
UNIVERSIDADE FEDERAL FLUMINENSE

LUIZ ANTONIO DA PONTE JUNIOR

APPLYING DATA MINING TO PREDICT
POSTTRAUMATIC STRESS SYMPTOMS USING

PHYSIOLOGICAL SIGNALS

NITERÓI

2020



UNIVERSIDADE FEDERAL FLUMINENSE

LUIZ ANTONIO DA PONTE JUNIOR

APPLYING DATA MINING TO PREDICT
POSTTRAUMATIC STRESS SYMPTOMS USING

PHYSIOLOGICAL SIGNALS

Dissertação de Mestrado apresentada ao Pro-
grama de Pós-Graduação em Computação da
Universidade Federal Fluminense como re-
quisito parcial para a obtenção do Grau de
Mestre em Computação. Área de concen-
tração: Sistemas de Computação

Orientadora:
Profa. Débora Christina Muchaluat Saade, D.Sc.

Coorientador:
Prof. Alexandre Plastino de Carvalho, D.Sc.

NITERÓI

2020



Ficha catalográfica automática - SDC/BEE
Gerada com informações fornecidas pelo autor

Bibliotecário responsável: Sandra Lopes Coelho - CRB7/3389

P813a Ponte junior, Luiz Antonio da
  Applying Data Mining to Predict Posttraumatic Stress
Symptoms Using Physiological Signals / Luiz Antonio da Ponte
junior ; Débora Christina Muchaluat Saade, orientadora ;
Alexandre Plastino de Carvalho, coorientador. Niterói, 2020.
  109 f. : il.

  Dissertação (mestrado)-Universidade Federal Fluminense,
Niterói, 2020.

DOI: http://dx.doi.org/10.22409/PGC.2020.m.14854613750

  1. Mineração de dados (Computação). 2. Transtorno de
estresse pós-traumático. 3. Frequência cardíaca. 4.
Produção intelectual. I. Saade, Débora Christina Muchaluat,
orientadora. II. Carvalho, Alexandre Plastino de,
coorientador. III. Universidade Federal Fluminense. Instituto
de Computação. IV. Título.

                                      CDD -



Luiz Antonio da Ponte Junior

APPLYING DATA MINING TO PREDICT POSTTRAUMATIC STRESS
SYMPTOMS USING PHYSIOLOGICAL SIGNALS

Dissertação de Mestrado apresentada ao Pro-
grama de Pós-Graduação em Computação da
Universidade Federal Fluminense como re-
quisito parcial para a obtenção do Grau de
Mestre em Computação. Área de concen-
tração: Sistemas de Computação

Aprovada em Agosto de 2020.

BANCA EXAMINADORA

Profa. D.Sc. Débora Christina Muchaluat Saade -
Orientadora, UFF

Prof. D.Sc. Alexandre Plastino de Carvalho - Coorientador,
UFF

Profa. D.Sc. Flávia Cristina Bernardini, UFF

Prof. D.Sc. Alexandre Sztajnberg, UERJ

Profa. D.Sc. Leticia de Oliveira, UFF

Niterói
2020



Es ist nicht genug zu wissen - man muss auch anwenden. Es ist nicht genug zu wollen -

man muss auch tun (Johann Wolfgang von Goethe).



Acknowledgment

Maybe this is my favorite part of a dissertation because here we can be more personal,

letting the formalism aside. There are many people to thank. Probably I will write

some names and unfortunately I will forget some others. For those I forgot, my sincere

apologies.

First of all, I thank God for all I have and for being able to accomplish this work. I

also thank my parents and my family for all support, love, care and teachings.

I thank the professors of the Institute of Computing, especially professors Flávio

Seixas, Diego Passos (you are the most punctual professor I have ever met) and my advisers

professor Débora Saade and professor Alexandre Plastino for their patience, lessons, help,

criticisms and suggestions.

I am very grateful for all the help of the Biomedical Institute, especially Orlando

Fernandes and the super women of the Laboratory of Neurophysiology of Behavior: pro-

fessors Leticia Oliveira, Mirtes Pereira, Rita de Cássia Alves and Liana Lima Portugal

(you are absolutely the funniest person I met during the master’s degree).

I also want to thank my dear teachers Vinícius Leal, Márcia Monteiro, Verônica

Andrade, Laerte Theobald, Daniela Porto, Greta Schwankhaus, Kai Cohrs, Helga Küster,

Sabine Goertz, Jessica Remane (du bist eine der besten Personen, die ich kenne) and

Laura Olbrich. Your classes, lessons and advices brought me new perspectives and made

the learning more pleasant and enjoyable.

I must thank my friends for their support and for understanding my absence. I focused

and dedicated my time to the research and development of this work but even so our talks

were very important to reduce the stress and to maintain and strengthen our friendship.

Bruno Furtado (you are like an older brother to me), Mauro Amim, Márcia Amim, Eliane

Guilarducci, Christian Guilarducci, Alice Vieira, Mylla Coffaro, Julia Polzer, Екатерина

Маханькова, Mona Gehrke, Mandy Lindemann, Christina Sophia Matl, Roksana Długosz

and Katrin Rizzello (du bist eine unglaubliche Person), thank you very much for every-

thing. You are the best!



Acknowledgment vi

Lastly but not least, I want to thank my colleagues from MídiaCom Lab for the hints

and enjoyable time and conversations. And I also want to thank my dear professors

Renato Mauro, Glauco Amorim and Myrna Amorim for motivating and encouraging me

to apply for the master’s degree.

Our relatives, friends, professors and colleagues can teach us a lot of things. We can

daily learn with every person. Basically we learn how to do and also how not to do

something. That said, I thank every person that I met so far for teaching me always

something new. I also sincerely want to thank you for investing a little bit of your time

reading this work.

Thanks to CAPES, INCT-MACC, CNPq and FAPERJ for the financial support par-

tially provided during the research.



Resumo

O número de indivíduos portadores de algum transtorno psiquiátrico tem aumentado.
Muitos desses transtornos possuem alguns sintomas em comum e identificar tais sutilezas
não é uma tarefa rápida e trivial. Um diagnóstico equivocado faz com que indivíduos
despendam, muitas vezes, tempo e dinheiro com exames e remédios até que o correto
diagnóstico seja efetuado e o tratamento comece a surtir efeito. Visando auxiliar médicos
e especialistas a prescreverem diagnósticos mais eficientes e eficazes, diversos estudos e
trabalhos propõem a aplicação da computação às áreas da saúde. Através de análises
estatísticas, as áreas de Inteligência Artificial, Mineração de Dados, Aprendizagem de
Máquina e Reconhecimento de Padrões permitem identificar portadores de transtornos
e até mesmo candidatos a desenvolver futuramente tais transtornos. Uma vez identifi-
cados, tais indivíduos podem ser direcionados a exames e tratamentos mais específicos.
A aplicação da computação auxilia, portanto, no diagnóstico e também na prevenção do
desenvolvimento de transtornos. Este trabalho é direcionado ao Transtorno de Estresse
Pós-traumático (TEPT), cujos portadores vivenciaram algum evento traumático. Muitos
indivíduos vivenciam eventos traumáticos, contudo não desenvolvem o TEPT. O impacto
que estes eventos apresentam ao indivíduo influencia o desenvolvimento do transtorno.
O TEPT afeta tanto a vida pessoal quanto profissional de seus portadores, pois estes
podem evitar determinadas situações com receio de que possam vivenciar novamente o
trauma. A recordação de um evento traumático ocasiona alterações neurofisiológicas como
taquicardia, bradicardia e sudorese no corpo do indivíduo. Para auxiliar no diagnóstico e
no monitoramento do tratamento do TEPT uma das ferramentas utilizadas por médicos
consiste do uso de escalas. Uma destas escalas é o Posttraumatic Stress Disorder Checklist
(PCL), que avalia o grau de sintomas de TEPT. Este trabalho estuda a aplicação de técni-
cas de Mineração de Dados, como classificação e regressão, a sinais fisiológicos (frequência
cardíaca e condutância da pele) de indivíduos sobreviventes a eventos traumáticos para
a predição de valores da escala PCL. O melhor resultado obtido na classificação utilizou
o algoritmo SMO (com os valores de seus hiperparâmetros sugeridos pelo plugin Auto-
WEKA), aplicando a técnica SMOTE de balanceamento de classe para aumentar a classe
minoritária em 100%. Este resultado apresentou acurácia de 85,45% (p-valor = 0,001) e
as seguintes medidas para a classe minoritária: precision de 0,8 (p-valor = 0,001), recall
de 0,5714 (p-valor = 0,271) e F-Measure de 0,6667 (p-valor = 0,001). Na regressão, o
melhor resultado foi obtido com o algoritmo IBk (com k = 4) e apresentou coeficiente de
correlação igual a 0,4164 (p-valor = 0,001).

Palavras-chave: Mineração de Dados, Transtorno de Estresse Pós-traumático, Escala
PCL, Frequência Cardíaca e Condutância da Pele.



Abstract

The number of individuals diagnosed with some psychiatric disorder has increased. Many
of these disorders have common symptoms, and identifying such subtleties is neither a
quick nor a trivial task. Misdiagnosis often causes individuals to spend time and money
on tests and medicines until receiving the correct diagnosis and the treatment starts
to present some progress. Aiming at helping doctors and specialists to prescribe more
efficient and effective diagnoses, several scientific studies propose the application of com-
puting to healthcare. Through statistical analysis, the Artificial Intelligence (AI), Data
Mining (DM), Machine Learning (ML) and Pattern Recognition (PR) areas enable the
identification of disorder patients and even candidates to develop these disorders in the
future. Once identified, these individuals can be directed to more specific examinations
and treatments. The application of computing therefore helps in the diagnosis and also
in the prevention of disorder development. This work is directed to Posttraumatic Stress
Disorder (PTSD), in which its patients experienced some traumatic event. Many individ-
uals experience traumatic events, but they do not develop PTSD. The impact that these
events have on the individual influences the disorder development. PTSD affects both
personal and professional lives of its patients, as they may avoid certain situations for
fear that they may experience the trauma again. Recalling a traumatic event causes neu-
rophysiological changes such as tachycardia, bradycardia and sweating in the individual’s
body. To aid in the diagnosis and monitoring of PTSD treatment, one of the tools used by
physicians is the use of scales. One of them is the Posttraumatic Stress Disorder Checklist
(PCL), which assesses the degree of PTSD symptoms. This work studies the application
of DM techniques, such as classification and regression, to physiological signals (heart rate
and skin conductance) of survivors of traumatic events to predict the PCL scale values.
The best result obtained in the classification was obtained by SMO algorithm (with its
hyperparameters values suggested by the Auto-WEKA plugin), applying the class bal-
ancing technique SMOTE to increase the minority class by 100%. This result presented
accuracy of 85.45% (p-value = 0.001) and the following measures for the minority class:
precision of 0.8 (p-value = 0.001), recall of 0.5714 (p-value of 0.271) and F-Measure of
0.6667 (p-value = 0.001). In the regression, the best result was obtained by IBk (with k
= 4), presenting correlation coefficient equal to 0.4164 (p-value = 0.001).

Keywords: Data Mining, Posttraumatic Stress Disorder, PCL Scale, Heart Rate and
Skin Conductance.



List of Figures

2.1 The Knowledge Discovery from Data (KDD) process [24] . . . . . . . . . . 10

2.2 Interdisciplinarity of data mining [24] . . . . . . . . . . . . . . . . . . . . . 11

2.3 Discretizing by binning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Classification’s process [24] . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Example of a decision tree [24] . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.6 Example of pruning a decision tree [24] . . . . . . . . . . . . . . . . . . . . 19

2.7 Class prediction performed by the Random Forest algorithm . . . . . . . . 20

2.8 Hyperplane calculated by the SVM algorithm [24] . . . . . . . . . . . . . . 21

2.9 Transformation made by a kernel function . . . . . . . . . . . . . . . . . . 21

2.10 k-Fold Cross-Validation method . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1 Experiment visualization stage [2] . . . . . . . . . . . . . . . . . . . . . . . 46



List of Tables

2.1 Main scales related to PTSD symptoms described by DSM, according to

APA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Used cut-off points to determine the PCL classes . . . . . . . . . . . . . . 8

2.3 Confusion matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 Scales used in reviewed work . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Data type and applied techniques of reviewed work using PCL scale . . . . 42

4.1 Dataset independent attributes . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Number of bins for each attribute per fold determined by information gain 50

4.3 Number of bins for each attribute per fold determined by gain ratio . . . . 50

4.4 Number of bins for each attribute per fold determined by gini index . . . . 50

5.1 IBk results with non-discretized unbalanced dataset . . . . . . . . . . . . . 55

5.2 J48 results with non-discretized unbalanced dataset . . . . . . . . . . . . . 56

5.3 Naïve Bayes results with non-discretized unbalanced dataset . . . . . . . . 56

5.4 Random Forest results with non-discretized unbalanced dataset . . . . . . 56

5.5 SMO results with non-discretized unbalanced dataset . . . . . . . . . . . . 57

5.6 IBk results with discretized unbalanced dataset . . . . . . . . . . . . . . . 58

5.7 J48 results with discretized unbalanced dataset . . . . . . . . . . . . . . . 58

5.8 Naïves Bayes results with discretized unbalanced dataset . . . . . . . . . . 58

5.9 Random Forest results with discretized unbalanced dataset . . . . . . . . . 59

5.10 SMO results with discretized unbalanced dataset . . . . . . . . . . . . . . . 59

5.11 Attributes ranking for the information gain metric . . . . . . . . . . . . . 60

5.12 IBk results of attribute selection with discretized unbalanced dataset . . . 61



List of Tables xi

5.13 J48 results of attribute selection with discretized unbalanced dataset . . . . 61

5.14 Naïve Bayes results of attribute selection with discretized unbalanced dataset 61

5.15 Random Forest results of attribute selection with discretized unbalanced

dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.16 SMO results of attribute selection with discretized unbalanced dataset . . . 62

5.17 IBk results with non-discretized balanced dataset . . . . . . . . . . . . . . 63

5.18 J48 results with non-discretized balanced dataset . . . . . . . . . . . . . . 63

5.19 Naïves Bayes results with non-discretized balanced dataset . . . . . . . . . 64

5.20 Random Forest results with non-discretized balanced dataset . . . . . . . . 64

5.21 SMO results with non-discretized balanced dataset . . . . . . . . . . . . . 64

5.22 IBk results with discretized balanced dataset . . . . . . . . . . . . . . . . . 65

5.23 J48 results with discretized balanced dataset . . . . . . . . . . . . . . . . . 65

5.24 Naïve Bayes results with discretized balanced dataset . . . . . . . . . . . . 65

5.25 Random Forest results with discretized balanced dataset . . . . . . . . . . 66

5.26 SMO results with discretized balanced dataset . . . . . . . . . . . . . . . . 66

5.27 IBk results of attribute selection with discretized balanced dataset . . . . . 67

5.28 J48 results of attribute selection with discretized balanced dataset . . . . . 67

5.29 Naïve Bayes results of attribute selection with discretized balanced dataset 67

5.30 Random Forest results of attribute selection with discretized balanced dataset 68

5.31 SMO results of attribute selection with discretized balanced dataset . . . . 68

5.32 Results of Auto-WEKA suggested algorithm applied to each analysis . . . 69

5.33 Best results obtained with the cut-off point 44 using the non-discretized

dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.34 Best results obtained with cut-off point 44 using the discretized dataset . . 72

5.35 Results of Auto-WEKA suggested algorithm applied to each analysis with

cut-off point 44 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.36 Confusion matrix of the best result using the cut-off point 36 . . . . . . . . 74



List of Tables xii

5.37 Confusion matrix of the best result using the Auto-WEKA suggestion and

the cut-off point 36 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.38 Confusion matrix of the best result using the non-discretized unbalanced

dataset and the cut-off point 44 . . . . . . . . . . . . . . . . . . . . . . . . 75

5.39 Confusion matrix of the best result using the discretized balanced dataset

and the cut-off point 44 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.40 Confusion matrix of the best result using the Auto-WEKA suggestion and

the cut-off point 44 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.41 Best results using the cut-off points 36 and 44 . . . . . . . . . . . . . . . . 76

6.1 Regression analysis results in WEKA . . . . . . . . . . . . . . . . . . . . . 79

6.2 Regression analysis results in PRoNTo . . . . . . . . . . . . . . . . . . . . 80



List of Abbreviations

AI Artificial Intelligence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

APA American Psychological Association. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6

API Application Programming Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

ASDS Acute Stress Disorder Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

BDI Beck Depression Inventory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

CADSS Clinician-Administered Dissociative State Scale . . . . . . . . . . . . . . . . . . . . . . 41

CAPS Clinician-Administered PTSD Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6

CFS Correlation Based-Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

CGI Clinical Global Impression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

CV Cross-Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

DES Dissociative Experience Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

DM Data Mining. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

DSM Diagnostic and Statistical Manual of Mental Disorders . . . . . . . . . . . . . . . . 5

DTS Davidson Trauma Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

ECG Eletrocardiogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

EEG Electroencephalography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3

epsilon-SVR epsilon-Support Vector Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

FFT Fast Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

fMRI Functional Magnetic Resonance Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

FM F-Measure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27

FN False Negative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

FP False Positive. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25

GPR Gaussian Process Regression. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24

HAM-A Hamilton Anxiety Rating Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41



List of Abbreviations xiv

HAM-D Hamilton Depression Rating Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

HRV Heart Rate Variability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

HR Heart Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

HUAP Hospital Universitário Antônio Pedro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

IES Impact of Events Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

k-NN k-Nearest-Neighbor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

K6 Kessler Psychological Distress Scale 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

KDD Knowledge Discovery from Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

KRR Kernel Ridge Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

LR Linear Regression. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24

MAE Mean Absolute Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

MISS or M-PTSD Mississippi Scale for Combat-Related PTSD . . . . . . . . . . . . . . . . . . . . 6

ML Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

MPSS-SR Modified PTSD Symptom Scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6

MRI Magnetic Resonance Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

MSE Mean Squared Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

NB Naïve Bayes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

NR Number of Responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

NaN Not a Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

NeutralTDA Neutral Threat Directed Away . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

NeutralTDT Neutral Threat Directed Towards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

PANAS Positive and Negative Affect Schedule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

PANSS Positive and Negative Syndrome Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

PC-PTSD Primary Care PTSD Screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

PCA Principal Component Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

PCL Posttraumatic Stress Disorder Checklist. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

PDEQ Peritraumatic Dissociative Experiences Questionnaire . . . . . . . . . . . . . . . . 41

PRoNTo Pattern Recognition for Neuroimaging Toolbox . . . . . . . . . . . . . . . . . . . . . . . 4

PR Pattern Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2



List of Abbreviations xv

PSS PTSD Symptom Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

PTSD Posttraumatic Stress Disorder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Puk Pearson Universal Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

RF Random Forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

RMSE Root Mean Squared Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

RVR Relevance Vector Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

SCID-5 Structured Clinical Interview for DSM-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

SCID Structured Clinical Interview for DSM-IV. . . . . . . . . . . . . . . . . . . . . . . . . . . .41

SCL Symptom Checklist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

SC Skin Conductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

SIP or SI-PTSD Structured Interview for PTSD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6

SMOTE Synthetic Minority Oversampling Technique . . . . . . . . . . . . . . . . . . . . . . . . . 15

SMO Sequential Minimal Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

SPECT Single Photon Emission Computerized Tomography . . . . . . . . . . . . . . . . . . 37

SPRINT Short PTSD Rating Interview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

STAI State-Trait Anxiety Inventory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

SVM Support Vector Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

TDA Threat Directed Away . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

TDT Threat Directed Towards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

THQ Trauma History Questionnaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

TLEQ Traumatic Life Events Questionnaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

TN True Negative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

TOP-8 Treatment-Outcome Posttraumatic Stress Disorder Scale . . . . . . . . . . . . . . 6

TP True Positive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

UFF Universidade Federal Fluminense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

VA Veterans Affairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7



Contents

1 Introduction 1

1.1 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Dissertation Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 5

2.1 Posttraumatic Stress Disorder (PTSD) . . . . . . . . . . . . . . . . . . . . 5

2.2 Posttraumatic Stress Disorder Checklist (PCL) . . . . . . . . . . . . . . . . 7

2.3 Data Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5.1 Attribute Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5.2 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5.3 Class Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6.1 Decision Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.6.2 Naïve Bayes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6.3 Random Forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6.4 Support Vector Machine . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6.5 k-Nearest-Neighbor . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.7 Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.7.1 Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.7.2 Gaussian Process Regression . . . . . . . . . . . . . . . . . . . . . . 24



Contents xvii

2.7.3 Kernel Ridge Regression . . . . . . . . . . . . . . . . . . . . . . . . 24

2.7.4 Relevance Vector Regression . . . . . . . . . . . . . . . . . . . . . . 25

2.8 Metrics and Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.9 Validation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.10 Statistical Significance Test . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.11 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Literature Review 35

3.1 Demographic Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Image Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Physiological Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4 Molecular Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5 Scales Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.6 Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.7 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4 Dataset 43

4.1 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Supervised Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Classification 52

5.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2 Unbalanced Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2.1 Non-discretized Dataset . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2.2 Discretized Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2.3 Attribute Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 59



Contents xviii

5.3 Balanced Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3.1 Non-Discretized Dataset . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3.2 Discretized Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.3.3 Attribute Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.4 Auto-WEKA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.5 Using a Higher Cut-off Point . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.6 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6 Regression 77

6.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2 WEKA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.3 PRoNTo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.4 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7 Conclusion 82

7.1 Best Results and Contributions . . . . . . . . . . . . . . . . . . . . . . . . 82

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

References 86



Chapter 1

Introduction

The incidence of psychiatric disorders in our society has been increasing in recent years1.

