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Resumo

Metaheuŕısticas representam uma importante classe de técnicas para a obtenção de boas

soluções, em tempo computacional razoável, para problemas de otimização combinatória.

São procedimentos de alto ńıvel de propósito geral que podem ser instaciadas para ex-

plorar eficientemente o espaço de soluções de um problema combinatório espećıfico. Um

importante tópico em metaheuŕısticas é o desenvolvimento de metaheuŕısticas h́ıbridas.

Esses métodos h́ıbridos resultam da combinação de conceitos e procedimentos de diferentes

metaheuŕısticas clássicas ou da combinação de metaheuŕısticas com conceitos e processos

de outras áreas de pesquisa responsáveis por realizar tarefas espećıficas que podem me-

lhorar a técnica original. Anteriormente, foi desenvolvida uma versão da metaheuŕıstica

GRASP (Greedy Randomized Adaptative Search Procedures) que incorporou um pro-

cedimento de mineração de dados. Considerou-se hipótese de que padrões obtidos por

uma técnica de mineração de dados, a partir de um conjunto de soluções sub-ótimas de

um problema de otimização combinatória, poderiam ser usados para guiar procedimentos

metaheuŕısticos na busca por melhores soluções. Foram obtidos resultados promissores

aplicando-se essas idéias a diferentes problemas de otimização combinatória, tais como: o

problema do empacotamento de conjuntos, o problema de maximização da diversidade,

e o problema de replicação de servidores para multicast confiável. O desafio deste tra-

balho é introduzir um procedimento de mineração de dados a um importante métdodo

da literatura que combina elementos de diferentes metaheuŕısticas para resolver o prob-

lema das p-medianas, conhecido como heuŕıstica h́ıbrida multistart – HH, buscando obter

evidências de que, quando uma técnica é capaz de atingir a solução ótima, ou uma solução

sub-ótima com pouca chance de melhora, os padrões minerados podem ser usados para

guiar a busca pela solução ótima ou sub-ótima em menos tempo computacional. À nova

versão denominou-se DM-HH. Experimentos computacionais, conduzidos em um conjuto

de instâncias da literatura, mostraram que a nova versão da heuŕıstica h́ıbrida foi capaz

de atingir soluções ótimas e sub-ótimas, em média 27,32% mais rápido que a estratégia

original.

Palavras chave: Metaheuŕısticas Hı́bridas, Problema das p-Medianas, Mineração de Da-

dos.



Abstract

Hybrid metaheuristics – developed based on the combination of metaheuristics with con-

cepts and techniques from other research areas – represent an important subject in com-

binatorial optimization research. Previously, a hybrid version of the GRASP (Greedy

Randomized Adaptive Search Procedures) metaheuristic which incorporates a data min-

ing procedure was developed and explored. The base hypothesis was that patterns ob-

tained by a data mining technique, from a set of suboptimal solutions of a combinatorial

optimization problem, could be used to guide metaheuristics procedures in the search for

better solutions. Promising results were obtained when applying these ideas to different

combinatorial problems, such as: the set packing problem, the maximum diversity prob-

lem and the server replication for reliable multicast problem. The challenge of this work is

to introduce a data mining procedure into a state-of-the-art heuristic for a specific problem

in order to give evidences that, when a technique is able to reach the optimal solution, or

a near-optimal solution with little chance of improvements, the mined patterns could be

used to guide the search for the optimal or near-optimal solutions in less computational

time. We then developed a new version of a previously proposed and state-of-the-art

multistart hybrid heuristic for the classical p-median problem, which combines elements

of different traditional metaheuristics. Computational experiments, conducted on a set of

instances from the literature, showed that the new version of the hybrid heuristic was able

to reach optimal and near-optimal solutions, on average, 27.32% faster than the original

strategy.

Keywords: Hybrid Metaheuristics, p-Median Problem, Data Mining.
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1 Introduction

Metaheuristics represent an important class of techniques for obtaining good solutions, in

reasonable time, for hard combinatorial optimization problems. They are general purpose

high-level procedures that can be instantiated to explore efficiently the solution space of a

specific optimization problem [23]. Tabu search, genetic algorithms, simulated annealing,

ant systems and GRASP are examples of metaheuristics and have been applied to real-life

problems of several areas of science over the last decades. An overview of heuristic search

can be found in [30].

An important topic in metaheuristics research is the development of hybrid

metaheuristics [36]. Such hybrid methods result from the combination of concepts and

procedures of different classic metaheuristics or from the combination of metaheuristics

with concepts and processes from other research areas responsible for performing specific

tasks that can improve the original technique. An instance of the latter case, and subject

of this work, is the hybrid version of a multistart heuristic that incorporates a data mining

process.

Over the last years, a hybrid version of the GRASP metaheuristic, called DM-

GRASP [33] was developed, which includes a data mining technique to improve the search

through the solution space.

The GRASP (Greedy Randomized Adaptive Search Procedures) metaheuristic

[5, 6] has been successfully applied to solve many combinatorial optimization problems, in

several areas, such as scheduling, routing, partitioning, location and assignment [7, 8]. The

solution search process employed by GRASP is performed iteratively and each iteration

consists of two phases: construction and local search. The construction phase builds a

feasible solution and then its neighborhood is explored by the local search in order to find

a better one. The result is the best solution found over all iterations.

Data mining refers to the automatic extraction of knowledge from datasets [16,

41]. The extracted knowledge, expressed in terms of patterns or rules, represents impor-

tant features of the dataset at hand. Hence, data mining provides a means to better

understand features implicit in raw data, which is fundamental in a decision-making pro-
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cess.

The hybridization of GRASP with a data mining process was first introduced

and applied to the set packing problem [28, 29]. The basic idea was to obtain knowledge

from the solutions obtained, in previous iterations, to guide the search for the next itera-

tions. Patterns extracted from good quality solutions could be used to guide the search,

leading to a more effective exploration of the solution space. The resulting method, the

DM-GRASP metaheuristic, achieved successful results also when evaluated on two other

combinatorial problems, namely, the maximum diversity problem [31] and the server repli-

cation for reliable multicast problem [32].

