
UNIVERSIDADE FEDERAL FLUMINENSE

IGOR GARCIA BALLHAUSEN SAMPAIO

A systematic approach for object detection using
deep learning and CAD models

NITERÓI

2020

UNIVERSIDADE FEDERAL FLUMINENSE

IGOR GARCIA BALLHAUSEN SAMPAIO

A systematic approach for object detection using
deep learning and CAD models

Dissertation presented to the Graduate
School of Computer Science of Universidade
Federal Fluminense as a partial requirement
for obtaining the Master of Science degree in
Computer Science. Field: Systems and In-
formation Engineering

Advisor:
JOSÉ VITERBO FILHO

Co-Advisor:
JORIS MICHEL GÉRARD DANIEL GUÉRIN

NITERÓI

2020

Ficha catalográfica automática - SDC/BEE
Gerada com informações fornecidas pelo autor

Bibliotecário responsável: Sandra Lopes Coelho - CRB7/3389

S192s Sampaio, Igor Garcia Ballhausen
 A systematic approach for object detection using deep
learning and CAD models / Igor Garcia Ballhausen Sampaio ;
José Viterbo Filho, orientador ; Joris Michel Gérard Daniel
Guérin, coorientador. Niterói, 2020.
 82 f.

 Dissertação (mestrado)-Universidade Federal Fluminense,
Niterói, 2020.

DOI: http://dx.doi.org/10.22409/PGC.2020.m.10464898790

 1. Detecção de objetos. 2. Visão computacional. 3.
Aprendizado profundo. 4. Rede neural convolucional. 5.
Produção intelectual. I. Filho, José Viterbo, orientador.
II. Guérin, Joris Michel Gérard Daniel, coorientador. III.
Universidade Federal Fluminense. Instituto de Computação.
IV. Título.

 CDD -

Igor Garcia Ballhausen Sampaio

A systematic approach for object detection using deep learning and CAD models

Dissertation presented to the Graduate

School of Computer Science of Universidade

Federal Fluminense as a partial requirement

for obtaining the Master of Science degree in

Computer Science. Field: Systems and In-

formation Engineering.

Approved in December, 2020.

EXAMINERS

Prof. Dr. José Viterbo Filho - Orientador/Advisor, UFF

Prof. Dr. Joris M. G. Daniel Guérin -

Coorientador/Co-Advisor, Université de Toulouse

Prof. Dr. Flávia Cristina Bernardini, UFF

Prof. Dr. Esteban Walter Gonzalez Clua, UFF

Prof. Dr. Fátima de L. S Nunes Marques, USP

Niterói

2020

”The good thing about science is that it’s true whether or not you believe in it.”

Neil deGrasse Tyson

Acknowledgements

To my family members who have supported me so far, I want them to know that I

recognize the incentive, the trust and all the bases that made me who I am today.

My mother, who was always my greatest supporter and never missed anything so I

could finish my studies and reach my goals.

My wife, for having walked beside me, for her patience, understanding, especially for

always presenting a smile, when I sacrificed the days, nights, weekends and holidays in

order to carry out this study.

To this institution, I am grateful for the favorable environment for evolution and

growth, as well as for all the people who make it so special for those who know it.

To my advisors, I recognize the deep trust, wisdom, availability and opportunity.

Always giving me resources and tools to evolve a little more every day.

To my friends I leave a word of gratitude for all the support and inspiration.

I would like to thank all the people who interfered in my journey, because in some

way they influenced it.

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal

de Nível Superior - Brasil (CAPES) - Finance Code 001.

Resumo

A Detecção de Objetos (OD) é um importante problema de visão computacional para a
indústria, que pode ser usado para controle de qualidade nas linhas de produção. Re-
centemente, métodos de aprendizado profundo possibilitaram o treinamento de modelos
OD com desempenho muito bom para conjuntos de dados complexos do mundo real. No
entanto, a adoção desses modelos na indústria foi limitada pela dificuldade - e pelo custo
significativo - de coletar conjuntos de dados de treinamento de alta qualidade. Por outro
lado, OD para controle de qualidade em linhas de produção apresenta a especificidade
de ter modelos CAD disponíveis para os objetos a serem detectados. Neste artigo, apre-
sentamos um método totalmente automatizado que usa um modelo CAD de um objeto
e retorna um modelo OD totalmente treinado para detectar esse objeto. Para fazer isso,
criamos um script do Blender que gera conjuntos de dados realistas de imagens contendo
o modelo CAD e os rótulos OD correspondentes. Esses conjuntos de dados são usados
para treinar os detectores de objetos. O método é validado experimentalmente em um
exemplo prático, e mostramos que essa abordagem pode gerar modelos OD com bom
desempenho, 98.27% de precisão no melhor caso, em imagens reais, enquanto é treinado
apenas em imagens sintéticas.

Palavras-chave: Detecção de objetos, modelos CAD, geração de imagens sintéticas,
visão computacional, aprendizado profundo, rede neural convolucional.

Abstract

Object Detection (OD) is an important research topic in computer vision. It can be used
in industrial scenarios for quality control in production lines. Recently, deep learning
methods have enabled the training of models for OD with very good performance for
complex real world datasets. However, the adoption of these models in industry has been
limited by the difficulty — and the significant cost — of collecting high quality training
datasets. On the other hand, OD for quality control in production lines presents the
specificity of often having CAD models available for the objects to be detected. In this
paper, we introduce a fully automated method that uses a CAD model of an object and
returns a fully trained OD model for detecting this object. To do this, we created a
Blender script that generates realistic datasets of images containing the CAD model as
well as the corresponding OD labels. These datasets are then used for training the object
detectors. The method is validated experimentally on a practical example, and we show
that this approach can generate OD models performing well, 98.27 % precision in the best
case on real images, while being trained only on synthetic images.

Keywords: Object Detection, CAD Models, Synthetic image generation, Computer
Vision, Deep Learning, Convolutional Neural Network.

List of Figures

1.1 Example of object detection on an industrial production line. 2

2.1 Object detection model. Adapted from [53] 8

2.2 Operation of the object detection model. 9

2.3 Operation of the object detection model with CNN. 10

2.4 Architecture of general CNN. Adopted from [24] 11

2.5 CNN scheme for downsampling and max pooling. 12

2.6 Region Proposal Network. Adapted from [47] 13

2.7 Visual example of ground-truth vs predicted bounding box. 14

2.8 Visual example of the Intersection over Union equation. 15

2.9 An example of computing Intersection over Unions for various bounding

boxes. 15

2.10 Metric object detection for global evaluation of model. 16

2.11 An example of computing Intersection over Unions for various bounding

boxes. 18

3.1 CAD models examples for different scenarios approaches 24

4.1 Synthetic image generation process . 27

4.2 Synthetic image generation process example 28

4.3 Automation of the quality assessment process in the industry through ob-

ject detection . 32

5.1 CAD models of the objects chosen for the experiment. 34

5.2 Example of image generated using our custom Blender script. 35

5.3 Example of real images for each object. 38

List of Figures viii

5.4 Precision x Recall curves for the better test of adblue object with synthetic

images . 40

5.5 Precision x Recall curves for the better test of yamaha_logo object with

synthetic images . 41

5.6 Precision x Recall curves for the better test of volkswagen_logo object with

synthetic images . 41

5.7 Precision x Recall curves for the better test of fuel cap object with synthetic

images . 42

5.8 Precision x Recall curves for the better test of clutch lever object with

synthetic images . 42

5.9 Loss function for better result of adblue object with synthetic images . . . 43

5.10 Loss function for better result of yamaha logo object with synthetic images 43

5.11 Loss function for better result of volkswagen logo object with synthetic

images . 43

5.12 Loss function for better result of fuelcap object with synthetic images . . . 44

5.13 Loss function for better result of clutch lever object with synthetic images 44

5.14 Precision x Recall curves for the better test of adblue object with hybrid

images . 46

5.15 Precision x Recall curves for the better test of yamaha_logo object with

hybrid images . 46

5.16 Precision x Recall curves for the better test of volkswagen_logo object with

hybrid images . 47

5.17 Precision x Recall curves for the better test of fuel cap object with hybrid

images . 47

5.18 Precision x Recall curves for the better test of clutch lever object with

hybrid images . 48

5.19 Loss function for better result of adblue object with hybrid images 48

5.20 Loss function for better result of yamaha logo object with hybrid images . 48

5.21 Loss function for better result of volkswagen logo object with hybrid images 49

List of Figures ix

5.22 Loss function for better result of fuelcap object with hybrid images 49

5.23 Loss function for better result of clutch lever object with hybrid images . . 49

5.24 Precision x Recall curves for the better test of adblue object with real images 51

5.25 Precision x Recall curves for the better test of yamaha_logo object with

real images . 52

5.26 Precision x Recall curves for the better test of volkswagen_logo object with

real images . 52

5.27 Precision x Recall curves for the better test of fuel cap object with real

images . 53

5.28 Precision x Recall curves for the better test of clutch lever object with real

images . 53

5.29 Loss function for better result of adblue object with real images 54

5.30 Loss function for better result of yamaha logo object with real images . . . 54

5.31 Loss function for better result of volkswagen logo object with real images . 54

5.32 Loss function for better result of fuelcap object with real images 55

5.33 Loss function for better result of clutch lever object with real images . . . 55

List of Tables

5.1 Parameters set for Blender image generation. 33

5.2 Final parameters chosen for imaging . 35

5.3 Best and worst hyperparameters configurations obtained and their corre-

sponding results. 36

5.4 Training dataset for all scenery tests . 37

5.5 Real images test dataset . 38

5.6 Average of test samples for each object with synthetic images 39

5.7 Standard deviation of test samples for each object with synthetic images . 39

5.8 Confusion matrix for better results of each object with synthetic images . . 40

5.9 Average of test samples for each object with hybrid images 45

5.10 Standard deviation of test samples for each object with hybrid images . . . 45

5.11 Confusion matrix for better results of each object with hybrid images . . . 45

5.12 Average of test samples for each object with real images 50

5.13 Standard deviation of test samples for each object with real images 50

5.14 Confusion matrix for better results of each object with real images 51

5.15 The Wilcoxon test for the models considering the hybrid and real objects. . 57

5.16 The Wilcoxon test for the models considering the synthetic and real objects. 58

List of Acronyms

API : Application Programming Interface;

AUC : Area under the curve;

AI : Artificial Intelligence;

AP : Average Precision;

CNN : Convolutional Neural Network;

CAD : Computer-aided Design;

CPS : Cyber Physical Systems;

DCNN : Deep Convolutional Neural Network;

DPM : Deformable Part-based Model;

GPU : Graphic Power Unit;

HOG : Histogram of Oriented Gradients;

IoT : Internet of Things;

IoU : Intersection over Union;

MPU : Digital Mock-up;

mAP : Mean Average Precision;

OD : Object Detection;

RCNN : Region-based Convolutional Neural Networks;

SVM : Support Vector Machine;

Contents

1 Introduction 1

1.1 Problem Definition . 3

1.2 Objectives . 4

1.3 Methodology . 4

1.4 Contributions . 5

1.5 Organization . 5

2 Fundamental Concepts 6

2.1 Industry 4.0 . 6

2.2 Computer Vision and Object Recognition 7

2.3 Object Detection with Deep Learning . 10

2.3.1 Convolutional Neural Networks . 10

2.3.2 Faster R-CNN . 12

2.4 Evaluation Metrics for Object Detection 13

2.4.1 Precision x Recall Curve . 17

2.4.2 Average Precision . 18

3 Literature Review 20

3.1 Object Detection . 20

3.2 Industrial Approaches . 23

3.3 CAD Models . 24

4 Systematic Approach 26

Contents xiii

4.1 Overview . 26

4.2 Synthetic Image Generation . 27

4.2.1 Implementation . 28

4.3 Hyperparameter Tuning . 29

4.4 Training . 29

4.4.1 Preparing Workspace . 29

4.4.2 Annotating Images . 30

4.4.3 Configuring Training Model . 30

4.5 Industrial Process Scenario . 31

5 Experimental Evaluation 33

5.1 Image Generation . 33

5.2 Datasets . 36

5.3 Models Tests . 37

5.3.1 Synthetic Images Evaluation . 39

5.3.2 Hybrid Images Tests . 44

5.3.3 Real Images Tests . 49

5.4 Discussion . 55

5.5 Hypothesis Tests . 56

6 Conclusion 60

6.1 Limitations . 61

6.2 Future Work . 61

References 63

Chapter 1

Introduction

Object Detection (OD) is an important research topic in computer vision that has been

widely studied over the last decade [70, 73, 32, 67, 53]. It consists in finding the co-

ordinates of bounding boxes encapsulating objects of interest in an image [43]. It has

applications in robotics systems, industrial process control systems and tracking systems,

among other application domains [11]. As example, object detection and pose estimation

is frequently the first step of robotic systems. Recently, deep learning methods, such as

those employing Convolutional Neural Networks (CNNs), have become the standard tool

for object detection, outperforming alternatives in object recognition benchmarks [37]. As

for industrial process control systems, the task of detecting objects in images for indus-

trial process control systems is particularly challenging and of great interest in the context

of Industry 4.0. The major steps of such systems are the observation of the production

context and analysis of the observed images for the extraction of the labels, which will

correspond to the classification of these images [55]. And finally, real-time object de-

tection and tracking have shown to be the basis of intelligent production for industrial

4.0 applications. It is a challenging task because of various distorted data in complex

industrial setting [34]. In Figure 1.1 below, we can see an example of object detection in

a vehicle production line.

