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Lúcia Maria de Assumpção Drummond

Co-advisor:

Cristiana Bentes

NITERÓI
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Resumo

Os sistemas heterogêneos que empregam CPUs e GPUs estão se tornando cada vez mais
populares em data centers e ambientes de nuvem em larga escala. Nessas plataformas,
o compartilhamento de uma GPU entre diferentes aplicativos é um recurso importante
para melhorar a utilização do hardware e throughput. No entanto, em cenários em que as
GPUs são compartilhadas competitivamente, alguns desafios surgem. A decisão sobre a
execução simultânea de diferentes kernels é tomada pelo hardware e depende dos requi-
sitos de recursos dos kernels. Além disso, é muito dif́ıcil entender todas as variáveis de
hardware envolvidas nas decisões de execução simultânea, a fim de descrever um método
formal de alocação. Neste trabalho, usamos técnicas de aprendizado de máquina para en-
tender como os requisitos de recursos dos kernels mais importantes benchmarks de GPU
afetam sua execução simultânea. Nosso foco é fazer com que os algoritmos de aprendizado
de máquina capturem os padrões ocultos que fazem um kernel interferir na execução de
outro quando são enviados para execução ao mesmo tempo. As técnicas analisadas foram
k -NN, regressão linear, Multilayer Perceptron e XGBoost (que obtiveram os melhores
resultados) sobre os benchmarks suites de GPU, Rodinia, Parboil e SHOC. Nossos re-
sultados mostraram que, dentre os recursos selecionados na análise, o número de blocos
por grid, o número de threads por bloco e o número de registradores são os recursos de
consumo de recursos que mais afetam o desempenho da execução simultânea.

Palavras-chave: GPU, Análise de Concorrência, Aprendizado de Máquina.



Abstract

Heterogeneous systems employing CPUs and GPUs are becoming increasingly popular
in large-scale data centers and cloud environments. In these platforms, sharing a GPU
across different applications is an important feature to improve hardware utilization and
system throughput. However, under scenarios where GPUs are competitively shared,
some challenges arise. The decision on the simultaneous execution of different kernels is
made by the hardware and depends on the kernels resource requirements. Besides that,
it is very difficult to understand all the hardware variables involved in the simultaneous
execution decisions, in order to describe a formal allocation method. In this work, we use
machine learning techniques to understand how the resource requirements of the kernels
from the most important GPU benchmarks impact their concurrent execution. We focus
on making the machine learning algorithms capture the hidden patterns that make a
kernel interfere in the execution of another one when they are submitted to run at the
same time. The techniques analyzed were k-NN, Linear Regression, Multilayer Perceptron
and XGBoost (which obtained the best results) over the GPU benchmark suites, Rodinia,
Parboil and SHOC. Our results showed that, from the features selected in the analysis,
the number of blocks per grid, number of threads per block, and number of registers are
the resource consumption features that most affect the performance of the concurrent
execution.

Palavras-chave: GPU, Concurrrency Analysis, Machine Learning.
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Chapter 1

Introduction

Graphics Processing Units (GPUs) have proven to be a powerful and efficient platform

to accelerate a substantial class of compute-intensive applications. For this reason, many

large scale data centers are based on heterogeneous architecture comprising multicore

CPUs and GPUs to meet the requirements of high performance and data throughput.

More recently GPUs are also being used in computational clouds. Exploring GPUs in

clouds, through GPU virtualization, allows physical devices to be logically decoupled

from a computational node and shared by any application, resulting in monetary cost

reduction, energy savings and more flexibility.

In this scenario, sharing efficiently a GPU across different applications is an indis-

pensable feature. Recent GPUs introduced the concept of concurrent kernel execution

that enables different kernels to run simultaneously on the same GPU, sharing the GPU

hardware resources. Concurrent kernel execution facilitates GPU virtualization and can

improve hardware utilization and system throughput. The blocks of the concurrent ker-

nels are dispatched to run on the Stream Multiprocessor and the warp scheduler arranges

the order at which each warp will execute, with near-zero context-switch overhead.

However, one key difficulty for concurrent kernel execution is that, in the GPU, the

low-level sharing decisions are proprietary and strictly closed by GPU vendors. Conse-

quently, GPU virtualization software has no control over the actual resource sharing. In

previous work, Carvalho et al. [7] showed the impact that kernel resource requirements

have in concurrent execution for the kernels of the most important GPU benchmarks.

The results showed that resource-hungry kernels on one resource might prevent concur-

rent execution. This study, however, did not explain how the resource requirements of

the kernels have an effect on the performance of the concurrent execution.
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In Figure 1, we illustrate how difficult it is to understand and predict the execution

interference of the kernels and what type of kernels could execute concurrently. Although

the widely accepted idea is that kernels with complementary resource requirements would

benefit from concurrent execution, sharing the GPU resources dynamically between the

kernels is complex and hardware dependent. Figure 1 shows the pairwise execution of three

kernels with low, medium and high resource usage. The kernels are from Rodinia and

SHOC benchmark suites: calculate temp (from Hotspot) that has high resource usage,

kernel (from Myocyte) that has medium resource usage, and ratx2 kernel (from S3D)

that has low resource usage. The x-axis shows all the combinations of the pairs of kernels

considering the two possible submission orders. The y-axis describes the results of the ratio

between their combined execution time without concurrency and with concurrency. This

figure shows that it is not trivial to understand the relationship between the kernels when

they execute concurrently. We can observe that, although calculate temp is a resource-

hungry kernel, it can execute concurrently with ratx2 kernel and they run 33% faster

when executed concurrently. However, when calculate temp executes concurrently with

kernel, that presents low use of GPU resources, they perform around 20% worse than their

execution without concurrency. The ratx2 kernel performs 33% better when executed

concurrently with calculate temp and 27% better when co-executed with kernel, but it

depends on their submission order.
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Figure 1.1: Ratio of the execution time of kernels calculate temp (from Hotsopt appli-
cation in the Rodinia benchmarks suite), kernel (from Myocite application in Rodinia)
and ratx2 kernel (from S3D application in the SHOC benchmark suite) running without
concurrency over their co-execution with concurrency

In this work, we performed an extensive analysis of the concurrent execution of the

kernels from Rodinia [8], Parboil[42], and SHOC[15] benchmarks to assess how their
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performance is affected by the concurrent execution. We use four machine learning tech-

niques [30] to induce models capable of inferring if there is interference in concurrent

execution of kernels, and also to classify the slowdown resulting from such interference.

Furthermore, we rely on feature selection [18] and feature importance [54] techniques to

understand how the resource usage of the kernels impacts the possible interference and

the slowdown. We focus on the co-execution of two kernels to better understand their

interference avoiding the exponential increase in the number of experiments.

The work has the following contributions: (1) An extensive experimental analysis of

the concurrent execution of pairs of kernels from the most important GPU benchmark

suites; (2) A machine-learning study on the concurrent execution results with four dif-

ferent techniques to unveil how the kernels interfere with each other in the concurrent

execution; (3) A comparison of the machine learning techniques, k-Nearest Neighbours,

Logistic Regression, Multilayer Perceptron and XGBoost in their ability to infer if there

is interference in the concurrent execution, given the resource requirements. (4) A fea-

ture importance analysis to reveal the features that matter the most for the performance

interference on the concurrent execution.

We performed a number of experiments on two different GPU architectures and found

that a recently proposed ensemble technique, namely the XGBoost [9], achieves the best

quantitative results in learning to distinguish whether or not a pair of kernels would

execute concurrently and to distinguish whether the concurrent execution would cause

slowdown. Furthermore, by analyzing the variables chosen by the feature selection method

and the ones elicited as the most important to induce the ensemble model, we conclude

that the number of blocks per grid is the most relevant feature to define if the kernels

will execute concurrently and to influence the performance interference. The second most

important feature, however, depends on the GPU architecture. For the GPU with more

resources, the number of registers is key for the kernels interference. While, for the GPU

with less computing resources but the same amount of registers, the number of threads

per block is more relevant in the kernels interference.

The characterization and concurrency study presented in Chapter 4 was published as:

Carvalho, P.; Drummond, L. M.; Bentes, C.; Clua, E.; Cataldo, E.;Marzulo, L. A.Kernel

concurrency opportunities based on gpu benchmarks characterization. Cluster Computing

(on line) 1, 1 (2019), 1–12.

This dissertation is organized as follows. Chapter 2 gives an overview on GPU archi-

tecture and introduces to Machine Learning concepts applied latter on this work. Chapter
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3, exposes related works. Chapter 4 introduces our first concurrency experiment and the

kernel characterization study that served as basis, this chapter also presents our concur-

rent execution framework that made possible the concurrency experiments. Chapter 5

presents our machine learning analysis on concurrent kernel execution, explains the moti-

vation and details the workflow. Chapter 6 exhibits our results and in Chapter 7 we draw

our conclusions.



Chapter 2

Background

This chapter presents background regarding the research presented in this dissertation.

We start with a brief review on the NVIDIA GPU architecture and CUDA terminology.

Following, we describe some introductory concepts on Machine Learning techniques.