The idea of keeping track of recurrent good sub-solutions and fixing variables

have been successfully explored coupled with other heuristics. Lin and Kernighan de-

veloped a heuristic for the travelling salesman problem [20], where they fix some links

observed to occur in a number of previously locally optimum tours found by the algo-

rithm. Lodi et al.[21] developed an evolutionary heuristic for quadratic 0-1 programming,

where they present an intensification strategy used in a genetic algorithm to fix variables,

which can have their values fixed during all steps of the algorithm or only during a given

number of steps. Fleurent and Glover [9] described strategies for the quadratic assignment

problem, in which, during the constructive procedure, they select elements to be inserted

in a solution from an elite set containing the best solutions generated so far. Our idea is

to use more elaborated techniques found in the data mining research area to search for

good patterns extracted from a set of high quality solutions.

The previous DM-GRASP implementations were developed over a common

framework, divided in two parts. In the first one, a number of GRASP iterations are

executed and the best solutions are stored in an elite set. Then, a data mining algorithm

is used to extract patterns from this set of sub-optimal solutions. In the second part,

the GRASP iterations use the mined patterns to construct new solutions. In this frame-

work, the data mining process is performed after exactly half of the GRASP iterations.

According to the taxonomy of hybrid metaheuristics proposed in [36], the DM-GRASP

framework can be classified as a high-level and relay hybrid metaheuristic. It is considered

high-level, since the data mining technique and GRASP are self-contained and it is a relay

hybridization because GRASP, the data mining process, and GRASP again are applied

in a pipeline fashion.
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The challenge of this work is to introduce a data mining procedure into a

state-of-the-art heuristic for a specific problem in order to give evidences that, when a

technique is able to reach the optimal solution, or a near-optimal solution with little

chance of improvements, the mined patterns could be used to guide the search for the

optimal or near optimal solutions in less computational time.

We chose, as the state-of-the-art algorithm to be the base of our study, the

heuristic proposed in [26] for the classical p-median problem. It is a multistart hybrid

heuristic which combines elements of different traditional metaheuristics. Computational

experiments conducted on instances from the literature showed that this strategy was able

to perform at least as well as other methods, and often better in terms of both running

time and solution quality. The solutions obtained were always within 0.1% of the best

known upper bounds.

Basically, this strategy is a multistart iterative method and each iteration

constructs randomly a solution, which is then submitted to local search. In each iteration,

the solution obtained by local search is combined with one solution from an elite set, made

of the best reached solutions, through a path-relinking process [11]. After all iterations are

concluded, a post-optimization phase is activated in which elite solutions are combined

with each other. We will refer to this proposed strategy as Hybrid Heuristic (HH).

We then developed the Data Mining Hybrid Heuristic (DM-HH), introducing a

data mining procedure into the HH implementation in order to explore patterns extracted

from a set of good quality solutions. These patterns are used in the construction of new

solutions, leading to a more effective search through the solution space. Computational

experiments, comparing the HH and DM-HH strategies and conducted on a set of instances

from the literature, showed that the new data mining version of the hybrid heuristic was

able to reach optimal and near-optimal solutions, on average, 27.32% faster than the

original strategy.

Another contribution of this work is to show that not only the traditional

GRASP metaheuristic but also other more sophisticated heuristic, improved with a memory-

based intensification mechanism, like the path-relinking technique, can benefit from the

incorporation of a data mining procedure.

The remaining of this paper is organized as follows. In Section 2, we present

the p-median problem and review the main concepts and the structure of the state-
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of-the-art Hybrid Heuristic for this combinatorial problem. The Data Mining Hybrid

Heuristic, proposed in this work, is presented in Section 3. The computational experiments

conducted to compare both strategies are reported and discussed in Section 4. In Section

5, we illustrate and justify the behavior of both strategies with some additional analysis.

Finally, concluding remarks and some future works are pointed out in Section 6.
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2 Multistart Hybrid Heuristic

As stated in [26], given a set F of m potential facilities, a set U of n customers, a distance

function d : U × F → R, and a constant p ≤ m, the p-median problem consists of

determining which p facilities to open so as to minimize the sum of the distances from

each costumer to its closest open facility. It is a well-known NP-hard problem [19], with

numerous applications in location science [37] and clustering [24, 39].

In [26], Resende and Werneck proposed a state-of-art multistart hybrid heuris-

tic for the p-median problem, that combined elements of several traditional metaheuris-

tics to find near-optimal solutions to this problem. Figure 2.1 summarizes this algorithm.

Each iteration of this algorithm consists of the randomized construction of a solution

(line 4), which is then submitted to local search (line 5). After this, a solution is chosen

from the pool of elite solutions, made with some of the best solutions found in previous

iterations (line 6), and is combined with the solution obtained by the local search through

a process called path-relinking [11] (lines 7-10). Furthermore, after all iterations are com-

pleted, this algorithm executes the second phase, called post-optimization, in which elite

solutions are combined with each other (line 13), and the best solution found after the

post-optimization phase execution is taken as result.

The hybrid heuristic was compared with VNS (Variable Neighborhood Search)

[17], VNDS (Variable Neighborhood Decomposition Search) [18], LOPT (Local Optimiza-

tion) [35], DEC (Decomposition Procedure) [35], LSH (Lagrangean Surrogate Heuristic)

[34], and CGLS (Column Generation with Lagrangean Surrogate Relaxation) [34]. Em-

pirical results on instances from the literature attested the robustness of the hybrid al-

gorithm, which performed at least as well as other methods, and often better in terms

of both running time and solution quality. In all cases the solutions obtained by hybrid

heuristic were within 0.1% of the best known upper bounds.

In the next subsections, we describe the main concepts and the structure of

the hybrid heuristic.
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procedure Hybrid Heuristic(seed,maxit,elitesize)

1. Randomize(seed);

2. Init(elite set,elitesize);

3. for it← 1 to maxit do

4. S ← Construction p Median();

5. S ← Local Search p Median(S);

6. S ′ ← Select(elite set);

7. if(S ′ 6= ∅)

8. S ′ ← Path Relinking(S,S ′);

9. Update Elite(elite set,S ′);

10. end if

11. Update Elite(elite set,S);

12. end for;

13. S ←Post Optimization(elite set);

14. return S;

Figure 2.1: Pseudo-code of the hybrid heuristic.