A CNN differs from standard Artificial Neural Network (Fully Connected) in the struc-

ture of its hidden layers, which enables it to have a significantly higher number of neurons

per layer. CNN architectures have the advantage of automatically learning filters for ex-

tracting features, thus avoiding the complicated and time consuming feature engineering

process (thresholding, contouring, segmentation, clustering). Also the expressivity and

robust training algorithms allow to learn informative object representations without the

need to design features manually [72]. Many different types of CNNs have been developed

1 Introduction 2

Figure 1.1: Example of object detection on an industrial production line.

with different hidden layer structures. Some examples include Alexnet [26], MobileNet [20]

and Inception [59].

One of the typical issues with deep learning is the requirement of large labelled

datasets for training. Although there are various online databases containing millions of

images, for specific industrial applications, it can be necessary to create custom datasets

containing the objects of interest. Most object detection datasets represent scenarios from

either everyday life or mobile robotic environments. While this scenario is important from

both a research and application standpoint, it was found that industrial applications, such

as bin picking or surface and defect inspection, have quite different characteristics that

are not modeled by the existing datasets [20]. This includes different 3D shapes, different

kinds of sensors and modalities, and different kinds of object placements. As a result,

methods that perform well on existing datasets sometimes show quite different results

when applied to industrial scenarios without retraining [11]. The process of generating

a specific dataset for retraining is tedious, and can be error-prone when conducted by

non-professional technicians. Moreover, generating a new image dataset and labelling it

manually can be very time consuming and expansive [21].

On the other hand, the specific case of OD for industrial production lines presents

the specificity that the manufacturers often have access to the CAD models of the objects

to detect. Thanks to advances in computer graphics techniques, such as ray tracing

[54], the generation of photo-realistic images has become possible. In such artificially

generated images, the computer can be employed for bounding box labelling. As deep

neural networks are typically trained on Graphical Processing Units (GPUs), these can

1.1 Problem Definition 3

also be used to render large quantities of images efficiently [21]. Besides that, the use

of synthetic images rendered from CAD models to train OD models has already been

proposed in [41], as well as in other works, such as [44, 17], for example. However, their

approaches requires manual scene creation by Blender artists, it is not automated, and

the objects used are usually generic, such as buses, airplanes, cars, animals, etc.

Identifying the appropriate objects and separating them from the faulty ones, is the

main goal of automatic object detection system. Thus, the use of automation in any

industrial process increases the investment cost initially. However, it generates greater

efficiency in manufacturing, reducing operating costs and causing fewer errors and less

man-machine intervention. Automation in this sector means using control systems to

handle different processes and machines to replace human efforts [56].

1.1 Problem Definition

The automation of the detection and identification of objects in the industrial process is

crucial and may have great impact on the overall productivity of the industry. Therefore,

the first step to obtain this type of automation would be the definition of the process for

the generation of object classification models, which will allow the identification of flaws

in the production line. The generation of these models requires the aggregation of large

datasets of images of objects in different situations.

However, collecting real images can be extremely laborious. In [17], for example,

each real image was collected in different contexts - disordered background, changes in

lighting, etc. In addition, it must be ensured that each object is shown from different

poses. For this reason, the use of CAD models has already been used as an alternative to

this problem [17, 57, 60, 11]. However, there is no study that says what the standard of

synthetic image generation in the industry should be, in order to guarantee an efficient

result. Working with synthetic images does not guarantee an efficient result if there is

no systematization of the process of generating these synthetic images with the necessary

variations. So, this work proposes a systematic methodology for generating synthetic

images using our variation pattern.

In addition, good results are typically obtained by training CNNs using datasets that

involve a very large number of labeled images, as in the case of ImageNet [26]. For this

reason, in this work, in addition to the attempt to systematize the generation of labeled

images, the training of these CNN models was done with a very small number of images,

1.2 Objectives 4

saving time.

1.2 Objectives

The main objective of this work is to propose a systematic approach to detect and identify

objects in the industrial scenario. Hence, we could devise three specific objectives of this

work: (i) to develop a systematic process for generating labeled synthetic images, (ii) to

train a convolutional neural network model with a reduced number of images, in order to

save time, and finally, (iii) to compare the performance of the models using real, synthetic

and hybrids datasets. Therefore, this work can be divided into three parts: automated

image generation from properly labeled CAD objects, training a convolutional neural

network model, with specific adjustments, in order to achieve a good performance with a

reduced number of images to detect objects on the assembly line, and finally, to evaluate

the efficiency of this proposed approach by comparing the object detection performance

using synthetic, hybrid and real images datasets. In addition, the dataset generated during

this work, as well as the complete systematic approach were made publicly available so

that other users can test and improve it, if applicable.

1.3 Methodology

Firstly, a study of the current literature was made with regard to object detection, use

of CAD models to generate synthetic image datasets and the metrics commonly used to

evaluate CNN models for object detection.

After studying the literature, we defined the process for the automatic generation

of realistic labeled images containing the objects to be detected from CAD models. In

sequence, a study was carried out to demonstrate that the images can be used to adjust

the DO models and that they can work well in real images of the object. Subsequently,

we carried out a set of experiments to study the influence of each parameter on the final

results and to identify the ideal configuration for our approach. Finally, we validated our

approach using the CAD model of some objects for training, as well as labeled real images

containing the real object for evaluation.

1.4 Contributions 5

1.4 Contributions

This master’s thesis contributes with a new scalable algorithm for the generation of syn-

thetic images from CAD models and a systematic approach that aims to establish pa-

rameters and performance standards in the results. Therefore, we can separate these

contributions into two parts: technological and scientific.

From this, in the technological contribution item, we can list the construction of a

new algorithm, in the scientific item, we can list the new systematic approach proposed in

this work, in addition to the experiments, discussions and results about the use of hybrid

datasets (synthetic images and real) in the scope of object detection using CAD models.

1.5 Organization

The structure of this work is divided into six chapters. In Chapter 2, the general concept

about object detection, automation of industrial processes, anomaly detection in assem-

bly lines, computer vision, industry 4.0, deep learning applied to image recognition and

evaluation metrics is presented, describing the main approaches and methods used. Then,

Chapter 3 presents a review of the literature on the different works carried out regarding

the detection of objects with real and synthetic images, as well as the contexts, applica-

tions and results obtained, making a qualitative and quantitative comparison with this

work. In Chapter 4, the systhematic approach developed in this work is presented, as well

as the generation of synthetic images, the training of neural networks and hyperparame-

ters tuning. Chapter 5 describes the experiments, the datasets used, the test parameters,

the results and the hypothesis tests comparing the use of real, synthetic and hybrid im-

ages datasets. Finally, chapter 6 presents the conclusions of this work, describing some

limitations of the research and the future work.

Chapter 2

Fundamental Concepts

This chapter describes the fundamental concepts in the relationship between industry

4.0, visual computing, object detection and deep learning algorithms. In addition, several

techniques and methods are described within the scope of this relationship. Finally, the

metrics used for the evaluation of object detection models are presented and discussed,

so that their importance in the analysis of the results of this work is clear.

2.1 Industry 4.0

Industry 4.0 represents the current trend in automation technologies in the manufacturing

sector and includes mainly enabling technologies, such as cyber-physical systems (CPS),

Internet of Things (IoT) and cloud computing. This concept represents the technological

evolution from embedded systems to cyber-physical systems. In Industry 4.0, embedded

systems, semantic machine-to-machine communication, IoT and CPS technologies are in-

tegrating virtual space with the physical world; in addition, a new generation of industrial

systems, such as smart factories, is emerging to deal with the complexity of production

in the cyber-physical environment [68].

Under this hypothesis, the term industry 4.0 (or fourth industrial revolution) would

not only imply a technological change, but versatile organizational implications as well.

As a result, a change from product- to service-orientation is sought and expected: man-

ufacturing and service industry will become complementary, encouraging a new form of

production [10].

According to [4], the Industry 4.0 has nine pillars of technology, including virtual

reality, artificial intelligence, industrial internet, industrial big data, industrial robot, 3D

2.2 Computer Vision and Object Recognition 7

printing, cloud computing, knowledge work automation and industrial network security.

And at least 4 of these pillars are used and joined in this work (artificial intelligence,

industrial big data, industrial robot and knowledge work automation).

2.2 Computer Vision and Object Recognition

Computer Vision and Pattern Recognition study a lot of problems, like image matching,

clustering and segmentation, extraction of invariant interest points, feature selection,

optimal classifier design, model selection and many others. The computational analysis

of images and more abstract patterns is a complex and challenging task, which demands

interdisciplinary efforts [49].

However, over the last years deep learning methods have been shown to outperform

previous state-of-the-art machine learning techniques in several fields, with computer vi-

sion being one of the most prominent cases. Various computer vision tasks, such as object

detection, face recognition, action and activity recognition and human pose estimation

use machine learning techniques [65].

Object recognition is one of the fundamental challenges in computer vision, which

generally consists of two different types of tasks: object instance recognition and object

class recognition. The first type aims at identifying previously seen object instances such

as a specific car, and is largely a matching problem in which the differences between the

stored exemplars and the objects to be reidentified in an input image are mainly caused

by imaging condition changes, and hence can be effectively handled by some alignment

process. The second type, also known as category-level or generic object recognition,

focuses on recognizing (always unseen-before) instances of some predefined categories [70].

In addition, it supports a wide range of practical applications, such as tracking and

surveillance [35], anomaly detection [51], augmented reality [45], segmentation and pose

estimation [40], for example.

Basically, an object detection (OD) system can be easily described according to Fig-

ure 2.1, which shows the basic steps that are involved in the OD process [53]. The basic

entry for the OD system can be an image or a scene, in the case of videos. The basic

objective of this system is to detect objects that are present in the image/scene or simply,

in other words, the system needs to categorize and localize the various objects in the

respective object classes.

2.2 Computer Vision and Object Recognition 8

Figure 2.1: Object detection model. Adapted from [53]

So, the first step in the object detection process is to input the image into the object

detector / classifier system. After that, this set of images will be processed (feature

extraction, resize map, etc.). Soon after, comes the object detection module itself, that

is, the search for match features and compare them with the object in question, in order

to check if the object is contained therein. Finally, the object detector is created.

A system based on object detection can be defined as a data labeling and localizing

problem, based on known object models. From an image, which contains one or more

objects of interest in a given set of labels corresponding to a set of models known to the

system, it is expected that the system assigns correct labels to the regions of the image.

Therefore, the OD system based on deep learning consists of three main phases: the

learning phase, the validation phase and the inference phase, which are shown in Figure 2.2

- which shows the operation of the OD system. The learning phase consists of training

the apprentice, so that he recognizes the objects present in the image, which is provided

as input to the system. In the model validation phase, the trained model is evaluated in

order to provide its ability to detect the object in question. In the inference phase, the

classifier makes use of learning, which was done in the learning phase, to classify objects.

With that, after the image processing, the direct correspondence of the model is made,

producing the characteristics of an object in the image. The main objective of this phase

is to locate the object and decide whether that same object is present in the image, which

is supplied to the system as an input and, if so, to which class of object it belongs.

Unraveling the three phases involved in object detection, we obtain two phases in

common: image processing and feature extraction. Image processing is a method to

convert an image into digital form and perform some operations on it, in order to get

an enhanced image or to extract some useful information from it. It is a type of signal

dispensation in which input is image, like video frame or photograph and output may be

image or characteristics associated with that image. Image processing basically includes

the following two steps [23]:

2.2 Computer Vision and Object Recognition 9

• Analyzing and manipulating the images which includes data compression and im-

age enhancement and spotting patterns that are not to human eyes like satellite

photographs.

• Output is the last stage in which result can be altered image or report that is based

on image analysis.

Figure 2.2: Operation of the object detection model.

