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Resumo

Os sensores multimídia tornaram-se recentemente uma fonte de dados significativa na
Internet das Coisas (IoT - Internet of Things), dando origem à Internet das Coisas Multi-
mídia (IoMT - Internet of Media Things). Aplicações multimídia geralmente são sensíveis
à latência e, por conta disso, o processamento de dados na nuvem nem sempre é adequado.
Uma estratégia para minimizar o atraso é processar os fluxos multimídia mais perto das
fontes de dados, explorando os recursos na borda da rede. Seguindo essa estratégia, esta
dissertação propõe uma arquitetura, chamada V-PRISM, para virtualizar e gerenciar sen-
sores multimídia com componentes implantados e executados em múltiplos nós de borda.
A arquitetura fornece componentes para orquestração, alocação de recursos, monitora-
mento de ambiente, intermediação de mensagens, compartilhamento de fluxo multimídia,
virtualização de dispositivos multimídia, gerenciamento de solicitações, além de outras
funções. A entidade que processa um fluxo multimídia é denominada Virtual Multimedia
Sensor (VMS). Eles são uma camada de abstração entre a aplicação IoMT e dispositivos
físicos que produzem o fluxo multimídia. Essa estratégia pode reduzir a complexidade
existente pela heterogeneidade nos ambientes de IoT. Como múltiplos nós de borda po-
dem compor o ambiente V-PRISM, fornecemos um componente para alocação dinâmica
de VMSs que pode ser estendido para executar diferentes tipos de algoritmos de alocação
de recursos. V-PRISM foi validado através da implementação de uma prova de conceito
chamada ALFA. Ela fornece os componentes lógicos descritos na arquitetura e vários tipos
de VMSs. Os experimentos mostraram que a adoção do V-PRISM pode reduzir o consumo
dos recursos nos dispositivos IoT, no tráfego de rede e atraso fim-a-fim das aplicações,
além de aumentar o ROI (Return On Investment) para provedores de infraestrutura IoT.
Também foi realizado um estudo informal com desenvolvedores, mostrando que a adoção
do V-PRISM pode trazer também benefícios para o desenvolvimento de VMSs. Outra
contribuição deste trabalho foi o desenvolvimento de uma categorização hierárquica de
VMS fundamentada nos recursos e nas funções fornecidas por cada tipo de VMS.

Palavras-Chaves: Sensor Virtual Multimídia, Internet das Coisas, Internet das Coisas
Multimídia, Computação na Borda da Rede.



Abstract

Multimedia sensors have recently become a significant data source in the Internet of
Things (IoT), giving rise to the Internet of Media Things (IoMT). Since multimedia
applications are usually latency-sensitive, data processing in the cloud is not always suit-
able. A strategy to minimize delay is to process the multimedia streams closer to the
data sources, exploiting the resources at the edge of the network. Following this strat-
egy, we propose V-PRISM, an architecture to virtualize and manage multimedia sensors
with components deployed and executed in multiple edge nodes. The architecture pro-
vides components for orchestration, resource allocation, environment monitor, message
broker, multimedia stream share, multimedia device virtualization, request management,
besides other functions. The entity that processes the multimedia stream is called Virtual
Multimedia Sensor (VMS). VMSs are an abstraction layer between IoMT applications
and physical multimedia devices that produce the multimedia stream. This strategy can
reduce the complexity due to the heterogeneity in IoT environments. As multiple edge
nodes can compose V-PRISM environment, we provide a dynamic VMS allocation compo-
nent used to automatic allocate VMS in edge nodes. This component can be extended to
run different types of resource allocation algorithms. We validated V-PRISM through an
implementation named ALFA, a proof-of-concept (PoC) that provides most components
described in the architecture and multiple VMS types. The experiments show that the
adoption of V-PRISM can reduce resource consumption of IoT devices, network traffic,
and end-to-end delay while increasing the ROI (Return On Investment) for infrastructure
providers. We also conducted an informal study with developers, which shows that the
adoption of V-PRISM can bring benefits to the development of VMSs. Another contribu-
tion of this work is a hierarchical categorization of VMS based on features and functions
they provide.

Keywords: Virtual Multimedia Sensors, Internet of Things, Internet of Media Things,
Edge Computing.
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Chapter 1

Introduction

With the widespread of the Internet of Things (IoT) and its integration with cloud com-

puting, a new paradigm called Cloud of Things (CoT), or Cloud-assisted IoT, has recently

emerged [15], which exploits the synergy between IoT and the cloud. In this scenario,

ambients, people, and objects are continuous sources of data generation that are con-

sumed by applications that receive processed data streams through the cloud. The cloud

provides a vast amount of processing and storage capabilities for the data generated by

IoT devices while abstracting their heterogeneity. By offering sensing and actuation as a

service, cloud providers broaden their portfolio of services for users and applications.

One of the enabling technologies of the CoT paradigm is virtualization. It refers to

the process of building a logical abstraction of hardware and/or software features. Vir-

tualization is at the core of cloud computing. It allows hiding from clients the variety of

types of infrastructures, platforms and data available at the back-end, promoting the de-

coupling between entities that produce and consume resources and facilitating application

delivery. It has also been used in other contexts, such as communication networks [4], and

more recently in sensors and sensor networks [36]. In wireless sensor network systems,

virtualization allows the creation of virtual sensor nodes, which abstract physical sensor

nodes and are responsible for providing services to the application and end users. The

mapping of physical sensors to their virtual counterparts is done through a virtualization

model. Several virtualization models are described in the literature specifically designed

for wireless sensors and sensor networks [41]. Such models are tailored for sensors with

reduced processing, memory and battery capacities, and equipped with wireless interfaces

for communication.

In the context of our work, among the various types of sensors that compose the IoT

infrastructure, and therefore, the CoT, multimedia devices have increasingly stood out.
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In a report produced by Cisco [10], it is estimated that by 2022 about 80% of the Internet

bandwidth will consist of multimedia streams. The relevance of this type of device has

given rise to the concept of Internet of Media Things (IoMT)1 [6], or even Multimedia

Internet of Things (M-IoT) [59]. In this work, we will adopt the term IoMT also adopted

in the pattern ISO/IEC 23093-1:20202.

In the IoMT, sensors are cameras and microphones with limited processing and storage

capacity, which connect to heterogeneous devices and diverse applications. Traditional

sensors, such as temperature, pressure, and light detection, typically generate discrete

data. On the other hand, multimedia sensors produce continuous, massive data streams

with nontrivial structure and temporal significance. Such features make the processing

of multimedia streams more complex than traditional sensor data. Moreover, there is

high heterogeneity in the communication protocols and data formats supported by mul-

timedia devices, adding an extra level of complexity in the acquisition, processing, and

consumption of data.

The particular features of multimedia streams in the context of IoMT make the use

of existing sensor virtualization models unsuitable. It becomes necessary to design virtu-

alization models tailored for multimedia sensors. Considering the high heterogeneity of

multimedia devices and the specific requirements of multimedia stream processing, the

design of models and mechanisms to abstract multimedia sensors will enable the develop-

ment of innovative services in several relevant areas such as health, security [60], education

and entertainment.

In a typical CoT system, sensor-generated multimedia streams are virtualized in the

cloud and delivered on-demand to applications. Such an approach implies that the mas-

sive amount of data generated needs to be transferred from the devices to the cloud, thus

demanding a considerable amount of bandwidth. Moreover, cloud computing incurs high

latency for data exchange between cloud servers and devices. Therefore, the cloud-based

IoT model may not be able to meet the strict time requirements of multimedia applica-

tions. A promising strategy that has recently gained momentum to decrease the latency

for applications is to migrate (part of) processing from the cloud to the edge of the net-

work, placing it closer to the sensing devices (data sources). Such strategy is exploited

by recent paradigms of Edge [91] and Fog computing [58].

In this work, we use the terms edge and fog interchangeably. We adopt the definition of

1IoMT is also called Internet of Multimedia Things.
2https://www.iso.org/news/ref2449.html
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Edge Computing (EC) provided by [35] where it is a horizontal, system-level architecture

that distributes computing, storage, control and networking functions closer to the users

along a cloud-to-thing continuum. The use of EC brings benefits as the decreasing delay

and bandwidth consumption at the network core, better use of available resources, and

in some cases, increasing data security/privacy. Multimedia applications benefit from

running in low-latency environments, so designing an architecture for virtualization of

multimedia sensors at the edge is a promising approach.

The inclusion of elements at the edge of the network in a CoT environment creates

a new computing layer. Therefore, we consider the CoT as a three-tiered ecosystem,

encompassing the cloud, the edge and the IoT device tiers.

1.1 Research Questions and Goals

Based on the challenges discussed in the previous section, we defined the following research

questions to be addressed in this work:

RQ1: Can a multimedia sensor virtualization architecture enable a single multime-

dia device to provide multimedia streams for different applications?

RQ2: Can a multimedia sensor virtualization architecture reduce CPU usage and

battery consumption in IoT devices?

RQ3: Can a multimedia sensor virtualization architecture reduce bandwidth usage

in the IoT network?

RQ4: Can an edge-based multimedia sensor virtualization architecture reduce the

delivery time of a multimedia stream to an IoMT application, compared to using a

virtual multimedia sensor hosted in the cloud?

Based on this research questions, the general goal of this work is proposing an architec-

ture that enables the virtualization of multimedia sensors in edge computing environments.

The architecture components are responsible for processing multimedia streams produced

by physical multimedia devices. The stream processing is performed by entities named

virtual multimedia sensors (VMS). The architecture will follow a three-tier approach en-

compassing the cloud, the edge, and the things. All of the architecture components are

deployed in the edge tier.
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Besides proposing the logic components of the architecture and their operation, we

implemented a prototype named ALFA that worked as Proof-of-Concept (PoC). In ALFA,

we developed and validated the logical components, besides using different technologies

to create different parts of the architecture. Furthermore, we developed a set of VMSs

and virtual devices to evaluate our approach in real environments.

1.2 Main Contributions

This work provides the following contributions:

• Proposal of an architecture to manage VMSs in edge computing environments;

• Definition of a classification for VMSs based on the functionalities provided and

resources consumed;

• Definition of templates for facilitating the creation of new VMS types and Virtual

Device Types.

1.3 Organization

The remainder of this work is structured as follows. In Chapter 2, we discuss the theoret-

ical background that represents state-of-the-art about Internet of Media Things (IoMT)

and its applications. We also discuss the adoption of technologies like multimedia process-

ing and container virtualization in the edge computing environments. Finally, we define

the virtual sensor paradigm and its applications.

In Chapter 3, we present other projects that are related to our proposed approach.

Firstly, we analyze various cases where the authors use the virtual sensor paradigm, and

include strategies in traditional and multimedia sensors. After that, we examine multiple

sensor virtualization architectures already proposed and compare them with our proposed

approach.

In Chapter 4, we describe our proposed architecture. Firstly we present the three-tier

architecture and its implications. After that, we propose a VMS categorization. Finally,

we also explain the logic components and the operation of our architecture. Besides that,

we also present a resource allocation algorithm for virtual sensor placement in edge nodes.
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In Chapter 5, we present ALFA, an implementation as a Proof-of-Concept (PoC) of our

proposal. ALFA is a functional implementation of the logic components and provides all

the mechanisms necessary to virtualize multimedia sensors in edge environments. Another

relevant characteristic is that the PoC source code is available in GitHub under GPL

license.

In Chapter 6, we present evaluation of our proposal. We conducted experiments to

analyze if the adoption of our approach improves the resource usage in IoT Device and

IoT Network. We also examine the benefits that our approach brings in contrast with

the Cloud of Things approach for multimedia stream processing. Finally, we investigate

if the proposed architecture can be used for the development of new VMSs and if it can

improve the return on investment in the IoMT environment.

Finally, in Chapter 7, we conclude discussing our main contributions, limitations and

future work.



Chapter 2

Background

This chapter presents the main concepts and technologies used in this work. We discuss

the Internet of Media Things in Section 2.1, edge computing and multimedia streams in

Section 2.2, containers in edge computing in Section 2.3 and finally the concept of virtual

sensors in Section 2.4.

2.1 Internet of Media Things and its Applications

Multimedia sensors, such as cameras and microphones, are becoming a significant source

of data on the IoT. The proliferation of this type of device in IoT environments has given

rise to a new subset of the IoT called Internet of Media Things (IoMT). Beyond the

traditional IoT challenges, IoMT has specific issues that must be addressed to enable its

adoption on a large scale. Table 2.1 lists some fundamental differences between IoT and

IoMT.

Table 2.1: Comparison between IoT and IoMT [94]
IoT Scenario IoMT Scenario
Linear Data Bulky Data
Low Processing High Processing
Low Storage Massive Storage
Low Bandwidth High Bandwidth
Delay Tolerant Delay Sensitive
Low Power Consumption High Power Consumption
Simple Data Encoding Complex Media Encoding

In the IoMT, the data collected, processed, transported, and consumed are multime-

dia streams. The nature of a multimedia stream is different from the data produced by
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traditional sensors like temperature and humidity sensors. Traditional sensors produce

discreet data, and the data structure is simple. In contrast, multimedia sensors produce

continuous data, and its data structure is complex. Moreover, the bulky nature of the

multimedia stream, in contrast to the IoT limited network bandwidth, increases the chal-

lenges to satisfy the application QoS requirements [59]. It means that new techniques,

standards, and frameworks must be developed to deal with these new challenges.

It is relevant to highlight that, besides IoMT, other approaches deal with multimedia

streams too. One of them is Wireless Sensor Network (WSN). A WSN [69] can be defined

as a network of small embedded devices, called sensors, which use wireless communication

following an ad hoc configuration. A Wireless Multimedia Sensor Network (WMSN) is a

particular case of WSN where sensors are multimedia devices. In [6], the authors define

that the main limitation of WSN and WMSN is that usually the deployment scenario

is typically a fixed architecture with restrictive mobility, a pre-defined set of multimedia

devices can be adopted, and a pre-defined set of functionalities are known. These strategies

are inefficient and lead to redundant deployments when new applications are needed [41].

One of the first definition of IoMT was presented in [6]. They define IoMT as the

global network of interconnected multimedia things which are uniquely identifiable and ad-

dressable to acquire sensed multimedia data or trigger actions as well as having capability

to interact and communicate with other multimedia and not multimedia devices and ser-

vices, with or without direct human intervention. This is a broad definition, encompassing

many study fields.

There are many fields where IoMT will cause significant impact. Some of them are se-

curity, healthcare, mobility and supply chain [59]. In particular, smart cities environments

will be enriched with innovative services based on IoMT, and these services will improve

daily citizen lives. In Figure 2.1, we can see a smart city scenario where a vast number

of heterogeneous multimedia actuators (public display, audio players, video players) and

sensors are connected to provide services to a variety of applications. However, despite the

significant potential of IoMT, it is essential to remind that the integration of multimedia

services and devices into the IoT remains a challenge. This challenge was mainly raised by

limited capabilities of IoT devices and distinct characteristics of multimedia applications,

such as latency constraints [39].
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Figure 2.1: Smart cities and IoMT [39].

With the availability of multimedia data streams, service providers are developing

new types of services. Some areas that are changing drastically are security [60], road

monitoring [21], environment monitoring [66], etc. Many possible IoMT applications can

be seen in Figure 2.1. These applications are connecting multimedia things with each

other and with other smart things. For instance, an IoT motion sensor can discover

and directly interact with available IoT cameras and trigger surveillance of the area, as

presented in [24]. The multimedia stream from a camera can be processed by a neural

network to recognize faces to identify unauthorized access, and it can generate a message

alert to the security staff. The possibilities are vast.

Another innovative use case of the integration between multimedia devices and IoT

devices was presented in [84]. In that work, the authors show the use of drones to detect

and clean up graffiti in buildings and road signals. In this scenario, the deployment of

IoMT applications faces heterogeneity devices challenges. Drones from different vendors

and with different sensors and functionalities can be used for this task. Techniques to

overcome this scenario must be developed. Another relevant aspect presented in that

work is the use of machine learning in restricted devices, like drones for example.

Differently from the IoMT scenario presented before, we have a typical case of a

WMSN at Niterói/RJ city. In 2015, a surveillance system with 350 cameras was de-

ployed in the city. Technical details can be found in the public edict No. 001/20141.

Despite the innovation, the approach adopted is not friendly for sharing multimedia data

to different applications, since new services cannot easily use the already deployed camera

infrastructure.

The advance of IoT brings new light to a dynamic scenario where multimedia sensors

1http://www.niteroi.rj.gov.br/licitacao/sma/2014/cp-001-14.pdf
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are part of our daily life and whose multimedia data can be used unpredictably by IoT

developers. The deployment of multimedia sensors is not an easy task. This difficulty

is raising a new type of service called multimedia sensing as a service (MSaaS) [83].

In this scenario, infrastructure providers offer multimedia streams as services to IoMT

applications. This new data availability enables a fast growth of this type of applications.

Thus, the creation of an architecture that virtualizes multimedia devices can be seen as

a potential trend.

In IoMT environments, some trade-offs must be addressed. For example, to minimize

the size of a multimedia stream, the device must run a more powerful encoding method,

which will consume more energy and CPU [6]. The tuning of all the variables presented

in the IoMT stack to obtain the QoS level required by the IoMT is a complex task.

