediate.

Corollary 5.1.4. In any optimal solution S with set of sinks Z in GS̄, we have N+(Z) =

S.

Observation 5.1.5. Let S be a knot-free vertex deletion with set of sinks Z in GS̄. If

|S| ≤ k then for any vertex v with d+(v) > k it holds that v /∈ Z.

To complete the previous observations, we present two general reduction rules.

Reduction rule 5.1.6. If v ∈ V (G) is an SCC of size one then remove A[v].

Proof. Let G� be the graph obtained by removing A[v]. Let of first show that (G, k) is a

yes-instance implies that (G�, k) is also a yes-instance. Let S be a solution of G of size at

most k with set of sinks Z in GS̄. Let S � = S \ A[v], and Z � the set of sinks in G�
S̄� . Let

us prove that every u ∈ V (G�
S̄�) has a path ot Z � in G�

S̄� . Let u ∈ V (G�
S̄�). As u is also

5.1 Preliminaries 57

in V (GS̄), there is a uz-path P in GS̄ where z ∈ Z. As u /∈ A[v], V (P) ∩ A[v] = ∅ and

thus, the path P still exists in G�
S̄� . Moreover, u /∈ A[v] implies that N+(z) ∩ A[v] = ∅,

and thus that N+(v) ⊆ S �, implying that z ∈ Z �.

Let us now consider the reverse implication, and let S � be a solution of G� of size at

most k with set of sinks Z � in G�
S̄� and prove that S � is a solution of G. Let us start with

u ∈ V (GS̄�) \ A[v]. As S � is a solution of G� and u ∈ V (G�
S̄�), there is uz�-path P � in G�

S̄�

where z� ∈ Z �, and this path still exists in GS̄� . As N+(z�) ∩ A[v] = ∅, z� is still a sink

in GS̄� and we are done. Consider now a vertex u ∈ V (GS̄�) ∩ A[v]. As S � ∩ A[v] = ∅,
there is uv-path P in GS̄� . If N+(v) ⊆ S � then v is a sink in GS̄� and we are done.

Otherwise, let w ∈ N+(v) \ S �. As v is an SCC of size 1, N+(v) ∩ A[v] = ∅, implying

that w ∈ V (GS̄�) \ A[v], and thus according to the previous case w has a path to a sink

in GS̄� .

The previous reduction rule removes in particular sources and sinks, as they are SCC’s of

size one.

Reduction rule 5.1.7. Let Ui be a strongly connected component of G with strictly more

than k out-neighbors in G[V \ V (Ui)]. Then we can safely remove A[Ui].

Proof. Let G� be the graph obtained by removing A[Ui]. Let us first show that (G, k) is

a yes-instance implies that (G�, k) is also a yes-instance. Let S be a solution of G of size

at most k and Z the set of sinks in GS̄. Let S � = S \ A[Ui], and Z � the set of sinks in

G�
S̄� . Using the same argument (replacing A[v] by A[Ui]) as in the first part of proof of

Reduction 5.1.6, we get that every u ∈ V (G�
S̄�) has a path ot Z � in G�

S̄� .

Let us now consider the reverse implication, and let S � be a solution of G� of size at

most k with set of sinks Z � in G�
S̄� and prove that S � is a solution of G. Let us start with

u ∈ V (GS̄�) \A[v]. As S � is a solution of G� there is uz�-path P � in G�
S̄� where z� ∈ Z �, and

this path still exists in GS̄� . As N+(z�) ∩ A[Ui] = ∅, z� is still a sink in GS̄� and we are

done. Consider now a vertex u ∈ V (GS̄�) ∩A[Ui]. As S � ∩A[Ui] = ∅, there is uUi-path P

in GS̄� . As Ui has strictly more than k out-neighbors in G[V \V (Ui)], there is arc from Ui

to w ∈ V (GS̄�) and thus according to the previous case w has a path to a sink in GS̄� .

At this point, we may assume that reduction rules 5.1.6 and 5.1.7 do not apply to the

input digraphs G.

5.2 Directed width measures 58

5.2 Directed width measures

In Theorem 4.1.1, k-KFVD was shown to be W[1]-hard using a reduction from k-

Multicolored Independent Set (k-MIS). However, the gadget used in this reduction

to encode each color class has the longest directed path of unbounded length. First, we

remark that it is possible to modify the reduction in order to prove that k-KFVD is

W[1]-hard even if the input graph G has bounded longest path length and K-width.

Theorem 5.2.1. k-KFVD is W[1]-hard even if the input graph has longest directed path

of length at most 5 and K-width equal to 2.

Proof. Let (G�, k) be an instance of k-MIS, and let V 1, V 2, . . . , V k be the color classes of

G�. We construct an instance (G, k) of Knot-Free Vertex Deletion with bounded

longest path length and K-width as follows. (see Figures 5.1 and 5.2):

v1

...

Vj

v2

vn

uj

z3

w3w2

z2

z1

w1 wn

zn

v2

...

Yj

Figure 5.1: Vertex gadget Yj in G built from the set of vertices of color V j in G�.

1. for each vi ∈ V (G�), create a directed cycle of size two with the vertices wi and zi

in G;

2. for a color class V j in G�, create one vertex uj;

3. for each vertex zi in G corresponding to a vertex vi of the color class V j in G�, create

an arc from zi to uj and from uj to zi.

5.2 Directed width measures 59

vi

vl

ep

uj

zi

wi

..
.

...

ur

zl

wl

...

...

xp
i xp

l

..
.

..
.

Vj

Vr

Yj Yr

Xp

Figure 5.2: An arc cycle Xp built from a arc ep = (vi, vl) in G� and its connection to
approprieted vertices in the vertex gadgets.

4. for each vertex wi in G corresponding to a vertex vi of the color class V j in G�,

create an arc from uj to wi

5. for each edge ep = (vi, vl) in G� create a set Xp with two artificial vertices xi
p and xl

p

and the arcs xi
px

l
p and xl

px
i
p;

6. for each artificial vertex xi
p, create an edge from xi

p towards zi in G.

Finally, set Yj = {wi, zi : vi ∈ V j}∪{uj}, Yj is the set of vertices of G corresponding

to the vertices of G� in the same color class V j. Notice that, the longest path of G has

at most 5 vertices, and for any pair s, t in V (G) there are at most 2 distinct directed

st-paths in G. The rest of the proof is similar to Theorem 4.1.1.

After the introduction of the notion of directed treewidth (dtw) [65], a large number

of width measures in digraphs were developed, such as: cycle rank [57] (cr); directed

pathwidth [5] (dpw); zig-zag number [76] (zn); Tree-Zig-Zag number [77] (Tzn); Kelly-

width [61] (Kelw); DAG-width [12] (dagw); D-width [84] (Dw); weak separator num-

ber [77] (s); entanglement [13] (ent); DAG-depth [54] (ddp). However, if a graph problem

5.3 On the size of a minimum directed feedback vertex set as parameter 60

is hard when both the longest directed path length and the K-width are bounded, then

it is hard for all these measures (see Figure 5.3).

Tzn(G) dtw(G) dagw(G)

Kelw(G)

zn(G)

Dw(G)s(G)

ddp(G) cr(G)

ent(G)

ddp(G)

dfv(G)

κ(G)

p(G)
[77]

[77]

[61]

[12]

[65]

[1]

[57]

[76]

[54]

[12]

[82]

[76]

[57]

[55]

[55]

[54]

[54]

Figure 5.3: A hierarchy of digraph width measure parameters. α → β indicates that
α(G) ≤ f(β(G)) for any digraph G and some function f . More details about the rela-
tionships between these parameters can be found in the references corresponding to each
arrow.

Therefore, from the reduction presented in Theorem 5.2.1 we can observe that KFVD

is para-NP-hard concerning all these width measures, and k–KFVD is W[1]-hard even

on inputs where such width measures are bounded.

Thus, it seems to be extremely hard to identify helpful width parameters for which

KFVD can be solved in FPT-time or even in XP-time. Fortunately, there remain some

parameters for which, at least, XP-time solvability is achieved. One of them is the directed

feedback vertex set number (dfv). This invariant is an upper bound on the size of a

minimum knot-free vertex deletion set, so XP-time algorithms are trivial. This parameter

is discussed in more detail in Section 5.3. Another interesting width parameter for directed

graphs G that is not bounded by a function of the K-width and the length of a longest

directed path is the clique-width of G, which we will discuss in Section 5.4.

5.3 On the size of a minimum directed feedback vertex
set as parameter

Recall that k–KFVD is W [1]-hard (for fixed K-width and longest directed path) and

that, as noticed in Observation 5.1.1, we can assume k < dfv(G), this motivates us to

determine the status of dfv–KFVD. First, we present two FPT-algorithms, both with

the size of a minimum directed feedback vertex set as a parameter but with an aggregate

parameter, the K-width, κ(G), for the first one and the length of a longest directed path,

p(G), for the second one. Since finding a minimum directed feedback vertex set F in G

5.3 On the size of a minimum directed feedback vertex set as parameter 61

can be solved in FPT-time (with respect to dfv) [28], we consider that F , a minimum

DFVS, is given. Namely, we show that both (dfv,κ)–KFVD and (dfv, p)–KFVD are

FPT.

At this point, we need to define the following variant of KFVD.