2.1 Construction Phase

Figure 2.2 summarizes the construction method, which is based on the called standard

greedy algorithm [4, 40]. This algorithm starts with the empty solution and adds facili-

ties, one at time, choosing the most profitable in each iteration. The standard strategy is

deterministic because it finds the same solution in all iterations. The construction algo-

rithm of [26] is similar to this standard approach, but, instead of selecting the best among

all possible options, it only considers q < m possible insertions (line 5), chosen uniformly

at random, in each iteration. The most profitable among these options is selected (line

6). The number q = dlog2(m/p)e is chosen small enough to reduce the running time of

the algorithm (when compared to the standard greedy) and to ensure a fair degree of

randomization.
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procedure Construction p Median()

1. Init(n,m,p);

2. q ← d log2(m/p) e;

3. S ← ∅;

4. for it← 1 to p do

5. RCL ← Create RCL(q);

6. u← Best Possibility(RCL);

7. S ← S ∪ {u};

8. end for;

9. return S;

Figure 2.2: Pseudo-code of the construction phase.

2.2 Local Search

The adopted local search procedure for the p-median problem, originally proposed by

Teitz and Bart [38], is based on swapping facilities. Given an initial solution S, the

procedure determines, for each facility f 6∈ S, which facility g ∈ S (if any) would improve

the solution the most if f and g were interchanged (i.e., if f were opened and g closed).

If there is one such improving move, f and g are interchanged. The procedure continues

until no improving interchange can be made, in which case a local minimum has been

found.

2.3 Path-Relinking

Path-relinking was originally proposed by Glover [11] as an intensification strategy explor-

ing trajectories connecting elite solutions obtained by tabu search or scatter search [10, 12].

The procedure starts by computing the symmetric difference between the two solutions,

i.e., the set of moves needed to reach the solution target St from solution source Ss. The

current solution S is initialized with Ss and a path of solutions is generated linking Ss

and St. At each step, the procedure examines all moves from the current solution S and

selects the one which results in the least cost solution. The best move is made and the set

of available moves is updated. If necessary, the best solution along the path under con-

struction is updated. The procedure terminates when St is reached and the best solution
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found after the path-relinking phase execution is taken as result.

2.4 Post-Optimization

The post-optimization phase in the hybrid heuristic combines the solutions of the pool

of elite solutions to obtain even better ones. Each solution in the pool is combined with

each other by path-relinking. The solutions generated by this process are added to a new

pool of elite solutions, representing a new generation. The post-optimization algorithm

proceeds, executing on the new generation, until it creates a generation that does not

improve upon the previous one.
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3 Data Mining Hybrid Heuristic

In this section, we propose a new version of the hybrid heuristic (HH), presented in the

previous section, which incorporates a data mining process, called DM-HH, to solve the

p-median problem. The basic concept of incorporating a data mining process is that

patterns found in high quality solutions obtained in earlier iterations of the HH strategy

can be used to conduct and improve the search process.

The DM-HH procedure is composed of two phases. The first one consists of

executing maxit/2 pure HH iterations to obtain a set of different solutions. The d best

solutions from this set of solutions compose the elite set for mining.

After this first phase, the data mining process is applied. It is responsible

for extracting a set of patterns from the elite set. The patterns to be mined are sets of

elements that frequently appear in solutions from the elite set. This extraction of patterns

characterizes a frequent itemset mining application [16]. A frequent itemset mined with

support s% represents a set of elements that occur in s% of the elite solutions.

Next, the second phase is performed. In this part, another maxit/2 slightly

different HH iterations are executed. In these maxit/2 iterations, an adapted construc-

tion phase starts building a solution guided by a mined pattern selected from the set of

mined patterns. Initially, all elements of the selected pattern are inserted into the partial

solution, from which a complete solution will be built executing the standard construction

procedure. This way, all constructed solutions will contain the elements of the selected

pattern.

The pseudo-code of the DM-HH for the p-median problem is illustrated in

Figure 3.1. In lines 2 and 3, the elite set of the original heuristic and the elite set for

mining are initialized with the empty set. The loop from line 4 to line 15 corresponds to

the first phase of the strategy, in which pure HH is performed for maxit/2 iterations. The

original construction method is executed in line 5, followed by the local search method

in line 6. In line 7, a solution is chosen from the pool of elite solutions of the original

approach to be combined, in line 9, using the path-relinking process with the solution

obtained by the local search. In lines 10 to 14, the elite set of the original algorithm and
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the elite set for mining, composed of d solutions, are updated with the solution obtained by

the path-relinking process and with the solution obtained by the local search. In line 16,

the data mining procedure extracts t patterns from the elite set, which are inserted in

decreasing order of pattern size in the set of patterns. The loop from line 17 to line 27

corresponds to the second phase of the strategy. In line 18, one pattern is picked from

the set of patterns in a round-robin way. Then the adapted construction procedure is

performed in line 19, using the selected pattern as a starting point. In line 20, the local

search is executed. After this, a solution is chosen from the pool of elite solutions of the

original approach to be combined using the path-relinking with the solution obtained by

the local search (lines 21 to 26). After all iterations are completed, this algorithm executes

the post-optimization in line 28 and the best solution found after the post-optimization

phase is taken as result.

In Figure 3.2, the pseudo-code of the adapted construction is illustrated. It

is quite similar to the code described in Figure 2.2 with the difference that, instead of

beginning the solution with an empty set, in line 3, it starts with all elements of the pattern

supplied as a parameter. In the loop from line 4 to line 8, the solution is completed using

the original construction method.

The extraction of patterns from the elite set, which is activated in line 16 of

the pseudo-code presented in Figure 3.1, corresponds to the well-known frequent itemset

mining (FIM) task. The FIM problem can be defined as follows.

Let I = {i1, i2, ..., in} be a set of items. A transaction is a subset of I and

a dataset D is a set of transactions. A frequent itemset F , with support s, is a subset

of I which occurs in at least s% of the transactions in D. The FIM problem consists

of extracting all frequent itemset from a dataset D with a minimum support specified

as a parameter. During the last two decades, many algorithms have been proposed to

efficiently mine frequent itemsets [1, 13, 15, 22].