During his lifetime, an individual may develop this kind of disorders. The loss of a loved

one, the stress experienced at work, being a victim of a robbery or witnessing it, are

examples of situations and factors that contribute to develop a psychiatric disorder.

Unlike a mere disease, where a simple consultation or examination is enough for a

patient to be diagnosed and his or her treatment be started, psychiatric disorders are

more complex to diagnose. Many disorders have symptoms in common, which requires

the patient to perform several tests until the proper diagnosis is reached. In contrast, not

all individuals are able to perform some exams, as these exams are often expensive or not

performed in the proximity where the individual lives.

One of the psychiatric disorders, and focus of study of this work, is Posttraumatic

Stress Disorder (PTSD). This disorder affects individuals who have experienced some

traumatic event in their lives. The impact of this event, that is, the way the individual

perceives and reacts to the event, is what contributes to the disorder development.

As with other disorders, PTSD triggers neurophysiological reactions in the individ-

ual’s body, such as blood pressure increase, skin conductance variability, tachycardia and

bradycardia – acceleration and deceleration of heart rate, respectively. When experiencing

events that refer to some past trauma, the individual is affected by such neurophysiological

reactions.

As one of its consequences, PTSD interferes with the daily lives of its patients, both

in their personal and professional lives, as they end up avoiding some situations for fear

that they may relive past trauma.
1https://www.who.int/news-room/fact-sheets/detail/mental-disorders

https://www.who.int/news-room/fact-sheets/detail/mental-disorders
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Correct diagnosis of PTSD, and any disorder, is critical to the efficiency and effec-

tiveness of treatment. However, the patient may spend a lot of time and money on

examinations and consultations until reaching a diagnosis. In addition, there are various

treatments, both in traditional medicine with the use of medicines and psychotherapies,

as well as in alternative medicine with acupuncture and animal-assisted therapy, targeted

to each specific type of disorder.

One of the tools employed by doctors and specialists to help diagnose PTSD is the

use of questionnaires that assess the degree of PTSD symptoms according to a predefined

scale. One of these scales is the Posttraumatic Stress Disorder Checklist (PCL), which

in its fourth version has three variants: PCL-M (military), developed for soldiers, PCL-C

(civilian), developed for civilians and PCL-S (specific), assigned to a specific traumatic

event [58]. The PCL scale selects possible PTSD patients, providing a provisional diag-

nosis, able to assist physicians and specialists. It can be used in follow-up treatment as a

way of assessing change and development of symptoms.

Like the diagnostic stage, finding the right treatment that produces positive results

is a task that requires time and commitment from the patient. Several researches and

works have proposed the application of computing to healthcare.

Computer science is present in many areas because of its capacity of cooperating with

them. For example, its application contributes to task automation and agility, error and

operating cost reduction, intelligent analysis and decision making, information discovery

and knowledge extraction, and performance improvement.

Computing areas such as Artificial Intelligence (AI), Data Mining (DM) and Pattern

Recognition (PR) have been shown to be highly effective in helping physicians and spe-

cialists to diagnose diseases and disorders, increasing the effectiveness of diagnostics, and

collaborating to discover indicators (biomarkers) that trigger the diseases and disorders

development, thereby helping their prevention.

Some studies, for example, apply AI techniques to identify the existence of a correla-

tion between health data from individuals diagnosed with PTSD, or who have experienced

a traumatic event, and scale values that assess PTSD symptoms [29, 30, 48].

Thus, such studies not only help the diagnosis and prevention of diseases and dis-

orders, but also propose new mechanisms capable of identifying their symptoms. These

mechanisms are usually simpler and more economical, which makes diagnosis possible for

individuals who cannot afford the costs of certain tests.
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As mentioned, two of the neurophysiological reactions triggered by PTSD (tachycardia

and bradycardia) are related to the Heart Rate Variability (HRV) of the individual. Skin

conductance (sweating) is strongly related to heart rate, so altering the latter implies

increasing or decreasing the former.

In addition to therapies, there are several exams to diagnose PTSD. However, some of

these exams are not accessible to many PTSD patients. Two factors related to accessibility

are the cost and the distance between the place where the individual resides and the clinic

or laboratory where the exam is performed. Therefore, the use of physiological signals in

the prediction of PTSD symptom scales can be a viable alternative to more complex and

expensive exams (e.g., Magnetic Resonance Imaging (MRI) and Electroencephalography

(EEG)), considering that such signals can be collected non-invasively and with low-cost

sensors. In addition, using this kind of signals also allows remote patient monitoring that

sometimes can be more convenient to patients or healthcare teams.

An experiment conducted at the Biomedical Institute of Universidade Federal Flumi-

nense (UFF) collected the physiological signals of Heart Rate (HR) and Skin Conduc-

tance (SC) of civilian volunteers who experienced traumatic events related to violence

[2, 3]. The signals were collected during the visualization of emotional and neutral stimuli

images and, at the end, the volunteers were asked to complete the PCL-C scale question-

naire. The correlation between those collected signals and the PCL-C score was analyzed

to evaluate the possibility of finding future PTSD biomarkers.

1.1 Goals

This work studies the PCL-C scale values prediction through physiological data collected

in the Biomedical Institute’s experiment with civilian volunteers and aims at evaluating

the existence of a correlation between physiological signals and PCL-C scale values. Be-

cause these signals are easy to collect, that is, the sensors used are inexpensive, small in

size and non-invasive, their use can be an affordable and viable alternative to existing

PTSD examinations.

Hence, the possibility of predicting PTSD traits (measured by the score of the PCL-C

scale), using physiological signals and applying DM techniques (e.g., classification and

regression algorithms), is analyzed in this work. In addition, DM techniques such as

supervised discretization, attribute selection and class balancing were applied in order

to improve the performance of the prediction models employed. In order to support our
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analysis, two algorithms were implemented for the WEKA software [63]: the permutation

test algorithm and a brute force algorithm for supervised discretization.

The permutation test algorithm evaluates the statistical significance of the results

obtained in classification and regression analyses. To calculate the significance of a result,

the algorithm performs n iterations, randomly shuffling the dependent attribute (i.e., the

attribute that will be predicted) values among the training set instances before executing

classification and regression algorithms. Comparing how many results obtained with

shuffled data are better than those obtained with original data (not shuffled data), this

concept evaluates if a result was not obtained by chance.

The brute force algorithm for supervised discretization (see Section 4.3) is presented

as another way to discretize numeric attributes, solving the problem found with WEKA

supervised discretization algorithm [19], where all the attribute values of the dataset used

in this work were placed into a single bin.

1.2 Dissertation Structure

The remaining of the text is structured as follows. Chapter 2 discusses the main concepts

of health and computing areas used in this work, covering DM techniques and their

algorithms, as well as metrics, outcome measures, validation and statistical significance

(permutation test and its implementation made) methods.

Chapter 3 deals with a review of the literature, presenting the main techniques and

scales employed. Studies are grouped by the type of used data.

Chapter 4 describes the dataset used in this work and explains how data acquisition

was performed in the Biomedical Institute experiment. This chapter also discusses the

problem found with existing discretization algorithms and presents the implementation

of a brute force algorithm for supervised discretization.

Chapter 5 discusses the results obtained with the WEKA [63] classification algorithms

employed, along with the applied DM techniques: supervised discretization, attribute

selection and class balancing.

Chapter 6 discusses the results obtained with the regression algorithms usingWEKA [63]

and Pattern Recognition for Neuroimaging Toolbox (PRoNTo) [49] softwares.

Chapter 7 presents the conclusions obtained, along with the contributions of this work.

In this chapter, future work is also discussed.



Chapter 2

Background

The main concepts used in this work are presented in this chapter. Sections 2.1 and

2.2 respectively contextualize Posttraumatic Stress Disorder and the PCL scale used to

measure the degree of symptoms of this disorder. Section 2.3 covers the DM area, followed

by Section 2.4 that discusses Machine Learning (ML). Section 2.5 presents the data

preprocessing techniques. Sections 2.6 and 2.7 explain the classification and regression

concepts respectively, together with the algorithms used in this work. Section 2.8 presents

the metrics and measures employed in this work to evaluate the prediction capacity of

the generated models. Sections 2.9 and 2.10 respectively explain how the validation and

statistical significance assessment methods are made.

2.1 Posttraumatic Stress Disorder (PTSD)

PTSD is included in the Diagnostic and Statistical Manual of Mental Disorders (DSM) [4],

published by the American Psychiatric Association. According to the DSM, PTSD is a

psychiatric disorder that can develop in people who have experienced or witnessed a

traumatic event.

Although PTSD became better known during the First and Second World Wars, it

does not only affect military and war veterans. Approximately 3.5% of United States (US)

adults have PTSD and it is estimated that one in 11 people will be diagnosed with PTSD

throughout their lifetime. Also, women are two times more likely to be affected by this

disorder1.

It is important to notice that not all the people who experience a traumatic event
1https://www.psychiatry.org/patients-families/ptsd/what-is-ptsd

https://www.psychiatry.org/patients-families/ptsd/what-is-ptsd
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develop PTSD. The impact and the number of occurrences of the event experienced

are linked to the disorder’s development. For a person to be diagnosed with PTSD, its

symptoms must last for more than one month and persist for a long time (months and

even years). In addition, PTSD often occurs in conjunction with other conditions such

as depression, anxiety and stress disorders, chemical and alcohol abuse, and memory

problems [4].

To diagnose PTSD, physicians and specialists make use not only of interviews with

patients in order to obtain reports about the event, but also of specific scales developed

to evaluate and measure the symptoms presented by the patient. Table 2.1 presents the

main scales applied according to American Psychological Association (APA)2 and based

on the PTSD symptoms described by DSM.

Table 2.1: Main scales related to PTSD symptoms described by DSM, according to APA

Type Scale Name
Interviews Clinician-Administered PTSD Scale (CAPS) for DSM-5
Interviews PTSD Symptom Scale (PSS) Interview for DSM-5
Interviews Structured Clinical Interview for DSM-5 (SCID-5)
Interviews Structured Interview for PTSD (SIP or SI-PTSD)
Interviews Treatment-Outcome Posttraumatic Stress Disorder Scale (TOP-8)

Self-Report Instruments Davidson Trauma Scale (DTS)
Self-Report Instruments Impact of Events Scale (IES) – Revised
Self-Report Instruments Mississippi Scale for Combat-Related PTSD (MISS or M-PTSD)
Self-Report Instruments Modified PTSD Symptom Scale (MPSS-SR)
Self-Report Instruments PCL for DSM-5
Self-Report Instruments PSS Self-Report Version
Self-Report Instruments Short PTSD Rating Interview (SPRINT)

PTSD patients often have intrusive thoughts and feelings related to the event experi-

enced. By reliving the event through memories or even similar situations, several neuro-

physiological reactions are triggered, causing variations in heart rate, skin conductance,

and blood pressure, for example. Because of this, PTSD patients can avoid situations or

people that remind them of their experiences during the traumatic event [4].

According to the fith revision of DSM (DSM-5), PTSD symptoms fall into four cate-

gories and may vary in severity. Those four categories are1:

1. Intrusive thoughts like repetitive and involuntary memories, nightmares and flash-

backs;
2https://www.apa.org/ptsd-guideline/assessment/

https://www.apa.org/ptsd-guideline/assessment/
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2. Avoidance of people, places, activities, objects or situations related to the trauma

experienced;

3. Negative thoughts and feelings about others and themselves;

4. Reactive symptoms such as anger, irritability and concentration problems.

Just as not all people who have experienced traumatic events develop PTSD, not all

PTSD patients require psychiatric treatment, as for some people the symptoms subside

or disappear over time. However, many patients still need professional treatments such

as psychotherapies and medications to recover from the disorder.

2.2 Posttraumatic Stress Disorder Checklist (PCL)

The PCL scale is an instrument developed by the Veterans Affairs (VA) National Center

for PTSD3 that screens potential PTSD patients and provides a provisional diagnosis to

assist physicians and specialists. The PCL scale can also be used to monitor the change

and development of symptoms during and after treatment [58].

The PCL scale is based on the PTSD symptoms described by DSM [4]. As DSM is

revised, the PCL scale is also often updated. Currently the latest version of the PCL scale

is the PCL-5 [59], resultant of the fifth DSM revision. In this work, however, the PCL-4

scale, referring to the fourth revision of DSM (DSM-IV), is used.

As explained in Chapter 1, the PCL-4 scale has three variations: PCL-C for civilians,

PCL-M for soldiers, and PCL-S for a specific event. The current scale of PCL (PCL-5)

does not have these three variations. Due to the reformulation of the number of items

in the PCL-5 scale, the scores are not compatible with the previous version (PCL-4) and

cannot be used alternately.

In this work, the PCL-C version 4 is used. This scale is composed of a questionnaire of

17 questions related to problems and complaints that people usually present in response

to an experienced trauma. For each question, the participant evaluates a problem that

occurred in the month prior to the questionnaire application, defining a score from 1 to

5, where 1 corresponds to the lowest degree of discomfort caused by the problem and 5

corresponds to the highest degree. Hence, the minimum score that can be obtained is

17, for the scenario where an individual assigns the value 1 to all the 17 questions and,
3https://www.ptsd.va.gov/professional/assessment/adult-sr/ptsd-checklist.asp

https://www.ptsd.va.gov/professional/assessment/adult-sr/ptsd-checklist.asp
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the maximum score that can be obtained is 85, when assigning the value 5 to all the 17

questions.

As explained, the scale values range from 17 to 85, and according to the VA National

Center for PTSD, there are studies that suggest certain cut-off points to meet PTSD

classification or identification criteria for provisional diagnoses [5]. Lower cut-off points

are indicated for criteria that wish to maximize detection of possible PTSD cases. Higher

cut-offs are indicated to minimize false positives.

Table 2.2 informs the suggested range of cut-off points for each criterion4. In this

work, value 36 is used as the cut-off point. That is, values greater than or equal to 36

indicate possible PTSD patients (i.e., belonging to class high).

Table 2.2: Used cut-off points to determine the PCL classes

Typical Setting Suggested PCL Cut-off Point Scores
Department of Defense screening,

civilian primary care, general population samples 30-35

Specialized medical clinics,
VA primary care 36-44

civilian specialty mental health clinics,
VA primary care 45-50

To monitor patient progress in their treatment, evidence suggests that a 5-10 point

change in the PCL-4 score result indicates a response to treatment and a 10-20 point

change indicates that patient progress is significant [38]. Therefore, VA National Center

for PTSD recommends using value 5 for change as the minimum threshold to determine

if the individual has responded to treatment and value 10 as the minimum threshold to

determine if progress has been significant.

2.3 Data Mining

A huge amount of data is produced and collected daily. Analyzing this data is an im-

portant process for extracting and discovering information. The rapid growth of data

production and storage exceeds the human capacity to understand and analyze data. As

a result, decisions are made, often by intuition and previous experience, regardless of the

information that this large amount of data carries. It is therefore necessary to use more

powerful and appropriate tools and techniques to extract information from data [24].
4https://www.ptsd.va.gov/professional/assessment/documents/PCL_handoutDSM4.pdf

https://www.ptsd.va.gov/professional/assessment/documents/PCL_handoutDSM4.pdf
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A commonly used term for data information acquisition is Knowledge Discovery from

Data (KDD). Many people treat DM and KDD as synonyms, while others treat DM as

an essential step in KDD. Figure 2.1 illustrates the KDD process. KDD consists of the

iterative sequence of the following steps:

1. Data cleaning: removes noise and inconsistencies;

2. Data integration: multiple data sources (e.g., datasets) can be combined;

3. Data selection: data relevant to the analysis are selected from datasets;

4. Data transformation: transforms and consolidates data into suitable forms for the

mining process;

5. Data mining: smart methods are applied to extract information and patterns from

data;

6. Pattern evaluation: identifies relevant and interesting patterns;

7. Knowledge presentation: the extracted knowledge is presented through visualization

and data representation techniques.

DM can be applied to various types of data, such as relational datasets, data ware-

houses, transactional datasets, temporal and sequential data, media data (e.g., text, au-

dio, video and image) and spatial data, for instance. There are some features of DM that

specify the types of patterns to be found in the analysis:

• Characterization and Discrimination: data can be associated with classes or con-

cepts that define them;

• Discovery of frequent patterns, associations and correlations: patterns that occur

frequently in a dataset and that may contribute to the increase or reduction of the

occurrence of certain data;

• Classification: process to find a model that can describe and distinguish data classes;

• Regression: statistical process often used for numerical data prediction;

• Clustering: data is grouped into clusters based on the principle of similarity;

• Outlier Detection Analyses: find data that does not match the overall behavior of

the data.
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Figure 2.1: The Knowledge Discovery from Data (KDD) process [24]
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Data mining analyses can be divided into two categories: descriptive and predictive.

Descriptive analyses are concerned with the characterization of data properties. Predictive

analyses perform inductions in order to make predictions. In this work, predictive analyses

are used. Section 2.6 discusses the classification approach and Section 2.7 discusses the

regression approach.

DM, as an interdisciplinary area, uses techniques from other domains, as illustrated

by Figure 2.2. Two of these strongly connected domains with DM are Statistics and

ML. A statistical model consists of mathematical functions that describe the behavior

of objects and their associated probabilistic distributions. Statistical models can be used

to perform data predictions and validate the significance of the results (e.g., permutation

test, discussed in Section 2.10). ML will be covered in Section 2.4.

Figure 2.2: Interdisciplinarity of data mining [24]

2.4 Machine Learning

ML uses intelligent algorithms and techniques to generate models that enable the com-

puter to learn complex patterns and make intelligent decisions based on data. ML has

the following learning approaches [24]:
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• Supervised learning: during learning, data is divided into training and testing par-

titions. This type of approach uses labeled data in its training partition;

• Unsupervised learning: often treated as a synonym for clustering, this approach

uses unlabeled data;

• Semi-supervised learning: this approach uses both data types from previous ap-

proaches (labeled and unlabeled). Labeled data is used to learn class models, while

unlabeled data is used to refine the class boundaries learned by these models;

• Active learning: is an approach in which the user actively participates in the learning

process. The system may require the user to label some data to improve model

quality.

2.5 Data Preprocessing

Data preprocessing consists of KDD steps 1 through 4. Often data need to be preprocessed

before applying DM. However, there are times when preprocessing is performed as a way

to optimize the performance of models created by DM. As explained in Section 2.3, KDD

steps are iterative, and it may be necessary to perform them more than once before getting

the final result. This section will cover three preprocessing techniques used in this work:

attribute selection (or feature selection), discretization and class balancing.

2.5.1 Attribute Selection

A dataset can contain hundreds of attributes, many of these attributes may be irrelevant

or redundant for DM analysis. For example, in a prediction analysis of diabetes patients,

the attributes regarding the patient’s address and telephone number are irrelevant to the

diabetes prediction. However, the attributes related to the blood glucose and cholesterol

level are relevant to this example of analysis.

While it is possible for an application domain expert to select important attributes

and exclude attributes that are irrelevant to analysis, this is not always a trivial task

because of the complexity and amount of attributes that a dataset may have.

Excluding relevant attributes or maintaining irrelevant attributes may impair the

algorithm employed in the analysis, generating poor quality results. Additionally, a large

number of irrelevant or redundant attributes can slow down the process.
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Attribute selection aims at finding a minimum subset of attributes that have a prob-

ability distribution of classes as close as possible to the original distribution when using

all attributes.

For a dataset of n attributes there are 2n possible subsets. In order not to calculate

all possible subsets, there are heuristic methods that exploit a narrow search space whose

strategy is to make the optimal local choice, hoping it will lead to the optimal over-

all solution. Attributes that will be added or removed from the subset are determined

through metrics and evaluation measures such as entropy and information gain, explained

in Section 2.8.

One of the attribute selection methods available in WEKA [63] is the ranking search

method called Ranker, which can use, for example, the information gain measure to

evaluate the attributes. A ranking is obtained by sorting the attributes according to their

evaluation.

In this work, the Ranker search method uses the information gain metric and is

applied in each training partition, generating a ranking for each one of them.

To determine which independent attribute subset will be selected for each training

and its corresponding test partition, successive classification analyses with the algorithms

described in Chaper 5 are performed. These classification analyses are made as follows:

using only the first independent attribute of each ranking; using only the first and second

independent attributes of each ranking; and so on until using the first n− 1 independent

attributes of each ranking, where n is the number of dataset independent attributes.

After performing the classification analyses, the attribute subset, which presents the

highest accuracy, is selected. If there are two or more subsets presenting the highest ac-

curacy, then the subset, which contains the fewest amount of attributes, will be selected.

For example, in a dataset with ten independent attributes, the highest accuracy in av-

erage could be obtained using the first seven independent attributes of each ranking. In

this example, applying the attribute selection in each training and its corresponding test

partition would keep the first seven independent attributes of their corresponding ranking

and remove the other independent attributes.

2.5.2 Discretization

Discretization is a form of data transformation, corresponding to the fourth KDD step,

discussed in Section 2.3. One of the discretization goals is to make the mining process
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more efficient. In addition, the patterns found are more intelligible.

The applied discretization technique is categorized according to the use of attribute

class information. If the discretization process uses class information, then it is a super-

vised discretization. Otherwise it is an unsupervised discretization.

In supervised discretization, the class distribution information is used to calculate

and determine the split-points for delimiting attribute ranges. The idea is to determine

split-points so that a resulting range contains as many instances of the same class as

possible. One of the commonly used measures in supervised discretization is the entropy.