2.1 Graphic Processor Units

The GPU architecture is designed for fine-grain massive parallel processing. It comprises

several Streaming Multiprocessors (SMs). Each SM contains several computing cores and

resources such as registers, shared memory and L1 cache. The SM composition tends to

change as architectures evolve, Figure 2.1 demonstrates the SM structure of the Pascal

architecture (P100). As can be seen, it is not only composed of standard cores that

perform integer and floating-point operations but also a specific unit for double-precision

arithmetic. A Turing architecture SM can be observed in Figure 2.2, this is a more

recent architecture than Pascal and some interesting features can be observed: Cores are

separated by integer and floating-point units this time. It also includes tensor flow units

and an RT core used for ray tracing calculation.

The CUDA programming model requires the programmer to define functions called

kernels that will be offloaded to execute on the GPU. The kernel is executed with a

number of threads that are grouped into thread blocks. Each block is dispatched by the

hardware to be executed in one SM. Once a block is assigned to an SM, its threads are

divided into warps by the scheduler. Each warp of threads executes the same instruction

simultaneously on different data values.
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Figure 2.1: P100 Stream Multiprocessor1

https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf

2.1.1 Software Architecture

As presented by Figure 2.3, when creating a CUDA application, the source code (in form

of a .cu file) needs to be compiled by nvcc. Nvcc is not exactly a compiler, but it works

with the compiler used in the environment that it is installed and it only works with

a restrictive set of compilers. For CUDA runtime applications, nvcc attachs GPU code

into strings on the output binary. When using the fatbin option, the binary will carry the

microcode for the target GPU. The PTX option creates a ”Parallel Thread eXecution” file

containing an intermediate version of the GPU native microcode. The task of translating

it to GPU microcode is handled by the driver[50].

Normally CUDA applications are developed by using components of the CUDA Run-

time library as it gives a high level control of functionalities like memory transfer, stream

creation and kernel related callbacks. The CUDA runtime works as an abstraction layer

to the CUDA driver, and provides some complexity reduction for the device control while

de CUDA Driver API gives more control over contexts and module loading.
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Figure 2.2: Turing RTX Stream Multiprocessor2

https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-
architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf

2.1.2 CUDA MPS

A CUDA application is composed by a hierarchy of parallel thread blocks that starts with

the creation of a CUDA context. The context encloses all the resources required for the

parallel execution. Since the Hyper-Q technology (introduced in the Kepler architecture,

2012), kernels can be assigned to different streams which indicates that they are inde-

pendent and can be executed at the same time, whenever there are available hardware

resources for that. The hardware scheduler assigns each stream to a different work queue

and kernels launched from work queues belonging to the same CUDA context can execute

concurrently. Figure 2.4 describes the model of MPS execution and how the MPS server

process achieve the concurrent execution from kernels of different processes.

To allow kernels from different context to execute concurrently, NVIDIA created a

software solution called Multi-Process Service (MPS) [34]. MPS is a client-server im-

plementation that was designed mainly to allow different processes to share the GPU

resources. The MPS client runtime is built into the CUDA driver library. The MPS

server is started by the MPS control daemon, that listens to MPS clients from different

CUDA contexts in order to bypass the hardware scheduling limitations. There is no need
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Figure 2.3: CUDA software architecture [50]

for any application modification.

2.2 Machine Learning

Machine Learning (ML) techniques focus on making computers learn how to act, without

being explicitly programmed, relying on data and information about the world [30, 31].

The data collected from observing the world is called examples. Usually, each example is

described by a set of features, which encompass the descriptors of the examples.

Those techniques are divided into three main groups: supervised, unsupervised and

reinforcement learning. Here, we address supervised techniques, which are suitable for

handling tasks where the output feature is known. A supervised learning task can be

presented as a classification task, in which the output feature lies on a set of categorical
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Figure 2.4: MPS architectural model3

https://docs.nvidia.com/deploy/pdf/CUDA Multi Process Service Overview.pdf

or discrete values, or as a regression task, when the output feature is a continuous value.

In this work, we tackle a supervised, classification task, as our data is previously labelled

and the output feature represents discrete classes of slowdown between a pair of kernel

executions.

In order to induce the predictive model responsible for classifying how the kernels

behave together, we follow the standard ML pipeline exhibited in Figure 2.5. The pipeline

starts by collecting the historical data generated from the task one wants to solve. In our

case, the information regarding the hardware settings and the kernels becomes the features

and each concurrent run data (number of registers, threads per block, blocks per grid,

and shared memory) between a pair of kernels becomes an example.

2.2.1 Pre-processing and feature evaluation

Next, the data is transformed in order to make them more amenable to the ML classifier

technique, using methods such as normalization and standardization. The dataset can also

be transformed by a step of feature selection or dimensionality reduction. Feature selection

methods aim at automatically discarding the features that are irrelevant, less important,

or even harmful to the task at hand [23]. The kernel interference and slowdown problems

that we tackle in this paper do not suffer from the curse of dimensionality, because of

that, we did not employ any method for reducing the dimension of the dataset, such as
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Figure 2.5: Machine Learning pipeline

Principal Component Analysis. Still, we rely on a feature selection method to get insights

on which features are more important to the task, in order to have some explanation

about the classifiers induced from the data.

We selected the Recursive Feature Elimination (RFE) technique [27]. RFE is a greedy

optimization procedure that constructs a classifier, chooses either the best or the worst

feature, and then repeats the process with the remaining features. This procedure repeats

until all the features in the dataset are experimented. After that, they are ranked following

the order they have been selected. The final subset of features is selected from this order

according to a hyperparameter informed by the user that states how many features one

should have in the final dataset.

2.2.2 Machine Learning Methods

The next step is to train the task represented by the dataset, using a machine learning

algorithm. In this work, we compare four methods that represent different categories,

namely: (a) an instance-based classification (k-NN), (b) a simple and a complex repre-

sentative of function-based learning (Logistic Regression (LR) and Multi-layer Perceptron

(MLP), respectively). While LR represents one function (the logistic function), MLP can

be a composition of several functions, according to the number of its layers. Finally, but

most importantly, we selected (c) an ensemble technique (XGBoost) that implements a

combination of gradient boosted decision trees aiming at speeding up the learning process.

XGBoost uses a more regularized model formalization to control overfitting. This is par-

ticularly important for the tasks we tackle here, as we have only a few variables that could

lead us to overfitting the training data [9]. Our interest in experimenting with XGBoost
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is motivated by numerous tasks that this approach has solved since its development in

2016, ranging from disease classification to protein entry site prediction [36, 45]. But we

also would like to observe how simpler methods that induce individual classifiers (Logistic

Regression and MLP) and even when there is no induced classifier at all (KNN) behave

on the concurrency and interference tasks. Here, we briefly review each one of them.

k-NN: (k-Nearest Neighbours [11]) is an instance based method, meaning that the clas-

sification is based on computing the distance (usually euclidean) between a pair of

observations. Thus, for an instance x its classification will be the mode of its k

nearest samples.

Logistic Regression [29]: uses the logistic sigmoid function to return a probability dis-

tribution which can then be mapped to a set of classes. A sigmoid function has the

support R→ [0, 1] and is defined as S(x) = 1
1+e−x . The answer may be binary (e.g.

yes/no), multinomial (e.g. mamal, reptile, amphibe) or ordinal (e.g. worst, average,

best).

Multilayer Perceptron [19]: consists of a feed-forward neural network with at least

one intermediate layer of neurons. The goal of including the intermediate layer is

to describe the features by composing nonlinear functions. Thus, we can see the

intermediate layer as computing a function h = g(WTx+c), where x represents the

input of the layer, c are the biases and W are the weights of the layer. The training

phase has as goal to find these weights by using an algorithm called backpropagation.

XGBoost [9]: (eXtreme Gradient Boosting) is an ensemble technique based on decision

trees. Decision trees have the capability of unveiling an interaction structure which

may lead to a comprehension on the core characteristics that influence the predic-

tion. XGBoost greedly builds a set of trees and decides the final prediction to an

instance by summing out the predictions from each tree. It does not allow full opti-

mization in each round of the training, but, instead, it uses a regularized model to

avoid overfitting.

2.2.3 Evaluating the models

The evaluation of the resulting model is guided by matching the class predicted by the

model to the class observed in the test samples. We use the confusion matrix to compute

the predictive measures over the induced models. Such a matrix presents the amount of
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instances on the real classification over the predicted values. To simplify, in a binary case,

the confusion matrix exhibits in its main diagonal the amount of examples that the model

is correctly classifying: the true positives (TP), which are the positive instances indeed

classified as positive, and the true negatives (TN), the negative instances classified by the

model as negative. The other diagonal presents the wrong cases: the false positives (FP),

which are the negative instances wrongly classified as positive, and the false negatives

(FN), the amount of positive instances classified as negative.

From the confusion matrix, we compute the metrics below, in order to measure the

predictive power of the model:

Accuracy: the number of correctly classified instances divided by the total amount of

instances: TP+TN
TP+TN+FP+FN

Recall is defined as the number of positive instances correctly classified as positive (TP )

divided by the amount of positive instances (TP + FN).

Precision is the number of positive instances correctly classified as positive (TP ) divided

by the amount of instances classified by the model as positive, both the right and

the wrong cases (TP + FP ).