In this work, the useful patterns to be mined are sets of elements that com-

monly appear in sub-optimal solutions of the p-median problem. This is a typical frequent

itemset mining application, where the set of items is the set of potential locations. Each

transaction of the dataset represents a sub-optimal solution of the elite set. A frequent

itemset mined from the elite set with support s% represents a set of locations that occur

in s% of the elite solutions.
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A frequent itemset is called maximal if it has no superset that is also frequent.

In order to avoid mining frequent itemsets which are subset of one another, we decided

to extract only maximal frequent itemset. To execute this task, we adopted the FPmax*

algorithm [14], available at http://fimi.cs.helsinki.fi.
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procedure DM HH(seed,maxit,elitesize,t)

1. Randomize(seed);

2. elite set← ∅;

3. elite set DM ← ∅;

4. for it← 1 to maxit/2 do

5. S ← Construction p Median();

6. S ← Local Search p Median(S);

7. S ′ ← Select(elite set);

8. if(S ′ 6= ∅)

9. S ′ ← Path Relinking(S,S ′);

10. Update Elite(elite set,S ′);

11. Update Elite(elite set DM ,S ′);

12. end if

13. Update Elite(elite set,S);

14. Update Elite(elite set DM ,S);

15. end for;

16. patterns set← Mine(elite set DM , t);

17. for it← 1 to maxit/2 do

18. pattern← Select Next Largest Pattern(patterns set);

19. S ← Adapted Construction p Median(pattern);

20. S ← Local Search p Median(S);

21. S ′ ← Select(elite set);

22. if(S ′ 6= ∅)

23. S ′ ← Path Relinking(S,S ′);

24. Update Elite(elite set,S ′);

25. end if

26. Update Elite(elite set,S);

27. end for;

28. S ←Post Optimization(elite set);

29. return S;

Figure 3.1: Pseudo-code of the DM-HH
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procedure Adapted Construction p Median(pattern)

1. Init(n,m,p);

2. q ← d log2(m/p) e;

3. S ← pattern;

4. for it←|pattern|+ 1 to p do

5. RCL ← Create RCL(q);

6. u← Best Possibility(RCL);

7. S ← S ∪ {u};

8. end for;

9. return S;

Figure 3.2: Pseudo-code of the adapted construction
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4 Computational Experiments

In this section, the computational results obtained for HH and DM-HH are presented.

The strategies were evaluated using three classes of instances. The first class, named

ORLIB, consists of 40 instances and was taken from the OR-Library [3]. Each instance

is a different graph with a corresponding value for p. The number of nodes (customers)

varies from 100 to 900, and the value of p ranges from 5 to 200. The optimal values are

known for these 40 instances. In the OR-Library, these 40 instances are identified by

pmed01 to pmed40.

Instances of the second class, named TSP, are sets of points on the plane.

Originally proposed for the traveling salesman problem, they are available at the TSPLIB

[25]. Every point is considered both a potential facility and a customer, and the cost of

assigning customer c to facility f is simply the Euclidean distance between the points

representing c and f (e.g. the costs are real values). From the TSP class, we considered

the FL1400 instances, with 1400 nodes and with several different values for p (number of

facilities to open).

The third class we study is named RW. Originally proposed in [27], it corre-

sponds to completely random distance matrices. In every case, the number of potential

facilities (m) is equal to the number of customers (n). The distance between each facility

and each customer has an integer value taken uniformly at random from the interval [1, n].

Six different values of n were considered: 100, 250, 500, 1000, 1500, and 2000. In each

case, several values of p were tested.

The algorithms were implemented in C++ and compiled with g++ (GCC)

4.2.3. The tests were performed on a 2.4 GHz Intel Core 2 Quad CPU Q6600 with 3

Gbytes of RAM, running Linux Kernel 2.6.24.

Both HH and DM-HH were run 9 times with a different random seed in each

run. Each strategy executed 500 iterations. After having conducted some tuning experi-

ments, we set some parameter values. The size of the elite set for mining (d) and the size

of the set of patterns (t) were set to 10. And a set of facilities was considered a pattern

if it was present in at least two of the elite solutions.
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When executed for the 40 instances from the ORLIB class, both HH and DM-

HH reached the optimal solution in all 9 runs. Table 4.1 presents the results related to

execution time of both strategies. In this table, the first column presents the name, the

number of customers and the value of p of the working instances, the second and fourth

columns show the average execution time (in seconds) of HH and DM-HH, obtained for 9

runs, the third and fifth columns present the standard deviation value of these execution

times. Smaller times are bold-faced. The sixth column shows the percentual difference

between the HH and DM-HH average times in relation to the HH average time. In the last

line, the average of the percentual differences is reported. We can observe that DM-HH

was always faster than HH and that the standard deviations are quite small. On average,

DM-HH was 25.06% faster than the HH strategy for the ORLIB instances.

There are two main reasons for the faster behavior of DM-HH. First, the

computational effort of the adapted construction phase is smaller than the original HH

construction, since the elements from a pattern are initially fixed in the solution. Then a

smaller number of elements must be processed and inserted into the constructed solution.

Second, and most important, the use of patterns leads to the construction of better

solutions which will be input for the local search. This incurs in less computational

effort taken to converge to a local optimal solution. In the next section, we will further

investigate and analyze this behavior.

When executed for the 45 instances from the RW class, both HH and DM-HH

reached the best known solutions in all 9 runs for 23 instances. For the other 22 instances,

they obtained slightly different solutions. In Table 4.2, the results related to the quality of

the obtained solutions are shown. The first column presents the class name, the number

of customers and the value of p of the working instances, the second one shows the best

known value for this instance, the third and fifth columns present the deviation value

of the best cost obtained by HH and DM-HH related to the best known value, and the

fourth and sixth columns present the deviation value of the average cost obtained by both

strategy.