Disjoint Knot-Free Vertex Deletion (Disjoint-KFVD)

Instance: A directed graph G = (V,E); a subset X ⊆ V ; and a positive integer k.

Question: Determine if G has a set S ⊂ V (G) such that |S| ≤ k, S ∩ X = ∅ and

G[V \ S] is knot-free.

We call forbidden vertices the vertices of the set X. It is clear that Disjoint-KFVD

generalizes KFVD by taking X = ∅.

Let us now define two more steps that are FPT parameterized by dfv, and that will be

used for both (dfv,κ)–KFVD and (dfv, p)–KFVD. The next step will allow us to consider

that the vertices of F are forbidden. We need the following straightforward observation.

Observation 5.3.1. Let (G, k) be an instance of KFVD and v ∈ V (G).

• if (G, k) is a yes-instance and there exists a solution S with v ∈ S, then (G\{v}, k−
1) is a yes-instance

• if (G \ {v}, k − 1) is a yes-instance then (G, k) is a yes-instance

Branching 5.3.2 (On the directed feedback vertex set F). Let (G,F, k) be an instance

of dfv–KFVD. In time 2dfv × O(m) we can build 2dfv instances (Gi, F i
1, X

i, ki) of dfv-

Disjoint-KFVD as follows. We consider all possible partitions of F into two parts: F1,

the set of vertices of F that will not be removed (i.e., they become forbidden); and F2,

the set of vertices in F that will be removed. For each such a partition (indicated by the

index i), we remove the set F i
2 of vertices and we apply Reduction Rules 5.1.6 and 5.1.7

until they are no longer applicable (see Section 5.1). We denote by Gi the obtained graph,

X i = F i
1, and ki = k − |F i

2|.

Using Observation 5.3.1, the following lemma is immediate.

Lemma 5.3.3. (G,F, k) is a yes-instance of dfv–KFVD if and only if one of the instances

(Gi, F i
1, X

i, ki), 1 ≤ i ≤ 2dfv, of dfv-Disjoint-KFVD is a yes-instance.

Since there are at most 2dfv partitions of F , the branching reduction can be performed

in FPT time. Although at this point, X i = F i
1, in the next steps, some vertices of V (G)\F i

1

5.3 On the size of a minimum directed feedback vertex set as parameter 62

may become forbidden and therefore, should be added to X i. From this point forward,

we assume that we are given an instance (G,F1, X, k) of dfv-Disjoint-KFVD such that

F1 ⊆ X.

Notice that after applying Reduction Rule 5.1.6 (Section 5.1), each strongly connected

component of G is at least of size two. Thus, each of them must contain at least one

cycle; therefore, the number of strongly connected components of G is bounded by dfv.

Moreover, for any strongly connected component U of G, Reduction Rule 5.1.7 gives an

upper bound for the number of vertices in N+(V (U)) (i.e., vertices that are not in U but

it is out-neighbor of some vertex in U), which implies that G has at most dfv× k ≤ dfv2

such vertices between its strongly connected components. This observation leads to a

branching rule.

Branching 5.3.4 (On strongly connected components). Let SH be the set of vertices

that are heads of arcs between the strongly connected components of G. We have |SH | ≤
dfv × k ≤ dfv2. Let (G,F,X, k) be an instance of dfv-Disjoint-KFVD with F ⊆ X

and such that Reduction Rules 5.1.6 and 5.1.7 do not apply. In time 2|SH | × O(m) we

can build 2dfv instances of dfv-Disjoint-KFVD as follows. We consider all possible

partitions (indicated by index i) of SH into S
(i,1)
H (guess of forbideen vertices) and S

(i,2)
H

(guess of vertices to be deleted) with S
(i,2)
H ∩ X = ∅. We add S

(i,1)
H to X; remove the set

S
(i,2)
H (recall Observation 5.3.1); and apply Reduction Rules 5.1.6 and 5.1.7 until they are

no longer applicable.

Notice that this step involves a 2|SH | branching. At this point, we may consider that

we have an instance (G,F,X, k) where F ⊆ X and such that for any arc uv between two

SCC’s Ui and Uj, v ∈ X. We call such an instance as a nice instance.

Lemma 5.3.5 (Nice dfv-Disjoint-KFVD). If there is an algorithm running in

g(dfv) × poly(n) time for dfv-Disjoint-KFVD restricted to nice instances that are

strongly connected, i.e, G is a knot, then there is an FPT algorithm running in g(dfv)×
poly(n)× k × log(k) time to solve dfv-Disjoint-KFVD for any nice instance.

Proof. Let (G,F,X, k) be a nice instance and S be a solution. Let U = {U1, . . . , Us} be the

partition of V (G) where each Ui is an SCC, and let K = {Ui : Ui is a knot}. Without loss

of generality we can assume that K = {U1, . . . , Ut} for some t ≤ s. Let Si = S∩Ui. Notice

that if S is a solution then for any i ∈ [t], Si is a solution of (G[Ui], F ∩ Ui, X ∩ Ui, |Si|).
Moreover, given for each i ∈ [t] a solution S �

i of (G[Ui], F ∩ Ui, X ∩ Ui, |S �
i|), such that

�t
i=1 |S �

i| ≤ k, it holds that S � =
�t

i=1 S
�
i will be a solution to (G,F,X, k), because vertices

5.3 On the size of a minimum directed feedback vertex set as parameter 63

of some Uj /∈ K will still have a path to a set Ui ∈ K in GS̄� since any arc between two

SCC’s has forbidden endpoints. Thus, given a nice instance (G,F,X, k) and an algorithm

A for a nice instance restricted to one SCC, for any Ui ∈ K we perform a binary search

to find the smallest ki such that A(G[Ui], F ∩ Ui, X ∩ Ui, ki) answers yes, and we answer

yes iff
�t

i=1 ki ≤ k.

From Lemma 5.3.5, we may assume that we have an instance (G,F,X, k) such that

F ⊆ X and G is strongly connected. We call such an instance as a super nice instance.

5.3.1 Taking the K-width as aggregate parameter

In this section, we prove that (dfv,κ)-Disjoint-KFVD is FPT when restricted to super

nice instances and F ⊆ X.

Let F = {v1, . . . , vdfv}. For every pair of integers i, j with 1 ≤ i, j ≤ dfv we define Hi,j

as the (i, j)-connectivity set, that is, the set of vertices which are contained in a directed

path from vi to vj in the induced subgraph G[V \ (F \ {vi, vj})] (if i = j then Hi,i is the

set of vertices contained in a cycle in G[V \ (F \ {vi})]). Let us define a set B on which

we will later branch in a way to ensure connectivity among different connectivity sets.

We start with B = {∅}, and then, for each possible pair of connectivity sets Hi,j, Hi�,j�

we increase B as follows:

i) add N+(Hi,j \Hi�,j�) ∩Hi�,j� to B.

ii) add N+(Hi,j ∩Hi�,j�) ∩ (Hi�,j� \Hi,j) to B.

iii) add N+(Hi�,j� \Hi,j) ∩Hi,j to B.

iv) add N+(Hi�,j� ∩Hi,j) ∩ (Hi,j \Hi�,j�) to B.

For a given pair of connectivity sets, in each of the items i), ii), iii) and iv) the number

of added vertices to B is at most κ. For instance,let y1, . . . , yl be the vertices added

by item i), where each ys ∈ N+(Hi,j \ Hi�,j�) ∩ Hi�,j� . By definition, there exist vertices

x1, . . . , xl of Hi,j \ Hi�,j� such that xsys are arcs of G for s = 1, . . . , l. Notice that while

the ys’s are distinct, the xs’s are not forced to be so. For any s ∈ {1, . . . , l}, there exists

a path Ps in Hi�,j� from ys to vj� , and such a path does not intersect Hi,j \ Hi�,j� . In

the same way, by finding a path Qs from vi to xs for every s ∈ {1, . . . , l}, we form l

distinct paths QsPs from vi to vj� , implying l ≤ κ, the K-width of G. So, as there are

5.3 On the size of a minimum directed feedback vertex set as parameter 64

dfv2 different connectivity sets, at the end of the process, B contains at most 4κ× dfv4

vertices. Figure 5.4 shows examples of vertices to be added in B regarding the interaction

of two different connectivity sets.

vi vj

vi’ vj’

vi vj

vi’

a) b) c)

vi

vi’

Figure 5.4: a) two connectivity sets with no intersection. b) an intersection with two
vertices belonging to both connectivity sets. c) two connectivity sets Hi,j with i = j.
Vertices to be added in B are marked in blue.

Next, we establish our last branching rule.

Branching 5.3.6 (On the connectivity sets). We branch by partitioning B into two parts:

B1, the set of vertices that will not be removed (ie. they become forbidden); B2, the set

of vertices that will be removed in the branch. Since |B| ≤ 4κ× dfv4, we branch at most

24κ.dfv
4 times.

At this point, without loss of generality, one can assume that none of the above

branching and reductions rules are applicable. Hence, the analysis boils down to the case

where all the vertices of F ∪B are forbidden to be deleted (F ∪B ⊆ X), and G is strongly

connected.