A supervised discretization algorithm selects a value as a split-point for an attribute that

generates a class distribution with the minimum entropy. Then the algorithm recur-

sively repeats this process of minimum entropy evaluation to the resulting intervals, until

matching a stopping criterion.

Discretization, besides being a form of data transformation, is also a form of data

reduction, because the raw values of a numeric attribute are replaced by a smaller set of

intervals. The original data is transformed into a smaller number of ranges, simplifying the

dataset and making the process more efficient and its found patterns easier to understand

[24].

One of the forms of discretizing an attribute is the binning discretization. In this

form, the values of an attribute are sorted and distributed into bins. The distribution

into bins is done by consulting the neighboring (adjacent) values of each value. There are

some binning techniques, like [24]:

• Equal-frequency binning: each bin has the same amount of values;

• Equal-width binning: all bins have the same size, i.e., the difference between the

minimum and maximum values of each bin is constant.

These binning discretization techniques perform an unsupervised discretization be-

cause they do not use attribute class information. The binning discretization allows to

specify the desired number of bins. Figure 2.3 illustrates the binning techniques explained.
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Figure 2.3: Discretizing by binning

2.5.3 Class Balancing

Data imbalance is observed when the number of instances per class is not well distributed.

Two techniques used to address the data imbalance problem are oversampling and un-

dersampling. The Synthetic Minority Oversampling Technique (SMOTE) algorithm ad-

dresses the problem of data imbalance by using the oversampling technique.

In the oversampling technique applied by SMOTE, synthetic (artificial) instances

belonging to the minority class are created and added to the dataset. The attributes of

these instances have values close to the values of the actual instances belonging to the

minority class [10].

In the undersampling technique, some instances of the majority class are removed

from the dataset in order to reduce the difference in the number of instances of each

existing class.

Since the total of instances in the dataset is small, the oversampling technique applied

by the SMOTE algorithm was used in this work to increase the number of minority class

instances.

2.6 Classification

Classification is a type of data analysis that creates models capable of describing data

classes, consisting of categorical (nominal) attributes. These models are called classi-

fiers and can predict the instance class (also called dependent attribute) of a dataset.

Classification models therefore predict categorical values (classes). Problems involving

numerical value prediction are addressed by regression analysis, which will be explained

in Section 2.7.
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The classification analysis consists of two steps: the learning step and the prediction

step. During the learning step, a classifier is constructed by analyzing a subset of the

original dataset, called a training set or training partition. Each instance (tuple) of the

training partition has, in addition to its attributes, a predefined class. The classifier is

responsible for assigning the class value to the instance. This learning step can also be

viewed as a discovery of a rule set or a y = f(x) function that maps an instance x to a

class y, resulting in its prediction. By knowing the class information (values) during this

step, the classification analysis is also part of supervised learning.

During the prediction step, the classifier constructed and trained in the learning step

is used to perform class value predictions of new instances. In this step, the classifier will

make predictions on a test set or test partition, made up of the original dataset instances

that were not in the training partition. Thus, it is possible to correctly evaluate the

prediction performance of the classifier, since it has not previously used these instances

in its learning step.

Figure 2.4 illustrates the process of classification analysis, covering the two steps. In

the first part (a) of this figure, a classification algorithm analyzes the training data and

the classifier (learned model) is represented in the form of classification rules. In the

second part (b), the test data are used to evaluate the predictive power of the classifier.

If this predictive capacity is considered admissible, the learned rules can be applied to

classify new data (i.e., future data instances for which the class is unknown).

The algorithms employed in the classification analyses presented in Chapter 5 will be

covered in this section. The purpose of this section is to provide an overview of how each

algorithm works.
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Figure 2.4: Classification’s process [24]



2.6 Classification 18

2.6.1 Decision Tree

The Decision Tree algorithm generates a model based on the known instances of the

training partition. This model has a flowchart with a tree structure that is intuitive and

easy to understand. In this structure, each inner node represents a test on an attribute,

each branch represents a test result, and each final node (leaf node) represents a class.

To predict the class value of an instance I of the test partition, a path is traced from the

root to one of the tree leaves, which contains the predicted class of instance I. Figure 2.5

illustrates a decision tree [24].

Figure 2.5: Example of a decision tree [24]

When a decision tree is built, many branches may reflect noise and outlier anomalies,

making the tree unintelligible. Tree pruning methods use statistical measures to remove

less reliable branches. These methods have a tendency to generate smaller and less com-

plex trees, which are better for correctly classifying test partition instances. Figure 2.6

illustrates a decision tree before and after applying a pruning method.

In WEKA software, one of the decision tree implementations is the J48 algorithm.

The J48 algorithm has the confidenceFactor (CF) and the unpruned parameters, related

to the decision tree pruning. The variation of their values will be explained and discussed

in Chapter 5.
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Figure 2.6: Example of pruning a decision tree [24]

2.6.2 Naïve Bayes

Bayesian classification algorithms such as Naïve Bayes (NB) are statistical classifiers that

are based on the Thomas Bayes Theorem. These algorithms predict the probability of an

instance I to belong to a class C. For this, the NB algorithm makes use of conditional

class independence, in which it assumes that the effect of an attribute on a C class is

independent of the values of the other attributes. The algorithm then calculates the

probability that an instance I belongs to each of the dataset classes. It then assigns the

instance I to the class with the highest probability [28].

2.6.3 Random Forest

The Random Forest (RF) algorithm belongs to the ensemble paradigm. This method

consists of a composite model, constructed by combining classifiers. The prediction of an

instance class is performed through the vote of each classifier. At the end of the vote, the

most voted class is then assigned to the instance. The RF algorithm, as its name suggests,

consists of a model composed of several decision trees. In this model, each decision tree

is generated using a random selection of attributes on each node and a random selection

of the training instances. During classification, each decision tree votes based on its set

of rules from its tree structure and the most voted class is assigned to the instance by the

model [9]. Figure 2.7 illustrates how the RF algorithm predicts the class of an instance.
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Figure 2.7: Class prediction performed by the Random Forest algorithm

In WEKA, the RF implementation has the numIterations (NI) parameter, related to

the amount of decision tree models built that will vote. The variation of its values will

be explained and discussed in Chapter 5.

2.6.4 Support Vector Machine

The Support Vector Machine (SVM) looks for the optimal linear hyperplane that separates

instances belonging to one class from another, as illustrated by Figure 2.8. SVM finds

the hyperplane using support vectors (i.e., training instances located on the edges of each

cluster), calculating the margin width ("Large margin" in Figure 2.8) according to the

distance between the support vectors. The midpoint between them is commonly used as

the threshold.
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Figure 2.8: Hyperplane calculated by the SVM algorithm [24]

Sometimes it is not possible to separate classes using lines (in case of two-dimensional

data) or planes (in case of three-dimensional data). By applying the SVM algorithm in

situations where classes are not linearly separable, SVM applies a kernel function, which

transforms the original data from the training partition into a higher dimensional space

where a hyperplane can separate the classes. Figure 2.9 illustrates the transformation

performed by a kernel function.

Figure 2.9: Transformation made by a kernel function5

The transformation performed by the kernel function is known as the kernel trick
5https://www.hackerearth.com/blog/developers/simple-tutorial-svm-parameter-tuning-

python-r

https://www.hackerearth.com/blog/developers/simple-tutorial-svm-parameter-tuning-python-r
https://www.hackerearth.com/blog/developers/simple-tutorial-svm-parameter-tuning-python-r
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and it also works as a tool to reduce hyperplane calculation complexity. Although the

execution of this algorithm may be slow due to its complexity, it is usually highly accurate.

In addition, SVM can be used for both numeric and categorical prediction [26, 31, 53, 54].

SVM algorithm has the kernel parameter, responsible to determine the kernel function

that will be applied. Another parameter is the C parameter, known as the regularization

parameter because it controls the trade-off between penalizing misclassifications and the

margin width. Like the algorithms have their parameters, the kernels have also their own

parameters, which were varied only by suggestion of Auto-WEKA plugin [32, 55]. The

variation of their values will be explained and discussed in Chapter 5.

Furthermore, in numeric prediction, i.e., regression analysis, the SVM algorithm uses

a ε-insensitive hinge loss function, which is a loss function that uses the ε value to define

a margin of tolerance to penalize errors. The higher the value of ε, more errors will be

admited, i.e., less penalty is given to errors [17, 54].

2.6.5 k-Nearest-Neighbor

The algorithms discussed so far are examples of the eager learning approach. In this

approach, the algorithms build a classification model before receiving new instances to

classify (test partition). The k-Nearest-Neighbor (k-NN) algorithm, on the other hand,

belongs to the lazy learning approach. In this other approach, the algorithm stores the

training partition instances and upon receiving a test partition instance, it predicts its

class. The k-NN, for example, performs the prediction based on the similarity of previously

stored training instances. Algorithms that use the lazy learning approach are more costly

when making a prediction because they do not build models, and all calculations need to

be performed each time a new instance needs to be predicted [24].

The k-NN algorithm stores training instances, described by n attributes. Thus, each

instance represents a point in a pattern space of n dimensions. When receiving a test

instance I, k-NN searches for the k training instances in the pattern space that are closest

to the test instance. In classification, the prediction is made according to the most

common class among the k -nearest neighbors (k training instances). In regression, the

predicted value of the dependent attribute is obtained calculating the average of the k -

nearest neighbors dependent attribute values. Thus, the k-NN algorithm can be used in

both classification analysis and regression analysis [1].

The similarity or closeness is calculated through a distance metric, such as Euclidean
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distance. The analyses performed with the k-NN algorithm (see Chapter 5) used the Eu-

clidean distance and its formula is explained in Equation 2.1. In the formula, X1 and X2

represent two instances with their n attributes. For each numeric attribute, the difference

between the corresponding values of that attribute in those two instances is calculated,

then squared and accumulated. Lastly, the square root of the accumulated total is calcu-

lated. When the attribute is nominal, the difference between the corresponding values of

that attribute in those two instances will be zero if the values are equal and 1 otherwise.

distance(X1, X2) =

√√√√ n∑
i=1

(x1i − x2i)2 (2.1)

Usually the values of each attribute are normalized before applying Equation 2.1. This

normalization prevents large ranges attributes outweighing smaller ranges attributes. It

transforms a numeric value v of an attribute A into a value v’ in the range [0,1], as shown

in Equation 2.2. minA and maxA are respectively the minimum and maximum values of

attribute A.

v′ =
v −minA

maxA −minA

(2.2)

In WEKA, the implementation of k-NN (called IBk) has the k parameter, which refers

to the number of training instances, searched in a pattern space, that are closest to the

test instance. The variation of its values will be explained and discussed in Chapter 5.

2.7 Regression

Regression is a type of statistical methodology also used in DM to perform numerical

value predictions. Similar to classification analysis, regression analysis is also composed

of two steps: learning step and prediction step, as described in Section 2.6. What differs

between the two types of analysis is that in regression analysis, the dependent attribute

to be predicted has a numeric value rather than a nominal or categorical value (class).

And the constructed model consists, in general, of a mathematical function generated

based on the known values of the training partition. In the prediction step, the model

uses the generated mathematical function to perform the prediction of the new instance

dependent attribute value.

The algorithms employed in the regression analysis of Chapter 6 will be discussed in
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this section. The purpose of this section is to provide an overview of how each algorithm

works. Importantly, the k-NN and SVM algorithms explained in Section 2.6 are also

used in regression analyses because they are able to predict both nominal and numeric

attributes.

2.7.1 Linear Regression

The Linear Regression (LR) algorithm models the variable to be predicted (dependent

attribute) y as a linear function of the dataset x independent attributes using the following

Equation 2.3:

y = wx+ b (2.3)

In this equation, y and x are respectively the dataset dependent and independent

attributes, w is the regression coefficient and b is the stochastic component (often referred

to noise), which represents possible errors and deviations [24].

2.7.2 Gaussian Process Regression

The Gaussian Process Regression (GPR) algorithm consists of a Bayesian approach that

uses a collection of random variables, which have a Gaussian distribution, to infer the

probability distribution of a regression function. Rather than calculating the probability

distribution of the parameter values in a specific function, GPR infers the probability

distribution over all applicable functions that fit the data. GPR identifies the relationships

between data through Bayesian inference. This algorithm uses the lazy learning approach

and a kernel function to identify patterns and perform prediction [61, 50, 62].

2.7.3 Kernel Ridge Regression

The Kernel Ridge Regression (KRR) algorithm learns a linear function inferred from the

kernel used. Nonlinear kernels produce nonlinear functions. The way the prediction model

is built by KRR resembles the SVM algorithm process. The difference is that KRR uses

the error squared loss function [60].
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2.7.4 Relevance Vector Regression

The Relevance Vector Regression (RVR) algorithm is proposed in [56] as an evolution of

the SVM algorithm. RVR builds a model of the same functionality as the model generated

by the SVM algorithm. However, it uses fewer support vectors and fewer kernel functions

for faster execution.

2.8 Metrics and Measures

After creating a model, an evaluation of its predictive ability is desired. Moreover, more

than one model is often created by choosing different algorithms and parameters, and it

is desired to compare the performance of these models in order to select the best or best

set of models.

The dataset used in this work will be described in detail in Chapter 4. However to

explain the metrics and how to calculate them, the dataset class attribute can be used as

example. The class attribute of the dataset is called PCL and contains two classes: high

and low. Out of the 55 instances present, 14 belong to the high class and 41 belong to

the low class. Here are six important terms that are used to calculate various metrics:

1. Positive tuples (P): refers to tuples (instances) of the class of interest. In this

example, using the high class as the interest class, P corresponds to the 14 instances

of the high class;

2. Negative tuples (N): refers to tuples (instances) that do not belong to the class of

interest. In this example, using the high class as the interest class, N corresponds

to the 41 instances of the low class;

3. True Positive (TP): refers to positive instances that have been correctly classified

as belonging to the interest class. In the example, they correspond to instances of

the high class that were correctly classified as belonging to the high class;

4. True Negative (TN): refers to negative instances that were correctly classified as

not belonging to the interest class. In the example, they correspond to instances of

the low class that were correctly classified as belonging to the low class;

5. False Positive (FP): refers to negative instances that have been classified as positive.

In the example, they correspond to instances of the low class that were wrongly

classified as belonging to the high class;
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6. False Negative (FN): refers to positive instances that have been classified as neg-

ative. In the example, they correspond to instances of the high class that were

wrongly classified as belonging to the low class.

These terms are presented in the confusion matrix, which is used as an easily un-

derstood tool to evaluate the prediction of different classes performed by the classifier.

The main diagonal of the matrix (TP and TN) indicates that the classifier is correctly

classifying the instances, while the secondary diagonal (FN and FP) indicates the oppo-

site. Ideally, for good performance, the secondary diagonal values should be close to zero.

Table 2.3 illustrates the confusion matrix with the respective terms covered.

Table 2.3: Confusion matrix

Predicted
High Low Total

Actual High TP FN P
Low FP TN N

Once the meaning of each term was well understood, the following metrics can be

easily calculated:

• Accuracy: corresponds to the percentage of test partition instances that were cor-

rectly classified. Accuracy is calculated using Equation 2.4.

Accuracy =
TP + TN
P +N

(2.4)

• Precision: corresponds to the percentage of instances classified as belonging to the

interest class and actually belonging to the interest class. In other words: from the

instances classified as belonging to the interest class, how many of them belong to

the interest class. Precision is calculated by Equation 2.5.

Precision =
TP

TP + FP
(2.5)

• Recall: corresponds to the percentage of interest class instances that are classified as

belonging to the interest class. In other words: from all interest class instances, how

many of them were classified as belonging to the interest class. Recall is calculated

by Equation 2.6.

Recall =
TP

TP + FN
=

TP
P

(2.6)
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• F-Measure (FM): A classifier may have a high precision, indicating that all instances

it classifies as belonging to the high class, for example, actually belong to this class.

However, precision does not indicate how many instances belonging to the high

class were incorrectly classified by the classifier as belonging to the low class. On

the other hand, a classifier can present a high recall, indicating that all instances of

the high class, for example, were classified as belonging to the high class. Similarly,

the recall does not indicate how many instances of the low class were incorrectly

classified as belonging to the high class. There is therefore an inversely proportional

relationship between these two metrics, where it is possible to increase the value of

one, with the cost of reducing the value of the other. To evaluate a classifier, an

alternative is the use of F-Measure, which is a metric that combines precision and

recall using a harmonic average calculated using Equation 2.7.

F-Measure =
2 ∗ precision ∗ recall
precision+ recall

(2.7)

The metrics explained so far correspond to classification analyses metrics. Regression

analyses also have their own metrics, many of them derived from statistics. One of the

widely used metrics is the correlation coefficient, also known as Pearson’s product moment

coefficient and often indicated by letters R and ρ. The correlation coefficient calculates

the correlation between two numeric attributes A and B using Equation 2.8.

rA,B =

∑n
i=1(ai − Ā)(bi − B̄)

nσAσB
(2.8)

In the formula, n is the number of instances, ai and bi are the respective values of the

attributes A and B in the instance i, Ā and B̄ correspond to the mean values of A and

B, σA and σB are the respective standard deviations of A and B.

In statistics and regression problems involving numeric values, the predicted values

do not always match the original data actual values. Knowing the difference between

predicted and actual values is useful to refine future predictions making them more accu-

rate. Three measures used in the regression analyses (see Chapter 6) are Mean Absolute

Error (MAE), Mean Squared Error (MSE) and Root Mean Squared Error (RMSE).

MAE can be calculated using Equation 2.9. In the formula, Xpi corresponds to the

predicted value for the X attribute of the instance i, Xai corresponds to the actual value

of the X attribute of the instance i and n corresponds to the number of instances.
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MAE =

∑n
i=1(|Xpi −Xai|)

n
(2.9)

MSE can be calculated using Equation 2.10. In the formula, Xai corresponds to the

actual value of the X attribute of instance i, Xpi corresponds to the predicted value for

the X attribute of instance i and n corresponds to the number of instances.

MSE =

∑n
i=1 (Xai −Xpi)

2

n
(2.10)

RMSE can be calculated using Equation 2.11. In the formula, RMSE is obtained by

the square root of the MSE calculated with Equation 2.10.

RMSE =
√
MSE (2.11)

Some classification algorithms use measurements in their operations. Such measures

may serve as selection, cutting or stopping criteria, for example. Some of the measures

used in this work and that are employed in the implementation of the brute force super-

vised discretization algorithm (see Section 4.3) are: entropy, information gain, gain ratio

and gini index.

Information gain is one of the metrics used in attribute selection. By this measure, it

is possible to select the best attribute A that minimizes the information needed to classify

the instances of a resulting partition D, leading to the reduction of partition “impurities”.

In other words, reducing the number of instances from different classes within a partition

to achieve a partitioning that contains only instances from a single class.

Entropy measures the degree of “impurity” of the resulting partition from the selection

of an attribute. Let C be the class attribute containing m distinct values, Ci be one of

the m class values and Ci, D be the set of instances of Ci class in D. Let also |Ci, D| and
|D| be, respectively, the number of instances in Ci, D and in D. The expected information

needed to classify an instance in a partition D (Info(D)), also known as the entropy of

D, is calculated by Equation 2.12.

Info(D) = −
m∑
i=1

pi log2(pi) (2.12)

In the entropy calculation formula, pi is the nonzero probability that an arbitrary

instance in partition D belongs to class Ci, and is estimated by |Ci, D|/|D|. Info(D)
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then represents the average amount of information needed to identify the class of an

instance in partition D.

It is also expected that a categorical attribute A has v distinct values, {a1, a2, ...,
av}. When using A to split D into v partitions {D1, D2, ..., Dv}, where Dj contains the

instances of D that have the value aj of A, it is desirable to get pure partitions, leading

to an exact classification of their instances. However, it is likely that the partitions will

be impure.

To calculate how much more information is still needed to obtain an exact classifica-

tion, Equation 2.13 is applied. In this equation, |Dj |
|D| corresponds to the weight of the jth

partition and InfoA(D) is the expected information needed to classify an instance from

D, based on the partitioning by A.

InfoA(D) =
v∑

j=1

|Dj|
|D|
× Info(Dj) (2.13)

Information gain is defined by the difference between the original information needed

(Info(D)) and the new amount of required information obtained after the partitioning

used by the selected attribute A (InfoA(D)). That is, the information gain indicates how

much information would be gained by partitioning through attribute A. The attribute

with the highest information gain is chosen as the splitting attribute. Its calculation is

performed using Equation 2.14.

Gain(A) = Info(D)− InfoA(D) (2.14)

The information gain measure is biased. It prefers to select attributes having a large

number of distinct values. For example, in a dataset with an attribute ID that stores a

unique identifier, a split on ID would result in a large number of partitions (as many as

the number of values in ID). The information required to classify instances based on this

partitioning is zero, because each partition is pure. Therefore the information gained by

splitting on ID attribute is maximal, although this partitioning is useless for classification.

Thus, gain ratio measure is an extension to information gain aiming at overcoming

its bias. Gain ratio applies a normalization to information gain using a split information

value, defined by Equation 2.15.
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SplitInfoA(D) = −
v∑

j=1

|Dj|
|D|
× log2

(
|Dj|
|D|

)
(2.15)

The SplitInfoA(D) value represents the potential information generated by splitting

D into v partitions, corresponding to the v values of attribute A. The gain ratio is then

calculated as shown in Equation 2.16. The attribute with the maximum gain ratio is

selected as the splitting attribute.

GainRatio(A) =
Gain(A)

SplitInfoA(D)
(2.16)

The gini index, also used in discretization, measures the impurity of D as shown in

Equation 2.17.