Feature extraction, on the other hand, is used to extract the most distinct characteris-

tics present in a dataset (in our case - images) that are used to represent and describe the

data. Thus, fundamentally uses features within the object to identify, locate and process

regions of interest [52]. In [61], for example, it is possible to note a comparative study of

the various combinations of representations of image features, such as the region-based,

global and local block-based categorization of the image database.

Finally, the object learner phase, which consists of the detection learning method,

has several approaches, with several different methods. According to [73], which makes a

history review on object detection, the first unrestricted method for object detection (in

this case with human faces) was with [63, 64], where the author follows a most straight

forward way of detection, ie, sliding windows. After that, detectors based on Histogram

of Oriented Gradients (HOG) feature descriptor was proposed [7]. Soon after, the De-

formable Part-based Model (DPM) [14] appeared. Also according to [73], the performance

of hand-crafted features became saturated, object detection has reached a plateau after

2010. However, with the emergence of deep neural networks, capable of learning repre-

sentations of robust and high characteristics level of an image, a lot of networks have

2.3 Object Detection with Deep Learning 10

been proposed for object detection. Since then, object detection started to evolve at an

unprecedented speed.

It is important to note that nowadays, the part of image processing and the extraction

of features are already included in CNNs, as in [47, 26], for example. Therefore, the model

is simplified, as shown in Figure 2.3.

Figure 2.3: Operation of the object detection model with CNN.

2.3 Object Detection with Deep Learning

As stated above and according to [32], deep learning techniques have emerged as a powerful

strategy for learning characteristic representations directly from data and have led to

significant advances in the field of generic object detection.

With all this progress of deep neural networks applied to the object detection context,

different network architectures have been developed, mainly convolutional neural networks

(CNN): Regions with CNN (RCNN) [62], Spatial Pyramid Pooling (SSPNet) [16], Fast

RCNN [15], Faster RCNN [47], Feature Pyramid Networks (FPN) [28], You Only Look

Once (YOLO) [46], Single Shot MultiBox Detector (SSD) [33], RetinaNet [29] and many

others have been proposed.

2.3.1 Convolutional Neural Networks

The Convolutional Neural Networks (CNN) are very similar to fully-connected Neural

Networks. They are made up of neurons that have learnable weights and biases. Each

2.3 Object Detection with Deep Learning 11

neuron receives some inputs, performs a dot product and optionally follows it with a non-

linearity. The whole network still expresses a single differentiable score function: from the

raw image pixels on one end to class scores at the other. They still have a loss function on

the last (fully-connected) layer and all the tips/tricks has developed for learning regular

Neural Networks still apply [24].

With the revival of convolutional neural networks in [26] and their application to

object detection problems, we can see in Figure 2.4 the general architecture of a CNN.

Figure 2.4: Architecture of general CNN. Adopted from [24]

The CNN consists of multiple layers. Each layer takes a multi-dimensional array of

numbers as input and produces another multi-dimensional array of numbers as output

(which then becomes the input of the next layer). When classifying images, the input to

the first layer is the input image (n × n), while the output of the final layer is a set of

likelihoods of the different categories. A simple CNN is a sequence of layers, and every

layer of a CNN transforms one volume of activations to another through a differentiable

function as we can see in [71].

Pooling layer downsamples the volume spatially, independently in each depth slice of

the input volume. In Figure 2.5(a), the input size [n× n× i] is pooled with filter size z,

producing an output size [n
z
× n

z
× i], where n is the image resolution and i is the number

of samples. Notice that the volume depth is preserved. The most common downsampling

operation is max [24], giving rise to max pooling, as example shown in Figure 2.5(b).

2.3 Object Detection with Deep Learning 12

(a) Downsampling

(b) Max pooling operation example with 2x2 window

Figure 2.5: CNN scheme for downsampling and max pooling.

2.3.2 Faster R-CNN

According to [47], recent advances in object detection are driven by the success of region

proposal methods and region-based convolutional neural networks (R-CNNs). Although

region-based CNNs were computationally expensive, their cost has been drastically re-

duced. The latest incarnation, Fast R-CNN, achieves near real-time rates using very

2.4 Evaluation Metrics for Object Detection 13

deep networks, when ignoring the time spent on region proposals. Now, proposals are

the computational bottleneck in state-of-the-art detection systems. A Region Proposal

Network (RPN) takes an image (of any size) as input and outputs a set of rectangular

object proposals, each with an objectness score.

Faster R-CNN, the model used in this work, takes as input an entire image and a set of

object proposals. The network first processes the whole image with several convolutional

and max pooling layers to produce a convolutional feature map. Then, for each object

proposal, a region of interest (RoI) pooling layer extracts a fixed-length feature vector

from the feature map, as seen in Figure 2.6.

Figure 2.6: Region Proposal Network. Adapted from [47]

Each feature vector is fed into a sequence of fully connected layers that finally branch

into two sibling output layers: one that produces softmax probability estimates over K

object classes plus a catch-all “background” class and another layer that outputs four

real-valued numbers for each of the K object classes. Each set of 4 values encodes refined

bounding-box positions for one of the K classes [15].

2.4 Evaluation Metrics for Object Detection

The purpose of this section is to summarize some common evaluation metrics of the

object detection problem. In object detection, a number of well-known datasets and

benchmarks have been released in the past years, including the datasets of PASCAL

VOC Challenges 1 [13, 12], ImageNet Large Scale Visual Recognition Challenge 2 [50],

MS-COCO Detection Challenge 3 [30], Open Images Detection (OID) challenge 4 [25].
1http://host.robots.ox.ac.uk/pascal/VOC/
2http://image-net.org/challenges/LSVRC/
3http://cocodataset.org/
4https://storage.googleapis.com/openimages/web/index.html

2.4 Evaluation Metrics for Object Detection 14

However, before presenting the metrics used in competitions, we must first establish two

fundamental metrics.

• Confidence score: is the probability that an anchor box contains an object. It

is usually predicted by a classifier.

• Intersection over Union (IoU): is defined as the area of the intersection divided

by the area of the union of a predicted bounding box (A) and a ground-truth box

(B) as the equation 2.1 shows:

IoU =
|A ∩B|
|A ∪B|

(2.1)

Therefore, Intersection over Union, also known as Jaccard index [22], is used to deter-

mine the accuracy of an object detector on a specific dataset. This metric is often used

for object detection challenges, such as the popular PASCAL VOC challenge [13, 12].

This metric is typically used to assess the performance of HOG + Linear SVM [7] object

detectors and convolutional neural networks (R-CNN [62], Faster R-CNN [47], YOLO [46]

....) The intersection over the union is simply an evaluation metric. Any algorithm that

provides bounding boxes provided as an output can be evaluated using IoU. In Figure 2.7

a visual example of a ground-truth bounding box versus a predicted bounding box:

Figure 2.7: Visual example of ground-truth vs predicted bounding box.

Looking at the equation 2.1, Intersection over Union is a ratio. In the numerator,

the overlap area between the predicted bounding box and the ground-truth bounding box

is calculated. The denominator is the area of union, that is, the area covered by the

envisaged boundary box and the ground-truth bounding box. Dividing the overlap area

by the union area, we obtain the final score - the Intersection over Union. The example

that illustrates the intersection over the union can be seen in Figure 2.8

2.4 Evaluation Metrics for Object Detection 15

Figure 2.8: Visual example of the Intersection over Union equation.

In Figure 2.9, the quantitative IoU relationships are shown visually. You can see

that predicted bounding boxes that strongly overlap with ground-truth bounding boxes

have higher scores than those with less overlap. This makes Intersection over Union an

excellent metric for evaluating custom object detectors.

Figure 2.9: An example of computing Intersection over Unions for various bounding boxes.

Both the confidence score and the IoU are used as criteria that determine whether a

detection is a true positive or a false positive. The Algorithm 1 shows how:

Algorithm 1: Object detection classification based on the IoU.
input : confidence_score = threshold_a

iou_score = threshold_b

ground-truth

detection

1 begin

2 for each detection that has a confidence_score > threshold_a: do

3 among the ground-truths, choose one that belongs to the same class and

has the highest IoU with the detection

4 if no ground-truth can be chosen or iou_score < threshold_b (e.g., 0.5)

then detection is a false positive;

5 else detection is a true positive;

2.4 Evaluation Metrics for Object Detection 16

As shown in the Algorithm 1, we call confidence score, the probability that an anchor

box contains an object from a certain class. It is usually predicted by the classifier part

of the object detector. The confidence score and IoU score are used as the criteria to

determine whether a detection is a true positive or a false positive. Given a minimal

threshold on the confidence score for bounding box acceptance, and another threshold

on IoU to identify matching boxes, a detection is considered a true positive (tp) if there

exists a ground truth such that: confidence score > threshold; the predicted class matches

the class of the ground truth; and IoU > thresholdIoU. The violation of any of the last

two conditions generates a false positive (fp). In case multiple predictions correspond to

the same ground-truth, only the one with the highest confidence score counts as a true

positive, while the others are considered false positives. When a ground truth bounding

box is left without any matching predicted detection, it counts as a false negative (fn).

Figure 2.10: Metric object detection for global evaluation of model.

Therefore, from these counters (TP, FP, FN) we can infer the metrics of Precision,

Recall and F1-Score.

• Precision: Is defined as the number of true positives divided by the sum of true

positives and false positives as the equation 2.2:

Precision =
TP

TP + FP
(2.2)

A high precision means that most of the predicted boxes had a corresponding ground

truth. In other words, the object detector is not producing bad predictions.

• Recall: Is defined as the number of true positives divided by the sum of true

positives and false negatives as the equation 2.3:

2.4 Evaluation Metrics for Object Detection 17

Recall =
TP

TP + FN
(2.3)

high recall means that most of the ground truth boxes had a corresponding predic-

tion. In other words, the object detector finds most objects in the images.

• F1-Score: Is the harmonic mean of the precision and recall as the equation 2.4:

F1 =
Precision ·Recall
Precision+Recall

(2.4)

F1-Score is needed when a balance between Precision and Recall is sought. In the

case of object detection on production lines, a low precision means that sometimes

a part might be absent and the model would not see it, whereas a low recall means

that sometimes the part is present and the model raises an alert anyways. For this

reason, both a good recall and a precision are required and the choice of using the

F1-Score metric seems appropriate.

2.4.1 Precision x Recall Curve

When predicting the bounding boxes, the models of convolutional neural networks for

object detection produce a vector of probabilities corresponding to the confidence over

each object class [58]. Therefore, by setting the threshold for confidence scores at different

levels, we obtain different pairs of precision and recall. For this reason, the Precision x

Recall curve is a good way to assess the performance of an object detector as confidence

is changed by plotting a curve for each class of object. In Figure 2.11 you can see an

example of this chart.

2.4 Evaluation Metrics for Object Detection 18

Figure 2.11: An example of computing Intersection over Unions for various bounding
boxes.

2.4.2 Average Precision

Another way to compare the performance of object detectors would be to calculate the area

under the curve (AUC) of the Precision x Recall curve. However, it becomes difficult to

compare different detectors when the AP curves intersect. That is why Average Precision

(AP), a numerical metric, is used to compare different detectors. Therefore, AP is the

precision average for all recall values between 0 and 1. From there, there are two ways to

calculate Average Precision. Both use point interpolation. This metric was well known

by [13]

11-points

The first one interpolates 11 points, trying to summarize the shape of the curve in a

set of eleven equally spaced recall levels [0, 0.1, 0.2, ..., 1], as described in the equation

2.5.

AP =
1

11

∑
r∈{0,0.1,0.2,...,1}

ρinterp(r) (2.5)

The precision at each recall level r is interpolated by taking the maximum precision

measured for a method for which the corresponding recall exceeds r:

2.4 Evaluation Metrics for Object Detection 19

ρinterp(r) = max
r̃:r̃≥r

ρ(r̃) (2.6)

where ρ(r̃) is the measured precision at recall r̃.

All points

Rather than interpolating only 11 points, this method interpolates all n points, as

shown in the equation 2.7.

∑
n=0

(rn+1 − rn)ρinterp(rn+1) (2.7)

with

ρinterp(rn+1) = max
r̃:r̃≥rn+1

ρ(r̃) (2.8)

where ρ(r̃) is the measured precision at recall r̃.

AP calculation involves only one class. However, there may be more classes in object

detection, so the mean average precision (mAP) is defined as the AP average across all K

classes:

mAP =

∑K
i=1APi

K
(2.9)

The Pascal VOC [19] challenge uses only a single IoU limit of 0.5. However, the

COCO [30] challenge defines several mAP metrics using different thresholds, including:

• mAP IoU=0.5:0.05:0.95, which is mAP averaged over 10 IoU thresholds (i.e., 0.50,

0.55, 0.60, ..., 0.95) and is the primary challenge metric;

• mAP IoU=0.5, which is identical to the Pascal VOC metric

• mAP IoU=,.75, which is a strict metric.

