ࡱ> 574^bjbjUU >??^  0/////C OHLW//WW//WWWW//WWWWW/#>WW0W6W6W6WPWWWWWWWWWWWWWWWW6WWWWWWWWW :Resumo As funes sintonizadas de Gabor so senides moduladas por Gaussianas, cujos parmetros ficam determinados por um dado sinal o sinal de sintonia , para o qual as funes sintonizadas fornecem uma representao exata. Tais funes foram originalmente propostas como ncleos de uma variante da transformada de Gabor, que se mostrou capaz de identificar com preciso eventos espaciais e espectrais do sinal analisado, mesmo em situaoes em que a abordagem de Gabor tradicional falha. No presente trabalho, ns propomos e analisamos um modelo, baseado na representao sintonizada, para os campos receptivos e as respostas de clulas do crtex visual primrio (V1). Mais especificamente, os campos receptivos das clulas de V1 so modelados por funes sintonizadas do domnio espacial (clulas complexas) ou espectral (clulas simples), enquanto as respectivas respostas so fornecidas pelas transformadas sintonizadas correspondentes. Este modelo permite replicar as respostas neurofisiolgicas de ambos os tipos de clulas a estmulos-padro, alm de reproduzir a variao dos seus campos receptivos de acordo com a classe do estmulo considerado. Em seguida, ns introduzimos uma verso generalizada dos campos receptivos sintonizados, com base em funes de codificao das derivadas, em qualquer ordem, do sinal de sintonia, obtidas pela incorporao de polinmios de Hermite s funes sintonizadas originais. A partir da, ns definimos as respostas das classes de clulas que ns denotamos como da classe simples e da classe complexa, demonstramos que elas obedecem equaes de Schrdinger e, com base nisto, propomos uma interpretao quantum-like para a abordagem sintonizada. Palavras-chave: Funes de Gabor; Crtex Visual Primrio; Equao de Schrdinger; Interpretaco Quantum-Like. Abstract The signal-tuned Gabor functions are Gaussian-modulated sinusoids whose parameters are defined by a given signal the tuning signal , of which the signal-tuned functions yield an exact representation. Such functions were originally introduced as kernels of a variant Gabor transform which has proven able to accurately detect the spatial and spectral signatures of the analyzed signal, even when the traditional Gabor approach fails. Here we propose and analyze a model, based on the signal-tuned framework, for the receptive fields and responses of cells in the primary visual cortex (V1). Specifically, the receptive fields of V1 cells are modeled as signal-tuned functions in the spatial (complex cells) or spectral (simple cells) domains, while the respective responses are given by the corresponding signal-tuned transforms. Such model replicates the neurophysiological responses of both cell types to standard stimuli, while also emulating receptive-field dependence on the stimulus set, as experimentally observed. Next, we introduce an extended version of the signal-tuned receptive fields, based on coding functions of the derivatives, in any order, of the tuning signal, obtained by