The deviation value is computed as follows:

dev =
(HeuristicCost−BestCost)

BestCost
× 100, (4.1)

where HeuristicCost is the (best or average) cost obtained by the heuristic technique

and the BestCost is the optimal or best known value for the working instance.
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Table 4.1: Time of HH and DM-HH for ORLIB instances

HH DM-HH

Name/Cust/p Time(s) SD Time(s) SD %

pmed01/100/5 0.62 0.04 0.61 0.04 1.08

pmed02/100/10 0.51 0.03 0.41 0.02 20.35

pmed03/100/10 0.51 0.02 0.39 0.02 23.14

pmed04/100/20 0.42 0.02 0.34 0.07 17.65

pmed05/100/33 0.40 0.03 0.28 0.02 29.13

pmed06/200/5 2.26 0.15 2.23 0.09 1.38

pmed07/200/10 1.53 0.04 1.08 0.11 29.36

pmed08/200/20 1.19 0.02 0.84 0.05 29.53

pmed09/200/40 1.14 0.02 0.80 0.02 30.10

pmed10/200/67 1.11 0.03 0.79 0.02 28.41

pmed11/300/5 3.86 0.13 3.18 0.12 17.67

pmed12/300/10 3.07 0.12 2.96 0.10 3.40

pmed13/300/30 2.11 0.07 1.46 0.06 30.89

pmed14/300/60 2.14 0.03 1.45 0.04 32.47

pmed15/300/100 2.43 0.04 1.72 0.11 29.07

pmed16/400/5 7.89 0.28 6.76 0.08 14.28

pmed17/400/10 5.65 0.11 4.28 0.08 24.29

pmed18/400/40 3.73 0.28 2.42 0.08 35.32

pmed19/400/80 3.68 0.05 2.49 0.05 32.39

pmed20/400/133 4.20 0.11 3.03 0.05 27.75

pmed21/500/5 11.11 0.34 10.95 0.35 1.45

pmed22/500/10 9.02 0.15 6.97 0.15 22.70

pmed23/500/50 4.93 0.20 3.22 0.18 34.69

pmed24/500/100 5.40 0.08 3.73 0.06 30.93

pmed25/500/167 6.54 0.21 4.76 0.09 27.22

pmed26/600/5 18.05 0.25 13.54 0.47 24.99

pmed27/600/10 14.69 0.45 11.62 0.86 20.90

pmed28/600/60 7.01 0.16 5.26 0.20 24.96

pmed29/600/120 8.38 0.32 5.76 0.16 31.26

pmed30/600/200 10.89 0.32 7.67 0.12 29.57

pmed31/700/5 26.32 0.29 19.76 0.58 24.92

pmed32/700/10 17.86 0.51 11.62 0.34 34.94

pmed33/700/70 10.43 0.26 6.72 0.22 35.57

pmed34/700/140 12.44 0.83 8.26 0.16 33.60

pmed35/800/5 33.73 0.77 27.61 0.51 18.14

pmed36/800/10 24.87 0.47 19.09 0.34 23.24

pmed37/800/80 14.54 0.24 9.18 0.59 36.86

pmed38/900/5 51.08 0.74 40.21 0.52 21.28

pmed39/900/10 28.90 0.53 19.56 0.32 32.32

pmed40/900/90 19.79 0.40 12.80 0.34 35.32

Average 25.06
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Table 4.2: HH and DM-HH for RW instances

HH DM-HH

Class/Cust/p Best Known Best Avg Best Avg

RW/100/10 530 0.000 0.000 0.000 0.000

RW/100/20 277 0.000 0.000 0.000 0.000

RW/100/30 213 0.000 0.000 0.000 0.000

RW/100/40 187 0.000 0.000 0.000 0.000

RW/100/50 172 0.000 0.000 0.000 0.000

RW/250/10 3691 0.000 0.000 0.000 0.000

RW/250/25 1360 0.000 0.065 0.000 0.131

RW/250/50 713 0.000 0.000 0.000 0.000

RW/250/75 523 0.000 0.000 0.000 0.000

RW/250/100 444 0.000 0.000 0.000 0.000

RW/250/125 411 0.000 0.000 0.000 0.000

RW/500/10 16108 0.000 0.000 0.000 0.000

RW/500/25 5681 0.000 0.016 0.000 0.086

RW/500/50 2626 0.000 0.131 0.000 0.161

RW/500/75 1757 0.000 0.000 0.000 0.000

RW/500/100 1379 0.000 0.056 0.000 0.064

RW/500/150 1024 0.000 0.000 0.000 0.000

RW/500/200 893 0.000 0.000 0.000 0.000

RW/500/250 833 0.000 0.000 0.000 0.000

RW/1000/10 67811 0.000 0.000 0.000 0.107

RW/1000/25 24896 0.108 0.162 0.000 0.096

RW/1000/50 11274 0.053 0.316 0.000 0.203

RW/1000/75 7135 0.477 0.662 0.000 0.442

RW/1000/100 5218 0.000 0.290 0.038 0.200

RW/1000/200 2704 0.000 0.033 0.000 0.049

RW/1000/300 2018 0.000 0.000 0.000 0.000

RW/1000/400 1734 0.000 0.000 0.000 0.000

RW/1000/500 1614 0.000 0.000 0.000 0.000

RW/1500/10 160327 0.000 0.003 0.000 0.000

RW/1500/25 59374 0.125 0.246 0.000 0.207

RW/1500/50 26912 0.305 0.598 0.000 0.469

RW/1500/75 16921 0.000 0.470 0.018 0.188

RW/1500/100 12243 0.335 0.573 0.000 0.324

RW/1500/250 4761 0.000 0.173 0.042 0.142

RW/1500/500 2867 0.000 0.000 0.000 0.000

RW/1500/750 2422 0.000 0.000 0.000 0.000

RW/2000/10 293073 0.000 0.000 0.000 0.000

RW/2000/25 109481 0.068 0.593 0.000 0.241

RW/2000/50 50113 0.000 0.583 0.010 0.411

RW/2000/75 31463 0.372 0.760 0.000 0.527

RW/2000/100 22514 0.355 0.794 0.000 0.432

RW/2000/250 8204 0.098 0.274 0.000 0.288

RW/2000/500 4479 0.022 0.057 0.000 0.042

RW/2000/750 3560 0.000 0.000 0.000 0.000

RW/2000/1000 3225 0.000 0.000 0.000 0.000

Average 0.051 0.152 0.002 0.107
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Table 4.3: Time of HH and DM-HH for RW instances