Observation 5.3.7 (The consequences of Branching 5.3.6). Let G be a graph for which

no Reduction Rules 5.1.6 and 5.1.7 or Branchings 5.3.2 to 5.3.6 can be applied. Let Hi,j

and Hi�,j� be two different connectivity arc sets in G. If there is an arc from Hi,j \Hi�,j�

to Hi�,j� \Hi,j or Hi,j ∩Hi�,j� to Hi�,j� \Hi,j in G[Hi,j ∪Hi�,j�], then the head vertex of such

an arc is a forbidden vertex.

We now aim to show that, for any vertex v∗ such that v∗ can be turned into a sink,

that is, N+(v∗) ∩ X = ∅, and d+(v∗) ≤ k, the deletion of N+(v∗) is sufficient for G to

become knot-free.

Lemma 5.3.8. Let (G,F,X, k) be an instance of (dfv,κ)-Disjoint-KFVD such that

G is strongly connected, F ⊆ X, and none of the branching and reduction rules can be

applied. If there is a vertex v∗ with no forbidden out-neighbor, then G[V \ N+(v∗)] is

knot-free.

5.3 On the size of a minimum directed feedback vertex set as parameter 65

Proof. Let (G,F,X, k) and v∗ be as stated. Denote by G� the resulting graph, i.e, G� =

G[V \ N+(v∗)]. For contradiction, assume that G� contains a knot K. As G is strongly

connected and K was not a knot in G, this implies that there exists an arc xy of G such

that x ∈ V (K) and y ∈ N+(v∗). Notice that y /∈ X, since y has to be deleted in order

to v∗ to become a sink. Let us now define a connectivity set containing both y and v∗.

Let s be any source of the DAG G[V \ F] such that there is a sv∗-path in G[V \ F], and

let z be any sink of G[V \ F] such that there is a yz-path in G[V \ F]. As G is strongly

connected, there exist arcs vis and zvj where {vi, vj} ⊆ F and we get that {v∗, y} ⊆ Hi,j.

Notice that i = j is possible. Similarly, as G[V (K)] is strongly connected, it contains a

cycle C � containing x. Thus, there exists a connectivity set Hk,l (k = l is possible) such

that {vk, vl} ⊆ V (C �), and it contains a path P from vk to vl that traverses x and is a

subgraph of C �. In addition, v∗ is not a vertex of Hk,l, otherwise there would exist a path

P � from vk to v∗ containing no vertex of F \ {vk}, which is not possible. Indeed, either

V (P �) ∩ N+(v∗) = ∅ and we would get that K is not a knot (since v∗ is a sink in G�),

or V (P �) ∩ N+(v∗) �= ∅, implying that there is a cycle with no vertex of F . Thus, as y

was not a forbidden vertex, it means that y /∈ Hk,l otherwise the arc v∗y would go from

Hi,j \ Hk,l to Hi,j ∩ Hk,l and y should be forbidden by Branching 5.3.6 item i). Then

we have y ∈ Hi,j \ Hk,l. Similarly, we have x /∈ Hi,j ∩ Hk,l, otherwise by item ii) of

Branching 5.3.6, vertex y would be forbidden. Finally x ∈ Hk,l \Hi,j and y ∈ Hi,j \Hk,l,

since (Hi,j \Hk,l) ⊆ Hi,j, and by item iii) of Branching 5.3.6, vertex y would again be a

forbidden vertex, a contradiction.

In conclusion, according to Lemma 5.3.8, we can decide such a super nice instance

(G,F,X, k) of (dfv,κ)-Disjoint-KFVD with F ⊆ X as follows. If there exists v∗ /∈ F

with |N+(v∗)| ≤ k and N+(v∗)∩X = ∅ then we answer yes, and otherwise we answer no,

i.e, we can find in polynomial time the optimum solution for G by choosing a vertex v∗

with minimum out-degree.

Theorem 5.3.9. Knot-free Vertex Deletion can be solved in 2O(κ × dfv5) × nO(1).

Proof. First, notice that applying Branchings 1 and 2 results in 3dfv × 22dfv
2 branches.

Branching 3 can be done in time 24κ.dfv
4 , but may re-create several SCC’s, forcing us to

apply again Branching 2 and reduction rules, but decreasing k; this implies that the total

running time of the overall algorithm is 3dfv × (22dfv
2
24κ.dfv

4
)k × nO(1).

Recall that the algorithm generates a set of nice instances (G�, F �, X �, k�) of Disjoint-

KFVD, such that the input graph G has a knot-free vertex deletion set of size at most k if

5.3 On the size of a minimum directed feedback vertex set as parameter 66

and only if some (G�, F �, X �, k�) is an yes-instance. By Lemma 5.3.5 and Lemma 5.3.8, we

can solve each (G�, F �, X �, k�) in polynomial time. Thus, if any, a knot-free vertex deletion

set of G with size at most k can be found in 2O(κ × dfv5) × nO(1) time.

5.3.2 Taking the length of a longest directed path as aggregate
parameter

Now, we investigate the length of the longest directed path p(G) and dfv(G) as aggregate

parameters.

Lemma 5.3.10. Given a super nice instance of Disjoint-KFVD with F ⊆ X, in 2O(dfv3)×
pO(dfv) × nO(1) time, one can find (if any) a solution of size at most k.

Proof. Let (G,F,X, k) be a super nice instance. Recall that the directed feedback vertex

set F is a set of forbidden vertices (F ⊆ X), and G is strongly connected. If |F | = 1,

then, for any vertex v of V (G)\F that can be turned into a sink, N+(v) will be a solution

set for G. Therefore, the optimum solution can be found in polynomial time. Assume

now that |F | ≥ 2 and denote F by {v1, . . . , vdfv}. As G is strongly connected, there exists

a path P1 of length at most p from v1 to v2 and a path P2 of length at most p from v2 to

v1. Denote by C the digraph G[V (P1) ∪ V (P2)]; it is strongly connected, contains v1 and

v2 and at most 2p vertices. Since the number of vertices in C is bounded, we may branch

2p− 1 times (v1 and v2 are forbidden) by trying to guess a vertex that will be deleted in

C. Each time a vertex of C will be guessed as deleted, the parameter k will decrease by

one. So, k will decrease in all branches, except in the one where we guess that no vertex is

deleted, and then where all the vertices of C are forbidden, which implies that no vertex

of C will become sink, and also that C cannot become a knot, which would imply a

removal inside C. In this case, C is a strongly connected component whose vertices are

all forbidden and containing at least two vertices of F . So, we contract C to obtain a

new instance G�. Formally, we remove V (C) from G, add a new vertex vC , and for all

vertices of G \ C having at least one in-neighbor (resp. out-neighbor) in C, we add an

arc from vC (resp. to vC) to this vertex. Let F � be the set {vC} ∪ F \ V (C) and notice

that F � is a directed feedback vertex set of G� and that |F �| < |F |. Furthermore, the

operation of branching plus contraction do not increase p, i.e. p(G�) ≤ p(G). Similarly,

let X � be the set (X \ V (C))∪ {vC}. Note that vC becoming a sink in G� is equivalent to

C becoming knot in G, which should be avoided in G�. If vC has either an out-neighbor

in X � or more than k out-neighbors then vC will never become a sink after removing a

feasible solution, so no additional branching is needed. Otherwise, if vC has at most k

5.3 On the size of a minimum directed feedback vertex set as parameter 67

out-neighbors and none of them are in X � then we may branch at most another k times

to guess one neighbor u of vC that will not be removed (i.e., u ∈ X �). At this point,

note that (G,F, k,X) has a solution of size at most k that does not intersect C if and

only if one of these at most k instances (G�, F �, k,X �) is a yes-instance. Indeed, it suffices

to notice that as V (C) contains only forbidden vertices in G, no vertex of C becomes a

sink and C cannot become a Knot (which would imply a removal inside it); and since vC

is a forbidden vertex that cannot become sink in G�, then any solution S to the KFVD

problem for G is a solution of G� with some u ∈ N+(vc) not in S, and conversely. Then,

for each branch, we apply Branching 5.3.4 to obtain a super nice instances equivalent to

(G�, F �, k,X �), and repeat that until either |F �| = 1, k = 0 or a solution be found.

So at each branching, either the parameter k decreases by at least one or the size of F

decreases by at least one. As both values are bounded above by dfv, we branch consecu-

tively at most 2dfv times. And since Branching 5.3.4 create at most 22dfv2 branches, and

branching on cycle C creates at most (2p− 1)× k branches, the total number of branches

is (22dfv
2 × (2p− 1)× k)2dfv = 2O(dfv3) × pO(dfv).

Since we obtain super nice instances in 2O(dfv3) × nO(1) time, the following holds.

Corollary 5.3.11. KFVD can be solved in 2O(dfv3) × pO(dfv) × nO(1) time.

5.3.3 On the distance to an acyclic digraph having bounded path
cover

Given a directed graph G = (V,E), a path cover of G is a set of directed paths such that

every vertex v ∈ V belongs to at least one path. Note that a path cover may include paths

of length 0 (a single vertex). In this section, we present a simple FPT-time algorithm

when we are given a special directed feedback vertex set whose removal returns an acyclic

graph having bounded path cover. Recall that a path cover of an acyclic graph can be

computed in polynomial time using maximum flow/matching.

