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Resumo

Metaheuŕısticas são utilizadas para resolver, de forma aproximada, problemas de

otimização combinatória computacionalmente dif́ıceis para os quais a solução ótima não pode

ser encontrada garantidamente em um tempo computacionalmente viável. A metaheuŕıstica

GRASP vem sendo amplamente aplicada em problemas de otimização como escalonamento

e roteamento, e bons resultados em termos de qualidade e tempo computacional vêm sendo

obtidos com sua utilização. A metaheuŕıstica GRASP é uma estratégia iterativa de fácil

implementação que retorna a melhor solução encontrada dentre todas as iterações. Cada

iteração é composta de duas fases: construção e busca local. Na primeira fase uma solução

viável é constrúıda e na fase seguinte sua vizinhança é explorada na tentativa de encontrar

soluções melhores. A hibridização de metaheuŕısticas - combinação de metaheuŕısticas com

conceitos e processos de outras áreas de pesquisa - vem sendo uma importante linha de

pesquisa em otimização combinatória. Processos de mineração de dados são utilizados para

extrair conhecimento, expresso por meio de regras ou padrões, de um conjunto de dados de

forma automática. Uma versão h́ıbrida da metaheuŕıstica GRASP, que incorpora um módulo

de mineração de dados, foi desenvolvida e bons resultados foram obtidos com sua utilização.

Nessa proposta, após executar um número significativo de iterações, um módulo de minera-

ção de dados extrai padrões frequentes de um conjunto elite que contém soluções sub-ótimas

geradas nas iterações. Esses padrões apresentam caracteŕısticas de soluções de boa qualidade

e podem ser utilizados para auxiliar as próximas iterações do GRASP na busca através do

espaço de soluções. A hibridização da metaheuŕıstica GRASP com mineração de dados já

foi aplicada em alguns problemas combinatórios, tais como: problema de empacotamento,

problema de maximização da diversidade, problema do multicast confiável e o problema das

p-medianas. Neste trabalho, pretende-se mostrar que tanto a metaheuŕıstica GRASP origi-

nal como a metaheuŕıstica GRASP que incorpora uma técnica de reconexão por caminhos

podem se beneficiar da mineração de dados. Para tanto, será utilizado o problema de śıntese

de redes a k-caminhos (kPNDP), com k igual a dois, que recentemente foi resolvido usando

a metaheuŕıstica GRASP com reconexão de caminhos e foram obtidos excelentes resultados.
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Experimentos computacionais, comparando a metaheuŕıstica GRASP com reconexão por

caminhos e diferentes formas h́ıbridas do GRASP com mineração de dados propostas neste

trabalho, mostraram que a incorporação de um módulo de mineração de dados permitiu

que a heuŕıstica h́ıbrida encontrasse melhores resultados em menor tempo computacional.

A heuŕıstica GRASP com reconexão de caminhos originalmente desenvolvida para este pro-

blema havia obtido os melhores resultados conhecidos em termos de qualidade. Portanto,

outra importante contribuição deste trabalho foi melhorar a qualidade desses resultados.

Palavras-chave:

Metaheuŕıstica, Reconexão por caminhos, Mineração de dados, GRASP, Hibridização,

2PNDP.
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Abstract

The exploration of hybrid metaheuristics – combination of metaheuristics with con-

cepts and processes from other research areas – has been an important trend in combina-

torial optimization research. An instance of this study is the hybrid version of the GRASP

metaheuristic that incorporates a data mining process. Traditional GRASP is an iterative

metaheuristic which returns the best solution reached over all iterations. In the hybrid

GRASP proposal, after executing a significant number of iterations, the data mining process

extracts patterns from an elite set of sub-optimal solutions for the optimization problem.

These patterns present characteristics of near optimal solutions and can be used to guide

the following GRASP iterations in the search through the combinatorial solution space. The

hybrid data mining GRASP has been successfully applied for different combinatorial prob-

lems: the set packing problem, the maximum diversity problem, the server replication for

reliable multicast problem and the p-median problem. In this work, we show that, not only

the traditional GRASP, but also GRASP improved with the path-relinking heuristic – a

memory-based intensification strategy – could benefit from exploring a data mining proce-

dure. Computational experiments, comparing traditional GRASP with path-relinking and

different path-relinking hybrid proposals, showed that employing the combination of path-

relinking and data mining made the GRASP find better results in less computational time.

Another contribution of this work is the application of the path-relinking hybrid proposal

for the 2-path network design problem, which improved the state-of-the-art solutions for this

problem.

Keywords:

GRASP, Path-Relinking, Data Mining, Hybrid Metaheuristic, 2-Path Network Design

Problem.



1 Introduction

Metaheuristics represent an important class of approximate techniques for solving

hard combinatorial optimization problems, for which the use of exact methods is impractical.

They are general purpose high-level procedures that can be instantiated to explore efficiently

the solution space of a specific optimization problem. Over the last decades, metaheuristics,

like genetic algorithms, tabu search, simulated annealing, ant systems, GRASP, and others,

have been proposed and applied to real-life problems of several areas of science (17). An

overview of heuristic search can be found in (26).

A trend in metaheuristics research is the exploration of hybrid metaheuristics (30).

One kind of such hybrid methods results from the combination of concepts and strategies

behind two or more classic metaheuristics, and another kind corresponds to metaheuristics

combined with concepts and processes from other research areas responsible for performing

specific tasks that can improve the original method. An instance of the latter case is the

hybrid version of the GRASP metaheuristic that incorporates a data mining process, called

DM-GRASP (Data Mining GRASP) (29).

The GRASP (Greedy Randomized Adaptive Search Procedures) metaheuristic (4, 5),

since it was proposed, has been successfully applied to solve many optimization problems, in

several areas like scheduling, routing, partitioning, location and assignment (6, 7). GRASP

is easy to implement and is able to obtain very good solutions in acceptable computational

times (7).

The solution search process employed by GRASP is performed iteratively and each

iteration consists of two phases: construction and local search. A feasible solution is built in

the construction phase, and then its neighborhood is explored by the local search in order

to find a better solution. The result is the best solution found over all iterations.

Data mining refers to the automatic extraction of knowledge from datasets (12, 31).



2

The extracted knowledge, expressed in terms of patterns or rules, represents important

features of the dataset at hand. Hence, data mining provides a means to better understand

concepts implicit in raw data, which is fundamental in a decision making process.

The hybridization of GRASP with a data mining process was first introduced and

applied to the set packing problem (21, 22). The basic hypothesis was that patterns found

in good quality solutions could be used to guide the search, leading to a more effective

exploration of the solution space.

The ideas of keeping track of recurrent good sub-optimal solutions and fixing variables

have been successfully explored coupled with other heuristics. Lin and Kernighan (14)

developed a multistart heuristic for the travelling salesman problem, where they fix some links

observed to occur in a number of previously locally optimum tours found by the algorithm.