Multimedia streams are usually complex and bulky. Their syntax and semantics are

not obvious and they are tolerant for packet loss. Also, several compression algorithms

can be applied to multimedia streams, so the amount of data in the stream can be reduced

without losing its semantics. Multimedia streams can be combined and new information

can be extracted. Besides, flows can be handled in different environments, such as edge

devices, edge nodes, public clouds and private clouds as presented in [92].

Specific features of multimedia streams in the context of IoMT make the use of already

existing traditional sensor virtualization models not suitable. There is a need to design

models tailored for multimedia sensors. We claim that models and mechanisms to abstract

the complexity of multimedia sensors will enable the development of innovative services

in relevant areas such as healthcare, security [60], education and entertainment.

As previously mentioned, IoMT applications are typically latency-sensitive. It means

that the adoption of the cloud to process multimedia streams sometimes is not viable

because the Internet provides best effort service and streams may suffer high latency and

jitter. In the next section, we will discuss the adoption of the edge-computing paradigm

to deal with multimedia streams.

2.2 Edge Computing and Multimedia Streams

The Cloud of Things (CoT) paradigm implies that multimedia streams devices are virtu-

alized in the cloud, and the processed stream is delivered on-demand to applications, as

depicted in Figure 2.2(a). This strategy has some drawbacks. For example, the massive

amount of data generated needs to be transferred from the devices to the cloud. Hence,
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the CoT models cannot reach the strict computing time requirements of multimedia ap-

plications. A new strategy emerged recently propose to migrate part of the processing

from the cloud to the edge of the network, placing the processing closer to multimedia

devices, as shown in Figure 2.2(b). Such strategy is exploited by recent paradigms of Edge

[91] [81] and Fog computing [58]. Although there are some differences between fog and

edge computing, in this work we adopt that therm fog computing and edge computing as

synonymous.

Figure 2.2: Cloud of Things approach X Edge computing approach.

In this section, the relationship between edge computing (EC) and multimedia streams

processing will be discussed. We will define EC and present the main motivations to its

adoption in our work. Table 2.2 presents some definitions of EC according to different

authors.

In this work, we adopt the definition provided by OpenFog Consortium in [35], "edge

computing is a horizontal, system-level architecture that distributes computing, storage,

control and networking functions closer to the users along a cloud-to-thing continuum".

The edge computing approach is depicted in Figure 2.2(b). EC addresses a range of issues,

such as low-latency requirements, geolocalization and heterogeneity of IoT devices, data

security and privacy. These issues can be addressed in different approaches for enabling

EC, namely, Cloudlet [75] and Multi-access Edge Computing (MEC) [65].

The Cloudlet approach is defined by [75] as a trusted, resource-rich computer or
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Table 2.2: Definition of Edge Computing
Author Definition

Pang et al. [62] Is the strategy that pushes business logic and data processing
from corporate data centers out to proxy servers at the “edge”
of the network.

Shi et al.[79] Any computing and network resources along the path between
data sources and cloud data centers.

Satyanarayanan
et al. [74]

Computing and storage nodes placed at the Internet’s edge in
close proximity to mobile devices or sensors.

OpenFog
Consortium [35]

A horizontal, system-level architecture that distributes comput-
ing, storage, control and networking functions closer to the users
along a cloud-to-thing continuum.

Morabito et al.
[54]

Edge layer owns the crucial role of bridging and interfacing the
central cloud with IoT. Essentially, an edge element in this layer
can be characterized by a small to medium size computing entity
that aims to provide extra computing, storage, and networking
resources to the applications deployed across IoT devices, edge
and cloud.

cluster of computers that is well-connected to the Internet and available for use by nearby

mobile devices. In that, strategy the content or application that is needed by the user

is preloaded in a small nearby datacenter transparently. The user acts as a thin client

connected a virtual machine.

The MEC approach was initially called Mobile Edge Computing. It was defined in [65]

as a new platform that provides information technologies and cloud-computing capabilities

within the Radio Access Network (RAN) near mobile subscribers. But in 2016, the

European Telecommunications Standards Institute - Industry Specification Group (ETSI-

ISG) changed "mobile" to "Multi-access" expanding the definition of MEC to aggregate

heterogeneous network devices including WiFi and fixed access technologies [55]. To the

5G growth, the deployment of a massive amount of base stations and access points will be

needed. MEC will harvest the enormous idle computation and storage resources available

at network edges [51].

The distribution of multimedia stream processing among different edge nodes was

studied in [7]. They proposed an architecture to perform anomaly detection at the edge.

The edge device that collects data from the microphone performed a transformation over

an audio stream and delivered it to an IoT gateway that runs a machine learning program

that detects an anomaly in an office environment.

The use of EC and distribution of the multimedia stream processing among different
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edge nodes introduce new challenges to IoMT application development and deployment.

A traditional way to deal with these challenges is the use of virtualization. However,

traditional virtualization methods are intensive resources consumers, and the EC envi-

ronment is resource-constrained. Thus a new approach to lightweight virtualization called

containerization has been adopted. The lightweight virtualization technology is usually

based on a group of processes that still appears to have its dedicated system, but it is

running in an isolated environment. This group is typically named a "container". All

containers run on top of the same kernel, reducing the resource consumption in the host

machine that runs the containers.

2.3 Containers in Edge Computing

Edge computing is a new trend, and in combination with the cloud, it can improve

QoS for latency-sensitive applications [8]. On the other hand, develop and manage an

IoMT application that is executed in the edge is not an easy task because there is a

plethora of edge node device types. An edge node is the computational unit in an EC

environment. Each edge node can vary in memory, CPU / GPU and storage capabilities,

besides architecture, operating system and many other individual characteristics. Some

types of edge nodes are:

• Single-board Computer (SBC): It is a complete computer, with limited re-

sources [53] that is built over a single electronic board. It contains components like

microprocessor, input/output, memory and sometimes storage. An SBC typically

provides fanless, low-power computing and a low profile architecture.

• IoT Gateway: It serves as the connectivity gateway between IoT devices and the

cloud, allowing the data collected by IoT devices to be uploaded to the cloud [81].

Typically it is a single machine, and it is placed near the ambient where the sensors

are deployed.

• Micro Datacenter: It is a highly virtualized platform, which provides computa-

tion, storage, and networking services between IoT end nodes and clouds [1]. Typ-

ically it is composed of some machines, and it is placed inside some local telecom-

munication station, like an Internet Exchange Point (IX).

One strategy to reduce the complexity of hardware and software heterogeneity is using

virtualization [42]. It is possible to categorize virtualization strategies in heavyweight and
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lightweight ones. In a heavyweight virtualization environment [42] a hypervisor system

is typicality used to emulate virtual hardware on top of physical hardware and, on top

of that virtual structures, an OS is installed and end-user application can be executed.

In lightweight virtualization, processes isolation is usually implemented at the OS level,

thus avoiding the virtualization of hardware and drivers [54].

The idea of using virtualization in EC is not new. In 2009, the paper [75] studied

the possibility of using heavyweight virtualization in EC. Two things negatively impacted

the results reported in the paper. The first one was that the EC nodes were not pow-

erful enough to run the software that they tested (Gimp). The second one was that the

hypervisor used was VirtualBox, and it is a huge resource consumer. The advances in

EC node’s capabilities and the development of lightweight virtualization have recently

enabled the adoption of virtualization in EC.

The adoption of container technology, which is considered lightweight virtualization,

is overgrowing. The Gartner Company predicts that, by 2023, 70% of organizations will

be running three or more containerized applications in production2. It has been adopted

because of advantages of application development, deployment and management.

One management aspect was studied in [2], was that as the container approach skips

the operation system boot phase, it speedups between 1x (no improvement) and 60x the

time for the service to become available, depending on the container type.

Another study was presented in [18]. They analyzed the overhead introduced by con-

tainer virtualization when multiple concurrent containerized micro-services are executed

in parallel within the same edge node device in order to optimize both virtual sensing and

actuating resources. The experiments show that the introduced overhead is acceptable,

considering the apparent advantages brought by the adoption of container virtualization

in terms of resource partitioning.

The studies mentioned previously show that the adoption of the containerization

approach in EC can make it a viable solution to host processes that perform actions like

video cutting, speech detection or pattern recognition over multimedia streams. Those

processes can be encapsulated in virtual entities such as virtual sensors. In the next

section, we discuss the virtual sensor strategy.

2https://www.stackrox.com/post/2020/03/6-container-adoption-trends-of-2020/
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2.4 Virtual Sensors

The idea of creating virtual sensors is not recent. Table 2.3 presents some definitions

about what the literature defines as a virtual sensor. The adoption of virtual sensors is

emerging again as a viable solution to solve problems related to IoMT environments.

Table 2.3: Definition of Virtual Sensor
Author Definition

Gat et al. [31]
(1990)

Virtual sensor is a mathematical function defined over the values
of the physical sensors, and it may require resource scheduling.

Hardy et al. [33]
(1999)

Virtual sensor is an algorithm pre-defined and fixed, and it ab-
stracts general purpose sensing functionalities which are useful
in their own right and may also be used as building blocks for
higher and more complex sensing abstractions.

Kabadayi et al.
[38] (2006)

Virtual sensor is a software that provides indirect measurements
of abstract conditions combining sensed data from a group of
heterogeneous physical sensors.

Madria et al.[49]
(2014)

A virtual sensor is an emulation of a physical sensor that obtains
its data from underlying physical sensors, providing a customized
view to users using distribution and location transparency.

Table 2.3 presents studies that points reasons for the adoption of virtual sensors.

Some of them are:

• Physical sensors heterogeneity: in the same physical environment, sensors from

different vendors may coexist. It means that applications need to hide away the

idiosyncrasies, and variations of data that are collected and processed. The hetero-

geneity also increases the complexity to build and maintain complex systems that

gather data from different physical sensors. The virtual sensor approach promotes

decoupling of lower-level interfacing;

• Reuse the physical sensor to increase the ROI: A virtual sensor can be used

to produce new services using the same infrastructure that already exists in the

organization;

• Value Added Information: The data provided by a virtual sensor can be enriched

with data that does not is generated directly by the physical sensor;

• Increase Fault-tolerance: a monitored environment typically has more than one

single device providing the same data. In a factory, multiple devices measure the
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same phenomenon, for example, a chamber pressure. A virtual sensor can aggregate

all this data and deliver to the IoT application only one data. In this scenario, if

some of the physical devices fail, the IoT application will continue to work.

But, despite the advantages of virtual sensors, there are some issues in the adoption

of a virtual sensor approach. Some of them are:

• Time constraints: typically dedicated hardware is faster than emulation. Even if

the host has the resources for running the virtual entity, it is essential to highlight

that the resources are shared among the process running in the host. For the case

of multimedia applications, they usually demand a GPU, and many edge devices do

not have this resource.

• Communication: virtual sensors usually do not run in the same physical device

that collects the data. Thus, the data needs to travel from the physical device

to the host machine that runs the virtual entity. The network bandwidth must

be compatible with the data volume produced by the device. Multimedia devices

produce a massive data flow, and this is a challenge to virtualize IoMT devices.

The adoption of virtual sensors has positive and negative aspects as we mentioned.

This strategy can be adopted in the IoMT environment too. In this scenario, a virtual

sensor that emulates a multimedia device is called Virtual Multimedia Sensor (VMS). A

VMS can be used in many situations to feed IoMT application with multimedia streams.

This approach can also improve many application aspects, for example, security and

privacy. In [77], the authors discuss significant issues in many web surveillance cameras, so

hiding information about physical devices can improve the aspects mentioned previously.

The combination of EC and the VMS approach enables the rising of a new plethora

of IoMT applications. It can reduce the total latency due to use of EC and overcome

the edge heterogeneity with a container lightweight virtualization approach. Another

advantage of the use of containers is that the development of the VMS can be done using

the technology that best fits with the VMS and IoMT application requirements.

In this chapter, we presented the background for understanding this work. We defined

IoMT, edge computing, virtual sensors, and the characteristics that enable the use of

containers in edge environments. In Chapter 3, related work will be discussed.



Chapter 3

Related Work

The great heterogeneity of devices and multimedia vendors brings an extra effort to de-

velop, deploy and manage IoT multimedia applications (IoMT applications). On the other

hand, the adoption of an architecture/framework may reduce that effort significantly.

As previously commented, in the Cloud of Things (CoT) paradigm [15], the cloud acts

as an intermediate layer between physical data producer and applications. Traditional

cloud computing is strongly based on resource virtualization, to make it easier for multiple

users to share a single physical resource or application. Cloud virtualization also helps

managing the workload, transforming traditional computing and making it more scalable,

cost-effective and efficient.

In the CoT, the strategy of virtualization has been adopted to reduce management

complexity generated by sensor heterogeneity, since it helps to abstract specific features of

physical sensors, thus promoting interoperability among devices. Virtualization also con-

tributes to decrease the sensor infrastructure maintenance costs and increase the service

availability.

In this chapter, we describe and compare studies directly related to our proposal. We

analyze the following aspects: (i) traditional and multimedia sensor virtualization and;

(ii) architectures for sensor virtualization.

3.1 Traditional and Multimedia Sensor Virtualization

In [20], the authors propose programming abstraction simplifying the development of

decentralized WSN applications using virtual sensors. In this novel, the data acquired

by multiple sensors can be collected, processed and aggregated, and then perceived as
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the reading of a single virtual sensor. Another work that follows the same approach is

[33]. The authors define a structure/framework that must be followed by the developers

for designing and constructing virtual sensors, avoiding low-level implementation details.

The adoption of a specific language can reduce the effectiveness of the approach once the

developers must learn the new language and remake all work done in other languages.

Our proposed architecture, on the other hand, allows the developers to choose the pro-

gramming language that better fits the requirements of the virtual sensor being built.

An automatic allocation method for virtual sensors in the cloud was proposed in [46].

The authors argue that the provisioning process is a crucial task since it is responsible

for selecting physical sensors that will be used to create virtual sensors. The approach

includes two algorithms: an adaptive clustering algorithm based on similarity where the

physical sensor nodes are clustered according to their measurements similarity, and only

a subset of nodes from each cluster is selected to compose a virtual sensor, and ant colony

optimization for sensor selection based on similarity. Results from experiments show that

by using the proposed approach, the overall energy consumption of sensor nodes was

reduced, prolonging the lifetime of the sensor cloud. However, they do not investigate

multimedia sensors and do not evaluate the relationship between energy and bandwidth

in edge nodes.

In [71], the authors exploit computing capabilities of the Wireless Sensor and Actuator

Network (WSAN). They claim that, by running localized and collaborative algorithms,

inside the nodes, leverage the cloud of sensors paradigm to make the best use of the cloud

and physical WSAN environments. The proposed strategy also supports one-to-one, one-

to-many, and many-to-one associations between real-world IoT devices and virtual devices

in the cloud. However, the authors defined the cloud to host virtual sensors and actuators.

For latency-sensitive applications, this approach is not ideal. In our approach, we also use

the idea of the multiple types of relationships between devices and virtual sensors but we

host virtual multimedia sensors in the edge nodes, exploiting the low-latency characteristic

of this environment.

A proposal that adopts a lightweight virtualization model that distributes data pro-

cessing in the edge tier, encompassing the specific requirements of IoT applications was

presented in [5]. The distributed resource management process provides each edge node

with decision-making capabilities, engaging neighboring edge nodes to allocate or provi-

sion on-demand virtual nodes. However, the architecture does not support applications

requesting different types of data in a single request, and the data type cannot be a
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multimedia stream.

In [56], the authors propose an architecture that automates the provisioning of appli-

cations with components spanning cloud and fog nodes. It also enables discover of existing

cloud and fog nodes and generates the application graph. In that architecture, each ap-

plication is defined as a Virtual Node Function Forwarding Graph (VNF-FG). In their

proposal, an application is a set of VNFs chained in a specific order to solve a particular

problem. The architecture provides a set of tools that enable the deployment of complex

applications. However, the bind between the VNF is defined in initialization time. That

behavior implies that, for restarting a VNF, all applications must be restarted. In our

approach, we provide a dynamic binding between virtual sensors and virtual devices; thus

and we can change in execution time the components of the stream processing pipeline.

Smart transportation safety envisions improving public safety through a significant

paradigm shift for police authority responses on crimes toward a pro-active one. The

framework proposed in [60] was tailored to deal with event detection over multimedia

stream, specifically for smart transportation safety. It is a 3-tier architecture named Fog-

FISVER. The first tier refers to an in-vehicle fog node featuring mechanisms for fetching

local sensor data and implementing local-level crime analytics. The second tier is running

at the fog computing infrastructure, performing high-performance crime event analytics.

The third tier refers to mobile applications running on mobile devices at incident response

police vehicles, which in turn report a crime to the end-user (the police agent) within a

short latency. The proposed approach allows only one edge node in the monitored envi-

ronment, therefore there is no need to implement a resource allocation method. Typically

edge environments have many edge nodes in the same place, thus, that approach can be

applied in a small set of scenarios. In our proposal, many edge nodes can be used to host

virtual sensors.