Lemma 5.3.12 (Single sink along a path). Let G be a directed graph, and let R ⊆ V (G)

such that G[R] is a DAG. Let P be any path in R. Then in a minimum knot-free vertex

deletion set S of G with set of sinks Z in GS̄, we have |Z ∩ V (P)| ≤ 1.

Proof. Assume by contradiction that |Z ∩ V (P)| ≥ 2. Let P = (v1, . . . , vp), and let i1, i2
be the indices of two consecutive vertices of Z ∩V (P), or more formally such that i1 ≤ i2,

5.4 On the clique-width as parameter 68

{vi1 , vi2} ⊆ Z ∩ V (P), and for any i ∈]i1, i2[, vi ∈ V (P) \Z. Let P � = (vi1 , . . . , vi2) be the

vi1vi2 subpath of P .

Let u = N+(vi1) ∩ V (P). Observe that u �= vi2 (as otherwise vi2 would be in S and

not in Z) and that u ∈ S. Let SP � = S ∩ V (P �). Observe that SP � �= ∅ as it contains u.

Let v be the last (in the order of P �) vertex of SP � . Notice that v /∈ N+(vi2) because P is

in the DAG R. Thus, we get that vi2 is still a sink in GS̄� (where S � = S \ {v}), and by

Lemma 5.1.3 we conclude that S � is still a solution, which is a contradiction.

Corollary 5.3.13. Given a directed graph G, and a directed feedback vertex set F of

G such that G[V \ F] is a DAG having path cover at most c, it holds that a minimum

knot-free vertex deletion set S of G can be found in time 2|F | × nc.

Proof. It is well known that a minimum vertex-disjoint path cover of a DAG can be found

in polynomial time. In addition, it is easy to see that a minimum path cover (where the

paths may share vertices) can be found through a minimum vertex-disjoint path cover of

the transitive closure of the DAG. Thus, a minimum (non-disjoint) path cover of G[V \F]

can be found in polynomial time, and by Lemma 5.3.12 we can enumerate all possible

set of sinks in time 2|F | × nc, which it is enough to compute a minimum knot-free vertex

deletion set of G (see Corollary 5.1.4).

5.4 On the clique-width as parameter

Recall that from Theorem 5.2.1 we can observe that KFVD is para-NP-hard concerning

many digraph width measures, and it seems to be extremely hard to identify width pa-

rameters for directed graphs, which KFVD can be solved in FPT time. Next, we show

that this is the case of the clique-width of the input directed graph G.

The clique-width of a (directed) graph G, denoted by cw(G), is defined as the minimum

number of labels needed to construct G, using the following four operations:

1. Create a single vertex v with an integer label � (denoted by �(v));

2. Take the disjoint union (i.e., co-join) of two graphs (denoted by ⊕);

3. Join by an (arc) edge every vertex labeled i to every vertex labeled j for i �= j

(denoted by η(i, j));

4. Relabel all vertices with label i by label j (denoted by ρ(i, j)).

5.4 On the clique-width as parameter 69

An algebraic term that represents such a construction of G and uses at most k labels is

said to be a k-expression of G (i.e., the clique-width of G is the minimum k for which G

has a k-expression).

In the 90’s, Courcelle proved that for every graph property Π that can be formulated

in monadic second order logic (MSOL1), there is an f(k)× nO(1) algorithm that decides

if a graph G of clique-width at most k satisfies Π (see [33, 34, 35, 38]), provided that

a k-expression is given. LinEMSOL is an extension of MSOL1 which allows searching

for sets of vertices which are optimal with respect to some linear evaluation functions.

Courcelle et al. [37] showed that every graph problem definable in LinEMSOL is linear-

time solvable on graphs with clique-width at most k (thus, FPT when parameterized by

clique-width) if a k-expression is given as input. Using a result of Oum [78], the same

result follows even if no k-expression is given.

Definition 5.4.1. [36] A directed X-path from x to y is a directed path from x to y in

the subgraph induced by X.

Proposition 5.4.2. [36] There is a monadic second-order formula expressing the follow-

ing property of vertices x, y of a set of vertices X of a directed graph G:

“x, y ∈ X and there is a directed X-path from x to y”.

From Proposition 5.4.2 one can show that KFVD is LinEMSOL-definable. Thus

Theorem 5.4.3 holds.

Theorem 5.4.3. KFVD is FPT when parameterized by clique-width of the directed graph.

Proof. From Proposition 5.4.2, we can construct (using shortcuts) a formula ψ(G, S) such

that “S is knot-free vertex deletion set of G” ⇔ ψ(G, S), as follows:

∃ Z ⊂ V [

[∀ v ∈ Z(∀ w ∈ V (arc(v, w) =⇒ w ∈ S)] ∧
[∀ u ∈ {V \ S}(∃ z ∈ Z(there is a directed {V \ S}-path from u to z)]

]

Since ψ(G, S) is an MSOL1-formula, the problem of finding min(S) : ψ(G, S) is

definable in LinEMSOL. Thus we can find min(S) satisfying ψ(G, S) in time f(cw) ×
nO(1).

5.5 On the treewidth as parameter 70

The fixed-parameter tractability for clique-width parameterization implies fixed-parameter

tractability of KFVD for many other popular parameters. For example, it is well-known

that the clique-width of a directed graph G is at most 22tw(G)+2 + 1, where tw(G) is the

treewidth of the underlying undirected graph (see [36, Proposition 2.114]). However, al-

though Theorem 5.4.3 implies the FPT-membership of the problem parameterized by the

treewidth of the underlying undirected graph, the dependence on tw(G) provided by the

model checking framework is huge. So, it is still pertinent to ask whether such a param-

eterized problem admits a more efficient algorithm, which is discussed in Section 5.5.

5.5 On the treewidth as parameter

Given a tree decomposition T , we denote by t one node of T and by Xt the set of vertices

contained in the bag of t. We assume, without loss of generality, that T is a nice tree

decomposition (see [41]), that is, we assume that there is a special root node r such that

Xt = ∅ and all edges of the tree are directed towards r and each node t has one of the

following four types: Leaf, Introduce vertex, Forget vertex, and Join.

Based on the following results, we can assume that we are given a nice tree decompo-

sition of G.

Theorem 5.5.1. [14] There exists an algorithm that, given an n-vertex graph G and an

integer k, runs in time 2O(k) × n and either outputs that the treewidth of G is larger than

k or constructs a tree decomposition of G of width at most 5k + 4.

Lemma 5.5.2. [41] Given a tree decomposition (T, {Xt}t∈V (T)) of G of width at most k,

one can in time O(k2 · max(|V (T)|, |V (G)|)) compute a nice tree decomposition of G of

width at most k that has at most O(k|V (G)|) nodes.

Now we are ready to use a nice tree decomposition in order to obtain an FPT-time

algorithm with single exponential dependency on tw(G) and linear with respect to n.

Theorem 5.5.3. Knot-Free Vertex Deletion can be solved in 2O(tw log tw)×n time,

but assuming ETH there is no 2o(tw)nO(1) time algorithm for KFVD, where tw is the

treewith of the underlying undirected graph of the input G.

Proof. Let T = (T, {Xt}t∈V (T)) be a nice tree decomposition of the input digraph G, with

width equal to tw. First, we consider the following additional notation and definitions: t

5.5 On the treewidth as parameter 71

is the index of a bag of T ; Gt is the graph induced by all vertices v ∈ Xt� such that either

t� = t or Xt� is a descendant of Xt in T ;

Given a knot-free vertex deletion set S of G, for any bag Xt there is a partition of Xt

into

St, Zt, Ft, Bt

such that

• St (removed) is the set of vertices of Xt that are going to be removed (St = S ∩Xt);

• Zt (sinks) is the set of vertices of Xt that are going to be turned into sinks after the

removal of S;

• Ft (free/released) is the set of vertices of Xt that, after the removal of S, are going

to reach a sink in the graph Gt;

• Bt (blocked) is the set of vertices of Xt that, after the removal of S, are going to

reach no sink in the graph Gt.

Let G \ S be the graph resulting from the removal of S. Each vertex of Ft reaches a

sink in Gt \ S through a path that either goes through no other vertex of Ft or traverses

some other vertices of Ft before it reaches a sink. Therefore, from a solution S we can

define a graph HFt , where V (HFt) = Ft and each vertex v of HFt has at most one out-edge,

which representing the existence in Gt of path between v to another vertex u that will be

used to v reaches a sink. Actually, v can reach several vertices of Ft, but for the problem

in question, it is enough to be able to recover a path P from v to a sink, and we can

assume that u is the vertex of Ft closest to v in P .

Similarly, each vertex of Bt reaches a sink in G \ S through a path that either goes

through no other vertex of Bt or traverses some other vertices of Bt. In the latter case, Gt

may already contain the subpath between a blocked vertex v to another blocked vertex

u that will be used to release v in the future. Therefore, from a solution S we also can

define a graph HBt where V (HBt) = Bt and each vertex v of HBt has at most one out-edge,

representing the existence in Gt of path between v to another blocked vertex u that will

be used to v reaches a sink.

Note that both HFt and HBt are DAGs with maximum out-degree at most one, so

each sink roots an arborescence converging to the root, and you can enumerate all possible

pairs HFt , HBt in time 2O(tw log tw).