Lodi et al. (15) developed an evolutionary heuristic for quadratic 0-1 programming, where

they present an intensification strategy used in a genetic algorithm to fix variables, which

can have their values fixed during all steps of the algorithm or only during a given number of

steps. Fleurent and Glover (8) described multistart strategies for the quadratic assignment

problem, where, during the constructive procedure, they select elements to be inserted in a

solution from an elite set containing the best solutions generated so far.

The aim of the hybrid data mining proposal is to use specific techniques found in the

data mining research area to search for good patterns extracted from a set of high quality

solutions. The resulting method, the DM-GRASP metaheuristic, achieved promising results

not only in terms of solution quality but also in terms of execution time required to obtain

good quality solutions. Afterwards, the method was evaluated on three other applications,

namely, the maximum diversity problem (27), the server replication for reliable multicast

problem (28) and the p-median problem (18), and the results were equally successful.

The first contribution of this work is to show that not only the traditional GRASP

metaheuristic but also GRASP procedures improved with the path-relinking heuristic – a

memory-based intensification mechanism – can benefit from the incorporation of a data min-

ing procedure to extract patterns of sub-optimal solutions in order to guide more efficiently

the search for better solutions.

Path-relinking was originally proposed by Glover (9) as an intensification strategy

exploring trajectories connecting elite solutions obtained by tabu search or scatter search
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strategies. Starting from one or more elite solutions, path-relinking generates paths leading

toward other elite solutions and explores them in the search for better solutions. To generate

paths, moves are selected to introduce attributes in the current solution that are present in

the elite guiding solution. Path-relinking is a strategy that seeks to incorporate attributes

of high quality solutions, by favoring them in the selected moves.

In this work, we present two path-relinking hybrid strategies, called DM-GRASP-PR

and MDM-GRASP-PR, which combine a data mining procedure into the GRASP with path-

relinking, and show that these strategies can improve the solution quality and computational

time of the original GRASP with path-relinking.

The second contribution is the application of the path-relinking hybrid proposals to

solve the 2-path network design problem (2PNDP). This problem has shown to be NP-

hard and many applications of this problem can be found in the design of communication

networks, in which paths with few edges are sought to enforce high reliability and small

delays (23). Recent procedures developed to solve this problem are based on metaheuristics,

and GRASP procedures with path-relinking have achieved excellent results (24). The com-

putational experiments conducted in this work show that the implemented path-relinking

hybrid strategies were able to improve the state-of-the-art solutions for the 2PNDP.

The remaining of this work is organized as follows. In Chapter 2, we review the main

concepts and the structure of both GRASP metaheuristic and path-relinking strategy. In

Chapter 3, we present the hybrid strategy DM-GRASP-PR developed for the 2PNDP and

compare the computational results obtained by this strategy and the traditional GRASP with

path-relinking. In Chapter 4, the strategy MDM-GRASP-PR is described and computational

results are presented comparing the DM-GRASP-PR and the MDM-GRASP-PR strategies.

Finally, in Chapter 5, concluding remarks are made and some future works are pointed out.
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2 GRASP with path-relinking

GRASP (19) is a metaheuristic already applied successfully to many optimization

problems (6, 7). The first phase of a GRASP iteration is the construction phase, in which

a complete solution is built. Since this solution is not guaranteed to be locally optimal,

a local search is performed in the second phase. This iterative process is repeated until a

termination criterion is met and the best solution found over all iterations is taken as result.

A pseudo-code of the GRASP process is illustrated in Figure 1. In line 1, the variable

that stores the best solution found is initialized. The block of instructions between lines 2

and 8 are executed iteratively. The construction phase is executed in line 3 and, in line 4,

the local search is applied to the constructed solution. In line 5, the quality of the obtained

solution is compared to the current best found and, if necessary, the best solution is updated.

In line 9, the best solution is returned.

procedure GRASP;
1 x∗ ← ∅;
2 repeat

3 x← Construction_Phase();
4 x← Local_Search_Phase(x);
5 if (f(x) > f(x∗)) then
6 x∗ ← x;
7 end if ;
8 until TerminationCriterion();
9 return x∗;
end.

Figure 1: Pseudo-code of the GRASP metaheuristic

In the construction phase, the components of the solutions are selected one by one and

incorporated into the partial solution until it is completely built. This process is illustrated

in Figure 2. In line 1, the solution starts as an empty set. In each step executed from line 2
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to line 6, the components not yet in the solution are ranked according to a greedy function.

The better ranked components form a list, called Restricted Candidate List (RCL), in line 3.

In line 4, one component is randomly selected from this list and incorporated into the current

solution in line 5. In line 7, the complete solution is returned.

procedure Construction Phase;
1 x← ∅;
2 repeat

3 RCL← BuildRCL(x);
4 s← SelectRandom(RCL);
5 x← x ∪ {s};
6 until SolutionCompleted(x);
7 return x;
end.

Figure 2: Pseudo-code of the construction phase

The solution obtained in the construction phase is not guaranteed to be locally optimal

and becomes the starting point for the local search phase. Local search is a hill-climbing

process, in which the neighborhood of the solution is explored. The neighborhood of a

solution is defined by a function that relates this solution with a set of other solutions. If a

better solution is found, the local search is performed again, considering the neighborhood

of this new solution. Otherwise, the local search terminates.

2.1 Path-relinking

Path-relinking is a technique proposed by Glover (9) to explore possible trajectories

connecting high quality solutions obtained by heuristics like tabu search and scatter search.

The GRASP metaheuristic is a memoryless method, because all iterations are in-

dependent and no information about the solutions is passed from one iteration to another.

The objective of introducing path-relinking to a pure GRASP algorithm is to retain previous

good solutions and use them as guides in the search of new good solutions.

Laguna and Mart́ı (13) were the first to use path-relinking within a GRASP strategy.

Several extensions, improvements and successful applications of this technique can be found

in the literature (20).
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Basically, path-relinking is applied to a pair of solutions {si, sg} by starting from the

initial solution si and gradually incorporating attributes from the guide solution sg to si,

until si becomes equal to sg.

To use path-relinking within a GRASP procedure, an elite set P is maintained, in

which good solutions found in previous GRASP iterations are stored.

Two basic strategies for introducing path-relinking into GRASP may be used (20):

(a) performing path-relinking after each GRASP iteration using a solution from the elite set

and a local optimum obtained after the GRASP local search, and (b) applying path-relinking

to all pairs of elite solutions, either periodically or after all GRASP iterations terminate.

Path-relinking is performed between two solutions and there are several ways to ex-

plore the paths between them (20): backward relinking, forward relinking, backward-and-

forward relinking, periodical relinking, randomized relinking and truncated relinking.