In [61], the authors present a container-based edge node approach for enabling edge

nodes to run applications (virtual sensors) in containers, as well as the orchestration of

container deployment. Their architecture includes a development layer to provision and

manage applications over edge nodes. An important aspect is that the edge environment

is a cluster, based on a homogeneous set of edge nodes. However, the typical case is

that edge nodes are heterogeneous devices. Because of that, proposing a homogeneous

deployment scenario limits that approach adoption. Our approach does not impose limits

to the type of edge nodes.

An architecture to deal with edge node functions placement in roadside infrastructure
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was proposed in [21]. They presented an orchestration framework that enables edge-

cloud collaborative computing for road context assessment. The framework can create

on-demand task execution pipelines spanning multiple, potentially resource-constrained

edge nodes with the smart IoT infrastructure support. They use the term Edge Function

(EF) to define an atomic function that embeds a small piece of the application logic that

can be executed standalone. That EF can be chained together to execute a complete task,

for example, accident detection. The description of the application is based on a directed

acyclic graph, the same way as in [27].

Node-RED1 is programming environment that enable the development for event-

driven applications with a minimum amount of code writing. It can be used for creating

virtual sensor environments. In [19], the authors used Node-RED to define an architec-

ture for smart home application virtualization. The aim of their approach is to allow

development of more complex applications that can be used in different sensor networks.

The virtual sensors were used for identification of temporal relationship patterns in user

behavior using recurrent neural networks. As a limitation imposed by Node-RED, the

virtual sensor cannot manipulate multimedia streams like audio and video, and the virtual

sensors can only be executed inside the Node-RED platform.

The authors of [38] presented a method for data aggregation/processing in sensor

networks. They argued that the separation of the specification of the sensing task from the

sensing behavior allows a programmer to describe the behavior of a virtual sensor, without

having to specify the details of how it should be built. Role separation is important in

IoT once the environment is heterogeneous and dynamic. The idea of task segmentation

is also used in our approach, where virtual multimedia sensors can receive streams from a

variety of physical multimedia devices via virtual devices that encapsulate the complexity

of handling physical devices.

In [70], the authors propose a framework that provides resources for monitoring,

collecting, processing, storing data, and interfaces for providing data to other applications

and/or systems in WSN environments. OSIRIS uses a set of abstractions to offer flexibility

for the creation of various monitoring systems and to decouple network physical sensors

from data consuming applications. The authors validated OSIRIS building a thermal

monitoring system for datacenters. Their approach does not handle multimedia devices

and the authors do not formally defined where VMS will be deployed. However, by

analyzing the examples provided in the paper, we can infer that it is done in one edge

1https://nodered.org/
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node.

In [87], the authors propose a novel video analytics architecture based on edge com-

puting, where a large amount of video data does not need to be uploaded through the

core network and processed in the cloud. Instead, computing takes place partially or

entirely in edge nodes. It reduces the possibility of link congestion and failures, increases

the performance and shortens the response time. The main focus of the authors was

presenting an indoor video detection technique and not the architecture itself, thuns com-

ponents were poorly described. Nevertheless, the results presented show that the edge

adoption to process multimedia streams brings benefits in terms of latency and bandwidth

consumption.

The comparison between the features proposed in those studies is shown in Table 3.1.

Our proposal, named V-PRISM in included in the last row of Table 3.1. The Xindicates

that the paper covers the topic analyzed in that column. Before presenting the table, we

will describe what each column of this table means:

• Virtual Sensor: we analyze if the proposed approach deals with virtual sensors;

• Virtual Actuator: we analyze if the proposed approach deals with virtual actua-

tors;

• Cloud Deployment: we analyze if the proposed approach enables the deployment

of virtual sensors or actuators in the cloud nodes;

• Edge Deployment: we analyze if the proposed approach enables the deployment

of virtual sensors or actuators in the edge nodes;

• Device Deployment: we analyze if the proposed approach enables the deployment

of the virtual sensors/actuators in the device;

• Resource Allocation: we analyze if the proposed approach provides any resource

allocation method/strategy/algorithm;

• Data Sharing: we analyze if the proposed approach provides any method to share

data processed by the virtual sensor between the components;

• Multimedia Stream: we analyze if the proposed approach can handle multimedia

streams;

• Dynamic Multimedia Bind: we analyze if the proposed approach can handle

dynamic binding between the device (physical or virtual) and the virtual sensor.
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Ciciriello et al.[20] X X - - X - - - -
Lemos et al. [46] X - X - - X X - -
Santos et al. [71] X X X - - - X - -
Alves et al. [5] X X X X - X X - -

Mouradian et al. [56] X - X X - X X X -
Neto et al. [60] X - - X - - - X -
Pahl et al. [61] X - - X - - - - -

Donassolo et al. [27] X - - X - X X - -
Cozzolino et al. [21] X - - X - X - X -
Hardy et al. [33] X X - - X - - - -

Chenaru et al. [19] X - - X - - X X X
Kabadayi et al. [38] X - - - X - - - -
Santos et al. [70] X - - X - - X - -
Xie et al. [87] X - - X - - - X -
V-PRISM X - - X - X X X X

In this section, we discussed approaches to handle virtual sensors. In the next section,

we will analyze sensor virtualization architectures. Some studies presented in this section

will also be discussed in the next section from an architectural perspective.

3.2 Sensor Virtualization Architectures

In order to select related work about Sensor Virtualization Architectures (SVA), we

adopted the software architecture definition provided by [22], where an architecture con-

sists of (a) a partitioning strategy and (b) a coordination strategy. The partitioning

strategy leads to dividing the entire system in discrete, non-overlapping parts or com-

ponents. The coordination strategy leads to explicitly defined interfaces between those

parts.
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Extending the software architecture definition provided by [22], we define an SVA as

a set of software components and patterns that enable the development and management

of virtual sensors (VS) that are source of data to applications. In this section, we show

some VSA already proposed to manage virtual sensor environments. We did not restrict

our search for architectures that manage multimedia virtual sensor because they are in a

limited number.

There are many approaches to deal with virtual sensors (VS). In [43], the authors pro-

pose a scalable virtual sensor framework that supports building a logical dataflow (LDF)

by visualizing physical sensors or custom virtual sensors. A web-based virtual sensor ed-

itor (VSE) was implemented on the top of the framework to simplify the creation and

configuration of the LDF. Each virtual sensor is composed of a set of linked mathematical

functions provided by the MathJS library2. Each VS is a process running inside a cluster

server. There is only one cluster, and it is elastic to adapt to the unexpected change in

terms of the number of concurrent users, this adaption is done by adding or removing

a node to/from the cluster. The authors do not discuss the strategy adopted for VS

allocation. Besides that, as the VS is composed only by purely predefined mathematical

functions, the capability of new VS Types are limited to scalar data.

In [27], the authors propose FITOR, an orchestration system for IoT applications

in the fog environment. This solution builds a realistic fog environment while offering

efficient orchestration mechanisms. FITOR relies on an optimized fog service provisioning

strategy that aims at minimizing the provisioning cost of IoT applications while meeting

their requirements. The architectural model assumes that the edge nodes must be a

Docker host machine, and each running container must have a set of services to collect

data from the container. The strategy adopted to collect statistic data was not optimized,

increasing the resources used in an already limited resource environment. In addition, the

approach was not specifically tailored to deal with multimedia edge node environments.

Besides that, they did not specify which resource allocation method was used.

A new sensor cloud architecture for IoT based on fog computing was proposed in [85].

The architecture preprocesses raw sensor data on fog node and provides temporary storage

of the results, controls and manages diverse types of sensors in IoT devices through the

virtualization of physical sensors, and ultimately provides dynamic, on-demand, elastic

and standardized Sensing-as-a-Service to end-users. However, the proposed architecture

does not allow the inclusion of multimedia sensors or the remote management of the VS.

2https://mathjs.org/



3.2 Sensor Virtualization Architectures 36

Two similar approaches were proposed in [93] and [37]. Both studies propose a web-

based authoring tool for creating virtual sensors. In these tools, a VS is created by ag-

gregating the data provided by physical sensors, and, the data-flow is chained to generate

VS for complex event detection. The VS Type was defined using JSON and Javascript.

When the execution of a VS starts, the VS Type definitions (JSON and Javascript files)

are loaded from a database. After that, the loaded script is evaluated by a Javascript

Engine. The Javascript Engine runs in the server where the architecture is executed. It

implies that there is only one node for running the VSs. Besides that, the architecture

defined that the devices must generate scalar data.

Another relevant work was discussed in [70]. The authors proposed a framework to

virtualize sensors of multiple types. Besides that, they developed a communication proto-

col called OMCP (OSIRIS Module Communication Protocol), which allows that external

applications manage virtual sensors. It is important to highlight that that study was the

only framework analyzed that formally discussed and implemented such a type of inter-

action. Unfortunately, the authors did not discuss aspects of virtual sensor deployment,

an essential issue for sensor virtualization.

Besides academic work, many industry initiatives use the virtual sensor approach to

deal with IoT devices. In [23], the authors compare the Amazon AWS Greengrass and

Azure IoT Edge. Both are commercial platforms to virtualize sensors. They enable the

manipulation of scalar data and some types of multimedia streams like audio and static

images. Both platforms distribute virtual sensor in the edge and cloud. The authors

stated that the performances of Greengrass and Azure Edge are similar in many test

cases, but they found that Azure Edge exhibits higher end-to-end latency due to the

batch-based processing adopted in multimedia scenario. That higher latency scenario

represents a problem for latency-sensitive applications. Besides that, those platforms

have only commercial licenses, and they are proprietary software.

Another organization that is heavily working on the standardization of edge comput-

ing architectures is the European Telecommunications Standards Institute (ETSI). ETSI

defines standards to deal with telecommunications, broadcasting and other electronic

communication networks and services. In [29], they provided a framework and reference

architecture for Multi-access Edge Computing (MEC). The document describes a MEC

system that enables MEC applications to run efficiently and seamlessly in a multi-access

network. This is a general guide to develop architectures to a more specific domain. Our

architecture follows some of the standards described in [29]. In particular, the idea of
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an orchestrator, as we can see in Figure 3.1, that shows a complete view about physical

devices and software components of the environment and defines in which edge node the

application must be started or when the application must to be relocated.

Figure 3.1: MEC system reference architecture [29]

A relevant feature depicted in Figure 3.1 is that the infrastructure can handle many

MEC Hosts (edge nodes) and, each host can execute different MEC applications types

(virtual multimedia sensors). In this way, different application providers could deliver

their applications to be executed inside the MEC infrastructure. Some factors that enable

this level of interoperability are the application virtualization and the existence of a Service

Registry component.

In contrast with the previous architectures, our proposed architecture, V-PRISM,

adopts a light virtualization approach, allowing the execution of multiple virtual multi-

media sensors in multiples heterogeneous edge nodes. External applications can manage

VMS through an API, the VMS allocation can be automated by multiple resource alloca-

tion algorithms, and these algorithms are selected by the IoT infrastructure owner. There

is a web interface to manage V-PRISM components, and programmers can develop and

deploy new VS types following the guidelines provided by our architecture.

The comparison between some VSA is depicted in Table 3.2. The last row of the table

represents our proposal architecture. Each column of the table means:

• Node Management: We analyze if the SVA allows node management. A node is

a computational device where one or more VS will be executed.

• VS Type Setup: We analyze if the SVA is capable of define which kind of VS Type
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can be executed in each node of the infrastructure (either edge or cloud), meaning

that a single node can run different VS Types.

• API for VS Management: We analyze if the SVA allows remote applications to

manage a VS. Typically this is done via a REST API.

• Resource Allocation: We analyze if the SVA provides any method/mechanism

for dynamic resource allocation.

• Management Interface: We analyze if the SVA has any interface (graphic or via

command line) for managing its components.

• Light Virtualization: We analyze if the SVA uses any light virtualization method

for virtualizing its components.

• Component Deployment: We analyze where a VS is deployed. The deployment

can be done in the cloud (C), edge (E) or a hybrid approach (H).

Table 3.2: Comparison between Sensor Virtualization Architectures
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Kim-Hung et al. [43] - X - - X - E -
Donassolo et al. [27] X X - X X X E -

Wei et al. [85] X X - X X X E -
Zhang et al. [93] - X - - X - C -
Jeong et al. [37] - X - - X - C -
Santos et al. [70] - X X - - - E -
ETSI et al. [29] X X X X X X E -
V-PRISM X X X X X X E X

In this chapter, we presented existing work and projects that were developed in fields

related to our proposal. We studied cases when the virtual sensor paradigm was adopted.

Besides that, architectures for virtualizing multimedia sensors were compared with our

approach. In the next chapter, we will discuss the concepts and components of V-PRISM.



Chapter 4

V-PRISM Proposal

This chapter presents V-PRISM, our proposed architecture to virtualize and manage vir-

tual multimedia sensors (VMS). Initially, we detail the three-tier architecture considered

in our work in Section 4.1. In the following, we present a categorization for VMSs in

Section 4.2. V-PRISM logic components are described in Section 4.3, and the V-PRISM

operation is detailed in Section 4.4.

4.1 The three-tier architecture

In this section, V-PRISM architecture is presented. According to Roy Fielding in his

REST dissertation, “A software architecture is an abstraction of the run-time elements

of a software system during some phase of its operation.” Following this vision, the ele-

ments that make up V-PRISM will be described in the next subsections, from a logical

point of view. That is, the structure (set of elements) and the behavior (operation) of

these elements when they interact to perform the expected functions will be detailed.

These elements are software components. However, such components must be deployed

in computational nodes that build up an IoMT system. For the design of V-PRISM, we

consider that IoTM systems follow a three-tier architecture encompassing: (i) the cloud,

(ii) edge, and (iii) things tiers, as proposed in [48]. Figure 4.1 shows an overview depicting

how each entity considered in our proposal is deployed in each tier. The main goals and

composition of each tier are:

• The Cloud is the top level of the architecture. The elements that integrate this tier

are machines hosted in big data centers, with powerful CPU, memory, storage, and

network capabilities. Usually, IoMT applications are hosted in this tier. The cloud
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can provide almost unlimited resources for applications, but the processing nodes

in this tier are far from IoMT devices. This distance implies an increase of the total

latency.

• The Edge tier is the intermediate layer between the things and the cloud. The

elements that make up this tier are resource constrained machines hosted in small

data centers (cloudlets), or single-board computers like Raspberry deployed directly

inside the monitored environment. The resources at the edge are limited, in contrast

to the cloud, although they are closer to the physical devices. Thus this tier can

provide services with lower latency in comparison to the cloud.

• The Thing tier is where multimedia devices are hosted. The things are typically

heterogeneous and produce a massive amount of data. They usually have limited

resources available to process and store the generated data. The goal of this tier is

to produce data streams. Moreover, devices in this tier may contain, in addition to

sensors, some processing capacity, although limited. Therefore, simple processing

tasks can be performed in this tier.

V-PRISM architecture encompasses the following types of elements: Virtual Multime-

dia Sensors (VMS), Virtual Devices (VD), and V-PRISM Manager components. All these

elements are deployed in edge nodes, as presented in Figure 4.1. A VD receives/collects

multimedia streams from a physical device. After that, one or more VMSs will request

the multimedia stream to perform some operation over the data. Finally, the VMS output

will be sent to other VMSs or IoMT applications. We consider IoMT applications as any

type of external V-PRISM entity that consumes the output of a VMS. Typically IoMT

applications are hosted in the cloud, but they can also be hosted in the edge and things

tier. V-PRISM can handle all these deployment configurations for IoMT applications (at

the cloud, edge or at the things tiers).
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Figure 4.1: V-PRISM three-tier architecture overview

Figure 4.2 depicts an example of VDs and VMSs in a smart building application.

The left side of the figure shows the monitored places in an organization called Corporate

X. The right side of the picture presents the virtual multimedia sensors. The monitored

places in this example are Room A, Hall B and Backyard. Each named place represents

a physical space in a building where the Corporate X organization operates. Physical

devices are deployed in each of these places. For example, in Room A there is a Full HD

Camera & Microphone.

Each physical device can be a source of multimedia data to many VMSs. In Figure

4.2, the data generated by the Full HD Camera & Microphone is providing multimedia

streams to three different VMSs. This approach can maximize the usage of the organiza-

tion resources since an already deployed device can provide multimedia streams to new

opportunistic services, as presented in [47].

Figure 4.2: Description of an environment where V-PRISM can be deployed
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The three-tier architecture is an approach designed to explore the integration of

thigs/edge/cloud tier. In V-PRISM we adopt this strategy once each tier have its own

responsabilities. In the next section, we will present a proposal of VMS categorization.

4.2 VMS Categories

To facilitate understanding and organizing the different types of VMS, we propose a

categorization according to the multimedia stream abstraction provided by the VMS

type. We coined two new terms VMS types and VD Types. For better comprehension, an

analogy with Object Orientation is that a VMS type is a class and a VMS is an object. A

VMS is the instantiation of a VMS Type. Besides helping to organize the various possible

types of VMS that can be built on V-PRISM, these categories also potentially serve for

the following two purposes:

(a) the proposed categories group the VMS by the provided functionalities (from the

simplest to the most complex ones), so they also help to guide the amount of re-

sources that will be needed to instantiate each type. More complex nodes will require

more infrastructure resources for their deployment and execution. Therefore, a min-

imum amount of resources required for each VMS category can be stipulated and a

resource allocation algorithm can use this information for its decision making. Only

edge nodes able to provide the minimum resources of a given category would be

candidates for the implementation of nodes of the respective type;

(b) provide templates for each VMS Type, which facilitates the work of the developers.