Kappa index: an agreement measure used in nominal scales of how much the predic-

tions are far from the expected classification, defined as κ = Pr(o)−Pr(e)
1−Pr(e)

where Pr(o)

denotes the observed agreement and Pr(e) is the expected agreement; it may be

computed using the confusion matrix; we consider kappa ≤ 0 as no agreement,

0.01 ≤ kappa ≤ 0.20 as none to slight, 0.21 ≤ kappa ≤ 0.40 as fair agreement,

0.41 ≤ kappa ≤ 0.60 as moderate, 0.61 ≤ kappa ≤ 0.80 as substantial, and

0.81 ≤ kappa ≤ 1.00 as almost perfect agreement [10].

To evaluate the generalization capability of the model, we rely on a k-fold cross-

validation procedure. To that, the set of instances is divided into k sets (called as folds)

of (approximately) the same size mutually excluded. The learning algorithm runs k times

where at each iteration one of the k folds is used to test the model and the other ones are

put together into a training set, which are used to induce the model. Then, the metric

chosen to evaluate the model is computed as the average over each test fold. In order

to maintain the distribution of examples per class within the folds, we can resort to the

stratified cross-validation procedure, to have the proportional number of examples in each

fold according to the original dataset.
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We assess the statistical significance of the model using parametric and non-parametric

statistical tests as t-test.



Chapter 3

Related Works

In this chapter, we present previous research in GPUs in the areas of: concurrent kernel

execution, performance interference and machine learning.

3.1 Concurrent Kernel Execution

Since the introduction of the concurrent kernel execution feature in NVIDIA’s Fermi GPU

architecture, several GPU multiprogramming approaches have been studied. Kernel re-

ordering techniques were proposed to improve GPU throughput by taking advantage of

concurrent kernel execution, focusing on the order in which GPU kernels are invoked

on the host side. Wende et. al [49] presented a kernel reordering system based on

producer-consumer problem. The work describes the amount of memory and the number

of Streaming Multiprocessors available as the main restrictions for concurrency. Li et. al

[25] proposed a scheduling technique focused on reducing the power consumption based

on optimizing the Streaming Multiprocessor static resources as shared memory and reg-

isters. Cruz et. al [13] presented a reordering technique based on the knapsack problem,

associating kernels as knapsack items and using resource requirements to calculate their

weight, considering shared memory, registers, number of threads and number of blocks.

Modifying kernel granularity was another mechanism proposed to improve GPU uti-

lization. The kernels can be sliced in smaller pieces [44] or molded to different dimensions

of the grid and thread blocks in order to create more concurrency opportunities. Zhong

et. al [53] defined kernel slice as a subset of the thread blocks of a launched kernel, the

reason for not considering a smaller unit as the slice, a warp for example, is the data

dependency in the same block. The work proposed a system to improve concurrent kernel

execution throughput by performing dynamic slicing and scheduling.
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The molding technique consists of modifying kernel characteristics as the number of

threads, blocks, or grids, for example. For real application usage, the technique drawback

is that kernels must be written in a way that accepts modifying the resource usage in

execution time and not in compilation time. Although this is considered a good program-

ming practice, it is very common to find applications that set the number of threads,

blocks or grids as constants on the source code and uses those values to perform some

internal tasks inherent to the algorithm that the kernel is proposed to implement. Ravi

et. al [38] presented a multi-context system that enables kernels from different applica-

tions to execute concurrently in the same GPU years before Nvidia MPS[33] was released.

They proposed an algorithm based on affinity score calculation to solve the problem of

determining if two kernels could run concurrently and efficiently only using pre-execution

information like number of threads, number of blocks and the shared memory used. Ravi

et. al applied molding to reduce kernel throughput when running concurrently. Their

work presented two molding techniques: Forced Space Sharing, which consists of reducing

the number of thread blocks to use a reduced number of SMs, and Time Sharing with

Reduced Threads, which reduces the number of threads within the blocks. Pai et. al [37]

presented a similar concept to molding, the elastic kernel. An elastic kernel, by defini-

tion, is a kernel that runs with different blocks dimension or number of blocks different

to defined by the programmer on development.

There are also efforts in hardware enhancements for dividing the GPU resources among

the concurrent kernels, Adriaens et. al [1] demonstrated the benefits of sharing GPU

resources through spacial multitasking, allowing GPU resources to be partitioned among

different applications being executed on the same GPU. The work presented six heuristics

focused on partitioning the number of SM through different applications and analyzing

its performance. Liang et. al [26] discussed the concept of spacial-temporal multitasking.

They described a phase as a set of kernels executing concurrently and define temporal

multitasking as the number of execution phases where kernels in the same phase execute

concurrently while spatial multitasking determines the resource allocation for kernels in

the same phase. The work presented a heuristic based on thread-block interleaving to

implement the spacial-temporal multitasking.

Other studies address the problem of sharing the GPU with virtualization techniques.

Li et. al [24] presented a virtualization system divided into two layers, an API layer

that holds GPU usage requests by processes and communicates with a base layer that

encapsulates the access to the CUDA API by the implementation of a GPU Virtualization

Manager and also controls the GPU memory through a virtual shared memory. Suzuki et.
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al [43] presented a hypervisor-based GPU virtualization system, the GPUvm. The system

works with a guest device driver to run on all client virtual machines. The hypervisor

exposes to every client driver, a virtual device that communicates with GPUvm. Thus

the physical GPU is never directly accessed by the clients.

The co-scheduling of kernels of different applications on the GPU has also been studied

in recent years. The work of Margiolas and O’Boyle [28] presented accelOS, a modified

OpenCL JIT compiler that analyzes the kernel behavior at the compilation time and

transparently modifies the kernel code in terms of the thread blocks size in order to im-

prove fairness in the assignment of the GPU resources among multiple kernels. Belviranli

et al. [4] work focused on the data transfer overhead in the scheduling decisions. The

recent work of Wen et al. [47] proposed a graph-based algorithm to schedule kernels in

pairs. Their approach models the co-execution of kernels as a graph, in which nodes

represent kernels while an edge indicates that the co-execution of the two nodes can ex-

perience performance gain, and the edge weight can be labeled with the relative speedup

of co-execution. All these approaches, however, are not able to predict the co-execution

effect based on the kernels’ resource requirements as our approach does.

Reference Year Technique Implementation
Wende et al. [49] 2012 Reordering Software

Li et al. [25] 2015 Reordering Software
Cruz et al. [13] 2018 Reordering Software

Zhong et al. [53] 2014 Kernel Slicing Software
Tarakji et al. [44] 2015 Kernel Slicing Software

Pai et al. [37] 2013 Elastic Kernels Software
Ravi et al. [38] 2011 Kernel fusion Software
Liang et al. [26] 2015 Spatial Multitasking Hardware
Adrien et al. [1] 2012 Spatial Multitasking Hardware

Li et al. [24] 2011 Resource Virtualization Software
Suzuki et al. [43] 2014 Resource Virtualization Operating System

Table 3.1: Summary of concurrent kernel execution studies

3.2 Performance Interference

In terms of performance models for GPUs, Baghsorkhi et al. [2] presented a compiler-

based approach to performance modeling on GPU to estimate the application execution

time. Sim et al. [40] proposed the GPUPerf framework that focuses on determining the

bottlenecks of the code and on estimating potential performance benefits from removing

these bottlenecks. These models, however, are designed for a single kernel execution.
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Closer to our work are the proposals that address the problem of performance inter-

ference on co-execution of kernels. Hu et al. [20] proposed a slowdown estimation model

for GPUs, whose focus is on memory contention of concurrent kernels. Jog et al. [22]

proposed a memory scheduling mechanism that extends the hardware memory scheduler

to a more fair policy relying on the bandwidth and L2 behavior of kernels. These two

works, however, consider an ideal case where the GPU resources are statically assigned

to each kernel, and not the real GPU scheduler.

The work by Yu et al. [52] presented a performance modeling approach used to pre-

dict the best block size and estimate the co-execution performance. Their performance

modeling, however, is based on classifying the GPU kernels into compute-intensive and

memory-intensive by using the t-SNE (t-Distributed Stochastic Neighbor Embedding)

technique on the values of performance counters.

In a previous work [12], the necessary conditions for simultaneous execution, aiming

to propose an algorithm that described when actual concurrency could occur and a model

for slowdown estimation, were studied. Although the proposed strategies were tested and

validated with some synthetic and real-world applications successfully, later, when they

were evaluated in a larger and more complete test set, they failed to identify concurrency

and estimate slowdown correctly.

3.3 Machine Learning

Machine learning techniques have become increasingly crucial in task scheduling on het-

erogeneous systems [32, 48] and in performance modeling for GPUs [16, 51], however,

those works do not consider the concurrent execution of kernels in the GPU. To the best

of our knowledge, the only work that uses Machine Learning techniques in concurrent ker-

nel execution is the work by Wen et al. [46]. In this work, they proposed two predictive

models based on decision trees that classify newly arriving kernels. The first model de-

termines device affinity in a CPU-GPU environment, separating CPU and GPU kernels.

The second model determines whether or not to merge two GPU kernels in order to take

advantage of concurrency on the GPU. Their approach, however, used the kernel fusion

method that fuses concurrent kernels into a single new one, then dispatches it to the GPU.

This fusion, however, can only be performed in kernels of the same application and does

not consider that the order at which the kernels are fused makes a huge difference in their

performance interference [13].
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In addition, our machine learning approach considers not only decision trees but also

other techniques as neural networks, regression and instance-based methods. Although

decision trees are easy to interpret, different from some of the methods we used here, the

usage of other techniques may lead to better predictive results.