We show in Figure 3 the details of a path-relinking procedure specified for a mini-

mization problem and using a single traverse from si to sg. In lines 1 and 2, from the two

solutions passed as parameters, x1 and x2, the initial and guide solutions are set. In line

3, the set ∆ composed of positions in which si and sg differ is calculated. The initial best

solution and its cost are determined in lines 4 and 5. From lines 6 to 15, the steps of path-

relinking are performed until the entire path from si to sg is traversed. For every position

m ∈ ∆, let si ⊕m be the solution obtained from si by changing its m-th position by that

of sg. In line 7 the component m∗ of ∆ for which si ⊕m results in the least-cost solution is

obtained. This component is removed from ∆ in line 8 and the current solution is updated

in line 9 by changing the value of its m∗ position. This solution then is more similar to the

guide solution because one element from the initial solution was replaced by another from

the guide solution. In line 10 and 11, if this new intermediate solution has a better cost

than the current best intermediate solution (BestSolPR), then the latter and its cost are

updated. In line 14, the intermediate solution is set as the initial solution for the next step

of the path-relinking.
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procedure Path Relinking(x1, x2);
1 si ← SetSolIni(x1, x2);
2 sg ← SetSolGuide(x1, x2);
3 ∆← Compute Difference(si, sg);
4 BestCostSolPR← min{f(si), f(sg)};
5 BestSolPR← argmin{f(si), f(sg)};
6 while |∆| > 1 do

7 m∗ ← argmin{f(si ⊕m) : m ∈ ∆};
8 ∆← ∆ \m∗;
9 InterSol← si ⊕m∗;
10 if f(InterSol) > BestCostSolPR then

11 BestCostSolPR← f(InterSol);
12 BestSolPR← InterSol;
13 end if;
14 si ← InterSol;
15 end while;
16 return BestSolPR;
end.

Figure 3: Pseudo-code for path-relinking
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3 The Hybrid DM-GRASP-PR

Proposal

In this chapter, we describe the 2-path network design problem and the GRASP

with path-relinking procedure developed in (24) to solve this problem. Then we present

the DM-GRASP-PR heuristic, which is a hybrid version of the GRASP metaheuristic with

path-relinking presented in (24) incorporated with a data mining process.

3.1 2-path network design problem

Let G = (V,E) be a connected undirected graph, where V is the set of nodes and

E is the set of edges. A k-path between nodes s, t ∈ V is a sequence of at most k edges

connecting them. Given a non-negative weight function w : E → R+ associated with the

edges of G and a set D of pairs of origin-destination nodes, the 2-path network design problem

(2PNDP) consists in finding a minimum weighted subset of edges E′ ⊆ E containing a 2-

path between every origin-destination pair in D. Applications of the 2PNDP can be found in

the design of communication networks, in which paths with few edges are sought to enforce

high reliability and small delays. The decision version of the 2PNDP has been proved to be

NP-complete by Dahl and Johannessen (3). In (24), the authors successfully applied GRASP

with path-relinking heuristics for approximately solving this problem.

3.2 GRASP-PR for 2PNDP

In this section, we present the GRASP heuristic with path-relinking (GRASP-PR)

for the 2-path network design problem presented in (24).
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3.2.1 Construction phase

The greedy randomized construction algorithm computes one shortest 2-path at-a-

time. To avoid that edge weights be considered more than once, the weights of the edges

already included in the solution are temporally made equal to zero during the forthcoming

computations.

Figure 4 illustrates the pseudo-code of the construction phase of the GRASP with

path-relinking heuristic for the 2PNDP. Initializations are performed in lines 1 and 2. Solu-

tion x is computed from scratch using edge weights w′ that are initially equal to the original

weights w. The loop in lines 3 to 9 is performed until a 2-path has been computed for every

origin-destination pair. Each iteration starts by the random selection in line 4 of a pair (a, b)

still to be routed. A shortest path P from a to b using the modified weights w′ is computed

in line 5. The weights of the edges in P are temporarily set to 0 for the remaining iterations

in line 6. Pair (a, b) is removed in line 7 from the set of origin-destination pairs to be routed

and in line 8 the edges in P are inserted into the solution under construction.

Since the loop is executed |D| times and each shortest 2-path can be computed in

time O(|V |), the complexity of the construction procedure is O(|V | · |D|).

procedure GreedyRandomizedConstruction2Path(Seed);
1 x← ∅;
2 w′ ← w;
3 while D 6= ∅ do
4 Select at random an yet unrouted origin-destination pair (a, b) ∈ D;
5 Compute the shortest 2-path P from a to b using weights w′;
6 w′ij ← 0 for all edges (i, j) in P ;
7 D ← D \ ({a, b)};
8 x← x ∪ P ;
9 end while;
10 return x;
end.

Figure 4: Pseudo-code of the construction phase of the GRASP for the 2PNDP
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3.2.2 Local search

Each solution x may be viewed as a collection of |D| 2-paths. Given any solution x,

its neighbor solutions x′ may be obtained by replacing any 2-path in x by another 2-path

between the same origin-destination pair. The local search phase attempts to improve the

solutions built greedily during the construction phase.

Figure 5 summarizes the pseudo-code of the local search procedure for the 2PNDP.

The neighbor solution x′ and the modified edge weights are initialized respectively in lines

1 and 2. Variable nochanges initialized in line 3 is used as a flag to indicate that a local

optimum has been found. A circular permutation of the demand pairs in D is created at

random in line 4. The loop in lines 5 to 16 is performed until all |D| 2-paths in the current

solution have been consecutively examined and no shorter 2-path has been found, indicating

that the current solution is locally optimal. Each iteration starts in line 6 by considering the

next origin-destination pair (a, b), according with the circular permutation computed in line

4 and attempting to improve this 2-path. The following steps are performed: temporarily

reset to zero the modified weights w′ of all edges used by the other 2-paths (line 7); compute

the shortest 2-path from a to b using the modified edge weights w′ (line 8); update the

incumbent solution x′ if the weight of the new 2-path is shorter (lines 9 and 10); and update

the number of consecutive 2-paths examined without change in the current solution (lines 11

and 13). Once the iteration is finished, all weights are reset to their original values w in line

15. If less than |D| 2-paths have been consecutively examined without improvement in the

current solution, then a new iteration resumes. Otherwise, the eventually modified neighbor

solution x′ is returned in line 17. The complexity of each iteration of local search is O(n).

3.2.3 Path-relinking

The algorithm in Figure 6 illustrates the GRASP with path-relinking procedure for

the 2PNDP. Since each solution to 2PNDP is characterized by a set of |D| 2-paths between

the extremities of every origin-destination pair, the symmetric difference ∆(x, xt) between

the current solution x and the target solution xt can be easily computed and amounts to the

set of 2-paths that appear in one of them but not in the other. Each move m ∈ ∆(x, xt)

is defined by one 2-path to be removed from and another to be inserted into the current

solution x.
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procedure LocalSearch2Path;
1 x′ ← x;
2 w′ ← w;
3 nochanges← 0;
4 Create a random circular permutation of the demand pairs in D;
5 while nochanges < |D| do
6 Select the next origin-destination pair (a, b);
7 Temporarily reset to 0 the weights w′ of all edges appearing

in the 2-paths connecting the remaining origin-destination pairs in D;
8 Compute the shortest 2-path from a to b using the modified weights w′;
9 if the weight of the new 2-path is smaller then
10 Update solution x′ by using the new 2-path;
11 nochanges← 0;
12 else

13 nochanges← nochanges + 1;
14 end if ;
15 Reset the weights w of all edge weights temporarily set to 0;
16 end while;
17 return x′;
end.