HH DM-HH

Class/Cust/p Time(s) SD Time(s) SD %

RW/100/10 0.99 0.04 0.76 0.04 22.66

RW/100/20 0.62 0.08 0.42 0.02 31.29

RW/100/30 0.44 0.02 0.32 0.02 28.46

RW/100/40 0.40 0.03 0.31 0.02 23.76

RW/100/50 0.33 0.02 0.28 0.02 16.94

RW/250/10 7.61 0.28 6.00 0.17 21.08

RW/250/25 3.89 0.05 2.65 0.05 31.74

RW/250/50 2.33 0.07 1.57 0.04 32.35

RW/250/75 1.84 0.04 1.21 0.03 34.08

RW/250/100 1.65 0.03 1.15 0.04 30.22

RW/250/125 1.40 0.05 1.06 0.03 23.89

RW/500/10 35.91 0.67 30.44 0.57 15.24

RW/500/25 20.02 0.43 14.72 0.94 26.45

RW/500/50 10.26 0.20 7.16 0.25 30.21

RW/500/75 7.76 0.12 5.12 0.64 34.00

RW/500/100 7.23 0.70 4.61 0.16 36.21

RW/500/150 6.60 0.39 4.08 0.07 38.14

RW/500/200 6.56 0.25 4.50 0.24 31.42

RW/500/250 5.19 0.12 3.91 0.15 24.73

RW/1000/10 181.50 35.39 125.97 2.90 30.59

RW/1000/25 116.02 19.43 83.25 3.48 28.25

RW/1000/50 61.50 0.72 47.53 2.20 22.70

RW/1000/75 45.49 1.70 32.43 1.35 28.70

RW/1000/100 40.52 1.61 26.71 1.12 34.08

RW/1000/200 37.90 0.58 24.29 1.29 35.89

RW/1000/300 36.68 0.17 23.64 0.33 35.56

RW/1000/400 40.83 2.88 26.33 0.24 35.51

RW/1000/500 30.69 0.27 21.56 0.29 29.73

RW/1500/10 438.32 7.73 358.80 6.90 18.14

RW/1500/25 268.78 7.33 213.17 9.10 20.69

RW/1500/50 165.73 3.28 127.17 6.46 23.26

RW/1500/75 114.82 0.98 90.74 13.65 20.98

RW/1500/100 99.12 10.74 70.30 3.15 29.07

RW/1500/250 85.34 0.92 54.70 4.39 35.90

RW/1500/500 89.93 0.21 57.23 0.33 36.36

RW/1500/750 72.81 0.20 51.88 0.26 28.75

RW/2000/10 830.56 35.49 725.40 28.33 12.66

RW/2000/25 523.63 11.75 433.63 15.92 17.19

RW/2000/50 360.63 12.40 278.68 15.15 22.73

RW/2000/75 240.66 5.66 180.77 6.36 24.88

RW/2000/100 189.47 4.75 142.00 6.59 25.05

RW/2000/250 148.36 11.37 94.12 7.86 36.56

RW/2000/500 153.68 3.30 95.02 2.26 38.17

RW/2000/750 182.84 22.41 115.27 2.39 36.96

RW/2000/1000 132.88 0.29 92.63 3.23 30.29

Average 28.26
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The smallest values, i.e., the better results, are bold-faced. The last line of

these tables presents the average values of each column. Out of the 22 instances for which

HH and DM-HH presented different results, in 10 instances, HH reached the best know

value in all 9 runs and the DM-HH reached this result in 18 instances (for these instances

the Best value is zero). The DM-HH strategy found 11 better results for best values and

4 were found by HH. Considering the average results, DM-HH found 15 better values and

HH found 7. These results show that the DM-HH strategy was able to improve slightly

the results obtained by HH for the RW class.

In terms of computational time, we can observe in Table 4.3 that, again, the

DM-HH strategy was faster than HH. On average, DM-HH was 28.26% faster.

Table 4.4 presents the results related to the quality of the solutions obtained

by HH and DM-HH when evaluated for the 18 instances from the FL1400 class. Both

strategy reached the best known solutions in all 9 runs for just 3 instances. For the other

15 instances, they obtained slightly different solutions. The HH strategy found 6 better

results for best values and just one was found by DM-HH. Considering the average results,

HH found 7 better values and DM-HH found 4. Differently from ORLIB and RW classes,

these results show that the HH strategy, for the FL1400 class, was able to obtain slightly

better results than DM-HH.

However, for the time analysis, DM-HH always improved the HH performance.

In Table 4.5, we observe that, once more, the DM-HH strategy was faster than HH. At

this time, DM-HH was 30.03% faster.
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Table 4.4: HH and DM-HH for FL1400 instances

HH DM-HH

Class/Cust/p Best Known Best Avg Best Avg

FL/1400/10 101249.47 0.000 0.000 0.000 0.000

FL/1400/20 57857.55 0.001 0.001 0.001 0.001

FL/1400/30 44013.48 0.000 0.000 0.000 0.000

FL/1400/40 35002.52 0.000 0.000 0.000 0.000

FL/1400/50 29089.78 0.002 0.002 0.002 0.002

FL/1400/60 25161.12 0.000 0.002 0.000 0.000

FL/1400/70 22125.53 0.002 0.002 0.002 0.002

FL/1400/80 19870.85 0.000 0.001 0.000 0.012

FL/1400/90 17987.94 0.004 0.004 0.004 0.004

FL/1400/100 16551.2 0.006 0.019 0.006 0.014

FL/1400/150 12026.43 0.000 0.029 0.000 0.018

FL/1400/200 9357.74 0.011 0.028 0.000 0.028

FL/1400/250 7739.8 0.000 0.032 0.023 0.057

FL/1400/300 6620.92 0.001 0.048 0.014 0.067

FL/1400/350 5720.88 0.000 0.048 0.019 0.076

FL/1400/400 5006.75 0.000 0.013 0.000 0.009

FL/1400/450 4468.31 0.000 0.062 0.037 0.095

FL/1400/500 4046.16 0.000 0.039 0.001 0.049

Average 0.001 0.018 0.006 0.024
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Table 4.5: Time of HH and DM-HH for FL1400 instances