5.5 On the treewidth as parameter 72

The recurrence relation of our dynamic programming has the signature

C[t, St, Zt, Ft, Bt, HFt , HBt],

representing the minimum number of vertices in Gt that must be removed in order to

produce a graph such that for every remaining vertex v either v reaches a vertex that

became a sink (possibly the vertex itself), or v reaches a vertex in Bt (meaning that it

may still be released in the future), where

• the vertices in St must be removed;

• the vertices in Zt will become sink;

• every vertex in Ft will have a path to a sink in the resulting graph;

• no vertex in Bt will have a path to a sink in Gt in the resulting graph;

• for each sink v of HFt there must be a path from v to a sink of the resulting graph,

which traverses no other vertex of Ft;

• for every edge vu in HFt or HBt there must be a path from v to u in the resulting

graph;

• St, Zt, Ft, Bt form a partition of Xt;

• HFt and HBt are DAGs with maximum out-degree at most one, with V (HFt) = Ft

and V (HBt) = Bt.

Notice that the generated table has size 4tw × 2.twtw × tw × n, and when t = r,

Xt = ∅ and therefore C[r, ∅, ∅, ∅, ∅, ∅, ∅] must contain the size of a minimum knot-free

vertex deletion set of Gr = G.

The recurrence relation for each type of node is described as follows.

First, notice that if v ∈ Zt and there is an out-neighbor w ∈ Xt of v that is not in

St, there is an inconsistency, i.e. w must be deleted. In addition, if v ∈ Bt but has an

out-neighbor in Zt ∪ Ft, there is another inconsistency (v is not blocked), if v ∈ Ft but

the removal of St∪Bt turns v into an isolated vertex, v is not released and it must belong

to Bt, and if v ∈ Ft has degree one in HFt but is an in-neighbor of a vertex in Zt there is

also an inconsistency (v must be a sink in HFt).

5.5 On the treewidth as parameter 73

For the inconsistent cases, C[t, St, Zt, Ft, Bt, HFt , HBt] = +∞. Such cases can be

recognized and treated by simple preprocessing in linear time on the size of the table.

Therefore, we consider next only consistent cases.

Leaf Node: If Xt is a leaf node then Xt = ∅. Therefore

C[t, ∅, ∅, ∅, ∅, ∅, ∅] = 0.

Introduce Node: Let Xt be a node of T with a child Xt� such that Xt = Xt� ∪ {v} for

some v /∈ Xt� . We have C[t, St, Zt, Ft, Bt, HFt , HBt] equal to:

1) case v ∈ St :

– C[t�, St \ {v}, Zt, Ft, Bt, HFt , HBt] + 1,

2) case v ∈ Zt :

– C[t�, St, Zt \ {v}, Ft \ A,Bt ∪ A,HFt [Ft \ A], HBt ∪HFt [A]],

where A = {w ∈ Ft : w reaches a sink u (possibly w = u) in HFt s.t. uv ∈ E(G)},

3) case v ∈ Ft :

– C[t, St, Zt, Ft \ {A� ∪ {v}}, Bt ∪ A�, HFt [Ft \ {A� ∪ {v}}], HBt ∪HFt [A
�]],

where A� = {w ∈ Ft : w reaches v in HFt},

4) case v ∈ Bt :

– C[t�, St, Zt, Ft, Bt \ {v}, HFt , HBt [Bt \ {v}]].

Recall that, for simplicity, we consider only consistent cases, thus if a vertex of HFt

has out-neighbors in Zt then it is a sink in HFt . In addition, in case 2 it holds that

N+(v) ∩ Xt ⊆ St, in case 3 it holds that N+(v) ∩ (Zt ∪ Ft) �= ∅, and in case 4 it holds

that N+(v) ∩ {Zt ∪ Ft} = ∅. Also note that, A and A� represent set of vertices that will

be released through paths that traverses v.

Forget Node: Let Xt be a forget node with a child Xt� such that Xt = Xt� \ {v}, for

some v ∈ Xt� . The forget node selects the best scenario considering all the possibilities for

the forgotten vertex, discarding cases that lead to non-feasible solutions. In this problem,

unfeasible cases are identified when the forgotten vertex v ∈ Xt� was blocked and is a sink

in HBt (it reaches no other node in Bt that can release it in the future). Hence:

5.5 On the treewidth as parameter 74

C[t, St, Zt, Ft, Bt, HFt , HBt] = min

C[t�, St ∪ {v}, Zt, Ft, Bt, HFt , HBt],

C[t�, St, Zt ∪ {v}, Ft, Bt, HFt , HBt],

∀ H�
Ft
C[t�, St, Zt, Ft ∪ {v}, Bt, H

�
Ft
, HBt],

∀ H�
Bt
C[t�, St, Zt, Ft, Bt ∪ {v}, HFt , H

�
Bt
]

where H �
Ft

and H �
Bt

are graphs such that

HFt can be obtained from H �
Ft

by removing v and adding edges from every in-

neighbor of v in H �
Ft

to the out-neighbor of v in H �
Ft

, if any.

HBt can be obtained from H �
Bt

by removing v and adding edges from every in-

neighbor of v in H �
Ft

to the out-neighbor of v in H �
Ft

, where v is not a sink of

H �
Ft

.

Join Node: Let Xt be a join node with children Xt1 and Xt2 , such that Xt = Xt1 = Xt2 .

For any optimal knot-free vertex deletion set S of G it holds that V (Gt)∩S = {V (Gt1)∩
S} ∪ {V (Gt2) ∩ S}. Clearly, if St ⊆ S then we can assume that St = St1 = St2 . In

addition, Zt = Zt1 = Zt2 otherwise we will have an inconsistency. Also note that a vertex

is released in Gt if it reaches a vertex (possibly the vertex itself) that is released either in

Gt1 or Gt2 .

Thus C[t, St, Zt, Ft, Bt, HFt , HBt] is equal to:

min
∀ tuple (Ft1 ,Ft2 ,Bt1 ,Bt2HFt1

,HFt2
,HBt1

,HBt2
)

C[t1, St, Zt, Ft1 , Bt1 , HFt1
, HBt1

]

+

C[t2, St, Zt, Ft2 , Bt2 , HFt2
, HBt2

]

− |St|,

where

1. each vertex in Fti ∩ Btj is a sink of HBtj
;

2. Ft = Ft1 ∪ Ft2 ∪ {w ∈ Btj : w reaches a sink u in HBtj
s.t. u ∈ Fti ∩ Btj};

3. HFt [Ft1 ∩ Ft2] = HFt1
[Ft1 ∩ Ft2] = HFt2

[Ft1 ∩ Ft2];

4. (E(HBt1
) ∪ E(HBt2

)) \ E(HBt) ⊆ E(HFt);

5.5 On the treewidth as parameter 75

5. each vertex has at most one edge in E(HBt1
) ∪ E(HBt2

);

6. E(HBt) ⊆ E(HBt1
) ∪ E(HBt2

).

Note that in (2) it is described that Ft is the set of vertices that either are released in

Gti (i ∈ {1, 2}) or can be released in Gt by vertices of Ft1 ∪ Ft2 , even if they are blocked

in both Gt1 and Gt2 ; this can occur, for example, if a blocked vertex v reaches another

blocked vertex w in Gt1 , and in Gt2 the vertex w is released. The rest of the restrictions

only provide a description of the tuples that actually need to be considered.

Now, in order to run the algorithm, one can visit the bags of T in a bottom-up

fashion, performing the queries described for each type of node. Thus, one can fill each

entry of the table in 2O(tw log tw) time, and as the table has size 2O(tw log tw)×n, the dynamic

programming can be performed in time 2O(tw log tw) × n.

Regarding correctness, let S∗ be a minimum knot-free vertex deletion set of a digraph

G with a tree decomposition T . Let S∗
t , Z

∗
t , F

∗
t , B

∗
t be a partition of the vertices of Xt into

removed, sinks, released and blocked, with respect to Gt after the removal of S∗. Note

that S∗
t = Xt ∩ S∗, and S∗ and naturally defines graphs H∗

Ft
, H∗

Bt
. The following lemma

holds.

Lemma 5.5.4. Let �S be a set for which the minimum is attained in the definition of

C[t, S∗
t , Z

∗
t , F

∗
t , B

∗
t , H

∗
Ft
, H∗

Bt
]. Then S = �S ∪ (S∗ \ V (Gt)) is also a solution (which is

minimum) for KFVD.

Proof. Suppose that S = �S ∪ (S∗ \ V (Gt)) is not a solution for KFVD. Then there is a

vertex v of B∗
t that does not reach a sink in G \ S; otherwise, there is a contradiction.

Since Gt \ S preserves the paths represented by edges in H∗
Bt

, without loss of generality,

we can assume that v is a sink. Since v is sink in H∗
Bt

, in the graph G \ S∗ the vertex v

reaches a sink through a path P that either tranverses no other vertex of Gt (and such a

path P is preserved in G \ S), or it reaches some vertices of F ∗
t . In the second case, the

subpath of P from v to the closest vertex of Ft ∩P , say w, is also preserved, since it does

not traverse any vertex of Gt. Then v reaches w in G\S, and as the paths represented by

edges in H∗
Ft

is also preserved in Gt \S, then v reaches a sink of H∗
Ft

in G \S. Finally, by

definition each sink of H∗
Ft

has a path to a sink in Gt \ �S, thus v reaches a sink in G \ S.