We used a decision tree-based technique named XGBoost [9], which has presented

excellent predictive results in a number of tasks. XGBoost induces a set of decision trees

considering different partitions of the dataset in order to avoid overfitting, a more robust

solution than the considered in the work of Wen et al. [46]).

Furthermore, we evaluate the machine learning models considering not only accuracy

but also some other important statistics (e.g. precision, recall and kappa — this last one

provides a measure of how far from the expected classification the results are).



Chapter 4

Concurrent Kernel Execution

This chapter presents a study in kernel concurrent execution on the GPU [7]. First it

explains the kernel submission framework that was implemented on top of MPS to allow

experiments in co-scheduling scenarios. After that, the chapter presents the study in char-

acterizing the kernels of the main GPU benchmark suites in terms of resource usage and a

preliminary experiment in running kernel concurrently according to the characterization

made.

4.1 Kernel Submission Framework

Although NVIDIA MPS allows the concurrent execution of kernels from different contexts,

the problem of using MPS to assess the effects of concurrency in the kernels execution

time is that launching two applications at the same time does not guarantee that their

kernels will be launched simultaneously and compete for the GPU resources. The MPS

client intercepts kernel launching during the application execution, but the kernels can be

invoked in different timelines, due to the difference in the memory transfer overheads of

the applications. Suppose, for example, two CUDA contexts that are composed of a mem-

ory transfer operation (mem), followed by a kernel execution (Ki) and another memory

transfer operation (mem), as described in Figure 4.1. If the two contexts were submitted

at the same time with MPS, kernels K1 and K2 will not be launched simultaneously,

and may not experience concurrency. Our framework, then, improves the probability of

the kernels executing concurrently by launching then at same time, it enforces some syn-

chronization but there is no guarantee that both will start at the same moment on the

GPU.

In the future, in scenarios where GPUs can be virtualized and shared by multiple
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Figure 4.1: kernel concurrency framework

CPUs, it is likely that they will behave as multiprogrammed devices with a lot of resource

competition. Therefore, our submission framework is able to reproduce and analyze these

broad competition scenarios. Our framework is built upon MPS, but takes charge of

kernel launching times. Nevertheless, the actual concurrent execution will depend on the

hardware scheduler and the resources required by each kernel.

The framework is implemented as a dynamic library that has to be linked to each

application. The idea is to intercept the CUDA API call to launch a kernel. This call is

implemented in the framework with synchronization primitives in a way that the kernel

launching calls are postponed until all the kernels, that are to be submitted simultaneously,

are ready to execute. After that, the kernels are submitted to MPS. Resource contention

is one of the main causes of the difference in their starting time in the GPU.

4.2 Concurrent Execution

In this first study on kernel concurrent execution, the idea was to submit a number of

pairs of kernels to run concurrently on the GPU and to analyse their behaviour in terms

of how the simultaneous execution affects the execution time of each kernel. The great

problem in this analysis was to choose which pair of kernels to submit together. If we

consider the amount of kernels provided by the main GPU benchmarks, Rodinia, Parboil

and SHOC, we would have 173 kernels in which the combination of pair kernels would
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be intractable. Therefore, in a previous work [7], we performed a study to characterize

the kernels in terms of resource usage and we proposed classifying the kernels in different

groups, taking into account their characteristics in terms of resource usage, and then

executed concurrently pairs of kernels from different groups in order to perform an early

assessment on how kernel resource requirements have in concurrent kernel execution.

The experiments described in this chapter were performed on a GPU GTX 980 with

the Maxwell architecture. The GPU has 2048 CUDA cores running at 1126 MHz in 16

SMs, with 4GB of global memory and 2MB of L2 cache. Each SM has 96KB of shared

memory and 256KB of registers. To compile and run the benchmarks we used CUDA

version 7.5. The statistical analysis was performed using the R language. All applications

were executed with the standard input data sets.

4.2.1 Kernels Characterization

The main focus of the kernels characterization was to understand how kernels behave

and their similarities in terms of resource usage. For this characterization, kernels from

Rodinia[8], Parboil[42] and SHOC[15] benchmark suites were executed and profiled with

Nvprof[35]. From the profiled data, we selected occupancy, efficiency, percentage of main

application time, number of global memory transactions, number of shared memory trans-

actions, number of registers and number of float, double and integer instructions per-

formed.

The number of metrics resulted in a multidimensional space hard to extract any con-

clusions. We then used Principal Component Analysis (PCA) for dimensionality reduc-

tion. The PCA is a multivariate analysis technique, which consists of performing a linear

transformation with a dataset so that this same set is represented by its most important

components [21].

After transforming the multidimensional space into a two-dimensional space, we grouped

similar kernels in categories. By using the output of PCA, we applied the K-Means algo-

rithm to accomplish that. The K-means algorithm consists of grouping non labeled data.

This algorithm takes k as input, which means the number of groups to describe the data

clustering. By empirically testing different values for k, we observed four distinct groups

of kernels in the three benchmark suites.

Figure 4.2 shows the biplot chart for the results of the components (PC1 vs PC2)

followed by the K-means clustering (K = 4). The name of the kernels in this chart
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is formed with a coding scheme where each kernel name starts with a letter indicating

which benchmark suite it belongs (R, P or S). Observing the direction of the vectors

in this chart, we can observe that the large number of kernels in SHOC influenced the

position of some vectors such as the percentage of execution time and the number of

double-precision floating-point instructions.

Figure 4.2: PCA and Kmeans output

Group Parboil Rodinia SHOC
1 1 6 20
2 11 12 3
3 11 23 17
4 0 3 66

Table 4.1: Number of kernels for each group and benchmark suite.

Group 1 - Little Resource Usage This group contains 27 kernels, and is a result

of the combination of the kernels from benchmark suites that present low use of all the

resources analyzed (integer and floating-point operations, SM efficiency, GPU occupancy

and memory operations). Table 4.1 shows the number of kernels of each benchmark suite

that comprises this group. We can observe in this table that most of the kernels in this

group belong to SHOC. Most of them are level one SHOC parallel algorithms.

Group 2 - High Resource Utilization Group 2 consists of 26 kernels that have high

efficiency, due to a great number of integer and single-precision floating-point operations.



4.2 Concurrent Execution 23

These kernels also have an average occupancy of about 70%. This is the group that

presents the highest resource utilization.

Group 3 - Medium Resource Utilization This group is composed of 51 kernels,

and has some similar characteristics to group 2, high number of integer operations and

average occupancy around 60%. Kernels in this group presents a less significant percentage

of execution time of the application they belong.

Group 4 - Low Occupancy and High Efficiency This group is composed of 69

kernels, characterized by low occupancy, high efficiency and low percentage of execution

time. This group contains mostly S3D kernels from the SHOC suite. From the 69 kernels,

44 are from S3D. This application is a computational chemistry application that solves

Navier-Stokes equations for a regular 3D domain [41]. The computation is floating-point

intensive, and it was parallelized by assigning each 3D grid point to one thread. The low

occupancy of each of its kernels impels their concurrent implementation. Another feature

of this group is the smaller number of operations with integers and the highest average

use of registers than the other groups.

4.2.2 Experimental Results

From the characterization analysis, we observed that Rodinia and Parboil presented more

diversity in their kernels. SHOC, on the other hand, provides less diversity but it is the

only suite that exploits kernel concurrency massively. The four distinct groups of kernels

observed, (1) Little Resource Usage, (2) High resource utilization, (3) Medium resource

utilization and (4) Low occupancy and high efficiency, provide different opportunities for

concurrency. Kernels from group 1 have short execution time and low resource usage,

they would allow concurrent execution, but barely share the GPU resources with other

kernels since they are too fast to provide significant sharing. Kernels from group 2 and 3

present high resource utilization, which indicates that they would only allow concurrent

execution when the other kernel do not compete for the same resources used, such as

shared memory for example. Kernels from group 4 have medium resource utilization and

relatively low occupancy. These kernels are more likely to leave unused resources and

provide space for concurrent execution.

Therefore, our first assessment on the effects of the concurrent execution was to co-

execute kernels from the different groups. We then proposed a second experiment where
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we executed concurrently a sample of pairs of kernels from different groups. Our focus is

to verify whether kernels with low or medium resource usage can take advantage of the

amount of available resources in the GPU and execute simultaneously.

We selected three kernels from each group using as criterion their proximity to the

centroid of the group. We believe that the kernels near the centroid are the most rep-

resentative kernels of the group. The kernels selected from each group are displayed in

Table 4.2. Concurrency efficiency is measured as how the simultaneous execution affects

the execution time of each kernel. The concurrency efficiency, E, of kernel Ki is given by

the ratio between the execution time when Ki is executed alone and the execution time

when Ki is executed concurrently with Kj (as described in (4.1)). The E metric thus is

a higher-is-better metric. So, when both execution times have the same value, E is equal

to one, meaning that concurrency does not affect kernels execution.

E(Ki) = Timealone/T imeconcurrent (4.1)

Table 4.3 shows concurrent execution effects on kernels from the 4 groups, called G1,

G2, G3 and G4. We evaluate kernel pairs execution from each combination of different

groups. The selected kernels are disposed in the rows and columns of the table. Each table

position (Ki,Kj) displays the value of E(Ki), which means the concurrency effect on kernel

execution described on the row. We did not evaluate the combination of kernels from the

same group, which are marked as ‘X’ in the table. All pairs of kernels were submitted

to run at the same time in different streams according to our framework for concurrent

execution. However, for some pairs, the GPU scheduler did not assign them to execute

concurrently, possibly because there were no resources for the concurrent execution. We

distinguish these executions in Table 4.3 as ‘no’. Some E(Ki) values are slightly greater

than one. This is due to the difference in the execution times presented in the GPU

environment.