Figure 5: Pseudo-code of the local search phase of the GRASP for the 2PNDP

Each GRASP iteration has now three main steps:

• Construction phase: procedure GreedyRandomizedConstruction2Path is used to build

a feasible solution;

• Local search phase: procedure LocalSearch2Path is applied to the solution built in

the construction phase and a local minimum is found; and

• Path-relinking phase: procedure PathRelinking is applied to the solution obtained by

local search and to a randomly selected solution from the pool P twice (one using the

latter as the starting solution and the other using the former). The locally optimal

solution obtained by local search and the best solutions found along each relinking

trajectory are considered as candidates for insertion into the pool. A solution is inserted

in the pool if it is different from all solutions of the pool and its cost is better than the

cost of the worst solution of the pool.
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procedure GRASPwithPR2Path(MaxIterations, Seed)
1 P ← ∅;
2 f ∗ ←∞;
3 for k = 1, . . . , MaxIterations do

4 x← GreedyRandomizedConstruction2Path(Seed);
5 x← LocalSearch2Path(x);
6 Update the pool of elite solutions P with x;
7 if |P | ≥ 2 then

8 Select at random an elite solution y from the pool P ;
9 x1 ← PathRelinking(x, y);
10 Update the pool of elite solutions P with x1;
11 x2 ← PathRelinking(y, x);
12 Update the pool of elite solutions P with x2;
13 Set x← argmin{f(x), f(x1), f(x2)};
14 end if;
15 if f(x) < f ∗ then

16 x∗ ← x;
17 f ∗ ← f(x);
18 end if;
19 end for;
20 return x∗;
end.

Figure 6: GRASP with path-relinking for the 2PNDP

3.3 DM-GRASP-PR heuristic

In the original GRASP, iterations are performed independently and, consequently, the

knowledge acquired in past iterations is not exploited in subsequent iterations. The basic

concept of incorporating a data mining process in GRASP is that patterns found in high

quality solutions obtained in earlier iterations can be used to conduct and improve the search

process.

We have already developed heuristics hybridizing GRASP with data mining proce-

dures, called DM-GRASP procedures, which were able to improve the quality of solutions

in reasonable computational time for many problems like the set packing problem, the max-

imum diversity problem, the server replications for reliable multicast problem, and the p-

median problem (18, 27–29).

The DM-GRASP is composed of two phases. The first one is called the elite set
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generation phase, which consists of executing n pure GRASP iterations to obtain a set of

different solutions. The d best solutions from this set compose the elite set.

After this first phase, the data mining process is applied to extract patterns from

the elite set. The patterns to be mined are sets of elements that frequently appear in

solutions from the elite set. This extraction of patterns characterizes a frequent itemset

mining application (12). A frequent itemset mined with support s% represents a set of

elements that occur in s% of the elite solutions.

Next, the second phase, called hybrid phase, is performed. In this part, another n

slightly different GRASP iterations are executed. In these n iterations, an adapted construc-

tion phase starts building a solution guided by a mined pattern selected from the set of mined

patterns. Initially, all elements of the selected pattern are inserted into the partial solution,

from which a complete solution will be built executing the standard construction procedure.

This way, all constructed solutions will contain the elements of the selected pattern.

We developed the hybrid procedure DM-GRASP-PR, which incorporates a data min-

ing procedure to a GRASP with path-relinking heuristic, in order to show that not only

the traditional GRASP metaheuristic but also GRASP procedures improved with the path-

relinking heuristic – a memory-based intensification mechanism – can benefit from the incor-

poration of a data mining procedure to extract patterns of sub-optimal solutions and guide

the search for better solutions.

The pseudo-code of the DM-GRASP-PR for the 2PNDP is illustrated in Figure 7.

In line 3, the elite set used for data mining is initialized with the empty set. The loop

from line 4 to line 21 corresponds to the elite set generation phase, in which GRASP with

path-relinking is performed for n iterations. The original construction method is executed

in line 5, followed by the local search method in line 6 and the path-relinking procedure

executed from line 8 to line 15. The elite set M , composed of d solutions, is updated in

line 16. A solution is inserted in the elite set if it is not already in the set and its cost

is better than the worst cost found in the set. In line 18, the best solution is updated, if

the new generated solution presents a better cost than the best solution found in previous

iterations. In line 22, the data mining procedure extracts t patterns from the elite set, which

are inserted in decreasing order of pattern size in the set of patterns. The loop from line 23

to line 38 corresponds to the hybrid phase. In line 24, one pattern is picked from the set of
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patterns in a round-robin way. Then, the adapted construction procedure is performed in

line 25, using the selected pattern. In line 26, the local search is executed. From line 28 to

33 the path-relinking procedure is executed. If a better solution is found, the best solution

is updated in line 35. After the execution of all iterations, the best solution is returned in

line 39.

The extraction of patterns from the elite set, which is activated in line 22 of the

pseudo-code presented in Figure 7, corresponds to the well-known frequent itemset mining

(FIM) task. The FIM problem can be defined as follows.

Let I = {i1, i2, ..., in} be a set of items. A transaction is a subset of I and a dataset T

is a set of transactions. A frequent itemset F , with support s, is a subset of I which occurs

in at least s% of the transactions in T . The FIM problem consists of extracting all frequent

itemset from a dataset T with a minimum support specified as a parameter. During the

last two decades, many algorithms have been proposed to efficiently mine frequent itemsets

(1, 10, 11, 16).

In this work, the useful patterns to be mined are sets of edges that commonly appear

in sub-optimal solutions of the 2PNDP. This is a typical frequent itemset mining application,

where the set of items is the set of potential edges. Each transaction of the dataset represents

a sub-optimal solution of the elite set. A frequent itemset mined from the elite set with

support s% represents a set of edges that occur in s% of the elite solutions.

A frequent itemset is called maximal if it has no superset that is also frequent. In order

to avoid mining frequent itemsets which are subset of one another, in the DM-GRASP-PR

proposal for the 2PNDP, we decided to extract only maximal frequent itemset.

In Figure 8, the pseudo-code of the adapted construction is illustrated. It is quite

similar to the code described in Figure 4 with the difference that, in line 5, we try to construct

a 2-path between a pair (a, b) using only the edges from the pattern or the edges already

used which had their weight modified to 0. If a 2-path was not found using just these edges,

in line 7, we compute a 2-path starting from the partial solution found so far and using all

edges from E.
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3.4 Computational Results for DM-GRASP-PR

In this section, the computational results obtained for GRASP-PR and DM-GRASP-

PR strategies are presented and compared. We generated 25 instances similar to the instances

generated in (24). The instances are complete graphs with |V | ∈ {100, 200, 300, 400, 500}.

The edge costs were randomly generated from the uniform distribution on the interval (0,

10] and 10× |V | origin-destination pairs were randomly chosen.