Gini(D) = 1−
m∑
i=1

p2i (2.17)

In Equation 2.17, pi is the nonzero probability that an instance in D belongs to class

Ci and is calculated by |Ci,D|/|D|. The sum is calculated over the m class values of C.

The gini index considers a binary split for each attribute. Let A be an attribute with

v distinct values, {a1, a2, ..., av}. To determine the best binary split on A, all the possible

subsets formed with the known values of A are examined. Each subset SA is a binary test

for attribute A of the form A ∈ SA. Given an instance, this test is satisfied if the value

of A for the instance is among the values listed in SA. If A has v possible values, then

there are 2v − 2 possible subsets, because the empty subset and the subset containing all

values are excluded, since they do not represent a split.

In a binary split the weighted sum of each resulting partition impurity is calculated.

If a binary split on A partitions D into D1 and D2, the gini index of D is calculated by

Equation 2.18.

GiniA(D) =
|D1|
|D|

Gini(D1) +
|D2|
|D|

Gini(D2) (2.18)

For each attribute, each of the possible binary splits is considered. The subset that

gives the minimum gini index for an attribute is selected as its splitting subset. The

reduction in impurity incurred by a binary split on attribute A is calculated by Equa-

tion 2.19.
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∆Gini(A) = Gini(D)−GiniA(D) (2.19)

The attribute that maximizes the reduction in impurity or, equivalently, has the

minimum gini index is selected as the splitting attribute.

2.9 Validation Method

As explained in Sections 2.6 and 2.7, the classification and regression analyses are each

composed of two steps: the learning step and the prediction step. During the learning

step, training and test partitions are generated. The training partition will be used in the

first step (learning step), while the test partition will be used in the second step (prediction

step). This partitioning of the dataset is fundamental to evaluate the prediction estimate

of the model. The way partitions are generated may differ according to the employed

method. This section deals with the k-Fold Cross-Validation (CV) method employed in

the analyses of this work.

In the k-Fold Cross-Validation method, the initial dataset is randomly partitioned

into k mutually exclusive partitions or folds {F1, F2, F3, ..., Fk}, where each fold has

about the same size. Training and testing, corresponding to the learning and prediction

steps respectively, are performed k times. In the i-th execution, fold Fi is intended for

testing and the other k − 1 folds are used for model training.

Figure 2.10 illustrates the k-Fold Cross-Validation partitioning method. In this method,

each instance is used the same number of times (k − 1) for training and once for test-

ing. In classification analysis, the estimated accuracy is calculated by the total instances

correctly classified in k runs, divided by the total instances of the initial dataset.
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Figure 2.10: k-Fold Cross-Validation method

In this work, we used the Stratified Cross-Validation variation of the k-Fold Cross-

Validation method. In this variation, folds are partitioned so that the class distribution

of the instances in each fold is approximately the same and similiar to the class distri-

bution of the original dataset. This technique aims at ensuring that each fold contains

approximately the same number of instances of each class.

2.10 Statistical Significance Test

After constructing a model and obtaining its estimates of accuracy and other metrics, it

may be questioned whether such results are statistically significant, i.e., if they did not

occur by chance. One of the statistical tests of significance is the permutation test, also

called randomization test. In this test, n datasets are generated, where the values of the

attribute to be predicted (the class attribute to be predicted in the classification analysis

or the dependent numeric attribute to be predicted in the regression analysis) for each

instance are randomly permuted (shuffled) with each other [20, 42, 27, 39].

For each of the permuted datasets, the learning and prediction steps are performed,

obtaining the estimates of the metrics. Then, the metrics obtained from the initial dataset

are compared with the metrics obtained from each permuted dataset, calculating the

percentage of results better or equal to the results from the initial dataset. This calculated

percentage is the p-value of the permutation test. Finally, an α significance level is set as

the threshold for assessing the significance of the results [20, 42].

In practice, α = 0.05 or α = 0.01 is used. The value of α indicates that the results

obtained are significant if p-value ≤ α. In other words, the purpose of estimating the
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p-value is to decide p-value ≤ α, thus rejecting the null hypothesis (often denoted by H0

or H-null).

In inferential statistics, the null hypothesis defines that there is no relationship or

no association between two measured phenomena or groups. The statistics area provides

precise criteria for rejecting or accepting the null hypothesis whithin a confidence level.

Usually the null hypothesis is assumed to be true until there is an evidence that

indicates the opposite. If there is no relationship between the measured phenomena,

then the H0 is true and it will be accepted, otherwise, if the measured phenomena are

associated, then H0 is false and it will be rejected, proving that the result is significant.

Modern statistical hypothesis tests have also an alternate hypothesis (often denoted

by Ha), which is just the negation of the null hypothesis.

When there are too many possible data permutations to perform, a perfectly valid

alternative is the Monte Carlo permutation test or approximate permutation test, which

performs a randomic amount n of the total number of permutations [21]. After the n

randomic permutations, it is possible to obtain the confidence level for the p-value.

The WEKA software [63] used in classification and regression analyses does not have

an implementation of the permutation test allowing the user to evaluates the statisti-

cal significance of the results obtained. That said, as a contribution of this work, the

permutation test was implemented for the WEKA (available in https://github.com/

luizponte/WEKA).

In the implementation, a number of iterations is defined by the user, where in each

iteration, the class values of all instances in training partition are randomly permutated

with each other. After permuting the class values in an iteration, a classification or

regression algorithm is applied, using the permutated training partition and the original

(i.e., not permutated) test partition.

Depending on the analyses performed (classification or regression), the corresponding

available metrics (e.g., accuracy and F-Measure for classification and correlation coefficient

for regression) are calculated and compared with the results of these metrics obtained with

the original training and test partitions. This comparison serves to calculate how many

results with permutated training partitions were better than or equal to the results with

the original training partition.

The n iterations performed generate n permutated training partitions that produce

n results for each calculated metric. The p-value of a metric corresponds to the ratio

https://github.com/luizponte/WEKA
https://github.com/luizponte/WEKA
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between the number of its results obtained that are better than or equal to the result

obtained with the original training partition and the number of iterations performed.

An important thing to mention in the implementation is the p-value correction. After

performing the n iterations defined by the user, if there is no result better than or equal

to the result obtained with the original training partition, then the minimum p-value

assumed will be 1
n
instead of zero. This correction is made because, even with a bigger

number of iterations, it is not possible to ensure that no iteration could obtain results

better than or equal to the results obtained with the original training partition.

2.11 Final Remarks

This chapter has covered the main concepts used in this dissertation. In the health area,

the PTSD was discussed, along with one of its scales (PCL). In the computer science

area, the main DM techniques were addressed, including data preprocessing, classification

and regression analyses, along with their algorithms. The main metrics and evaluation

measures employed, along with validation techniques and significance tests of results,

were also explained. The next chapter presents some studies related to identification and

prediction of PTSD patients through statistical and AI analyses.



Chapter 3

Literature Review

As mentioned in Chapter 1, the diagnosis of psychiatric disorders is neither a quick nor

a trivial task, because many disorders have symptoms in common. Thus, the correct

diagnosis is fundamental for the effectiveness of the treatment.

Many studies apply computing to assist doctors and healthcare specialists in diagnos-

ing and preventing disease and disorders. The results of these studies prove the importance

of computing and present their contributions to healthcare.

This chapter deals with a review of the literature that analyzes data from individ-

uals with psychiatric disorders or candidates to develop one of these disorders in the

future. The studies are divided into sections according to the type of data collected from

individuals.

Because they deal with psychiatric disorders such as PTSD, most of these studies use

several scales that measure the degree of symptoms. At the end of the chapter, Section

3.5 discusses studies that evaluate the efficiency of some of these scales through statistical

analyses and Table 3.1 shows the scales used by the studies presented in this chapter.

3.1 Demographic Data

Many studies apply data mining techniques or perform statistical analyses to demographic

data of individuals with a disorder or disease. These data refer to individual characteristics

(e.g., age, gender, weight), behavioral habits (e.g., smoking, drinking, physical activity)

or to questionnaire responses and symptom measurement scales, for example.

The work in [40] proposes an intelligent hybrid system that combines classification

and feature selection algorithms to classify individuals at risk of developing PTSD. In
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the analyses, a dataset of 391 individuals was used, 321 of which are at risk of developing

PTSD and 70 are not. The authors used the Sequential Minimal Optimization (SMO),

Multilayer Perceptron and NB classifiers, as well as the feature extraction and selection

techniques: Principal Component Analysis (PCA) and Correlation Based-Feature Selec-

tion (CFS). The classifiers presented accuracy between 74 and 79%.

PTSD does not only affect adult individuals. According to [12] and [13], in the United

States (US), more than 20% of children under 16 have experienced at least one traumatic

event and may eventually develop PTSD. In [48], SVM and RF algorithms, along with

feature selection, were applied to a dataset of 163 hospitalized injured children, containing

105 features collected during the hospitalization period. PTSD was determined three

months after leaving hospital. The feature selection technique was able to identify the 58

most relevant features.

In [34], the authors applied classification algorithms to a dataset of 13690 United

Kingdom militaries. In addition to containing demographic data, the dataset contains

the score of the PCL scale questionnaire. Although the individuals are military, the civil

version of the PCL scale was applied, using the value 50 as cut-off point. Accoding to the

authors, the PCL-C scale was selected because it is less restrictive in populations that may

have experienced traumatic events unrelated to military deployment. The authors applied

SVM, Random Forest, Artificial Neural Networks and Bagging algorithms, presenting

accuracy equals to 91%, 97%, 89% and 95%, respectively. One of the limitations pointed

out is the dataset imbalance because only 3.95% of the individuals correspond to possible

PTSD patients.

3.2 Image Data

Imaging tests such as MRI and EEG are also widely used in research that seeks to predict

and identify biomarkers or risk factors in individuals with a psychiatric disorder.

The work published in [33] analyzes, through Functional Magnetic Resonance Imag-

ing (fMRI), the areas of brain activation in patients with PTSD who present dissociative

responses by recalling the traumatic events experienced. The dissociative response con-

sists in the loss of memory, awareness or perception of the environment when trying to

remember the traumatic event, being considered as an involuntary defense mechanism

of the organism in order to preserve the individual. Individuals presenting dissociative

responses do not accurately remember the details of the event. The results of this study re-
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veal that individuals with PTSD had greater brain activation in certain regions compared

to individuals in the control group (i.e., healthy individuals).

Authors in [35] conducted an experiment with 14 PTSD war veterans, 11 non-PTSD

fighters, and 14 control subjects. The authors investigated the role of certain brain regions

in PTSD patients by measuring blood flow in these regions using Single Photon Emission

Computerized Tomography (SPECT) images. During image collection, subjects were

exposed to white noise and combat noise (e.g., battlefield sounds).

In [43], authors applied regression techniques such as the RVR algorithm and pattern

recognition in fMRI images of 57 young people to determine the participants’ behav-

ioral and emotional dysregulation. The algorithm was able to identify patterns of neural

activity associated with dysregulation, indicating the brain regions with the highest con-

tribution.

3.3 Physiological Data

Heart rate, skin conductance, and blood pressure are some of the types of physiological

data that are commonly collected when conducting experiments with individuals with

psychiatric disorders. These data, compared to image data, are generally more accessible

and easier to collect due to the simplicity of commercially available equipment and sensors.

The work in [52] studies the relationship between heart rate and blood pressure col-

lected immediately after a traumatic event and the subsequent development of PTSD. In

that study, 86 survivors of traumatic events were monitored for four months, having their

data and symptoms collected and measured upon arrival at the hospital, on first week,

first month and fourth month after arrival. Out of the 86 individuals, 20 were diagnosed

with PTSD in the fourth month. The results of the study show that the 20 individuals

diagnosed with PTSD had high heart rates upon arrival at the hospital and at the first

week, compared to the other individuals. In contrast, blood pressure did not differ.

HRV consists of changes in the time interval between consecutive beats. HRV in a

healthy heart is complex and constantly occurring so that the cardiovascular system can

quickly react to physical and physiological changes [51]. In [11], the authors analyze HRV

by providing a dynamic map of sympathetic and parasympathetic interactions. Through

an Eletrocardiogram (ECG), they collected the heart rate of 18 individuals, nine of them

had PTSD and nine belonged to the control group. The experiment was divided into two

stages: in the first stage the individuals remained at rest and in the second stage the
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individuals remembered traumatic or stressful situations experienced. The results show

that individuals with PTSD had sympathetic hyperactivity and reduced parasympathetic

activity at rest.

The work in [18] analyzed the physiological responses of individuals while viewing

trauma-related images. The study gathered 86 participants, 37 of them were victims of

recent traumatic events, 18 were PTSD patients and 31 were healthy individuals (control

group). The results showed that victims of recent traumatic events and those with PTSD

presented acceleration (tachycardia) during image visualization.

In [36], by measuring skin conductance and blood oxygenation level using fMRI im-

ages, it was seen that the patterns of brain activity are different between individuals with

anxiety disorders and the control group.

3.4 Molecular Data

Molecular data, unlike the other types of data mentioned, are used less frequently for

studies related to the prediction of psychiatric disorders. However, this type of data

contributes to a large amount of features, proving interesting for analyses of identification

of biomarkers of such disorders.

Unlike the studies mentioned using demographic, physiological and imaging data, the

authors in [16] used molecular data from blood samples of 165 war-exposed soldiers, 83 of

them were PTSD patients. By applying SVM, RF, and Decision Tree algorithms, along

with feature selection, the authors were able to identify 28 biomarkers from 343 candidate

PTSD biomarkers.

3.5 Scales Analyses

Many psychiatric disorders such as depression, PTSD, and anxiety disorders have their

own scales that measure the degree of their symptoms. Doctors and specialists use the

scales as a diagnostic tool and also use them for treatment as a way to monitor the

development of symptoms.

A research has found that a woman with PTSD is 1.4 times more likely to become al-

coholic than a woman without PTSD [46]. The work in [8] suggests that the co-occurrence

of PTSD and alcohol abuse result in symptomatology increase and poorer treatment out-
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comes.

In [25], authors analyze the Penn Inventory and PCL-C scales to find a cut-off point

that maximizes the prediction of substance-dependent women who met the PTSD diag-

nostic criteria. This study aims at determining an optimal cut-off point that presents

a balancing between sensitivity, specificity and accuracy. Demographic data (e.g., age,

marital status, income, education, number of children and use of Alcohol Anonymous

and Narcotics Anonymous resources) of 44 women were collected. The value 38 used as

cut-off point in the PCL-C scale maximized the number of women identified with PTSD

and minimized the false positives and false negatives.

In [6], authors evaluate the diagnostic efficiency of the Primary Care PTSD Screen

(PC-PTSD) and PCL scales as a clinical screening tool applied to 352 active soldiers

recently returned from a combat deployment. This study evaluated the item-level char-

acteristics of both scales. The overall diagnostic efficiency measured by the area under

the curve (AUC) was virtually the same for both scales.

According to the results, the best PCL cut-off point values for primary care settings

were between 30 and 34 and presented specificity equals to 0.9 and sensitivity greater than

0.7. The analyses also identified that the most relevant scale item belongs to avoidance

symptoms. Although lower values (< 50) are not recommended as cut-off points for

military, the evaluated cut-off point presented desired results.

The authors raised a question regarding the way the questionnaire is applied to the

samples of individuals. Higher values are known to indicate a high probability of having

PTSD. Therefore, when applying the questionnaire anonymously to a sample, the indi-

viduals tend to be more sincere. On the other hand, when gathering personal data that

can identify an individual, he does not tend to be sincere when assessing the degree of

symptoms, as he fears being referred to some treatment that may result in losing his job.

Another point raised concerns individuals who are already seeking treatment and

individuals who do not admit to have a problem. Individuals who openly assume to be

seeking treatment tend to be more sincere in assessing the degree of symptoms when

completing the questionnaire.

The work in [38] investigated the association between PTSD chronic patients and

clinicians ratings of PTSD symptoms over the course of treatment and follow-up, using

the PCL and CAPS scales. The investigation was made with two randomized clinical trials

of 360 veterans with chronic PTSD, using data analytic methods. The results presented
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a significant association between PTSD patients and clinicians ratings over the course of

treatment, showing that chronic PTSD patients do self-report changes in their symptoms

across treatment and time.

3.6 Miscellaneous

Although many works use one data type, it is not unusual to find works that use two or

more data types. The studies in [23] and [29] used a dataset of 957 survivors of recent

traumatic events at the time of admission to the hospital’s emergency department. The

used dataset contains the following types of data: demographic, trauma type, loss of con-

sciousness during the traumatic incident, head injury, whiplash injury, blood pressure,

pulse, perceived pain, prescribed analgesics and duration of emergency department ad-

missions. Survivors were monitored for 15 months and data were collected on admission

to the hospital and on the 7th and 15th month after admission. The authors applied SVM,

RF, and KRR algorithms, along with feature selection, to find the minimum subset of

features that maximize the PTSD prediction. The results support the hypothesis of the

existence of multiple sets of risk factors associated with PTSD.

Similar to [23] and [29], the work in [30] applied the SVM algorithm along with feature

selection to a dataset of 561 soldiers before and after missions, in order to identify risk

indicators and predict PTSD responses. The study in [37] predicts individuals with PTSD

by applying the RF, SVM and Decision Tree algorithms to a dataset with demographic

and molecular data of 51 individuals with PTSD and 51 with other disorders.

3.7 Final Remarks

According to the literature related to prediction of PTSD patients or traumatic events

victims through computer science techniques using physiological data and scales (e.g., AI,

DM and PR techniques), it was possible to verify that the PCL scale has not been widely

explored yet. Most of the studies found use other scales related to PTSD symptoms, as

illustrated in Table 3.1.
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Table 3.1: Scales used in reviewed work

Scale Reviewed Work
Acute Stress Disorder Scale (ASDS) [29]
Beck Depression Inventory (BDI) [18, 30]

Clinician-Administered Dissociative State Scale (CADSS) [33]
Clinician-Administered PTSD Scale (CAPS) [11, 16, 25, 33, 37, 38]

Clinical Global Impression (CGI) [29]
Dissociative Experience Scale (DES) [33]

Hamilton Anxiety Rating Scale (HAM-A) [37]
Hamilton Depression Rating Scale (HAM-D) [11, 37]

Impact of Events Scale (IES) [18, 52]
Kessler Psychological Distress Scale 6 (K6) [29]

MISS or M-PTSD [52]
Positive and Negative Affect Schedule (PANAS) [30]
Positive and Negative Syndrome Scale (PANSS) [37]

Primary Care PTSD Screen (PC-PTSD) [6]
Posttraumatic Stress Disorder Checklist (PCL) [6, 25, 30, 34, 38]

Peritraumatic Dissociative Experiences Questionnaire (PDEQ) [52]
PTSD Symptom Scale (PSS) [29]

Penn Inventory [25]
Structured Clinical Interview for DSM-IV (SCID) [33, 35]

Symptom Checklist (SCL) [30]
State-Trait Anxiety Inventory (STAI) [18, 36, 52]
Trauma History Questionnaire (THQ) [52]

Traumatic Life Events Questionnaire (TLEQ) [30]
UCLA PTSD Reaction Index [48]
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As mentioned, the study [34] uses demographic data to predict whether a military

individual is a PTSD patient or not. The authors used the PCL-C version and selected

the value 50 as cut-off point. The study [30] also uses demographic data with the PCL-C

version and applies ML methods to assess the potential for pre- and early post-deployment

prediction of PTSD development in soldiers.

While studies [6], [25] and [38] evaluate the PCL scale, comparing and measuring its

results with other PTSD scales, this work explores the use of the PCL scale along with

physiological signals of heart rate and skin conductance. As illustrated in Table 3.2, the

studies with the PCL scale found do not use physiological signals. By applying classifi-

cation and regression algorithms to predict PCL scale scores, it is possible to evaluate a

correlation between the scale and physiological data.

Table 3.2: Data type and applied techniques of reviewed work using PCL scale

Reviewed Work Data Applied Techniques
[6] Demographic and Scale Generalized Additive Models (Statistical Model)
[25] Demographic and Scale Statistical Analysis
[30] Demographic Attribute Selection and Classification (SVM)

[34] Demographic Classification (Artificial Neural Networks, Bagging, SVM,
RF)

[38] Scale Regression Analysis (Longitudinal Data Analysis)

Our Work Physiological Signals Classification, Supervised Discretization, Attribute Selection,
Class Balancing, and Regression



Chapter 4

Dataset

The dataset used in this work was obtained through an experiment conducted at the

Biomedical Institute at UFF [2, 3] and approved by the Research Ethics Committee of

the Hospital Universitário Antônio Pedro (HUAP), UFF, under statement 203/09 of

December 11, 2009.

The experiment was conducted in a special room, with sound attenuation and indi-

rected lighting, located at the Physiology and Pharmacology Department. The physiolog-

ical signals of heart rate and skin conductance of volunteers who suffered some traumatic

event related to violence were collected. The skin conductance signal measures the elec-

trical variation response of the skin. This electrical variation is measured through the

Number of Responses (NR) and its unity is micro Siemens (µS).

In addition, version IV of the PCL-C scale was applied to assess the degree of PTSD

symptoms. This chapter therefore describes the dataset used, explaining how the data

was acquired and describing the characteristics and information of each attribute, in

Sections 4.1 and 4.2 respectively. In Section 4.3, the supervised discretization is discussed,

explaining the problem faced with the existing algorithms and the techniques applied to

minimize it.

4.1 Data Acquisition

As mentioned, the dataset used in this work was provided by UFF Biomedical Institute.