Chapter 3

Literature Review

This chapter presents the main works related to object detection using synthetic image

generation. The main aspects of the papers are discussed in relation to the implemented

models and the methods of generating these synthetic images. Finally, an analysis of

the missing characteristics and the points where the various strategies can be improved

is presented. So that in the end, the object detector obtains a better generalization

performance, cost and time.

The number of articles on object detection based on deep learning is extremely large.

However, our focus is based on deep learning object detection using synthetic images.

Therefore, each subsection will represent similar works, but using different methods and/or

different contexts.

The related works were researched using some bases, among them: Google Scholar 1,

IEEE Xplore 2, Springer 3 and ACM Digital Library 4. The search keywords were: Object

Detection CAD Models, Object Detection, Deep Learning Object Detection, Convolu-

tional Neural Networks, Object Detection Synthetic Images, Object Detection Industry

4.0, Object Detection in Assembly Lines.

3.1 Object Detection

According to [17], the ability to detect objects in challenging environments is a key com-

ponent for many computer vision and robotics tasks. The main current object detectors,
1https://scholar.google.com.br/
2https://ieeexplore.ieee.org/Xplore/home.jsp
3https://www.springer.com/br
4https://dl.acm.org/

3.1 Object Detection 21

such as those mentioned in the section 2.3, depend on convolutional neural networks. How-

ever, for best performance, they require certain amounts of labeled training data, which

are often time consuming and expensive to create. Consequently, the use of synthetic im-

ages is very attractive for training object detectors, since labeling is free. Unfortunately,

synthetic rendering methods are often unable to reproduce the results produced by their

real-world counterparts. This is often referred to as the ’domain gap’ between synthetic

and real data and the transfer from one to the other usually results in deteriorated per-

formance.

For this reason, the author assesses the freezing of layers responsible for extracting

resources in pre-trained generic layers in real images and trains only the remaining layers

with OpenGL rendering, allowing training with synthetic images only.

In [57], the author states that estimating from the point of view of the object from 2D

images is an essential task in computer vision. However, two problems hinder its progress:

the scarcity of training data with point-of-view notes and the lack of powerful resources.

For this reason, inspired by the increasing availability of 3D models, the author proposes

a framework to solve both problems, combining image synthesis based on rendering and

CNNs (Convolutional Neural Networks). For that reason, he believes that 3D models

have the potential to generate a large number of high-variation images, which can be

well explored by deep CNN with high learning capacity. For this purpose, a scalable and

overfit resistant image synthesis pipeline is proposed, together with a new CNN tailored

to the point of view estimation task.

With the increasing accessibility of 3D CAD models, an infinite number of training

images can be generated for many categories of objects. Because of this, another impor-

tant work [41], shows that increasing the training data of contemporary models of Deep

Convolutional Neural Network (DCNN) with synthetic data can be effective, especially

when the actual training data is limited or does not match to the target domain. Most

freely available CAD models capture the 3D shape, but they often lack other low-level

tips, such as realistic object texture, pose, or background. In a detailed analysis, the

author uses synthetic images rendered by CAD to probe the DCNN’s ability to learn

without these tips. In particular, it is shown that when the DCNN is adjusted in the

target detection task, it exhibits a high degree of invariance for missing low level clues,

but when pre-trained in the generic ImageNet classification, it learns best when the low

level clues are simulated.

So that we can understand the real dimension and importance of this type of work,

3.1 Object Detection 22

researchers from NVIDIA and the University of Toronto at [60], present a training system

for deep neural networks to detect objects using synthetic images. To deal with the

variability in real-world data, the system depends on the domain randomization technique,

in which the parameters of the simulator - such as lighting, pose, object textures, etc.

- are randomized in unrealistic ways to force the neural network to learn the essential

characteristics of the object of interest. The authors explored the importance of these

parameters, showing that it is possible to produce a network with attractive performance

using only synthetic data. With additional fine-tuning on real data, the job produces

better performance than using only real data. This result opens up the possibility of

using cheap synthetic data to train neural networks, avoiding the need to collect large

amounts of hand-labelled real-world data or to generate high-fidelity synthetic worlds -

both of which remain bottlenecks for many applications.

According to [48], an important insight from this type of approach is that the images

generated synthetically must be similar to the real images, not in terms of image quality,

but in terms of resources used during detector training. Therefore, in this same work,

it is shown that in the context of detecting drones, airplanes and cars, the use of such

synthetically generated images produces significantly better performances than simply

disturbing real images or even synthesizing images in such a way that they appear very

realistic, as it is usually done when only limited amounts of training data are available.

A training set can also be simulated by applying small deformations and adding noise

to the images it contains. Therefore, there are several techniques for generating synthetic

data. Synthetic data were used to study the effects (for example, object texture, color,

3D pose and background) on the performance of the image classifier, according to [1].

There is even a hypothesis that advances in computer graphics may positively affect the

quality of synthetic data, so that the photographs generated synthetically will be almost

indistinguishable from those in the real world [42].

An important tool in the generation of virtual images is Blender. As a result, in [21],

the project used Blender computer graphics modeling software with customizable settings

that allow users to design detailed three-dimensional scenes and objects. A plug-in was

developed to automate the generation of variations in the scene during rendering and

combine them with various environmental backgrounds. Because the software has full

access to the scene data, the automated labeling of the generated images can produce

a metadata file containing information such as the object’s bounding box, the object’s

position in the scene and the position where the image was occupied. Although this

3.2 Industrial Approaches 23

approach allows the user to be removed from the manual data collection and labeling

processes, it still requires the user to initially create the scene.

3.2 Industrial Approaches

All the works mentioned above use generic objects such as cars, buses, airplanes, toys,

boats, among others. However, due to the theme of this work, it is important that we

mention the works that have a focus on industrial applications.

Showing the real importance of public datasets as a vital tool for computer vision,

MVTec Industrial 3D Object Detection Dataset [11] develops a public dataset for 3D object

detection and pose estimation with a strong focus on objects , configurations and require-

ments that are realistic for industrial configurations. Unlike other 3D object detection

data sets that often represent scenarios of everyday life or mobile robotic environments,

the work cited models industrial waste collection and object inspection tasks that often

face different challenges. In addition, the evaluation criteria are focused on practical as-

pects, such as execution times, memory consumption, useful measures of correction and

precision. The data set contains 28 objects with different characteristics, organized in

more than 800 scenes and labeled with about 3500 rigid 3D transformations of the ob-

ject’s instances as fundamental truth. Two industrial 3D sensors and three high-resolution

grayscale cameras look at the scene from different angles, allowing you to evaluate meth-

ods that operate on a variety of different modalities. The author initially evaluates 5

different methods in the data set. Although some show good results, there is a lot of

room for improvement.

More recently, in [69], a method of detecting defects of tiny parts in real time was

developed. The author considers the important influences of the properties of the tiny

parts and the environmental parameters of a defect detection system in its stability.

Second, it establishes a correlation model between the detection system coefficient of the

parts system and the speed of movement of the conveyor. Finally, the author proposes

a defect detection algorithm for tiny parts, based on a single network of short detectors

(SSD) and deep learning. Finally, it combines an industrial real-time detection platform

with the lost detection algorithm for mechanical parts based on intermediate variables to

solve the lost detection problem. A 0.8 cm darning needle was used as an experimental

object.

3.3 CAD Models 24

3.3 CAD Models

First commercial CAD programs came up in the 1970s and provided functions for 2D-

drawings and data archival [18] and thereby evolved into the main engineering design

tool [31]. As a result, graphical or synthetic CAD models have also been used to support

multiview detection, as exemplified in [70]. In Figure 3.1, we can see some examples of

using CAD models in different scenarios.

(a) Example of CAD model in object detection scenario [41]

(b) Example of CAD model in industry scenario [5]

(c) Example of CAD model in games scenario [27]

Figure 3.1: CAD models examples for different scenarios approaches

In this context, CAD models have been improved, integrating local and global com-

puter vision data to represent an object not only geometrically, but also in terms of

computer vision. These models can provide a scalable solution for intelligent and auto-

matic object recognition, tracking and augmentation based on generic object models [3].

3.3 CAD Models 25

Therefore, it is possible to observe that the use of synthetic data has a long history in

computer vision. Among the first attempts, 3D models were used as the primary source of

information to build object models [41]. More recently, some have used 3D CAD models

as their only source of labeled data, but have limited their work to a few categories, such

as cars and motorcycles [30, 13].

Several works, such as those previously mentioned, use training methods for object

detection and recognition. Some of them even use synthetic images for this. Therefore,

this subsection is intended for a brief discussion of the points covered by the related works,

their results and approaches.

After all the discussion of the results and methods used by the related works, we

can see that there are different approaches for object detection, such as using synthetic

images or not, how many images were necessary to obtain a certain result, context of the

generation scenes, synthetic images, types of objects to be detected, etc. These works,

certainly, served as a basis for developing our systematic approach. However, our proposal

is different in some ways, which will be presented in the next chapter.

Therefore, there are different detection tasks, with difficulties that vary between them.

However, we can mention computer vision problems, such as objects from different points

of view, illuminations, interclass variations. In addition, object rotation, scale changes,

precise location, speed of detection, etc.

Chapter 4

Systematic Approach

In this chapter, the systematic approach proposed for object detection developed in this

master’s thesis is discussed. In addition, during the development of the systematic ap-

proach, a dataset 1 was elaborated, exactly for the purposes of this work, with the objective

of public disclosure to other users and researchers to use the available data. Considering

the diversity of researched works, until now, this was the only one that proposed the

development of a specific systematic approach for object detection using synthetic images

applied to the automation of industrial processes.

4.1 Overview

The systematic approach consists of three parts: synthetic image data set generation with

automatic bounding box labelling, network training with few images and the complete

industrial process. First, a custom code (using free and open-source 3D computer graphics

software tools) is used to generate labeled training images containing the CAD model

rendered in context. Then, a pre-trained object detection model is fitted to the generated

data set. Subsequently, the model can be used for inference in real images. Finally, all

the previous steps are brought together in a single, fully systematic industrial process.

The quality of the training pipeline is assessed by computing standard object detection

metrics in the actual images, and these results are used to test and evaluate different

values of the user-defined parameters of the training process. In subsequent sections, we

explain our approach in more detail.
1https://github.com/igorgbs/systematic_approach_cad_models

4.2 Synthetic Image Generation 27

4.2 Synthetic Image Generation

In order to generate a synthetic image sample, our process requires several elements.

First, a CAD model of the object of interest as well as several other industrial CAD

models need to be available. After that, the synthetic image generation is divided into

some substeps. A floor and a table are created and some distractors are sampled. Using

physics simulation, the distractors are dropped from a random height on the table. The

position of the object of interest is also randomly sampled. Once the 3D scene is created,

textures and colors are sampled for the backgrounds and the distractors and the entire

scene is textured. Light sources and cameras are also sampled and placed randomly.

Constraints on the camera pose are applied, in order to ensure that the object appears

in the camera view. Once the scene has been created, the rendering occurs and generates

an image. By removing the light sources and making the object of interest a light source

itself, we can generate another image which can be used for bounding box labelling. This

procedure is necessary because even if we know the location of the object, it can be partly

hidden by distractors and thus distort the labelling. The process for creating these images

can be seen in Figure 4.1.

Figure 4.1: Synthetic image generation process

An example of the synthetic image dataset generation process can be seen in Figure

4.2.

4.2 Synthetic Image Generation 28

Figure 4.2: Synthetic image generation process example

4.2.1 Implementation

For the automatic generation of the training images (with pose sampling, rotation, physics

simulation, light sampling...), the software Blender [6] was used. Blender is a powerful

software for 3D creation which includes features such as modeling, rigging, simulation and

rendering. We chose to use Blender because it presents the advantage of having a good

Python API, it is open-source and it has good GPU support.

In the experiments of this thesis, several objects of interest were used in order to

validate our systematic approach. For each object generated synthetically, there are

corresponding real objects. The other objects that make up the scene serve as distractors

to help the model focus on the right object. The CAD models for the distractors and main

objects are gathered from the Grabcad website 2. Then different textures for the different

distractors as well as for the background need to be gathered. In practice, we collected

these textures from the Poliigon website3. Finally, we need to manually reproduce the

color of the object of interest. The code for the synthetic images generation was originally

developed by Joris Guérin (co-advisor of this work) and adapted for this work and can

be seen at github 4.
2https://grabcad.com/
3https://www.poliigon.com/
4https://github.com/igorgbs/systematic_approach_cad_models

4.3 Hyperparameter Tuning 29

4.3 Hyperparameter Tuning

The Blender script for generating images has many hyperparameters that must be chosen

before using it, therefore, if necessary, a procedure for selecting parameters to optimize

the adjustable hyperparameters of the systematic approach. The adjustable parameters

used are the resolution of the generated training images, the number of camera poses

per generated scene, the number of generated scenes, the maximum number of objects

studied per scene, the maximum number of distractors to be included in each scene and

the number of textures.