The algorithms were implemented in C and compiled with gcc 4.4.1. The tests were

performed on a 2.4 GHz Intel Core 2 Quad CPU Q6600 with 3 Gbytes of RAM, running

Linux Kernel 2.6.24.

Both GRASP-PR and DM-GRASP-PR were run 10 times with a different random

seed in each run. Each strategy executed a total of 1000 iterations.

After having conducted some tuning experiments, we set some parameter values. The

size of the elite set (d), from which the patterns are mined, and the size of the set of patterns

(t) were set to 10. And a set of edges was considered a pattern if it was present in at least

two of the elite solutions.

In Table 1, the results related to the quality of the obtained solutions are shown.

The first column presents the identifier of the instance ax-y, where x = |V | and y is the

seed used to generate the random instance parameters. The second and fourth columns

present the best cost values obtained by GRASP with path-relinking (GRASP-PR) and the

path-relinking hybrid proposal DM-GRASP-PR, and the third and fifth columns present

the average cost values obtained by them. The smallest values, i.e., the better results, are

bold-faced.

These results show that the proposed DM-GRASP-PR strategy was able to improve

all results obtained by GRASP with path-relinking.

Table 2 presents the results related to execution time of both strategies. In these

tables, the first column presents the instance identifier, the second and third columns show

the average execution time (in seconds) of GRASP-PR and DM-GRASP-PR, obtained for

10 runs. The fourth column shows the percentual difference between the GRASP-PR and

DM-GRASP-PR average times in relation to the GRASP average time.
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For all instances, the execution times for DM-GRASP-PR were smaller than those

for GRASP-PR. The last line of the table presents the average of the percentual differences.

We can observe that, on average, DM-GRASP-PR was 20.23% faster than GRASP-PR.

There are two main reasons for the faster behavior of DM-GRASP-PR. First, the

computational effort of the adapted construction phase is smaller than the original construc-

tion, since a smaller set of edges is processed to find a 2-path for each pair. In the adapted

construction of the hybrid procedure, in a first attempt (line 5, Figure 8), only the edges

from the pattern and edges with cost 0 are examined to construct a 2-path for a demand

pair. Second, the use of patterns leads to the construction of better solutions which will be

input for the local search. This incurs in less computational effort taken to converge to a

local optimal solution.

GRASP-PR DM-GRASP-PR
Instance Best Avg Best Avg

a100-1 679 687.5 676 682.0

a100-10 663 669.8 662 668.7

a100-100 670 674.6 666 670.3

a100-1000 644 649.9 641 647.0

a100-10000 664 669.2 661 666.5

a200-1 1386 1391.9 1379 1384.6

a200-10 1374 1386.0 1362 1376.1

a200-100 1361 1369.4 1354 1362.0

a200-1000 1363 1374.5 1358 1367.9

a200-10000 1375 1387.4 1369 1377.5

a300-1 2106 2117.0 2081 2102.4

a300-10 2134 2148.0 2122 2133.7

a300-100 2088 2096.2 2072 2082.3

a300-1000 2100 2105.7 2080 2094.5

a300-10000 2077 2092.8 2067 2078.2

a400-1 2807 2816.2 2788 2797.5

a400-10 2848 2864.7 2833 2847.8

a400-100 2818 2834.2 2803 2818.9

a400-1000 2822 2833.4 2800 2816.4

a400-10000 2856 2874.8 2844 2857.2

a500-1 3598 3606.6 3571 3579.6

a500-10 3595 3607.7 3573 3580.7

a500-100 3598 3612.4 3576 3584.7

a500-1000 3573 3592.0 3554 3564.2

a500-10000 3605 3625.0 3580 3597.9

Table 1: GRASP-PR and DM-GRASP-PR quality results
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Instance GRASP-PR DM-GRASP-PR %

a100-1 44.22 37.39 15.44
a100-10 43.29 36.14 16.51
a100-100 46.66 38.89 16.66
a100-1000 42.98 36.11 15.99
a100-10000 43.57 36.87 15.37
a200-1 201.30 161.87 19.59
a200-10 206.32 166.02 19.53
a200-100 197.35 157.37 20.26
a200-1000 199.61 158.63 20.53
a200-10000 207.02 166.49 19.58
a300-1 516.63 401.89 22.21
a300-10 515.14 401.34 22.09
a300-100 517.84 412.27 20.39
a300-1000 516.14 398.99 22.70
a300-10000 515.48 399.88 22.43
a400-1 1000.79 769.70 23.09
a400-10 1003.74 780.44 22.25
a400-100 1026.18 854.99 16.68
a400-1000 1022.98 824.99 19.35
a400-10000 1028.98 808.78 21.40
a500-1 1727.36 1330.40 22.98
a500-10 1712.67 1302.53 23.95
a500-100 1747.14 1396.26 20.08
a500-1000 1721.36 1332.65 22.58
a500-10000 1760.41 1337.25 24.04

Average 20.23

Table 2: GRASP-PR and DM-GRASP-PR time results



18

procedure DMGRASPPR2Path(MaxIterations, Seed, n, d, t)
1 P ← ∅;
2 f ∗ ←∞;
3 M ← ∅;
4 for k = 1, . . . , n do

5 x← GreedyRandomizedConstruction2Path(Seed);
6 x← LocalSearch2Path(x);
7 Update the pool of elite solutions P with x;
8 if |P | ≥ 2 then

9 Select at random an elite solution y from the pool P ;
10 x1 ← PathRelinking(x, y);
11 Update the pool of elite solutions P with x1;
12 x2 ← PathRelinking(y, x);
13 Update the pool of elite solutions P with x2;
14 Set x← argmin{f(x), f(x1), f(x2)};
15 end if;
16 UpdateElite(M , x, d);
17 if f(x) < f ∗ then

18 x∗ ← x;
19 f ∗ ← f(x);
20 end if;
21 end for;
22 patterns set← Mine(M , t);
23 for k = 1, . . . , n do

24 pattern← SelectNextLargestPattern(patterns set);
25 x← AdaptedGreedyRandomizedConstruction2Path(pattern);
26 x← LocalSearch2Path(x);
27 Update the pool of elite solutions P with x;
28 Select at random an elite solution y from the pool P ;
29 x1 ← PathRelinking(x, y);
30 Update the pool of elite solutions P with x1;
31 x2 ← PathRelinking(y, x);
32 Update the pool of elite solutions P with x2;
33 Set x← argmin{f(x), f(x1), f(x2)};
34 if f(x) < f ∗ then

35 x∗ ← x;
36 f ∗ ← f(x);
37 end if

38 end for;
39 return x∗;
end.

Figure 7: Hybrid GRASP with path-relinking for the 2PNDP
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procedure AdaptedGreedyRandomizedConstruction2Path(Seed, pattern);
1 x← ∅;
2 w′ ← w;
3 while D 6= ∅ do
4 Select at random an yet unrouted origin-destination pair (a, b) ∈ D;
5 Compute the shortest 2-path P from a to b using edges from pattern

or edges with weight 0;
6 if it was not possible to find a complete 2-path P then

7 Compute the shortest 2-path P from a to b using the partial solution
and the other edges not yet used;

8 end if

9 w′ij ← 0 for all edges (i, j) in P ;
10 D ← D \ ({a, b)};
11 x← x ∪ P ;
12 end while;
13 return x;
end.