The authors performed an experiment with 83 volunteers who were victims of some trau-

matic event [2, 3]. Due to data acquisition problems, volunteers using drugs acting on

the central nervous system and presenting cardiac arrhythmias were removed, thus the
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dataset provided contains data from 55 volunteers.

The original goal of the experiment was to investigate the autonomic response of heart

rate and skin conductance caused by the visualization of images related to violence and

to explore how stimulus directionality and the experience of traumatic events influence

the cardiac reactivity of the individual.

The volunteers sat in front of a computer monitor, using a support for positioning

their forehead and chin, so that the distance between their eyes and the monitor was 57

centimeters. The E-prime® software1 was used to generate the stimuli presented on the

monitor. The heart rate and skin conductance signals were recorded using the BIOPAC

Acqknowledge 3.9.0 software.2

Physiological signals of heart rate and conductance of the volunteers were collected

while viewing images related to violence. The images were divided into blocks of Threat

Directed Towards (TDT) and Threat Directed Away (TDA). Each block contained 16

emotional stimulus and 16 neutral stimulus images, totaling 32 images per block.

TDT images consist of a person holding a gun directed at the viewer, belonging to

the emotional stimulus images of the directed towards block. Neutral Threat Directed

Towards (NeutralTDT) images consist of a person holding an object (e.g., camera, micro-

phone, umbrella and binoculars) directed at the viewer, belonging to the neutral stimulus

images of the directed towards block.

TDA images consist of a person holding a gun directed at a third party, belonging to

the emotionally stimulus images of the directed away block. Neutral Threat Directed Away

(NeutralTDA) images consist of a person holding an object (e.g., camera, microphone,

umbrella and binoculars) directed at a third party belonging to the neutral stimulus

images of the directed away block.

The emotional and neutral stimuli images selection used the following criteria:

• Ethnicity: the ethnicity of the people present in the photos was balanced and it

was sought to select individuals who had common physical characteristics to the

Brazilian population;

• Number of people: each image contains only one person to isolate the main features

of the scene such as facial and gesture expression;
1https://pstnet.com/products/e-prime/
2https://www.biopac.com/manual/acqknowledge-3-9-software-guide/

https://pstnet.com/products/e-prime/
https://www.biopac.com/manual/acqknowledge-3-9-software-guide/
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• Gender: the images were composed of male people only;

• Physical parameters of the image: dimension, brightness, contrast and spatial fre-

quency.

After gathering the images for the experiment, it was necessary to perform a prepro-

cessing, so that all elements and artifacts that interfere in the emotional content could be

removed from the image. The images had to present the same dimensions of 1024 x 768

pixels.

Emotional and neutral images had also to be paired in relation to the following

criterion: brightness, contrast and spatial frequency (through the Fast Fourier Trans-

form (FFT)), according to the methodology stablished in [7]. The goal doing that is to

create homogeneous samples of images, so that they could be allocated into blocks having

emotional and neutral stimuli with equivalent complexity. Controlling that, it is expected

to minimize the physical characteristics influence on the emotional results.

Each image was displayed for 6 seconds, interspersed by a fixation cross located in

the center of the screen and displayed for 6 to 8 seconds. During the 6 seconds of image

visualization, heart rate and electrical variation response (number of responses) of the

skin were gathered. These signals collected were sampled in 12 points of 0.5 second.

Neutral stimulus images (NeutralTDT and NeutralTDA) were pseudorandomly dis-

played within their blocks to prevent many images of the same stimulus from being pre-

sented in sequence. The visualization of each images block lasted approximately 7 minutes

and between the blocks there was a pause, when the experimenter entered the room to

verify if everything was correct with the volunteer and to warn him about the beginning

of the next block.

Figure 4.1 illustrates the image visualization step of the experiment. At the end of the

image visualization, the volunteers were asked to complete the PCL-C scale questionnaire

and were released from the experiment.
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Figure 4.1: Experiment visualization stage [2]

4.2 Data Description

The dataset of 55 volunteers used in this work contains five attributes referring to phys-

iological heart rate signals, five attributes referring to skin conductance signals and one

attribute referring to the score of the PCL-C scale, totaling 11 attributes.

Originally, the attribute referring to the PCL-C scale score is numeric and can assume

values from 17 to 85 (in the dataset, the minimum value found is 17 and the maximum is

77). In the classification analyses, which will be explained in Chapter 5, the PCL-C scale

scores were converted into two classes (high and low), following the range of cut-off points

suggested by the scale, which is 36. In the regression analyses, which will be explained

in Chapter 6, the original PCL-C scale scores were used. Table 4.1 contains the dataset

independent attributes with their types and minimum and maximum values.
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Table 4.1: Dataset independent attributes

Attribute Signal Type Minimum Value Maximum Value
TDT Heart Rate -4.81 2.465
TDA Heart Rate -5.179 3.674

NeutralTDT Heart Rate -2.91 3.436
NeutralTDA Heart Rate -3.167 2.048
NR_TDT Skin Conductance 0 8
NR_TDA Skin Conductance 0 11

NR_NeutralTDT Skin Conductance 0 5
NR_NeutralTDA Skin Conductance 0 8

HR_Threat-Neutral Heart Rate -3.517 2.622
NR_Threat-Neutral Skin Conductance -3 7

The meaning of each independent attribute is explained as follows:

• TDT: contains the average of the HR signal values collected during the six seconds

(12 sample points of 0.5 second each) of visualization of all 16 TDT images. In

other words, firstly an average of the 12 sample points of one image is calculated,

resulting in the HR average value of that image. Then this process is applied to

the rest of the TDT images, calculating their HR average value. At this moment,

there are 16 HR average values (one for each image). Lastly, it is calculated the

final average of the 16 HR average values, obtained in the calculation before;

• TDA, NeutralTDT and NeutralTDA: the same calculation described in the TDT

attribute is performed, using the HR signal values collected during the visualization

of the corresponding images;

• NR_TDT: contains the average of the NR values (i.e., electrical variation response

of the skin) collected during the six seconds (12 sample points of 0.5 second each)

of visualization of all 16 TDT images. In other words, firstly an average of the

12 sample points of one image is calculated, resulting in the NR average value of

that image. Then this process is applied to the rest of the TDT images, calculating

their NR average value. At this moment, there are 16 NR average values (one for

each image). Lastly, it is calculated the final average of the 16 NR average values,

obtained in the calculation before;

• NR_TDA, NR_NeutralTDT and NR_NeutralTDA: the same calculation described

in the NR_TDT attribute is performed, using the NR values collected during the

visualization of the corresponding images;
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• HR_Threat-Neutral: contains the subtraction of neutral stimulus (NeutralTDT and

NeutralTDA) from emotional stimulus (TDT and TDA) of HR signal values. The

calculation is performed using Equation 4.1;

HR_Threat-Neutral =
(TDT + TDA)

2
− (NeutralTDT + NeutralTDA)

2
(4.1)

• NR_Threat-Neutral: contains the subtraction of neutral stimulus (NR_NeutralTDT

and NR_NeutralTDA) from emotional stimulus (NR_TDT and NR_TDA) of NR

values. The calculation is performed using Equation 4.2.

NR_Threat-Neutral = (NR_TDT + NR_TDA) - (NR_NeutralTDT + NR_NeutralTDA)

(4.2)

4.3 Supervised Discretization

As explained in Section 2.5.2, the discretization is a form of data transformation, in which

numerical values are transformed into nominal values. Using discretized values can make

the mining process more efficient and the patterns found more intelligible. There are

two types of discretization: supervised and unsupervised. When the class attribute is

used to determine the split-points for delimiting the attribute ranges (named bins), it is

called supervised discretization. In this work, the independent attributes were discretized

through supervised discretization.

The data mining analyses of this work were performed using WEKA [63] software.

This software, in addition to having several algorithms for data mining analysis (e.g., clas-

sification, regression and clustering), also has several algorithms for data preprocessing,

including the supervised discretization, which implements the discretization proposed in

[19]. However, the supervised discretization algorithm of WEKA could not determine

more than just one bin for the attributes used in this work. That means, when applying

the supervised discrezation algorithm for each attribute, its values were placed into a

single bin (called "All" in WEKA).

There are other softwares that can be used in DM analysis besides WEKA. Two of

these softwares are the Python library scikit-learn (version 0.22) [41] and the R program-

ming language [45], which is more focused on statistical analysis.

Currently the scikit-learn library has only one discretization algorithm, the KBins-

Discretizer, from the sklearn.preprocessing package. This algorithm corresponds to un-
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supervised discretization and calculates the bins using the equal-width or equal-frequency

technique, according to its parameter setting.

The R programming language has a function (algorithm) named discretizeDF.supervised,

located in package arulesCBA (version 1.1.5). This function also implements the dis-

cretization proposed in [19], presenting the same result obtained with the WEKA super-

vised discretization algorithm, i.e., a single bin for each attribute.

To address the problem of getting a single bin, a brute force discretization was im-

plemented in this work (available in https://github.com/luizponte/WEKA), using the

following metrics explained in Section 2.8: information gain, gain ratio and gini index.

During the execution, the brute force evaluated all the possible split-points to select those

that maximize each metric. It is important to note that the brute force is not often fea-

sible and recommended as it can be computationally costly. However, as the number of

instances and attribute in our dataset is small, the brute force was feasible.

The brute force implementation was applied to each fold obtained in the 5-Fold Strat-

ified Cross-Validation and was executed four times for each metric. The first execution

determined two bins, the second execution determined three bins, and the fourth execu-

tion determined five bins. After determining the bins, we evaluated which amount of bins

(from two to five) produced the best value for each metric information gain, gain ratio

and gini index.

As a result, the supervised discretization produced three discretized dataset, one for

each metric used. For those cases where there were two or more amounts of bins that

produced the best metric value, the minimum amount was chosen. Tables 4.2, 4.3 and

4.4 contain the number of bins determined for each attribute using the information gain,

gain ratio and gini index metrics, respectively. The results of the classification analyses

performed with this supervised discretization will be presented in Chapter 5.

https://github.com/luizponte/WEKA
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Table 4.2: Number of bins for each attribute per fold determined by information gain

Attribute with Information Gain Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
TDT 5 Bins 5 Bins 5 Bins 5 Bins 5 Bins
TDA 5 Bins 5 Bins 5 Bins 5 Bins 5 Bins

NeutralTDT 5 Bins 5 Bins 5 Bins 5 Bins 5 Bins
NeutralTDA 5 Bins 5 Bins 5 Bins 5 Bins 5 Bins
NR_TDT 5 Bins 5 Bins 5 Bins 5 Bins 5 Bins
NR_TDA 5 Bins 5 Bins 5 Bins 5 Bins 4 Bins

NR_NeutralTDT 5 Bins 5 Bins 5 Bins 5 Bins 5 Bins
NR_NeutralTDA 4 Bins 5 Bins 5 Bins 5 Bins 4 Bins

HR_Threat-Neutral 5 Bins 5 Bins 5 Bins 5 Bins 5 Bins
NR_Threat-Neutral 5 Bins 5 Bins 5 Bins 5 Bins 5 Bins

Table 4.3: Number of bins for each attribute per fold determined by gain ratio

Attribute with Gain Ratio Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
TDT 2 Bins 5 Bins 2 Bins 2 Bins 2 Bins
TDA 3 Bins 2 Bins 4 Bins 2 Bins 2 Bins

NeutralTDT 4 Bins 5 Bins 5 Bins 5 Bins 2 Bins
NeutralTDA 2 Bins 3 Bins 3 Bins 3 Bins 3 Bins
NR_TDT 2 Bins 3 Bins 2 Bins 3 Bins 3 Bins
NR_TDA 2 Bins 2 Bins 2 Bins 2 Bins 2 Bins

NR_NeutralTDT 2 Bins 4 Bins 2 Bins 2 Bins 2 Bins
NR_NeutralTDA 2 Bins 2 Bins 2 Bins 2 Bins 2 Bins

HR_Threat-Neutral 2 Bins 2 Bins 2 Bins 2 Bins 5 Bins
NR_Threat-Neutral 3 Bins 5 Bins 3 Bins 3 Bins 3 Bins

Table 4.4: Number of bins for each attribute per fold determined by gini index

Attribute with Gini Index Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
TDT 5 Bins 5 Bins 5 Bins 5 Bins 5 Bins
TDA 5 Bins 5 Bins 5 Bins 5 Bins 5 Bins

NeutralTDT 5 Bins 5 Bins 5 Bins 5 Bins 5 Bins
NeutralTDA 5 Bins 5 Bins 5 Bins 5 Bins 5 Bins
NR_TDT 5 Bins 5 Bins 5 Bins 5 Bins 5 Bins
NR_TDA 5 Bins 5 Bins 5 Bins 5 Bins 4 Bins

NR_NeutralTDT 5 Bins 5 Bins 5 Bins 5 Bins 5 Bins
NR_NeutralTDA 4 Bins 5 Bins 5 Bins 5 Bins 4 Bins

HR_Threat-Neutral 5 Bins 5 Bins 5 Bins 5 Bins 5 Bins
NR_Threat-Neutral 5 Bins 5 Bins 5 Bins 5 Bins 5 Bins



4.4 Final Remarks 51

4.4 Final Remarks

This chapter presented the dataset used in this work. We explained how the experi-

ment conducted at the Biomedical Institute at UFF collected trauma victims volunteers’

physiological data (heart rate and skin conductance) during violence stimuli images visu-

alization. The meaning of each dataset attribute was also explained.

This chapter also discussed the supervised discretization we applied, approaching the

existing algorithms, the problem faced and the implementation developed.

Chapter 5 presents the results obtained in the classification analyses, applying the

supervised discretization, class balancing and attribute selection techniques.



Chapter 5

Classification

This chapter discusses the classification analyses performed with the WEKA software

(version 3.8.3) and its Application Programming Interface (API) [63], presenting the re-

sults obtained. As explained in Section 2.2, the PCL scale consists of a questionnaire with

17 questions, each being evaluated with values from 1 to 5. Thus, the value of the PCL

scale is numeric, resulting from the sum of each value of the 17 questions.

As discussed in Section 2.6, classification analyses predict categorical (i.e., nominal)

values of an attribute (called class). As also explained in Chapter 4, the PCL attribute has

been transformed into a nominal attribute for classification analyses. To do that, value

36 was chosen as cut-off point, according to the suggested range of cut-off points by the

PCL scale (see Table 2.2). Therefore the high class value was assigned to instances where

PCL score ≥ 36 and the low class value was assigned to instances where PCL score < 36.

The analyses were performed using the 5-Fold Stratified Cross-Validation method,

obtaining the results for accuracy, precision, recall and F-Measure measures. These last

three measures correspond to the results of the minority class (high PCL). To evaluate the

statistical significance of the obtained results, the permutation test algorithm, which we

implemented for WEKA software, was applied, performing 1000 permutations and using

α = 0.05.

An important concept to consider in classification analyses is the baseline. The base-

line used in our analyses corresponds to the percentage of instances belonging to the

majority class in relation to the total of instances in dataset. The dataset used in this

work has 55 instances, 41 of them belong to the low class (majority class). The baseline

for this case is 74.55% and it means that a classifier can get 74.55% of accuracy if it

"blindly" classifies any instance of the dataset as belonging to the low PCL class.
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The imbalance of the dataset used directly affects accuracy. That is, a relatively

high accuracy such as 74.55% may seem attractive, however, when evaluating how many

instances of the minority class (high PCL) were correctly classified, it can be possible to

check if the classifier is just voting for the majority class, meaning in this case that the

classifier could not identify any pattern during the learning step.

The baseline serves as an evaluation criterion, where higher accuracy is desired. That

is, an accuracy higher than the baseline indicates that the classifier is beginning to cor-

rectly classify instances belonging to the minority class.

As discussed in Section 2.6, the following five WEKA software algorithms were applied

to the classification analyses:

1. IBk: this is the implementation of the k-NN algorithm in WEKA [1];

2. J48: this is the implementation of the C4.5 Decision Tree algorithm in WEKA [44];

3. Naïve Bayes (NB) [28];

4. Random Forest (RF) [9];

5. SMO: this is the implementation of the SVM algorithm for classification in WEKA

[26, 31].

As explained in Section 2.6.1, the WEKA J48 algorithm has the confidenceFactor

(CF) and the unpruned parameters, related to the decision tree pruning. The classifi-

cation analyses performed used the values 0.25, 0.5 and 0.75 for the confidenceFactor

parameter. Although it is not possible to assign the value 1 to this parameter (repre-

senting no pruning), another J48 ’s parameter, called unpruned, behaves the same way,

when it receives the value true (meaning that there is no pruning). Therefore, this last

parameter received the value true to represent a confidenceFactor equal to 1.

As Section 2.6.3 explains, the RF implementation has the numIterations (NI) param-

eter, related to the amount of decision tree models built that will vote. The classification

analyses perfomed used the values 100, 500, 1000 and 10000 for this parameter.

SVM algorithm has the kernel and the C parameters (see Section 2.6.4). In the

classification analyses performed, the kernels PolyKernel, Pearson Universal Kernel (Puk)

and RBFKernel were used by SVM implementation in WEKA (called SMO). The C

parameter, however, was not varied (the default value 1 was used).
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The implementation of k-NN (called IBk in WEKA) has the k parameter, which

refers to the number of training instances, searched in a pattern space, that are closest

to the test instance. In the classification analyses performed, the k parameter was varied

with values from 1 to 15 and the Euclidean distance was used as distance metric, when

searching the k training instances (see Section 2.6.5).

The five selected algorithms are widely used in classification analyses. The J48 and

the Random Forest algorithms belong to algorithms that build decision tree models. The

Naïve Bayes algorithm belongs to the probabilistic algorithms. The SMO is the implemen-

tation of the SVM algorithm, widely used in classification and also in regression analyses.

The IBk algorithm, unlike the previous four algorithms, uses the lazy learning approach

and can also be used in regression analyses.

This chapter has six main sections. Section 5.1 explains the methodology used. Sec-

tion 5.2 deals with analyses performed with the unbalanced dataset (i.e., original dataset).

Section 5.3 deals with the analyses performed using the class balancing technique, ex-

plained in Section 2.5.3. Section 5.4 explains the Auto-WEKA plugin used. Section 5.5

evaluates the results obtained using a higher PCL cut-off point value (44). Finally, Section

5.6 discusses the main points observed with the analyses.

5.1 Methodology

As explained, five classification algorithms were selected and applied to the dataset. Aim-

ing at increasing the classifiers performance, their hyperparameters values were varied and

those with the highest accuracy were selected. To validate the results obtained, the 5-Fold

Stratified Cross-Validation method along with the implementation of the permutation test

(performing 1000 permutations) were used.

To increase the results obtained by the classifiers, DM techniques such as supervised

discretization, attribute selecion and class balancing were applied to the dataset and

compared with the previous results. Moreover, the Auto-WEKA plugin (see 5.4) was

used to obtain a suggested algorithm and its hyperparameters values. This suggestion

consists of the algorithm that obtained the best result for a selected measure (the accuracy

measure was selected for the analyses performed).

Lastly, using another cut-off point value could be interesting to the domain specialists.

Thus, the cut-off point value 44 was selected and the previous classification analyses (i.e.,

those with the cut-off point value 36) were performed once more.
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5.2 Unbalanced Dataset

This section deals with the analyses performed with the unbalanced dataset. In an at-

tempt to improve the accuracy obtained by each classifier, supervised discretization and

attribute selection techniques were also applied. The application of these techniques will

be discussed in the Sections 5.2.2 and 5.2.3.

5.2.1 Non-discretized Dataset

This section deals with classification analyses performed with the non-discretized unbal-

anced dataset (i.e., original dataset). Table 5.1 contains the results obtained with the IBk

algorithm (k-NN), varying its k parameter with values from 1 to 15. The best accuracy

was obtained with k = 4 and k = 7, however, comparing their results, k = 4 was selected

because it also obtained the best F-Measure. It presented accuracy of 76.36% (p-value

of 0.005), precision of 0.5294 (p-value of 0.005), recall of 0.6429 (p-value of 0.002) and

F-Measure of 0.5806 (p-value of 0.001).

Table 5.1: IBk results with non-discretized unbalanced dataset

Algorithm Accuracy Precision Recall F-Measure
IBk k = 1 74.55% 0.5 0.6429 0.5625
IBk k = 2 61.82% 0.3704 0.7143 0.4878
IBk k = 3 74.55% 0.5 0.5 0.5
IBk k = 4 76.36% 0.5294 0.6429 0.5806
IBk k = 5 74.55% 0.5 0.2857 0.3636
IBk k = 6 70.91% 0.4444 0.5714 0.5
IBk k = 7 76.36% 0.6667 0.1429 0.2353
IBk k = 8 70.91% 0.3333 0.1429 0.2
IBk k = 9 74.55% 0.5 0.0714 0.125
IBk k = 10 70.91% 0.25 0.0714 0.1111
IBk k = 11 72.73% 0 0 NaN
IBk k = 12 72.73% 0 0 NaN
IBk k = 13 72.73% 0 0 NaN
IBk k = 14 72.73% 0 0 NaN
IBk k = 15 72.73% 0 0 NaN

It is important to highlight that in some results it was not possible to calculate

precision, recall or F-Measure, being indicated by Not a Number (NaN) value in the

tables. This occurs when the denominator of the corresponding measure equation is

equal to zero. Consequently, when a measure can not be calculated, its p-value can not

be calculated either.
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Table 5.2 contains the results obtained with the J48 algorithm, varying its parame-

ters confidenceFactor and unpruned. The higher the confidenceFactor value, the lower

the pruning performed on the decision tree. The unpruned parameter equal to true is

equivalent to a confidenceFactor equal to 1. Although the results with confidenceFactor

equal to 0.5, 0.75 and unpruned presented the best measures values, the confidenceFactor

= 0.5 presented the best results, since lower values of confidenceFactor represents more

pruning, helping to the decision tree’s performance and readability. The best accuracy

obtained was 70.91% (p-value of 0.206), precision of 0.4375 (p-value of 0.085), recall of

0.5 (p-value of 0.008) and F-Measure of 0.4667 (p-value of 0.01).