To the best of our knowledge, no previous work proposed a taxonomy tailored for

categorizing VMS. Figure 4.3 depicts the proposed hierarchical categorization.

Figure 4.3: VMS Hierarchical Categorization
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The categorization presented in Figure 4.3 was inspired on the information classi-

fication proposed in [16]. The author coined three concepts to define information ab-

straction levels. The first one is that information is a thing (information-as-thing) when

the information is only data. The second one is knowledge (Information-as-knowledge)

when an entity makes some reasoning over the information, and the third one is process

(Information-as-process) when the information consumed by some entity promotes some

change in the entity that receives the information. Therefore, inspired by this work, our

proposed organization is also composed of three main categories defined as follows. VMS

as a Thing, when the VMS only forwards the data collected by the device. VMS as a

Process, when the VMS, besides forwarding the data, adds new features to the virtual

device. VMS as a Service, when the VMS provides a high-level abstraction feature over

the multimedia stream.

As depicted in Figure 4.3, the computational complexity and resource consumption

tend to grow when the abstraction level of the VMS category rises. On the other hand,

the level of multimedia stream processing reduces as the category level decreases. It

indicates that VMSs defined in different categories have different requirements. Thus this

hierarchical categorization can be used as a parameter to resource allocation algorithms

once a VMS cannot run inside every edge node available.

In order to produce a comprehensive organization, we studied the already proposed

categorizations for virtual sensors presented in [49], [14] [70], [43] and [32]. Therefore,

we propose the following second-level categories: replicator, improver, converter, selector,

aggregator, detector and transformer. It is important to note that this is not an exhaustive

categorization, since with the advancements in IoT environments, new devices can enable

innovative VMS types, forcing the creation of new categories to cover them.

Although this proposal of categorization, depicted in Figure 4.3, is one of the contri-

butions of this dissertation, to explore the benefits of its use is future work. In addition,

the relationship between VMS categories and resource allocation algorithms will also be

addressed in future work. In the next sections, we will describe each VMS category and

present some use cases to illustrate them.

4.2.1 Replicator

In a Replicator VMS, all characteristics and behavior of a physical multimedia device

are replicated in a virtual twin entity. Replicators are the elementary type of VMS.

A VMS in this category does not make any change in the original multimedia stream.
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Replicator VMSs are mainly used to reduce resource consumption in the physical device

and in the IoT network. A VMS in this category also consumes few resources in the edge

node because they are only data forwarders. As a consequence, they can be executed in

low-capacity edge nodes enabling its adoption in legacy deployed IoT environment.

One use case of Replicator VMS is in surveillance systems. Typically the video stream

produced by the surveillance camera is collected and delivered to one or more IoMT

applications, as we can see in Figure 4.4(a). Using a Replicator VMS, Figure 4.4(b), the

data is collected from the physical camera only once, and the stream is delivered to many

different IoMT applications by the VMS.

Figure 4.4: Traditional and virtual sensor approach in surveillance systems

4.2.2 Improver

Many IoMT devices have restricted capabilities. They sometimes cannot perform QoS

tasks or providing reliable data security. An Improver VMS can provide to IoMT appli-

cations features that do not exist in the physical multimedia device.

A frequent situation in IoT environments is the existence of devices deployed without

a firmware update, which allows security threats. It happens because typically an IoMT

system can run for years, and during this time, vendors can stop making improvements

in the device’s firmware. In these situations, an Improver VMS can be used to increase

lifetime for legacy multimedia devices already deployed in the environment.

Security is one of the most concerning issues in the IoT world nowadays. Many papers

have been published talking about techniques and strategies to improve IoT security [34].

In particular, IP cameras have significant potential for security issues, particularly when

they get old. This scenario is represented in Figure 4.5(a). As vendors stop producing

new drivers to IP cameras, they became vulnerable to hacking attacks. One strategy to
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continue using the vulnerable device is placing it behind a VMS, and exposing the VMS

IP and not the camera IP, as in Figure 4.5(b).

Figure 4.5: Example of security threat in legacy IoT environment

4.2.3 Converter

One of the most prominent characteristics of IoMT is device heterogeneity. It is common

that in the same environment, devices produced by different vendors can be used together

to perform some task. In many situations, the type of multimedia stream produced by

some multimedia sensor is incompatible with the IoMT application requirements.

A Converter VMS can be used when the multimedia stream produced by the device

needs to be changed to meet the IoMT application requirements. For example, if an old

microphone can produce only a WAV stream, but the IoMT application requires an OGG

audio stream, as we can see in Figure 4.6, a Converter VMS can convert the multimedia

stream to a different codec format.

Figure 4.6: VMS converting an audio stream codec format

4.2.4 Selector

The Selector VMS category is composed by VMS types that receive multiple multimedia

streams as input and then choose only one stream as output. All the multimedia input

streams must be of the same type. The multimedia stream is not modified, only forwarded

to the IoMT application.

Each Selector VMS has at least one selection function. The selection function can use

a simple QoS device stream analytics or a complex multimedia pattern recognition. For
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pattern recognition, the VMS can implement artificial intelligent algorithms as proposed

in [44].

One example of a Selector VMS is a Sound Selector VMS. Figure 4.7 depicts the

scenario where multiples microphones are placed in the same meeting room. The VMS

will send to the IoMT application the sound of the microphone with the best quality at

a given time.

Figure 4.7: VMS sound selector

4.2.5 Aggregator

An Aggregator VMS receives multiple multimedia streams and sends a single combination

of them to the IoMT application. There are two classes of Aggregator VMS. The first

one will aggregate multimedia streams of the same type (for example, two or more video

streams), and the second one will aggregate multimedia streams of different types (for

example, audio streams and video streams).

One example of an Aggregator VMS is a video mosaic, depicted in Figure 4.8. A video

mosaic application receives video streams from many different cameras and combine all

streams in one single output stream. In this scenario the VMS will aggregate all the

streams and will send to the application. Another example is a VMS that receives a

video stream from one camera and an audio stream from a microphone and combine both

streams before delivering it to the IoMT application.
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Figure 4.8: Aggregator VMS of producing a video mosaic

4.2.6 Detector

The Detector VMS category encompasses VMSs that perform event detection in a mul-

timedia stream. Artificial Intelligence techniques can be used in these VMS [44]. It is

essential to mention that the VMS runs in an edge node, usually with low capabilities;

thus, the algorithm selected to execute the detection needs to be compatible with the

resources available in the edge node.

A Detector VMS receives a single multimedia stream as input. Detector VMS can

delivery to IoMT applications a different type of stream. For example, the VMS that

receives a video stream can trigger an API endpoint if a monitored event occurs.

It is possible to develop a Detector VMS to perform complex event detection. In [3],

the authors presented a complex real-time event detection framework for resource-limited

multimedia sensor networks. The same type of strategy can be applied to a VMS running

inside an edge node.

Figure 4.9 presents a use case of an audio stream as a multimedia source for a Detector

VMS. If a gunshot noise is detected, a message is sent to the police department. This

proactive monitor can be used in smart cities to improve citizens security.

Figure 4.9: Gun shoot detection a Detector VMS
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4.2.7 Transformer

A Transformer VMS changes the nature of the stream. It is used when the multimedia

stream needs to be transformed into another type of data. An example of transformation

is when video streams must be converted into a file or an audio stream must be converted

into text.

A car license plate detection VMS is an example of a Transformer VMS. Typically

plate detection algorithms receive a video stream and extract the numbers and letters

from the plate. The IoMT application receives only the text extracted from the video.

This approach can save resources from the network environment once only the recognized

string is transferred over the network and not the car plate image.

In the next sections, we present the V-PRISM logic components. The components

and interactions between them will be described in detail.

4.3 V-PRISM Logic Components

In recent years, there has been a lot of effort to specify a general-purpose architecture to

run and manage applications in the edge [60] [56] [61] [5]. Our architecture follows a gen-

eral propose meta specifications presented in [29] by ETSI. ETSI is a European Standards

Organization (ESO). As a general specification, it leave domain detail definitions to more

specific architectures. Because of that, we propose V-PRISM, an architecture explicitly

tailored to deal with the challenges of IoMT in edge environments.

The V-PRISM logic components are depicted in Figure 4.10, They are responsible

for processing multimedia streams produced by multimedia devices and consumed by

IoMT applications. IoMT applications are typically deployed in the cloud, and physical

multimedia devices are typically placed in the things tier. Stream processing is performed

by the set of virtual multimedia sensors (VMS) provided and hosted by the architecture.

The VMS and all V-PRISM components can be deployed in multiples edge nodes, in a

distributed fashion.
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Figure 4.10: V-PRISM Logic Components Architecture

4.3.1 Virtual Multimedia Sensor

A Virtual Multimedia Sensor (VMS) is the architectural component responsible for provid-

ing multimedia stream processing. Therefore, a VMS component performs some process

in a multimedia stream produced by physical devices (media things). Examples of pro-

cessing are the conversion of video formats, multimedia feature extraction; aggregation

of new characteristics to already existing multimedia streams, to name a few. For each

specific type of multimedia stream processing, there will be one VMS Type. We will

define VMS Types in the following sections.

The data processed by a VMS can be used by two types of entities. The first one is the

IoMT application that requested the corresponding stream. The second one is another

VMS. Therefore, the VMSs can be chained, where the output of a given VMS is used as

input for the next VMS. Chaining VMSs allows reusing the output of a stream processing

while creating complex processing flows to accommodate application requirements.
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Each VMS has one or more input ports, connected to a virtual device (VD) or to

another VMS, and one output port. It can be noticed in Figure 4.10 that the connection

between a VMS and an application is unidirectional. This fact implies that the application

does not have a direct communication channel with the VMS. If the application needs to

send a control message to a VMS, this must be done using the Service Registry component.

A VMS is defined as a tuple VMS = {P, I, S,D,C, SH,E} where P = {par1, ..., parn}
is a set of configuration parameters par = {name : value} that will define how that

specific VMS will process the multimedia stream, such as saturation level, noise level,

quality of the video, etc.; I = {en1, ..., enn} is a set composed of VD or VMS entities

providers of input streams. S is the software that performs the respective multimedia

stream processing, this value can be the container ID if the software is running inside a

Docker environment, the PID if its running on LXC (Linux Containers), or any other type

of software identification; D is an (IP, PORT ) tuple that defines the first address used to

send the output result (it can identify an IoMT application or another VMS); C refers to

the category of VMS, as described in Section 4.2, each implementation of V-PRISM can

choose the best approach to identify the category, it can be the category name, a pointer

reference, or an ID; SH is a boolean value that defines if the processed output stream

can be shared with other VMSs or IoMT applications; E is an optional parameter that

defines in some cases in which edge node the VMS must be executed.

VMSs are independent of the physical device. It means that, during execution time,

the physical device that provides multimedia stream to the virtual device can be changed

without any VMS downtime or reconfiguration.

4.3.2 Virtual Device

A Virtual Device (VD) is the architectural component responsible for forwarding a mul-

timedia stream produced by a multimedia device to a given VMS. Each VD is connected

to one physical device. If a given smart object has more than one device, e.g. a camera

and microphone, and the output stream is multiplexed, then there will be only one VD

connected to that smart object. Otherwise, there will be one VD to each device (sensor).

Each VD is programmed to connect to a specific device type (e.g. USB camera) and

to send a specific type of multimedia stream, e.g. H.264 video. This approach makes the

architecture flexible for incorporating different VD types. The VD output type can not

be changed in execution time.
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The VD is data stream agnostic since it has no knowledge of the content being carried.

This feature decreases the complexity for creating new VD types. A same VD can send

data to multiple VMSs.

The relationship between the physical device cannot be changed after the start of the

VD. It must be defined using V-PRISM stream descriptors during the setup process and

can not be changed after the VD starts running. The VD type must be compatible with

the type of data stream and the communication protocol available at the physical device.

A VD operates as a driver, interpreting specific data formats and protocols. In contrast,

it is possible to have many binds between a VD and VMSs. VD and VMS have a weak

relationship since it can be established and changed during execution time.

A VD is defined as a tuple V D = {P,C, S, T, E}, where P = {par1, ..., parn} is a

set of parameters par = {name : value} that identify the device, such as a path for the

device, the device IP address, etc.; C = {cnf1, ..., cnfn} is a set of the device configura-

tions cnf = {name : value}, each device has different configurations, for example, video

resolution or audio quality; S is the software that performs multimedia stream collecting

and forwarding, this value can be the container ID if the software is running inside a

Docker environment, the PID if its running on LXC, or any other type of software identi-

fication. T is the VD data type, it defines the type of the VD output, which can be audio

or video; E is an optional parameter that defines in which edge node the VD must be

started, the edge node can be identified in many ways depending on the implementation

infrastructure, in a Docker environment it can be the IP:PORT where the Docker API is

listening.

The parameter E is optional, and only needs to be assigned when there is some

restriction for deploying VDs. For example, to start a VD for a USB camera, it must be

started in the edge node where the USB camera is connected.

Figure 4.11 depicts how the relationship between VMS and VD works. First, the

multimedia stream is collected/received by the VD, the stream can be sent to many

VMSs and, a VMS can handle a multimedia stream from another VMS. Lastly, an IoMT

application will receive the processed stream.
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Figure 4.11: Relationship between VD and VMS

4.3.3 VMS Registry & VMS Request Manager

The VMS Registry component is used to manage and provide a descriptor list about

the availability of VMS types in each edge node. The IoMT application will query this

list before making the VMS creation requests. The descriptor list can be fully retrieved

or queried by specific parameters such as location, VMS categories, and VMS types.

For example, an IoMT application can request the list of all VMSs that perform voice

recognition in a specific location.

As already mentioned, the VMS component processes a multimedia stream and de-

livers the result to an IoMT application or another VMS. However, the IoMT application

is not allowed to directly execute internal functions for instantiating a VMS. The VMS

Request Manager (VRM) component is responsible for receiving requests made by the

IoMT application to create or destroy a VMS. It is through the VRM that external de-

mands created by IoMT applications reach other V-PRISM components. This component

uses a message-driven communication. Such approach allows heterogeneous systems to

communicate in a loosely coupled way, and it fits the dynamic nature of IoT and CoT

systems. The communication protocol used between these entities is not in the scope of

this work.

The main task of the VRM is depicted in Figure 4.12. This component is responsible

for managing the admission of new VMS creation requests. The admission is ruled by

business and technical aspects. Each V-PRISM implementation will define its own set of

rules to deal with the admission of new VMS creation requests.

In Figure 4.12, the first activity "App is Allowed?" will manage all the business

questions, for example, here they can verify if that specific IoMT application is allowed

by the infrastructure provider to create the requested VMS type. The second activity

"VMS is Allowed?" deals with a technical question, for example, here the VRM will

verify if there is any running edge node with the VMS types requested by the IoMT
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application.

Figure 4.12: VRM state diagram

There are many ways to describe service requests. In [27], the authors use a customized

JSON string pattern to specify the characteristics of the requested service. This approach

is quite simple, and dealing with a complex application is a problem. In contrast, [56]

proposed a sophisticated approach where a directed graph is used to define the sequential

steps of the multiples virtual entities that compose the application and, that graph is used

by the orchestrator to derive the chaining execution plan. Nevertheless, the definition of

the best approach is out of the scope of our current work, and it will be up to the

developers to choose it.

4.3.4 Maestro

Maestro maintains an overall view of the system based on deployed edge nodes, the

available resources, and network topology. Another responsibility is triggering application

reallocation as needed. Maestro was designed based on the specifications defined for the

Multi-access edge orchestrator component proposed in [29].

Maestro is the first component executed after a VMS creation request is admitted by

VRM. It is a V-PRISM core component and has two main functions. The first one is to

manage the VMS life cycle and the second one is to orchestrate the VMS stream pipeline.

Maestro works together with other components to provide these functions. In the VMS life

cycle management, Maestro uses the Edge Node Manager component to send commands

to create, destroy, or move a VMS from one edge node to another. Maestro consumes
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functions provided by the Resource Allocation Manager component to determine in which

edge node a VMS will be created.

To orchestrate the VMS stream pipeline, Maestro uses the VMS Manager and VD

Manager components. The VD Manager will receive messages to bind a VD to a VMS.

Furthermore, the VMS Manager will receive commands to attach the VMS output as an

input to another VMS.

4.3.5 Resource Allocation Manager

The edge environment, in contrast with the cloud, is resource-constrained. The amount

of CPU, memory and storage is limited. Thus resources must be well used to maximize

the number of IoMT applications served and improve the delivered QoS [34]. One of the

key features to achieve this goal is using proper resource allocation methods.

The Resource Allocation Manager (RAM) is the component that defines in which

edge node a VMS must be instantiated. There are two class of information used by RAM

to perform this task:

• Environment data: they are gathered in the edge environment, edge nodes and

network. Examples of this type of data are, the candidate edge nodes, number

of VMSs running in each candidate edge node, the delay between edge node and

the IoMT application host, CPU usage level, free memory amount, battery level,

resources history usage, etc.;

• Application data: they are gathered from the IoMT application environment.

QoS requirements and stream configurations parameters are somes data examples.