Therefore, this vertex v does not exist and S = �S ∪ (S∗ \ V (Gt)) is a solution for KFVD.

Since |�S| ≤ |S∗ \ V (Gt)| then S is an optimal solution.

5.6 Conclusions 76

Fact 1 implies that we have stored enough information. At this point, the correctness

of the recursive formulas is straightforward from their descriptions.

Finally, to show a lower bound based on ETH, using the polynomial-time reduction

that preserves parameter presented in Theorem 4.2.2, we obtain in polynomial time a

graph with |V | = 2n + 2m, and so tw = O(n +m). Therefore, if KFVD can be solved

in 2o(tw) × |V |O(1) time, then we can solve 3-CNF-SAT in 2o(n+m) × (n+m)O(1) time, i.e.,

ETH fails. This conclude the proof of Theorem 5.5.3.

Next, we improve the result presented in the Theorem 4.2.3 by including the treewidth

as an additional parameter.

Corollary 5.5.5. Unless NP ⊆ coNP/poly, [k, tw]-KFVD does not admit a polynomial

kernel, even when a largest SCC of the input graph G has size 2.

Proof. It is enough to show that the underlying undirected graph of the instance G�

constructed in Theorem 4.2.3 has treewidth at most |R|. Consider the following bags:

• a root bag Xr = {c1i | vi ∈ R};

• a bag Xi = {c1i , c2i , c3i , c4i } ∀ vi ∈ R;

• a bag Xe = Xr ∪ {w}, for every arc e = (w, c1i) of G�;

• and a bag {u| u ∈ C�
j} ∀ 1 ≤ � ≤ k� + 1.

Clearly it is possible to construct a tree decomposition T with the bags described above

(see Figure 5.5), thus tw(G�) ≤ |R|.

5.6 Conclusions

In this chapter, we consider directed width parameterizations for KFVD. We proved that

k-KFVD remains W[1]-hard even when the input graph has K-width equals 2 and the

longest directed path of size 5. From the above result, we can observe that KFVD is

para-NP-hard with respect to several well-known width measures. In addition, we show

that KFVD parameterized by cliquewidth of the directed graph is FPT, and we proposed

two FPT-algorithms, each exploring additional parameters to the directed feedback vertex

set number (dfv). The first one, combining dfv with K-width (κ), runs in 2O(κdfv5)nO(1)

5.6 Conclusions 77

c
1
	1	

c
1
	2	

c
1
	3	

c
1
	|R|	

c
1
	1	

c
1
	2	

c
1
	3	

c
1
	|R|	

Figure 5.5: A tree decomposition of G�.

5.6 Conclusions 78

time. The second one, combining dfv with the length of the longest directed path p, runs

in 2O(dfv3) pO(dfv)nO(1) time. An FPT-time algorithm is presented when we are given a

special directed feedback vertex set whose removal returns an acyclic graph having path

cover bounded by a constant c. Also, we proved that: KFVD can be solved in FPT

time when parameterized by cliquewidth of the underlying undirected graph. Finally,

KFVD can be solved in time 2O(tw log tw) × n, but assuming ETH it cannot be solved in

2o(tw) × nO(1), where tw is the treewidth of the underlying undirected graph and unless

NP ⊆ coNP/poly, KFVD parameterized by the size of the solution k and the treewidth

of the underlying graph does not admit a polynomial kernel, even when the largest SCC

of the input graph G has size 2.

Chapter 6

Final Remarks and Future Works

In this chapter, we make remarks about KFVD problem and its similarities to the DFVS

problem in order to point directions to the parameterized analysis of KFVD. We start

by comparing the deadlock characterization in the OR and AND models:

Deadlock in the OR-model – the occurrence of deadlocks in wait-for graphs G working

according to the OR-model is characterized by the existence of knots in G [11, 59]. A

knot in a directed graph G is a strongly connected subgraph Q of G, such that |V (Q)| ≥ 2

and no vertex in V (Q) is an in-neighbour of a vertex in V (G) \ V (Q). Given a graph G

and a positive integer k, the KFVD problem consists of determining whether there exists

a subset S ⊆ V (G) of size at most k such that G[V \ S] is knot-free. This problem was

proved to be NP-hard in [24].

Deadlock in the AND-model – the occurrence of deadlocks in wait-for graphs G

working according to the AND-model is characterized by the existence of cycles in G [11,

8]. Thus, given a graph G and a positive integer k, the problem of determining whether

there exists a subset S ⊆ V (G) of size at most k such that G[V \S] is cycle-free is the well-

known Directed Feedback Vertex Set (DFVS) problem, proved to be NP-hard in

the seminal paper of Karp [67], and proved to be fixed-parameter tractable in [28].

We define λ–Deletion(M) as a generic optimization problem for deadlock resolu-

tion, where λ indicates the type of deletion operation to be used in order to break all

the deadlocks, and M ∈ {AND, OR, X-Out-Of-Y, AND-OR} is the deadlock model

of the input wait-for graph G. Vertex–Deletion(AND) and Arc–Deletion(AND)

are equivalent to Directed Feedback Vertex Set and Directed Feedback Arc Set, respec-

tively. We proved that Arc–Deletion(OR) and Output–Deletion(OR) are solvable

in polynomial time. In addition, KFVD was shown to be NP-complete. Such results are

6 Final Remarks and Future Works 80

summarized in the Table 6.1.

λ–Deletion(M)
λ \ M AND OR AND-OR X-Out-Of-Y
Arc NP-H P NP-H NP-H
Vertex NP-H NP-H NP-H NP-H
Output NP-H P NP-H NP-H

Table 6.1: Computational complexity of λ–Deletion(M).

A study of the complexity of KFVD in different graph classes was also done. We

proved that the problem remains NP-hard even for strongly connected graphs and planar

bipartite graphs with maximum degree four. Furthermore, we proved that for graphs with

maximum degree three the problem can be solved in polynomial time. Thus we have the

Table 6.2:

KFVD
Instance Complexity
Weakly connected NP-Hard
Strongly connected NP-Hard
Planar, bipartite, Δ(G) ≥ 4 and Δ(G)+ = 2 NP-Hard
Δ(G) = 3 Polynomial
Δ(G) = 2 Trivial
Δ(G)+ = 1 Trivial

Table 6.2: Complexity of KFVD for some graph classes.

In addition, we explored weighted wait-for graphs, where we show that W–λ–Dele-

tion(OR) can be reduced into λ–Deletion(OR) and W–Arc–Deletion(OR) can also

be solved in linnear time. W–λ–Deletion(AND) can be reduced into λ–Deletion(AND).

In chapter 4, we study the Knot-Free Vertex Deletion problem from a parame-

terized complexity point of view. First, we proved that KFVD with the natural parameter

k is W[1]-hard. Next, we consider ϕ, the maximum size of an SCC of the input directed

graph, as an additional parameter. We show that KFVD can be solved in 2k logϕnO(1)

time and unless SETH fails it cannot be solved in (2−�)(k logϕ)nO(1) time. Also, we remark

that k-KFVD has no polynomial kernel even if the input graph has only SCC’s with size

bounded by 2. After that, we present an algorithm that runs in 2φnO(1) time, which it is

appropriate for directed graphs where there are few vertices, φ, with out-degree at most

k. In addition, assuming ETH, we show that KFVD cannot be solved in 2o(φ)nO(1) time.

Considering the treewidth of the underlying graph tw as parameter, we show that KFVD

6 Final Remarks and Future Works 81

can be solved in 2O(tw log tw)nO(1) time, but assuming ETH it cannot be solved in 2o(tw)nO(1)

time.

Table 6.3 summarizes the fine-grained parameterized complexity analysis presented

in this work.
Table 6.3: Fine-grained parameterized complexity of Knot-Free Vertex Deletion.

Complexity Running time Lower bounds assuming (S)ETH
k W[1]-hard nk no f(k)× no(k) alg.

k,ϕ FPT 2k logϕ × nO(1) no (2− �)k logϕ × nO(1) alg.Parameter
φ FPT 2φ × nO(1) no 2o(φ) × nO(1) alg.
tw FPT 2O(tw log tw) × nO(1) no (2)o(tw) × nO(1) alg.

In chapter 5, a parameterized complexity study of KFVD on directed width measures

is also done. We proved that KFVD with the natural parameter k even when the input

graph has K-width 2 and the longest directed path is 5 is also W[1]-hard. From the above

result, we can observe that KFVD is para-NP-hard with respect to several well-known

width measures. In addition, we show that KFVD parameterized by cliquewidth of the

directed graph is FPT, and we proposed two FPT-algorithms, each exploring additional

parameters to the directed feedback vertex set number (dfv). The first one, combining

dfv with K-width (κ), runs in 2O(κdfv5)nO(1) time. The second one, combining dfv with

the length of the longest directed path p, runs in 2O(dfv3) pO(dfv)nO(1) time. Finally, an

FPT-time algorithm is presented when we are given a special directed feedback vertex set

whose removal returns an acyclic graph having path cover bounded by a constant c.

Recall that knots characterize the presence of deadlock. So, the algorithms presented

in this work have also practical value. The most common approach to deal with deadlock

is to forbid the formation of cycles in the directed graph as the computation proceeds.