Hyperparameter tuning is a crucial step in machine learning practice. Recently, it was

shown that the state of the art on image classification benchmarks can be improved by

configuring existing techniques better rather than inventing new learning paradigms and

hyperparameter tuning is often carried out by hand, progressively refining a grid over the

hyperparameter space [2]. Therefore, after each combination in the generation of images,

there comes the training phase of the model that uses convolutional neural network in

the synthetic images that were generated. The model also has hyperparameters to be

adjusted, such as sampling of the training and test subsets, pre-trained object detection

model, number of steps, batch size, momentum optimizer value and learning rate. These

combinations are used to identify the best hyperparameters for the systematic approach.

4.4 Training

Once a synthetic data set of images labelled with bounding boxes coordinates has been

generated, it can be used to train an object detector. Here, we describe the main steps

for the training process: preparing workspace, annotating images and configuring training

model, using the TensorFlow OD API.

4.4.1 Preparing Workspace

The first part consists in organizing the training directories in order to structure the

folders containing the training image files, the label files containing the bounding boxes

coordinates and the reference file containing the names of the classes to detect. This step

is carried out automatically by our script.

4.4 Training 30

4.4.2 Annotating Images

Two types of annotation files are needed. First, for each training image, there must be an

associated label file containing the coordinates of all bounding boxes encompassing the

objects of interest. Every bounding box is described by the object class name and the

following coordinates: (xmin, xmax, ymin, ymax). These coordinates are referenced according

to the image resolution. As explained earlier, the label files are generated automatically

by the Blender script for the training images.

Besides the training set, bounding box annotation files are also needed for the test

images. In our case, we want to validate that an object detector trained on synthetic

images can generalize to real world industrial cases. For this reason, the set of test images

contains real images, that is, photos of the analyzed objects. The files structure follows

the same organization as the training set. However, for real images, the ground truth

bounding boxes cannot be generated with Blender and must be made manually. To do

this, we use a software called LabelImg 5. This application allows us to draw and save

the annotations of each image as xml files in the PASCAL VOC format [19], which is also

the format used by ImageNet [9]. After generating all the annotations in xml format, it is

necessary to process these files in the csv format, then later, convert them into .record6.

4.4.3 Configuring Training Model

In this work, we used one of the pre-trained models provided by the TensorFlow Object

Detection API. By using this transfer learning approach, we start with a model that

already knows basic feature extraction skills and is less likely to overfit the synthetic data

sets. Indeed, the diversity that we can create with Blender is limited as we cannot get

an infinite amount of textures and distractors, and the diversity already encountered by

the network during pre-training can help reduce overfitting. In addition, using a network

pre-trained on real images can prevent the network from learning detection features that

depend too much on the generation procedure.

There exists several models in the TensorFlow object detection model zoo. More

information on the performance of the detection, as well as the reference execution times,

for each of the available pre-trained models, can be found on the Github page of the API7.
5https://github.com/tzutalin/labelImg
6https://tensorflow-object-detection-api-tutorial.readthedocs.io/en/latest/

training.html\#exporting-a-trained-inference-graph
7https://github.com/tensorflow/models

4.5 Industrial Process Scenario 31

In practice, the model used in this paper is the faster_rcnn_inception_v2_coco model,

which provides a good trade-off between performance and speed. This model was selected

following the results of experiments on another data set, which was used for practical

implementation of an industrial application.

Faster R-CNN, the model used in this work, takes as input an entire image and a set of

object proposals. The network first processes the whole image with several convolutional

and max pooling layers to produce a convolutional feature map. Then, for each object

proposal, a region of interest (RoI) pooling layer extracts a fixed-length feature vector

from the feature map.

Each feature vector is fed into a sequence of fully connected layers that finally branch

into two sibling output layers: one that produces softmax probability estimates over K

object classes plus a catch-all “background” class and another layer that outputs four

real-valued numbers for each of the K object classes. Each set of 4 values encodes refined

bounding-box positions for one of the K classes [15].

4.5 Industrial Process Scenario

Quality assessment in many production processes typically relies on human inspections

due to a lack of reference data and an effective method to classify defects in a systematic

way. Recently, the real-time, automated approach for product quality assessment has

been regarded as an important aspect for smart manufacturing applications, such as in

the automotive industry [38].

With that, the real-time object detection and tracking have shown to be the basis

of intelligent production for industry 4.0 applications. It is a challenging task because of

various distorted data in complex industrial setting. In this setting, a simple and highly

efficient method is the key for trade off low-computation and robustness during separating

various objects from cluttered background [34]. For this reason, this section describes the

part of the work aimed at applying the systematic approach in the industrial environment,

through a process.

Now, imagine a real production line scenario, where a certain company needs to check

some quality process, detecting objects about a certain part, product or even an entire

part of the production process. Based on this scenario, our systematic approach involves

a process diagram, where it tries to fill this automation gap in quality processes. The

diagram can be seen in Figure 4.3.

4.5 Industrial Process Scenario 32

(a) First workflow of automation process

(b) Second workflow of automation process

Figure 4.3: Automation of the quality assessment process in the industry through object
detection

As in any industry, the first step in product development is in product design. Thus,

the parametric CAD software is the primary development tool for the design engineer dur-

ing the product development process [31]. Computer-aided design (CAD) plays a central

role in automotive development. 3D-CAD models not only provide geometry information,

but also serve as a basis for configuration of modules and systems, as well as for different

simulation and verification processes. Product assemblies within CAD-platforms include

structure-related information, are used for digital mock-up (DMU) investigations and pro-

vide lots of data for production and manufacturing engineering [18]. Taking advantage of

this process (product design) inherent to all types of manufacturing processes, all model

training is based on this object already designed by the engineering team, applied to a

specific context. Another advantage of using the CAD model for training the object de-

tector is that the implementation of the quality control process can be done even before

the production line is operational, using only digital elements.

After the CAD model is ready, the product designer (in this case - the engineer) is

enough to insert it into the developed system. Once the CAD model has been inserted,

synthetic scenes with the object in question will be generated and soon after that, the

system itself will take care of training the model for that object applied to the industrial

context in question, thus completing the first workflow of automation process. After that,

the system’s output is a trained model capable of detecting the presence of the object in

the production line, represented by the second workflow of automation process.

Chapter 5

Experimental Evaluation

The experiments that were carried out using the neural network model used in this work

for the evaluated objects, are described in this chapter. The parameters and hyperpa-

rameters adopted for the object detection scenarios are discussed after the various tests

performed. The different results obtained are compared and graphs are drawn up to better

visualize the final result for each object inserted in the production lines domain.

5.1 Image Generation

In this section, we evaluate different adjustable parameters to generate synthetic images

based on CAD models. In addition, we evaluated different parameters to train the deep

object detection model. Therefore, we carry out a parameter selection procedure, as

described in the section 4.3. The chosen values for the experiments are as follows in Table

5.1:

In addition, five objects were chosen for the experiment. The CAD models of these

Parameters Values
Resolution Train 960x540, 640x480, 1280x720
Camera poses 2, 5, 20

Number of scenes 20, 50, 200
Number of (main) objects 0 or 1, 1, 1 to 4
Number of distractors 0, 5, 20

Floor Textures 1, 3, 7
Distractor Textures 1, 3, 7
Support Textures 1, 3, 7

Table 5.1: Parameters set for Blender image generation.

5.1 Image Generation 34

objects can be seen in Figure 5.1.

(a) Adblue (b) Yamaha logo (c) Volkswagen logo

(d) Clutch lever (e) Fuel cap

Figure 5.1: CAD models of the objects chosen for the experiment.

From this set of parameters, we chose an object to perform combinations in order

to achieve the best scenario for generation as shown in Table 5.2. These scenarios were

evaluated in a test set of real images. Thirty parameter combinations were made, with 10

samples per combination, since the neural network started with random weights. With

these preliminary experiments on a dataset of a specific object (Adblue), we concluded

that the number of textures used for the floor, the distractors and the support must be

adjusted to the maximum number of textures available (in our case 7 for the floor and 6

for the other two), creating a more complete and complex scenario for object detection.

From the chosen objects, the images are generated, as shown in Figure 5.2.

5.1 Image Generation 35

Parameters Values
Resolution Train 960x540
Camera poses 5

Number of scenes 20
Number of (main) objects 1
Number of distractors 20

Floor Textures 7
Distractor Textures 7
Support Textures 7

Table 5.2: Final parameters chosen for imaging

(a) Adblue scene example (b) Yamaha logo scene example

(c) Volkswagen logo scene example (d) Clutch lever scene example

(e) Fuel cap scene example

Figure 5.2: Example of image generated using our custom Blender script.

5.2 Datasets 36

Parameters Best Case Worst Case
Resolution 960x540 960x540
cam_poses 5 5
n_scenes 20 20
n_images 100 100

n_distractors 20 0
Generation Time 1257.30 sec 749.92 sec

n_samples 10 10
Precision %: Avg (Std.Dev) 83.78 (7.98) 30.09 (6.11)
Recall %: Avg (Std.Dev) 88.85 (4.88) 92.00 (3.53)

F1-Score %: Avg (Std.Dev) 85.92 (3.74) 45.02 (7.00)

Table 5.3: Best and worst hyperparameters configurations obtained and their correspond-
ing results.

In Table 5.3, we can see that distractors are an essential element in our proposed

image generation pipeline (e.g., Adblue object). The adblue is the only one that has a

different coloring, because it is in this color tone that it appears in real images. The

other objects are presented in this shade of gray, as shown in Figure 5.2. In fact, by

removing them, we can see a drop of about 47.6 % in the F1 score, on average among the

10 experiment samples. We also tried combinations with few distractors, but the F1 score

results dropped significantly. This makes sense when we think that the actual images

evaluated also contained several distractors in their scenes. Besides that, in the worst

case, Recall has a high value because there are few false negatives (FN) in its prediction.

This is due to the fact that the model is always identifying an object in the scene, causing

there to be few scenes where the object is not identified (case for FN). However, these

predictions have a low level of precision.

During these tests of image generation parameter adjustments, we noticed that very

high image resolutions, such as Full HD (1920x1080) and 4K (3840x2160) could not be

generated, due to the GPU’s memory overflow effect. These experiments were conducted

on a Nvidia Quadro P5000 GPU and a 2.90GHz Intel Xeon E3-154M v5 processor (16

GB of RAM).

5.2 Datasets

Now that the optimal hyperparameters were identified with the previous experiments, we

want to compare the synthetic image generation approach with different kind of training

approaches. The general objective was to cover the three test cases: synthetic images

5.3 Models Tests 37

datasets, real images datasets and hybrid datasets. For this, in addition to the generation

of synthetic images datasets, photos were taken from videos made manually and also from

videos taken from the internet. The idea was to cover scenarios closer to the reality found

in the industry. Each dataset was built for a given object, therefore adding up to a total

of 5 sets (one for each object).

5.3 Models Tests

In this section, we evaluate the results of all tests performed in terms of the following

metrics: precision, recall, F1-score and AP. In addition, we show the loss functions during

the training of each object. The chosen stopping point was 10,000 steps. This decision

was made, because in the time vs. precision relationship, the values achieved for the

metrics used already showed a significant result, i.e., a good precision, recall and f1-score

with a low amount of steps. In this way, each test was carried out with 10 training

samples, so that the initial randomness factor of the weights could not be taken into

account. Therefore, as mentioned earlier, three test cases were considered: synthetic

images, hybrid images and real images.

In Table 5.4 we can see the list of tests performed. All tests were performed with

960x540 resolution images and evaluated on a dataset of 380 previously labeled images

for each object, respecting, obviously, the separation between training and test dataset.

In addition, the confidence_score and iou_score parameters were set to 0.9 and 0.5,

respectively.

Scenario Object Number of Synthetic Images Number of Real Images

Synthetic

Adblue 100 0
Yamaha logo 100 0

Volkswagen logo 100 0
Fuel cap 100 0

Clutch lever 100 0

Hybrid

Adblue 50 50
Yamaha logo 50 50

Volkswagen logo 50 50
Fuel cap 50 50

Clutch lever 50 50

Real

Adblue 0 100
Yamaha logo 0 100

Volkswagen logo 0 100
Fuel cap 0 100

Clutch lever 0 100

Table 5.4: Training dataset for all scenery tests

5.3 Models Tests 38

Otherwise, in Table 5.5, we can see the number of real images test datasets for each

object. In addition, an example real image of each object can be seen in Figure 5.3. The

ground-truth of the real images was done manually in order to be able to evaluate the

final performance of the model.