Different types of resource allocation algorithms require different parameters. In this

version of V-PRISM, for the sake of simplicity, we are considering that the RAM compo-

nent is capable of delivering all the parameters required by each algorithm, but in future

versions, we will introduce a context manager monitor. V-PRISM architecture is capable

of running different resource allocation algorithms types, the IoT infrastructure needs to

install each possible resource algorithms inside the V-PRISM environment.

The Maestro component has configurable parameters that will define which algorithm

will be used to perform the edge node selection process. One possible example is, if the

number of available edge nodes is fewer than a certain threshold, Maestro can choose a
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O(n3) algorithm, otherwise, the algorithm must beO(n log n). This example demonstrates

the flexibility level available in V-PRISM.

In the next section, we discuss a Resource Allocation Heuristic Model proposed to

select which edge node should be chosen to run a new VMS.

4.3.5.1 Resource Allocation Heuristic Model

Resource allocation (RA) is a process in charge of executing the tasks to allocate resources

necessary to meet the workload of one or several applications [25]. In V-PRISM, the RAM

component is responsible for executing the RA process. The component has the main task

of allocating VMS in some edge nodes in order to meet application requests.

In this section, we propose a heuristic algorithm to be implemented as complement

of the RAM component. As this algorithm is not the focus of our work, we implement

a naive approach only to validate V-PRISM operation, since the resource allocation is

a key part of it. However, it is essential to mention that more sophisticated algorithms

proposed in other studies like [90], [89], [8], and [5] could be implemented as well. The

problem solved by the algorithm is how to select the best edge node to run a new VMS.

Such a problem is an NP-Hard problem because it involves placement decisions [89]. We

will use a heuristic method since this is a common way to solve this type of problem.

We desire to choose the edge node that will meet the IoMT application requirements to

maximize utility regarding response time (latency) and consumed bandwidth. We define

some premises to the algorithm development:

• Each edge node has its own VMS type repository;

• Each edge node can have different VMS types;

• The IoMT application requests a single VMS type each time;

• The information about the edge node such as memory, CPU and bandwidth usage

is already available before the algorithm starts;

• The resource availability of the edge node should always be checked before starting

a new VMS.

IoMT applications are latency-sensitive [8]. One strategy to minimize the latency is to

run the VMS in the edge node that has the lowest latency to the IoMT application host.
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Algorithm 1 shows this approach. Many metrics can be adopted in a resource allocation

algorithm. We choose latency because in IoMT applications it is a critical factor [8].

Algorithm 1 Resource Allocation Algorithm Based on Network Latency
Initialization: run()

Function resourceAllocation(req)
// Get all edge node candidates.

// It must be online, with VMS type deployed and with sufficient resources available.

edgeNodesCandidates ← call Maestro.getEdgeNodes(req);

selected ← NULL;

while (en in edgeNodesCandidates) do

if (selected == NULL or en.latencyToApp < selected.latencyToApp) then
selected = en;

end

end

return selected;
Function run()

while true do
event ← call ServiceRegistry.receiveEvent();

if (event.type == "VMS_CREATION") then
resouceAllocation(event);

end

end

In the next sections, we will describe the Virtualization Engine components and its

role in the V-PRISM architecture.

4.3.6 Virtualization Engine

The VMS and VD are the main components of V-PRISM. This components can be de-

ployed in multiples and heterogeneous edge nodes. Each edge node can run various

components at the same time.

Each component can be developed using the technology that better fits its require-

ments, for example, a VMS that detects movement can be developed in python using

OpenCV. In contrast, a VD that collects data from a microphone can be developed us-

ing C language. This means that for V-PRISM the VMS is agnostic about technology

adopted in the component development. To overcome the heterogeneity of hardware,
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software and network communication standards, each component will run inside its pri-

vate virtual environment based on virtualization. The Virtualization Engine uses the low

level API provided by the virtualization platform used to virtualize the components of

V-PRISM.

The Virtual Engine component will be responsible for providing interfaces for manag-

ing the virtualization of components. A responsibility of this component is to monitor the

status of each virtual machine. We advocate that the virtualization system component

should use a lightweight approach, like containerization [54]. This approach better fits

the edge resource constraints environment.

Another responsibility taken by the virtualization engine component is the communi-

cation mechanism between components. It must abstract the heterogeneity of the network

environment. In this manner, virtual entities can focus only on their main task.

4.3.7 Edge Node Manager

The Edge Node Manager (ENM) is the component responsible for managing all edge nodes

that can run V-PRISM components. In V-PRISM an edge node can be characterized as

a small to medium size computing entity that aims to provide computing, storage, and

networking resources to the applications deployed across IoT devices, edge and cloud [53].

As we described in Section 2.3, there are three types of edge nodes: single-board computer,

IoT gateways and micro datacenters. V-PRISM can be executed in any of them.

The ENM is a key component of V-PRISM. In the MEC Architecture [29], ENM has

the same functionalities described in the MEC Platform Manager. ENM is responsible

for the following functions:

• Receiving virtualized resource fault reports;

• Performance measurements from the virtualization infrastructure;

• Providing elements for managing V-PRISM core components;

• Preparing the virtualization infrastructure to run a VMS and VD container image.

4.3.8 Environment Monitor & VN Monitor

To orchestrate infrastructure resources, V-PRISM needs to collect statistic data about the

environment. The Environment Monitor component gathers data from the edge nodes.
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It acts as a statistic data monitor aggregator.

The Virtual Node (VN) Monitor collects statistics data from the virtual entities (VMS

and VD). The RAM is the main consumer of these data. The freshness of the data

depends on the capabilities of the devices in the edge environment. Typically these data

are not collected in real-time because the resource allocation algorithm component is time

constrained.

4.3.9 VMS Manager

The VMS Manager component is responsible for providing interfaces to create, destroy,

and manage VMSs. Moreover, it keeps track of VMS types available in each edge node.

Each edge node has the capabilities to run a subset of all VMS types available. A VMS

type is implemented by a software that performs some processing in a multimedia stream.

The definition of which edge node can run each VMS type needs to take into account

technological and business aspects. More complex VMS types will require edge nodes

with, for example, a GPU or also with abundant storage, so, an edge node without

these capabilities can not be part of edge nodes candidate set for the instantiation of a

VMS type. On the other hand, even if the edge node has the required resource, it can be

exclusively allocated to maintain only specific VMS types to provide some QoS agreement.

Thus this definition necessarily must be done by a human or semi-automated process.

The VMS Manager component must be executed in each edge of V-PRISM that will

be used to run a VMS. In Figure 4.10 is depicted that this component provides metadata

about each VMS running, inside the edge node, to the VN Monitor. This data will be

used, for example, by the Resource Allocation Manager during the instantiation of a new

VMS.

Another feature provided by this component is a fault-tolerant subsystem. If one VMS

stops working, the VMS manager has mechanisms to recreate it. Besides, the component

Multimedia Stream Sharer is part of the VMS Manager. This strategy improves the data

security of the architecture.

4.3.10 VD Manager

The VD Manager (VDM) component is responsible for providing interfaces to create,

destroy, and manage the virtual devices. Each VD stores physical sensor metadata, like
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the format of the generated stream, the physical location of the sensor, its data-sampling

rate, etc. The attributes stored about each sensor can be distinct and depend on the

physical nature of the multimedia sensor.

The VD Manager component must be executed in each edge of V-PRISM that will

be used to run a VD. In Figure 4.10 is depicted that this component provides metadata

about each VD running, inside the edge node, to the VN Monitor. This data will be used,

for example, by the Environment Monitor to notify the infrastructure owner about any

outrage of resources inside a VD instance.

Another feature of VDM is to manage the VD types. A VD type is implemented by a

software that is able to connect to the physical device. For example, if the physical device

provides an RTSP interface, so there will be a VD type that implements this protocol.

A VD has an additional requirement in contrast to VMS. Even if the edge node has

the VD type installed, it can only be started if the edge node can access the physical

device. For example, the VD of a USB Camera only can be deployed in the edge node

where the camera is attached. In contrast, an RTSP virtual device can be deployed

in any edge node. The edge node placement of a VD is typically defined manually by

the infrastructure manager once the physical device must be configured to be part of

V-PRISM.

In Figure 4.13, we can see a USB Webcam and a Raspberry acting as an edge node.

When the VD that collects multimedia stream from the physical device is started, it must

be executed in the Raspberry edge node where the USB camera is connected. It is not a

limitation of the architecture but a consequence of how this type of device can be accessed.

Figure 4.13: USB Webcam attached to a Raspberry 1

1https://tinyurl.com/y9pfcxx3
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4.3.11 Stream Sharer

The Stream Sharer (SS) component provides a function that enables the VMS to send a

multimedia stream to more than one destination. By default, the VMS has many input

ports but only one output port. This model allows the VMS to focus solely on the main

task that is multimedia processing and not in the process of sharing the result stream.

In Figure 4.14, the SS component is depicted. It has one input port and many output

ports. Each output port is linked to an IoMT application or a VMS. SS dynamically

defines the number of output ports. The SS component only shares the multimedia

stream.

Figure 4.14: Stream Share component operation

4.4 V-PRISM Operation

In this section, we present some important aspects of V-PRISM. The discuss about com-

ponent deployment will be done in Section 4.4.1, the initialization of a VMS in Section

4.4.2, how the multimedia stream share works in Section 4.4.3, and finally, the Control

Message Broker (CMB) will be analyzed in Section 4.4.4.

4.4.1 V-PRISM Deployment

V-PRISM is composed of many distinct components. The components can be deployed

in different edge nodes. Every edge node that compounds V-PRISM must have at least

the Virtualization Engine component, and one or more VMS types or VD types.

Before ingresses in a V-PRISM environment, the edge node must be registered in the

Edge Node Manager component. The edge node must also have a unique identifier (ID)

that will be used to address the control messages sent to it. Typically the virtual engine
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adopted in the development already provides some ID, in Docker, for example, the ID is

composed by a string with 26 characters.

An edge node can host virtual entities like VMSs and VDs. The software of the virtual

entity must be deployed and available at the edge node. Real-time software deployment

increases virtual entity startup delay.

It is mandatory some network communication between all edge nodes that compound

V-PRISM environment. For improving the V-PRISM security, we advocate that all edge

nodes must be part of the same private network, the network can be physical either virtual

network. The only components that must have a direct connection to the Internet is the

Service Registry and VMSs that send data to an IoMT application hosted in the cloud.

Devices produce multimedia stream. Each device is attached to only one virtual

device. Before a VMS uses the multimedia stream provided by a VD, the parameters for

VD configurations must be informed, and the virtual device must be started.

4.4.2 Initialization of a VMS

The initialization of a VMS has two phases. The first is the admission phase, where the

component VMS Request Manager (VRM) defines if the IoMT application request is valid

or not. After that, the second phase is started and it consists in a call to Maestro to start

the creation of the VMS. In Figure 4.15, we show a sequence diagram of the second phase.

Figure 4.15: VMS creation sequence diagram
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First, the Service Registry component sends Maestro the request to create a new

VMS. Maestro requests the Edge Node Manager component to retrieve the list of all edge

nodes that are running and have already deployed the corresponding VMS type. Finally,

the list of candidate edge nodes and the information provided by the IoMT application is

sent to the Resource Allocation Manager. It will choose, based on a resource allocation

algorithm, one edge node to run the VMS, and that information will be sent to VMS

Manager that will call the Virtualization Engine to create the VMS.

4.4.3 Multimedia Stream Sharer

By default, a VMS can only send a multimedia stream to a single destination. This

strategy allows the development of a VMS to be focused on multimedia stream processing.

The Stream Sharer component is used to share the stream resultant of a VMS processing

to multiple destinations.

When a VMS is created, by default, the stream processed by it will be sent directly

to the IoMT application that requested it, or to another VMS. In situations where the

VMS can share the multimedia stream with more then one entity, this parameter must

be explicitly informed to the VMS Manager when the request for the VMS creation. This

pattern allows the manager to create an approach to avoid problems with data privacy

aspects concerns generated by a VMS that is sharing data inadvertently.

In Figure 4.14, when the VMS Video Crop was created, the IoMT APP 1 explicitly

defined that the result of this VMS could be shared. When the IoMT APP 2 requests

a new VMS with the same specifications of the VMS already created that can share

content, the VMS Manager only attaches a new output port to the SS component that

was attached to the VMS previously created.

4.4.4 Control Message Broker

The Control Message Broker (CMB) is responsible for providing communication between

Maestro and VD. It is essential to mention that VMSs and VDs run inside their private

virtualized environment. Thus, direct communication between them increases the cou-

pling of the components. The use of sockets is an example of coupling increasing. We

advocate that a better approach to performing the communication with VD is using a

publish-subscriber pattern, where each VD subscribes to a specific topic, and Maestro

publishes data in this topic when it needs to interact with the VD.
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In Figure 4.16, we illustrate the interaction between CMB and virtual devices. In this

example, a single security camera is serving two different VMSs. Each VMS is executing

a different task and providing multimedia services using the same physical infrastructure.

Figure 4.16: Interaction between CMB and Virtual Devices

Another feature presented in Figure 4.16 is the communication sequence between

Maestro and CMB. First, the VD Camera subscribes to the topic abc, and this process

occurs when the VD is started. When some VMS needs the stream from this VD, Maestro

publishes in topic abc a string value. When the value of a topic changes, all the subscribers

will receive the new value, then the VD will parse the message to perform the binding

between the VD and VMS 123.

When a VD is instantiated, the multimedia data received from the physical device is

not delivered to any VMS. Maestro will send a message to the VD via CMB when some

VMS is initialized and requests the multimedia stream, or when the VMS does not need

the stream anymore. The virtual device is not destroyed automatically, even if no VMS

is using the multimedia stream it provides.

In this chapter, we presented V-PRISM, our proposed architecture to virtualize and

manage virtual multimedia sensors. We detailed the three-tier architecture in Section 4.1.

We depicted our proposed categorization for virtual multimedia sensors in Section 4.2,

V-PRISM logic components were discussed in Section 4.3, and finally in Section 4.4 we

presented V-PRISM operation. In Chapter 5, we will present ALFA, the proof-of-concept

of V-PRISM.



Chapter 5

ALFA: An Implementation of V-PRISM

In this chapter, we will present a V-PRISM implementation as a proof-of-concept (PoC).

We named this prototype as ALFA. This implementation instantiates all the components

of our three-tier architecture shown in Chapter 4. The source code and additional in-

formation like tutorials, manual instructions, and walkthrough videos can be found in

GitHub1.

The rest of this chapter is composed as follows, in Section 5.1 we describe the leading

technologies used in the development of ALFA, in Section 5.2 we show some VMS types

that we created and, in Section 5.3 we show some virtual devices that were developed.

During this chapter, we also show the implementation and details about the software and

hardware specifications for running ALFA.

5.1 ALFA Main Technologies

In this section, we will present the leading technologies used to build ALFA. The focal

point here is how the interaction between these technologies can be used to generate

an environment to host Virtual Multimedia Sensors (VMS) and Virtual Devices (VD)

providing essential features to enable IoMT using edge computing to perform multimedia

processing. In Figure 5.1, we show ALFA deployment diagram.

The development of a VMS or VD usually requires tools for multimedia stream pro-

cessing like GStreamer2, OpenCV3 or FFmpeg4. V-PRISM proposal does not restrict

1https://github.com/midiacom/alfa
2https://gstreamer.freedesktop.org/
3https://opencv.org/
4https://www.ffmpeg.org/
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which technology developers must use. This is important because it allows the selec-

tion of tools that better fits with the individual requirements of each VMS type or VD

type. This approach provides flexibility for developers and brings compatibility with al-

ready existing tools. In our current implementation, VMSs mainly use GStreamer and

OpenCV.

Typical IoT applications are distributed. All components shown in Figure 5.1 can

potentially be distributed among different edge nodes. This strategy allows ALFA to be

executed in a variety of edge nodes, like a single-board computer [53], IoT gateways [81]

or even in micro datacenters [1].

Figure 5.1: ALFA Deployment Diagram

Each VMS or VD is a software instance running inside a Docker container, providing

multimedia stream in response to an application or other VMS requests. The VD is

the entity responsible for abstracting the computation and communication capabilities of

physical nodes [72]. The VMS and VD are concepts based on the idea of microservice,
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where each entity is designed to implement one specific task over a multimedia stream.

The communication protocol used to send multimedia data stream between VMS and

VD is UDP. In Figure 5.1, the Smart Object USB Camera sends a multimedia stream to

the VD using UDP. The physical device sends a multimedia stream to the virtual device

after the control data message is performed indirectly via publish/subscribe strategy. This

approach is used because the components may not be up and running at the moment when

the bind message is sent by V-PRISMManager. Using this strategy, when the components

become available, they will receive the message and start the communication.

5.1.1 Edge Nodes

In ALFA implementation, an edge node is a device with storage, memory and CPU,

capable of running Docker version 19.0 or higher, and accessible via TCP/IP network.

Not every VMS or VD needs to have Internet access, only VMSs that send data to IoMT

applications running in the cloud must have Internet connectivity. The component VMS

Request Manager must also have an Internet connection. Typically an edge node is a

small computer like a Raspberry, IoT gateways or a more robust machine running inside

a local micro datacenter. In a few cases, even the IoT device can be used as an edge node.

V-PRISM can handle the edge environment heterogeneity.