This approach, although simple and easy to implement, is very restrictive. Having an

algorithm that breaks the knots of a graph (therefore removing deadlocks) in exponential

time, but over a controlled characteristic, allows the construction of a more permissive

deadlock prevention. For example, as Algorithm 2 is FPT with respect to k and the size

of the largest SCC in G, it is possible to forbid only the formation of large knots, rather

than cycles.

The KFVD problem is closely related to the DFVS problem not only because of

their relation with deadlocks, but some structural similarities between them: the goal of

DFVS is to obtain a directed acyclic graph (DAG) via vertex deletion (in such graphs all

maximal directed paths end in a sink); the goal of KFVD is to obtain a knot-free graph,

and in such graphs for every vertex v there exists at least one maximal path containing

v that ends in a sink. Finally, every directed feedback vertex set is a knot-free vertex

6 Final Remarks and Future Works 82

deletion set; thus, the size of a minimum directed feedback vertex set is an upper bound

for KFVD. Besides, the DFVS problem is closely related to the KFVD problem and

indicates some closeness with the sought solution of KFVD. Hence, the DFVS-number is

unquestionably a natural parameter to be explored considering that it can be obtained in

FPT-time. Finally, we leave two open questions:

• Can dfv-KFVD be solved in FPT time?

• Given a minimum directed feedback vertex set F , can KFVD be solved in f(dfv, c)×
nO(1) time, when c is the path cover of G[V \ F]?

References

[1] Akhoondian Amiri, S.; Kaiser, L.; Kreutzer, S.; Rabinovich, R.;
Siebertz, S. Graph searching games and width measures for directed graphs. In
32nd International Symposium on Theoretical Aspects of Computer Science (STACS
2015) (2015), Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[2] Alber, J.; Fellows, M. R.; Niedermeier, R. Polynomial-time data reduction
for dominating set. Journal of the ACM (JACM) 51, 3 (2004), 363–384.

[3] Atreya, R.; Mittal, N.; Kshemkalyani, A. D.; Garg, V. K.; Singhal, M.
Efficient detection of a locally stable predicate in a distributed system. Journal of
Parallel and Distributed Computing 67, 4 (2007), 369–385.

[4] Bansal, S.; Hota, C. Priority-based job scheduling in distributed systems.
In International Conference on Information Systems, Technology and Management
(2009), Springer, pp. 110–118.

[5] Barát, J. Directed path-width and monotonicity in digraph searching. Graphs and
Combinatorics 22, 2 (2006), 161–172.

[6] Barbosa, V. C. Massively Parallel Models of Computation: Distributed Parallel
Processing in Artificial Intelligence and Optimisation. Ellis Horwood, 1993.

[7] Barbosa, V. C. An Introduction to Distributed Algorithms. MIT Press, 1996.

[8] Barbosa, V. C. The combinatorics of resource sharing. In Models for Parallel and
Distributed Computation. Springer, 2002, pp. 27–52.

[9] Barbosa, V. C.; Benevides, M. R. A graph-theoretic characterization of AND-
OR deadlocks. Tech. Rep. COPPE-ES-472/98, Federal University of Rio de Janeiro,
Rio de Janeiro, Brazil, 1998.

[10] Barbosa, V. C.; Benevides, M. R.; Oliveira Filho, A. L. A priority dynamics
for generalized drinking philosophers. Information Processing Letters 79, 4 (2001),
189–195.

[11] Barbosa, V. C.; Carneiro, A. D. A.; Protti, F.; Souza, U. S. Deadlock
models in distributed computation: Foundations, design, and computational com-
plexity. In Proceedings of the 31st ACM/SIGAPP Symposium on Applied Computing
(2016), pp. 538–541.

[12] Berwanger, D.; Dawar, A.; Hunter, P.; Kreutzer, S.; Obdržálek, J. The
dag-width of directed graphs. Journal of Combinatorial Theory, Series B 102, 4
(2012), 900 – 923.

References 84

[13] Berwanger, D.; Grädel, E. Entanglement – a measure for the complexity of
directed graphs with applications to logic and games. In Logic for Programming,
Artificial Intelligence, and Reasoning (Berlin, Heidelberg, 2005), F. Baader and
A. Voronkov, Eds., Springer Berlin Heidelberg, pp. 209–223.

[14] Bodlaender, H. L.; Drange, P. G.; Dregi, M. S.; Fomin, F. V.; Loksh-
tanov, D.; Pilipczuk, M. A ckn 5-approximation algorithm for treewidth. SIAM
Journal on Computing 45, 2 (2016), 317–378.

[15] Bodlaender, H. L.; Penninkx, E. A linear kernel for planar feedback vertex
set. In International Workshop on Parameterized and Exact Computation (2008),
Springer, pp. 160–171.

[16] Bodlaender, H. L.; Penninkx, E.; Tan, R. B. A linear kernel for the k-disjoint
cycle problem on planar graphs. In International Symposium on Algorithms and
Computation (2008), Springer, pp. 306–317.

[17] Bokal, D.; Brešar, B.; Jerebic, J. A generalization of Hungarian method
and Hall’s theorem with applications in wireless sensor networks. Discrete Applied
Mathematics 160, 4 (2012), 460–470.

[18] Bondy, J. A.; Murty, U. S. R. Graph theory with applications, vol. 290. Macmilan,
1976.

[19] Bonsma, P. S.; Brueggemann, T.; Woeginger, G. J. A faster fpt algorithm
for finding spanning trees with many leaves. In International Symposium on Mathe-
matical Foundations of Computer Science (2003), Springer, pp. 259–268.

[20] Bracha, G.; Toueg, S. Distributed deadlock detection. Distributed Computing 2,
3 (1987), 127–138.

[21] Brzezinski, J.; Helary, J.-M.; Raynal, M.; Singhal, M. Deadlock models
and a general algorithm for distributed deadlock detection. Journal of parallel and
distributed computing 31, 2 (1995), 112–125.

[22] Cai, L.; Juedes, D. On the existence of subexponential parameterized algorithms.
Journal of Computer and System Sciences 67, 4 (2003), 789–807.

[23] Calabro, C.; Impagliazzo, R.; Paturi, R. The complexity of satisfiability
of small depth circuits. In International Workshop on Parameterized and Exact
Computation (2009), Springer, pp. 75–85.

[24] Carneiro, A. D. A.; Protti, F.; Souza, U. S. Deletion graph problems based
on deadlock resolution. In Computing and Combinatorics - 23rd International Con-
ference, COCOON 2017, Hong Kong, China, August 3-5, 2017, Proceedings (2017),
pp. 75–86.

[25] Chahar, P.; Dalal, S. Deadlock resolution techniques: An overview. International
Journal of Scientific and Research Publications 3, 7 (2013).

[26] Chandy, K. M.; Lamport, L. Distributed snapshots: determining global states
of distributed systems. ACM Transactions on Computer Systems 3 (1985), 63–75.

References 85

[27] Chandy, K. M.; Misra, J.; Haas, L. M. Distributed deadlock detection. ACM
Transactions on Computer Systems (TOCS) 1, 2 (1983), 144–156.

[28] Chen, J.; Liu, Y.; Lu, S.; O’sullivan, B.; Razgon, I. A fixed-parameter
algorithm for the directed feedback vertex set problem. Journal of the ACM (JACM)
55, 5 (2008), 21.

[29] Chen, J.; Meng, J. On parameterized intractability: Hardness and completeness.
The Computer Journal 51, 1 (2007), 39–59.

[30] Coffman, E. G.; Elphick, M.; Shoshani, A. System deadlocks. ACM Comput-
ing Surveys (CSUR) 3, 2 (1971), 67–78.

[31] Cook, S. A. The complexity of theorem-proving procedures. In Proceedings of the
third annual ACM symposium on Theory of computing (1971), ACM, pp. 151–158.

[32] Cormen, T. H.; Leiserson, C. E.; Rivest, R. L.; Stein, C. Introduction to
Algorithms. MIT press, 2009.

[33] Courcelle, B. The monadic second-order logic of graphs. I. recognizable sets of
finite graphs. Information and Computation 85, 1 (1990), 12–75.

[34] Courcelle, B. The expression of graph properties and graph transformations in
monadic second-order logic. Handbook of Graph Grammars 1 (1997), 313–400.

[35] Courcelle, B.; Engelfriet, J. Graph Structure and Monadic Second-Order
Logic: A Language-Theoretic Approach, 1st ed. Cambridge University Press, 2012.

[36] Courcelle, B.; Engelfriet, J. Graph structure and monadic second-order logic:
a language-theoretic approach, vol. 138. Cambridge University Press, 2012.

[37] Courcelle, B.; Makowsky, J. A.; Rotics, U. Linear time solvable optimization
problems on graphs of bounded clique-width. Theory of Computing Systems 33, 2
(2000), 125–150.

[38] Courcelle, B.; Mosbah, M. Monadic second-order evaluations on tree-
decomposable graphs. Theoretical Computer Science 109, 1–2 (1993), 49–82.

[39] Crampton, J.; Gutin, G.; Watrigant, R. A multivariate approach for checking
resiliency in access control. In International Conference on Algorithmic Applications
in Management (2016), Springer, pp. 173–184.