Object Images
Adblue 380

Yamaha logo 380
Volkswagen logo 380

Fuel cap 380
Clutch lever 380

Table 5.5: Real images test dataset

(a) Adblue scene example (b) Yamaha logo scene example

(c) Volkswagen logo scene example (d) Clutch lever scene example

(e) Fuel cap scene example

Figure 5.3: Example of real images for each object.

5.3 Models Tests 39

5.3.1 Synthetic Images Evaluation

With 100 images generated through Blender for each object and automatically labeled, 10

test samples were performed to obtain the results described in this section, not including

the intermediate experiments, with other parameters and reduced number of samples.

The average and standard deviation of the metrics (precision, recall and F1-score) for

each object can be seen in the Tables 5.6 and 5.7. The confusion matrices for the best

results for each object can be seen in the Table 5.8. The corresponding Average Precision

values [19], were also calculated and are reported in Precision x Recall curves for the IoU

≥ 0.5. The curves for the best results for each object can be seen in Figures 5.4, 5.5,

5.6, 5.7 and 5.8. The curves were plotted with python, using the algorithm developed

in [39]. In Figures 5.9, 5.10, 5.11, 5.12 and 5.13, we can observe the loss functions for

the best results for each object. The graphs of the loss function were plotted using the

TensorBoard - TensorFlow API. The y axis represents the loss and the x axis represents

the number of steps. The goal is to minimize the loss function. In other words, it means

that the model is making fewer mistakes.

Object Precision (%) Recall (%) F1-Score (%)
Adblue 85.11 80.00 81.93

Yamaha logo 78.06 96.22 85.19
Volkswagen logo 0 0 0

Fuel cap 0 0 0
Clutch lever 0 0 0

Table 5.6: Average of test samples for each object with synthetic images

Object Precision (%) Recall (%) F1-Score (%)
Adblue 10.49 4.46 3.88

Yamaha logo 16.24 4.29 11.15
Volkswagen logo 0 0 0

Fuel cap 0 0 0
Clutch lever 0 0 0

Table 5.7: Standard deviation of test samples for each object with synthetic images

It is important to note that the values filled with zero in Tables 5.6, 5.7 and 5.8

occurred due to overfitting for these corresponding objects in the described test scenario.

Thus showing that in some cases the fully synthetic approach is not working. This justifies

the use of the hybrid approach in the later sections.

5.3 Models Tests 40

Object contains not contains
adblue not adblue

adblue 219 24
not adblue 16 -

yamaha logo not yamaha logo
yamaha logo 264 11

not yamaha logo 6 -
volkswagen logo not volkswagen logo

volkswagen logo 0 0
not volkswagen logo 0 -

fuel cap not fuel cap
fuel cap 0 0

not fuel cap 0 -
clutch lever not clutch lever

clutch lever 0 0
not clutch lever 0 -

Table 5.8: Confusion matrix for better results of each object with synthetic images

Figure 5.4: Precision x Recall curves for the better test of adblue object with synthetic
images

5.3 Models Tests 41

Figure 5.5: Precision x Recall curves for the better test of yamaha_logo object with
synthetic images

Figure 5.6: Precision x Recall curves for the better test of volkswagen_logo object with
synthetic images

5.3 Models Tests 42

Figure 5.7: Precision x Recall curves for the better test of fuel cap object with synthetic
images

Figure 5.8: Precision x Recall curves for the better test of clutch lever object with synthetic
images

5.3 Models Tests 43

Figure 5.9: Loss function for better result of adblue object with synthetic images

Figure 5.10: Loss function for better result of yamaha logo object with synthetic images

Figure 5.11: Loss function for better result of volkswagen logo object with synthetic
images

5.3 Models Tests 44

Figure 5.12: Loss function for better result of fuelcap object with synthetic images

Figure 5.13: Loss function for better result of clutch lever object with synthetic images

5.3.2 Hybrid Images Tests

With 50 images generated by Blender for each object automatically labeled and 50 real

images manually labeled, 10 test samples were performed to obtain the results described

in this section, not including the intermediate experiments, with other parameters and

reduced number of samples.

The average and standard deviation of the metrics (precision, recall and F1-score) for

each object can be seen in the Tables 5.9 and 5.10. The confusion matrices for the best

results for each object can be seen in the Table 5.11. The corresponding Average Precision

values [19], were also calculated and are reported in Precision x Recall curves for the IoU

≥ 0.5. The curves for the best results for each object can be seen in Figures 5.14, 5.15,

5.16, 5.17 and 5.18. The curves were plotted with python, using the algorithm developed

in [39]. In Figures 5.19, 5.20, 5.21, 5.22 and 5.23, we can observe the loss functions for

the best results for each object. The graphs of the loss function were plotted using the

TensorBoard - TensorFlow API. The y axis represents the loss and the x axis represents

5.3 Models Tests 45

the number of steps. The goal is to minimize the loss function. In other words, it means

that the model is making fewer mistakes.

Object Precision (%) Recall (%) F1-Score (%)
Adblue 87.13 44.64 58.70

Yamaha logo 95.04 95.79 95.31
Volkswagen logo 98.27 62.98 75.06

Fuel cap 94.22 91.74 92.84
Clutch lever 73.38 29.11 41.17

Table 5.9: Average of test samples for each object with hybrid images

Object Precision (%) Recall (%) F1-Score (%)
Adblue 5.17 7.26 6.30

Yamaha logo 3.79 4.33 2.65
Volkswagen logo 3.82 18.61 13.36

Fuel cap 2.86 5.94 3.38
Clutch lever 21.73 4.03 7.37

Table 5.10: Standard deviation of test samples for each object with hybrid images

Object contains not contains
adblue not adblue

adblue 139 33
not adblue 96 -

yamaha logo not yamaha logo
yamaha logo 261 36

not yamaha logo 9
volkswagen logo not volkswagen logo

volkswagen logo 171 0
not volkswagen logo 30 -

fuel cap not fuel cap
fuel cap 358 12

not fuel cap 22 -
clutch lever not clutch lever

clutch lever 120 15
not clutch lever 200 -

Table 5.11: Confusion matrix for better results of each object with hybrid images

5.3 Models Tests 46

Figure 5.14: Precision x Recall curves for the better test of adblue object with hybrid
images

Figure 5.15: Precision x Recall curves for the better test of yamaha_logo object with
hybrid images

5.3 Models Tests 47

Figure 5.16: Precision x Recall curves for the better test of volkswagen_logo object with
hybrid images

Figure 5.17: Precision x Recall curves for the better test of fuel cap object with hybrid
images

5.3 Models Tests 48

Figure 5.18: Precision x Recall curves for the better test of clutch lever object with hybrid
images

Figure 5.19: Loss function for better result of adblue object with hybrid images

Figure 5.20: Loss function for better result of yamaha logo object with hybrid images

5.3 Models Tests 49

Figure 5.21: Loss function for better result of volkswagen logo object with hybrid images

Figure 5.22: Loss function for better result of fuelcap object with hybrid images

Figure 5.23: Loss function for better result of clutch lever object with hybrid images

5.3.3 Real Images Tests

With 100 real images and manually labeled images, 10 test samples were performed to

obtain the results described in this section, not including the intermediate experiments,

with other parameters and reduced number of samples.

5.3 Models Tests 50

The average and standard deviation of the metrics (precision, recall and F1-score) for

each object can be seen in the Tables 5.12 and 5.13. The confusion matrices for the best

results for each object can be seen in the Table 5.14. The corresponding Average Precision

values [19], were also calculated and are reported in Precision x Recall curves for the IoU

≥ 0.5. The curves for the best results for each object can be seen in Figures 5.24, 5.25,

5.26, 5.27 and 5.28. The curves were plotted with python, using the algorithm developed

in [39]. In Figures 5.29, 5.30, 5.31, 5.32 and 5.33, we can observe the loss functions for

the best results for each object. The graphs of the loss function were plotted using the

TensorBoard - TensorFlow API. The y axis represents the loss and the x axis represents

the number of steps. The goal is to minimize the loss function. In other words, it means

that the model is making fewer mistakes.

Object Precision (%) Recall (%) F1-Score (%)
Adblue 89.66 87.33 89.57

Yamaha logo 30.00 0.22 0.44
Volkswagen logo 83.01 89.33 83.56

Fuel cap 84.36 36.18 49.54
Clutch lever 100.00 32.32 48.66

Table 5.12: Average of test samples for each object with real images

Object Precision (%) Recall (%) F1-Score (%)
Adblue 7.48 4.28 4.83

Yamaha logo 48.30 0.47 0.92
Volkswagen logo 12.68 19.40 12.12

Fuel cap 11.46 10.42 9.77
Clutch lever 0.00 4.95 5.51

Table 5.13: Standard deviation of test samples for each object with real images

5.3 Models Tests 51

Object contains not contains
adblue not adblue

adblue 222 18
not adblue 13 -

yamaha logo not yamaha logo
yamaha logo 1 0

not yamaha logo 269 -
volkswagen logo not volkswagen logo

volkswagen logo 201 42
not volkswagen logo 0 -

fuel cap not fuel cap
fuel cap 212 43

not fuel cap 168 -
clutch lever not clutch lever

clutch lever 170 0
not clutch lever 210 -

Table 5.14: Confusion matrix for better results of each object with real images

Figure 5.24: Precision x Recall curves for the better test of adblue object with real images

5.3 Models Tests 52

Figure 5.25: Precision x Recall curves for the better test of yamaha_logo object with real
images

Figure 5.26: Precision x Recall curves for the better test of volkswagen_logo object with
real images

5.3 Models Tests 53

Figure 5.27: Precision x Recall curves for the better test of fuel cap object with real
images

Figure 5.28: Precision x Recall curves for the better test of clutch lever object with real
images

5.3 Models Tests 54

Figure 5.29: Loss function for better result of adblue object with real images

Figure 5.30: Loss function for better result of yamaha logo object with real images

Figure 5.31: Loss function for better result of volkswagen logo object with real images

5.4 Discussion 55

Figure 5.32: Loss function for better result of fuelcap object with real images

Figure 5.33: Loss function for better result of clutch lever object with real images

5.4 Discussion

It is difficult to compare our results with other works in the literature for some reasons.

As far as we know, the approach presented in this work is the first proposal for an object

detection model based on synthetic (automatically generated with a CAD model) and

hybrid (synthetic + real) images applied to the industry.

Most OD works train and evaluate their synthetic image models in real datasets

of common objects (cat, dog, train, plane, car, etc.), in order to validate not only the

performance of the algorithm, but also setting hyperparameters. However, none of them is

concerned with the development of an end-to-end systematization in industrial processes.

Despite this, in [36] the classification of objects in an automobile production line was

tried, however, with only real images of the objects. In this work, the estimated detection

accuracy was greater than 90 %. However, in our work, we have also achieved values

above 90 % in several cases.

5.5 Hypothesis Tests 56

However, to give a general idea of the quality of our systematic approach, we can

compare the results obtained with those reported in some studies. More generic works

(with respect to objects), for example, in [46], for the detection of cats, dogs or trains,

they obtained values of 89.4 %, 87.5 % and 82.1 % respectively. In [8], for the same

objects, the values are 16 %, 5 % and 34 %.

Seeing these results, we can say that our approach produces good results in real images,

being able to compete with the results obtained by the best OD models in standard

datasets.

Finally, we can also compare our results with [21], in which the authors also train an

OD model in synthetic images and evaluate in real images. However, this approach is not

entirely systematic since the scenes are created manually in Blender. The object used in

this work for evaluation is a glass of wine and the maximum AP obtained is 71.14 %. We

can see that our systematic approach seems to work better than this approach, however,

we cannot reproduce the method on our objects, as we cannot create the scenes manually

in the same way that they would.

5.5 Hypothesis Tests

An alternative hypothesisH01 : mh > mr was established ("Is object detection using hybrid

datasets better than using only real images?"), in which mh and mr correspond to the

higher precision values obtained (N=10) by the implemented models with hybrid images

and real images, respectively. This alternative was tested for each object in question.

An another alternative hypothesis H02 : ms > mr was established ("Is object detection

using synthetic images better than using real images?"), in which ms and mr correspond

to the higher precision values obtained (N=10) by the implemented models with syn-

thetic images and real images, respectively. This alternative was tested for each object in

question.

The Wilcoxon test [66] was chosen because it is nonparametric and appropriate for

data from repeated-measures with two conditions. The test was performed on top of the

three metrics (precision, recall, F1-score), for all test samples of all objects.