incorporating Hermite polynomials to the original signal-tuned functions. We then define the responses of the simple-class and complex-class signal-tuned cells, show that they obey Shrdinger equations, and, based on this, propose a quantum-like interpretation of the signal-tuned framework. Keywords: Gabor Functions; Primary Visual Cortex; Schrdinger Equation; Quantum-Like Interpretation. FORMTEXT   voؽɽ籧甅~zg\Nh._h* mHnHsH uh* mHnHsH u%h._h* 5;CJ\aJmH sH h* h]h* h._h* 6]mHnHuh._h* mHnHu hgz h* hgz h* 5\hgz h* mHnHuh* 6]mHnHuh@ Ph* 6]mHnHuh]h* 6]mHnHuh* mHnHuhIh* 5;CJ\aJ]^ $da$gd]`gd]gd]`gd] $h`a$gd] o%4;@ER~!2NOPZ[\]^ǹعخh]h* mH sH #jh._h* UmH sH jh._h* UmH sH h._h* mH sH h* 6]mHnHsH u!h._h* 6]mHnHsH uh._h* mHnHsH uh]h* mHnHsH uh* mHnHsH u<P1h:ptb. A!"#$% Dp@DTexto4epalavras representativas do contedo do trabalho, isto , palavras-chave e/ou descritores, na lngua.j 666666666vvvvvvvvv666666>6666666666666666666666666666666666666666666666666hH6666666666666666666666666666666666666666666666666666666666666666662 0@P`p2( 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p8XV~ OJPJQJ_HmHnHsHtH``` ]Normal$dh`a$$CJOJPJQJ_HaJmHsHtH DA D 0Default Paragraph FontRiR 0 Table Normal4 l4a (k ( 0No List PK![Content_Types].xmlj0Eжr(΢Iw},-j4 wP-t#bΙ{UTU^hd}㨫)*1P' ^W0)T9<l#$yi};~@(Hu* Dנz/0ǰ $ X3aZ,D0j~3߶b~i>3\`?/[G\!-Rk.sԻ..a濭?PK!֧6 _rels/.relsj0 }Q%v/C/}(h"O = C?hv=Ʌ%[xp{۵_Pѣ<1H0ORBdJE4b$q_6LR7`0̞O,En7Lib/SeеPK!kytheme/theme/themeManager.xml M @}w7c(EbˮCAǠҟ7՛K Y, e.|,H,lxɴIsQ}#Ր ֵ+!,^$j=GW)E+& 8PK!Ptheme/theme/theme1.xmlYOo6w toc'vuر-MniP@I}úama[إ4:lЯGRX^6؊>$ !)O^rC$y@/yH*񄴽)޵߻UDb`}"qۋJחX^)I`nEp)liV[]1M<OP6r=zgbIguSebORD۫qu gZo~ٺlAplxpT0+[}`jzAV2Fi@qv֬5\|ʜ̭NleXdsjcs7f W+Ն7`g ȘJj|h(KD- dXiJ؇(x$( :;˹! I_TS 1?E??ZBΪmU/?~xY'y5g&΋/ɋ>GMGeD3Vq%'#q$8K)fw9:ĵ x}rxwr:\TZaG*y8IjbRc|XŻǿI u3KGnD1NIBs RuK>V.EL+M2#'fi ~V vl{u8zH *:(W☕ ~JTe\O*tHGHY}KNP*ݾ˦TѼ9/#A7qZ$*c?qUnwN%Oi4 =3ڗP 1Pm \\9Mؓ2aD];Yt\[x]}Wr|]g- eW )6-rCSj id DЇAΜIqbJ#x꺃 6k#ASh&ʌt(Q%p%m&]caSl=X\P1Mh9MVdDAaVB[݈fJíP|8 քAV^f Hn- "d>znNJ ة>b&2vKyϼD:,AGm\nziÙ.uχYC6OMf3or$5NHT[XF64T,ќM0E)`#5XY`פ;%1U٥m;R>QD DcpU'&LE/pm%]8firS4d 7y\`JnίI R3U~7+׸#m qBiDi*L69mY&iHE=(K&N!V.KeLDĕ{D vEꦚdeNƟe(MN9ߜR6&3(a/DUz<{ˊYȳV)9Z[4^n5!J?Q3eBoCM m<.vpIYfZY_p[=al-Y}Nc͙ŋ4vfavl'SA8|*u{-ߟ0%M07%<ҍPK! ѐ'theme/theme/_rels/themeManager.xml.relsM 0wooӺ&݈Э5 6?$Q ,.aic21h:qm@RN;d`o7gK(M&$R(.1r'JЊT8V"AȻHu}|$b{P8g/]QAsم(#L[PK-![Content_Types].xmlPK-!֧6 +_rels/.relsPK-!kytheme/theme/themeManager.xmlPK-!Ptheme/theme/theme1.xmlPK-! ѐ' theme/theme/_rels/themeManager.xml.relsPK] ^ o^ ^ O [ ^ FTexto4 ` \ ` gz G * 9I{yM@ P._tb94q]/B4e^ ` @^ @@UnknownG*Ax Times New Roman5Symbol3" Arial7.@CalibriACambria Math"53ZC3Z I !0$P^ ]!xxRESUMOMarcosHelioOh+'0x  4 @ LX`hpRESUMOMarcosNormal_WordconvHelio3Microsoft Office Outlook@e@v/>@>I ՜.+,0 hp  Hewlett-Packard RESUMO Title  !"#%&'()*+-./01236Root Entry F*>8Data 1Table6WordDocument>SummaryInformation($DocumentSummaryInformation8,CompObjy  F'Microsoft Office Word 97-2003 Document MSWordDocWord.Document.89q  F#Documento do Microsoft Office Word MSWordDocWord.Document.89q