In (Ki,Kj) concurrent execution, we observed that if Ki demands much more resources

than Kj, Ki is much less penalized in its execution than Kj. Suppose that Ki takes 100

time units to run, andKj takes 1 time unit. When they are executed together, concurrency

may severely affect their execution times, and Kj can take three times more to execute.

So, E(Kj) = 0.33, but for Ki this interference take effect in only a small part of its

execution, around 3%, and the value of E(Ki) would be around 0.97. This explains the

E(Ki) values obtained for the executions of kernels from G1 with kernels from G2, except

for the R S3 kernel from G1. R S3 is a small kernel from G1 that performs great part
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Group Code Benchmark Application Kernel Name

1
S O5 SHOC QtClustering update clustered pnts mask
R N1 Rodinia LUD lud diagonal
R S3 Rodinia particlefilter-float normalize weights kernel

2
S O1 SHOC QtClustering QTC device
P E8 Parboil mri-gridding splitSort
R D2 Rodinia dwt2d 1024 dwt cuda::fdwt97Kernel

3
P C4 Parboil histo histo intermediates kernel
R J4 Rodinia hybridsort bucketsort
S J1 SHOC Scan reduce

4
S P4 SHOC S3D ratt kernel
S P15 SHOC S3D ratt10 kernel
S E4 SHOC GEMM gemm kernel2x2 tile multiple core

Table 4.2: Selected kernels for concurrency evaluation.

G1 G2 G3 G4
S O5 R N1 R S3 S O1 P E8 R D2 P C4 R J4 S J1 S P4 S P15 S E4

G1
S O5 X X X 0.598 0.497 no no 0.611 no no 0.927 no
R N1 X X X no 0.603 0.795 no 0.764 no 0.719 no no
R S3 X X X 0.940 0.933 0.888 0.689 0.713 1.006 no 0.969 0.985

G2
S O1 0.887 no 1.145 X X X 0.929 1.061 no 1.023 0.869 no
P E8 1.012 0.895 0.704 X X X 1.013 0.989 no 0.940 0.952 no
R D2 no 1.119 1.109 X X X no 0.763 no 1.077 no 1.004

G3
P C4 no no 1.022 0.203 0.886 no X X X no no 0.840
R J4 1.003 0.893 0.989 0.250 0.635 0.894 X X X 0.664 0.987 no
S J1 no no 0.487 no no no X X X no 0.344 no

G4
S P4 no 1.051 no 0.127 0.214 0.284 no 0.837 no X X X
S P15 0.915 no 0.910 0.109 0.432 no no 0.967 0.903 X X X
S E4 no no 0.694 no no 0.285 0.299 no no X X X

Table 4.3: Efficiency provided by concurrent execution (E) on the combination of pairs of
kernels from different groups. The value of E in the table position (Ki,Kj) corresponds
to the efficiency on kernel Ki.

of the computation on only one thread of the block, what explains why its execution is

almost not affected by concurrency.

The execution of G1 and G3 kernels, and G1 and G4 kernels resulted mostly in ‘no

concurrency’. This is due to the short execution time of the kernels in G1, which allows

fewer opportunities for simultaneous execution. When two kernels are submitted to run

at the same time, and the smallest kernel is scheduled first, the overhead of the second

kernel submission may overshadow concurrency. For pairs where concurrent execution

was achieved, the major drop in performance was obtained on the concurrent execution

of G1 and G3, since G3 kernels are more resource demanding than G4 kernels. G4 kernels

do a considerable number of arithmetic operations, especially double precision floating
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point, but their low occupancy, even with the high efficiency, left space in the SMs so

that the small G1 kernels are executed. A notable exception is G3 S J1 kernel execution.

It performs poorly with concurrency. This occurs because it is a reduction kernel which

relies heavily on synchronization. This means that S J1 warps are stalled great part of

the time. When its warps are stalled, the warp scheduler can dispatch the other kernel

warps, and this can increase S J1 stall time.

When G2 kernels were executed with G4 kernels, concurrency has severely affected

the execution times of the G4 kernels, while the kernels from G2 maintained almost the

same efficiency. G4 kernels present mostly a much smaller execution time than G2 kernels,

and the concurrency interference is less pronounced in G2 kernels as explained before.

Kernel pairs composed by G2 and G3 members presented interesting results. G2 and

G3 comprise the most resource demanding kernels from our analysis. These groups are

located near in the biplot graph of the PCA analysis shown in Figure 4.2, and G2 kernels

present the greatest values for occupancy. In concurrent execution, we observed that G2

kernels were less affected by concurrency, and G3 kernels, P C4, R J4, and S J1, provided

distinct results. P C4 and R J4 presented mainly low efficiency when executed in parallel

with G2 kernels, as expected. However, P C4 execution with S O1, and R J4 execution

with R D2 provided particular results. In these combinations, G3 kernels executions were

less affected by concurrency. This occurred because both G2 kernels, S O1 and R D2,

include synchronization. The synchronization stall of the G2 kernel warps can create an

opportunity for the G3 warps to execute. S J1 kernel was unable to run together with

any of G2 kernels. In fact, S J1 barely can execute concurrently with other kernels, this

occurs because S J1 heavily uses the shared memory, leaving no space for other kernels

to share this resource. S J1 was able to run concurrently with R S3 and S P15 because

these two kernels use a very small portion of the shared memory.

In the execution of G4 and G3 pairs of kernels, G4 kernels were also more affected by

concurrent execution than G3, for the same reason presented for G4 and G2 execution.

However, G3 kernels are smaller and use fewer resources than G2 kernels, and so the effects

of concurrency on G4 kernels were also less pronounced than when they were executed

together with G2 kernels. Again, the notable exception is the executions of the G3 kernel

S J1, as explained above.



4.2 Concurrent Execution 27

4.2.3 Important Remarks

The concurrent execution showed that kernels with too many requirements on one re-

source may prevent concurrent execution and synchronization stall time can be used to

other kernel execution. Cross-kernel interference can drastically affect performance of

applications executed in GPUs concurrently. The problem is caused by concurrent access

of co-located kernels to shared resources.

The results give some indications and interesting evidences on the execution inter-

ference and on what type of kernels could execute concurrently. However, these early

results are far from conclusive in terms of how the resource requirements would impact

the concurrent execution on GPUs. In this way, this proposes a more in depth study,

using machine learning to understand the tricky relations among the kernels resource

requirements and how it affects their concurrent execution.

Nevertheless, the grouping scheme previously proposed was valuable to our concur-

rency study. This previous study allowed us to select a controlled number of kernels that

truly present different resource requirements. Without the grouping scheme, there would

be an immense number of possible combinations of kernels. An uninformed pairing of the

173 kernels would make our study impractical.



Chapter 5

Using Machine Learning to Analyze
the Concurrent Kernel Execution

This chapter describes the methodology to use machine learning techniques to under-

stand how the resource requirements of the kernels impact their concurrent execution. It

presents the methodology applied in form of a workflow, the techniques applied, and the

hardware and software tools used to achieve the results. The chapter also describes all

developed scripts that composes the described workflow.

5.1 Motivation

The previous study presented in Chapter 4 exposed that the relation between kernel

pairs may not be simple to explain, specially when using a reduced set of kernels, 12

in total. It was specially hard to find the same behavior for members of one specific

group co-executing with another group. The previous kernel co-executing experiment

was performed by choosing the kernels by hand to feed our kernel submission framework,

working with a larger set of kernels would be impossible in this way.

Therefore, to provide a more in depth analysis, this work proposes the use of 60 kernels

in the concurrent experiments. The co-execution of these 60 kernels created 3600 pairs to

be analyzed. The main questions this research wants to answer using machine learning

are: (1) Can a pair of kernels run concurrently? (2) How their resource requirements

influence in their co-execution interference? It is important to notice that the kernels

resource requirements information used are known in advance, before the kernel starts its

execution.



5.2 Applications 29

5.2 Applications

The kernels used are part of the three main GPU benchmark suites, Rodinia [8], Parboil

[42] and SHOC [15]. We focus here on the execution of pairs of kernels due to the huge

number of possible combinations of kernels from these benchmarks, and due to the fact

that the performance gains of concurrent execution decrease with the increase in the

number of co-executing kernels.

The kernels used in the experiments were selected according to the kernel categoriza-

tion scheme described in Chapter 4, but differently from that experiment, this one does

not try to correlate the groups’ characteristics with concurrency. This experiment only

relies on that characterization to create a diverse set of kernels for the co-execution. We

selected 15 kernels from each category belonging to the applications described in Table 5.1,

to create diversity but also ensuring that our set contains kernels with some characteris-

tics in common. The selection criteria consisted of selecting the n, where n = 15 , kernels

closest to the k-means centroids in order to find the most representative kernels from each

group.