5.5 Hypothesis Tests 57

Object Method Mean Std. Dev SE Mean p-value Result Parameter

Adblue
Hybrid 87.13 5.17 1.63

0.807 Probably the same distributions
Precision

Real 89.66 7.48 2.37 Precision

Yamaha logo
Hybrid 95.04 3.79 1.20

0.973 Probably different distributions
Precision

Real 30.00 48.30 15.28 Precision

Volkswagen logo
Hybrid 98.27 3.82 1.21

0.98 Probably different distributions
Precision

Real 83.01 12.68 4.01 Precision

Fuel cap
Hybrid 94.22 2.86 0.90

0.973 Probably different distributions
Precision

Real 84.36 11.46 3.62 Precision

Clutch Lever
Hybrid 73.38 21.73 6.87

0.998 Probably different distributions
Precision

Real 100 0 0 Precision

Adblue
Hybrid 44.64 7.26 2.29

0.998 Probably different distributions
Recall

Real 87.83 4.28 1.35 Recall

Yamaha logo
Hybrid 95.79 4.33 1.37

0.998 Probably different distributions
Recall

Real 0.22 0.47 0.15 Recall

Volkswagen logo
Hybrid 62.98 18.61 5.89

0.98 Probably different distributions
Recall

Real 89.33 19.4 6.14 Recall

Fuel cap
Hybrid 91.73 5.94 1.88

0.998 Probably different distributions
Recall

Real 36.19 10.42 3.30 Recall

Clutch Lever
Hybrid 29.11 4.03 1.27

0.725 Probably the same distributions
Recall

Real 32.32 4.95 1.57 Recall

Adblue
Hybrid 58.70 6.30 1.99

0.998 Probably different distributions
F1-Score

Real 88.57 4.83 1.53 F1-Score

Yamaha logo
Hybrid 95.31 2.65 0.84

0.998 Probably different distributions
F1-Score

Real 0.44 0.92 0.29 F1-Score

Volkswagen logo
Hybrid 75.06 13.36 4.22

0.916 Probably the same distributions
F1-Score

Real 8.55 12.13 3.83 F1-Score

Fuel cap
Hybrid 92.84 3.38 1.07

0.998 Probably different distributions
F1-Score

Real 49.54 9.77 3.09 F1-Score

Clutch Lever
Hybrid 41.17 7.37 2.33

0.895 Probably the same distributions
F1-Score

Real 48.661 5.52 1.74 F1-Score

Table 5.15: The Wilcoxon test for the models considering the hybrid and real objects.

5.5 Hypothesis Tests 58

Object Method Mean Std. Dev SE Mean p-value Result Parameter

Adblue
Synthetic 85.11 10.49 3.32

0.626 Probably the same distributions
Precision

Real 89.66 7.48 2.37 Precision

Yamaha logo
Synthetic 78.03 16.30 5.15

0.973 Probably different distributions
Precision

Real 30.00 48.30 15.28 Precision

Volkswagen logo
Synthetic - - -

- -
Precision

Real - - - Precision

Fuel cap
Synthetic - - -

- -
Precision

Real - - - Precision

Clutch Lever
Synthetic - - -

- -
Precision

Real - - - Precision

Adblue
Synthetic 80.00 4.46 1.41

0.994 Probably different distributions
Recall

Real 87.83 4.28 1.35 Recall

Yamaha logo
Synthetic 96.23 4.29 1.36

0.998 Probably different distributions
Recall

Real 0.22 0.47 0.15 Recall

Volkswagen logo
Synthetic - - -

- -
Recall

Real - - - Recall

Fuel cap
Synthetic - - -

- -
Recall

Real - - - Recall

Clutch Lever
Synthetic - - -

- -
Recall

Real - - - Recall

Adblue
Synthetic 81.93 3.88 1.23

0.98 Probably different distributions
F1-Score

Real 88.57 4.83 1.53 F1-Score

Yamaha logo
Synthetic 85.19 11.15 3.52

0.998 Probably different distributions
F1-Score

Real 0.44 0.92 0.29 F1-Score

Volkswagen logo
Synthetic - - -

- -
F1-Score

Real - - - F1-Score

Fuel cap
Synthetic - - -

- -
F1-Score

Real - - - F1-Score

Clutch Lever
Synthetic - - -

- -
F1-Score

Real - - - F1-Score

Table 5.16: The Wilcoxon test for the models considering the synthetic and real objects.

In both tests (H01 e H02), the p-value was chosen as 5 % of significance level. In Table

5.15 and 5.16 it is possible to view the results from the statistical test for each scenario.

For some cases, there are significant differences between the performance of the models.

For the precision metric, of the 5 objects evaluated, 3 of them (yamaha logo, volkswa-

gen logo and fuel cap) were better for the comparative case hybrid vs real and 1 of them

(yamaha logo) was better for the comparative synthetic case vs real. Still regarding this

metric, for the case of adblue object, the test hybrid vs real was not conclusive because

the cases probably followed the same distribution. The synthetic vs real test for the same

object (adblue) was also not conclusive, probably indicating the same data distribution.

For the volkswagen logo, fuel cap and clutch lever objects in the synthetic vs real test, the

synthetics cases of these objects were overfitted, making it impossible to make a concrete

5.5 Hypothesis Tests 59

assessment.

As for the recall metric, of the 5 objects evaluated, 2 of them (yamaha logo and fuel

cap) were better for the comparative case hybrid vs real and 1 of them (yamaha logo)

was better for the comparative case synthetic vs real. Still in relation to this metric,

for the case of the clutch lever object, the test hybrid vs real was not conclusive because

the cases probably followed the same distribution. For the volkswagen logo, fuel cap and

clutch lever objects in the synthetic vs real test, the synthetics cases of these objects

were overfitted, in this case, synthetic did not work for these objects, so distributions are

definitely different.

Finally, for the f1-score metric, of the 5 objects evaluated, 2 of them (yamaha logo,

and fuel cap) were better for the comparative case hybrid vs real and 1 of them (yamaha

logo) was better for the case comparative synthetic vs real. Still regarding this metric, for

the cases of volkswagen logo object and clutch lever object, the test hybrid vs real was not

conclusive because the cases probably followed the same distribution. For the volkswagen

logo, fuel cap and clutch lever objects in the synthetic vs real test, the synthetics cases of

these objects were overfitted, making it impossible to make a concrete assessment.

Therefore, the use of hybrid models is recommended, because only synthetic is risky

(risk of overfitting) and only real too.

Chapter 6

Conclusion

This master’s thesis studies the problem of object detection in the industrial scenario

using synthetic images, trying to understand which aspects of the process influence the

final performance of the detector and proposing a systematic approach. The aspects

consisted of the synthetic image generation process with labels, the training process and

the inference of a given data set. A data set was also created for this work, with examples

of labeled industrial images. The training process was carried out using a neural network,

which sought to detect the object inserted in the image.

Detecting an object or multiple objects is not an extremely complex task. However,

when it comes to the use of synthetic images in an industrial environment, this task

becomes complex, as the training is done using only the CAD model of the object in

question, in addition to the environment being extremely varied (objects, pieces and

scenery, etc.). In addition, there is also a difficulty in finding CAD models of specific

industrial objects so that they can be trained. Thus, as a consequence of this work, a set

of data was produced and made publicly available for other research 1.

Faster RCNN was the neural network chosen to incorporate the method because it

was the one that had the best time vs. precision relationship 2 among the models available

in the TensorFlow API. The image rendering software, Blender, was chosen because it has

a highly efficient Python API for automatic image generations, besides being very well

documented.

At the end of the experiments, it was possible to conclude that the systematic ap-

proach developed in this work to detect objects in industrial environments from synthetic
1https://github.com/igorgbs/systematic_approach_cad_models
2https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/

tf2_detection_zoo.md

6.1 Limitations 61

images, served to accurately detect their presence in images in industrial environments.

Synthetic, real and hybrid images data sets were also tested statistically, where the latter

was the one that obtained the best result. However, even using different objects, overfit-

ting was a feature present in some cases. Even so, the results of the experiments were a

success, enabling a discussion on the different possible approaches for detecting objects in

industrial environments, introducing new ideas that can be implemented. In addition, it

has been shown that a large set of images is not necessary to obtain a significant result.

Our experiments indicate that the proposed rendering process is sufficient to obtain good

performances and that the form of construction and rendering of the scenes is fundamental

to the final result.

It is important to emphasize that the systematic approach developed in this work

can be expanded to the most diverse types of CAD models of industrial parts. The main

advantage of this approach is that anyone interested can use it to infer adjustments in the

generation and training of the image, even before the real object begins to be produced.

Another advantage is that this methodology avoids data collection and labeling errors.

6.1 Limitations

Some limitations were present in this work. The use of few objects was due to the fact that

there are very few industrial and real CAD models for free, i.e. parts actually designed

by the manufacturers and made available free of charge. As a result, it is also difficult

to find image data sets with labeled CAD objects. In addition, it was not possible to

implement the systematic approach directly in an assembly line. As for neural networks,

it was also not possible to test with more Tensorflow models because there are about 40

models available. Textures and distractors truly found in a real production line were also

not possible for the same reason as main objects. Another point of extreme importance

concerns the inconclusive result of why overfitting occurs for some objects.

6.2 Future Work

There are several improvements that can be made. One of them would be to expand

the systematic approach to more domains, being able to provide the construction of

the datasets themselves, as was done in this work. Thus solving other computer vision

problems. Additionally, obtain automatic textures and colors for objects present in real

6.2 Future Work 62

images in order to try to avoid overfitting.

In addition, transforming the systematic approach into a framework or application

could be one way. This could greatly facilitate industrial quality processes that involve

detection and recognition of defective objects, for example.

With the use of sensors and networked machines it has resulted in the continuous

generation of high volume data, another point of extreme importance would be the devel-

opment of an appropriate architecture that would support object detection and recognition

systems in industry 4.0.

References

[1] Baimukashev, D.; Zhilisbayev, A.; Kuzdeuov, A.; Oleinikov, A.; Fadeyev,
D.; Makhataeva, Z.; Varol, H. A. Deep learning based object recognition us-
ing physically-realistic synthetic depth scenes. Machine Learning and Knowledge
Extraction 1, 3 (2019), 883–903.

[2] Bardenet, R.; Brendel, M.; Kégl, B.; Sebag, M. Collaborative hyperparam-
eter tuning. In International conference on machine learning (2013), pp. 199–207.

[3] Ben-Himane, S.; Hintestroisser, S.; Navab, N. Computer vision cad models,
Oct. 14 2010. US Patent App. 12/682,199.

[4] Cheng, G.-J.; Liu, L.-T.; Qiang, X.-J.; Liu, Y. Industry 4.0 development
and application of intelligent manufacturing. In 2016 international conference on
information system and artificial intelligence (ISAI) (2016), IEEE, pp. 407–410.

[5] Collins, P. K.; Leen, R.; Gibson, I. Industry case study: rapid prototype of
mountain bike frame section. Virtual and Physical Prototyping 11, 4 (2016), 295–303.

[6] Community, B. O. Blender - a 3D modelling and rendering package. Blender
Foundation, Stichting Blender Foundation, Amsterdam, 2018.

[7] Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In
2005 IEEE computer society conference on computer vision and pattern recognition
(CVPR’05) (2005), vol. 1, IEEE, pp. 886–893.

[8] Dean, T.; Ruzon, M. A.; Segal, M.; Shlens, J.; Vijayanarasimhan, S.;
Yagnik, J. Fast, accurate detection of 100,000 object classes on a single machine.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(2013), pp. 1814–1821.

[9] Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Fei-Fei, L. Imagenet: A
large-scale hierarchical image database. In 2009 IEEE conference on computer vision
and pattern recognition (2009), Ieee, pp. 248–255.

[10] Dopico, M.; Gomez, A.; De la Fuente, D.; García, N.; Rosillo, R.; Puche,
J. A vision of industry 4.0 from an artificial intelligence point of view. In Proceedings
on the International Conference on Artificial Intelligence (ICAI) (2016), The Steering
Committee of The World Congress in Computer Science, Computer . . . , p. 407.

[11] Drost, B.; Ulrich, M.; Bergmann, P.; Hartinger, P.; Steger, C. Introduc-
ing mvtec itodd-a dataset for 3d object recognition in industry. In Proceedings of the
IEEE International Conference on Computer Vision Workshops (2017), pp. 2200–
2208.

References 64

[12] Everingham, M.; Eslami, S. A.; Van Gool, L.; Williams, C. K.; Winn,
J.; Zisserman, A. The pascal visual object classes challenge: A retrospective.
International journal of computer vision 111, 1 (2015), 98–136.