HH DM-HH

Class/Cust/p Time(s) SD Time(s) SD %

FL/1400/10 155.05 5.51 120.78 3.78 22.10

FL/1400/20 103.13 3.41 70.79 1.97 31.36

FL/1400/30 105.19 2.67 65.67 1.42 37.57

FL/1400/40 93.92 2.17 64.76 1.99 31.05

FL/1400/50 77.66 1.29 49.60 1.04 36.13

FL/1400/60 76.28 1.37 54.31 2.17 28.80

FL/1400/70 65.84 1.20 40.97 1.00 37.78

FL/1400/80 66.35 1.85 42.61 1.45 35.77

FL/1400/90 61.96 2.05 38.34 1.53 38.13

FL/1400/100 62.62 1.87 46.11 0.61 26.36

FL/1400/150 63.00 1.35 51.59 1.69 18.12

FL/1400/200 61.79 0.78 43.41 3.19 29.75

FL/1400/250 70.98 2.24 47.72 3.17 32.78

FL/1400/300 75.40 2.35 52.50 2.71 30.37

FL/1400/350 77.13 2.30 57.20 3.49 25.83

FL/1400/400 77.62 1.81 54.95 3.87 29.20

FL/1400/450 84.72 2.39 65.67 2.17 22.48

FL/1400/500 93.48 5.76 68.27 3.07 26.97

Average 30.03
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5 Strategies Behavior Analysis

In this section, we present some additional analysis of computational experiments per-

formed to illustrate the behavior of both strategies.

Figures 5.1 and 5.2 present the behavior of the construction, local search and

path-relinking phases, in terms of the cost values obtained, by HH and DM-HH through

the execution of 500 iterations, for the specific instance rw1000-p25.
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Figure 5.1: One execution of HH for rw1000-p25

These figures show that the local search always reduces the cost of the solution

obtained by the construction phase and the path-relinking phase is able to decrease the

cost of the solutions obtained by the local search phase in both heuristics HH and DM-HH.

In Figure 5.1, we observe that the behavior of the construction, local search

and path-relinking phases performed in HH looks the same through all iterations.

Figure 5.2 shows that the DM-HH strategy provides an improvement in the

quality of the solutions reached by the construction, local search and path-relinking phases

after iteration 250, where DM-HH starts to use the patterns found by the data mining

procedure.

Table 5.1 shows the average costs of the solutions obtained by the construction
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Figure 5.2: One execution of DM-HH for rw1000-p25

phase, and after the local search and path-relinking phases in the first 250 iterations and

in the last 250 iterations, i.e., before using the patterns generated by the data mining

procedure and using these patterns. All phases present better cost values after using the

patterns generated by the data mining procedure. From this decreasing values, we can

deduce the benefit from executing the data mining procedure not only for the construction

phase but also for the local search and path-relinking phases.

Table 5.1: Average cost values

Construction Local search Path-relinking

First 250 iterations 33675.70 26555.27 25846.06

Next 250 iterations 29007.49 25352.95 25276.90

Figures 5.3 and 5.4 show the behavior of the construction, local search and

path-relinking phases, for both strategies HH and DM-HH in terms of the computational

time, through the execution of 500 iterations, for the same instance rw1000-p25.

Table 5.2 presents the average computational times used to execute the con-

struction, local search and path-relinking phases in the first 250 iterations and in the last

250 iterations. We can clearly see that computational times of all phases dropped sub-

stantially after starting to use the patterns generated by the data mining procedure. The

construction phase demands less computational time because it starts from a solution
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Figure 5.3: One execution of HH for rw1000-p25

partially built using the obtained patterns. The necessary effort required by the local

search procedure to find a local optimum decreases due to the better solutions provided

by the construction phase. As the solutions generated after the local search procedure

present better cost in the iterations which use the data mining patterns, they are more

similar to the solutions in the path-relinking pool and the path-relinking procedure takes

less time to execute.

Table 5.2: Average computational times

Construction Local search Path-relinking

First 250 iterations 7.66 101.82 105.45

Next 250 iterations 3.95 51.95 82.83

Another experiment was performed to evaluate the time required for HH and

DM-HH to achieve a target solution value. Each strategy was run 100 times (with different

random seeds), until a target solution was reached for a specific instance. In each run, if

the target value was not found in 500 iterations, then the pos-optimization was performed

until the target value was found or the elite set used for the pos-optimization procedure

was not updated.

The instance rw1000-p25 was used as the test case, and three targets were

analyzed: an easy target (value 24964), an intermediate (value 24948), and a more difficult
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Figure 5.4: One execution of DM-HH for rw1000-p25

one (value 24923).

Figures 5.5, 5.6 and 5.7 show, for each target, the evaluation of the strategies.

For each seed, the time in which the target was reached is plotted. DM-HH was able to

find the easy target in all executions, the intermediate target in all except one execution

and the difficult target in all except 4 executions, while HH was not able to find the easy

target in 3 executions, the intermediate target in 23 executions and the difficult target in

33 executions.
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Figure 5.5: Analysis of convergence to an easy target for instance rw1000-p25.

We can observe that in almost all executions, for the three targets, the DM-HH
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Figure 5.6: Analysis of convergence to an intermediate target for instance rw1000-p25.

reached the target before the HH. Also, DM-HH was able to find the targets more often

than HH.

The results of these experiments evidenced that the incorporation of the data-

mining procedure into the original HH heuristic was able to improve substantially its

efficiency, in terms of the time required to achieve a target solution.

Figures 5.8, 5.9 and 5.10 show another comparison between HH and DM-

H strategies, based on Time-to-target (TTT) plots [2], which are used to analyze the

behavior of randomized algorithms.

A TTT plot is generated, initially, by executing an algorithm several times and

measuring the time required to reach a solution at least as good as a target solution. We

executed each strategy a hundred times. Then, the i-th sorted running time ti is associated

with a probability pi = (i − 1/2)/100 and the points zi = (ti, pi), for i = 1, ..., 100 are

plotted. Each plotted point indicates the probability (vertical axis) for the strategy to

achieve the target solution in the indicated time (horizontal axis).

The plots presented in Figures 5.8, 5.9 and 5.10 were generated by the execu-

tion of HH and DM-HH, for instance rw1000-p25, using the same three target solution

values used in the previous experiment.