Parboil Rodinia SHOC

MRI-GRIDDING BP QTC
HISTO LUD S3D
LBM SRADv2 GEMM

MRI-Q PFF SCAN
SAD DWT2D REDUCTION

SGEMM BPTREE SPMV
SPMV GAUSSIAN STENCIL2D

STENCIL HOTSPOT FFT
TPACF HUFFMAN SORT

HYBRIDSORT
MYOCYTE

PFN

Table 5.1: Applications selected from each benchmark suite

5.3 Hardware specification

Table 5.3 describes the GPUs used in our study. The intention of using GPUs with

different computational capacity are:

• The tesla P100 is used to observe how concurrency is handled in a GPU environment

for high-performance computing tasks.
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• The RTX 2080 is the less powerful one, but it was the most modern NVIDIA archi-

tecture at the time, and also creates a more favorable scenario to observe resource

contention. Another point is that on P100, it can happen that one kernel can execute

so fast that the second submission would not provide competition scenarios.

Tesla P100 RTX 2080
Number of cores 3584 2944
RAM 16GB 8G
Memory Bandwidth 732 GB/s 448 GB/s
Capability 6.0 7.5
Number of SMs 56 46
Shared Memory per SM 64K 48K
Number of Registers per Block 64K 64K
Max number of threads per SM 2048 1024
Max thread blocks per SM 32 16
Max registers per thread 255 255
Maximum thread block size 1024 1024
Architecture Pascal Turing

Table 5.2: GPUs specifications

5.4 Workflow

The workflow of the experiment presented in this work can be divided into five steps, as

described in Figure 5.1. Stages 1 and 3 are focused on data acquisition by kernel execution,

standalone and concurrently, respectively. Stages 2 and 4 are the data preparation stages.

Stage 5 is where data receives its last treatment and is used as an input to the classifiers

for training and prediction, the output of this stage are precision, recall, accuracy and

Kappa score. The two databases generated and populated during this workflow follows

the structure presented in Figure 5.2 and are open for consultation on the web 1. The

following subsections (5.5 to 5.9) describes in detail each stage of the workflow.

5.5 Standalone application execution

As described in Figure 5.1, the first step consists of running all applications from the

benchmark suites while using nvprof to get execution information like execution times,

kernels metadata and resources requested by kernels through CUDA runtime. A script

1https://github.com/pablocarvalho/ml-gpu-kernel/tree/master/data
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Figure 5.1: Workflow representation

(profile.py [14]) executes these steps while storing information on the kernels table present

on the database. The script executes each application thirty times for statistical reliability

purposes.

5.6 Data treatment and storage

This stage concerns in treating data created in step 1 after kernel standalone execution

information was added to the Kernel table shown in Figure 5.2 . This stage consists of

two steps:

• First, we need to establish a correlation with kernels described by Carvalho et.

al work [7], the kernel names provided by stage 1 are all mangled names, but the

original function prototypes are needed. Name mangling is performed by C++ com-

pilers to preserve compatibility with C linkers due to C++ features not present in C.

It consists of encoding a function name, scope, type and template argument into a

text identifier[39]. As an example: ”void dwt cuda::fdwt53Kernel¡128, 8¿(int const*,

int*, int, int, int)” , is converted in ” ZN8dwt cuda12fdwt53KernelILi128ELi8EEE

vPKiPiiii” by name mangling. What this step does is converting it back, a task

handled by the script translate.py [14].

• After having all kernel prototypes, the prepare.py[14] script relates each kernel to

the ones used by Carvalho et al. [6] work in order to obtain kernel classification

and some additional identification information.
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Figure 5.2: Crow’s ER diagram for the experiment databases
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5.7 Kernel co-execution

This experiment intention is to launch two kernels and observe its execution time in a

concurrency situation. To achieve this objective, this stage of the workflow relies on a

script that launches 3 processes, 2 for the application kernels and one for nvprof. First,

nvprof is launched in a mode to catch information of all GPU applications that will run

while its execution. Then, the kernels are launched at the same time using our kernel

submission framework explained in Chapter 4. When both kernels finishes and nvprof

creates its logs, our script query the logs and saves the data on our database.

5.8 Data labeling and preparation

This stage produces the input dataset for stage 5. It consists of performing a query in

the database constructed and populated in the previous stages. The features used were

selected following the premise that the information needed for classification should be

known before the kernel was sent to the GPU, and should not rely on post execution

information.

The only step that relies on post execution information is the labeling used for train-

ing and testing purposes. For the new kernels (unknown to the database), the only

information needed to the classification process are the resource requests.

For comparison reasons we also prepared another input dataset using the features

selected by Ravi [38], which considers the number of blocks, threads and used shared

memory.

5.8.1 Data labeling for machine learning concurrency experi-
ment

As reported in the last section, a kernel pair is executed five times in stage 3. In this

step, every pair executed concurrently with a success rate of at least 80% is labeled

”concurrent”, the reminiscent are labeled ”non-concurrent”. We consider the success

rate being the rate of executions that executed concurrently over all attempts. After

that a SQL query 2 performs this labeling while it also queries the input variables and

outputs a .csv file composed by the columns: k1 name, k2 name, k1 blocks per grid,

2https://github.com/pablocarvalho/ml-gpu-kernel/blob/master/data/querry.sql
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k2 blocks per grid, k1 threads per block, k2 threads per block, k1 registers,

k2 registers, k1 shared mem B, k2 shared mem B, classification.

5.8.2 Data labeling for machine learning interference experi-
ment

A SQL script also performs this step, but this time we consider only the set of kernel

pairs that were labeled as ”concurrent” in the previous stage. The script calculates

the concurrent effect (CE) on the execution of the pairs of kernels (Ki, Kj) as the ratio

between the sum of their standalone sequential execution times (when they are executed

one after another without concurrency) and the time they take to execute concurrently.

The concurrent effect is presented in Eq. (5.1), where TKi
is the execution time of the

first kernel, TKj
is the execution time of the second kernel, and T(Ki,Kj) is the execution

time of the concurrent execution of (Ki, Kj). When CE < 1, the performance of (Ki, Kj)

concurrent execution is worse than the performance of executing them non-concurrently.

This means that the performance interference on their concurrent execution degrade their

performance to the point that it doesn’t worth to submit them to execute at the same

time. When CE > 1, the concurrent execution provides performance gains when compared

to sequential execution. A reason for having values bigger than one is that even for doing

the same task with the same input, a kernel execution time may vary. So, in certain cases,

when a kernel is not affected by the other, its execution time may be very close to the

average time of its standalone execution, but not the same.

CE =
TKi

+ TKj

T(Ki,Kj)

(5.1)

5.9 Machine Learning Pipeline

The machine learning pipeline relies on scikit-learn3 functions and XGboost4 python im-

plementation. The script responsible for handling this stage5 executes all the steps on

the Machine Learning pipeline explained on Chapter 2 for Multilayer Perceptron, KNN,

Logistic Regression and XGBoost. Those algorithms are executed each time for a different

set of variables: considering all variables, the ones used by Ravi et al. [38], and finally

the ones selected by Recursive Feature Elimination. While executing those algorithms,

3https://scikit-learn.org/
4https://github.com/dmlc/xgboost
5https://github.com/pablocarvalho/ml-gpu-kernel/blob/master/stratified classification methods.py



5.9 Machine Learning Pipeline 35

grid search was also executed in order to optimize their parameter inputs. The execution

of this stage generates the results to be analyzed in the next chapter.



Chapter 6

Experimental Results

This chapter describes the machine learning results, and the analysis of the concurrent

execution based on the machine learning output. All the datasets and source codes are

available at Github 1.

6.1 Dataset configuration

The curated dataset, as explained in session 5.8, has four resource variables for each kernel,

namely blocks per grid, threads per block, number of registers and shared memory. Each

one of those variable becomes a feature in the dataset that is going to feed the ML tasks.

Since our analysis focuses on a pair of kernels, we have a total of eight features Fi,k to

describe a ML example, where i is the index of the feature and k is the index of the

kernel. In this way, the curated dataset has eight features, namely Features= {x11, x21,
x31, x41, x12, x22, x32, x42}. Concerning the output, we focus on two classification tasks.

The first task is to determine if the pair of kernels can execute concurrently. In a positive

case the output is yes, otherwise the output is no. The second one aims at interference,

i.e., deciding if there is either a positive or a negative effect when running two kernels

concurrently, i.e., we want to determine the concurrency effect (CE). The output is also

binary: it is either yes, indicating a positive effect, or no, indicating a negative effect. In

the curated dataset that is going to feed the machine learning methods, both of those

outputs are represented as a binary feature y.

In order to induce each classifier and observe its generalization capabilities, we per-

formed a stratified 10-fold cross validation procedure. With that, the dataset is divided

1https://github.com/pablocarvalho/ml-gpu-kernel
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into 10 disjunctive sets and we run the classifier 10 times, where at each time one of the

folds assumes the role of test set and the rest of them compose the training set, itera-

tively. The predictive results are computed as an average of the 10 but considering only

the results of the test set of each run.