[40] Cristian, F.; Fetzer, C. The timed asynchronous distributed system model.
IEEE Transactions on Parallel and Distributed Systems 10, 6 (1999), 642–657.

[41] Cygan, M.; Fomin, F. V.; Kowalik, Ł.; Lokshtanov, D.; Marx, D.;
Pilipczuk, M.; Pilipczuk, M.; Saurabh, S. Parameterized algorithms, vol. 3.
Springer, 2015.

[42] Datta, A.; Ghosh, S. Synthesis of a class of deadlock-free petri nets. Journal of
the ACM (JACM) 31, 3 (1984), 486–506.

References 86

[43] de Mendívil, J. G.; Fariña, F.; Garitagotia, J. R.; Alastruey, C. F.;
Bernabeu-Auban, J. M. A distributed deadlock resolution algorithm for the and
model. IEEE Transactions on Parallel and Distributed Systems 10, 5 (1999), 433–447.

[44] Ding, Y.; He, Y.; Jiang, J. Multi-robot cooperation method based on the ant
algorithm. In Swarm Intelligence Symposium, 2003. SIS’03. Proceedings of the 2003
IEEE (2003), IEEE, pp. 14–18.

[45] Dom, M.; Lokshtanov, D.; Saurabh, S. Kernelization lower bounds through
colors and ids. ACM Transactions on Algorithms (TALG) 11, 2 (2014), 13.

[46] dos Santos, V. F.; dos Santos Souza, U. Uma introdução à complexidade
parametrizada. Anais da 34º Jornada de Atualização em Informática, CSBC (2015),
232–273.

[47] dos Souza, U. Multivariate investigation of NP-hard problems: Boundaries between
parameterized tractability and intractability. Tese de Doutorado, Fluminense Federal
University, Niterói-RJ, Brazil, 2014.

[48] Downey, R. G.; Fellows, M. R. Parameterized complexity. Monogr. Comput.
Sci. Springer, New York 87 (1999).

[49] Downey, R. G.; Fellows, M. R. Parameterized complexity. Springer Science &
Business Media, 2012.

[50] Downey, R. G.; Fellows, M. R. Fundamentals of parameterized complexity,
vol. 4. Springer, 2013.

[51] Fellows, M. R. Parameterized complexity: the main ideas and some research fron-
tiers. In International Symposium on Algorithms and Computation (2001), Springer,
pp. 291–307.

[52] Flum, J.; Grohe, M. Parameterized complexity theory, volume xiv of texts in
theoretical computer science. an eatcs series, 2006.

[53] Galčík, F.; Katrenič, J.; Semanišin, G. On computing an optimal semi-
matching. In Graph-Theoretic Concepts in Computer Science (2011), Springer,
pp. 250–261.

[54] Ganian, R.; Hliněnỳ, P.; Kneis, J.; Langer, A.; Obdržálek, J.; Ross-
manith, P. Digraph width measures in parameterized algorithmics. Discrete applied
mathematics 168 (2014), 88–107.

[55] Ganian, R.; Hliněnỳ, P.; Kneis, J.; Meister, D.; Obdržálek, J.; Ross-
manith, P.; Sikdar, S. Are there any good digraph width measures? In In-
ternational Symposium on Parameterized and Exact Computation (2010), Springer,
pp. 135–146.

[56] Gary, M. R.; Johnson, D. S. Computers and intractability: A guide to the theory
of np-completeness, 1979.

References 87

[57] Gruber, H. Digraph complexity measures and applications in formal language
theory. Discrete Mathematics & Theoretical Computer Science 14, 2 (2012), 189–
204.

[58] Guo, J.; Niedermeier, R. Invitation to data reduction and problem kernelization.
ACM SIGACT News 38, 1 (2007), 31–45.

[59] Holt, R. C. Some deadlock properties of computer systems. ACM Computing
Surveys (CSUR) 4, 3 (1972), 179–196.

[60] Hopcroft, J. E.; Karp, R. M. An nˆ5/2 algorithm for maximum matchings in
bipartite graphs. SIAM Journal on computing 2, 4 (1973), 225–231.

[61] Hunter, P.; Kreutzer, S. Digraph measures: Kelly decompositions, games, and
orderings. Theoretical Computer Science 399, 3 (2008), 206 – 219. Graph Searching.

[62] Impagliazzo, R.; Paturi, R. Complexity of k-sat. In Computational Complexity,
1999. Proceedings. Fourteenth Annual IEEE Conference on (1999), IEEE, pp. 237–
240.

[63] Impagliazzo, R.; Paturi, R.; Zane, F. Which problems have strongly exponential
complexity? In Foundations of Computer Science, 1998. Proceedings. 39th Annual
Symposium on (1998), IEEE, pp. 653–662.

[64] Impagliazzo, R.; Paturi, R.; Zane, F. Which problems have strongly exponential
complexity? Journal of Computer and System Sciences 63, 4 (2001), 512–530.

[65] Johnson, T.; Robertson, N.; Seymour, P.; Thomas, R. Directed tree-width.
Journal of Combinatorial Theory, Series B 82, 1 (2001), 138 – 154.

[66] Jünger, M.; Reinelt, G.; Rinaldi, G. Combinatorial Optimization–Eureka, You
Shrink!: Papers Dedicated to Jack Edmonds. 5th International Workshop, Aussois,
France, March 5-9, 2001, Revised Papers, vol. 2570. Springer, 2003.

[67] Karp, R. Reducibility among combinatorial problems. In Complexity of Computer
Computations, R. Miller, J. Thatcher, and J. Bohlinger, Eds., The IBM Research
Symposia Series. Springer US, 1972, pp. 85–103.

[68] Katrenic, J.; Semanisin, G. A generalization of hopcroft-karp algorithm for semi-
matchings and covers in bipartite graphs. arXiv preprint arXiv:1103.1091 (2011).

[69] Kshemkalyani, A. D.; Singhal, M. On characterization and correctness of dis-
tributed deadlock detection. Journal of Parallel and Distributed Computing 22, 1
(1994), 44–59.

[70] Kshemkalyani, A. D.; Singhal, M. Distributed computing: principles, algo-
rithms, and systems. Cambridge University Press, 2011.

[71] Leung, JY-T.; Lai, E. K. On minimum cost recovery from system deadlock. IEEE
Transactions on Computers 9, C-28 (1979), 671–677.

[72] Lokshtanov, D.; Marx, D.; Saurabh, S., et al. Lower bounds based on the
exponential time hypothesis. Bulletin of EATCS 3, 105 (2013).

References 88

[73] Maheshwari, M. K.; Bansal, A. Process resource allocation in grid computing
using priority scheduler. International Journal of Computer Applications (0975–
8887) 46, 11 (2010), 20–23.

[74] Misra, J.; Chandy, K. M. A distributed graph algorithm: Knot detection. ACM
Transactions on Programming Languages and Systems (TOPLAS) 4, 4 (1982), 678–
686.

[75] Niedermeier, R. Invitation to Fixed-Parameter Algorithms. OUP Oxford, 2006.

[76] Oliveira, M. d. O. Subgraphs satisfying mso properties on z-topologically order-
able digraphs. In International Symposium on Parameterized and Exact Computation
(2013), Springer, pp. 123–136.

[77] Oliveira, M. d. O. An algorithmic metatheorem for directed treewidth. Discrete
Applied Mathematics 204 (2016), 49–76.

[78] Oum, S.-I. Approximating rank-width and clique-width quickly. ACM Transactions
on Algorithms 5, 1 (2008), 10:1–10:20.

[79] Pachl, J. Deadlock avoidance in railroad operations simulations. In Transportation
Research Board 90th Annual Meeting (11-0175, 2011).

[80] Pachl, J. The deadlock problem in automatic railway operation. Signal und Draht.
Vol. 89, no. 1-2 (1997).

[81] Penso, L. D.; Protti, F.; Rautenbach, D.; dos Santos Souza, U. Complex-
ity analysis of P3-convexity problems on bounded-degree and planar graphs. Theo-
retical Computer Science 607 (2015), 83–95.

[82] Rabinovich, R.; Forschungsgebiet, L.-u. Complexity measures of directed
graphs. Tese de Doutorado, RWTH Aachen University, 2008.

[83] Ryang, D.-S.; Park, K. H. A two-level distributed detection algorithm of
AND/OR deadlocks. Journal of Parallel and Distributed Computing 28, 2 (1995),
149–161.

[84] Safari, M. A. D-width: A more natural measure for directed tree width. In
Mathematical Foundations of Computer Science 2005 (Berlin, Heidelberg, 2005),
J. Jȩdrzejowicz and A. Szepietowski, Eds., Springer Berlin Heidelberg, pp. 745–756.

[85] Satyanarayana, B.; Prasad, K. S. Discrete Mathematics and Graph Theory.
PHI Learning Pvt. Ltd., 2014.

[86] Singhal, M. Deadlock detection in distributed systems. Computer 22, 11 (1989),
37–48.

[87] Tanenbaum, A. S.; Woodhull, A. S. Operating systems: Design and Implemen-
tation, vol. 2. Prentice-Hall Englewood Cliffs, NJ, 1987.

[88] Terekhov, I.; Camp, T. Time efficient deadlock resolution algorithms. Informa-
tion Processing Letters 69, 3 (1999), 149–154.