[13] Everingham, M.; Van Gool, L.; Williams, C. K.; Winn, J.; Zisserman, A.
The pascal visual object classes (voc) challenge. International journal of computer
vision 88, 2 (2010), 303–338.

[14] Felzenszwalb, P.; McAllester, D.; Ramanan, D. A discriminatively trained,
multiscale, deformable part model. In 2008 IEEE conference on computer vision and
pattern recognition (2008), IEEE, pp. 1–8.

[15] Girshick, R. Fast r-cnn. In Proceedings of the IEEE international conference on
computer vision (2015), pp. 1440–1448.

[16] He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial pyramid pooling in deep convolutional
networks for visual recognition. IEEE transactions on pattern analysis and machine
intelligence 37, 9 (2015), 1904–1916.

[17] Hinterstoisser, S.; Lepetit, V.; Wohlhart, P.; Konolige, K. On pre-
trained image features and synthetic images for deep learning. In Proceedings of the
European Conference on Computer Vision (ECCV) (2018), pp. 0–0.

[18] Hirz, M.; Rossbacher, P.; Gulanová, J. Future trends in cad–from the perspec-
tive of automotive industry. Computer-aided design and applications 14, 6 (2017),
734–741.

[19] Hoiem, D.; Divvala, S. K.; Hays, J. H. Pascal voc 2008 challenge. In PASCAL
challenge workshop in ECCV (2009), Citeseer.

[20] Howard, A. G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand,
T.; Andreetto, M.; Adam, H. Mobilenets: Efficient convolutional neural net-
works for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017).

[21] Jabbar, A.; Farrawell, L.; Fountain, J.; Chalup, S. K. Training deep
neural networks for detecting drinking glasses using synthetic images. In International
Conference on Neural Information Processing (2017), Springer, pp. 354–363.

[22] Jaccard, P. Étude comparative de la distribution florale dans une portion des alpes
et des jura. Bull Soc Vaudoise Sci Nat 37 (1901), 547–579.

[23] Jalled, F.; Voronkov, I. Object detection using image processing. arXiv preprint
arXiv:1611.07791 (2016).

[24] Kamencay, P.; Benčo, M.; Miždoš, T.; Radil, R. A new method for face
recognition using convolutional neural network.

[25] Krasin, I.; Duerig, T.; Alldrin, N.; Ferrari, V.; Abu-El-Haija, S.;
Kuznetsova, A.; Rom, H.; Uijlings, J.; Popov, S.; Veit, A., et al. Openim-
ages: A public dataset for large-scale multi-label and multi-class image classification.
Dataset available from https://github. com/openimages 2, 3 (2017), 2–3.

References 65

[26] Krizhevsky, A.; Sutskever, I.; Hinton, G. E. Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing
systems (2012), pp. 1097–1105.

[27] Lafreniere, B.; Grossman, T. Blocks-to-cad: A cross-application bridge from
minecraft to 3d modeling. In Proceedings of the 31st Annual ACM Symposium on
User Interface Software and Technology (2018), pp. 637–648.

[28] Lin, T.-Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S.
Feature pyramid networks for object detection. In Proceedings of the IEEE conference
on computer vision and pattern recognition (2017), pp. 2117–2125.

[29] Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense
object detection. In Proceedings of the IEEE international conference on computer
vision (2017), pp. 2980–2988.

[30] Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.;
Dollár, P.; Zitnick, C. L. Microsoft coco: Common objects in context. In
European conference on computer vision (2014), Springer, pp. 740–755.

[31] Lindsay, A.; Paterson, A.; GRAHAM, I. Identifying and quantifying inefficien-
cies within industrial parametric cad models. In Advances in Manufacturing Tech-
nology XXXII: Proceedings of the 16th International Conference on Manufacturing
Research, incorporating the 33rd National Conference on Manufacturing Research,
September 11–13, 2018, University of Skövde, Sweden (2018), vol. 8, IOS Press,
p. 227.

[32] Liu, L.; Ouyang, W.; Wang, X.; Fieguth, P.; Chen, J.; Liu, X.; Pietikäi-
nen, M. Deep learning for generic object detection: A survey. International journal
of computer vision 128, 2 (2020), 261–318.

[33] Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg,
A. C. Ssd: Single shot multibox detector. In European conference on computer vision
(2016), Springer, pp. 21–37.

[34] Luan, S.; Li, Y.; Wang, X.; Zhang, B. Object detection and tracking benchmark
in industry based on improved correlation filter. Multimedia Tools and Applications
77, 22 (2018), 29919–29932.

[35] Mahalingam, T.; Subramoniam, M. A robust single and multiple moving object
detection, tracking and classification. Applied Computing and Informatics (2020).

[36] Mazzetto, M.; Southier, L. F.; Teixeira, M.; Casanova, D. Automatic
classification of multiple objects in automotive assembly line. In 2019 24th IEEE In-
ternational Conference on Emerging Technologies and Factory Automation (ETFA)
(2019), IEEE, pp. 363–369.

[37] Mitash, C.; Bekris, K. E.; Boularias, A. A self-supervised learning system
for object detection using physics simulation and multi-view pose estimation. In
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
(2017), IEEE, pp. 545–551.

References 66

[38] Oh, Y.; Ransikarbum, K.; Busogi, M.; Kwon, D.; Kim, N. Adaptive svm-
based real-time quality assessment for primer-sealer dispensing process of sunroof
assembly line. Reliability Engineering & System Safety 184 (2019), 202–212.

[39] Padilla, R.; Netto, S. L.; da Silva, E. A. A survey on performance metrics for
object-detection algorithms. In 2020 International Conference on Systems, Signals
and Image Processing (IWSSIP) (2020), IEEE, pp. 237–242.

[40] Park, K.; Patten, T.; Prankl, J.; Vincze, M. Multi-task template match-
ing for object detection, segmentation and pose estimation using depth images. In
2019 International Conference on Robotics and Automation (ICRA) (2019), IEEE,
pp. 7207–7213.

[41] Peng, X.; Sun, B.; Ali, K.; Saenko, K. Learning deep object detectors from 3d
models. In Proceedings of the IEEE International Conference on Computer Vision
(2015), pp. 1278–1286.

[42] Pinto, N.; Barhomi, Y.; Cox, D. D.; DiCarlo, J. J. Comparing state-of-the-
art visual features on invariant object recognition tasks. In 2011 IEEE workshop on
Applications of computer vision (WACV) (2011), IEEE, pp. 463–470.

[43] Prasad, D. K. Survey of the problem of object detection in real images. Interna-
tional Journal of Image Processing (IJIP) 6, 6 (2012), 441.

[44] Rajpura, P. S.; Bojinov, H.; Hegde, R. S. Object detection using deep cnns
trained on synthetic images. arXiv preprint arXiv:1706.06782 (2017).

[45] Rao, J.; Qiao, Y.; Ren, F.; Wang, J.; Du, Q. A mobile outdoor augmented
reality method combining deep learning object detection and spatial relationships for
geovisualization. Sensors 17, 9 (2017), 1951.

[46] Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Uni-
fied, real-time object detection. In Proceedings of the IEEE conference on computer
vision and pattern recognition (2016), pp. 779–788.

[47] Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object de-
tection with region proposal networks. In Advances in neural information processing
systems (2015), pp. 91–99.

[48] Rozantsev, A.; Lepetit, V.; Fua, P. On rendering synthetic images for training
an object detector. Computer Vision and Image Understanding 137 (2015), 24–37.

[49] Ruiz, F. E.; Pérez, P. S.; Bonev, B. I. Information theory in computer vision
and pattern recognition. Springer Science & Business Media, 2009.

[50] Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.;
Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M., et al. Imagenet large
scale visual recognition challenge. International journal of computer vision 115, 3
(2015), 211–252.

[51] Sabokrou, M.; Fayyaz, M.; Fathy, M.; Moayed, Z.; Klette, R. Deep-
anomaly: Fully convolutional neural network for fast anomaly detection in crowded
scenes. Computer Vision and Image Understanding 172 (2018), 88–97.

References 67

[52] Salau, A. O.; Jain, S. Feature extraction: A survey of the types, techniques, appli-
cations. In 2019 International Conference on Signal Processing and Communication
(ICSC) (2019), IEEE, pp. 158–164.

[53] Sharma, K. U.; Thakur, N. V. A review and an approach for object detection in
images. International Journal of Computational Vision and Robotics 7, 1-2 (2017),
196–237.

[54] Shirley, P.; Morley, R. K. Realistic ray tracing. AK Peters/CRC Press, 2003.

[55] Shleymovich, M.; Medvedev, M.; Lyasheva, S. Object detection in the im-
ages in industrial process control systems based on salient points of wavelet transform
analysis. In 2016 2nd International Conference on Industrial Engineering, Applica-
tions and Manufacturing (ICIEAM) (2016), IEEE, pp. 1–6.

[56] Shrestha, A.; Karki, N.; Yonjan, R.; Subedi, M.; Phuyal, S. Automatic
object detection and separation for industrial process automation. In 2020 IEEE
International Students’ Conference on Electrical, Electronics and Computer Science
(SCEECS) (2020), IEEE, pp. 1–5.

[57] Su, H.; Qi, C. R.; Li, Y.; Guibas, L. J. Render for cnn: Viewpoint estimation in
images using cnns trained with rendered 3d model views. In Proceedings of the IEEE
International Conference on Computer Vision (2015), pp. 2686–2694.

[58] Sultana, F.; Sufian, A.; Dutta, P. A review of object detection models based
on convolutional neural network. In Intelligent Computing: Image Processing Based
Applications. Springer, 2020, pp. 1–16.

[59] Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A. A. Inception-v4, inception-
resnet and the impact of residual connections on learning. In Thirty-first AAAI
conference on artificial intelligence (2017).

[60] Tremblay, J.; Prakash, A.; Acuna, D.; Brophy, M.; Jampani, V.; Anil,
C.; To, T.; Cameracci, E.; Boochoon, S.; Birchfield, S. Training deep
networks with synthetic data: Bridging the reality gap by domain randomization. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops (2018), pp. 969–977.

[61] Tsai, C.; Lin, W. A comparative study of global and local feature representations
in image database categorization. In 2009 Fifth International Joint Conference on
INC, IMS and IDC (2009), pp. 1563–1566.

[62] Van de Sande, K. E.; Uijlings, J. R.; Gevers, T.; Smeulders, A. W. Seg-
mentation as selective search for object recognition. In 2011 International Conference
on Computer Vision (2011), IEEE, pp. 1879–1886.

[63] Viola, P.; Jones, M. Rapid object detection using a boosted cascade of simple
features. In Proceedings of the 2001 IEEE computer society conference on computer
vision and pattern recognition. CVPR 2001 (2001), vol. 1, IEEE, pp. I–I.

[64] Viola, P.; Jones, M. J. Robust real-time face detection. International journal of
computer vision 57, 2 (2004), 137–154.

References 68

[65] Voulodimos, A.; Doulamis, N.; Doulamis, A.; Protopapadakis, E. Deep
learning for computer vision: A brief review. Computational intelligence and neuro-
science 2018 (2018).

[66] Wilcoxon, F. Individual comparisons by ranking methods. biometrics bulletin 1,
6 (1945), 80–83. URL http://www. jstor. org/stable/3001968 (1945).

[67] Xiao, Y.; Tian, Z.; Yu, J.; Zhang, Y.; Liu, S.; Du, S.; Lan, X. A review of
object detection based on deep learning. Multimedia Tools and Applications (2020),
1–63.

[68] Xu, L. D.; Xu, E. L.; Li, L. Industry 4.0: state of the art and future trends.
International Journal of Production Research 56, 8 (2018), 2941–2962.

[69] Yang, J.; Li, S.; Wang, Z.; Yang, G. Real-time tiny part defect detection system
in manufacturing using deep learning. IEEE Access 7 (2019), 89278–89291.

[70] Zhang, X.; Yang, Y.-H.; Han, Z.; Wang, H.; Gao, C. Object class detection:
A survey. ACM Computing Surveys (CSUR) 46, 1 (2013), 1–53.

[71] Zhang, Z.; Li, J.; Shao, W.; Peng, Z.; Zhang, R.; Wang, X.; Luo, P. Dif-
ferentiable learning-to-group channels via groupable convolutional neural networks.
In Proceedings of the IEEE International Conference on Computer Vision (2019),
pp. 3542–3551.

[72] Zhao, Z.-Q.; Zheng, P.; Xu, S.-t.; Wu, X. Object detection with deep learning:
A review. IEEE transactions on neural networks and learning systems 30, 11 (2019),
3212–3232.

[73] Zou, Z.; Shi, Z.; Guo, Y.; Ye, J. Object detection in 20 years: A survey. arXiv
preprint arXiv:1905.05055 (2019).