Table 5.2: J48 results with non-discretized unbalanced dataset

Algorithm Accuracy Precision Recall F-Measure
J48 Confidence Factor 0.25 69.09% 0.3636 0.2857 0.32

J48 Confidence Factor 0.5 70.91% 0.4375 0.5 0.4667
J48 Confidence Factor 0.75 70.91% 0.4375 0.5 0.4667

J48 Unpruned 70.91% 0.4375 0.5 0.4667

Table 5.3 contains the results obtained with the Naïve Bayes algorithm. Since there

is no parameter variation for Naïve Bayes algorithm, the best result presented accuracy

of 67.27% (p-value of 0.25), precision of 0.375 (p-value of 0.12), recall of 0.4286 (p-value

of 0.132) and F-Measure of 0.4 (p-value of 0.08).

Table 5.3: Naïve Bayes results with non-discretized unbalanced dataset

Algorithm Accuracy Precision Recall F-Measure
Naïve Bayes 67.27% 0.375 0.4286 0.4

Table 5.4 contains the results obtained with the Random Forest algorithm, varying its

numIterations parameter with the values 100, 500, 1000 and 10000. Since all parameter

variations presented the same measures values, the best result was obtained with numIt-

erations = 100, because less iterations were needed. The best result presented accuracy

of 70.91% (p-value of 0.433), precision of 0.4 (p-value of 0.186), recall of 0.2857 (p-value

of 0.042) and F-Measure of 0.3333 (p-value of 0.037).

Table 5.4: Random Forest results with non-discretized unbalanced dataset

Algorithm Accuracy Precision Recall F-Measure
Random Forest Iterations 100 70.91% 0.4 0.2857 0.3333
Random Forest Iterations 500 70.91% 0.4 0.2857 0.3333
Random Forest Iterations 1000 70.91% 0.4 0.2857 0.3333
Random Forest Iterations 10000 70.91% 0.4 0.2857 0.3333
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Table 5.5 contains the results obtained with the SMO algorithm using three kernel

types (PolyKernel, Puk and RBFKernel) in their kernel parameter. Since the three kernel

types presented the same measures values, it was not possible to select a best result for

them. The three kernel types PolyKernel, Puk and RBFKernel presented accuracy p-

values of 0.889, 0.917 and 1, respectively.

Table 5.5: SMO results with non-discretized unbalanced dataset

Algorithm Accuracy Precision Recall F-Measure
SMO PolyKernel 74.55% NaN 0 NaN

SMO Puk 74.55% NaN 0 NaN
SMO RBFKernel 74.55% NaN 0 NaN

As the results showed so far, the IBk algorithm presented the highest accuracy using

the non-discretized unbalanced dataset. Although the obtained accuracy of 76.36% is

higher than the baseline, it is not satisfactory yet. Thus, the supervised discretization

technique will be applied, aiming at increasing the classifiers performance.

5.2.2 Discretized Dataset

In order to improve the performance of the classifiers, increasing accuracy, the supervised

discretization technique was applied to the ten numerical independent attributes of the

original dataset used. Supervised discretization was performed applying the brute force

algorithm for the information gain, gain ratio and gini index metrics, as explained in Sec-

tion 4.3. For this, the five training and test folds of the 5-Fold Stratified Cross-Validation

method were obtained and the supervised discretization algorithm was performed in each

of the five training folds. The test folds were discretized using the bins obtained in each

of the corresponding training folds.

Table 5.6 contains the results obtained with the IBk algorithm (k-NN), varying its

parameter k with values from 1 to 15. Since the variations of each metric (i.e., gain

ratio, gini index and information gain) presented the same measures values, the k =

9 was selected for the best results because less neighbors were needed and it used gain

ratio metric. The best result presented accuracy of 74.55% (p-value of 0.898), recall of 0

(p-value of 1) and it was not possible to calculate the precision and neither the F-Measure.
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Table 5.6: IBk results with discretized unbalanced dataset

Algorithm Accuracy Precision Recall F-Measure Metric
IBk k = 9 74.55% NaN 0 NaN Gain Ratio
IBk k = 10 74.55% NaN 0 NaN Gini Index
IBk k = 12 74.55% NaN 0 NaN Information Gain

Table 5.7 contains the results obtained with the J48 algorithm, varying its parameters

confidenceFactor and unpruned. The best result was obtained with confidenceFactor =

0.25, using the gain ratio metric and presented accuracy of 70.91% (p-value of 0.976),

precision of 0.25 (p-value of 0.148), recall of 0.0714 (p-value of 0.154) and F-Measure of

0.1111 (p-value of 0.148).

Table 5.7: J48 results with discretized unbalanced dataset

Algorithm Accuracy Precision Recall F-Measure Metric
J48 Confidence Factor 0.25 70.91% 0.25 0.0714 0.1111 Gain Ratio
J48 Confidence Factor 0.25 65.45% 0 0 NaN Gini Index
J48 Confidence Factor 0.25 69.09% 0 0 NaN Information Gain

Table 5.8 contains the results obtained with the Naïve Bayes algorithm. The best

result was obtained using the gini index metric, presenting accuracy of 72.73% (p-value

of 0.139), precision of 0.4444 (p-value of 0.099), recall of 0.2857 (p-value of 0.213) and

F-Measure of 0.3478 (p-value of 0.12).

Table 5.8: Naïves Bayes results with discretized unbalanced dataset

Algorithm Accuracy Precision Recall F-Measure Metric
Naïve Bayes 72.73% 0.4286 0.2143 0.2857 Gain Ratio
Naïve Bayes 72.73% 0.4444 0.2857 0.3478 Gini Index
Naïve Bayes 69.09% 0.3333 0.2143 0.2609 Information Gain

Table 5.9 contains the results obtained with the Random Forest algorithm, varying

its parameter numIterations with the values 100, 500, 1000 and 10000. The best result

was obtained with numIterations = 500, using gain ratio metric, presenting accuracy of

74.55% (p-value of 0.187), precision of 0.5 (p-value of 0.183), recall of 0.1429 (p-value of

0.385) and F-Measure of 0.2222 (p-value of 0.201).
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Table 5.9: Random Forest results with discretized unbalanced dataset

Algorithm Accuracy Precision Recall F-Measure Metric
Random Forest Iterations 500 74.55% 0.5 0.1429 0.2222 Gain Ratio
Random Forest Iterations 1000 69.09% 0.2857 0.1429 0.1905 Gini Index
Random Forest Iterations 100 63.64% 0.2 0.1429 0.1667 Information Gain

Table 5.10 contains the results obtained with the SMO algorithm using three kernel

types (PolyKernel, Puk and RBFKernel) in its kernel parameter. The best result was

obtained with kernel = Puk, using gain ratio metric, presenting accuracy of 74.55% (p-

value of 0.489), precision of 0.5 (p-value of 0.381), recall of 0.0714 (p-value of 0.583) and

F-Measure of 0.125 (p-value of 0.408).

Table 5.10: SMO results with discretized unbalanced dataset

Algorithm Accuracy Precision Recall F-Measure Metric
SMO Puk 74.55% 0.5 0.0714 0.125 Gain Ratio
SMO Puk 74.55% NaN 0 NaN Gini Index
SMO Puk 74.55% NaN 0 NaN Information Gain

Although the supervised discretization technique increased the accuracy of the Naïve

Bayes (increased from 67.27% to 72.73%) and Random Forest (increased from 70.91%

to 74.55%) algorithms, it did not presented an accuracy better than that obtained by

applying the IBk algorithm to the non-discretized unbalanced dataset. Thus, the attribute

selection technique will be applied, aiming at increasing the classifiers performance.

5.2.3 Attribute Selection

In order to try to improve classifier accuracy, the attribute selection technique, explained

in Section 2.5.1, was applied. This technique was applied after supervised discretization,

commented in Section 5.2.2, attempting to improve the best results obtained with the

discretization.

The Ranker search method of the WEKA software was used, along with the attribute

evaluator InfoGainAttributeEval. This attribute evaluator uses the information gain met-

ric in the evaluations, while the Ranker method is a single-attribute evaluator method, i.e.,

it evaluates the degree of correlation of each attribute to the class independently. Because

it is single-attribute (independently evaluates each attribute), it can eliminate irrelevant

but not redundant attributes (e.g., duplicate attributes). A good subset of attributes is

the one where attributes are strongly correlated to the class and poorly correlated with

each other.
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Table 5.11 contains the ranking of all independent attributes of the dataset discretized

with the information gain metric. This ranking, obtained through the Ranker method,

was generated using the 5-Fold Cross-Validation method, which evaluates each attribute

in each of the five folds.

Table 5.11: Attributes ranking for the information gain metric

Ranking Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
1 TDA NeutralTDA NeutralTDA TDA NR_Threat-Neutral
2 TDT NR_Threat-Neutral TDA TDT TDT
3 HR_Threat-Neutral TDT TDT NeutralTDA NeutralTDA
4 NeutralTDA TDA HR_Threat-Neutral NR_Threat-Neutral HR_Threat-Neutral
5 NR_Threat-Neutral HR_Threat-Neutral NR_Threat-Neutral HR_Threat-Neutral TDA
6 NeutralTDT NeutralTDT NeutralTDT NeutralTDT NeutralTDT
7 NR_TDT NR_TDT NR_TDA NR_TDT NR_TDA
8 NR_TDA NR_TDA NR_NeutralTDA NR_TDA NR_TDT
9 NR_NeutralTDA NR_NeutralTDA NR_TDT NR_NeutralTDA NR_NeutralTDA
10 NR_NeutralTDT NR_NeutralTDT NR_NeutralTDT NR_NeutralTDT NR_NeutralTDT

It is important to mention that the others two datasets discretized with gain ratio

and gini index metrics also have their own ranking, obtained through the Ranker method.

Although the attribute evaluator InfoGainAttributeEval applied by Ranker uses the in-

formation gain metric, it is not necessary to perform a supervised discretization using this

metric. That means, a dataset can be discretized following any criteria or metric and the

attribute evaluator InfoGainAttributeEval can still be applied to generate the ranking.

To determine which subset obtained the best performance among the others, classi-

fication analyses were performed using the same algorithms described in the beginning

of this chapter. The analyses were performed as follows: using only the first ranking

attribute, using only the first and second attributes, and so on until using the first nine

attributes, because all analyses performed before, without attribute selection, used all

attributes in dataset.

Table 5.12 contains the results obtained with the IBk algorithm (k-NN), using the

same values of the supervised discretization of Table 5.6 for parameter k. Since the results

with k = 10 and k = 12 presented the same measures values, k = 12 was selected as the

best results, because it used a smaller subset of attributes (six attributes). The best

result used the information gain metric, presenting accuracy of 74.55% (p-value of 0.924),

precision of 0.5 (p-value of 0.091), recall of 0.0714 (p-value of 0.092) and F-Measure of

0.125 (p-value of 0.091).
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Table 5.12: IBk results of attribute selection with discretized unbalanced dataset

Algorithm Accuracy Precision Recall F-Measure Metric Subset
IBk k = 9 74.55% NaN 0 NaN Gain Ratio Subset 9
IBk k = 10 74.55% 0.5 0.0714 0.125 Gini Index Subset 7
IBk k = 12 74.55% 0.5 0.0714 0.125 Information Gain Subset 6

Table 5.13 contains the results obtained with the J48 algorithm, using the same values

of the supervised discretization of Table 5.7 for parameter confidenceFactor. The best

result was obtained with confidenceFactor = 0.25, using the gain ratio metric and a

subset of nine attributes, presenting accuracy of 70.91% (p-value of 0.976), precision of

0.25 (p-value of 0.104), recall of 0.0714 (p-value of 0.109) and F-Measure of 0.1111 (p-value

of 0.104).

Table 5.13: J48 results of attribute selection with discretized unbalanced dataset

Algorithm Accuracy Precision Recall F-Measure Metric Subset
J48 Confidence Factor 0.25 70.91% 0.25 0.0714 0.1111 Gain Ratio Subset 9
J48 Confidence Factor 0.75 65.45% 0.2727 0.2143 0.24 Gini Index Subset 2
J48 Confidence Factor 0.5 65.45% 0 0 NaN Information Gain Subset 1

Table 5.14 contains the results obtained with the Naïve Bayes algorithm. The best

result was obtained using the gini index metric and using a subset of nine attributes,

presenting accuracy of 74.55% (p-value of 0.063), precion of 0.5 (p-value of 0.063), recall

of 0.3571 (p-value of 0.049) and F-Measure of 0.4167 (p-value of 0.022).

Table 5.14: Naïve Bayes results of attribute selection with discretized unbalanced dataset

Algorithm Accuracy Precision Recall F-Measure Metric Subset
Naïve Bayes 72.73% 0.4286 0.2143 0.2857 Gain Ratio Subset 9
Naïve Bayes 74.55% 0.5 0.3571 0.4167 Gini Index Subset 9
Naïve Bayes 72.73% 0.4444 0.2857 0.3478 Information Gain Subset 9

Table 5.15 contains the results obtained with the Random Forest algorithm, using the

same values of the supervised discretization of Table 5.9 for the parameter numIterations.

The best result was obtained with numIterations = 500, using the gain ratio metric and

a subset of three attributes, presenting accuracy of 74.55% (p-value of 0.231), precision

of 0.6 (p-value of 0.231), recall of 0.2 (p-value of 0.275), and F-Measure of 0.3 (p-value of

0.115).
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Table 5.15: Random Forest results of attribute selection with discretized unbalanced
dataset

Algorithm Accuracy Precision Recall F-Measure Metric Subset
Random Forest Iterations 500 74.55% 0.6 0.2 0.3 Gain Ratio Subset 3
Random Forest Iterations 1000 67.27% 0.3 0.2143 0.25 Gini Index Subset 2
Random Forest Iterations 100 69.09% 0.3333 0.2143 0.2609 Information Gain Subset 6

Table 5.16 contains the results obtained with the SMO algorithm using the same value

of the supervised discretization of Table 5.10 for parameter kernel. The best result was

obtained with kernel = Puk, using the gain ratio metric and a subset of six attributes,

presenting accuracy of 74.55% (p-value of 0.323), precision of 0.5714 (p-value of 0.323),

recall of 0.2667 (p-value of 0.004) and F-Measure of 0.3636 (p-value of 0.002).

Table 5.16: SMO results of attribute selection with discretized unbalanced dataset

Algorithm Accuracy Precision Recall F-Measure Metric Subset
SMO Puk 74.55% 0.5714 0.2667 0.3636 Gain Ratio Subset 6
SMO Puk 74.55% 0.5 0.1429 0.2222 Gini Index Subset 3
SMO Puk 74.55% 0.5 0.1429 0.2222 Information Gain Subset 4

Although the attribute selection technique increased the accuracy of the Naïve Bayes

algorithm (increased from 72.73% to 74.55%), it did not presented an accuracy better than

that obtained by applying the IBk algorithm to the non-discretized unbalanced dataset.

Thus, the class balancing technique will be applied, aiming at increasing the classifiers

performance.

5.3 Balanced Dataset

As explained at the beginning of this chapter, the class imbalance problem strongly in-

fluences the classifier result. To address this problem, class balancing was performed

using the SMOTE algorithm [10], which adds artificial instances of the minority class to

the training fold, as explained in Section 2.5.3. The goal of this technique is to reduce

the imbalance between the number of instances belonging to the majority and minority

classes.

This section deals with the analyses performed using the class balancing technique,

gradually increasing the number of instances belonging to the high PCL class (minority

class). The minority class was increased by 25, 50, 75, 100 and 150%. Section 5.3.1 deals

with balancing performed with the non-discretized dataset, while Section 5.3.2 deals with

balancing performed after supervised discretization of the dataset attributes.
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5.3.1 Non-Discretized Dataset

This subsection deals with the results obtained by applying class balancing to the non-

discretized dataset. Table 5.17 contains the results obtained with the IBk algorithm,

varying its k parameter with values from 1 to 15. Although the variations of k = 1, k = 7

and k = 12 presented the best accuracy, k = 1, increasing the minority class in 50% also

presented the best F-Measure. So, the best result presented accuracy of 76.36% (p-value

of 0.004), precision of 0.5238 (p-value of 0.004), recall of 0.7857 (p-value of 0.001) and

F-Measure of 0.6286 (p-value of 0.001).

Table 5.17: IBk results with non-discretized balanced dataset

Algorithm Accuracy Precision Recall F-Measure Increase
IBk k = 1 76.36% 0.5238 0.7857 0.6286 50%
IBk k = 2 61.82% 0.3793 0.7857 0.5116 50%
IBk k = 3 70.91% 0.4583 0.7857 0.5789 150%
IBk k = 4 74.55% 0.5 0.7143 0.5882 25%
IBk k = 5 74.55% 0.5 0.5714 0.5333 50%
IBk k = 6 72.73% 0.4762 0.7143 0.5714 25%
IBk k = 7 76.36% 0.5294 0.6429 0.5806 50%
IBk k = 8 74.55% 0.5 0.7143 0.5882 50%
IBk k = 9 74.55% 0.5 0.4286 0.4615 50%
IBk k = 10 74.55% 0.5 0.4286 0.4615 50%
IBk k = 11 74.55% 0.5 0.2857 0.3636 50%
IBk k = 12 76.36% 0.5385 0.5 0.5185 50%
IBk k = 13 72.73% 0.3333 0.0714 0.1176 25%
IBk k = 14 72.73% 0.4 0.1429 0.2105 25%
IBk k = 15 72.73% 0 0 NaN 25%

Table 5.18 contains the results obtained with the J48 algorithm, varying its parameters

confidenceFactor and unpruned. The best result was obtained with confidenceFactor =

0.25, increasing the minority class in 25% and presenting accuracy of 70.91% (p-value of

0.237), precision of 0.4 (p-value of 0.119), recall of 0.2857 (p-value of 0.22) and F-Measure

of 0.3333 (p-value of 0.107).

Table 5.18: J48 results with non-discretized balanced dataset

Algorithm Accuracy Precision Recall F-Measure Increase
J48 Confidence Factor 0.25 70.91% 0.4 0.2857 0.3333 25%

J48 Confidence Factor 0.5 69.09% 0.4118 0.5 0.4516 75%
J48 Confidence Factor 0.75 69.09% 0.4118 0.5 0.4516 75%

J48 Unpruned 69.09% 0.4118 0.5 0.4516 75%

Table 5.19 contains the results obtained with the Naïve Bayes algorithm. The best
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result was obtained increasing the minority class in 50%, presenting accuracy of 65.45%

(p-value of 0.148), precision of 0.3684 (p-value of 0.065), recall of 0.5 (p-value of 0.132)

and F-Measure of 0.4242 (p-value of 0.059).

Table 5.19: Naïves Bayes results with non-discretized balanced dataset

Algorithm Accuracy Precision Recall F-Measure Increase
Naïve Bayes 65.45% 0.3684 0.5 0.4242 50%

Table 5.20 contains the results obtained with the Random Forest algorithm, varying

its parameter numIterations with the values 100, 500, 1000 and 10000. Since the results

with numIterations = 500 and numIterations = 1000 presented the same measures values

with the same minority class increase, numIterations = 500 was selected as the best result,

because less iterations were needed. So, this best result presented accuracy of 74.55% (p-

value of 0.008), precision of 0.5 (p-value of 0.008), recall of 0.4286 (p-value of 0.228) and

F-Measure of 0.4615 (p-value of 0.026).

Table 5.20: Random Forest results with non-discretized balanced dataset

Algorithm Accuracy Precision Recall F-Measure Increase
Random Forest Iterations 100 74.55% 0.5 0.3571 0.4167 100%

Random Forest Iterations 500 74.55% 0.5 0.4286 0.4615 100%
Random Forest Iterations 1000 74.55% 0.5 0.4286 0.4615 100%
Random Forest Iterations 10000 72.73% 0.4545 0.3571 0.4 75%

Table 5.21 contains the results obtained with the SMO algorithm using three kernel

types (PolyKernel, Puk and RBFKernel) in its kernel parameter. The best result was

obtained with kernel = Puk, increasing the minority class in 100% and presenting accuracy

of 81.82% (p-value of 0.001), precision of 0.75 (p-value of 0.037), recall of 0.4286 (p-value

of 0.002) and F-Measure of 0.5455 (p-value of 0.001).

Table 5.21: SMO results with non-discretized balanced dataset

Algorithm Accuracy Precision Recall F-Measure Increase
SMO PolyKernel 74.55% 0.5 0.2143 0.3 75%

SMO Puk 81.82% 0.75 0.4286 0.5455 100%
SMO RBFKernel 74.55% NaN 0 NaN 25%

As the results showed, the class balancing technique increased the accuracy of Random

Forest (increased from 70.91% to 74.55%) and SMO (increased from 74.55% to 81.82%)

algorithm. Increasing the minority class in non-discretized dataset by 100% resulted in

the highest accuracy obtained so far. The supervised discretization technique will be

applied to the balanced dataset, aiming at increasing the classifiers performance.
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5.3.2 Discretized Dataset

This subsection deals with the results obtained by applying class balancing to the dis-

cretized dataset. Table 5.22 contains the results obtained with the IBk algorithm, varying

its k parameter with values from 1 to 15. The best result was obtained with k = 15, using

the gini index metric and increasing the minority class in 50%. It presented accuracy of

74.55% (p-value of 0.43), precision of 0.5 (p-value of 0.223), recall of 0.1429 (p-value of

0.085) and F-Measure of 0.2222 (p-value of 0.059).