In an ALFA running environment, we can have many edge nodes. These edge nodes

need to work together to execute all the V-PRISM tasks. In Docker, we can have nodes

swarms, which are groups of machines running Docker and joined into a cluster [26]. All

edge nodes in ALFA environment are part of the same Docker swarm. Docker swarms

have features like load balancing, scaling, multi-host network and security.

All the edge nodes must be registered to be part of ALFA environment. Figure 5.2

depicts the web application module, which will be presented in Section 5.1.5, used to

manage ALFA edge nodes. The status and the number of VMSs in each edge node are

data used by the resource allocation algorithm to perform VMS allocation. This module

also provides the list of VMS and VD images available at each edge node.
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Figure 5.2: Web application module to manage edge nodes

After an edge node ingresses in the Docker swarm, it is necessary to install all the

different VMS types and VD types that can run at that edge node. In Figure 5.1, the

edge node Docker Nano Jetson can run a VD to collect a multimedia stream from a USB

camera, and a VMS to perform a face recognition task. On the other hand, the Docker

Edge Gateway can run a VMS for motion detection. Each edge node can run a different

set of VMS and VD types.

5.1.2 Docker

ALFA was built over a virtualization paradigm. Docker has tools that enable the use

of containers. A container is a standard unit of software that packages up code and

all its dependencies, so the application runs quickly and reliably from one computing

environment to another [26]. The adoption of containers in a heterogeneous environment,

like the edge, can improve the network efficiency, computation and data storage [9].

In ALFA, each Docker container runs a single VMS or VD. Docker handles the con-

tainers life cycle. Figure 5.3 depicts the Docker architecture. The Docker API and Docker

CLI are tools for managing the Docker infrastructure and containers.
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Figure 5.3: Docker Overview

Another useful technology that Docker offers is the network overlay driver. Since

each VMS or VD can be deployed in a different edge node and each edge node can be

attached to a different network, and geographically distributed, we need to implement a

way to enable a container-to-container communication. In Figure 5.4, we can see four

containers running in two edge nodes. Despite the edge nodes are attached to different

IP subnetworks, the Docker overlay network enables direct communication between the

containers as if they were in the same network.

Figure 5.4: Overlay Docker Network5
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Docker also has a mechanism to collect information about each edge node and the

containers running inside it. This information is used by the component resource allo-

cation to manage and distribute the VD over the edge nodes. The information can be

accessed via Docker API or Docker CLI.

5.1.3 VD and VMS in Containers

In ALFA, all VMSs and VDs are executed in Docker containers. The flexibility of this

approach allows the adoption of any programming language for their development. For

example, the Noise Detector VMS was written in C, and Face Counter was written using

Python, both are presented in Section 5.3. Source Code 5.1 shows a version of VMS

Video Crop written using a tool called gst-launch. This VMS receives at port 5000 an

input video stream, does a crop operation and sends the resultant video stream to an

application that is listening in a destination IP and PORT address.

1 # The Docker image with gstreamer installed

2 FROM alfa/docker -gstreamer

3 # Executing the VMS

4 ENTRYPOINT exec gst -launch -1.0 videotestsrc \

5 ! videobalance saturation =0 \

6 ! x264enc ! video/x-h264 , stream -format=byte -stream \

7 ! rtph264pay ! udpsink host=$IP port=$PORT

Source Code 5.1: Implementation of VMS for video crop

In Source Code 5.1, we used GStreamer library to perform the video stream processing.

GStreamer is a powerful tool to manipulate any type of stream. Many VMSs and VDs in

ALFA were implemented using this library.

A containerization approach is a lightweight alternative to traditional virtual ma-

chines. In [28], the authors define container as a means of providing isolation and re-

source management to applications. No dependence on hardware emulation provides

performance benefits over full virtualization but restricts the number of supported op-

erating systems that can be spawned as guest operating systems. The containerization

of VMS and VD in ALFA enables that the same source code can be used in different

environments that support Docker containers.

To start a Docker container, first we need to create a container image. A container

image is constructed in inside a Dockerfile. The Dockerfile is a text file that embeds all the

5https://youtu.be/nGSNULpHHZc?t=46
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packages that will be installed inside the image. Source Code 5.2 presents the Dockerfile

used to start the container that hosts the VMS Video Crop presented in Source Code 5.1.

1 # Base image from docker

2 FROM alpine :3.10.0

3 # instalation of gstreamer and bash gcc (build -base)

4 RUN apk add --update --no-cache bash build -base gstreamer

gstreamer -dev gst -plugins -base gst -plugins -good gst -plugins -

ugly gst -plugins -bad x264 -dev x264 -libs gst -libav

5 # Copy VMS files to the image

6 COPY ./ Makefile ./ Makefile

7 COPY ./ udp_video_crop.c ./ udp_video_crop.c

8 # This script compile the source in the target architecture and

run the VMS program

9 COPY ./start.sh ./ start.sh

10 ENTRYPOINT ["./ start.sh"]

Source Code 5.2: Dockerfile for the VMS presented in Source Code 5.1.

After the Dockerfile has been created, it must be used to generate the Docker image.

Docker CLI provides commands to generate these images. The VMS and VD of ALFA can

be installed using a script already available in the installation folder, as shown in Figure

5.5. The VMS or VD must be installed in every edge node where it will be executed.

Figure 5.5: Script to install the Docker Images from VMS and VD in the edge node

Edge nodes are heterogeneous. If the VMS or VD was coded in a compiled language

like C, to provide interoperability, the compilation of the code must be done inside the

Docker container. For example, an x86 edge node has different libs from an ARM one.

Thus the executable file from one architecture does not run in the other. In Source Code

5.2, the Makefile and udp_video_crop.c are copied to the image, and before the start.sh

runs the compilation command.

In our proposal, the initialization of containers must not generate overload to the host
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system, since it is usually an edge node with low capacity. Docker uses shared libraries

from the host machine, which reduces memory consumption and improves the container

startup time [57]. Docker cache system allows fast startup of a container from an image

that is already complied.

In Figure 5.6 we can see VMSs and VDs in execution inside an edge node. This edge

node in particular is also running some ALFA components like rest-api and, web-app.

The Video Merge VMS, for example, is running inside the container related to the docker

image alfa/vms/video_merge. The amount of VMSs that can be executed in an edge node

depends on its own resources.

Figure 5.6: VMS and VD running in Docker containers

5.1.4 Main Used APIs

An API exposes a set of data and functions to facilitate interactions between programs

and allow them to exchange information [52]. In ALFA, two different APIs were used.

The first one is the Docker API, used to orchestrate the containers life cycle. The second

one was created to enable clients like web clients and IoMT applications that need to

interact with ALFA.

The Docker API enables the life cycle of a Docker container to be controlled by

external applications. In Source Code 5.3, we can see an example of a NodeJs application

initializing a new Face Counter VMS. The only entity that uses the Docker API directly

is ALFA. External applications will call an ALFA API endpoint to manipulate VMSs.

1 var Docker = require(’dockerode ’);

2 var docker = new Docker(edge_node_ip);

3 docker.createContainer ({Image: ’alfa/plugin/face_counter ’})

4 .then(function(container){return container.start();})

Source Code 5.3: Docker API used by ALFA

A typical V-PRISM environment is composed by multiples edge nodes, as we can see

in Figure 5.1. When a VMS or a VD is manipulated, the Docker API must be connected

to the corresponding host edge node. In Source Code 5.3, the variable edge_node_ip
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defines in which edge node the VMS or VD will be started.

In ALFA, Docker implements all the functionalities of the virtualization system,

namely the orchestration (create, destroy, monitor and configure) of containers that run

VMSs via API for processing automation. In [53], authors argue that adopting light

virtualization with container technology can bring benefits to IoT. This was our main

motivation for adopting Docker, a light virtualization tool. Besides saving processing and

memory, starting a Docker container is usually faster compared to a traditional virtual

machine [86].

The ALFA REST API provides a set of functions that enable different external com-

ponents to interact with VMSs. In our implementation, we developed a web application

where the IoT infrastructure owner can manage ALFA system components. This ap-

proach aims at facilitating the implementation of mobile applications and other types of

applications. The web application will be described in the next section.

5.1.5 Web Interface Application

To manage ALFA infrastructure, we developed a web application, depicted in Figure 5.7.

The primary user of this interface is the IoT infrastructure owner. In Figure 5.1, the

HTTP Server represents the web application service. It can be deployed in any of the

edge nodes of the environment. The main modules of the web application are:

Figure 5.7: Web Interface Application

• VMS: It lists all created VMSs inside any edge node and allows VMS management.

• Virtual Devices: It lists all the virtual devices created that can be used as source

of multimedia data.

• Edge Nodes: It manages all edge nodes that will be used to run a VMS or a VD.
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• Locations: It manages all the places where a physical device can be deployed. A

location can be a meeting room, a hall, etc. Many Virtual Devices can be placed in

the same location.

• VMS types: It manages all the possible VMS types that can be initiated in ALFA

deployment.

• Device Types: It manages all the possible VD types that can be initiated in ALFA

deployment.

As mentioned before, a VD can be a source of a multimedia stream to many VMSs.

When we attach a VMS to a VD, we bind it. In Figure 5.8, we show the web application

interface used to bind a VMS to a VD.

Figure 5.8: Web application bind function

In Figure 5.8, the bind will be between a Video Merge and some VD. The Video Merge

VMS has two input ports, we can see that the port 15000 is already attached with the VD

USB Webcam, and the port 15001 can be attached with other VD. Each VMS developer

will define in each port the VMS will listen.

VMSs and VDs are separated processes running in different Docker containers. The

message that starts the bind between a VMS and a VD arrives by a publish/subscribe

service implemented with MQTT6. There is an MQTT client inside any VD waiting for

messages to start or stop the multimedia transmission to a VMS. In ALFA, as can be

seen in Figure 5.6, there is an Eclipse Mosquitto MQTT server running inside a Docker

container providing this communication feature. We chose an MQTT server because, as

presented in [82], it has lower delay than CoAP[78] messages at lower packet loss rate

networks.

6http://mqtt.org/
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In Figure 5.9, we can see an MQTT client connected to the MQTT server used to

send bind commands to the VD. We adopt a simple string pattern where each variable is

separated with a ";". In the example, the VD with the ID 5ebaba4dd30be70037251cfe will

receive the message 10.0.2.127;15000;15000298415787;A. This message will be parsed,

and the multimedia stream will be sent to the VMS associated white IP 10.0.2.127 and

port 15000. A more sophisticated approach like XML could be used, but as already

studied in [73], they usually are computationally costly.

Figure 5.9: MQTT client displaying the topic used to bind VMS and VD

5.1.6 Resource Allocation Management

As presented in Section 4.3.5, there are many strategies to perform resource allocation

(RA). ALFA potentially supports different types of algorithms to deal with this task. In

Source Code 5.1.6, we show an implementation of a Round-Robin approach for resource

allocation. We chose a Round-Robin approach to test ALFA because it is one of the less

complex methods [88] and it is capable of running in machines with few resources.

1 const docker = require ("../../../ util/dockerApi ")

2 const ra_rr = {

3 run: async function(payload) {

4 let node = payload.nodes [0]

5 for(let i = 1; i < payload.nodes.length; i++){

6 // Select the edge node with less running VMS

7 if (node.virtualEntityNum > payload.nodes[i].

virtualEntityNum)

8 node = payload.nodes[i]

9 }

10 return node

11 }

12 }

13 module.exports = ra_rr

Source Code 5.4: Round Robin resource allocation algorithm

Every RA algorithm in ALFA implements a run method. This method will receive an

object via parameters. This object has a list of all edge nodes where the requested VMS
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can run and a list of parameters provided by the IoMT that requests the VMS. These

parameters can be used to improve the system QoS (quality of Service).

5.2 Implemented Virtual Devices

In this section, some of virtual devices (VD) developed in our implementation will be

presented. Each VD is a Docker image that contains the source code of a software that

knows how to collect or receive data from a multimedia device. By presenting those VDs,

we will explore some possibilities that V-PRISM brings to IoMT and edge computing.

There are two types of communication between the VD and VMS. The first one is the

multimedia stream (received by UDP), and, the second one is the control data (received

by TCP), as detailed in Figure 5.1. A multimedia stream flows in only one direction, from

a VD to a VMS, and, it can be represented in a variety of application formats like H.264,

WAV, etc. On the other hand, control data can flow in both directions, and they are text

messages sent to an MQTT server.

The RTSP to UDP Video is a VD created to establish a connection with devices that

use Real-Time Streaming Protocol (RTSP). RTSP [76] is an application-level protocol,

that provides an extensible framework to enable controlled, on-demand delivery of real-

time data, such as audio and video. As a widely adopted protocol, data from many

IoMT devices can be accessed over RTSP. Because of that, We developed a VD capable

of connecting to devices that use this protocol. This VD type collects data from a device

that is not physically attached to the edge node where the VD is running, the device uses

a WiFi or another wireless infrastructure to transfer the data to the edge node.

The USB Camera and Mic are VDs that collect data from devices attached to the

edge node where the VD container is running. By default, a Docker container is forbidden

to grab data from the host machine devices. To allow it and bind a host device (camera,

microphone) to a container, when the container is started, it is necessary to explicitly give

access and map the external device to an inside path at the Docker container.

For example, in Figure 5.1, the SmartPhone RTSP Server and USB Camera devices

are multimedia devices whose streams are sent via UDP to a VD. The first one uses a

wireless connection, and the second one is attached to the edge node. ALFA can handle

different types of devices.
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5.3 Implemented Virtual Multimedia Sensors

In this section, some of the VMSs developed in ALFA will be presented. Each VMS, as

we mentioned previously, is encapsulated in a Docker image that contains the source code

to process a multimedia stream and deliver the result to an IoMT application or another

VMS. ALFA is flexible, and new VMS types can be developed and installed as needed.

The Video Greyscale VMS converts a colored video stream in grayscale. This VMS is

useful in situations where the IoMT application runs some Hough transform algorithms,

like the HoughCircle present in OpenCV. The first step of a Hough transform is to convert

the video stream to grayscale, because of that, transferring the colored video will be a

resource waste. In our categorization, this VMS is a Transformer.

The Video Crop VMS cuts part of a video stream. This VMS is useful in situations

where the application will need only a fraction of the complete video. For example, a

surveillance application can be interested only in the video of the door instead of the

video of all the environment. In our categorization this VMS is a Transformer.

The Video QR Code Detection VMS can be used to detect and extract data from a

QR Code inside a video stream. This VMS is useful when a QR Code is used by the

user to interact with a remote application using QR Code and camera to execute some

task. The QR Code data extracted can be used by the application as a signal to start the

execution of another task. In our categorization this VMS is a Detector.

The Noise Detector VMS can post in an MQTT topic if the sound volume of the

environment was higher than a configured threshold. This VMS is useful in the Industrial

Internet of Thing (IIoT) to monitor facilities and machines where the noise level can be

used to predict a dangerous incident. In our categorization, this VMS is a Detector.

The Face Counter VMS can post in an MQTT topic the number of faces identified

in a video stream. This VMS can be combined with another VMS to count the number

of people in an environment. This VMS was created to exemplify the adoption of deep

learning for multimedia processing. We used the Face Recognition library provided at

GitHub7. In our categorization, this VMS is a Detector.

An example of a Video Mosaic VMS used by an IoMT application is depicted in

Figure 5.10. This VMS has two video input ports. These ports allow that two VDs send

video stream to the VMS. The VMS combines the streams before sending to the IoMT

7https://github.com/ageitgey/face_recognition
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application. In our categorization, this VMS is an Aggregator.

Figure 5.10: VMS Video Mosaic

One of the premises of V-PRISM is the flexibility to incorporate new VD Types. it

allows that VMSs and VDs can be built using different techniques. In ALFA, we test

these two features, by developing multiple VMSs and VDs for different goals and using

different techniques, to validate the approaches proposed in V-PRISM.

In this chapter, we presented our PoC named ALFA that follows the V-PRISM archi-

tecture. We implemented the main components of V-PRISM and validated some premises

of V-PRISM. In the next chapter, we will discuss some experiments used for the evaluation

of our proposal.



Chapter 6

Evaluation

This chapter describes the experiments performed to evaluate V-PRISM architecture and

its implementation named ALFA. We developed experiments to analyze our work from

different perspectives, as depicted in Figure 6.1. The perspectives are IoMT Device,

where we analyze the behavior of an IoMT device when it is integrated with V-PRISM;

Placement, where we compare edge and cloud deployments; Development, where we

analyze, via an informal study, V-PRISM easy of usage by developers, and Scenarios,

where we present use cases of V-PRISM adoption.

Figure 6.1: V-PRISM analyzed from different perspectives

In order to plan the experiments related to the three first perspectives (IoMT De-

vice, Placement and Development), we adopted the Goal Question Metric (GQM) [11]

approach. GQM model is a hierarchical (three levels) structure that, in each level, refines

the granularity of what is relevant in order to provide reliable insights on a phenomenon.

A goal represents which phenomenon should be analyzed, where each goal can be repre-

sented as one or more questions, and for each question, a set of metrics will be used to

answer it. Table 6.1 presents the goals used for evaluating this work.
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Table 6.1: Goals definition
Goal Goal description Perspective
G1 Analyze if the adoption of V-PRISM in IoMT environ-

ments improves the resource consumption in the IoMT
device and in the IoMT network in comparison with the
traditional approach.