6.2 Machine Learning Results for the Concurrency

Problem

We target first on inducing the models to decide whether a pair of kernels would execute

concurrently or not, called here Task 1. We selected a number of pairs of kernels as

the ones with the highest probability of running concurrently making the value of the

feature y to them be yes. The other ones were considered with low or no probability of

concurrency, making their class to be defined as no. Table 6.1 shows the distribution of

the pair of kernels on both P100 and RTX-2080 according to the successful attempts of

running them concurrently. The examples selected as belonging to the class yes are the

ones that have four or five successful tries, while the examples with the class no are the

rest of them.

successful
tries of 5

P100 RTX-2080
# of kernels # of kernels

0 1277 339
1 370 159
2 253 125
3 273 195
4 426 560
5 1001 1986

Table 6.1: Successful number of pair executions for both GPUs

Then, we induced the classifier for the first task (responsible for distinguishing whether

or not a pair of kernels can execute concurrently), using four features from each kernel

on the curated dataset, totaling eight characteristics. As stated in Section 2.2, we ex-

perimented with four machine learning techniques: Multilayer Perceptron (MLP), k-NN,

Logistic Regression (LR), and XGBoost. Table 6.2 exhibits the default values of the main

hyper parameters used to train the models. Before deciding to proceed with the training

with such default values, we experimented a number of other values using the Grid Search

technique [5]. Those preliminary results presented no significant difference compared to

the ones obtained with the default values.

Tables 6.3 and 6.4 present the accuracy, precision, recall and kappa results for Task
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KNN neighboors = 5, weights = uniform
MLP hidden layer sizes=(5, 2), activation = relu, solver=’lbfgs’

learning rate=constant, epochs = 200, early stopping = True
LR penalty = l2
XGB max depth = 3, trees = 100, learning rate=0.1, gamma=0

Table 6.2: The hyperparameters used to train the ML models

1 on P100 and RTX-2080, respectively, considering the curated dataset. The bold values

are the best ones for each metric and also the significanttly better than the rest of them.

We applied statistical tests (T-Test and Wilcoxon Test [3]) to support the significance

of these results. The first conclusion we can state from them is that XGBoost achieves

the best results on almost all metrics. This is expected, as ensemble methods are known

to reach better results than when learning the models individually and XGBoost is the

current defacto choice of ensemble methods for classification tasks. One can also see that

kappa index is consistently better for XGBoost than to the rest of the classifiers in both

cases.

The only exception is the value of recall when the kernels run on RTX-2080. In this

particular case, the logistic regression performs surprisingly well, with almost no positive

test examples incorrectly classified as negative. In fact, with P100, some classifiers have

a very disappointing performance: logistic regression performs extremely badly for the

positive examples and only achieves an accuracy of 0.6014 because it correctly classifies

the negative examples. Similarly, MLP incorrectly classifies several positive examples as

negative, yielding a very low value of recall. In this way, MLP would say that two kernels

cannot run concurrently when they actually can, yielding a very cautious classifier. KNN

is consistent on the precision and recall metrics, but it still worse than XGBoost. On the

other hand, when the kernels run on RTX-2080, all the classifiers achieve a quite good

performance. KNN, for example, has a precision as high as XGBoost and, as said before,

the recall of Logistic regression is even higher than the one achieved by XGBoost. The

RTX-2080 presented more pairs of kernels with high probability of executing concurrently,

therefore, the classifiers solve the concurrency problem in RTX-2080 easier than on P100.

Figures 6.1 and 6.2 exhibit the Precision-Recall curves for the concurrency results

on P100 and RTX-2080, respectively. This type of curve aims at showing the trade-off

between these two metrics considering different classification thresholds. The higher the

area under the curve, the better is the result since this is the case where both metrics have

higher values. From both curves, it is important to notice that the RTX-2080 achieves

more consistent results that are less dependent on the threshold when compared to P100.
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In P100, the threshold that makes the model to achieve higher recall values makes the

precision values to be lower. In other words, lowering the threshold to achieve more

results also introduced more false positives, making the precision decrease. It is possible

to observe that by looking at the end of the curves, when the values of recall are the best

possible according to a certain threshold. One can also see that the curves for all the

classifiers running with RTX-2080 data are closer to each other, ascertaining our previous

observation that the different methods had less trouble to find good classifiers here.

Accuracy Precision Recall Kappa

MLP 0.7295 0.7299 0.1366 0.1162
K-NN 0.7295 0.6836 0.5887 0.4202
LR 0.6014 0.2533 0.0035 -0.0029
XGB 0.8164 0.8113 0.7001 0.6068

Table 6.3: Predictive results for the concurrency problem on P100. The values in bold
indicate the statistically significant best results.

Accuracy Precision Recall Kappa

MLP 0.7642 0.7832 0.9532 0.1630
K-NN 0.7663 0.8260 0.8759 0.3215
LR 0.7574 0.7599 0.9933 0.0243
XGB 0.8008 0.8238 0.9375 0.3657

Table 6.4: Predictive results for the concurrency problem on RTX-2080.

Figure 6.1: Comparing the four classifiers for the concurrency problem (P100).
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Figure 6.2: Comparing the four classifiers for the concurrency problem (RTX-2080).

6.3 Machine Learning Results for the Interference

Problem (Concurrency Effect)

Given that 1,427 and 2,546 kernel pairs have a high probability (at least 80%) of concurrent

execution, on P100 and RTX-2080, respectively, the next experiment consisted in inducing

a classifier for the interference problem, called Task 2, computed from the concurrency

effect (CE). To that, for each pair (Ki, Kj), if CE < 1, the interference is such that the

concurrent execution causes a slowdown in the execution of the kernel when compared to

their standalone executions. This case is called here as a negative effect. On the other

hand, if CE > 1, this means that there is no interference, which we can call a positive

effect. Inducing a classifier for CE is a different problem from deciding whether or not

a kernel pair would run concurrently, as the variables that could impact the CE may be

others.

The predictive results are disposed in Tables 6.5 and 6.6, for P100 and RTX-2080,

respectively. Once again, XGBoost reached the best values for accuracy, precision, recall

and kappa. In comparison to the prior experiment, the CE classifier achieves on average

lower metrics results, since the concurrency effect is a more difficult task to find a pattern.

Similarly to the behaviour of Logistic Regression classifier in Task 1 and RTX-2080, here

its recall value is also as high as XGBoost, with a slight small difference between them.

Still, its kappa index is quite low, making it not a good classifier to this problem, even

though it is good at not mistake the positive examples as negative ones (it has a low value

of false negative examples.)
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Figures 6.3 and 6.4 show the Precision-Recall curves for the interference task, con-

sidering the P100 and RTX-2080 architectures, respectively. Here we notice a more stable

behaviour of the classifiers when comparing to the previous concurrency tasks. The decay-

ing of the precision curve is more smoothly with the lowering of the threshold to achieve

more results that, consequently, improves the recall.

Accuracy Precision Recall Kappa

MLP 0.5781 0.5370 0.3858 0.1213
K-NN 0.6279 0.5833 0.5703 0.2448
LR 0.5726 0.5324 0.3149 0.0976
XGB 0.6889 0.6723 0.5876 0.3623

Table 6.5: Predictive results of the Interference Problem (Task 2) on P100.

Accuracy Precision Recall Kappa

MLP 0.5746 0.6187 0.6339 0.1355
K-NN 0.6426 0.6645 0.7055 0.2732
LR 0.5491 0.5645 0.7813 0.0495
XGB 0.7133 0.7165 0.7927 0.4140

Table 6.6: Predictive results of the Interference Problem (Task 2) on RTX-2080.

Figure 6.3: Comparing the four classifiers for Interference (P100).

6.4 Concurrency and Interference Analysis

Most of our ML models are not interpretable, in the sense that their predictions are

neither self-explainable nor their final models are easily understood by a human-being.
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Figure 6.4: Comparing the four classifiers for Interference (RTX-2080).

This is particularly the case of the classifier that has reached the best results, namely

XGBoost. The successful achievements of this method come with a disadvantage: as it is

an ensemble method, XGBoost lacks a direct interpretation of their results. The collection

of one hundred trees induced by the method cannot be merged in a reasonable way.

To alleviate this problem, we run two analysis to verify which features are mostly

impacting the results: one based on a feature selection strategy, namely the Recursive

Feature Elimination (RFE), and the other based on computing the feature importance.

RFE requires a classifier to select which features are less influencing the results of that

particular classifier. As XGBoost achieved the best overall results as pointed out in the

previous sections, we also employ it as the inner classifier of RFE. The feature importance

is measured according to the number of times each feature was used to split the data,

weighted by the squared improvement to the model as a result of each split, averaged over

all the trees [17].

Regarding first RFE, the concurrency problem (Task 1) and P100, it elicits the blocks

per grid, and threads per block for each kernel, making a total of four features.

By analysing the behaviour of these resources, we can verify that the number of blocks

per grid of both kernels is an indisputable factor in the decision of the concurrent execution

and also on the co-execution interference. According to the leftover policy, a kernel with

a great number of blocks, may not leave any free space on the SMs for the computation

of other kernel blocks, resulting in a waiting time that would make the kernels execute

without concurrency or increase the co-execution interference.
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However, we can also observe from the results presented in Table 6.7 that we were

not able to improve the predictive results of almost any metric when running with only

the features selected by RFE. Thus, although they are pointed out as the most relevant

ones by the method, the others are also useful to the final prediction. The only exception

is the precision value of XGBoost, although they are not statistically different, according

to the statistical tests.

Accuracy Precision Recall Kappa

MLP 0.6067 0.2077 0.1617 0.05513
K-NN 0.7094 0.6804 0.5017 0.3754
LR 0.6008 0.1083 0.0021 0.0004
XGB 0.8089 0.8264 0.6559 0.5918

Table 6.7: Predictive results of the four classifiers when using the RFE selected variables
blocks per grid, and threads per block for concurrency on P100.