Figure 8: Pseudo-code of the adapted construction phase of the DM-GRASP-PR for the
2PNDP



4 The hybrid MDM-GRASP-PR

proposal

In the proposed hybrid DM-GRASP-PR, the data mining procedure is executed just

once and at the middle point of the whole process. Although the obtained results were

satisfactory, we believe that mining more than once, and as soon as the elite set is stable and

good enough, can improve the original DM-GRASP framework. Based on this hypothesis, in

this work we also propose and evaluate another version of the DM-GRASP for the 2PNDP,

called MDM-GRASP-PR (Multi Data Mining GRASP-PR).

The main idea of this proposal is to execute the mining process: (a) as soon as the

elite set becomes stable – which means that no change in the elite set occurs throughout

a given number of iterations – and (b) whenever the elite set has been changed and again

has become stable. We hypothesize that mining more than once will explore the gradual

evolution of the elite set and allow the extraction of refined patterns.

The pseudo-code of the MDM-GRASP-PR for the 2PNDP is illustrated in Figure 9.

The loop from line 2 to 18 corresponds to the first elite set generation phase, in which GRASP

iterations with path-relinking are performed until the elite set becomes ready to be mined or

the termination criterion – the total number of iterations – becomes true. Next, in the loop

from line 19 to 37, whenever the elite set is ready, the data mining procedure is executed in

line 21. In line 23, the next largest pattern is selected. If there are more than one largest

pattern, they are randomly selected. Then the adapted construction is performed in line 24,

using the selected pattern as described in the previous chapter. In line 25, the local search is

executed. From line 27 to 32 the path relinking procedure is executed. If a better solution is

found, the best solution is updated in line 35. After the execution of all iterations, the best

solution is returned in line 38.
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procedure MDMGRASPPR2Path(MaxIterations, Seed, d, t)
1 P ← ∅; f ∗ ←∞; M ← ∅;
2 repeat

3 x← GreedyRandomizedConstruction2Path(Seed);
4 x← LocalSearch2Path(x);
5 Update the pool of elite solutions P with x;
6 if |P | ≥ 2 then

7 Select at random an elite solution y from the pool P ;
8 x1 ← PathRelinking(x, y);
9 Update the pool of elite solutions P with x1;
10 x2 ← PathRelinking(y, x);
11 Update the pool of elite solutions P with x2;
12 Set x← argmin{f(x), f(x1), f(x2)};
13 end if;
14 UpdateElite(M , x, d);
15 if f(x) < f ∗ then

16 x∗ ← x; f ∗ ← f(x);
17 end if;
18 until elite set is ready or end criterion;
19 while not end criterion
20 if elite set is ready then

21 patterns set← Mine(M , t);
22 end if;
23 pattern← SelectNextLargestPattern(patterns set);
24 x← AdaptedGreedyRandomizedConstruction2Path(pattern);
25 x← LocalSearch2Path(x);
26 Update the pool of elite solutions P with x;
27 Select at random an elite solution y from the pool P ;
28 x1 ← PathRelinking(x, y);
29 Update the pool of elite solutions P with x1;
30 x2 ← PathRelinking(y, x);
31 Update the pool of elite solutions P with x2;
32 Set x← argmin{f(x), f(x1), f(x2)};
33 UpdateElite(M , x, d);
34 if f(x)) < f ∗ then

35 x∗ ← x; f ∗ ← f(x);
36 end if;
37 end while;
38 return x∗;
end.

Figure 9: Hybrid MDM-GRASP-PR with path-relinking for the 2PNDP
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4.1 Computational Results

In this section, we report the computational results obtained for the proposed MDM-

GRASP-PR strategy. The 2PNDP instances are the same used in the previous chapter. The

MDM-GRASP-PR was also run 10 times with a different random seed in each run. The

number of executed iterations were 1000, the same used in the previous experiments. We

performed some experiments using three values for the parameter used to define if the elite

set is stable: 1%, 3% and 5% of the total number of iterations. We adopted 1% as this value

provided the best cost values.

Since, in the previous analysis, the DM-GRASP-PR outperformed GRASP-PR, we

decided to compare the MDM-GRASP-PR only with the DM-GRASP-PR strategy. In Table

3, the results related to quality of the obtained solutions are shown. MDM-GRASP-PR found

18 better results for best values and DM-GRASP-PR found four. MDM-GRASP-PR found

24 better results for average values and DM-GRASP-PR just one. These results show that

the MDM-GRASP-PR proposal was able to improve the results obtained by DM-GRASP-

PR.

Table 4 compares the execution times spent by DM-GRASP-PR and MDM-GRASP-

PR. We can see that the DM-GRASP-PR was faster than the MDM-GRASP-PR in 18 in-

stances andMDM-GRASP-PR was faster than DM-GRASP-PR in seven instances. However,

we observe that MDM-GRASP-PR was, on average, just 1.34% slower than DM-GRASP-PR

which is not very significant in terms of the heuristic performance. We conclude that both

path-relinking hybrid proposals had a similar behavior in terms of computational time.

In order to verify whether or not the differences of mean values obtained by the

evaluated strategies presented in Tables 1 and 3 are statistically significant, we employed the

unpaired Student’s t-test technique. Table 5 presents, for each pair of heuristics and for each

instance group composed by instances with the same number of nodes, the number of better

average solutions found by each strategy and, between parentheses, the number among them

that presents a p-value less than 0.01, which means that the probability of the difference of

performance being due to random chance alone is less than 0.01.

When comparing both DM-GRASP-PR and MDM-GRASP-PR with GRASP-PR (in

the first four lines), we can note that almost all differences of performance are statistically
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DM-GRASP-PR MDM-GRASP-PR
Instance Best Avg Best Avg

a100-1 676 682.0 674 681.9

a100-10 662 668.7 659 665.2

a100-100 666 670.3 667 670.0

a100-1000 641 647.0 640 646.7

a100-10000 661 666.5 658 665.4

a200-1 1379 1384.6 1380 1383.9

a200-10 1362 1376.1 1362 1372.5

a200-100 1354 1362.0 1352 1360.7

a200-1000 1358 1367.9 1356 1364.0

a200-10000 1369 1377.5 1363 1374.3

a300-1 2081 2102.4 2082 2099.3

a300-10 2122 2133.7 2125 2132.1

a300-100 2072 2082.3 2069 2076.3

a300-1000 2080 2094.5 2076 2090.3

a300-10000 2067 2078.2 2060 2075.1

a400-1 2788 2797.5 2786 2791.4

a400-10 2833 2847.8 2819 2844.1

a400-100 2803 2818.9 2803 2808.9

a400-1000 2800 2816.4 2793 2810.9

a400-10000 2844 2857.2 2793 2810.9

a500-1 3571 3579.6 3567 3576.9

a500-10 3573 3580.7 3566 3580.1

a500-100 3576 3584.7 3572 3583.1

a500-1000 3554 3564.2 3554 3564.9
a500-10000 3580 3597.9 3573 3596.1

Table 3: DM-GRASP-PR and MDM-GRASP-PR quality results

significant. The last two lines represent the comparison between DM-GRASP-PR and MDM-

GRASP-PR. In this comparison, we observe that MDM-GRASP-PR obtained, for all groups

of instances, a greater number of better results. However, the difference of performance be-

tween DM-GRASP-PR and MDM-GRASP-PR was not statistically significant, considering

a p-value less than 0.01. These results show the superiority of the data mining strategies,

mainly the good behavior of the MDM-GRASP-PR.