Table 5.22: IBk results with discretized balanced dataset

Algorithm Accuracy Precision Recall F-Measure Metric Increase
IBk k = 4 74.55% 0.5 0.0714 0.125 Gain Ratio 25%

IBk k = 15 74.55% 0.5 0.1429 0.2222 Gini Index 50%
IBk k = 9 74.55% 0.5 0.0714 0.125 Information Gain 25%

Table 5.23 contains the results obtained with the J48 algorithm, varying its parameters

confidenceFactor and unpruned. The best result was obtained with confidenceFactor =

0.5, using the gain ratio metric and increasing the minority class in 75%. It presented

accuracy of 70.91% (p-value of 0.51), precision of 0.4 (p-value of 0.232), recall of 0.2857

(p-value of 0.072) and F-Measure of 0.3333 (p-value of 0.052).

Table 5.23: J48 results with discretized balanced dataset

Algorithm Accuracy Precision Recall F-Measure Metric Increase
J48 Confidence Factor 0.5 70.91% 0.4 0.2857 0.3333 Gain Ratio 75%
J48 Confidence Factor 0.25 65.45% 0.2222 0.1429 0.1739 Gini Index 50%
J48 Confidence Factor 0.25 67.27% 0.25 0.1429 0.1818 Information Gain 50%

Table 5.24 contains the results obtained with the Naïve Bayes algorithm. The best

result was obtained with the gini index metric and increasing the minority class in 75%.

It presented accuracy of 74.55% (p-value of 0.005), precision of 0.5 (p-value of 0.005),

recall of 0.3571 (p-value of 0.487) and F-Measure of 0.4167 (p-value of 0.083).

Table 5.24: Naïve Bayes results with discretized balanced dataset

Algorithm Accuracy Precision Recall F-Measure Metric Increase
Naïve Bayes 72.73% 0.4545 0.3571 0.4 Gain Ratio 100%
Naïve Bayes 74.55% 0.5 0.3571 0.4167 Gini Index 75%
Naïve Bayes 69.09% 0.3333 0.2143 0.2609 Information Gain 150%

Table 5.25 contains the results obtained with the Random Forest algorithm, varying

its parameter numIterations with the values 100, 500, 1000 and 10000. The best result

was obtained with numIterations = 500, using the gain ratio metric and increasing the



5.3 Balanced Dataset 66

minority class in 50%. It presented accuracy of 74.55% (p-value of 0.081), precision of

0.5 (p-value of 0.081), recall of 0.2143 (p-value of 0.35) and F-Measure of 0.3 (p-value of

0.146).

Table 5.25: Random Forest results with discretized balanced dataset

Algorithm Accuracy Precision Recall F-Measure Metric Increase
Random Forest Iterations 500 74.55% 0.5 0.2143 0.3 Gain Ratio 50%
Random Forest Iterations 100 69.09% 0.2857 0.1429 0.1905 Gini Index 25%
Random Forest Iterations 100 61.82% 0.1818 0.1429 0.16 Information Gain 100%

Table 5.26 contains the results obtained with the SMO algorithm using three kernel

types (PolyKernel, Puk and RBFKernel) in its kernel parameter. The best result was

obtained with kernel = RBFKernel, using the information gain metric and increasing the

minority class in 150%. It presented accuracy of 74.55% (p-value of 0.649), precision of

0.5 (p-value of 0.052), recall of 0.0714 (p-value of 0.289) and F-Measure of 0.125 (p-value

of 0.121).

Table 5.26: SMO results with discretized balanced dataset

Algorithm Accuracy Precision Recall F-Measure Metric Increase
SMO RBFKernel 74.55% NaN 0 NaN Gain Ratio 150%

SMO Puk 74.55% NaN 0 NaN Gini Index 75%
SMO RBFKernel 74.55% 0.5 0.0714 0.125 Information Gain 150%

Although the supervised discretization technique increased the accuracy of the Naïve

Bayes algorithm (increased from 72.73% to 74.55%), it did not presented an accuracy

better than that obtained by applying the SMO algorithm to the non-discretized balanced

dataset. Thus, the attribute selection technique will be applied, aiming at increasing the

classifiers performance.

5.3.3 Attribute Selection

This subsection deals with the attribute selection applied to the discretized balanced

datasets, in order to try to improve the classifier accuracy. This time, the attribute

selection was applied after the class balancing of the discretized datasets. This differs

from Section 5.2.3 because here each minority class increase will result in new rankings

of attributes. The Ranker search method of WEKA, along with its attribute evaluator

InfoGainAttributeEval, was also used in the analyses discussed in this section. After each

gradual increase of the minority class, the Ranker was applied, generating a ranking of

attributes for each fold. Because five gradual increases (i.e., 25, 50, 75, 100 and 150%)

were performed, five rankings were generated for each fold.
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Table 5.27 contains the results obtained with the IBk algorithm (k-NN), using the

same values of the supervised discretization of Table 5.22 for parameter k. The best result

was obtained with k = 15, using the gini index metric, increasing the minority class in 50%

and using a subset of five attributes. It presented accuracy of 76.36% (p-value of 0.525),

precision of 0.6667 (p-value of 0.151), recall of 0.1429 (p-value of 0.021) and F-Measure

of 0.2353 (p-value of 0.018).

Table 5.27: IBk results of attribute selection with discretized balanced dataset

Algorithm Accuracy Precision Recall F-Measure Metric Increase Subset
IBk k = 4 74.55% 0.5 0.0714 0.125 Gain Ratio 25% Subset 9

IBk k = 15 76.36% 0.6667 0.1429 0.2353 Gini Index 50% Subset 5
IBk k = 9 74.55% 0.5 0.0714 0.125 Information Gain 25% Subset 9

Table 5.28 contains the results obtained with the J48 algorithm, using the same values

of the supervised discretization of Table 5.23 for parameter confidenceFactor. The best

result was obtained with confidenceFactor = 0.5, using the gain ratio metric, increasing

the minority class in 75% and using a subset of one attribute. It presented accuracy of

70.91% (p-value of 0.945), precision of 0.3333 (p-value of 0.159), recall of 0.1429 (p-value

of 0.029) and F-Measure of 0.2 (p-value of 0.023).

Table 5.28: J48 results of attribute selection with discretized balanced dataset

Algorithm Accuracy Precision Recall F-Measure Metric Increase Subset
J48 Confidence Factor 0.5 70.91% 0.3333 0.1429 0.2 Gain Ratio 75% Subset 1
J48 Confidence Factor 0.25 65.45% 0.2222 0.1429 0.1739 Gini Index 50% Subset 6
J48 Confidence Factor 0.25 61.82% 0.1818 0.1429 0.16 Information Gain 50% Subset 6

Table 5.29 contains the results obtained with the Naïve Bayes algorithm. The best

result was obtained using the gini index metric, increasing the minority class in 75% and

using a subset of eight attributes. It presented accuracy of 76.36% (p-value of 0.003),

precision of 0.5556 (p-value of 0.002), recall of 0.3571 (p-value of 0.409) and F-Measure

of 0.4348 (p-value of 0.05).

Table 5.29: Naïve Bayes results of attribute selection with discretized balanced dataset

Algorithm Accuracy Precision Recall F-Measure Metric Increase Subset
Naïve Bayes 74.55% 0.5 0.2857 0.3636 Gain Ratio 100% Subset 5
Naïve Bayes 76.36% 0.5556 0.3571 0.4348 Gini Index 75% Subset 8
Naïve Bayes 70.91% 0.4 0.2857 0.3333 Information Gain 150% Subset 8

Table 5.30 contains the results obtained with the Random Forest algorithm, using the

same values of the supervised discretization of Table 5.25 for the parameter numIterations.

The best result was obtained with numIterations = 500, using the gain ratio metric,
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increasing the minority class in 50% and using a subset of five attributes. It presented

accuracy of 74.55% (p-value of 0.201), precision of 0.5 (p-value of 0.199), recall of 0.2143

(p-value of 0.298) and F-Measure of 0.3 (p-value of 0.159).

Table 5.30: Random Forest results of attribute selection with discretized balanced dataset

Algorithm Accuracy Precision Recall F-Measure Metric Increase Subset
Random Forest Iterations 500 74.55% 0.5 0.2143 0.3 Gain Ratio 50% Subset 5
Random Forest Iterations 100 69.09% 0.2857 0.1429 0.1905 Gini Index 25% Subset 9
Random Forest Iterations 100 63.64% 0.25 0.2143 0.2308 Information Gain 100% Subset 5

Table 5.31 contains the results obtained with the SMO algorithm using the same value

of the supervised discretization of Table 5.26 for parameter kernel. Since the results with

kernel = Puk and kernel = RBFKernel presented the same measures values, kernel =

Puk was selected as the best result because it used a smaller increase (i.e., 75% instead

of 150% increase). So, the best result used the gini index metric, increasing the minority

class in 75% and using a subset of five attributes. It presented accuracy of 74.55% (p-

value of 0.17), precision of 0.5 (p-value of 0.148), recall of 0.0714 (p-value of 0.538) and

F-Measure of 0.125 (p-value of 0.224).

Table 5.31: SMO results of attribute selection with discretized balanced dataset

Algorithm Accuracy Precision Recall F-Measure Metric Increase Subset
SMO RBFKernel 74.55% NaN 0 NaN Gain Ratio 150% Subset 1

SMO Puk 74.55% 0.5 0.0714 0.125 Gini Index 75% Subset 5
SMO RBFKernel 74.55% 0.5 0.0714 0.125 Information Gain 150% Subset 5

Although the supervised discretization technique increased the accuracy of the IBk

(increased from 74.55% to 76.36%) and Naïve Bayes algorithms (increased from 74.55%

to 76.36%), it did not presented an accuracy better than that obtained by applying the

SMO algorithm to the non-discretized balanced dataset.

5.4 Auto-WEKA

WEKA software, besides being a free and open-source software, has several plugins and

algorithms that can be installed through its package manager. One such plugin is Auto-

WEKA (version 2.6.1) [32, 55]. This plugin aims at assisting the user in choosing a

classification algorithm (classifier) and defining its parameters. The user tells the plugin

the measure he wants to maximize and also the execution time (the timeLimit hyperpa-

rameter) at which the plugin must execute to find the best recommended algorithm.

The Auto-WEKA plugin tries all WEKA algorithms, varying their parameter values.
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At the end of its execution (defined by the user in the timeLimit parameter), it returns the

algorithm that obtained the best value for the given measure, along with the parameter

values used. One of the limitations of this plugin is that it does not allow the user to

configure the validation method used. That is, the user is required to supply the entire

dataset to the plugin and it uses internally a 10-Fold Cross-Validation.

When running the Auto-WEKA plugin for 1440 minutes (one day) with the original

dataset, to maximize the accuracy measure, the suggested algorithm was SMO, with the

following parameter values:

• parameter C = 1.235172507048868. Its default value is 1;

• parameter buildCalibrationModels = true. Its default value is false. According to

WEKA documentation, this parameter defines whether to fit calibration models to

the SMO outputs for proper probability estimates;

• parameter kernel = Puk;

• kernel parameter sigma (S) = 1.0698699932037348. Its default value is 1;

• kernel parameter omega (O) = 0.8329205951746678. Its default value is 1.

The Auto-WEKA plugin suggestion was applied to each analysis performed so far.

The goal was to evaluate if the plugin could obtain better results, improving the accuracy

measure. Table 5.32 contains the results obtained applying the Auto-WEKA suggested

algorithm with its parameters values to each analysis performed previously.

Table 5.32: Results of Auto-WEKA suggested algorithm applied to each analysis

Accuracy Precision Recall F-Measure Increase Metric Subset
78.18% 0.5833 0.5 0.5385 Unbalanced Non-discretized All attributes
85.45% 0.8 0.5714 0.6667 100% Non-discretized All attributes
74.55% NaN 0 NaN Unbalanced Information Gain All attributes
72.73% 0 0 NaN 150% Gini Index All attributes
74.55% NaN 0 NaN Unbalanced Gini Index Subset 8
76.36% 0.6667 0.1429 0.2353 75% Gini Index Subset 7

The best result was obtained using the non-discretized dataset, performing a class

balancing inceasing the minority class in 100% and using all attributes (i.e., it did not

perform the attribute selection). It presented accuracy of 85.45% (p-value of 0.001),

precision of 0.8 (p-value of 0.001), recall of 0.5714 (p-value of 0.271) and F-Measure of

0.6667 (p-value of 0.001). Thus, using the Auto-WEKA plugin presented the best result

of all analyses performed with the value 36 as cut-off point.
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5.5 Using a Higher Cut-off Point

As explained in Section 2.2, there are studies that suggest cut-off points to meet PTSD

classification or identification criteria for provisional diagnoses [5]. Lower cut-off points

are indicated when whishing to maximize detection of possible PTSD cases. On the other

hand, higher cut-offs are indicated to minimize false positives. Table 2.2 showed suggested

ranges of cut-off points for each criterion.

The classification analyses discussed so far used value 36 as PCL cut-off point. Because

the selected range goes from 36 to 44, an evaluation of the range’s maximum value (44)

was also considered interesting. Since the number of dataset instances is small and the

number of majority class instances is almost three times bigger than the minority class,

using a higher cut-off will increase the dataset imbalance.

Another important point to notice is that the cut-off point value 44 is already accepted

and used by the literature. Some studies [5, 47, 57, 22] propose and use value 44. On

the other hand, value 36 has not been widely explored yet, suggesting another gap to

investigate.

When using value 44 as cut-off point for PCL, the number of majority class instances

(class low) is 47, while the number of minority class decreased to 8 (in this scenario, the

number of majority class instances is almost six times bigger than the minority class). For

this new cut-off point, the baseline increased to 85.45%. Like the previous classification

analyses performed with value 36, this section summarizes the best result of each analysis

obtained with value 44. The same five algorithms (IBk, J48, NB, RF and SMO) with

their parameters variations used so far were also applied in the analysys of this section.

The 5-Fold Stratified Cross-Validation method and the permutation test performing 1000

iterations were also used.

Table 5.33 contains the best results of each analysis performed using the non-discretized

dataset. Since algorithms IBk with k = 5 and SMO with class balancing and kernel =

Puk presented the same measures values, the IBk algorithm with k = 5 was selected as

the best result, because it used the unbalanced dataset insted of increasing the minority

class in 100% like the SMO algorithm. So, the best result with k = 5 presented accuracy

of 89.09% (p-value of 0.001), precision of 1 (p-value of 0.048), recall of 0.25 (p-value of

0.009) and F-Measure of 0.4 (p-value of 0.001).
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Table 5.33: Best results obtained with the cut-off point 44 using the non-discretized
dataset

Algorithm Accuracy Precision Recall F-Measure Increase
IBk k = 5 89.09% 1 0.25 0.4 Unbalanced
IBk k = 11 85.45% NaN 0 NaN 50%

J48 Confidence Factor 0.25 85.45% NaN 0 NaN Unbalanced
J48 Confidence Factor 0.25 83.64% 0.3333 0.125 0.1818 50%

Naïve Bayes 70.91% 0.1 0.125 0.1111 Unbalanced
Naïve Bayes 72.73% 0.2308 0.375 0.2857 100%

Random Forest Iterations 100 85.45% NaN 0 NaN Unbalanced
Random Forest Iterations 500 85.45% 0.5 0.125 0.2 50%

SMO Puk 85.45% NaN 0 NaN Unbalanced
SMO Puk 89.09% 1 0.25 0.4 100%

Like the analyses perfomed with cut-off point 36, the supervised discretization and the

attribute selection were applied to cut-off point 44, obtaining new rankings for each metric

(information gain, gain ratio and gini index ). Table 5.34 contains the best results of each

analysis performed using the discretized datasets, obtained after applying the brute force

supervised discretization implementation with the information gain, gain ratio and gini

index metrics.

The best result was obtained with IBk with k = 14 using the discretized dataset by

the gain ratio metric, increasing the minority class in 50% and using a subset of five

attributes. It presented accuracy of 87.27% (p-value of 0.001), precision of 1 (p-value of

0.001), recall of 0.125 (p-value of 0.001) and F-Measure of 0.2222 (p-value of 0.001).
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Table 5.34: Best results obtained with cut-off point 44 using the discretized dataset

Algorithm Accuracy Precision Recall F-Measure Increase Metric Subset
IBk k = 4 85.45% NaN 0 NaN Unbalanced Gain Ratio Subset 1

IBk k = 14 87.27% 1 0.125 0.2222 50% Gain Ratio Subset 5
J48 Confidence Factor 0.25 85.45% NaN 0 NaN Unbalanced Gain Ratio Subset 1
J48 Confidence Factor 0.25 85.45% NaN 0 NaN 50% Gain Ratio Subset 1

Naive Bayes 83.64% 0.3333 0.125 0.1818 Unbalanced Gain Ratio Subset 6
Naïve Bayes 81.82% 0.3333 0.25 0.2857 50% Gain Ratio Subset 8

Random Forest Iterations 100 81.82% 0 0 NaN Unbalanced Gain Ratio Subset 3
Random Forest Iterations 100 81.82% 0 0 NaN 50% Gain Ratio Subset 1

SMO RBFKernel 85.45% NaN 0 NaN Unbalanced Gain Ratio Subset 1
SMO RBFKernel 85.45% NaN 0 NaN 50% Gain Ratio Subset 1

IBk k = 5 85.45% NaN 0 NaN Unbalanced Gini Index Subset 1
IBk k = 8 85.45% 0.5 0.125 0.2 50% Gini Index All attributes

J48 Confidence Factor 0.25 85.45% NaN 0 NaN Unbalanced Gini Index Subset 1
J48 Confidence Factor 0.25 80% 0 0 NaN 50% Gini Index Subset 1

Naive Bayes 85.45% 0.5 0.125 0.2 Unbalanced Gini Index Subset 2
Naïves Bayes 83.63% 0.3333 0.125 0.1818 50% Gini Index Subset 5

Random Forest Iterations 100 85.45% NaN 0 NaN Unbalanced Gini Index Subset 6
Random Forest Iterations 100 81.82% 0 0 NaN 50% Gini Index All attributes

SMO RBFKernel 85.45% NaN 0 NaN Unbalanced Gini Index Subset 1
SMO RBFKernel 85.45% NaN 0 NaN 50% Gini Index Subset 1

IBk k = 11 85.45% NaN 0 NaN Unbalanced Information Gain Subset 1
IBk k = 14 85.45% NaN 0 NaN 50% Information Gain Subset 1

J48 Confidence Factor 0.25 85.45% NaN 0 NaN Unbalanced Information Gain Subset 1
J48 Confidence Factor 0.25 81.82% 0 0 NaN 50% Information Gain Subset 1

Naive Bayes 85.45% 0.5 0.125 0.2 Unbalanced Information Gain Subset 3
Naïve Bayes 81.82% 0.3333 0.25 0.2857 50% Information Gain Subset 1

Random Forest Iterations 100 83.64% 0 0 NaN Unbalanced Information Gain Subset 5
Random Forest Iterations 500 81.82% 0.3333 0.25 0.2857 50% Information Gain Subset 1

SMO RBFKernel 85.45% NaN 0 NaN Unbalanced Information Gain Subset 1
SMO RBFKernel 85.45% NaN 0 NaN 50% Information Gain Subset 1

The Auto-WEKA plugin was also applied to the non-discretized unbalanced dataset

(i.e., original dataset), running for 1440 minutes (one day), to maximize the accuracy

measure. The suggested algorithm was IBk, with the following parameter values:

• parameter k = 14 neighbors;

• parameter distanceWeighting = weight by 1/distance. Its default value is no dis-

tance weighting. The Auto-WEKA suggested parameter value weights neighbors by

the inverse of their distance;

• parameter crossValidate = true. Its default value is false. This parameter defines

whether hold-one-out cross-validation will be used to select the best k value between

1 and the value specified as the k parameter.

The Auto-WEKA plugin suggestion was applied to each analysis performed. The goal

was to evaluate if the plugin could obtain better results, improving the accuracy measure.

Table 5.35 contains the results obtained applying the Auto-WEKA suggested algorithm

with its parameters values to each analysis performed with cut-off point 44. The best result
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was obtained with the original dataset (i.e., non-discretized and unbalanced dataset), not

performing the attribute selection (i.e., using all the ten independent attributes). It

presented accuracy of 90.91% (p-value of 0.001), precision of 0.8 (p-value of 0.02), recall

of 0.5 (p-value of 0.001) and F-Measure of 0.6154 (p-value of 0.001).

Table 5.35: Results of Auto-WEKA suggested algorithm applied to each analysis with
cut-off point 44

Accuracy Precision Recall F-Measure Increase Metric Subset
90.91% 0.8 0.5 0.6154 Unbalanced Non-discretized All attributes
81.82% 0.3333 0.25 0.2857 50% Non-discretized All attributes
81.82% 0 0 NaN Unbalanced Gini Index All attributes
78.18% 0.1667 0.125 0.1429 50% Gini Index All attributes
81.82% 0.25 0.125 0.1667 Unbalanced Gini Index Subset 2
81.82% 0.25 0.125 0.1667 50% Gini Index Subset 2

5.6 Final Remarks

The supervised discretization, class balancing and attribute selection techniques applied

improved the accuracy of some classifiers. When comparing the unbalanced datasets, the

supervised discretization improved the accuracy of Naïve Bayes and Random Forest with

numIterations = 500. When comparing the attribute selection for unbalanced discretized

dataset, there was an improve of Naïve Bayes accuracy, while the accuracies of IBk with

k = 9, J48 with confidenceFactor = 0.25, Random Forest with numIterations = 500 and

SMO with kernel = Puk remained the same.