IoMT Device

G2 Analyze if the adoption of V-PRISM to process multime-
dia streams in the edge improves QoS aspects of IoMT
application in comparison with the cloud approach.

Placement

G3 Analyze if the adoption of V-PRISM facilitates the de-
velopment of VMSs.

Development

6.1 Resource usage in IoT Device and IoT Network

IoT devices typically have limited resources. The amount of CPU, memory, storage, bat-

tery [64] and network [63] are scarce. One of the key features to enable IoT is to improve

resource usage in the IoT devices. Considering the importance of such requirement, in

order to assess how V-PRISM contributes to satisfying it, we have defined goal G1 as

Analyze if the adoption of V-PRISM in IoMT environment improves its resource consump-

tion in the IoMT device and IoMT network in contrast with the traditional approach.The

traditional approach in this experiment is defined as the configuration where the IoMT

application collects data directly from the device. Table 6.2 presents the questions for

goal G1 and Table 6.3 presents the metrics used to answer such questions.

Table 6.2: Questions for G1 goal
Question Question description

Q1 Does the proposed architecture reduce the amount of CPU usage in the
IoMT device, compared with a traditional approach?

Q2 Does the proposed architecture reduce the bandwidth usage in the IoT
network (the IoT network is the network used by IoT devices to send
collected data), compared with a traditional approach?

Q3 Does the proposed architecture reduce the amount of battery usage in
the IoMT device, compared with a traditional approach?
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Table 6.3: Summary of the metrics used to answer the questions of G1 goal.
Metric Metric description Question
CCO CPU Consumed (CCO) is the total time, in seconds, of

CPU usage in the IoT device to capture, process and trans-
fer the data.

Q1

MBT Megabits Transferred (MBT) represents the total amount
of data, measured in Mega bits, transferred from the IoMT
device to the entity (VMS or IoMT application) that con-
sumes the multimedia stream.

Q2

BCO Battery Consumed (BCO) is the percentage of battery that
was consumed in the IoMT device during the process of
capturing, processing and transferring data.

Q3

To evaluate the effect of V-PRISM adoption in IoMT environments, we conducted

the experiments depicted in Figure 6.2. The first one, Figure 6.2(a), was performed in a

traditional environment where the IoMT application collects data directly from the IoMT

device. The second one, Figure 6.2(b), was performed in a V-PRISM environment where

the IoMT application collects data from a VMS.

Figure 6.2: Design of the experiment about resource usage in IoT Device and IoT Network

In this experiment, many IoMT applications received a video stream from an IoMT

device. The IoMT device was Moto G5 smartphone using an Android 8.1 as operating

system. The video was collected and shared using an application called IP Webcam1.
1https://play.google.com/store/apps/details?id=com.pas.webcam
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The IoMT device was connected via WiFi to a dedicated access point. The video

stream was shared using the RTSP protocol. The video generated by the IoMT device has

640x480 spatial resolution and was converted to H.264 before sending to IoMT application.

The experiment was conducted in rounds. In each round, the number of IoMT appli-

cation receiving the data was increased. The number of IoMT application in each round

was [1, 2, 5, 10, 20]. Each round was executed during five minutes, and, it was performed

five times. For each round, we collect the metrics CCO, MBT and BCO, described in

Table 6.3. The values presented in the next figures are the mean values of these metrics

with 95% confidence interval.

Before running the tests to collect the data, we executed the guidelines proposed

by Testdevlab team [80]. This guideline enables collecting accurate data. The authors

suggested that the following steps must be executed in the IoMT device before running

the experiment: factory reset, run the security upgrades, disable GPS, disable Bluetooth

and NFC, disable 4G network, disable mobile data, set the screen bright to the minimum

available, enable the safe battery mode.

The data was collected in the IoMT device using the software Batterystats2. This

tool was developed by Google Android Developers Team, and it provides a set of metrics

for understanding the resource consumption in Android devices. The data produced by

Batterystats were analyzed using the software Battery Historian3, also created by Google

Android Developers Team.

The first metric analyzed was the CPU Consumption (CCO), and it helps to answer

question Q1. Figure 6.3 depicts CCO data from the experiment in each round. The blue

bars represent the CPU usage when we use the V-PRISM approach, and the red bars

denote the traditional approach. The amount of CPU resources usage in the IoMT device

is stable when we use V-PRISM approach, but it grows in the traditional method when

the number of IoMT applications connected to the device increases.

2https://developer.android.com/topic/performance/power/setup-battery-historian
3https://developer.android.com/topic/performance/power/battery-historian
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Figure 6.3: IoMT device CPU consumption

The second metric analyzed was the Megabits Transferred (MBT), the amount of data

transferred in the IoT Network, and helps to answer question Q2. Figure 6.4 depicts the

data from the experiments performed to collect the MBT in each round. The blue bars

represent the CPU usage when we adopt the V-PRISM approach, and the red one is when

we adopt the traditional approach. The total of data transferred over the IoT Network is

stable when we use V-PRISM independently of the number of IoMT applications, however

in the traditional approach, the total of data transferred grows as the number of IoMT

applications grows.

Figure 6.4: IoMT device network bandwidth consumption

The third metric analyzed was the amount of battery consumed: Battery Consumed

(BCO), and it helps to answer question Q3. Figure 6.5 depicts the data from the experi-

ments performed to collect the BCO in each round. The blue bars represent the battery

consumed when we use the V-PRISM approach, and the red one is when we use the tra-
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ditional method. The battery consumed when we use V-PRISM approach remains stable,

but it rises in the traditional approach when the number of IoMT applications connected

to the device increases.

Figure 6.5: IoMT device battery consumption

For question Q1 "Does the proposed architecture reduce the amount of CPU usage in

the IoMT device, compared with a traditional approach?" we can conclude based on the

observed data that there was a significant reduction of CPU usage when using V-PRISM.

For 20 IoMT applications, the adoption of V-PRISM reduces the CPU usage in 66%. This

result is achieved because for each new application connected to the device, a new thread

is started. Each thread sends data for its specific IoMT application, and each thread

consumes CPU resources.

For question Q2 "Does the proposed architecture reduce the bandwidth usage in the IoT

network, compared with a traditional approach?" we can conclude based on the observed

data that there was a significant reduction of bandwidth usage. For 20 IoMT applications,

the adoption of V-PRISM reduces the bandwidth usage in 94%.

For question Q3 "Does the proposed architecture reduce the amount of battery usage

in the IoMT device, compared with a traditional approach?" we can conclude based on

the observed data that there was a significant reduction of battery consumption. With 20

IoMT applications, the adoption of V-PRISM reduces the battery consumption in 56%.

The data presented in Figures 6.3, 6.4 and 6.5 show that the adoption of the proposed

architecture can improve the resource consumption in the IoMT environment. It can be

observed that, as expected, the greater the number of IoMT applications directly accessing

the IoMT device to collect the data, the greater the resource consumption in the IoMT

device and IoMT network. In contrast, when the access is made through V-PRISM

approach, resource consumption in the IoMT environment remains stable.
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Finally, we can conclude that goal G1 that is Analyze if the adoption of V-PRISM

in IoMT environment improves its resource consumption in the IoMT device and IoMT

network in contrast with the traditional approach was achieved once the answers of Q1, Q2

and Q3 indicate that the adoption of V-PRISM reduces the resources used in the IoMT

device and IoMT network. In the next section, we will discuss experiments to identify if

the placement (edge or cloud nodes) of the V-PRISM components affects the QoS aspects

of IoMT applications.

6.2 Comparison Between Edge and Cloud

To evaluate the characteristics of placing V-PRISM components in the edge and cloud for

processing multimedia streams, we performed two experiments. In the first experiment,

we processed audio stream, and in the second one, we processed video stream. Each

experiment and results will be described in the next sections. They will be used to provide

answers for the questions related to Goal G2 that is Analyze if the adoption of V-PRISM

to process multimedia stream in the edge improves QoS aspects of IoMT application in

contrast with the cloud approach. Table 6.4 presents the questions for G2 goal. Table 6.5

presents the metrics used to answer the questions related to G2 goal.

Table 6.4: Questions for G2 goal
Question Question description

Q4 Does the deployment of the proposed architecture in the edge reduce the
total of data loss during the multimedia stream processing, compared
with the cloud deployment?

Q5 Does the deployment of the proposed architecture in the edge reduce the
total delay in the IoMT applications, compared with the cloud deploy-
ment?
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Table 6.5: Summary of the metrics used to answer the questions of G2 goal.
Metric Metric description How it is calculated Quest.
FRL Frame Loss (FRL) is the per-

centage of lost frames with the
image that should trigger the
event detection alert.

In our experiment, it is the ra-
tio of the number of QR Code
frames detected by the total
number of QR Code frames
sent by the device.

Q4

QFD Quantity of Frame Detected
(QFD) is the percentage of
frames with the image that
will trigger the event detection
alert.

1 - FRL. Q4

QDE Quantity of Data Extracted
(QDE) is the percentage of
frames whose data could be ex-
tracted by the VMS.

It is the ratio of the number
of QR Code frames detected
whose data could be extracted
by the number of QR Code
frames detected.

Q4

DTN Detection Time of Noise
(DTN) is the time difference
between the detection of
successive noise.

In the input audio, each noise
was played with 5 seconds in-
terval, DTN is the time differ-
ence of two consecutive noise
detection events.

Q5

FFD First Frame Detection (FFD)
is the time when the first video
frame was available to be pro-
cessed.

It is the time difference be-
tween the instant when the vir-
tual device starts sending the
video stream and the instant
when the first video frame with
QR Code was available in the
VMS.

Q5

FDM Frame Detection Difference
(FDD) is the difference be-
tween the time instants of suc-
cessive detection events.

In the video used as input for
the experiment, each QR Code
is displayed for 1 second, the
FDM represents the time dif-
ference between two consecu-
tive detection values.

Q5

6.2.1 Noise Detector Experiment

This experiment was conducted to evaluate aspects of audio stream processing in the

edge and cloud. The experiment is depicted in Figure 6.6. It was developed to obtain

the metric Detection Time Noise (DTN) that will be used for helping to answer question

Q5. The Noise Detector VMS, described in Section 5.1.3, was the entity that provided

the data for this experiment.
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For the deployment of the experiment, we used the following environment configu-

rations. The edge node was emulated using a virtual machine with 1 GB RAM and 1

vCPU, 1.8 GHz, Intel i7 8565U. The edge node is running inside a local WiFi network at

Niterói, Brazil, and from now on this node will be only called edge node. The cloud node

was a virtual machine with 1 vCPUs, 2.5 GHz, Intel Xeon Family, and 1 GB of RAM.

It is located physically at the United States at North of Virginia in Amazon Cloud, and

from now on this node will be only called cloud node. The one-way-delay was calculated

using the ping command.

Figure 6.6: Experiment design of audio processing in edge and cloud nodes

The first step of the experiment was deploying two Noise Detector VMS, one in the

edge node and the other in the cloud node. The microphone was placed at the same

room of the edge node where the virtual device (VD) was deployed. A noise source was

configured to make a beep sound, and it was played 80 times with 5 second interval

between each beep.

The delay between the VD and the cloud was 67.5ms, whereas the delay between

the VD and the edge node where the VMS was deployed was negligible. The available

bandwidth between the edge environment and cloud was 100Mbps. We performed multiple

tests in different moments to minimize the network congestion effect.

The audio stream produced has a bitrate was 1Mb/s. The stream, as we can see in

Figure 6.6, is sent in parallel to both VMSs. The time interval between successive noise

detection events in the VMS in the cloud and in the edge was calculated, it is the DTN

metric. In Table 6.6 is depicted the results of the experiment. The average noise detection

time in the edge was 918ms with a standard deviation of 88ms; in the cloud, it was 967ms

with a standard deviation of 137ms. The noise detection in the edge node was in average

49ms lower in comparison to the cloud node.
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Table 6.6: Interval between successive noise detection events.
AVG Noise

Detection (ms)
STD Deviation

(ms)
Edge 918 88
Cloud 967 137

The standard deviation of detection in the edge was lower than the cloud, thus pointing

to higher predictability of delay in the edge than in the cloud. Another important point

to notice is that the average difference between detection time in the edge and in the

cloud was less than the delay between the VD and cloud, meaning that cloud processing

time was shorter than edge processing time. This is expected, since the cloud has a higher

computing power than edge devices. Therefore, we can conclude that the choice between

edge or cloud processing should consider not only the delay between the physical device

and the cloud but also the processing time of the multimedia stream.

Multimedia and real-time applications are latency-sensitive [50]. Thus, proposals

that reduce the total delay are increasingly important since the demand for this kind of

application has been rising. In the next section we will investigate the delay in video

stream processing.

6.2.2 Video Processing Experiment

The latency and total time of video stream processing are critical QoS parameters [59]

that must be addressed during the design phase of an IoMT application. The experiment

described in this section assesses QoS aspects of video processing in VMS deployed in

the edge and cloud nodes. In this experiment, we collected metrics Frame Loss (FRL),

Quantity of Frame Detected (QFD), Quantity of Data Extracted (QDE), First Frame

Detection (FFD) and Frame Detection Difference (FDD). We used the same environment

for edge and cloud described in Section 6.2.1.

For this experiment we use the Video QR Code Detection VMS, described in Section

5.1.3. It was used as an event detection over a video stream. This VMS detects and

extracts information of a QR Code inside a video frame. The video used as data source

for this experiment has 70 seconds and was encoded in H.264 with 25 frames per second

(1750 frames in total), and with 200x200 spatial resolution. We inserted a QR Code image

in 450 frames of these frames. One example of video used the experiments is depicted in

Figure 6.7.
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Figure 6.7: Example of Video frame with the QR Code

We run the experiment for each environment ten times. Table 6.7 shows the mean

values of the data collected. The column named QR Code Detected represents the num-

ber of video frames with a QR Code that were detected. The column Data Extracted

represents the number of video frames with a QR Code detected whose stored data could

be retrieved. The column FRL represents the percentage of frames with QR Code not

detected in the VMS. The column named QFD represents the percentage of frames with

QR Code detected in the VMS. The column named QDE represents the percentage of

frames with QR Code whose data were extracted by the VMS.

Table 6.7: FRL, QFD and QDE metrics over 450 QR Code frames.
Tier QR Code

Detected
Data

Extracted
FRL QFD QDE

Edge 318 219 29% 71% 69%
Cloud 357 303 20% 80% 85%

Extracting features from a video stream, like QR Code detection, is an intensive task

in CPU and memory. The data presented in Table 6.7 show that the computational power

of the cloud was decisive to obtain better processing results in contrast with the edge. It

is important to note that some QR Codes were detected, but the data was not extracted

because of packet loss or CPU shortage.

To obtain metrics First Frame Detection (FFD), and Frame Detection Difference

(FDD), we run the experiment depicted in Figure 6.8. To execute the components of this

experiment, we use the Containernet [67] network emulator. Containernet is a Mininet

extension [45], and it allows the execution of Docker container as host machines inside

the emulated network. As each VMS is running inside Docker containers, we can connect

V-PRISM components to Containernet network to run the experiment. The script that

defines the topology is developed in Python. The network links between the elements

have parameters that can be configured depending on the experiment goals. We used the

delay parameter to differentiate the traffic for cloud and edge node artificially. In this

emulation, we defined the same limits of CPU and memory for the edge and cloud node,

since we are interested in the delay metric only.
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Figure 6.8: Experiment design to obtain metrics for total latency

In Figure 6.9, each bar represents a node where the VMS Video QR Code Detection is

running. The nodes with latency between 10ms and 50ms represent the edge nodes. The

nodes with a latency greater than 50ms represent the cloud nodes. We can observe that

the time for the detection of the first QR Code (y-axis of the graph) grows as the latency

grows. It means that even in a situation where there is sufficient bandwidth between the

IoMT device and the node that runs the VMS, the latency affects the total detection time

significantly.

Figure 6.9: First Frame Detection (FFD)

In Figure 6.10, each bar represents a node where the VMS Video QR Code Detection

is running. The nodes with latency between 10ms and 50ms represent the edge nodes,

and the nodes with a latency greater than 50ms represent the cloud nodes. The interval

between each successive QR Code frame in the original video is 1 second. We can observe

that the FDD metric is approximately 1.1 second independently of the latency. It means

that the latency does not affect the time between successive event detection in the same
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multimedia video stream.

Figure 6.10: Frame Detection Difference (FDD)

Based on metrics FRL, QFD and QDE, we can answer question Q4 Does the de-

ployment of the proposed architecture in the edge reduce the total of data loss during the

multimedia stream processing, compared with the cloud deployment? as following. The

adoption of V-PRISM in the edge was not able to reduce the overall data loss based on our

experiment. The main cause of this behavior is that the cloud has more computational

power and could process the multimedia stream at a higher rate than the edge.

Based on metrics DTN, FFD and FDD, we can answer question Q5 Does the deploy-

ment of the proposed architecture in the edge reduce the total delay in the IoMT applica-

tions, compared with the cloud deployment? as following. The adoption of V-PRISM in

the edge can reduce the overall delay during the processing of multimedia stream, but the

time difference between successive event detection is still the same independently of the

placement of the VMS.