Figures 10 to 12 illustrate the behavior of the construction, local search and path-

relinking phases, in terms of the cost values obtained, by GRASP-PR, DM-GRASP-PR, and

MDM-GRASP-PR throughout the execution of 1000 iterations, for the a400-100 instance,

with a specific random seed.

The 2PNDP is a minimization problem and the figures show that the local search
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Instance DM-GRASP-PR MDM-GRASP-PR %

a100-1 37.39 38.50 -2.96
a100-10 36.14 37.54 -3.87
a100-100 38.89 40.41 -3.91
a100-1000 36.11 37.51 -3.89
a100-10000 36.87 38.41 -4.19
a200-1 161.87 163.19 -0.81
a200-10 166.02 167.06 -0.63
a200-100 157.37 162.58 -3.31
a200-1000 158.63 160.25 -1.02
a200-10000 166.49 166.61 -0.07
a300-1 401.89 409.38 -1.86
a300-10 401.34 410.17 -2.20
a300-100 412.27 404.22 1.95
a300-1000 398.99 395.88 0.78
a300-10000 399.88 403.97 -1.02
a400-1 769.70 749.77 2.59
a400-10 780.44 811.97 -4.04
a400-100 854.99 799.67 6.47
a400-1000 824.99 797.91 3.28
a400-10000 808.78 797.91 1.34
a500-1 1330.40 1349.39 -1.43
a500-10 1302.53 1346.80 -3.40
a500-100 1396.26 1413.63 -1.24
a500-1000 1332.65 1382.99 -3.78
a500-10000 1337.25 1420.02 -6.19

Average -1.34

Table 4: DM-GRASP-PR and MDM-GRASP-PR time results

Strategy Instance Group
a100 a200 a300 a400 a500

GRASP-PR 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
DM-GRASP-PR 5 (2) 5 (2) 5 (5) 5 (5) 5 (5)
GRASP-PR 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
MDM-GRASP-PR 5 (2) 5 (4) 5 (5) 5 (5) 5 (5)
DM-GRASP-PR 0 (0) 0 (0) 0 (0) 0 (0) 1 (0)
MDM-GRASP-PR 5 (0) 5 (0) 5 (0) 5 (0) 4 (0)

Table 5: Analysis of statistical significance

always reduces the cost of the solution obtained by the construction phase. We can also

observe that the path-relinking procedure also always reduces the cost obtained after the

local search.

In Figure 10, we observe that the construction and local search of GRASP-PR presents
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similar behavior throughout the iterations. The path-relinking procedure becomes more

effective in reducing the cost, after some iterations, when the pool contains more solutions of

better quality. In the last iterations, the path-relinking still improves the solution cost but

with a smaller rate of improvement, because the pool contains less diverse solutions. The

total time of this GRASP execution was 943.55s.
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Figure 10: Cost × iteration plot of one execution of GRASP-PR for instance a400-100

In the DM-GRASP-PR strategy, the data mining procedure is executed immediately

after iteration 500. We can observe, in Figure 11, that, from this point, the quality of the

solutions obtained by the construction, local search and path-relinking phases are improved.

The total time of this DM-GRASP-PR execution was 779.81s. The elite set generation

phase took 487.17s, the data mining procedure 2.4s and the hybrid phase took 290.23s. This

indicates that the data mining executing time is negligible when compared with time related

to the DM-GRASP-PR iterations.

The behavior of MDM-GRASP-PR is presented in Figure 12. The data mining pro-

cedure was activated four times, after the iterations 584, 603, 654 and 822. We can observe

that, in this specific execution, the improvement due to the activation of the data mining

process started to happen immediately after the iteration 582, later than the mining exe-

cution by the DM-GRASP-PR. On the other hand, differently from the DM-GRASP-PR,

we can observe that the MDM-GRASP-PR, after the first mining execution, continues to

slightly and gradually reduce the cost of the solutions obtained by the construction, local
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Figure 11: Cost × iteration plot of one execution of DM-GRASP-PR for instance a400-100

search and path-relinking phases, since patterns are extracted more than once.
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Figure 12: Cost × iteration plot of one execution of MDM-GRASP-PR for instance a400-100

The total time of this MDM-GRASP-PR execution was 830.62s. The elite set gener-

ation phase took 587.52s, the total time of the four data mining executions was 9.66s and

the hybrid iterations took 243.11s. Again, we can observe that the sum of the time of all

data mining activations is not relevant.

Figures 13 to 15 illustrate the behavior of the construction, local search and path-



27

relinking phases, in terms of the computational times used by GRASP-PR, DM-GRASP-PR,

and MDM-GRASP-PR throughout the same three executions of the 1000 iterations for the

instance a400-100.

The figures show that for all strategies the path-relinking took more time than the

local search which spends more time than the construction phase.

In Figure 13, we observe that the computational time spent by the construction, local

search and path-relinking procedures of GRASP-PR are the same throughout the iterations.
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Figure 13: Time × iteration plot of one execution of GRASP-PR for instance a400-100

Since, in the DM-GRASP-PR strategy, the data mining procedure is executed after

iteration 500, we can observe, in Figure 14, that, from this point, the computational times

spent by the construction phase, the local search execution and, mainly, the path-relinking

procedure are reduced. The construction phase spent less time because to find a 2-path for

a pair origin-destination, in a first attempt, only the edges from the pattern and the edges

with weight equal to 0 are examined. The solutions generated in the hybrid construction

phase present better cost, so the local search took less time to find a local optima. The path-

relinking is performed between a solution obtained after the local search and a randomly

chosen solution from the pool. As the solutions generated after the local search procedure

present better cost in the hybrid iterations, they are more similar to the solutions in the pool

and the path-relinking procedure took less time to execute.
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Figure 14: Time × iteration plot of one execution of DM-GRASP-PR for instance a400-100

In the MDM-GRASP-PR strategy, the data mining procedure is executed more than

once. We can observe, in Figure 15, that MDM-GRASP-PR behaves similar to the DM-

GRASP-PR until the first mining is performed. Then as more mining steps are executed

the computational times gradually and slightly reduce for the construction, local search and

path-relinking procedures.
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Figure 15: Time × iteration plot of one execution of MDM-GRASP-PR for instance a400-100

Figure 16 and 17 illustrate another execution – with a different random seed – of the
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MDM-GRASP-PR for the same instance a400-100. Figure 16 shows the cost per iteration

and Figure 17 presents the time per iteration plots. We can observe that, in this run, the

first data mining execution was performed after iteration 361, before the mining performed

in the other execution of the MDM-GRASP-PR (in the iteration 584). It means that, in

this run, the elite set became stable earlier and the strategy could start using patterns soon

after the first mining activation. Due to this anticipation, the reduction of the time spent by

construction, local search and path-relinking phases started earlier and the total time of this

MDM-GRASP-PR execution was 732.41s, faster than the other run, which took 830.62s.
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Figure 16: Cost × iteration plot of one execution of MDM-GRASP-PR for instance a400-100
with another random seed

Another experiment was performed to evaluate the time required for GRASP-PR,

DM-GRASP-PR and MDM-GRASP-PR to achieve a target solution value. Each strategy

was run 100 times (with different random seeds), until a target solution was reached for a

specific instance. The instance a400-100 was used as the test case, and two targets were

analyzed: an average quality target (value 2834), and a more difficult one (value 2820).