Accuracy Precision Recall Kappa

MLP 0.7919 0.8195 0.9301 0.3399
K-NN 0.7904 0.8393 0.8947 0.3870
LR 0.7568 0.7595 0.9933 0.02051
XGB 0.7922 0.8188 0.9317 0.3387

Table 6.8: Predictive results of the four classifiers when using the RFE selected variables
blocks per grid, and threads per block for concurrency on RTX-2080.

The features that RFE automatically selected as the most relevant differ from the

ones presented by Ravi et. al. [38] , which also aimed at understanding the most relevant

features to the concurrency problem but without relying on Machine Learning. There,

they heuristically selected the number of blocks per grid, the number of threads per

block, and the amount of shared memory used for every kernel involved in a concurrency

situation. RFE selected only the number of threads per block in common with that

previous work. Thus, to verify whether or not the variables selected with RFE match the

performance of the experiments we conducted here, we also run the same machine learning

techniques with the variables selected in [38]. The results related to the concurrency

problem are presented in Tables 6.9 and 6.10 to P100 and RTX-2080, respectively. We

can observe that the results match the values achieved with the variables selected by RFE

while they are still lower than when using all the variables.

Now, focusing on the interference problem, RFE selected the following variables for

the interference problem and P100: blocks per grid, threads per block and number of

registers, all of them for both kernels, making a total of six features. Here, only the
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Accuracy Precision Recall Kappa

MLP 0.7333 0.6951 0.5858 0.4274
K-NN 0.7817 0.7375 0.6979 0.5394
LR 0.6036 0.0000 0.0000 0.0000
XGB 0.8053 0.8054 0.6720 0.5809

Table 6.9: Predictive results for concurrency of the four classifiers when using Ravi et. al.
selected variables on P100.

Accuracy Precision Recall Kappa

MLP 0.7767 0.8193 0.9045 0.3187
K-NN 0.7832 0.8335 0.8920 0.3635
LR 0.7568 0.7593 0.9937 0.0193
XGB 0.7946 0.8215 0.9313 0.3485

Table 6.10: Predictive results for concurrency of the four classifiers when using Ravi et.
al. selected variables on RTX-2080.

shared memory is marked as not relevant. Once again, building the classifiers with only

the selected variables have not improved the results, as one can see in Table 6.11, except

for a significant improvement of the MLP recall. When improving the recall, the number

of false negatives is decreased. For this specific classifier, it may be the case that the

amount of shared memory makes the model to return more results, increasing the number

of false negatives with this resource.

Accuracy Precision Recall Kappa

MLP 0.5823 0.5282 0.5840 0.1629
K-NN 0.6238 0.5812 0.5592 0.2356
LR 0.5816 0.5537 0.3006 0.1123
XGB 0.6882 0.6714 0.5861 0.3607

Table 6.11: Predictive results of the four classifiers when using the RFE selected variables
for Interference on P100.

The number of threads per block and the number of registers required per thread

appeared as important interference features. When the kernels execute concurrently,

some blocks can share the resources of the same SM, including the register file. The

number of threads per block also can have an impact in register usage, since the register

file is divided among all the threads that are executing in the SM. On the other hand,

when a kernel does not have enough threads per block to occupy the SM resources, other

threads can use these resources, improving the GPU throughput and reducing the kernels

interference.
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Accuracy Precision Recall Kappa

MLP 0.6819 0.6994 0.7384 0.3536
K-NN 0.6559 0.6744 0.7220 0.2998
LR 0.5491 0.5637 0.7906 0.0475
XGB 0.7149 0.7163 0.7970 0.4169

Table 6.12: Predictive results of the four classifiers when using the RFE selected variables
for Interference on RTX-2080.

We have also experimented the variables elicited in the work of Ravi et. al. [38] with

the interference task, as presented in Tables 6.13 and 6.14 regarding P100 and RTX-2080,

respectively. Once again the results are very similar to the ones we achieved with RFE.

This similarity also provides more evidence that although there are variables that seem

more important than the others, by using all of them we can achieve better predictive

results.

Accuracy Precision Recall Kappa

MLP 0.6645 0.6216 0.6350 0.3224
K-NN 0.7063 0.6695 0.6740 0.4059
LR 0.5515 0.4897 0.1431 0.0237
XGB 0.6664 0.6379 0.5780 0.3181

Table 6.13: Predictive results for interference of the four classifiers when using Ravi et.
al. selected variables on P100.

Accuracy Precision Recall Kappa

MLP 0.6890 0.7025 0.7555 0.3662
K-NN 0.6811 0.6985 0.7398 0.3516
LR 0.5534 0.5606 0.8635 0.0413
XGB 0.7046 0.7069 0.7920 0.3953

Table 6.14: Predictive results of the four classifiers when using the RFE selected variables
blocks per grid, and threads per block for concurrency on RTX-2080.

Importance of the selected features to XGBoost: Figures 6.5, 6.6, 6.7, and 6.8

show the bar-chart representing the feature importance for both tasks, concurrency (Task

1) and interference (Task 2) on both GPUs. The x-axis shows the importance values,

while the y-axis shows the features.

Regarding the concurrency, shown in Figures 6.5 and 6.6, the number of blocks per

grid of both kernels and the number of register of the second kernel are the most relevant

features on both GPUs. For kernels (K1, K2) to run concurrently from the beginning,
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Figure 6.5: Concurrency on P100
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Figure 6.6: Concurrency on RTX-2080
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Figure 6.7: Interference on P100
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Figure 6.8: Interference on RTX-2080
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K1 blocks must not occupy all the SMs entirely, so the number of blocks of K1 must be

smaller than the maximum number of blocks that the hardware can allow being active in

the SMs, which means that K1 is leaving space for K2 execution. The number of registers

of K2 is important to determine if there is space in the register file for the K2 variables.

For P100, blocks per grid are around 20% more important than the number of register.

For RTX-2080, this difference is more pronounced, blocks per grid have around the double

of importance than the number of registers. This occurs because RTX-2080 has a smaller

number of SMs, which means that the kernels blocks will have less space to be allocated,

increasing the importance of this feature.

Regarding the interference, as exhibited in Figures 6.7 and 6.8, the results are

somewhat different for the two GPUs. On P100, the method elicits the blocks per grid and

the number of registers as the most important features, with almost the same importance.

On RTX-2080, the method also elicits the blocks per grid as the most important feature,

around 30% more important than the other features, but the importance of the number

of threads per block is increased when compared to the P100 results. The importance of

the blocks per grid on the interference results reinforces the leftover policy of NVIDIA.

When the kernels execute concurrently, the first kernel allocates the GPU resources and

the second kernel can run with the leftover resources. On RTX-2080, nonetheless, the

importance of the number of threads per block increases since RTX-2080 has the same

number of registers as P100, but its maximum number of threads per SM is half of the

P100 maximum. This means that some warps of the second kernel have to have their

execution postponed when the maximum number of threads is reached in the SM.



Chapter 7

Conclusions

Modern GPU architectures support concurrent sharing of the GPU resources among mul-

tiple kernels, which can unleash the power of the GPU for dynamic and highly virtualized

environments such as large scale heterogeneous clusters and cloud environments. This

work presented an extensive analysis of the concurrent execution of the kernels from Ro-

dinia, Parboil, and SHOC benchmarks on two different GPU architectures to assess how

their performance is affected by the concurrent execution. We used machine learning

techniques to understand and predict the execution interference of the kernels and which

types of kernel can execute concurrently.

Our focus was to identify tricky relations among the resource requirements of the

kernels and their concurrent execution. We used four machine learning techniques to

capture the hidden patterns that make a kernel interfere in the execution of another

one. Our results showed that XGBoost, a state-of-the-art ensemble method, achieved the

best quantitative results with statistical significance validated. The feature importance

method showed the resource requirements that are the most relevant in the concurrent

execution performance. By analyzing the variables chosen as the most important to in-

duce the XGBoost model, we conclude that the number of blocks per grid is the most

relevant feature to define if the kernels will execute concurrently and to influence the

performance interference. The second most important feature depends on the GPU ar-

chitecture. For the GPU with more resources, P100, the number of registers is key for

the kernels interference, while for the GPU with less SM resources, but the same amount

of registers, RTX-2080, the number of threads per block is more relevant in the kernels

interference. The results obtained in this work can be further used in the design of a

scheduling strategy for GPUs, where the resource requirements of the kernels could help

the scheduler in making wise decisions for concurrent execution.
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For future work, we intend to investigate memory contention and include prediction

models based on matrix factorization, to better understand the relation between the ker-

nels and the GPU architecture. We also intend to study the effects of distinct GPU and SM

architectures and global memory management in the concurrent execution performance.

The execution of more than two concurrent kernels is also in our plans. This would show

the effect of concurrency when multiple kernels are submitted to execute. We also intend

to investigate kernel concurrency in multi-GPUs environments. However, synchronization

issues are not trivial and a more sophisticated framework should be developed. Tensor

cores are a new architectural element, present in the latest GPUs. They allow dedicated

deep learning task to be executed directly on the hardware level. We intend to explore

these capabilities, in order to create another level of concurrency, whenever some of the

kernels are demanding this kind of processing. An analysis of why some instances are

wrongly classified also may elict new conclusions.
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ranking measure. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases (2009), Springer, pp. 694–709.