When comparing the use of class balancing in non-discretized datasets, there was an

increase in accuracy of Random Forest with numIterations = 500 and SMO with kernel

= Puk. When comparing the use of class balancing in discretized datasets, there was an

increase in accuracy of Naïve Bayes.

When comparing the attribute selection performed with the balanced discretized

datasets, there was an increase in accuracy of IBk with k = 15 and Naïve Bayes, while

accuracy of J48 with confidenceFactor = 0.5, Random Forest with numIterations = 500

and SMO with kernel = Puk remained the same.

The best result with cut-off point value 36 was obtained with the SMO algorithm

with kernel = Puk using the non-discretized dataset and increasing the minority class in

100%. It correctly classified six of 14 minority class instances and 39 of 41 majority class

instances, presenting accuracy of 81.82% (p-value of 0.001), precision of 0.75 (p-value of
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0.037), recall of 0.4286 (p-value of 0.002) and F-Measure of 0.5455 (p-value of 0.001).

Table 5.36 contains its confusion matrix.

Table 5.36: Confusion matrix of the best result using the cut-off point 36

Predicted
High Low

Actual High 6 8
Low 2 39

The SMO classifier, along with the parameter values suggested by the Auto-WEKA

plugin, showed better results than the other classifiers used. As explained in Section 5.4,

due to Auto-WEKA plugin limitations (i.e., it is not possible to configure the validation

method used and to provide separate training and test partitions), the plugin was executed

only with the original dataset and its suggestion (the SMO classifier with its parameters

values) was maintained and used when the dataset was discretized and balanced.

The best result with the Auto-WEKA suggestion correctly classified eight of 14 mi-

nority class instances and 39 of 41 majority class instances, presenting accuracy of 85.45%

(p-value of 0.001), precision of 0.8 (p-value of 0.001), recall of 0.5714 (p-value of 0.271)

and F-Measure of 0.6667 (p-value of 0.001), using the non-discretized dataset, without

appling the attribute selection technique, and increasing the minority class in 100%. Table

5.37 contains its confusion matrix.

Table 5.37: Confusion matrix of the best result using the Auto-WEKA suggestion and
the cut-off point 36

Predicted
High Low

Actual High 8 6
Low 2 39

Another factor that influenced the results of the analyses in this chapter was the small

number of dataset instances and their class distribution, that is, the dataset imbalance.

As much as the SMOTE algorithm tries to minimize the imbalance problem by inserting

artificial instances, it is ideal to balance the dataset by inserting real (not artificial)

instances (e.g., running the Biomedical Institute experiment again with new individuals).

However, this is not always feasible or capable of being accomplished over a small period

of time.

An article containing the results obtained in the classification analyses performed in

this chapter, using the value 36 as cut-off point and explaining the techniques applied was
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published [15].

Aiming at exploring even further the PCL scale, the classification analyses were per-

formed using a higher cut-off point value, following the suggested range found in the

literature. The value selected was 44 because it was the maximum value of the range and

it would prove more challenging, since the class imbalance would increase, as explained

in Section 5.5.

Although the best results obtained with cut-off point value 44 presented higher ac-

curacy then those best results obtained with cut-off point value 36, it is important to

observe that the number of minority class instances has also decreased, increasing the

baseline for this new scenario (i.e., the baseline was 74.55% and it increased to 85.45%).

The best result obtained with the non-discretized dataset and performing no class

balancing presented accuracy of 89.09% (p-value of 0.001), precision of 1 (p-value of

0.048), recall of 0.25 (p-value of 0.009), F-Measure of 0.4 (p-value of 0.001), appling the

IBk k = 5 algorithm. It correctly classified only two of eight minority class instances and

all majority class instances. Table 5.38 contains its confusion matrix.

Table 5.38: Confusion matrix of the best result using the non-discretized unbalanced
dataset and the cut-off point 44

Predicted
High Low

Actual High 2 6
Low 0 47

The best result obtained with the discretized dataset, using the gain ratio metric and

increasing the minority class by 50%, presented accuracy of 87.27% (p-value of 0.001),

precision of 1 (p-value of 0.001), recall of 0.125 (p-value of 0.001) and F-Measure of 0.2222

(p-value of 0.001). It applied the IBk algorithm with k = 14, using the first five attributes

of the ranking. Even performing a class balancing, i.e., increasing the minority class by

50%, the classifier could correctly classify only one minority class instance and all majority

class instances. Table 5.39 contains its confusion matrix.

Table 5.39: Confusion matrix of the best result using the discretized balanced dataset
and the cut-off point 44

Predicted
High Low

Actual High 1 7
Low 0 47
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The IBk classifier, along with the parameter values suggested by the Auto-WEKA

plugin, showed better results than the other classifiers used. It correctly classified four of

eight minority class instances and 46 of 47 majority class instances, presenting accuracy

of 90.91% (p-value of 0.001), precision of 0.8 (p-value of 0.02), recall of 0.5 (p-value of

0.001) and F-Measure of 0.6154 (p-value of 0.001), using the unbalanced non-discretized

dataset, without appling the attribute selection technique. Table 5.40 contains its confu-

sion matrix.

Table 5.40: Confusion matrix of the best result using the Auto-WEKA suggestion and
the cut-off point 44

Predicted
High Low

Actual High 4 4
Low 1 46

As already explained, although cut-off point value 44 increases the baseline to 85.45%,

it becomes more challenging, since the number of minority class instances is not big. A

new execution of the Biomedical Institute experiment with new individuals would be very

interesting and helpful to minimize, and perhaps, solve this problem.

Table 5.41 summarizes the best results obtained with the cut-off points 36 and 44,

applying the class balancing, supervised discretization and attribute selection techniques.

As already explained, when changing the cut-off point value, the number of minority

class instances and the baseline also change. Thus, the measures precision, recall and

F-Measure must be taken into account, when comparing the results. Since the goal is

to identify individuals with higher PCL scores, indicating possible PTSD patients, the

correct classification of minority class instances is more relevant to the addressed problem

and was better performed using the value 36 as cut-off point.

Table 5.41: Best results using the cut-off points 36 and 44

Algorithm Accuracy Precision Recall F-Measure Increase Metric Subset Cut-off
IBk k = 4 76,36% 0,5294 0,6429 0,5806 Unbalanced Non-Discretized All Attributes 36
IBk k = 5 89,09% 1 0,25 0,4 Unbalanced Non-Discretized All Attributes 44
Naïve Bayes 74,55% 0,5 0,3571 0,4167 Unbalanced Gini Index Subset 9 36
Naïve Bayes 85,45% 0,5 0,125 0,2 Unbalanced Gini Index Subset 2 44
SMO Puk 81,82% 0,75 0,4286 0,5455 100% Non-Discretized All Attributes 36
SMO Puk 89,09% 1 0,25 0,4 100% Non-Discretized All Attributes 44

Naïve Bayes 76,36% 0,5556 0,3571 0,4348 75% Gini Index Subset 8 36
IBk k = 14 87,27% 1 0,125 0,2222 50% Gain Ratio Subset 5 44



Chapter 6

Regression

This chapter discusses the regression analyses performed, presenting the results obtained.

In the regression analyses, the original dataset, i.e., the dataset with ten independent

numeric attributes and the PCL attribute was used. Unlike the classification analyses

of Chapter 5, where the PCL attribute has nominal values (high and low classes), for

regression analyses, this attribute has the numerical values of the PCL scale.

In addition to the WEKA software [63] used for classification analyses, regression

analyses used PRoNTo (version 3) [49] software. This software was initially developed

to perform DM tasks on neuroimaging data (e.g., fMRI). However, in its latest version

(version 3) it is already possible to apply its DM algorithms to flat file data (e.g., csv data

format).

This chapter has four sections. Section 6.1 explains the methodology used. Sections

6.2 and 6.3 deal with regression analyses and their results obtained with WEKA and

PRoNTo software respectively. Section 6.4 discusses the main points observed with the

analyses.

6.1 Methodology

The regression analyses were performed using two softwares: WEKA and PRoNTo. Each

one of these softwares has its own regression algorithms implementations. To validate the

results obtained, the 5-Fold Stratified Cross-Validation method along with the implemen-

tation of the permutation test (performing 1000 permutations) were used. Since there is

no class attribute in the regression, the supervised discretization, attribute selection and

class balancing DM techniques were not applied to the dataset used.
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6.2 WEKA

This section deals with the regression analyses performed with the WEKA software [63].

As briefly explained in Section 2.7, the three following WEKA algorithms were used:

1. IBk: this is the implementation of the k-NN algorithm in WEKA. As explained

in Section 2.6.5, this algorithm can be applied to both classification analysis and

regression analysis [1];

2. Linear Regression;

3. SMOreg: this is the implementation of the SVM algorithm for regression in WEKA

[53, 54].

The SVM algorithm, as explained in the Chapter 2, is also widely used for regres-

sion. Because it is widely used, algorithms such as KRR and RVR were implemented

in PRoNTo as adaptations of the SVM algorithm. Like the SVM, which can be used in

both classification and regression analyses, the IBk algorithm was also selected for the

regression analyses in this section. The Linear Regression algorithm, also widely used for

regression, is an algorithm whose output (mathematical function) is simple to understand.

The analyses were performed using the 5-Fold Stratified Cross-Validation method,

obtaining the results for the correlation coefficient (R), MAE and RMSE metrics. To

evaluate the statistical significance of the obtained results, the permutation test algorithm

implemented for WEKA software was applied, performing 1000 permutations and using

α = 0.05.

The IBk algorithm has the k parameter, which refers to the number of training in-

stances, searched in a pattern space, that are closest to the test instance (see Section

2.6.5). In the analyses performed, the k parameter was varied with values from 1 to

15. Among the values used for the k parameter, the one with the highest correlation

coefficient and the lowest mean absolute error and root mean squared error was selected.

Table 6.1 contains the results obtained with the three algorithms (IBk, Linear Re-

gression and SMOreg). As can be seen, the best result was obtained with the IBk k = 4

algorithm, with a correlation coefficient (R) of 0.4164 and a p-value equal to 0.001.
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Table 6.1: Regression analysis results in WEKA

Algorithm R R p-value MAE MAE p-value RMSE RMSE p-value
IBk k = 1 0.3808 0.005 10.2364 0.021 14.2184 0.023
IBk k = 2 0.4031 0.001 9.6636 0.029 12.583 0.014
IBk k = 3 0.4055 0.001 9.1394 0.012 11.9894 0.004
IBk k = 4 0.4164 0.001 8.9636 0.013 11.5186 0.001
IBk k = 5 0.3874 0.001 8.8691 0.007 11.6159 0.001
Ibk k = 6 0.3232 0.005 9.3455 0.05 11.9413 0.006
IBk k = 7 0.2616 0.025 9.561 0.103 12.1385 0.021
IBk k = 8 0.1513 0.095 9.7795 0.189 12.5402 0.077
IBk k = 9 0.014 0.307 10.1636 0.445 12.9528 0.253
IBk k = 10 -0.0249 0.384 10.1782 0.493 12.9678 0.303
IBk k = 11 -0.1288 0.613 10.4149 0.728 13.1805 0.514
IBk k = 12 -0.1187 0.585 10.3697 0.712 13.1396 0.524
IBk k = 13 -0.0739 0.459 10.1469 0.58 12.9559 0.381
IBk k = 14 -0.0309 0.355 9.9351 0.393 12.8605 0.322
IBk k = 15 0.0096 0.258 9.8848 0.373 12.7532 0.242

LR 0.0396 0.242 10.2669 0.375 13.4548 0.436
SMOreg 0.3318 0.015 8.442 0.005 12.0681 0.013

6.3 PRoNTo

This section deals with regression analyses performed with PRoNTo software [49]. PRoNTo

is also a free and open-source software, having four algorithms for regression analysis. Cur-

rently, in its third version, PRoNTo does not have algorithms for preprocessing and its

algorithms do not have user-defined parameters. As briefly explained in Section 2.7, the

following PRoNTo algorithms were used:

1. Gaussian Process Regression (GPR) [61, 50, 62];

2. Kernel Ridge Regression (KRR) [60];

3. Relevance Vector Regression (RVR) [56];

4. epsilon-Support Vector Regression (epsilon-SVR): this is the implementation of

the SVM algorithm for PRoNTo regression, using epsilon to define the margin of

tolerance, where penalties are applied to errors.

All the regression algorithms of PRoNTo were selected for the analyses of this section.

As explained in Section 6.2, the KRR and RVR algorithms are adaptations of the widely

used SVM algorithm, while the epsilon-SVR algorithm is the SVM algorithm implementa-

tion, using the ε-insensitive hinge loss function (see Section 2.6.4). Like the IBk algorithm,
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the GPR uses the lazy learning approach. The GPR also uses a Bayesian approach to

calculate the probability distribution of the calculated mapping functions.

The analyses were performed using the 5-Fold Stratified Cross-Validation method,

obtaining the results for the correlation coefficient (R) and MSE metrics. To evaluate the

statistical significance of the results obtained, the permutation test was applied performing

1000 permutations and using α = 0.05. Unlike WEKA, PRoNTo already provides a

permutation test algorithm.

An important observation to make is that PRoNTo does not offer a seed value in order

to enable the replicability of the calculated p-values. As explained in Section 2.10, the

permutation test applied in this work, randomly shuffles the values of the PCL dependent

attribute. In order to enable a replicability of the calculate p-value for each results

measure, the implementation for WEKA was made so that the user can choose a seed,

which will allow to obtain the same random shuffle of the attribute values in a future run

of the same analysis. Therefore, the use of the same seed guarantees the replicability of

the calculated p-values.

Table 6.2 contains the results obtained with the four algorithms. As mentioned,

PRoNTo does not allow the user to define parameter values for the algorithms used.

Therefore, the results were obtained with the default settings of each algorithm. As

can be seen, the highest correlation coefficient (0.28) was obtained with the epsilon-SVR

algorithm, presenting a p-value = 0.0559. Due to the limitation of PRoNTo, it was not

possible to know which value was assigned to ε. Even performing 1000 iterations, PRoNTo

informs the calculated p-values using four decimal places.

Table 6.2: Regression analysis results in PRoNTo

Algorithm R R p-value MSE MSE p-value
GPR 0.2 0.1598 155.64 0.1758
KRR 0.19 0.1598 182.17 0.2488
RVR 0.19 0.1518 158.89 0.1449

epsilon-SVR 0.28 0.0559 160.04 0.05

6.4 Final Remarks

Although most of the applied regression algorithms are based on SVM (i.e., KRR, RVR

and epsilon-SVR in PRoNTo and SMOreg in WEKA), the best correlation coefficient

(0.4164) obtained was using algorithm IBk with k = 4 in WEKA. Also when analyzing
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the results of SVM-based algorithms of both softwares, the WEKA SMOreg algorithm ob-

tained a better correlation coefficient (0.3318) compared to 0.28 of epsilon-SVR algorithm

and 0.19 of KRR and RVR algorithms. Moreover, an article with the results obtained in

the regression analyses using WEKA performed in this chapter was published [14].

The fact that PRoNTo does not allow the definition of parameter values becomes a

disadvantage compared to WEKA. In addition, WEKA has several algorithms to fulfill

various DM tasks (e.g., preprocessing).



Chapter 7

Conclusion

The application of computing for healthcare to identify patients with psychiatric disorders

and even candidates to develop such disorders in the future is the focus of many studies

and researches. This kind of application can assist physicians and specialists in prescribing

more efficient and effective diagnoses.

DM techniques and their classification and regression analyses applied in this work

used a dataset with 55 instances and 11 attributes (ten independent attributes and one

dependent attribute). Out of the ten independent attributes, two attributes (HR_Threat-

Neutral and NR_Threat-Neutral) are derived, i.e., they are calculated using other at-

tributes.

This chapter highlights our main results and contributions. Section 7.1 summarizes

the best results obtained in classification and regression analyses discussing the limitations

faced and contributions achieved. Section 7.2 discusses future work.

7.1 Best Results and Contributions

The best result obtained in the classification analysis using 36 as cut-off point and without

applying the Auto-WEKA plugin suggestion presented accuracy of 81.82% (p-value of

0.001), precision of 0.75 (p-value of 0.037), recall of 0.4286 (p-value of 0.002) and F-

Measure of 0.5455 (p-value of 0.001) using the SMO algorithm with its kernel = Puk in

the non-discretized dataset and increasing the minority class by 100% (see Table 5.21).

In most classification analyses performed, the supervised discretization, attribute se-

lection, and class balancing techniques increased the accuracy of the classifiers. The

use of Auto-WEKA plugin, as showed in Section 5.4, has also increased the accuracy
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when applying the suggested SMO algorithm with its suggested parameters values to the

non-discretized dataset and increasing the minority class by 100%. Its result presented

accuracy of 85.45% (p-value of 0.001), precision of 0.8 (p-value of 0.001), recall of 0.5714

(p-value of 0.271) and F-Measure of 0.6667 (p-value of 0.001).

As explained in Section 2.2, the suggested range of cut-off points values goes from

36 to 44. Thus, an evaluation of the range’s maximum value (44) was also considered

interesting. It is important to keep in mind that using a higher cut-off will increase the

dataset imbalance in this case.

When using 44 as cut-off point, the best result presented accuracy of 89.09% (p-value

of 0.001), precision of 1 (p-value of 0.048), recall of 0.25 (p-value of 0.009) and F-Measure

of 0.4 (p-value of 0.001) applying the k-NN algorithm with k = 5 to the unbalanced

non-discretized dataset (see Table 5.33).

Using the Auto-WEKA plugin with 44 as cut-off point has also increased the accuracy

when applying the suggested k-NN algorithm with its suggested parameters values to the

unbalanced non-discretized dataset. Its result (see Table 5.35) presented accuracy of

90.91% (p-value of 0.001), precision of 0.8 (p-value of 0.02), recall of 0.5 (p-value of 0.001)

and F-Measure of 0.6154 (p-value of 0.001).

In the regression version of the problem, the best result obtained with the WEKA

software [63] presented correlation coefficient of 0.4164 (p-value of 0.001), also using the

IBk algorithm with its k = 4 parameter (see Table 6.1). Using the PRoNTo software

[49], the best result presented correlation coefficient of 0.28 (p-value of 0.559), using the

epsilon-SVR algorithm (see Table 6.2).

The main limitations faced with the dataset were its small number of instances, along

with its imbalance (the number of majority class instances is almost three times bigger

than minority class, when using 36 as cut-off point, and almost six times bigger when

using 44 as cut-off point). They certainly affected the classification and regression analysis

results.

Despite the limitations, this work has analyzed different classification and regression

techniques, proving to be possible to apply DM in order to predict PTSD traits in individ-

uals who suffered a traumatic event, using the HR and SC physiological signals collected

during the visualization of emotional and neutral stimuli images. The results achieved

satisfactory accuracies (85.45% and 90.91%, using the cut-off points 36 and 44, respec-

tively) and correlation coefficients (0.4164 and 0.28, using the WEKA [63] and PRoNTo
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[49] softwares, respectively). In the future, this kind of analysis could be used for defining

new biomarkers for this type of psychiatric disorder, enabling clinicians to identify PTSD

traits using an affordable setup.

An additional technical contribution of this work was the implementation of the per-

mutation test algorithm, available in https://github.com/luizponte/WEKA (see Sec-

tion 2.10), aiming at adding a statistical significance validation of the results of both

classification and regression analyses to the WEKA software.

Section 4.3 explained the implemented brute force algorithm for supervised discretiza-

tion, using the gain ratio, gini index and information gain metrics, as an attempt to

solve the problem faced by the supervised discretization algorithms of WEKA, scikit-

learn and the R programming language. The implementation is also available in https:

//github.com/luizponte/WEKA. This could serve as inspiration to implement a new su-

pervised discretization algorithm, which allows the user to delimit how many bins are

desired, preventing just a single bin.

As mentioned in sections 5.6 and 6.4, two articles were published, reporting the results

obtained in classification [15] and in regression [14] analyses, presenting the techniques

applied.

7.2 Future Work

As explained in Section 2.2, the PCL scale used in this work already has a new version, the

PCL-5 [59]. In order to use a more updated version and also to increase the dataset size,

a new execution of the experiment would be interesting. This execution could tackle the

imbalance problem in parallel, seeking to recruit volunteer candidates to present high PCL

scale values (i.e., values above the cut-off point used). Thus, by inserting real instances

into the dataset, the imbalance between the number of instances of the classes would be

minimized.

In addition, other DM techniques can be explored, such as outlier detection, to identify

anomalies in individuals data which significantly differ from the majority of data and can

lead to a biased result; association rule discovery, to find interesting informations about

how much one or more attributes increase or decrease the chances of an individual to

present a high or a low PCL value; and the use of other classification and regression

algorithms.

https://github.com/luizponte/WEKA
https://github.com/luizponte/WEKA
https://github.com/luizponte/WEKA
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Still as future work, the collection and use of other physiological signals or types of

data (e.g., molecular and image data) would also be interesting. As indicated in Chapter

3, many studies explored other types of physiological signals and data, but they did so

using other scales different from PCL.
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