Figures 18 and 19 show, for each target, the evaluation of the strategies. For each seed,

the time in which the target was reached is plotted. We can observe that in almost all

executions, for the two targets, the MDM-GRASP-PR reached the target before the DM-

GRASP-PR, which reached the target before the GRASP-PR. For the more difficult target

(Figure 19), both DM-GRASP-PR and MDM-GRASP-PR were even more effective, finding

it much faster than GRASP-PR.
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Figure 17: Time × iteration plot of one execution of MDM-GRASP-PR for instance a400-100
with another random seed

Figures 20 and 21 show another comparison between the three strategies, based on

T ime-to-target (TTT) plots (2), which are used to analyze the behavior of randomized

algorithms. These plots basically show the cumulative probability distributions of running

times, i.e., p(computational time< x) vs. x.

A TTT plot is generated, initially, by executing an algorithm several times and mea-

suring the time required to reach a solution at least as good as a target solution. In our

experiments, each strategy was executed a hundred times. Then, the i-th sorted running

time ti is associated with a probability pi = (i − 1/2)/100 and the points zi = (ti, pi), for

i = 1, ..., 100 are plotted. Each plotted point indicates the probability (vertical axis) for the

strategy to achieve the target solution in the indicated time (horizontal axis). The plots pre-

sented in Figures 20 and 21 were generated by the executions of GRASP-PR, DM-GRASP-

PR and MDM-GRASP-PR, for instance a400-100, using the same two target solutions used

in the previous experiment, respectively: an average value (2834) and a more difficult one

(2820).

For the average target, we observe in Figure 20 that GRASP-PR behaves worst than

the two other strategies, and that the MDM-GRASP-PR presents better behavior than

DM-GRASP-PR. We can see, for example, that the probability for MDM-GRASP-PR to

reach the average target in 800s is 100%, for DM-GRASP-PR is approximately 95% and for
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Figure 18: Analysis of convergence to an average target for instance a400-100

GRASP-PR is approximately 58%.

For the difficult target, Figure 21 shows that MDM-GRASP-PR behaves better than

DM-GRASP-PR and both presents a better behavior than GRASP-PR. These plots indicate

that MDM-GRASP-PR is able to reach difficult solutions faster than DM-GRASP-PR and

much faster than GRASP-PR, demonstrating that mining more than once and when the

elite set is stable brings robustness to the hybrid strategy.

We can observe that the hybridization of a data mining procedure into a GRASP

improved with a path-relinking procedure led the latter to find better quality solutions in

less computational time.

We also evaluated the proposed strategies using the tool proposed in (25) to compare

two algorithms which are based on stochastic local search. In this work, authors derived a

closed form index that gives the probability that one of the algorithms finds a solution at

least as good as a given target value in a smaller computation time than the other.

For this experiment, we used again the previous one hundred executions for the in-

stance a400-100. We compared each pair of strategies considering the same average and

difficult targets, which have the cost values 2834 and 2820, respectively. We then obtained

the probabilities that DM-GRASP-PR finds a solution at least as good as the average and

difficult targets in a smaller computation time than GRASP-PR, which are, respectively
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Figure 19: Analysis of convergence to a difficult target for instance a400-100

78.79% and 91.68%. We note that the probability grows with the difficulty of the target.

For the difficult target, the data mining strategy presented a much better performance. When

comparing MDM-GRASP-PR and GRASP-PR, the obtained probabilities are: 82.37% and

96.98% in favor of the MDM-GRASP-PR strategy. For the comparison between MDM-

GRASP-PR and DM-GRASP-PR, the probabilities are 54.24% and 54.76% in favor again

of the MDM-GRASP-PR strategy.

In this evaluation, we confirm that incorporating data mining strategies to heuristic

methods can improve the performance not only of methods that are memoryless, like the

GRASP metaheuristic, but also of methods that incorporate some use of memory, like the

path-relinking heuristic. We also observed that the multi data mining approach presented a

slightly better behavior when compared to the hybrid strategy which activates the mining

process just once.
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Figure 20: Time-to-target plot to an average target for instance a400-100
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Figure 21: Time-to-target plot to a difficult target for instance a400-100



5 Conclusions and Future Work

Hybrid GRASP metaheuristics which incorporate a data mining procedure has been

successfully applied for different combinatorial problems. These hybrid proposals are based

on the hypothesis that patterns extracted from sub-optimal obtained solutions using frequent

itemset mining could guide the search for better ones.

In this work, we proposed to combine a data mining technique into a GRASP meta-

heuristic with path-relinking in order to show that not only the traditional GRASP can

benefit from using patterns to guide the search, but also GRASP improved with the path-

relinking heuristic.

The experimental results showed that the first version of the proposed path-relinking

hybrid strategy, called DM-GRASP-PR, was able to obtain better solutions in less compu-

tational time than the original GRASP with path-relinking developed to solve the 2-path

network design problem, which was a state-of-the-art method for this problem.

In this first version of the path-relinking hybrid GRASP, the data mining process

occurred just once. To explore the gradual evolution of the elite set of solutions and allow

the extraction of better and higher-quality patterns, we proposed another version of the

path-relinking hybrid strategy, called MDM-GRASP-PR. This strategy extracts new sets of

patterns whenever the elite set changes and becomes stable. The conducted experiments

showed that the MDM-GRASP-PR obtained even better results than the DM-GRASP-PR.

These results showed that incorporating a data mining technique is effective, not

only to memoryless heuristics, but also to methods that use exchange of information about

obtained solutions like the path-relinking strategy.

The results obtained in this work motivate us, as future work, to introduce into

others metaheuristics the ideia of extracting patterns from sub-optimal solutions and using
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them in search procedures. We believe that many others metaheuristics and combinatorial

optimization problems can benefit from the incorporation of data mining techniques. The

good results obtained in this work motivate us, as future work, to introduce data mining

procedures into other metaheuristics. We believe that many other metaheuristics, such

as tabu search and genetic algorithms, can benefit from the incorporation of data mining

techniques, reaching good solutions for many other combinatorial optimization problems in

reasonable computational times.
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