For the easy target, we observe in Figure 5.8 that HH and DM-HH present

similar behaviors until about 50 seconds when the probability for DM-HH to find the
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Figure 5.7: Analysis of convergence to a difficult target for instance rw1000-p25.

target value starts to be greater than for HH. This happens because, until the data

mining procedure is executed in DM-HH, both strategies obtain the same solution in each

iteration, but DM-HH starts to find the target value faster when the patterns are used.

For both intermediate and difficult targets, Figures 5.9 and 5.10 respectively,

we observe that DM-HH behaves better than HH. These plots indicate that DM-HH is

able to reach difficult solutions faster than HH.

The analysis performed in this section shows that the new data mining version

of the hybrid heuristic was able to reach good quality solutions much faster than the

original strategy. It also demonstrates that a sophisticated heuristic like HH, which is im-

proved with a memory-based intensification mechanism, like the path-relinking technique,

can benefit from the incorporation of a data mining procedure.
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Figure 5.8: Time-to-target plot for an easy target.
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Figure 5.9: Time-to-target plot for an intermediate target.
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Figure 5.10: Time-to-target plot for a difficult target.
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6 Conclusions

In previous works, the DM-GRASP strategy, a hybrid version of the GRASP metaheuristic

which incorporates a data mining procedures, was proposed and developed. DM-GRASP

has been successfully applied to solve different combinatorial optimization problems. This

proposal was based on the hypothesis that patterns extracted from sub-optimal obtained

solutions could guide the search for better ones in less computational time.

The aim of this work was to introduce a data mining procedure into a state-of-

the-art heuristic for a specific problem in order to give evidences that, when a technique

is able to reach the optimal solution, or a near-optimal solution with little chance of

improvements, the mined patterns could be used to guide the search for the optimal or

near optimal solutions in less computational time.

We then developed the DM-HH, a data mining version of a hybrid and state-of-

the-art multistart heuristic to solve the p-median problem. Computational experiments,

conducted on a set of instances from the literature, showed that the new version of the

hybrid heuristic was able to reach optimal and near-optimal solutions, on average, 27.32%

faster than the original strategy, which represents significant savings on execution times.

A secondary contribution of this work was to show that not only the tradi-

tional GRASP metaheuristic but also other more sophisticated heuristic, improved with a

memory-based intensification mechanism, like the path-relinking technique, could benefit

from the incorporation of a data mining procedure.

These encouraging results motivate us, as future work, to try to introduce

into other metaheuristics, like tabu search and genetic algorithms, the idea of extracting

patterns from sub-optimal solutions using data mining techniques and exploring them in

search procedures. We believe that other metaheuristics and many combinatorial opti-

mization problems can benefit from the incorporation of data mining techniques.
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[18] P. Hansen, N. Mladenović, and D. Perez-Brito, Variable Neighborhood Decomposition

Search, Journal of Heuristics 7, pp. 335–350 (2001).

[19] O. Kariv and L. Hakimi, An algorithmic approach to network location problems, Part

II: The p-medians, SIAM Journal of Applied Mathematics 37, pp. 539–560 (1979).

[20] S. Lin and B.W. Kernighan, An effective heuristic algorithm for the traveling sales-

man problem, Operations Research 21, pp. 498–516 (1973).

[21] A. Lodi, K. Allemand, and T. M. Liebling, An evolutionary heuristic for quadratic

0-1 programming, European Journal of Operational Research 119, pp. 662–670 (1999).

[22] S. Orlando, P. Palmerimi, and R. Perego, Adaptive and resource-aware mining of

frequent sets, Proceedings of the IEEE International Conference on Data Mining,

pp. 338–345 (2002).

[23] I. Osman and G. Laporte, Metaheuristics: A bibliography, Annals of Operations

Research 63, pp. 513–623 (1996).



REFERENCES 39

[24] M.R. Rao, Cluster analysis and mathematical programming, Journal of the American

Statistical Association 66, pp. 622–626 (1971).

[25] G. Reinelt, TSPLIB: A traveling salesman problem library, ORSA

Journal on Computing 3, pp. 376–384 (1991), http://www.iwr.uni-

heidelberg.de/groups/comopt/software/TSPLIB95/.

[26] M. G. C. Resende and R. F. Werneck, A hybrid heuristic for the p-median problem,

Journal of Heuristics 10, pp. 59–88 (2004).

[27] M. G. C. Resende and R .F . Werneck, On the implementation of a swap-based local

search procedure for the p-median problem, Proceedings of the Fifth Workshop on

Algorithm Engineering and Experiments – ALENEX03, pp. 119–127 (2003).

[28] M. H. F. Ribeiro, V. F. Trindade, A. Plastino, and S. L. Martins, Hybridization of

GRASP metaheuristic with data mining techniques, Proceedings of the ECAI Work-

shop on Hybrid Metaheuristics, pp. 69–78 (2004).

[29] M. H. F. Ribeiro, V. F. Trindade, A. Plastino, and S. L. Martins, Hybridization of

GRASP metaheuristic with data mining techniques, Journal of Mathematical Modeling

and Algorithms 5, pp. 23–41 (2006).

[30] S. Salhi, Heuristic Search: The Science of Tomorrow, OR48 Keynote Papers, Oper-

ational Research Society, pp. 38–58 (2006).

[31] L. F. Santos, M. H. F. Ribeiro, A. Plastino, and S. L. Martins, A hybrid GRASP

with data mining for the maximum diversity problem, Proceedings of the International

Workshop on Hybrid Metaheuristics, LNCS 3636, pp. 116–127 (2005).

[32] L. F. Santos, C. V. Albuquerque, S. L. Martins, and A. Plastino, A hybrid GRASP

with data mining for efficient server replication for reliable multicast, Proceedings of

the IEEE GLOBECOM Conference (2006).

[33] L. F. Santos, S. L. Martins, and A. Plastino, Applications of the DM-GRASP heuris-

tic: A survey, International Transactions in Operational Research 15, pp. 387–416

(2008).

[34] E. L. F. Senne and L. A. N. Lorena, Langrangean/Surrogate Heuristics for p-Median

Problems, Computing Tools for Modeling, Optimization and Simulation: Interfaces in



REFERENCES 40

Computer Science and Operations Research, M. Laguna and J. L. González-Velarde
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