Finally, we can define that goal G2, namely Analyze if the adoption of V-PRISM

to process multimedia stream in the edge improves QoS aspects of IoMT application was

answered once the results presented in this section show that the adoption of V-PRISM

in edge nodes cannot reduce the total data loss. However, it can reduce the total time for

event detection in video stream when the VMS is placed in edge nodes, improving some

aspects of QoS.
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6.3 Development of New VMS Types

Software development for IoMT environment poses many challenges. Some of them are

the high heterogeneity of applications, protocols and devices [68]. Considering that V-

PRISM (in this case, ALFA) can be extended with the creation of new VMS types, it is

important to assess how V-PRISM contributes to software development in IoMT. Thus,

we defined goalG3 as Analyze if the use of V-PRISM facilitates the development of VMSs.

Table 6.8 presents the questions for goal G3 and Table 6.9 presents the metrics used to

answer those questions.

Table 6.8: Questions used for addressing G3 goal
Question Question description

Q6 Have the developers declared that V-PRISM is easy to use?
Q7 How effectively are the V-PRISM mechanisms for dealing with the im-

plementation of new VMS types?

Table 6.9: Summary of the metrics used to answer the questions of G3 goal.
Metric Metric description Question
ETU Easy to Use (ETU), here we are interested if the developers

could easily create new VMS types.
Q6

VEF V-PRISM Effectiveness (VEF), here we are interested if our
architecture provides tools that effectively help the creation
of new VMS types.

Q7

To answer G3 we performed an experiment where developers used V-PRISM archi-

tecture to create new VMS types. The developers were master and PhD students in the

program of Computing at Universidade Federal Fluminense. The VMS type creation was

the final test of the Multimedia Systems course. There were 3 participants in the exper-

iment, each one developing a different VMS. Table 6.10 describes the function of each

VMS.

Table 6.10: New VMS type description
Name Category Description

UDP Flex Improver This VMS provides data forward and data stream an-
alytics.

Gunshot Alert Detector This VMS identifies gunshots in an audio stream.
S2T Transformer This VMS converts a voice stream into text.
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The VMS UDP Flex can act in two modes. As a data forwarder, when it receives the

data in a particular port and forwards it to one or more destinations. When used as a data

analytics, besides forwarding data, it generates logs that can be used by other components

to perform proactive actions. For example, an alert can be sent if the throughput of a

stream is bellow than a threshold. The main challenge of this VMS is that it should

perform its tasks as quickly as possible, therefore it was developed in C programming

language.

The VMSGunshot Alert can identify gunshots in an audio stream. The main challenge

of this VMS is to extract the basic features of the stream to execute the detection algo-

rithm. It was developed in Python, and the multimedia stream library was GStreamer.

When a gunshot is detected, the VMS sends metadata about the event to an MQTT

Server. After that, some application can consume this data and execute some action.

The VMS S2T can convert the words spoken in a voice stream into text. The main

challenge of this VMS is to use machine learning techniques. This VMS can perform the

conversion in the edge node using the SpeechRecognition library4, or using the Google

Speech Recognition5, an API running in the cloud. The text extracted from the audio

stream is sent to an MQTT Server. After that, another application can consume this data

and execute an action.

Before starting the development of the VMS, the participants received training about

how V-PRISM works and what the main components of the architecture do. The objective

of each VMS was selected by the developer. After that, we created a chat group where

they collaborated exchanging information, knowledge and tips about the development of

VMSs. All the participants were able to conclude the implementation of their VMS type.

After finishing the VMS implementation, the developers filled out a form depicted in

Table 6.11. The data was analyzed to answer the questions Q6 and Q7 presented in Table

6.8. It is important to note that the intention was to perform an informal data collection

and analysis. We are committed to extrapolate this experiment with a vast number of

developers as future work. Even adopting an informal approach, this part of our work

helps understanding the implications of the adoptions of V-PRISM.

The form questions F1 to F5 provide data for the metric Easy to Use (ETU) that

helps to answer the question Q6 Have the developers declared that V-PRISM is easy to

use?. Table 6.12 presents the snippets of the developer’s answers.

4https://pypi.org/project/SpeechRecognition/
5https://cloud.google.com/speech-to-text
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Table 6.11: Form to collect the perception of the developers about V-PRISM
Description Type Question

F1 I am a specialist in multimedia stream
software development.

Likert Q6 and Q7

F2 I am a specialist in IoT software devel-
opment.

Likert Q6 and Q7

F3 I have experience with deploying appli-
cations using containers.

Likert Q6 and Q7

F4 Which technologies were used to de-
velop your VMS?

Open Text Q6

F5 Have you already mastered these tech-
nologies, or was it necessary to learn?

Open Text Q6

F6 What aspect of V-PRISM facilitated
the development of your VMS?

Open Text Q7

F7 What were the biggest challenges faced
for the development of your VMS?

Open Text Q7

Table 6.12: Answer snippets that help to understand metric ETU
Answer Snippet

R1 I had already mastered Python and had made experimental use of the
SpeechRecognition library.

R2 I already master the language to develop the VMS type, but I needed to
learn the MQTT pattern.

R3 I believe that my inexperience with the Linux operating system, total
lack of knowledge about Docker made the integration part take longer
than usual. However, the integration of my source code with V-PRISM
was done in hours, even by an inexperienced person.

R4 The documentation and fast access with the developer of V-PRISM.
R5 V-PRISM developer support, the GitHub of the project and developer

videos on YouTube make development easier.

The form questions F1, F2, F3, F6 and F7 provide data for the metric V-PRISM

Effectiveness (VEF) that helps to answer the question Q7 How effectively are the V-

PRISM mechanisms for dealing with the implementation of new VMS. Table 6.13 presents

snippets of the developer’s answers.

Based on the data presented in Table 6.12, we can answer question Q6 as following,

the developers declared that V-PRISM is easy to use because it provides a guideline to

development of new VMS types, and they can use technologies, programming languages

and techniques that they already know. Besides that, the documentation and examples

of VMS types provided by V-PRISM help to accelerate the process development.
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Table 6.13: Answer snippets that help to understand metric VEF
Answer Snippet

R6 The Logs page on the web interface was vital to understand the behavior
of my VMS.

R7 Viewing examples of other VMS source, Dockerfile and start.sh facilitated
the process.

R8 The central aspect was to develop without thinking about the integration
with V-PRISM.

R9 I believe that the operation on containers helped a lot, as there are many
different technologies behind multimedia processing.

Based on the data presented in Table 6.13, we can answer question Q7 as following.

The V-PRISM mechanisms are effective because they facilitate the manipulation of the

multimedia stream pipeline helping the developer to understand the multimedia applica-

tion flow. Besides that, the deploying method of the VMS allows the developers to focus

on the main objective of each VMS type, leaving the complexity of the heterogeneity of

edge nodes for the V-PRISM architecture.

Although there were a few users, we can still conclude that we achieved goal G3

once we identify evidence during the answering of Q6 and Q7, indicating that V-PRISM

facilitates the development of new VMS types. Another indication that corroborates this

conclusion is that all developers that started the experiment finished their work. Even

more, this experiment shows that developers that do not know V-PRISM were able to

create new VMS types validating the idea of an architecture that can be extended by the

creation of new VMS and VD Types.

6.4 Other Examples of V-PRISM Use Cases

In this section, we will present three other use cases for V-PRISM. The first one depicts

a fault-tolerant scenario in a surveillance system. The second one shows a scenario of

multimedia stream sharing. The last one presents the use of pipeline multimedia stream

processing.

The first scenario presented is a fault-tolerant surveillance system. In this scenario, a

same place is monitored by more than one surveillance camera. In Figure 6.11, we present

this scenario.

In Figure 6.11(a) we have a scenario where both cameras are working. In this case,
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the VMS was configured to save the stream of Cam A in the data store. In Figure 6.11(b).

Cam A stops working and the VMS automatically changes the input stream and saves

the video produced by Cam B. This type of automation enables a dynamic environment

where autonomous and semi-autonomous systems decided over the multimedia stream

what is the best action to perform in a fault-tolerant situation.

Figure 6.11: Fault-tolerant scenario

The second scenario shows an example of multimedia stream sharing in an IoMT

environment. The scenario is depicted in Figure 6.12. Three different VMSs are receiving

the multimedia stream provided by a camera. Fire Detection is a VMS that identifies the

presence of fire in a video stream. The Intruder Alert is a VMS that sends an alert if a

person is detected in the environment during the night and, the Smart Lock is a VMS

that opens a door only by an authorized person.

The deployment and management of multimedia devices and edge nodes are difficult

and expensive. Here, we can see two different situations where V-PRISM can maximize the

usage of the already deployed IoT infrastructure. The first case is when the same device

can be used as a source of data to multiple VMS, the second case is when the same edge

node can run multiples VMS. Besides that, the same VMS can receive multimedia streams

from different virtual devices. This strategy can also increase Return On Investment (ROI)

in IoT infrastructure.

Figure 6.12: ROI increasing scenario
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This last scenario presents a multimedia stream pipeline processing. A pipeline mul-

timedia stream processing is the act of broken down elaborate process into isolated simple

process. Each isolated process are chained in a logical sequence to obtain a defined result.

Each simple part of the chain can be deployed into different edge nodes. The V-PRISM

architecture adoption enables the creation of on-demand task execution pipelines that can

be spanned over multiple resource-constrained edge nodes. Besides that, the opportunis-

tic nature of IoT service ecosystems, that is crucial to capture the real potential of IoT,

presented in [17], can be explored in V-PRISM once the already deployed devices and

edge nodes can be used unpredictably. This level of abstraction allows the infrastructure

owner to adjust the architecture in real-time to solve a vast amount of problems.

As depicted in Figure 6.13, each edge node is created for different vendors. Besides,

they also have different CPU, memory and storage capabilities. V-PRISM automatically

manages the process of creating the VMSs, making the binding and the allocating of each

VMS in the appropriate edge node.

Figure 6.13: Execution of on-demand multimedia stream pipeline

In this chapter, we presented the evaluation methodology used to validate V-PRISM.

In Section 6.1, we analyzed the adoption of V-PRISM over the resource consumption in

IoT devices. In Section 6.2, we compared the QoS aspects of V-PRISM usage in the

edge and cloud nodes. In Section 6.3, we analyzed if the use of V-PRISM facilitates the

development of new VMS types. And finally, in Section 6.4, we presented other examples

of use cases of V-PRISM. In the next chapter, we will present our final remarks, main

contributions, limitations, and future work.
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Conclusion

In this work, we presented V-PRISM, an innovative architecture to virtualize and manage

virtual multimedia sensors. Our proposal relies on a three-tier architecture where devices,

placed in the things tier, generate multimedia streams that are processed by entities called

virtual multimedia sensors (VMS), deployed in the edge of the network, whose data output

is delivered to IoMT applications that typically are running in the cloud.

V-PRISM adopts the concept of lightweight virtualization. This approach enables the

deployment of a self-contained application, releasing developers from the responsibility

to manage the heterogeneity existent in edge computing. Moreover, it facilitates the

distribution of VMS among different edge node vendors, thus avoiding dependence on any

technology, besides consuming fewer resources than traditional virtualization approaches.

We also proposed a new hierarchical VMS categorization that follows the multimedia

stream abstraction provided by the VMS as the parameter to differentiate the VMS types.

This categorization provides templates for each VMS type, which can facilitate the work

of the developers and also help to guide the total ammount of resources that will be

needed to instantiate each VMS type based on the category it belongs to.

To validate V-PRISM, we developed an implementation as a proof-of-concept (PoC)

named ALFA. This implementation instantiates the components of our three-tier archi-

tecture presented in Chapter 4. This PoC is released with an open-source license and can

be accessed in GitHub 1. Three of VMSs available in this repository were implemented

by the developers that participated of the experiment detailed in Section 6.3.

Other important feature of our implementation is that we also created various VMS

and VD types, described in Sections 5.2 and 5.3. These VMS and VD will help the

1https://github.com/midiacom/alfa
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developers to start their new components. ALFA counts with an extensible mechanism to

run different types of algorithms to resource allocation that are used to the deployment

of VMS in multiple edge nodes. In Chapters 4, 5 and 6 we presented evidences and data

to answer the research questions posed in the introduction of this work, which are:

RQ1: Can a multimedia sensor virtualization architecture enable a single multimedia

device to provide multimedia streams for different applications?

Answer: As presented in Chapters 4 and 5, the proposed architecture and the proof-

of-concept show that is viable to create a structure where one single device can be a source

of data to multiple VMS. This approach leverages the sharing of the physical nodes and

has the potential to increase the ROI of the IoT infrastructure once new applications can

be deployed without significant time and money investment.

RQ2: Can a multimedia sensor virtualization architecture reduce CPU usage and

battery consumption in IoT devices?

Answer: As presented in Section 6.1, the adoption of V-PRISM can significantly

reduce the resources consumed in the IoT device. Energy consumption and resource

constraints are key factors in IoT environments, so the adoption of V-PRISM can help to

improve such usage while promoting a greener, more sustainable solution in comparison

to non-virtualized environments.

RQ3: Can a multimedia sensor virtualization architecture reduce bandwidth usage in

the IoT network?

Answer: As presented in Section 6.1 the adoption of V-PRISM can significantly

reduce the total bandwidth consumed in the IoT network. In environments with limited

network capabilities, this strategy can enable the use of latency-sensitive applications.

RQ4: Can an edge-based multimedia sensor virtualization architecture reduce the

delivery time of a multimedia stream to an IoMT application, compared to using a virtual

multimedia sensor hosted in the cloud?

Answer: In Section 6.2, we performed experiments with audio and video event detec-

tion. The results show that the adoption of V-PRISM in edge nodes can reduce the total

time of multimedia stream processing. In contrast, the adoption of a cloud deployment

brings a more robust strategy for avoiding data loss.

Considering the goals and the research questions defined in this work, we can con-

clude that the main desired contributions were achieved. We proposed an architecture to
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manage VMSs in edge computing environments; We created a hierarchical classification

for VMSs based on the functionalities and resources consumed, and finally, we developed

several types of VMS that can be used as templates for facilitating the creation of new

VMS types and VD types.

In this work, we focused our efforts on defining an architecture and validate its tech-

nical viability. Despite our efforts, some limitations were detected during the work. The

main limitations and issues of our work are:

• There are some theories used to formally validate software architectures, one exam-

ple is the Architecture Tradeoff Analysis Method (ATAM) [40]. One key requirement

to execute this validation is the number of participants. Due to time limitations and

lack of resources we performed an informal data collection and analyzed in Section

6.3, thus we cannot extrapolate those results for a large group of developers.

• It is important to highlight that containerization is not the "silver bullet" that

kills all the heterogeneity problems. For some VMS types, it was necessary to

create the containers for each specific type of edge node. It occurs because different

architectures, sometimes, have different libraries for the same propose. MongoDB is

an example, it has a specific image for Raspberry 3, with configurations inside the

Docker image for this specific architecture.

• The interest for light virtualization has been growing in recent years. Because of

that, many light virtualization engines were developed. Docker, Kubernetes, KVM

and LXC are some examples. We develop ALFA only to work within Docker. It

should be relevant to test V-PRISM with different lightweight virtualization plat-

forms to compare if our architecture could be developed in other virtualization

engines.

As discussed in Chapter 3, for the best of our knowledge, V-PRISM is the first archi-

tecture that provides the virtualization of multimedia sensors using light virtualization in

the edge. We have already published parts of our work in the IEEE Virtual World Forum

on Internet of Things 2020. The title of our work was V-PRISM: An Edge-Based IoT

Architecture to Virtualize Multimedia Sensors [13], in the published paper, we cover the

first V-PRISM version. And in the XXV Workshop de Gerência e Operação de Redes e

Serviços (WGRS) we publish the work [12] that describe with more details our PoC.

During the development of this work, we had many new ideas about features and

characteristics that could be integrated into V-PRISM, which are interesting future work:
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• The IoMT environment is composed of sensors and actuators. In this version of V-

PRISM we specified only the virtual sensors. In the next version of our architecture,

we will also include the virtual entity for dealing with multimedia actuators. This

idea can bring to actuators the same benefits of the virtualization paradigm created

using sensor virtualization;

• The IoT sensor produces mostly discrete data, like temperature, light and humidity

sensor. We will investigate if the proposed architecture can be used to process these

types of stream too.

• FIWARE is a curated framework of open source platform components to accelerate

the development of smart solutions [30]. This framework is globally used in smart

cities projects. FIWARE already mastered the manipulation of discrete data, but,

the integration with multimedia sensors are in development. We will work in the

integration of ALFA with the FIWARE framework.

• Some VMSs receive a multimedia stream from many virtual devices whose data may

be provided by different tools. In this work, we do not discuss this feature in detail,

but it will be important to develop some temporal synchronization mechanisms in

the future.

• The available resources in the edge environment can change rapidly. For example,

new edge nodes can be included or removed to adjust the system demands. Because

of that, it is relevant to develop some strategy to better allocate and scale VMSs

horizontally and vertically.

• Our resource allocation algorithm used a naive approach. We intend to perform the

implementation and tests with more robust strategies.

• Develop new CPU-intensive VMS types such as facial recognition and speech trans-

lation, to analyze the influence of the VMS type and QoS aspects.
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